WorldWideScience

Sample records for fuel storage areas

  1. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  2. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  3. Guidebook on spent fuel storage

    International Nuclear Information System (INIS)

    1984-01-01

    The Guidebook summarizes the experience and information in various areas related to spent fuel storage: technological aspects, the transport of spent fuel, economical, regulatory and institutional aspects, international safeguards, evaluation criteria for the selection of a specific spent fuel storage concept, international cooperation on spent fuel storage. The last part of the Guidebook presents specific problems on the spent fuel storage in the United Kingdom, Sweden, USSR, USA, Federal Republic of Germany and Switzerland

  4. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  5. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  6. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  7. Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas

    International Nuclear Information System (INIS)

    Wolfram, J.H.; Rogers, R.D.; Gazso, L.G.

    1997-01-01

    The intent of the workshop organizers was to convene experts in the fields of corrosion and spent nuclear fuels. The major points which evolved from the interaction of microbiologists, material scientists, and fuel storage experts are as follows: Corrosion of basin components as well as fuel containers or cladding is occurring; Water chemistry monitoring, if done in the storage facility does not take into account the microbial component; Microbial influenced corrosion is an area that many have not considered to be an important contributor in the aging of metallurgical materials especially those exposed to a radiation field; Many observations indicate that there is a microbial or biological presence in the storage facilities but these observations have not been correlated with any deterioration or aging phenomena taking place in the storage facility; The sessions on the fundamentals of microbial influenced corrosion and biofilm pointed out that these phenomena are real, occurring on similar materials in other industries and probably are occurring in the wet storage of spent fuel; All agreed that more monitoring, testing, and education in the field of biological mediate processes be performed and financially supported; Loosing the integrity of fuel assemblies can only cause problems, relating to the future disposition of the fuel, safety concerns, and environmental issues; In other rad waste scenarios, biological processes may be playing a role, for instance in the mobility of radionuclides in soil, decomposition of organic materials of the rad waste, gas production, etc. The fundamental scientific presentations discussed the full gamut of microbial processes that relate to biological mediated effects on metallic and non-metallic materials used in the storage and containment of radioactive materials

  8. Licensing of spent fuel dry storage and consolidated rod storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs

  9. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  10. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  11. ACRR fuel storage racks criticality safety analysis

    International Nuclear Information System (INIS)

    Bodette, D.E.; Naegeli, R.E.

    1997-10-01

    This document presents the criticality safety analysis for a new fuel storage rack to support modification of the Annular Core Research Reactor for production of molybdenum-99 at Sandia National Laboratories, Technical Area V facilities. Criticality calculations with the MCNP code investigated various contingencies for the criticality control parameters. Important contingencies included mix of fuel element types stored, water density due to air bubbles or water level for the over-moderated racks, interaction with existing fuel storage racks and fuel storage holsters in the fuel storage pool, neutron absorption of planned rack design and materials, and criticality changes due to manufacturing tolerances or damage. Some limitations or restrictions on use of the new fuel storage rack for storage operations were developed through the criticality analysis and are required to meet the double contingency requirements of criticality safety. As shown in the analysis, this system will remain subcritical under all credible upset conditions. Administrative controls are necessary for loading, moving, and handling the storage rack as well as for control of operations around it. 21 refs., 16 figs., 4 tabs

  12. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    CARRELL, R D

    2002-07-16

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  13. Interim licensing criteria for physical protection of certain storage of spent fuel

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1994-11-01

    This document presents interim criteria to be used in the physical protection licensing of certain spent fuel storage installations. Installations that will be reviewed under this criteria are those that store power reactor spent fuel at decommissioned power reactor sites; independent spent fuel storage installations located outside of the owner controlled area of operating nuclear power reactors; monitored retrievable storage installations owned by the Department of Energy, designed and constructed specifically for the storage, of spent fuel; the proposed geologic repository operations area; or permanently shutdown power reactors still holding a Part 50 license. This criteria applies to both dry cask and pool storage. However, the criteria in this document does not apply to the storage of spent fuel within the owner-controlled area of operating nuclear power reactors

  14. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    International Nuclear Information System (INIS)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable

  15. Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Brehm, J.R.

    1994-01-01

    The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

  16. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 and 2

    International Nuclear Information System (INIS)

    CARRELL, R.D.

    2002-01-01

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft 2 and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available

  17. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  18. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  19. Annex D 200 Area Interim Storage Area Final Safety Analysis Report Volume 5 (FSAR) (Section 1 and 2)

    International Nuclear Information System (INIS)

    CARRELL, R.D.

    2003-01-01

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft 2 and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped offsite to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility (FFTF) Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the FFTF SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF)TRIGA--One Rad-Vault container stores two DOT-6M 3 containers and six NRF TRIGA casks. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-1 cask with an inner commercial light water reactor (LWR) canister, are used for storing commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available

  20. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Science.gov (United States)

    2010-07-01

    ... areas; construction and safety precautions. 75.1903 Section 75.1903 Mineral Resources MINE SAFETY AND...; construction and safety precautions. (a) Permanent underground diesel fuel storage facilities must be— (1... with at least 240 pounds of rock dust and provided with two portable multipurpose dry chemical type...

  1. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  2. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  3. Nuclear criticality assessment of Oak Ridge research fuel element storage

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-06-01

    Spent and partially spent Oak Ridge Research Reactor (ORR) fuel elements are retained in the storage section of the ORR pool facility. Determination of a maximum expected neutron multiplication factor for the storage area is accomplished by a validated calculational method. The KENO Monte Carlo code and the Hansen-Roach 16-group neutron cross section sets were validated by calculations of critical experiments performed with early ORR fuel elements and with SPERT-D fuel elements. Calculations of various fuel element arrangements are presented which confirm the subcriticality previously inferred from critical experiments and indicate the k/sub eff/ would not exceed 0.85, were the storage area to be filled to capacity with storage racks containing elements with the fissionable material loading increased to 350 g of 235 U

  4. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  5. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  6. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    International Nuclear Information System (INIS)

    Kessinger, G.F.

    1993-10-01

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO 2 pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams

  7. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  8. Method of storing the fuel storage pot in a fuel storage tank for away-from-reactor-storage

    International Nuclear Information System (INIS)

    Ishiguro, Jun-ichi.

    1980-01-01

    Purpose: To prevent the contact of sodium in the away-from-reactor-storage fuel storage tank with sodium in a fuel storage pool having radioactivity ana always retain clean state therein. Method: Sodium is filled in a container body of the away-from-reactor-storage fuel storage tank, and a conduit, a cycling pump, and cooling means are disposed to form a sodium coolant cycling loop. The fuel storage pool is so stored in the container body that the heat of the pool is projected from the liquid surface of the sodium in the container. Therefore, the sodium in the container is isolated from the sodium in the pool containing strong radioactivity to prevent contact of the former sodium from the latter sodium. (Sekiya, K.)

  9. Survey of wet and dry spent fuel storage

    International Nuclear Information System (INIS)

    1999-07-01

    Spent fuel storage is one of the important stages in the nuclear fuel cycle and stands among the most vital challenges for countries operating nuclear power plants. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and for coordinating and encouraging closer co-operation among Member States. Spent fuel management is recognized as a high priority IAEA activity. In 1997, the annual spent fuel arising from all types of power reactors worldwide amounted to about 10,500 tonnes heavy metal (t HM). The total amount of spent fuel accumulated worldwide at the end of 1997 was about 200,000 t HM of which about 130,000 t HM of spent fuel is presently being stored in at-reactor (AR) or away-from-reactor (AFR) storage facilities awaiting either reprocessing or final disposal and 70,000 t HM has been reprocessed. Projections indicate that the cumulative amount generated by 2010 may surpass 340,000 t HM and by the year 2015 395,000 t HM. Part of the spent fuel will be reprocessed and some countries took the option to dispose their spent fuel in a repository. Most countries with nuclear programmes are using the deferral of a decision approach, a 'wait and see' strategy with interim storage, which provides the ability to monitor the storage continuously and to retrieve the spent fuel later for either direct disposal or reprocessing. Some countries use different approaches for different types of fuel. Today the worldwide reprocessing capacity is only a fraction of the total spent fuel arising and since no final repository has yet been constructed, there will be an increasing demand for interim storage. The present survey contains information on the basic storage technologies and facility types, experience with wet and dry storage of spent fuel and international experience in spent fuel transport. The main aim is to provide spent fuel

  10. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  11. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    International Nuclear Information System (INIS)

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D ampersand D) and to reduce the cost of maintaining the facilities prior to D ampersand D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor's fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered

  12. Alternatives for water basin spent fuel storage using pin storage

    International Nuclear Information System (INIS)

    Viebrock, J.M.; Carlson, R.W.

    1979-09-01

    The densest tolerable form for storing spent nuclear fuel is storage of only the fuel rods. This eliminates the space between the fuel rods and frees the hardware to be treated as non-fuel waste. The storage density can be as much as 1.07 MTU/ft 2 when racks are used that just satisfy the criticality and thermal limitations. One of the major advantages of pin storage is that it is compatible with existing racks; however, this reduces the storage density to 0.69 MTU/ft 2 . Even this is a substantial increase over the 0.39 MTU/ft 2 that is achievable with current high capacity stainless steel racks which have been selected as the bases for comparison. Disassembly requires extensive operation on the fuel assembly to remove the upper end fitting and to extract the fuel rods from the assembly skeleton. These operations will be performed with the aid of an elevator to raise the assembly where each fuel rod is grappled. Lowering the elevator will free the fuel rod for transfer to the storage canister. A storage savings of $1510 per MTU can be realized if the pin storage concept is incorporated at a new away-from-reactor facility. The storage cost ranges from $3340 to $7820 per MTU of fuel stored with the lower cost applying to storage at an existing away-from-reactor storage facility and the higher cost applying to at-reactor storage

  13. Spent fuel storage

    International Nuclear Information System (INIS)

    Huppert

    1976-01-01

    To begin with, the author explains the reasons for intermediate storage of fuel elements in nuclear power stations and in a reprocessing plant and gives the temperature and radioactivity curves of LWR fuel elements after removal from the reactor. This is followed by a description of the facilities for fuel element storage in a reprocessing plant and of their functions. Futher topics are criticality and activity control, the problem of cooling time and safety systems. (HR) [de

  14. Costing of spent nuclear fuel storage

    International Nuclear Information System (INIS)

    2009-01-01

    This report deals with economic analysis and cost estimation, based on exploration of relevant issues, including a survey of analytical tools for assessment and updated information on the market and financial issues associated with spent fuel storage. The development of new storage technologies and changes in some of the circumstances affecting the costs of spent fuel storage are also incorporated. This report aims to provide comprehensive information on spent fuel storage costs to engineers and nuclear professionals as well as other stakeholders in the nuclear industry. This report is meant to provide informative guidance on economic aspects involved in selecting a spent fuel storage system, including basic methods of analysis and cost data for project evaluation and comparison of storage options, together with financial and business aspects associated with spent fuel storage. After the review of technical options for spent fuel storage in Section 2, cost categories and components involved in the lifecycle of a storage facility are identified in Section 3 and factors affecting costs of spent fuel storage are then reviewed in the Section 4. Methods for cost estimation and analysis are introduced in Section 5, and other financial and business aspects associated with spent fuel storage are discussed in Section 6.

  15. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  16. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  17. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  18. Thermal Mode of Tanks for Storage Fuel of Thermal Power Plants and Boiler with the Influence of Engineering Facilities in the Area of their Placement

    Science.gov (United States)

    Polovnikov, V. Yu.; Makhsutbek, F. T.; Ozhikenova, Zh. F.

    2016-02-01

    This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with the influence of engineering construction. We have established that the presence of engineering structures in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  19. Numerical Modeling of the Effect of Thawing of Soil in the Area of Placing Tanks for Storage Fuel of Thermal Power Plants and Boiler

    Directory of Open Access Journals (Sweden)

    Polovnikov V.Yu.

    2016-01-01

    Full Text Available This paper describes the numerical modeling of heat transfer in the area placing of the tank for storage fuel of thermal power plant and boiler with considering the influence of thawing of the soil. We have established that the thawing of the soil in the area of placing of the tank for storage fuel of thermal power plant and boiler have little effect on the change of heat loss.

  20. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  1. High density fuel storage racks

    International Nuclear Information System (INIS)

    Groves, M.D.

    1978-01-01

    An apparatus is described for the safe and compact storage of nuclear fuel assemblies in an array of discrete open-ended neutron absorbing shields for which the theoretical minimum safe separation distance and cell pitch are known. Open-ended stainless steel end fittings are welded to each end of each shield and the end fittings are welded to each other in side-by-side relation, thereby reducing the cell pitch tolerance due to fabrication uncertainties. In addition, a multiplicity of ridges on the sides of each shield having a height equal to one half the theoretical minimum safe separation distance further reduce shield bowing tolerances. The net tolerance reduction permits a significant increase in the number of fuel assemblies that can be safely contained in a storage area of fixed size

  2. Spent fuel storage practices and perspectives for WWER fuel in Eastern Europe

    International Nuclear Information System (INIS)

    Takats, F.

    1999-01-01

    In this lecture the general issues and options in spent fuel management and storage are reviewed. Quantities of spent fuel world-wide and spent fuel amounts in storage as well as spent fuel capacities are presented. Selected examples of typical spent fuel storage facilities are discussed. The storage technologies applied for WWER fuel is presented. Description of other relevant storage technologies is included

  3. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  4. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  5. International conference on storage of spent fuel from power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    2003-01-01

    The management of spent nuclear fuel is a key aspect characterizing the use of nuclear power around the world. At the international level, there is an ongoing debate focused on this issue. At the national level, spent fuel management often provokes public concern. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel storage. Its role in this area is to: provide a forum for exchanging information; identify the key issues for long term storage; and co-ordinate and encourage closer co-operation among Member States in certain research and development activities that are of common interest. Meetings on this topic have been organized about once every four years since 1987. The objectives of the Conference were to: review recent advances in spent fuel storage technology; exchange information on the state of the art of and prospects for spent fuel storage; review and discuss the worldwide situation and the major factors influencing national policies in this field; exchange information on operating experience with wet and dry storage facilities; identify the most important directions for future national efforts and international co-operation in this area. The following subjects were covered in the topical sessions: National Programmes: the status and trends of spent fuel storage in Member States, spent fuel arising, amount of spent fuel stored, wet and dry storage capacities, storage facilities under construction and in planning and the national policy for the back end of the fuel cycle; Technologies: technological approaches for long term storage, new storage concepts, re-racking of fuel pools, spent fuel and material behaviour in long term storage; Experience and Licensing: experience in wet and dry storage, problems with materials in fuel pools, licensing practices for spent fuel storage facilities, license extension and re-licensing of existing facilities; R and D and Special Aspects: highly enriched fuel

  6. Compact nuclear fuel storage

    International Nuclear Information System (INIS)

    Kiselev, V.V.; Churakov, Yu.A.; Danchenko, Yu.V.; Bylkin, B.K.; Tsvetkov, S.V.

    1983-01-01

    Different constructions of racks for compact storage of spent fuel assemblies (FA) in ''coolin''g pools (CP) of NPPs with the BWR and PWR type reactors are described. Problems concerning nuclear and radiation safety and provision of necessary thermal conditions arising in such rack design are discussed. It is concluded that the problem of prolonged fuel storage at NPPs became Very actual for many countries because of retapdation of the rates of fuel reprocessing centers building. Application of compact storage racks is a promising solution of the problem of intermediate FA storage at NPPs. Such racks of stainless boron steel and with neutron absorbers in the from of boron carbide panels enable to increase the capacity of the present CP 2-2.6 times, and the period of FA storage in them up to 5-10 years

  7. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  8. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage

  9. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    International Nuclear Information System (INIS)

    Cottrell, J.E.; Shallo, F.A.; Musselwhite, E.L.; Wiedemann, G.F.; Young, M.

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model

  10. Spent fuel dry storage experience at Gentilly 2 NGS

    International Nuclear Information System (INIS)

    Macici, N.

    1997-01-01

    In order to provide the needed interim storage facility for the spent fuel, Hydro-Quebec chose the dry storage CANSTOR module developed by the Atomic Energy of Canada Ltd (AECL). The decision was made based upon the technical feasibility, public and environmental protection criteria, operational flexibility, economic and space saving advantages. Before the commissioning of the spent fuel dry storage facility, the project received all the required approvals. A joint provincial - federal public hearings was held in summer of 1994 in order to assess the project in term of its impact on the environment. In September 1995 took place the first transfer of spent fuel from the station bay to the dry storage facility and since then 21000 bundles of spent fuel were transferred in the two CANSTOR modules built on the station site located within the protected area of the Gentilly-2 station. To date, the expected performance of the dry storage units and equipment have been met. A third CANSTOR module is to be built in summer of 1997 on the station site. (author)

  11. Storage of spent fuel from power reactors. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1999-07-01

    The symposium gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts an international cooperation in this area should take. Dominant message retrieved from the symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration of time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. This is being addressed adequately by utilities, vendors and regulators alike

  12. Storage of spent fuel from power reactors. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The symposium gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts an international cooperation in this area should take. Dominant message retrieved from the symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration of time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. This is being addressed adequately by utilities, vendors and regulators alike Refs, figs, tabs

  13. Spent nuclear fuel storage - Basic concept

    International Nuclear Information System (INIS)

    Krempel, Ascanio; Santos, Cicero D. Pacifici dos; Sato, Heitor Hitoshi; Magalhaes, Leonardo de

    2009-01-01

    According to the procedures adopted in others countries in the world, the spent nuclear fuel elements burned to produce electrical energy in the Brazilian Nuclear Power Plant of Angra do Reis, Central Nuclear Almirante Alvaro Alberto - CNAAA will be stored for a long time. Such procedure will allow the next generation to decide how they will handle those materials. In the future, the reprocessing of the nuclear fuel assemblies could be a good solution in order to have additional energy resource and also to decrease the volume of discarded materials. This decision will be done in the future according to the new studies and investigations that are being studied around the world. The present proposal to handle the nuclear spent fuel is to storage it for a long period of time, under institutional control. Therefore, the aim of this paper is to introduce a proposal of a basic concept of spent fuel storage, which involves the construction of a new storage building at site, in order to increase the present storage capacity of spent fuel assemblies in CNAAA installation; the concept of the spent fuel transportation casks that will transfer the spent fuel assemblies from the power plants to the Spent Fuel Complementary Storage Building and later on from this building to the Long Term Intermediate Storage of Spent Fuel; the concept of the spent fuel canister and finally the basic concept of the spent fuel long term storage. (author)

  14. Arrival condition of spent fuel after storage, handling, and transportation

    International Nuclear Information System (INIS)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables

  15. Storage method for spent fuel assembly

    International Nuclear Information System (INIS)

    Tajiri, Hiroshi.

    1992-01-01

    In the present invention, spent fuel assemblies are arranged at a dense pitch in a storage rack by suppressing the reactivity of the assemblies, to increase storage capacity for the spent fuel assemblies. That is, neutron absorbers are filled in the cladding tube of an absorbing rod, and the diameter thereof is substantially equal with that of a fuel rod. A great amount of the absorbing rods are arranged at the outer circumference of the fuel assembly. Then, they are fixed integrally to the fuel assembly and stored in a storage rack. In this case, the storage rack may be constituted only with angle materials which are inexpensive and installed simply. With such a constitution, in the fuel assembly having absorbing rods wound therearound, neutrons are absorbed by absorbing rods and the reactivity is lowered. Accordingly, the assembly arrangement pitch in the storage rack can be made dense. As a result, the storage capacity for the assemblies is increased. (I.S.)

  16. Spent fuel storage facility, Kalpakkam

    International Nuclear Information System (INIS)

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  17. Spent fuel storage and isolation

    International Nuclear Information System (INIS)

    Bensky, M.S.; Kurzeka, W.J.; Bauer, A.A.; Carr, J.A.; Matthews, S.C.

    1979-02-01

    The principal spent fuel activities conducted within the commercial waste and spent fuel within the Commercial Waste and Spent Fuel Packaging Program are: simulated near-surface (drywell) storage demonstrations at Hanford and the Nevada Test Site; surface (sealed storage cask) and drywell demonstrations at the Nevada Test Site; and spent fuel receiving and packaging facility conceptual design. These investigations are described

  18. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  19. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R.

    1994-11-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl x , UAl x -Al and U 3 O 8 -Al cermets, U-5% fissium, UMo, UZrH x , UErZrH, UO 2 -stainless steel cermet, and U 3 O 8 -stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified

  20. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  1. Storage of spent fuel from power reactors. 2003 conference proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings

  2. Storage of spent fuel from power reactors. 2003 conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings.

  3. Analyses of expected rod performance during the dry storage of spent fuel

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1982-08-01

    Within the next ten years, a number of utilities will be forced to increase their interim spent-fuel-storage capability or face the loss of full-core reserve. Dry storage is being considered to fill this need. This paper analyzes the fuel-rod-performance data supporting dry storage and discusses areas where there are still outstanding questions. Three storage temperature ranges (T 0 C, 250 0 C 0 C and T > 400 0 C), two atmospheres (inert, unlimited air) and two initial fuel-rod conditions (intact, breached) are considered. It is concluded that a fuel-performance data base exists that indicates that storage below 250 0 C can be accomplished with long-term fuel pellet and cladding stability. At higher temperatures, analytic studies and laboratory experiments are needed especially to extrapolate and interpret the result of demonstration tests. 2 figures, 2 tables

  4. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.

    1980-01-01

    A low cost option for spent fuel inventories would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) storage facilities, and away-from-reactor (AFR) storage facilities. Fuel storage requirements will be met best by transfer of fuel or by re-racking existing reactor basins whenever these options are available. These alternatives represent not only the lowest cost storage options but also the most timely. Fuel can be shipped to other storage pools for about $10/kg depending on the distance, while costs for reracking range from $18 to 25/kg depending on the approach. These alternatives are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than similar issues that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the next least costly alternative for most utilities will be use of a Federal AFR. Storage cost of about $137/kg at an AFR are less costly than charges of up to $350/kg that could be incurred by the use of AR basins. AR basins are practical only when a utility requires storage capacity to accommodate annual additions of 100 MT or more of spent fuel. The large reactor complexes discharging this much feul are not currently those that require relief from fuel storage problems. A recent development in Germany may offer an AR alternative of dry storage in transportation/storage casks at a cost of $200/kg; however, this method has not yet been accepted and licensed for use in the US

  5. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  6. Tutorial review of spent-fuel degradation mechanisms under dry-storage conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1983-02-01

    This tutorial reviews our present understanding of fuel-rod degradation over a range of possible dry-storage environments. Three areas are covered: (1) why study fuel-rod degradation; (2) cladding-degradation mechanisms; and (3) the status of fuel-oxidation studies

  7. Spent fuel storage criticality safety

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E M; Elmessiry, A M [National center of nuclear safety and radiation control atomic energy authority, (Egypt)

    1995-10-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs.

  8. Spent fuel storage criticality safety

    International Nuclear Information System (INIS)

    Amin, E.M.; Elmessiry, A.M.

    1995-01-01

    The safety aspects of the spent fuel storage pool of the Egyptian test and research reactor one (ET-R R-1) has to be assessed as part of a general overall safety evaluation to be included in a safety analysis report (SAR) for this reactor. The present work treats the criticality safety of the spent fuel storage pool. Conservative calculations based on using fresh fuel has been performed, as well as less conservative using burned fuel. The calculations include cross library generation for burned and fresh fuel for the ET-R R-1 fuel type. The WIMS-D 4 code has been used in library generation and burn up calculation the critically calculations are performed using the one dimensional transport code (ANISN) and the two dimensional diffusion code (DIXY2). The possibility of increasing the storage efficiency either by insertion of absorber sheets of soluble boron salts or by reduction of fuel rod separation has been studied. 8 figs., 2 tabs

  9. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  10. Spent fuel storage requirements 1993--2040

    International Nuclear Information System (INIS)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges

  11. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  12. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  13. High density fuel storage rack

    International Nuclear Information System (INIS)

    Zezza, L.J.

    1980-01-01

    High storage density for spent nuclear fuel assemblies in a pool achieved by positioning fuel storage cells of high thermal neutron absorption materials in an upright configuration in a rack. The rack holds the cells at required pitch. Each cell carries an internal fuel assembly support, and most cells are vertically movable in the rack so that they rest on the pool bottom. Pool water circulation through the cells and around the fuel assemblies is permitted by circulation openings at the top and bottom of the cells above and below the fuel assemblies

  14. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  15. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  16. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  17. Spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.

    1982-06-01

    Spent fuel storage requirements, as projected through the year 2000 for U.S. LWRs, were calculated using information supplied by the utilities reflecting plant status as of December 31, 1981. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 165 GWe projected by the Energy Information Administration (EIA) for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor (AR) capacity case, assumes that all reactor storage pools are increased to their maximum capacities as estimated by the utilities for spent fuel storage utilizing currently licensed technologies. The reference case assumes no transshipments between pools except as currently licensed by the Nuclear Regulatory Commission (NRC). This case identifies an initial requirement for 13 MTU of additional storage in 1984, and a cumulative requirement for 14,490 MTU additional storage in the year 2000. The reference case is bounded by two alternative cases. One, a current capacity case, assumes that only those pool storage capacity increases currently planned by the operating utilities will occur. The second, or maximum capacity with transshipment case, assumes maximum development of pool storage capacity as described above and also assumes no constraints on transshipment of spent fuel among pools of reactors of like type (BWR, PWR) within a given utility. In all cases, a full core discharge capability (full core reserve or FCR) is assumed to be maintained for each reactor, except that only one FCR is maintained when two reactors share a common pool. For the current AR capacity case the indicated storage requirements in the year 2000 are indicated to be 18,190 MTU; for the maximum capacity with transshipment case they are 11,320 MTU

  18. Spent fuel behaviour during dry storage - a review

    International Nuclear Information System (INIS)

    Shivakumar, V.; Anantharaman, K.

    1997-09-01

    One of the strategies employed for management of spent fuel prior to their final disposal/reprocessing is their dry storage in casks, after they have been sufficiently cooled in spent fuel pools. In this interim storage, one of the main consideration is that the fuel should retain its integrity to ensure (a) radiological health hazard remains minimal and (b) the fuel is retrievable for down steam fuel management processes such as geological disposal or reprocessing. For dry storage of spent fuel in air, oxidation of the exposed UO 2 is the most severe of phenomena affecting the integrity of fuel. This is kept within acceptable limits for desired storage time by limiting the fuel temperature in the storage cask. The limit on the fuel temperature is met by having suitable limits on maximum burn-up of fuel, minimum cooling period in storage pool and optimum arrangement of fuel bundles in the storage cask from heat removal considerations. The oxidation of UO 2 by moist air has more deleterious effects on the integrity of fuel than that by dry air. The removal of moisture from the storage cask is therefore a very important aspect in dry storage practice. The kinetics of the oxidation phenomena at temperatures expected during dry storage in air is very slow and therefore the majority of the existing data is based on extrapolation of data obtained at higher fuel temperatures. This and the complex effects of factors like fission products in fuel, radiolysis of storage medium etc. has necessitated in having a conservative limiting criteria. The data generated by various experimental programmes and results from the on going programmes have shown that dry storage is a safe and economical practice. (author)

  19. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Jim E.; Shallo, Frank A.; Musselwhite, E Larry; Wiedemann, George F.; Young, Moylen

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model.

  20. Long-term storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kempe, T.F.; Martin, A.; Thorne, M.C.

    1980-06-01

    This report presents the results of a study on the storage of spent nuclear fuel, with particular reference to the options which would be available for long-term storage. Two reference programmes of nuclear power generation in the UK are defined and these are used as a basis for the projection of arisings of spent fuel and the storage capacity which might be needed. The characteristics of spent fuel which are relevant to long-term storage include the dimensions, materials and physical construction of the elements, their radioactive inventory and the associated decay heating as a function of time after removal from the reactor. Information on the behaviour of spent fuel in storage ponds is reviewed with particular reference to the corrosion of the cladding. The review indicates that, for long-term storage, both Magnox and AGR fuel would need to be packaged because of the high rate of cladding corrosion and the resulting radiological problems. The position on PWR fuel is less certain. Experience of dry storage is less extensive but it appears that the rate of corrosion of cladding is much lower than in water. Unit costs are discussed. Consideration is given to the radiological impact of fuel storage. (author)

  1. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1981-01-01

    A nuclear fuel storage apparatus for use in a water-filled pool is fabricated of a material such as stainless steel in the form of an egg crate structure having vertically extending openings. Fuel may be stored in this basic structure in a checkerboard pattern with high enrichment fuel, or in all openings when the fuel is of low effective enrichment. Inserts of a material such as stainless steel are adapted to fit within these openings so that a water gap and, therefore, a flux trap is formed between adjacent fuel storage locations. These inserts may be added at a later time and fuel of a higher enrichment may be stored in each opening. When it is desired to store fuel of still greater enrichment, poison plates may be added to the water gap formed by the installed insert plates, or substituted for the insert plates. Alternately, or in addition, fuel may be installed in high neutron absorption poison boxes which surround the fuel assembly. The stainless steel inserts and the poison plates are each not required until the capacity of the basic egg crate structure is approached. Purchase of these items can, therefore, be deferred for many years. Should the fuel to be stored be of higher enrichment than initially forecast, the deferred decision on the poison plates makes it possible to obtain increased poison in the plates to satisfy the newly discovered requirement

  2. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    Oh, Jinho

    2013-01-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  3. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe.

  4. Dry storage of Magnox fuel

    International Nuclear Information System (INIS)

    1986-09-01

    This work, commissioned by the CEGB, studies the feasibility of a combination of short-term pond storage and long-term dry storage of Magnox spent fuel as a cheaper alternative to reprocessing. Storage would be either at the reactor site or a central site. Two designs are considered, based on existing design work done by GEC-ESL and NNC; the capsule design developed by NNC and with storage in passive vaults for up to 100 yrs and the GEC-ESL tube design developed at Wylfa for the interim storage of LWR. For the long-term storage of Magnox spent fuel the GEC-ESL tubed vault all-dry storage method is recommended and specifications for this method are given. (U.K.)

  5. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  6. Reracking to increase spent fuel storage capacity

    International Nuclear Information System (INIS)

    1980-05-01

    Many utilities have already increased their spent fuel pool storage capacity by replacing aluminum racks having storage densities as low as 0.2 MTU/ft 2 with stainless steel racks which can more than double storage densities. Use of boron-stainless steel racks or thin stainless steel cans containing reassembled fuel rods allows even higher fuel storage densities (up to approximately 1.25 MTU/ft 2 ). This report evaluates the economics of smaller storage gains that occur if pools, already converted to high density storage, are further reracked

  7. Spent fuel element storage facility

    International Nuclear Information System (INIS)

    Ukaji, Hideo; Yamashita, Rikuo.

    1981-01-01

    Purpose: To always keep water level of a spent fuel cask pit equal with water level of spent fuel storage pool by means of syphon principle. Constitution: The pool water of a spent fuel storage pool is airtightly communicated through a pipe with the pool water of a spent fuel cask, and a gate is provided between the pool and the cask. Since cask is conveyed into the cask pit as the gate close while conveying, the pool water level is raised an amount corresponding to the volume of the cask, and water flow through scattering pipe and the communication pipe to the storage pool. When the fuel is conveyed out of the cask, the water level is lowered in the amount corresponding to the volume in the cask pit, and the water in the pool flow through the communication pipe to the cask pit. (Sekiya, K.)

  8. Materials behavior in interim storage of spent fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Gilbert, E.R.; Inman, S.C.

    1982-01-01

    Interim storage has emerged as the only current spent-fuel management method in the US and is essential in all countries with nuclear reactors. Materials behavior is a key aspect in licensing interim-storage facilities for several decades of spent-fuel storage. This paper reviews materials behavior in wet storage, which is licensed for light-water reactor (LWR) fuel, and dry storage, for which a licensing position for LWR fuel is developing

  9. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Jeary, B.

    2000-01-01

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  10. Comparison of the intermediate storage periods and areas required for final storage of high-level radioactive waste and spent fuel in various types of host rock

    International Nuclear Information System (INIS)

    Mueller-Hoeppe, N.; Lerch, C.; Jobmann, M.; Filbert, W.

    2005-01-01

    The present new version of the German concept for radioactive waste and spent fuel management is based on the assumption that a repository for high-level waste and spent fuel will not be required until 2030. One reason frequently given for this date is the intermediate storage period of at least forty years to allow the very high initial heat generation to decay. However, calculations performed by the authors have shown that the minimum intermediate storage period for a repository in rock salt is only between four and nineteen years, depending on the final storage concept and the load of the waste package. In clay as a host rock, the minimum intermediate storage times were calculated to be between 31 and 142 years; the same time spans are expected to apply to final storage in magmatic rock, such as granite. The maximum permissible loads of a container holding spent fuel in salt are many times those in clay and granite, respectively. It was also seen that the area requirement for final storage of the same waste structures is roughly a factor of ten higher in clay than in salt. The differences between granite and salt are similar. The reasons for these grave differences, on the one hand, are the better thermal conductivity of salt and, on the other hand, the better heat tolerance of the crushed salt used as backfill material compared to that of bentonite used in the clay and granite concepts. While salt will allow temperatures of up to 200 C, the maximum temperature in bentonite is limited to 100 C. (orig.)

  11. Storage of Spent Nuclear Fuel. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide provides recommendations and guidance on the storage of spent nuclear fuel. It covers all types of storage facilities and all types of spent fuel from nuclear power plants and research reactors. It takes into consideration the longer storage periods that have become necessary owing to delays in the development of disposal facilities and the decrease in reprocessing activities. It also considers developments associated with nuclear fuel, such as higher enrichment, mixed oxide fuels and higher burnup. The Safety Guide is not intended to cover the storage of spent fuel if this is part of the operation of a nuclear power plant or spent fuel reprocessing facility. Guidance is provided on all stages for spent fuel storage facilities, from planning through siting and design to operation and decommissioning, and in particular retrieval of spent fuel. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Roles and responsibilities; 4. Management system; 5. Safety case and safety assessment; 6. General safety considerations for storage of spent fuel. Appendix I: Specific safety considerations for wet or dry storage of spent fuel; Appendix II: Conditions for specific types of fuel and additional considerations; Annex: I: Short term and long term storage; Annex II: Operational and safety considerations for wet and dry spent fuel storage facilities; Annex III: Examples of sections of operating procedures for a spent fuel storage facility; Annex IV: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex V: Site conditions, processes and events for consideration in a safety assessment (external natural phenomena); Annex VI: Site conditions, processes and events for consideration in a safety assessment (external human induced phenomena); Annex VII: Postulated initiating events for consideration in a safety assessment (internal phenomena).

  12. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  13. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  14. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  15. Use of filler materials to aid spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement

  16. Behavior of spent nuclear fuel in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1977-09-01

    Storage of irradiated nuclear fuel in water pools (basins) has been standard practice since nuclear reactors first began operation approximately 34 years ago. Pool storage is the starting point for all other fuel storage candidate processes and is a candidate for extended interim fuel storage until policy questions regarding reprocessing and ultimate disposal have been resolved. This report assesses the current performance of nuclear fuel in pool storage, the range of storage conditions, and the prospects for extending residence times. The assessment is based on visits to five U.S. and Canadian fuel storage sites, representing nine storage pools, and on discussions with operators of an additional 21 storage pools. Spent fuel storage experience from British pools at Winfrith and Windscale and from a German pool at Karlsruhe (WAK) also is summarized

  17. Spent fuel storage requirements, 1991--2040

    International Nuclear Information System (INIS)

    1991-12-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 50 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1990 are derived from the 1991 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges

  18. Overview of symposium on storage of spent fuel from power reactors

    International Nuclear Information System (INIS)

    Bonne, A.; Crijns, M.J.; Dyck, H.P.

    2001-01-01

    An International Symposium on Storage of Spent Fuel from Power Reactors was held in Vienna from 9-13 November 1998. The Symposium was organized by the International Atomic Energy Agency in co-operation with the OECD Nuclear Energy Agency. Of the one hundred sixty participants registered, one hundred twenty-five (including 3 observers) representing 35 countries and 4 international organizations, attended the Symposium. 20 participants from developing countries received Agency's grants. During 4 main Sessions, 44 oral presentations of papers were made and subsequent discussions held. At a poster session 13 papers were presented. This paper will give an overview of the Symposium. The Symposium gave an opportunity to exchange information on the state of art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. It was obvious from the papers presented and the discussions that the handling and storage of spent fuel is continuously taking place safely. Dominant messages retrieved from the Symposium are that the primary spent fuel management solution for the next decades will be interim storage, the duration time of interim storage becomes longer than earlier anticipated and the storage facilities will have to be designed for receiving also spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made interim storage a real necessity in the nuclear power industry. (author)

  19. Interim dry fuel storage for magnox reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, N [National Nuclear Corporation, Risley, Warrington (United Kingdom); Ealing, C [GEC Energy Systems Ltd, Whetstone, Leicester (United Kingdom)

    1985-07-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility.

  20. Interim dry fuel storage for magnox reactors

    International Nuclear Information System (INIS)

    Bradley, N.; Ealing, C.

    1985-01-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility

  1. IAEA activities in the back-end area of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Fukuda, Kosaku

    1999-01-01

    This paper concerns recent outcomes from the IAEA's activities in the area of the nuclear fuel cycle, particularly focusing on the back-end of the fuel cycle. It includes spent fuel management, plutonium utilization and burnup credit. In the area of spent fuel management, worldwide prospects and status of the spent fuel arising, storage and reprocessing are presented. In the area of plutonium utilization worldwide, only MOX fuel fabrication is described. Finally, the worldwide status of the burnup credit implementation is described. (author)

  2. Methods for expanding the capacity of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1990-06-01

    At the beginning of 1989 more than 55,000 metric tonnes of heavy metal (MTHM) of spent Light Water Reactor (LWR) and Heavy Water Reactor (HWR) fuel had been discharged worldwide from nuclear power plants. Only a small fraction of this fuel has been reprocessed. The majority of the spent fuel assemblies are currently held at-reactor (AR) or away-from-reactor (AFR) in storage awaiting either chemical processing or final disposal depending on the fuel concept chosen by individual countries. Studies made by NEA and IAEA have projected that annual spent fuel arising will reach about 10,000 t HM in the year 2000 and cumulative arising will be more than 200,000 t HM. Taking into account the large quantity of spent fuel discharged from NPP and that the first demonstrations of the direct disposal of spent fuel or HLW are expected only after the year 2020, long-term storage will be the primary option for management of spent fuel until well into the next century. There are several options to expand storage capacity: (1) to construct new away-from-reactor storage facilities, (2) to transport spent fuel from a full at-reactor pool to another site for storage in a pool that has sufficient space to accommodate it, (3) to expand the capacity of existing AR pools by using compact racks, double-tierce, rod consolidation and by increasing the dimensions of existing pools. The purpose of the meeting was: to exchange new information on the international level on the subject connected with the expansion of storage capacities for spent fuel; to elaborate the state-of-the-art of this problem; to define the most important areas for future activity; on the basis of the above information to give recommendations to potential users for selection and application of the most suitable methods for expanding spent fuel facilities taking into account the relevant country's conditions. Refs, figs and tabs

  3. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  4. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  5. An independent spent-fuel storage installation at Surry Station: Design and operation

    International Nuclear Information System (INIS)

    McKay, H.S.; Wakeman, B.H.; Pickworth, J.M.; Routh, S.D.; Hopkins, W.C.

    1989-07-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation (ISFSI) was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry ISFSI will accommodate 84 such casks with a total storage capacity of 811 MTU of spent PWR fuel assemblies. The ISFSI is located at the Surry Station in a wooded area approximately 1000 meters (3300 feet) east of the reactor facilities. Construction of the first of three reinforced concrete storage pads and its associated support systems was completed in March 1986. The operating license and Technical Specifications were issued by the US NRC on July 2, 1986. Initial loading operations of a General Nuclear Systems, Inc., CASTOR V/21 storage cask began in September 1986. The first two CASTOR V/21 casks were placed in storage at the ISFSI in December 1986. 16 refs., 33 figs., 16 tabs

  6. Spent fuel storage - dry storage options and issues

    International Nuclear Information System (INIS)

    Akins, M.J.

    2007-01-01

    The increase in the number of nuclear energy power generation facilities will require the ability to store the spent nuclear fuel for a long period until the host countries develop reprocessing or disposal options. Plants have storage pools which are closely associated with the operating units. These are excellent for short term storage, but require active maintenance and operations support which are not desirable for the long term. Over the past 25 years, dry storage options have been developed and implemented throughout the world. In recent years, protection against terrorist attack has become an increasing source of design objectives for these facilities, as well as the main nuclear plant. This paper explores the current design options of dry storage cask systems and examines some of the current design issues for above ground , in-ground, or below-ground storage of spent fuel in dry casks. (author)

  7. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  8. Spent fuel storage requirements, 1990--2040

    International Nuclear Information System (INIS)

    Walling, R.; Bierschbach, M.

    1990-11-01

    Historical inventories of spent fuel are combined with US Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements over the next 51 years, through the year 2040. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. Historical data through December 1989 are derived from the 1990 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 15 refs., 3 figs., 11 tabs

  9. Fuel consolidation and compaction and storage of NFBC

    International Nuclear Information System (INIS)

    Fuierer, T.

    1992-01-01

    Rochester Gas and Electric Corporation (RG ampersand E) has been involved in two separate fuel consolidation demonstration programs. One of those programs resulted in identifying some problems that may be resolved in consolidation hardware compaction and storage in order for consolidation to be attractive. In conjunction with the Electric Power Research Institute (EPRI), a study was recently performed on hardware compaction and storage. Consolidation is probably not a commercial alternative at this point in time because there are still several problems that must be resolved. There are some potential advantages of fuel consolidation. Consolidation has attractive economics and can minimize the institutional impacts of expanding spent fuel storage by internalizing spent fuel storage operations. The licensing effort is fairly simple. Consolidation may be less likely to have public intervention since the storage expansion will occur inside the plant. Consolidation can be subcontracted and the equipment is temporary. It can be used in conjunction with other storage expansion technologies such as dry storage. Fewer dry storage casks would be needed to store consolidated fuel than would be necessary for intact spent fuel

  10. Spent LWR fuel-storage costs

    International Nuclear Information System (INIS)

    Clark, H.J.

    1981-01-01

    Expanded use of existing storage basins is clearly the most economic solution to the spent fuel storage problem. The use of high-density racks followed by fuel disassembly and rod storage is an order of magnitude cheaper than building new facilities adjacent to the reactor. The choice of a new storage facility is not as obvious; however, if the timing of expenditures and risk allowance are to be considered, then modular concepts such as silos, drywells, and storage casks may cost less than water basins and air-cooled vaults. A comparison of the costs of the various storage techniques without allowances for timing or risk is shown. The impact of allowances for discounting and early resumption of reprocessing is also shown. Economics is not the only issue to be considered in selecting a storage facility. The licensing, environmental impact, timing, and social responses must also be considered. Each utility must assess all of these issues for their particular reactors before the best storage solution can be selected

  11. Advantages on dry interim storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, L.S.; Rzyski, B.M.

    2006-01-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  12. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  13. Casette for storage of spent fuel assemblies

    International Nuclear Information System (INIS)

    Ericsson, S.

    1992-01-01

    Describes a design of a casette for spent fuel storage in a fuelstorage pool. The new design, based on flexible spacers, allows the fuel assemblies to be packed more compact and the fuel storage pool used in a more economic way

  14. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  15. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  16. Radioactive waste management decommissioning spent fuel storage. V. 3. Waste transport, handling and disposal spent fuel storage

    International Nuclear Information System (INIS)

    1985-01-01

    As part of the book entitled Radioactive waste management decommissioning spent fuel storage, vol. 3 dealts with waste transport, handling and disposal, spent fuel storage. Twelve articles are presented concerning the industrial aspects of nuclear waste management in France [fr

  17. Operation of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide was prepared as part of the IAEA's programme on safety of spent fuel storage. This is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes key activities in the operation of spent fuel storage facilities. Section 3 lists the basic safety considerations for storage facility operation, the fundamental safety objectives being subcriticality, heat removal and radiation protection. Recommendations for organizing the management of a facility are contained in Section 4. Section 5 deals with aspects of training and qualification; Section 6 describes the phases of the commissioning of a spent fuel storage facility. Section 7 describes operational limits and conditions, while Section 8 deals with operating procedures and instructions. Section 9 deals with maintenance, testing, examination and inspection. Section 10 presents recommendations for radiation and environmental protection. Recommendations for the quality assurance (QA) system are presented in Section 11. Section 12 describes the aspects of safeguards and physical protection to be taken into account during operations; Section 13 gives guidance for decommissioning. 15 refs, 5 tabs

  18. Environmental Assessment: Relocation and storage of TRIGA reg-sign reactor fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-08-01

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations

  19. Contributions to LWR spent fuel storage and transport

    International Nuclear Information System (INIS)

    The papers included in this document describe the aspects of spent LWR fuel storage and transport-behaviour of spent fuel during storage; use of compact storage packs; safety of storage; design of storage facilities AR and AFR; description of transport casks and transport procedures

  20. Spent nuclear fuel storage device and spent nuclear fuel storage method using the device

    International Nuclear Information System (INIS)

    Tani, Yutaro

    1998-01-01

    Storage cells attachably/detachably support nuclear fuel containing vessels while keeping the vertical posture of them. A ventilation pipe which forms air channels for ventilating air to the outer circumference of the nuclear fuel containing vessel is disposed at the outer circumference of the nuclear fuel containing vessel contained in the storage cell. A shielding port for keeping the support openings gas tightly is moved, and a communication port thereof can be aligned with the upper portion of the support opening. The lower end of the transporting and containing vessel is placed on the shielding port, and an opening/closing shutter is opened. The gas tightness is kept by the shielding port, the nuclear fuel containing vessel filled with spent nuclear fuels is inserted to the support opening and supported. Then, the support opening is closed by a sealing lid. (I.N.)

  1. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.; O'Neill, G.F.

    1980-01-01

    A power reactor operator, confronted with rising spent fuel inventories that would soon exceed his storage capacity, has to decide what to do with this fuel if he wants to continue reactor operations. A low cost option would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) basins for storage, and away-from-reactor (AFR) basins for storage. Economic considerations for each of the alternatives are compared

  2. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  3. Spent fuel storage requirements 1989--2020

    International Nuclear Information System (INIS)

    1989-10-01

    Historical inventories of spent fuel are combined with Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the US to provide estimates of spent fuel storage requirements over the next 32 years, through the year 2020. The needs for storage capacity beyond that presently available in the pools are estimated. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of fuel to other reactors or facilities. Historical data through December 1988 are derived from the 1989 Form RW-859 data survey of nuclear utilities. Projected discharges through the end of reactor life are based on DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 14 refs., 3 figs., 28 tabs

  4. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  5. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  6. Storage arrangement for nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Wade, E.E.

    1977-01-01

    Said invention is intended for providing an arrangement of spent fuel assembly storage inside which the space is efficiently used without accumulating a critical mass. The storage is provided for long fuel assemblies having along their longitudinal axis an active part containing the fuel and an inactive part empty of fuel. Said storage arrangement comprises a framework constituting some long-shaped cells designed so as each of them can receive a fuel assembly. Means of axial positioning of said assembly in a cell make it possible to support the fuel assemblies inside the framework according to a spacing ratio, along the cell axis, such as the active part of an assembly is adjacent to the inactive part of the adjacent assemblies [fr

  7. Comparison of concepts for independent spent fuel storage facilities

    International Nuclear Information System (INIS)

    Held, Ch.; Hintermayer, H.P.

    1978-01-01

    The design and the construction costs of independent spent fuel storage facilities show significant differences, reflecting the fuel receiving rate (during the lifetime of the power plant or within a very short period), the individual national policies and the design requirements in those countries. Major incremental construction expenditures for storage facilities originate from the capacity and the type of the facilities (casks or buildings), the method of fuel cooling (water or air), from the different design of buildings, the redundancy of equipment, an elaborate quality assurance program, and a single or multipurpose design (i.e. interim or long-term storage of spent fuel, interim storage of high level waste after fuel storage). The specific costs of different designs vary by a factor of 30 to 60 which might in the high case increase the nuclear generating costs remarkably. The paper also discusses the effect of spent fuel storage on fuel cycle alternatives with reprocessing or disposal of spent fuel. (author)

  8. The Canadian long-term experimental used fuel storage program

    International Nuclear Information System (INIS)

    Wasywich, K.M.; Taylor, P.

    1993-01-01

    The Canadian experimental fuel storage program consists of four components: (1) storage of used CANDU (CANadian Deuterium Uranium, registered trademark of AECL) fuel under water, with periodic examination; (2) storage of used CANDU fuel in dry air at seasonally varying temperatures, and in both dry and moisture-saturated air at 150 C, also with periodic examination; (3) underlying research on the oxidation of unused and used UO 2 in dry and moist air at temperatures up to 300 C; and (4) modeling of UO 2 oxidation in dry air. The primary objective of the fuel-storage experiments is to investigate the stability of used CANDU fuel during long-term storage. Burnup of the fuel in these experiments ranges from ∼43 to 582 MW h/kg U, while the outer-element linear power ratings range from 22 to 79 kW/m. The storage behavior of intact and intentionally defected fuel, and fuel that defected in-reactor, is being investigated in the above experiments. Since differences in UO 2 oxidation behavior were observed between dry-air, moisture-saturated air and wet storage of intentionally defected used CANDU fuel, underlying research was initiated on oxidation of unused and used fuel to develop a better understanding of the different mechanisms. Modeling of UO 2 oxidation based on the results of the dry-storage experiments is also under way

  9. Manufacturing and Construction of Spent Fuel Storage Rack for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangjin; Jung, Kwangsub; Oh, Jinho; Lee, Jongmin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The spent fuel storage rack consists of spent fuel storage racks and support frame. The spent fuel storage racks are installed in the support frame. A spent fuel storage rack consists of frame weldment and storage cell pipe assembly. Storage cell pipe assembly is mounted on the base plate of the frame weldment. The spent fuel storage rack is designed to withstand seismic load and other loads during earthquake. The structural integrity of the spent fuel storage rack is evaluated in accordance with ASME Section III, Subsection NF. Computer Code used for this analysis is ANSYS version 14.0.0. Dead load and seismic load is considered in load condition and hydrodynamic mass is included in the analysis. Design, manufacturing, and construction of the spent fuel storage rack are introduced. The spent fuel storage rack is for storage of spent fuel assemblies. The spent fuel storage rack should be designed, manufactured, and installed with consideration of predicted number of spent fuel assemblies, structural integrity, resistivity to corrosion and radiation, cleaning, and workability.

  10. Special storage of leaking fuel at Paks NPP

    International Nuclear Information System (INIS)

    Biro, Janos; Szőke, L.; Burján, T.; Lukács, R.; Hózer, H.

    2015-01-01

    In this paper the activities related with spent, hermetic as well as leaking fuel handling and storage, including: Spent fuel pool; Transportation criteria for the spent fuel assemblies and Interim spent fuel dry storage; Short-term storage in the spent fuel pool; Identification of the leaking assemblies by the TS-device; Present conception of Identification, handling of the leaking FAs; Modified transport procedure for the leaking FAs; Calculation of solved activity inside the leaking fuel rod; Solved activity limit values for the leaking FAs; Long-term storage in the interim spent Fuel dry storage are presented. At the end authors’ concluded that: 1) The leaking FA can be transported to the interim dry storage together with the other spent fuel assemblies in the transport container. 2) The transport-documentation of the leaking FA has to contain: isotope inventory, calculated solved activity values of the failed FA and the quantity of failed fuel rods. 3) Performing three leakage tests of the identified leaking FA before the transportation in the 5FP. it is useful to decrease the solved activity concentration inside the leaking FA and give additional information about the extent of the leakage. 4) We can calculate simply the solved activity of the leaking FA. 5) The modified transport procedure will have to be authorized. 6) The radiological effects of the leaking FA are negligible relative to the natural background radiation

  11. Information on the feasibility study for the reracking in the fuel storage pools of the Juragua Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rodriguez, J.M.; Rodriguez, I.; Lopez, D.; Guerra, R.; Rodriguez, M.; Garcia, F.

    1995-01-01

    During 1993, in the Juragua Nuclear Power Plants as engineering evaluation programme was initiated in the storage area of irradiated nuclear fuel, where work in order to determine the feasibility of capacity increase for storage of irradiated nuclear fuel at the fuel storage pools using poisoned compact close racks instead of the originally designed racks. The feasibility study is a fundamental activity of this programme for the 1994-1995 period. According to this study the prospects of assimilation of compact storage conditions in the fuel storage pools in unit number one and prolonged fuel storage pool are investigated

  12. Reversible energy storage on a fuel cell-supercapacitor hybrid device

    Energy Technology Data Exchange (ETDEWEB)

    Zerpa Unda, Jesus Enrique

    2011-02-18

    A new concept of energy storage based on hydrogen which operates reversibly near ambient conditions and without important energy losses is investigated. This concept involves the hybridization between a proton exchange membrane fuel cell and a supercapacitor. The main idea consists in the electrochemical splitting of hydrogen at a PEM fuel cell-type electrode into protons and electrons and then in the storage of these two species separately in the electrical double layer of a supercapacitor-type electrode which is made of electrically conductive large-surface area carbon materials. The investigation of this concept was performed first using a two-electrode fuel cell-supercapacitor hybrid device. A three-electrode hybrid cell was used to explore the application of this concept as a hydrogen buffer integrated inside a PEM fuel cell to be used in case of peak power demand. (orig.)

  13. Status of Away From Reactor spent fuel storage program

    International Nuclear Information System (INIS)

    King, F.D.

    1979-07-01

    The Away From Reactor (AFR) Spent Fuel Program that the US Department of Energy established in 1977 is intended to preclude the shutting down of commercial nuclear power reactors because of lack of storage space for spent fuel. Legislation now being considered by Congress includes plans to provide storage space for commercial spent fuel beginning in 1983. Utilities are being encouraged to provide as much storage space as possible in their existing storage facilities, but projections indicate that a significant amount of AFR storage will be required. The government is evaluating the use of both existing and new storage facilities to solve this forecasted storage problem for commercial spent fuel

  14. Projection of US LWR spent fuel storage requirements

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Cole, B.M.; Purcell, W.L.; Rau, R.G.

    1982-11-01

    The spent fuel storage requirements projection is based on data supplied for each operating or planned nuclear power power plant by the operting utilities. The data supplied by the utilities encompassed details of plant operating history, past records of fuel discharges, current inventories in reactor spent fuel storage pools, and projections of future discharge patterns. Data on storage capacity of storage pools and on characterization of the discharged fuel are also included. The data supplied by the utilities, plus additional data from other appropriate sources, are maintained on a computerized data base by Pacific Northwest Laboratory. The spent fuel requirements projection was based on utility data updated and verified as of December 31, 1981

  15. Storage device of reactor fuel

    International Nuclear Information System (INIS)

    Nakamura, Masaaki.

    1997-01-01

    The present invention concerns storage of spent fuels and provides a storage device capable of securing container-cells in shielding water by remote handling and moving and securing the container-cells easily. Namely, a horizontal support plate has a plurality of openings formed in a lattice like form and is disposed in a pit filled with water. The container-cell has a rectangular cross section, and is inserted and disposed vertically in the openings. Securing members are put between the container-cells above the horizontal support plate, and constituted so as to be expandable from above by remote handling. The securing member is preferably comprised of a vertical screw member and an expandable urging member. Since securing members for securing the container-cells for incorporating reactor fuels are disposed to the horizontal support plate controllable from above by the remote handling, fuel storage device can be disposed without entering into a radiation atmosphere. The container-cells can be settled and exchanged easily after starting of the use of a fuel pit. (I.S.)

  16. Storage rack for nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Wachter, W.J.

    1988-01-01

    A storage rack for nuclear fuel assemblies is described comprising storage tubes, each having a polygon cross-section. The tubes being nested with cell walls of one tube aligned with and confronting cell walls of other tubes. Each cell wall having an array of embossed buttons so arranged that buttons of one cell wall engage buttons of a confronting cell wall, and the engage buttons are welded together to secure the tubes. At least one layer of neutron-poison material comprises a flexible, resilient pad interprosed between the aligned cell walls; whereby a major portion of the total outer surface area of each confronting cell wall is engaged with the layer of neutron-poison material

  17. Modular vault dry storage system for interim storage of irradiated fuel

    International Nuclear Information System (INIS)

    Cundill, B.R.; Ealing, C.J.; Agarwal, B.K.

    1988-01-01

    The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

  18. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  19. Dry well storage of spent LWBR fuel

    International Nuclear Information System (INIS)

    Christensen, A.B.; Fielding, K.D.

    1985-01-01

    Recently, 50 dry wells were constructed at the Idaho Chemical Processing Plant (ICPP) to temporarily store the Light Water Breeder Reactor (LWBR) fuel. Over 400 dry wells of the same design are projected to be constructed in the next 5 yr at the ICPP to store unreprocessible fuels until a permanent repository becomes available. This summary describes the LWBR fuel storage dry wells and the enhancements made over the Peach Bottom fuel and Fermi blanket dry wells that have been in use for up to 4 yr. Dry well storage at the ICPP has historically been found to be a safe and efficient method of temporary fuel storage. The LWBR dry wells should be more reliable than the original dry wells and provide data not previously available

  20. Spent fuel storage options: a critical appraisal

    International Nuclear Information System (INIS)

    Singh, K.P.; Bale, M.G.

    1990-01-01

    The delayed decisions on nuclear fuel reprocessing strategies in the USA and other countries have forced the development of new long-term irradiated fuel storage techniques, to allow a larger volume of fuel to be held on the nuclear station site after removal from the reactor. The nuclear power industry has responded to the challenge by developing several viable options for long-term onsite storage, which can be employed individually or in tandem. They are: densification of storage in the existing spent fuel pool; building another fuel pool facility at the plant site; onsite cask park, and on site vault clusters. Desirable attributes of a storage option are: Safety: minimise the number of fuel handling steps; Economy: minimise total installed, and O and M cost; Security: protection from anti-nuclear protesters; Site adaptability: available site space, earthquake characteristics of the region and so on; Non-intrusiveness: minimise required modifications to existing plant systems; Modularisation: afford the option to adapt a modular approach for staged capital outlays; and Maturity: extent of industry experience with the technology. A critical appraisal is made of each of the four aforementioned storage options in the light of these criteria. (2 figures, 1 table, 4 references) (Author)

  1. Bases for extrapolating materials durability in fuel storage pools

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at ∼ 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage

  2. Studies and research concerning BNFP: LWR spent fuel storage

    International Nuclear Information System (INIS)

    Shallo, F.A.

    1978-08-01

    This report describes potential spent fuel storage expansion programs using the Barnwell Nuclear Fuel Plant--Fuel Receiving and Storage Station (BNFP-FRSS) as a model. Three basic storage arrangements are evaluated with cost and schedule estimates being provided for each configuration. A general description of the existing facility is included with emphasis on the technical and equipment requirements which would be necessary to achieve increased spent fuel storage capacity at BNFP-FRSS

  3. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  4. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  5. Optimization of time and location dependent spent nuclear fuel storage capacity

    International Nuclear Information System (INIS)

    Macek, V.

    1977-01-01

    A linear spent fuel storage model is developed to identify cost-effective spent nuclear fuel storage strategies. The purpose of this model is to provide guidelines for the implementation of the optimal time-dependent spent fuel storage capacity expansion in view of the current economic and regulatory environment which has resulted in phase-out of the closed nuclear fuel cycle. Management alternatives of the spent fuel storage backlog, which is created by mismatch between spent fuel generation rate and spent fuel disposition capability, are represented by aggregate decision variables which describe the time dependent on-reactor-site and off-site spent fuel storage capacity additions, and the amount of spent fuel transferred to off-site storage facilities. Principal constraints of the model assure determination of cost optimal spent fuel storage expansion strategies, while spent fuel storage requirements are met at all times. A detailed physical and economic analysis of the essential components of the spent fuel storage problem, which precedes the model development, assures its realism. The effects of technological limitations on the on-site spent fuel storage expansion and timing of reinitiation of the spent fuel reprocessing on optimal spent fuel storage capacity expansion are investigated. The principal results of the study indicate that (a) expansion of storage capacity beyond that of currently planned facilities is necessary, and (b) economics of the post-reactor fuel cycle is extremely sensitive to the timing of reinitiation of spent fuel reprocessing. Postponement of reprocessing beyond mid-1982 may result in net negative economic liability of the back end of the nuclear fuel cycle

  6. Survey of experience with dry storage of spent nuclear fuel and update of wet storage experience

    International Nuclear Information System (INIS)

    1988-01-01

    Spent fuel storage is an important part of spent fuel management. At present about 45,000 t of spent water reactor fuel have been discharged worldwide. Only a small fraction of this fuel (approximately 7%) has been reprocessed. The amount of spent fuel arisings will increase significantly in the next 15 years. Estimates indicate that up to the year 2000 about 200,000 t HM of spent fuel could be accumulated. In view of the large quantities of spent fuel discharged from nuclear power plants and future expected discharges, many countries are involved in the construction of facilities for the storage of spent fuel and in the development of effective methods for spent fuel surveillance and monitoring to ensure that reliable and safe operation of storage facilities is achievable until the time when the final disposal of spent fuel or high level wastes is feasible. The first demonstrations of final disposal are not expected before the years 2000-2020. This is why the long term storage of spent fuel and HLW is a vital problem for all countries with nuclear power programmes. The present survey contains data on dry storage and recent information on wet storage, transportation, rod consolidation, etc. The main aim is to provide spent fuel management policy making organizations, designers, scientists and spent fuel storage facility operators with the latest information on spent fuel storage technology under dry and wet conditions and on innovations in this field. Refs, figs and tabs

  7. Safety analysis of spent fuel transport and storage casks under extreme impact conditions

    International Nuclear Information System (INIS)

    Wolff, D.; Wieser, G.; Ballheimer, V.; Voelzke, H.; Droste, B.

    2005-01-01

    Full text: Worldwide the security of transport and storage of spent fuel with respect to terrorism threats is a matter of concern. In Germany a spent nuclear fuel management program was developed by the government including a new concept of dry on-site interim storage instead of centralized interim storage. In order to minimize transports of spent fuel casks between nuclear power plants, reprocessing plants and central storage facilities, the operators of NPPs have to erect and to use interim storage facilities for spent nuclear fuel on the site or in the vicinity of nuclear power plants. Up to now, 11 on-site interim storage buildings, one storage tunnel and 4 on-site interim storage areas (preliminary cask storage till the on-site interim storage building is completed) have been licensed at 12 nuclear power plant sites. Inside the interim storage buildings the casks are kept in upright position, whereas at the preliminary interim storage areas horizontal storage of the casks on concrete slabs is used and each cask is covered by concrete elements. Storage buildings and concrete elements are designed only for gamma and neutron radiation shielding reasons and as weather protection. Therefore the security of spent fuel inside a dual purpose transport and storage cask depends on the inherent safety of the cask itself. For nearly three decades BAM has been investigating cask safety under severe accident conditions like drop tests from more than 9 m onto different targets and without impact limiters as well as artificially damaged prototype casks. Since the terror attacks of 11 September 2001 the determination of casks' inherent safety also under extreme impact conditions due to terrorist attacks has been of our increasing interest. With respect to spent fuel storage one of the most critical scenarios of a terrorist attack for a cask is the centric impact of a dynamic load onto the lid-seal-system caused e.g. by direct aircraft crash or its engine as well as by a

  8. Spent fuel consolidation in the 105KW Building fuel storage basin

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    This study is one element of a larger engineering study effort by WHC to examine the feasibility of irradiated fuel and sludge consolidation in the KW Basin in response to TPA Milestone (target date) M-34-00-T03. The study concludes that up to 11,500 fuel storage canisters could be accommodated in the KW Basin with modifications. These modifications would include provisions for multi-tiered canister storage involving the fabrication and installation of new storage racks and installation of additional decay heat removal systems for control of basin water temperature. The ability of existing systems to control radionuclide concentrations in the basin water is examined. The study discusses requirements for spent nuclear fuel inventory given the proposed multi-tiered storage arrangement, the impact of the consolidated mass on the KW Basin structure, and criticality issues associated with multi-tiered storage

  9. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  10. The Spent Fuel Management in Finland and Modifications of Spent Fuel Storages

    International Nuclear Information System (INIS)

    Maaranen, Paeivi

    2014-01-01

    The objective of this presentation is to share the Finnish regulator's (STUK) experiences on regulatory oversight of the enlargement of a spent fuel interim storage. An overview of the current situation of spent fuel management in Finland will also be given. In addition, the planned modifications and requirements set for spent fuel storages due to the Fukushima accident are discussed. In Finland, there are four operating reactors, one under construction and two reactors that have a Council of State's Decision-in-Principle to proceed with the planning and licensing of a new reactor. In Olkiluoto, the two operating ASEA-Atom BWR units and the Areva EPR under construction have a shared interim storage for the spent fuel. The storage was designed and constructed in 1980's. The option for enlarging the storage was foreseen in the original design. Considering three operating units to produce their spent fuel and the final disposal to begin in 2022, extra space in the spent fuel storage is estimated to be needed in around 2014. The operator decided to double the number of the spent fuel pools of the storage and the construction began in 2010. The capacity of the enlarged spent fuel storage is considered to be sufficient for the three Olkiluoto units. The enlargement of the interim storage was included in Olkiluoto NPP 1 and 2 operating license. The licensing of the enlargement was conducted as a major plant modification. The operator needed the approval from STUK to conduct the enlargement. Prior to the construction of this modification, the operator was required to submit the similar documentation as needed for applying for the construction license of a nuclear facility. When conducting changes in an old nuclear facility, the new safety requirements have to be followed. The major challenge in the designing the enlargement of the spent fuel storage was to modify it to withstand a large airplane crash. The operator chose to cover the pools with protecting slabs and also to

  11. Choosing a spent fuel interim storage system

    International Nuclear Information System (INIS)

    Roland, V.; Hunter, I.

    2001-01-01

    The Transnucleaire Group has developed different modular solutions to address spent fuel interim storage needs of NPP. These solutions, that are present in Europe, USA and Asia are metal casks (dual purpose or storage only) of the TN 24 family and the NUHOMS canister based system. It is not always simple for an operator to sort out relevant choice criteria. After explaining the basic designs involved on the examples of the TN 120 WWER dual purpose cask and the NUHOMS 56 WWER for WWER 440 spent fuel, we shall discuss the criteria that govern the choice of a given spent fuel interim storage system from the stand point of the operator. In conclusion, choosing and implementing an interim storage system is a complex process, whose implications can be far reaching for the long-term success of a spent fuel management policy. (author)

  12. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  13. Fire criticality probability analysis for 300 Area N Reactor fuel fabrication and storage facility. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.E.

    1995-02-08

    Uranium fuel assemblies and other uranium associated with the shutdown N Reactor are stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility). The 3712 Building, where the majority of the fuel assemblies and other uranium is stored, is where there could be a potential for a criticality bounding case. The purpose of this study is to evaluate the probability of potential fires in the Facility 3712 Building that could lead to criticality. This study has been done to support the criticality update. For criticality to occur, the wooden fuel assembly containers would have to burn such that the fuel inside would slump into a critical geometry configuration, a sufficient number of containers burn to form an infinite wide configuration, and sufficient water (about a 17 inch depth) be placed onto the slump. To obtain the appropriate geometric configuration, enough fuel assembly containers to form an infinite array on the floor would have to be stacked at least three high. Administrative controls require the stacks to be limited to two high for 1.25 wt% enriched finished fuel. This is not sufficient to allow for a critical mass regardless of the fire and accompanying water moderation. It should be noted that 0.95 wt% enriched fuel and billets are stacked higher than only two high. In this analysis, two initiating events will be considered. The first is a random fire that is hot enough and sufficiently long enough to burn away the containers and fuel separators such that the fuel can establish a critical mass. The second is a seismically induced fire with the same results.

  14. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  15. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  16. Energy Storage: Batteries and Fuel Cells for Exploration

    Science.gov (United States)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  17. Acceptance criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Direct repository disposal of foreign and domestic research reactor fuels owned by the United States Department of Energy is an alternative to reprocessing (together with vitrification of the high level waste and storage in an engineered barrier) for ultimate disposition. Neither the storage systems nor the requirements and specifications for acceptable forms for direct repository disposal have been developed; therefore, an interim storage strategy is needed to safely store these fuels. Dry storage (within identified limits) of the fuels received from wet-basin storage would avoid excessive degradation to assure post-storage handleability, a full range of ultimate disposal options, criticality safety, and provide for maintaining confinement by the fuel/clad system. Dry storage requirements and technologies for US commercial fuels, specifically zircaloy-clad fuels under inert cover gas, are well established. Dry storage requirements and technologies for a system with a design life of 40 years for dry storage of aluminum-clad foreign and domestic research reactor fuels are being developed by various groups within programs sponsored by the DOE

  18. Analysis of the impact of retrievable spent fuel storage

    International Nuclear Information System (INIS)

    Merrill, E.T.; White, M.K.; Fleischman, R.M.

    1978-03-01

    The impact of retrievably storing spent fuel is measurable in terms of the contribution the stored spent fuel makes to implementing the fuel management option selected. For the case of a decision to recycle LWR fuel in LWRs, a useful indicator of impact is the ratio of energy production with varying degrees of spent fuel retrievability to that achievable with total spent fuel retrievability. For a decision made in the year 2000, this ratio varies from 0.81 (10 yr storage in reactor basins) to 0.97 (retrievable storage for 25 years after fuel discharge). An earlier decision to recycle in LWRs results in both of these ratios being nearer to 1.0. If a decision is reached to implement a breeder reactor economy, the chosen comparison is the installed breeder capacity achievable with varying degrees of spent fuel retrievability. If a decision to build breeder reactors is reached in the year 2000, the maximum possible installed breeder capacity in 2040 varies from 490 GWe (10 yr storage in reactor basins) to 660 GWe (all fuel retrievably stored). If all fuel is retrievably stored 25 years, 635 GWe of breeder capacity is achievable by 2040. For an earlier decision date, such as 1985, the maximum possible installed breeder capacity in 2040 ranges from 740 GWe (no retrievable storage) to 800 GWe (all fuel retrievably stored). As long as a decision to reprocess is reached before 2000, most of the potential benefit of retrievable storage may be realized by implementing retrievable storage after such a decision is made. Neither providing retrievable spent fuel storage prior to a decision to reprocess, nor designing such storage for more than 25 years of retrievability appear to offer significant incremental benefit

  19. Standardized, utility-DOE compatible, spent fuel storage-transport systems

    International Nuclear Information System (INIS)

    Smith, M.L.

    1991-01-01

    Virginia Power has developed and licensed a facility for dry storage of spent nuclear fuel in metal spent fuel storage casks. The modifications to the design of these casks necessary for licensing for both storage and transport of spent fuel are discussed along with the operational advantages of dual purpose storage-transport casks. Dual purpose casks can be used for storage at utility and DOE sites (MRS or repository) and for shipment between these sites with minimal spent fuel handling. The cost for a standardized system of casks that are compatible for use at both DOE and utility sites is discussed along with possible arrangements for sharing both the cost and benefits of dual purpose storage-transport casks

  20. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  1. Rethinking the economics of centralized spent fuel storage

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Dippold, D.G.; Rod, S.R.; Williams, J.W.

    1991-01-01

    The technology for extended storage of spent nuclear fuel (SNF), either at-reactor or in a centralized facility such as a monitored retrievable storage (MRS) facility, is well-developed and proven from an engineering and safety perspective. The question of whether spent fuel should await its final geologic disposal while at a reactor site or in an MRS facility is essentially an economic one. While intuition and previous results suggest that centralized storage will be more economical than at-reactor storage beyond some break-even quantity of SNF, the incremental costs of pool storage at-reactor are close to zero as long as pool capacity is generally available. Thus, if economics is the prime motivator, the quantity of spent fuel required to warrant centralized storage could be quite large. The economics of centralizing the storage of spent fuel at a single site, as opposed to continued storage at over 100 reactor sites, has been the subject of several recent analyses. Most of these analyses involved calculating the benefits of an MRS facility (in terms of avoided utility costs) with a pre-defined MRS operating scenario (e.g., spent fuel acceptance schedule, storage capacity, and typical storage cycle). While these analyses provided some insight into the economic justification for an MRS facility, even the most favorable scenarios resulted in net costs of hundreds of millions of dollars when evaluated on a discounted cash flow basis

  2. Risk assessment in spent fuel storage and transportation

    International Nuclear Information System (INIS)

    Pandimani, S.

    1989-01-01

    Risk assessment in various stages of nuclear fuel cycle is still an active area of Nuclear safety studies. From the results of risk assessment available in literature, it can be determined that the risk resulting from shipments of plutonium and spent-fuel are much greater than that resulting from the transport of other materials within the nuclear fuel cycle. In India spent fuels are kept in Spent Fuel Storage Pool (SFSP) for about 240-400 days, which is relatively a longer period compared to the usual 120 days as recommended by regulatory authorities. After cooling spent fuels are transported to the reprocessing sites which are mostly situated close to the plants. India has two high level waste treatment facilities, one PREFRE (Plutonium Reprocessing and Fuel Recycling) at Tarapur and the other one, a unit of Nuclear Fuel Complex at Hyderabad. This paper presents the risk associated with spent fuel storage and transportation for the Indian conditions. All calculations are based on a typical CANDU reactor system. Simple fault tree models are evolved for SFSP and for Transportation Accident Mode (TAM) for both road and rail. Fault tree quantification and risk assessment are done to each of these models. All necessary data for SFSP are taken mostly from Reactor Safety Study, (1975). Similarly, the data for rail TAM are taken from Annual Statistical Statements, (1987-8) and that for road TAM from Special Issue on Motor Vehicle Accident Statistics in India, (1986). Simulation method is used wherever necessary. Risk is also estimated for normal/accident free transport

  3. Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; Itahara, Kuniyuki; Suzuki, Katsuo; Hamada, Koji

    1998-01-01

    According to the Long-term Program for Research, Development and Utilization of Nuclear Energy (June, 1994) in Japan, the Rokkasho Reprocessing Plant will be operated shortly after the year 2000, and the planning of the construction of the second commercial plant will be decided around 2010. Also, it is described that spent fuel storage has a positive meaning as an energy resource for the future utilization of Pu. Considering the balance between the increase of spent fuels and the domestic reprocessing capacity in Japan, it can be expected that the long-term storage of UO 2 spent fuels will be required. Then, we studied the effect of long-term storage of spent fuels on Pu-thermal fuel cycle. The burnup calculation were performed on the typical Japanese PWR fuel, and the burnup and criticality calculations were carried out on the Pu-thermal cores with MOX fuel. Based on the results, we evaluate the influence of extending the spent fuel storage term on the criticality safety, shielding design of the reprocessing plant and the core life time of the MOX core, etc. As the result of this work on long-term storage of LWR spent fuels, it becomes clear that there are few demerits regarding the lifetime of a MOX reactor core, and that there are many merits regarding the safety aspects of the fuel cycle facilities. Furthermore, long-term storage is meaningful as energy storage for effective utilization of Pu to be improved by technological innovation in future, and it will allow for sufficient time for the important policymaking of nuclear fuel cycle establishment in Japan. (author)

  4. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    International Nuclear Information System (INIS)

    Wolfram, J. H.; Mizia, R. E.; Jex, R.; Nelson, L.; Garcia, K. M.

    1996-01-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination

  5. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  6. Compacted spent-fuel storage--designs and problems

    International Nuclear Information System (INIS)

    Rubinstein, H.J.; Gilcrest, J.D.; Kendall, W.R.

    1979-01-01

    Typical rack designs, licensing, contracting methods, installation and operational problems are described. Due to the lack of reprocessing and independent fuel storage facilities, new plants built in the United States will continue to install high-density spent-fuel storage racks. As to the rack designs, the most significant feature is the introduction of freestanding rack designs. The trends in spent-fuel storage appear to be toward the use of high-density racks, either with or without absorber, for all plants in the design, construction, or operation phase; the use of freestanding rack designs; and the separation of engineering and fabrication during procurement

  7. Special equipment support the fuel storage

    International Nuclear Information System (INIS)

    Vega, M. E.

    2014-01-01

    In the current juncture one of the keys to any company that works in a market that is as demanding as the nuclear, is its ability to developed new technological products that they can adapt to the different special situations/needs of nuclear Power Plants during their operating life. As an example, below are some of the specialized equipment that ENSA has been developing for more than thirty years that has been doing work in the area of fuel storage. (Author)

  8. Taxing fossil fuels under speculative storage

    International Nuclear Information System (INIS)

    Tumen, Semih; Unalmis, Deren; Unalmis, Ibrahim; Unsal, D. Filiz

    2016-01-01

    Long-term environmental consequences of taxing fossil fuel usage have been extensively studied in the literature. However, these taxes may also impose several short-run macroeconomic policy challenges, the nature of which remains underexplored. This paper investigates the mechanisms through which environmental taxes on fossil fuel usage can affect the main macroeconomic variables in the short-run. We concentrate on a particular mechanism: speculative storage. Formulating and using a dynamic stochastic general equilibrium (DSGE) model, calibrated for the United States, with an explicit storage facility and nominal rigidities, we show that in designing environmental tax policies it is crucial to account for the fact that fossil fuel prices are subject to speculation. The existence of forward-looking speculators in the model improves the effectiveness of tax policies in reducing fossil fuel usage. Improved policy effectiveness, however, is costly: it drives inflation and interest rates up, while impeding output. Based on this tradeoff, we seek an answer to the question how monetary policy should interact with environmental tax policies in our DSGE model of fossil fuel storage. We show that, in an environment with no speculative storers, monetary policy should respond to output along with CPI inflation in order to minimize the welfare losses brought by taxes. However, when the storage facility is activated, responding to output in the monetary policy rule becomes less desirable.

  9. Integrity of spent CANDU fuel during and following dry storage

    International Nuclear Information System (INIS)

    Villagran, J.E.

    2004-01-01

    This report examines the issue of CANDU fuel integrity at the back end of the fuel cycle and outlines a program designed to provide assurance that used CANDU fuel will retain its integrity over an extended period. In specific terms, the program is intended to provide assurance that during and following extended dry storage the fuel will remain fit to undergo, without loss of integrity, the handling, packaging and transportation operations that might be necessary until it is placed in disposal containers. The first step in the development of the program was a review of the available technical information on phenomena relevant to fuel integrity. The major conclusions from that review were the following: Under normal storage conditions it is unlikely that the spent fuel will suffer significant degradation during a one-hundred year period and it should be possible to retrieve, repackage and transport the fuel as required, using methods and systems similar to those used today. However, to provide increased confidence regarding the above conclusion, investigations should be conducted in areas where there is higher uncertainty in the prediction of fuel condition and on some degradation processes to which the fuel appears to present higher vulnerability. The proposed program includes, among other tasks, irradiated fuel tests, analytical studies on the most relevant fuel degradation processes and the development of a long-term fuel verification program. (Author)

  10. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  11. Spent fuel storage requirements: the need for away-from-reactor storage

    International Nuclear Information System (INIS)

    1980-01-01

    The analyses of on-site storage capabilities of domestic utilities and estimates of timing and magnitude of away-from-reactor (AFR) storage requirements were presented in the report DOE/ET-0075 entitled Spent Fuel Storage Requirements: The Need For Away-From-Reactor Storage published in February 1979 by the US Department of Energy. Since utility plans and requirements continue to change with time, a need exists to update the AFR requirements estimates as appropriate. This short report updates the results presented in DOE/ET-0075 to reflect recent data on reactor operations and spent fuel storage. In addition to the updates of cases representing the range of AFR requirements in DOE/ET-0075, new cases of interest reflecting utility and regulatory trends are presented

  12. Manufacturing and Construction of Fresh Fuel Storage Rack for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of this study is to provide the manufacturing and construction information regarding the Fresh Fuel Storage Rack (FFSR). The main function of a FFSR is to store and protect the 2 core new fuel assemblies for the operation of the research reactor. The fresh fuel assemblies are stored in a rack made of stainless steel and the storage rack is installed in the fresh fuel storage room. The fresh fuel facility provides fresh fuel assemblies with dry storage space. General design requirements of the fresh fuel storage facilities are given in the ANSI-57.3. Design, manufacturing, and construction of the fresh fuel storage rack are introduced. The analysis is performed to confirm the structural intensity of the fresh fuel storage rack under the seismic loads. The fresh fuel storage rack designed for storage of fresh fuel assemblies should be manufactured and installed with consideration of predicted number of fresh fuel assemblies, structural integrity, resistivity to corrosion and radiation, cleaning, and workability.

  13. Manufacturing and Construction of Fresh Fuel Storage Rack for a Research Reactor

    International Nuclear Information System (INIS)

    Oh, Jinho; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo

    2016-01-01

    The objective of this study is to provide the manufacturing and construction information regarding the Fresh Fuel Storage Rack (FFSR). The main function of a FFSR is to store and protect the 2 core new fuel assemblies for the operation of the research reactor. The fresh fuel assemblies are stored in a rack made of stainless steel and the storage rack is installed in the fresh fuel storage room. The fresh fuel facility provides fresh fuel assemblies with dry storage space. General design requirements of the fresh fuel storage facilities are given in the ANSI-57.3. Design, manufacturing, and construction of the fresh fuel storage rack are introduced. The analysis is performed to confirm the structural intensity of the fresh fuel storage rack under the seismic loads. The fresh fuel storage rack designed for storage of fresh fuel assemblies should be manufactured and installed with consideration of predicted number of fresh fuel assemblies, structural integrity, resistivity to corrosion and radiation, cleaning, and workability

  14. Nuclear material control and accountancy in a spent fuel storage ponds

    International Nuclear Information System (INIS)

    Gurle, P.; Zhabo, Dgh.

    1999-01-01

    The spent fuel storage ponds of a large reprocessing plant La Hague in France are under safeguards by means of a wide range of techniques currently used. These techniques include the nuclear material accountancy an containment/surveillance (C/S). Nondestructive assay, design information verification, and authentication of equipment provided by the operator are also implemented. Specific C/S equipment including video surveillance and unattended radiation monitoring have been developed and implemented in a spent fuel pond of La Hague. These C/S systems named EMOSS and CONSULHA with high degree of reliability and conclusiveness provide the opportunity to improve the efficiency of safeguards, particularly as related to spent fuel storage areas where the accountancy is verified by item counting [ru

  15. The long term storage of advanced gas-cooled reactor (AGR) fuel

    International Nuclear Information System (INIS)

    Standring, P.N.

    1999-01-01

    The approach being taken by BNFL in managing the AGR lifetime spent fuel arisings from British Energy reactors is given. Interim storage for up to 80 years is envisaged for fuel delivered beyond the life of the Thorp reprocessing plant. Adopting a policy of using existing facilities, to comply with the principles of waste minimisation, has defined the development requirements to demonstrate that this approach can be undertaken safely and business issues can be addressed. The major safety issues are the long term integrity of both the fuel being stored and structure it is being stored in. Business related issues reflect long term interactions with the rest of the Sellafield site and storage optimisation. Examples of the development programme in each of these areas is given. (author)

  16. An Indian perspective for transportation and storage of spent fuel

    International Nuclear Information System (INIS)

    Dey, P.K.

    2005-01-01

    The spent fuel discharged from the reactors are temporarily stored at the reactor pool. After a certain cooling time, the spent fuel is moved to the storage locations either on or off reactor site depending on the spent fuel management strategy. As India has opted for a closed fuel cycle for its nuclear energy development, reprocessing of the spent fuel, recycling of the reprocessed plutonium and uranium and disposal of the wastes from the reprocessing operations forms the spent fuel management strategy. Since the reprocessing operations are planned to match the nuclear energy programme, storage of the spent fuel in ponds are adopted prior to reprocessing. Transport of the spent fuel to the storage locations are carried out adhering to international and national guide lines. India is having 14 operating power reactors and three research reactors. The spent fuel from the two safeguarded BWRs are stored at-reactor (AR) storage pond. A separate wet storage facility away-from-reactor (AFR) has been designed, constructed and made operational since 1991 for additional fuel storage. Storage facilities are provided in ARs at other reactor locations to cater to 10 reactor-years of operation. A much lower capacity spent fuel storage is provided in reprocessing plants on the same lines of AR fuel storage design. Since the reprocessing operations are carried out on a need basis, to cater to the increased storage needs two new spent fuel storage facilities (SFSF) are being designed and constructed near the existing nuclear plant sites. India has mastered the technology for design, construction and operation of wet spent fuel storage facility meeting all the international standards Wet storage of the spent fuel is the most commonly adopted mode all over the world. Recently an alternate mode viz. dry storage has also been considered. India has designed, constructed and operated lead shielded dry storage casks and is operational at one site. A dry storage cask made of concrete

  17. Safety assessment of OPG's used fuel for dry storage

    International Nuclear Information System (INIS)

    Roman, H.; Khan, A.

    2005-01-01

    'Full text:' Ontario Power Generation (OPG) operates the Pickering Waste Management Facility (PWMF) and Western Waste Management Facility (WWMF) where OPG has been storing 10-year or older used fuel in the Dry Storage Containers (DSCs) since 1996 and 2003 respectively. The construction licence for the Darlington Used Fuel Dry Storage Facility (DUFDSF) was obtained in August 2004. Safety assessment of the used fuel for dry storage is required to support each request for regulatory approval to construct and operate a dry storage facility. The objective of the safety assessment is to assess the used fuel performance under normal operation and postulated credible accident scenarios. A reference used fuel bundle is defined based on the operating history and data on fuel discharged from the reactors of the specific nuclear generating station. The characteristics of the reference used fuel bundle are used to calculate the nuclide inventory, source term and decay heat used for the assessment. When assessing malfunctions and accidents, postulated external and internal events are considered. Consideration is also given to the design basis accidents of the specific nuclear generating station that could affect the used fuel under dry storage. For those events deemed credible (i.e. probability > 10 -7 ), a bounding fuel failure consequence is predicted. Given the chemical characteristics of the radionuclides in used fuel, the design of the CANDU fuel and the conditions inside the DSC, in the event that a used fuel bundle should become damaged during used fuel dry storage operations, the only significant radionuclides species that are volatile are krypton-85 and tritium. Release of these radionuclides is considered in calculating public and worker doses. (author)

  18. Transportation and storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1979-01-01

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage

  19. Studies and research concerning BNFP: spent fuel dry storage studies at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1980-09-01

    Conceptual designs are presented utilizing the Barnwell Nuclear Fuel Plant for the dry interim storage of spent light water reactor fuel. Studies were conducted to determine feasible approaches to storing spent fuel by methods other than wet pool storage. Fuel that has had an opportunity to cool for several years, or more, after discharge from a reactor is especially adaptable to dry storage since its thermal load is greatly reduced compared to the thermal load immediately following discharge. A thermal analysis was performed to help in determining the feasibility of various spent fuel dry storage concepts. Methods to reject the heat from dry storage are briefly discussed, which include both active and passive cooling systems. The storage modes reviewed include above and below ground caisson-type storage facilities and numerous variations of vault, or hot cell-type, storage facilities

  20. A safeguards concept for the AVR fuel element storage areas at the KFA-Juelich

    International Nuclear Information System (INIS)

    Canty, M.J.; Buttler, R.

    1980-11-01

    The storage of spent AVR fuel in the KFA-Juelich has been discussed in relation to the obligations of the FRG under NPT. The present system of material accountancy and the associated procedures for physical inventory taking, while adequate from the operational standpoint, fall short of providing sufficient safequards for the fissile material involved. It is essential to complement existing controls by providing the safeguards authorities with the means of verifying the nuclear materials accountancy data of the storage facility operators. Due to the difficulties associated with the assay of irradiated fuel, the verification measurements must be carried out with the close cooperation of the operators. It was demonstrated that, given appropriate measuring devices, a high assurance for the non-diversion of a significant quantity can be obtained with an acceptable manpower effort. In this regard, the highly diluted form of the fissile material plays a favourable role. (orig.) [de

  1. Rethinking the economics of centralized spent fuel storage

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Dippold, D.G.; Rod, S.R.; Williams, J.W.

    1991-04-01

    The technology for extended storage of spent nuclear fuel (SNF), either at-reactor or in a centralized facility such as a monitored retrievable storage (MRS) facility, is well-developed and proven from an engineering and safety perspective. The question of whether spent fuel should await its final geologic disposal while at a reactor site or in an MRS facility is essentially an economic one. While intuition and previous results suggest that centralized storage will be more economical than at-reactor storage beyond some break-even quantity of SNF, the incremental costs of pool storage at-reactor are close to zero as long as pool capacity is generally available. Thus, if economics is the prime motivator, the quantity of spent fuel required to warrant centralized storage could be quite large. The economics of centralizing the storage of spent fuel at a single site, as opposed to continued storage at over 100 reactor sites, has been the subject of several recent analyses. Most of these analyses involved calculating the benefits of an MRS facility with a pre-defined MRS operating scenario. This paper reverses this approach to economic analysis of the MRS by seeking the optimal MRS operating scenario (in terms of the parameters listed above) implied by the economic incentives arising from the relative costs of at-reactor storage and centralized storage. This approach treats an MRS as a possible storage location that will be used according to its economic value in system operation. 5 refs., 5 figs

  2. Spent fuel storage rack for BWR fuel assemblies

    International Nuclear Information System (INIS)

    Machado, O.; Henry, C.W.; Congleton, R.L.; Flynn, W.M.

    1990-01-01

    This patent describes for the use in storing nuclear fuel assemblies in a storage pool containing a coolant and having a pool floor, a fuel rack module. It comprises: a base plate to be disposed generally horizontally on the floor and having a horizontal surface area sufficient to support a fuel assemblies; uniformly spaced openings in the base plate, disposed in rows and columns throughout the surface area; fabricated cells of rectangular cross section extending over alternate openings along each row of the openings, the fabricated cells of each row being uniformly staggered by one opening with respect to the cells of its just adjacent rows so that the fabricated cells form a checkerboard like array; each of the fabricated cells having elongated walls mounted generally vertically on the base plate; each of the corners formed by the walls of each fabricated cell, which corners are internal of the periphery of the array, being disposed as closely adjacent as practicable to and face-to-face with a corner of an adjacent fabricated cell and joined by weld means so that substantially no space exists between adjacent cells. The cells being welded to their bottom ends to the base plate so that a strong compact modular structure is produced; neutron-absorbing means on the external surface of the fabricated cell walls except on the coextensive sections of the outer wall around the periphery of the array; and leveling pads are mounted under the base plate near the periphery thereof and adjustably engage the pool floor and intermediate leveling pads are mounted under cells within the fuel-rack module, the intermediate pads being uniformly disposed

  3. Preliminary assessment of alternative dry storage methods for the storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents the results of an assessment of the (1) state of technology, (2) licensability, (3) implementation schedule, and (4) costs of alternative dry methods for storage of spent fuel at a reactor location when used to supplement reactor pool storage facilities. The methods of storage that were considered included storage in casks, drywells, concrete silos and air-cooled vaults. The impact of disassembly of spent fuel and storage of consolidated fuel rods was also determined. The economic assessments were made based on the current projected storage requirements of Virginia Electric and Power Company's Surry Station for the period 1985 to 2009, which has two operating pressurized water reactors (824 MWe each). It was estimated that the unit cost for storage of spent fuel in casks would amount to $117/kgU and that such costs for storage in drywells would amount to $137/kgU. However, based on the overall assessment it was concluded both storage methods were equal in merit. Modular methods of storage were generally found to be more economic than those requiring all or most of the facilities to be constructed prior to commencement of storage operations

  4. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Morikawa, Matsuo; Uchiyama, Yuichi.

    1983-01-01

    Purpose: To improve the safety and facilitate the design by limiting the relative displacement in a storage rack. Constitution: The outer wall of a storage rack disposed in water within a fuel pool, the pool wall opposing to the storage rack and the structure between the opposing storages racks are made as a space for confining the pool water or a structure formed with a slight gap, for example, a combination of a recessed structure and a protruded structure. In such a constitution, a space for confirming the pool water is established and the pool water thus confined forms a flow resistance when the storage rack vibrates upon earthquakes, serves as a damper and significantly reduces the responsivity. Furthermore, the relative displacement in the storage rack is limited to inhibit excess earthquake forces to exert on setting bolts and rack clamping bolts of the storage rack. (Sekiya, K.)

  5. The united kingdom's changing requirements for spent fuel storage

    International Nuclear Information System (INIS)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-01-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK

  6. Experience with the licensing of the interim spent fuel storage facility modification

    International Nuclear Information System (INIS)

    Bezak, S.; Beres, J.

    1999-01-01

    After political and economical changes in the end of eighties, the utility operating the nuclear power plants in the Slovak Republic (SE, a.s.) decided to change the original scheme of the back-end of the nuclear fuel cycle; instead of reprocessing in the USSR/Russian Federation spent fuel will be stored in an interim spent fuel storage facility until the time of the final decision. As the best solution, a modification of the existing interim spent fuel storage facility has been proposed. Due to lack of legal documents for this area, the Regulatory Authority of the Slovak Republic (UJD SR) performed licensing procedures of the modification on the basis of recommendations by the IAEA, the US NRC and the relevant parts of the US CFR Title 10. (author)

  7. Thermal-hydraulic analysis of spent fuel storage systems

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1987-01-01

    This paper describes the COBRA-SFS (Spent Fuel Storage) computer code, which is designed to predict flow and temperature distributions in spent nuclear fuel storage and transportation systems. The decay heat generated by spent fuel in a dry storage cask is removed through a combination of conduction, natural convection, and thermal radiation. One major advantage of COBRA-SFS is that fluid recirculation within the cask is computed directly by solving the mass and momentum conservation equations. In addition, thermal radiation heat transfer is modeled using detailed radiation exchange factors based on quarter-rod segments. The equations governing mass, momentum, and energy conservation for incompressible flows are presented, and the semi-implicit solution method is described. COBRA-SFS predictions are compared to temperature data from a spent fuel storage cask test and the effect of different fill media on the cladding temperature distribution is discussed. The effect of spent fuel consolidation on cask thermal performance is also investigated. 16 refs., 6 figs., 2 tabs

  8. Sustainable Solutions for Nuclear used Fuels Interim Storage

    International Nuclear Information System (INIS)

    Arslan, Marc; Favet, Dominique; Issard, Herve; Le Jemtel, Amaury; Drevon, Caroline

    2014-01-01

    AREVA has a unique experience in providing sustainable solutions for used fuel management, fitted with the needs of different customers in the world and with regulation in different countries. These solutions entail both recycling and interim storage technologies. In a first part, we will describe the various types of solutions for Interim Storage of UNF that have been implemented around the world for interim storage at reactor or centralized Pad solution in canisters dry storage, vault type storages for dry storage, dry storage of transportation casks (dual purpose) pools for wet storage, The experience for all these different families of interim storages in which AREVA is involved is extensive and will be discussed with respect to the new challenges: increase of the duration of the interim storage (long term interim storage) increase of burn up of the fuels In a second part of the presentation, special recycling features will be presented. In that case, interim storage of the used fuels is ensured in pools. This provides in the long term good conditions for the behaviour of the fuel and its retrievability. With recycling, the final waste (Universal Canister of vitrified fission products and compacted hulls and end pieces): is stable and licensed in many countries for the final disposal (France, UK, Belgium, NL, Switzerland, Germany, Japan, upcoming: Spain, Australia, Italy). Presents neither safety criticality risks nor proliferation risks (AREVA conditioned HLW and LL-ILW are free of IAEA safeguard constraints thanks to AREVA process high recovery and purification yields). It can therefore be safely stored in interim storage for more than 100 years before final disposal. Some economic considerations will also be discussed. In particular, in the case of long term interim storage of used fuels, there are growing uncertainties regarding the future needs of repackaging and transportation, which can result in future cost overruns. Meanwhile, in the recycling policy

  9. Decommissioning of the 105-F and 105-H fuel storage basin in the 100 Area at the Hanford Site

    International Nuclear Information System (INIS)

    Griffin, P.W.

    1991-09-01

    The US Department of Energy (DOE) owns the eight surplus production reactors at the Hanford Site north of Richland, Washington. The fuel storage basins at the 105-F and 105-H reactors were filled with equipment, associated with the operation of the basins and clean fill in 1970. This was done to stabilize the residual sediment and a few feet of water in the reactors' fuel storage basins. This project investigates the subject basins to locate and remove overlooked fuel elements left in the basins

  10. New developments in dry spent fuel storage

    International Nuclear Information System (INIS)

    Bonnet, C.; Chevalier, Ph.

    2001-01-01

    As shown in various new examples, HABOG facility (Netherlands), CERNAVODA (Candu - Romania), KOZLODUY (WWER - Bulgaria), CHERNOBYL ( RMBK - Ukraine), MAYAK (Spent Fuel from submarine and Icebreakers - Russia), recent studies allow to confirm the flexibility and performances of the CASCAD system proposed by SGN, both in safety and operability, for the dry storage of main kinds of spent fuel. The main features are: A multiple containment barrier system: as required by international regulation, 2 independent barriers are provided (tight canister and storage pit); Passive cooling, while the Fuel Assemblies are stored in an inert atmosphere and under conditions of temperature preventing from degradation of rod cladding; Sub-criticality controlled by adequate arrangements in any conditions; Safe facility meeting ICPR 60 Requirements as well as all applicable regulations (including severe weather conditions and earthquake); Safe handling operations; Retrievability of the spent fuel either during storage period or at the end of planned storage period (100 years); Future Decommissioning of the facility facilitated through design optimisation; Construction and operating cost-effectiveness. (author)

  11. Spent Fuel Storage Operation - Lessons Learned

    International Nuclear Information System (INIS)

    2013-12-01

    Experience gained in planning, constructing, licensing, operating, managing and modifying spent fuel storage facilities in some Member States now exceeds 50 years. Continual improvement is only achieved through post-project review and ongoing evaluation of operations and processes. This publication is aimed at collating and sharing lessons learned. Hopefully, the information provided will assist Member States that already have a developed storage capability and also those considering development of a spent nuclear fuel storage capability in making informed decisions when managing their spent nuclear fuel. This publication is expected to complement the ongoing Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III); the scope of which prioritizes facility operational practices in lieu of fuel and structural components behaviour over extended durations. The origins of the current publication stem from a consultants meeting held on 10-12 December 2007 in Vienna, with three participants from the IAEA, Slovenia and USA, where an initial questionnaire on spent fuel storage was formulated (Annex I). The resultant questionnaire was circulated to participants of a technical meeting, Spent Fuel Storage Operations - Lessons Learned. The technical meeting was held in Vienna on 13-16 October 2008, and sixteen participants from ten countries attended. A consultants meeting took place on 18-20 May 2009 in Vienna, with five participants from the IAEA, Slovenia, UK and USA. The participants reviewed the completed questionnaires and produced an initial draft of this publication. A third consultants meeting took place on 9-11 March 2010, which six participants from Canada, Hungary, IAEA, Slovenia and the USA attended. The meeting formulated a second questionnaire (Annex II) as a mechanism for gaining further input for this publication. A final consultants meeting was arranged on 20-22 June 2011 in Vienna. Six participants from Hungary, IAEA, Japan

  12. Spent-fuel storage: a private sector option

    International Nuclear Information System (INIS)

    Thomas, J.A.; Ross, S.R.

    1983-01-01

    The investigation was performed to delineate the legal and financial considerations for establishing private sector support for the planning and development of an independent spent-fuel storage facility (ISFSF). The preferred institutional structure was found to be one in which a not-for-profit corporation contracts with a limited partnership to handle the spent fuel. The limited partnership acquires the necessary land and constructs the ISFSF facility and then leases the facility to the not-for-profit corporation, which acquires spent-fuel rods from the utilities. The DOE must agree to purchase the spent-fuel rods at the expiration of term and warrant continued operation of the facility if policy changes at the federal level force the removal of the rods prior to completion of the contracted storage cycle. The DOE planning base estimate of spent-fuel storage requirements indicates a market potential adequate to support 10,000 MTU or more of spent-fuel storage prior to the time a government repository is available to accept spent fuel around the turn of the century. The estimated construction cost of a 5000-MTU water basin facility is $552 million. The total capital requirements to finance such a facility are estimated to be $695 million, based on an assumed capital structure of 70 percent debt and 30 percent equity. The estimated total levelized cost of storage, including operating costs, for the assumed 17-year life of the facility is $223 per kilogram of uranium. This is equivalent to a slightly less than one mill per kilowatt-hour increase in nuclear fuel costs at the nuclear power station that was the source of the spent fuel. In conclusion, within the context of the new Nuclear Waste Policy Act of 1982, the study points to both the need for and the advantages of private sector support for one or more ISFSFs and establishes a workable mechanism for the recovery of the costs of owning and operating such facilities. 3 figures, 4 tables

  13. Management and storage of spent fuel from CEA research reactors

    International Nuclear Information System (INIS)

    Merchie, F.

    1996-01-01

    CEA research reactors and their interim spent fuel storage facilities are described. Long-term solutions for spent fuel storage problems, involving wet storage at PEGASE or dry storage at CASCAD, are outlined in some detail. (author)

  14. Transitioning aluminum clad spent fuels from wet to interim dry storage

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Iyer, N.C.; Sindelar, R.L.; Peacock, H.B. Jr.

    1994-01-01

    The United States Department of Energy (DOE) currently owns several hundred metric tons of aluminum clad, spent nuclear fuel and target assemblies. The vast majority of these irradiated assemblies are currently stored in water basins that were designed and operated for short term fuel cooling prior to fuel reprocessing. Recent DOE decisions to severely limit the reprocessing option have significantly lengthened the time of storage, thus increasing the tendency for corrosion induced degradation of the fuel cladding and the underlying core material. The portent of continued corrosion, coupled with the age of existing wet storage facilities and the cost of continuing basin operations, including necessary upgrades to meet current facility standards, may force the DOE to transition these wet stored, aluminum clad spent fuels to interim dry storage. The facilities for interim dry storage have not been developed, partially because fuel storage requirements and specifications for acceptable fuel forms are lacking. In spite of the lack of both facilities and specifications, current plans are to dry store fuels for approximately 40 to 60 years or until firm decisions are developed for final fuel disposition. The transition of the aluminum clad fuels from wet to interim dry storage will require a sequence of drying and canning operations which will include selected fuel preparations such as vacuum drying and conditioning of the storage atmosphere. Laboratory experiments and review of the available literature have demonstrated that successful interim dry storage may also require the use of fuel and canister cleaning or rinsing techniques that preclude, or at least minimize, the potential for the accumulation of chloride and other potentially deleterious ions in the dry storage environment. This paper summarizes an evaluation of the impact of fuel transitioning techniques on the potential for corrosion induced degradation of fuel forms during interim dry storage

  15. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takats, F [TS Enercon Kft. (Hungary)

    2012-07-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. The fresh fuel is imported from Russia so far. The spent fuel assemblies were shipped back to Russia until 1997 after about 6 years cooling at the plant. A dry storage facility (MVDS type) has been constructed and is operational since then. By 1 January 2008, there were 5107 assemblies in dry storage. The objectives are: 1) Wet AR storage of spent fuel from the NPP Paks: Measurements of conditions for spent fuel storage in the at-reactor (AR) storage pools of Paks NPP (physical and chemical characteristics of pool water, corrosion product data); Measurements and visual control of storage pool component characteristics; Evaluation of storage characteristics and conditions with respect to long-term stability (corrosion of fuel cladding, construction materials); 2) Dry AFR storage at Paks NPP: Calculation and measurement of spent fuel conditions during the transfer from the storage pool to the modular vault dry storage (MVDS) on the site; Calculation and measurement of spent fuel conditions during the preparation of fuel for dry storage (drying process), such as crud release, activity build-up; Measurement of spent fuel conditions during the long-term dry storage, activity data in the storage tubes and amount of crud.

  16. Durability of spent nuclear fuels and facility components in wet storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  17. Durability of spent nuclear fuels and facility components in wet storage

    International Nuclear Information System (INIS)

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  18. Spent fuel storage at the Rancho Seco Nuclear Generation Station

    International Nuclear Information System (INIS)

    Miller, K.R.; Field, J.J.

    1995-01-01

    The Sacramento Municipal Utility District (SMUD) has developed a strategy for the storage and transport of spent nuclear fuel and is now in the process of licensing and manufacturing a Transportable Storage System (TSS). Staff has also engaged in impact limiter testing, non-fuel bearing component reinsertion, storage and disposal of GTCC waste, and site specific upgrades in support of spent fuel dry storage

  19. Dry storage of irradiated nuclear fuels and vitrified wastes

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A review is given of the work of GEC Energy Systems Ltd. over the years in the dry storage of irradiated fuel. The dry-storage module (designated as Cell 4) for irradiated magnox fuel recently constructed at Wylfa nuclear power station is described. Development work on the long-term dry storage of irradiated oxide fuels is reported. Four different methods of storage are compared. These are the pond, vault, cask and caisson stores. It is concluded that there are important advantages with the passive air-cooled ESL dry stove. (U.K.)

  20. Fuel storage rack

    International Nuclear Information System (INIS)

    Mollon, L.

    1977-01-01

    Disclosed is a storage rack for spent nuclear fuel elements comprising a multiplicity of elongated hollow containers of uniform cross-section, preferably square,some of said containers having laterally extending continuous flanges extending between adjacent containers and defining continuous elongated chambers therebetween for the reception of neutron absorbing panels. 18 claims, 7 figures

  1. Fuel storage

    International Nuclear Information System (INIS)

    Palacios, C.; Alvarez-Miranda, A.

    2009-01-01

    ENSA is a well known manufacturer of multi-system primary components for the nuclear industry and is totally prepared to satisfy future market requirements in this industry. At the same time that ENSA has been gaining a reputation world wider for the supply of primary components, has been strengthening its commitment and experience in supplying spent fuel components, either pool racks or storage and transportation casks, and offers not only fabrication but also design capabilities for its products. ENSA has supplied Spent Fuel Pool Racks, in spain, Finland, Taiwan, Korea, China, and currently it is in the process of licensing its own rack design in the United States of America for the ESBWR along with Ge-Hitachi. ENSA has supplied racks for 20 pools and 22 different reactors and it has also manufactured racks under all available technologies and developed a design known as Interlock Cell Matrix whose main features are outlined in this article. Another ENSA achievement in rack technology is the use of remote control for re-racking activities instead of using divers, which improves the ALARA requirements. Regarding casks for storage and transportation, ENSA also has al leading worldwide position, with exports prevailing over the Spanish market where ENSA has supplied 16 storage and transportation casks to the Spanish nuclear power Trillo. In some cases, ENSA acts as subcontractor for other clients. Foreign markets are still a major challenge for ENSA. ENSA-is well known for its manufacturing capabilities in the nuclear industry, but has been always involved in design activities through its engineering division, which carries out different tasks: components Design; Tooling Design; Engineering and Documentation; Project Engineering; Calculations, Design and Development Engineering. (Author)

  2. Fuel handling and storage systems in nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The scope of this Guide includes the design of handling and storage facilities for fuel assemblies from the receipt of fuel into the nuclear power plant until the fuel departs from that plant. The unirradiated fuel considered in this Guide is assumed not to exhibit any significant level of radiation so that it can be handled without shielding or cooling. This Guide also gives limited consideration to the handling and storage of certain core components. While the general design and safety principles are discussed in Section 2 of this Guide, more specific design requirements for the handling and storage of fuel are given in detailed sections which follow the general design and safety principles. Further useful information is to be found in the IAEA Technical Reports Series No. 189 ''Storage, Handling and Movement of Fuel and Related Components at Nuclear Power Plants'' and No. 198 ''Guide to the Safe Handling of Radioactive Wastes at Nuclear Power Plants''. However, the scope of the Guide does not include consideration of the following: (1) The various reactor physics questions associated with fuel and absorber loading and unloading into the core; (2) The design aspects of preparation of the reactor for fuel loading (such as the removal of the pressure vessel head for a light water reactor) and restoration after loading; (3) The design of shipping casks; (4) Fuel storage of a long-term nature exceeding the design lifetime of the nuclear power plant; (5) Unirradiated fuel containing plutonium

  3. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  4. Existing and near future practices of spent fuel storage in Slovak Republic

    International Nuclear Information System (INIS)

    Mizov, J.

    1999-01-01

    In this paper existing and near future practices of spent fuel storage in Slovak Republic are discussed: (1) Reactor operation and spent fuel production; (2) Past policy in spent fuel storage; (3) Away-from-reactor (AFR) storage facility at Bohunice NPP site; (4) Present policy in spent fuel storage; (5) Final disposal of spent fuel

  5. International long-term interim storage for spent fuel. An independent storage service investor model

    International Nuclear Information System (INIS)

    Leister, P.

    1999-01-01

    Thinking globally the obvious world-wide demands for large storage capacities for spent fuel within the next decades and the newly arising demands for long-term interim storage of spent fuel urges to respond by international interim storage facilities of high capacity. Low cost storage can be achieved only by arranging the storage facility underground in a suitable host rock formation and by selecting the geographical are by an international competition under those countries, who are willing to offer their land. The investor and operator of an international storage facility selected and realised by a competition on the free market as well as the country where the storage is built are both bound by two different kinds of contacts. The main contract is between the offering country/region and the independent operator. The independent operator has in addition a series of contracts with various utilities, which are interested to have their spent fuel stored for a longer period

  6. Spent-fuel storage - MRS and/or on-site?

    International Nuclear Information System (INIS)

    Fuierer, A.A.

    1991-01-01

    The US government through the Office of Civilian Radioactive Waste Management (OCRWM) is seeking by the use of an authorized negotiator a site for a monitored retrievable storage (MRS) facility. Based on a public information document provided by the office of the negotiator, the MRS will be an integral part of the federal system for safe and permanent disposal of the nation's high-level radioactive wastes. It is planned that the MRS will accept and store spent fuel above ground until a repository opens and spent fuel that has been stored is shipped from the MRS to the repository. Additional spent fuel stored at reactor sites will be shipped to the MRS, which will be used as a staging area to assemble dedicated trains for shipment to the repository. The intent of the MRS is to reduce utilities' needs to expand on-site storage of spent fuel. A utility viewpoint may emphasize an alternate set of priorities. The waste management system must be considered as an overall system involving both the utility and DOE that begins with the first discharge of spent nuclear fuel from a commercial reactor and ends with high-level waste in a final repository. Many studies have been made on individual components of a waste system. This study, with the benefit of past hands-on experience as a guide, looks at costs and reliability for a total system concept with particular emphasis on the interface between the utility and Department of Energy

  7. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  8. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  9. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    International Nuclear Information System (INIS)

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  10. Report on the possibilities of long-term storage of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    2001-01-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  11. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1985-01-01

    A storage arrangement for nuclear fuel has a plurality of storage tubes connected by individual pipes to manifolds which are connected, in turn, to an exhaust system for maintaining the tubes at sub-atmospheric pressure, and means for producing a flow of a cooling fluid, such as air, over the exterior surfaces of the tubes. (author)

  12. Current state and perspectives of spent fuel storage in Russia

    International Nuclear Information System (INIS)

    Kurnosov, V.A.; Tichonov, N.S.; Makarchuk, T.F.

    1999-01-01

    Twenty-nine power units at nine nuclear power plants, having a total installed capacity of 22 GW(e), are now in operation in the Russian Federation. They produce approximately 12% of the generated electricity in the country. The annual spent fuel arising is approximately 790 tU. The concept of the closed fuel cycle was adopted as the basis for nuclear power development in the Russian Federation, but until now this concept is only implemented for the fuel cycles of WWER-440 and BN-600 reactors. The WWER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed. It is meant to be stored in intermediate storage facilities at the NPP sites. The status of the spent fuel (SF) stored in the storage facilities is given in the paper. The principal characteristics of the fuel cycles of the Russian NPPs in the period up to 2015 is also given in the report. The key variant of the current spent fuel management at RBMK-1000 NPPs is storage in at-reactor and in away-from-reactor wet storage facilities at the power plant site with a capacity of 2,000 W. The storage capacity at the operating RBMKs (including the increase due to denser fuel assembly arrangement) will provide SF reception from the NPPs only up to 2005. For RBMK spent fuel, intermediate dry storage is foreseen at power plant sites in metallic concrete casks and thereafter transportation to the central storage facility at the RT-2 plant for long-term storage. The SF will be reprocessing after completion of the reprocessing plant at RT-2. In the Programme of Nuclear Power Development in the Russian Federation for the period 1998 to 2005 and for the period until 2010 year, provisions are made for the construction of a central dry storage facility before 2010. The facility will have a design capacity of 30,000 tU for WWER-1000 and RBMK-1000 spent fuel and is part of the reprocessing plant RT-2. The paper considers

  13. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kupca, L [VUJE Inc. (Slovakia)

    2012-07-01

    In the Slovak Republic are under operation 6 units (4 in the Jaslovske Bohunice site, and 2 in the Mochovce), 2 units are under construction in Mochovce site. All units are WWER-440 type. The fresh fuel is imported from the Russian Federation. The spent fuel assemblies are stored in wet conditions in Bohunice Interim Storage Spent Fuel Facility (SFIS). By 15 July 2008, there were 8413 assemblies in SFIS. The objectives are: 1) Wet AR storage of spent fuel from the NPP Bohunice and Mochovce: Surveillance of conditions for spent fuel storage in the at-reactor (AR) storage pools of both NPP's (characteristics of pool water, corrosion product data); Visual control of storage pool components; Evaluation of storage conditions with respect to long-term stability (corrosion of fuel cladding, structural materials); 2) Wet SFIS storage at Bohunice: Measurement of spent fuel conditions during the long-term wet storage, activity data in the storage casks and amount of crud; Surveillance program for SFIS structural materials.

  14. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  15. PWR Core II blanket fuel disposition recommendation of storage option study

    International Nuclear Information System (INIS)

    Dana, C.M.

    1995-01-01

    After review of the options available for current storage of T Plant Fuel the recommended option is wet storage without the use of chillers. A test has been completed that verifies the maximum temperature reached is below the industrial standard for storage of spent fuel. This option will be the least costly and still maintain the fuel in a safe environment. The options that were evaluated included dry storage with and without chillers, and wet storage with and without chillers. Due to the low decay heat of the Shippingport Core II Blanket fuel assemblies the fuel pool temperature will not exceed 100 deg. F

  16. A Study on Rack Thickness Effect for Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Lee, Hee-Jae; Sohn, Dong-Seong

    2015-01-01

    For the effective storage of used fuel, the development of high performance neutron absorbing materials is needed. One of the major concern for the used fuel storage is the assurance to keep subcriticality of the storage rack and the high performance neutron absorbing material is the vital part to assure this requirement. According to NRC guide line, the k-effective of the spent fuel storage racks must not exceed 0.95. To ensure its safety, subcriticality analysis is required. Subcriticality analysis of the used storage in spent fuel pool have been performed by different authors. Criticality calculations for light water reactor spent fuel storage rack were carried out by Jae et al. They used AMPX-KENO IV code and considered the effect of rack pitch and rack thickness for consolidated fuel. The criticality analysis has performed at Gd 0.2 and 1 wt% according to thickness change. As thickness increases, the volume of the spent fuel pool rack increases. Therefore, absorbing material also increases according to thickness

  17. A Study on Rack Thickness Effect for Spent Fuel Pool Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Jin; Lee, Hee-Jae; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    For the effective storage of used fuel, the development of high performance neutron absorbing materials is needed. One of the major concern for the used fuel storage is the assurance to keep subcriticality of the storage rack and the high performance neutron absorbing material is the vital part to assure this requirement. According to NRC guide line, the k-effective of the spent fuel storage racks must not exceed 0.95. To ensure its safety, subcriticality analysis is required. Subcriticality analysis of the used storage in spent fuel pool have been performed by different authors. Criticality calculations for light water reactor spent fuel storage rack were carried out by Jae et al. They used AMPX-KENO IV code and considered the effect of rack pitch and rack thickness for consolidated fuel. The criticality analysis has performed at Gd 0.2 and 1 wt% according to thickness change. As thickness increases, the volume of the spent fuel pool rack increases. Therefore, absorbing material also increases according to thickness.

  18. Materials in the environment of the fuel in dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Issard, H [TN International (Cogema Logistics) (France)

    2012-07-01

    Spent nuclear fuel has been stored safely in pools or dry systems in over 30 countries. The majority of IAEA Member States have not yet decided upon the ultimate disposition of their spent nuclear fuel: reprocessing or direct disposal. Interim storage is the current solution for these countries. For developing the technological knowledge data base, a continuation of the IAEA's spent fuel storage performance assessment was achieved. The objectives are: Investigate the dry storage systems and gather basic fuel behaviour assessment; Gather data on dry storage environment and cask materials; Evaluate long term behaviour of cask materials.

  19. Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements

    International Nuclear Information System (INIS)

    Powell, F.P.

    1995-04-01

    This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask's primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives

  20. Economical evaluation on spent fuel storage technology away from reactor

    International Nuclear Information System (INIS)

    Itoh, Chihiro; Nagano, Koji; Saegusa, Toshiari

    2000-01-01

    Concerning the spent fuel storage away from reactor, economical comparison was carried out between metal cask and water pool storage technology. The economic index was defined by levelized cost (Unit storage cost) calculated on the assumption that the storage cost is paid at the receipt of the spent fuel at the storage facility. It is found that the cask storage is economical for small and large storage capacity. Unit storage cost of pool storage, however, is getting close to that of cask storage in case of storage capacity of 10,000 ton. Then, the unit storage cost is converted to power generation cost using data of the burn up of the fuel, etc. The cost is obtained as yen 0.09/kWh and yen 0. 15/kWh for cask storage and pool storage, respectively in case of the capacity of 5,000 tonU and the cooling time of 5 years. (author)

  1. Evaluation of economics of spent fuel storage techniques

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    Various spent fuel storage techniques are evaluated in terms of required costs. The unit storage cost for each spent fuel storage scenario is calculated based on the total cost required for the scenario including capital expenditure, operation cost, maintenance cost and transport cost. Intermediate storage may be performed in relatively small facilities in the plant or in independent large-scale facilities installed away from the plant. Dry casks or water pools are assumed to be used in in-plant storage facilities while vaults may also be employed in independent facilities. Evaluation is made for these different cases. In in-plant facilities, dry cask storage is found to be more economical in all cases than water pool storage, especially when large-sized casks are employed. In independent facilities, on the other hand, the use of vaults is the most desirable because the required capital expenditure is the lowest due to the effect of scale economics. Dry cask storage is less expensive than water pool storage also in independent facilities. The annual discount rate has relatively small influence on the unit cost for storage. An estimated unit cost for storage in independent storage facilities is shown separately for facilities with a capacity of 1,000 tons, 3,000 tons or 5,000 tons. The report also outlines the economics of spent fuel storage in overseas facilities (Finland, Sweden and U.S.A.). (Nogami, K.)

  2. Partial Defect Verification of Spent Fuel Assemblies by PDET: Principle and Field Testing in Interim Spent Fuel Storage Facility (CLAB) in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Y.S.; Kerr, P.; Sitaraman, S.; Swan, R. [Global Security Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Rossa, R. [SCK-CEN, Mol (Belgium); Liljenfeldt, H. [SKB in Oskarshamn (Sweden)

    2015-07-01

    The need for the development of a credible method and instrument for partial defect verification of spent fuel has been emphasized over a few decades in the safeguards communities as the diverted spent fuel pins can be the source of nuclear terrorism or devices. The need is increasingly more important and even urgent as many countries have started to transfer spent fuel to so called 'difficult-to-access' areas such as dry storage casks, reprocessing or geological repositories. Partial defect verification is required by IAEA before spent fuel is placed into 'difficult-to-access' areas. Earlier, Lawrence Livermore National Laboratory (LLNL) has reported the successful development of a new, credible partial defect verification method for pressurized water reactor (PWR) spent fuel assemblies without use of operator data, and further reported the validation experiments using commercial spent fuel assemblies with some missing fuel pins. The method was found to be robust as the method is relatively invariant to the characteristic variations of spent fuel assemblies such as initial fuel enrichment, cooling time, and burn-up. Since then, the PDET system has been designed and prototyped for 17x17 PWR spent fuel assemblies, complete with data acquisition software and acquisition electronics. In this paper, a summary description of the PDET development followed by results of the first successful field testing using the integrated PDET system and actual spent fuel assemblies performed in a commercial spent fuel storage site, known as Central Interim Spent fuel Storage Facility (CLAB) in Sweden will be presented. In addition to partial defect detection initial studies have determined that the tool can be used to verify the operator declared average burnup of the assembly as well as intra-assembly burnup levels. (authors)

  3. Short-term storage considerations for spent plutonium-thorium fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Blomeley, L.; Dugal, C.; Masala, E.; Tran, T., E-mail: laura.blomeley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    To support the development of advanced pressurized heavy water reactor (PHWR) fuel cycles, it is necessary to study short-term storage solutions for spent reactor fuel. In this paper, some representational criticality safety and shielding assessments are presented for a particular PHWR plutonium-thorium based fuel bundle concept in a hypothetical aboveground dry storage module. The criticality assessment found that the important parameters for the storage design are neutron absorber content and fuel composition, particularly in light of the high sensitivity of code results to plutonium. The shielding assessment showed that the shielding as presented in the paper would need to be redesigned to provide greater gamma attenuation. These findings can be used to aid in designing fuel storage facilities. (author)

  4. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  5. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    International Nuclear Information System (INIS)

    Richard, R.F.

    1995-01-01

    It has been postulated that a degradation phenomenon, referred to as ''hot cell rot'', may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ''Hot cell rot'' refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ''hot cell rot'' phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical

  6. Review of Current Criteria of Spent Fuel Rod Integrity during Dry Storage

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2006-01-01

    A PWR spent fuel has been stored in a wet storage pool in Korea. However, the amount of spent fuel is expected to exceed the capacity of a wet storage pool within 10∼15 years. From the early 1970's, a research on the PWR spent fuel dry storage started because the dry storage system has been economical compared with the wet storage system. The dry storage technology for Zircaloy-clad fuel was assessed and licensed in many countries such as USA, Canada, FRG and Switzerland. In the dry storage system, a clad temperature may be higher than in the wet storage system and can reach up to 400 .deg.. A higher clad temperature can cause cladding failures during the period of dry storage, and thus a dry storage related research has essentially dealt with the prevention of clad degradation. It is temperature and rod internal pressure that cause cladding failures through the mechanisms such as clad creep rupture, hydride re-orientation, and stress-corrosion cracking etc.. In this paper, the current licensing criteria are summarized for the PWR spent fuel dry storage system, especially on spent fuel rod integrity. And it is investigated that an application propriety of existing criteria to Korea spent fuel dry storage system

  7. Spent fuel heatup following loss of water during storage

    International Nuclear Information System (INIS)

    Benjamin, A.S.; McCloskey, D.J.

    1978-01-01

    Spent fuel assemblies from light water reactors are typically stored for one year or more in the reactor spent fuel pool and then transported for long-term storage at an off-site location. Because of the design, construction, and operation features of spent fuel storage pools, an accident that might drain most of the water from a pool is assessed as being extremely improbable. As a limiting case, however, a hypothetical incident involving instantaneous draining of all the water from a storage pool has been postulated, and the subsequent heatup of the spent fuel elements has been evaluated. The model is analyzed, and results are summarized

  8. Behaviour of Spent WWER fuel under long term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadarmetov, I M [A.A.Bochvar All-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1999-07-02

    Results of experimental investigation into thermomechanical properties of pre-irradiated Zr-1%Nb alloy over a range temperatures 500-570 grad C are presented. Safety examination of the Ventilation Storage Casks dry storage system has been carried out. Preliminary safety criteria under dry storage conditions in an environment of inert gas are follows: maximum cladding temperature under normal conditions of dry storage should not exceed 330 grad C after 5-year cooling in water-filled pools; maximum allowable temperature of spent fuel rod cladding under operational mode with infringement of heat removal should not exceed 440 grad C over 8 hours. As each SFA dry storage project comprises its individual technology of spent fuel management, it is necessary to evaluate allowable parameters (terms of storage, maximum temperatures of fuel) for each project respectively. The programme of experimental investigations for the justification of safety criteria for WWER-1000 dry spent fuel storage systems is underway. (author)

  9. Spent fuel receipt and lag storage facility for the spent fuel handling and packaging program

    International Nuclear Information System (INIS)

    Black, J.E.; King, F.D.

    1979-01-01

    Savannah River Laboratory (SRL) is participating in the Spent Fuel Handling and Packaging Program for retrievable, near-surface storage of spent light water reactor (LWR) fuel. One of SRL's responsibilities is to provide a technical description of the wet fuel receipt and lag storage part of the Spent Fuel Handling and Packaging (SFHP) facility. This document is the required technical description

  10. Spent fuel heatup following loss of water during storage

    International Nuclear Information System (INIS)

    Benjamin, A.S.; McCloskey, D.J.; Powers, D.A.; Dupree, S.A.

    1979-03-01

    An analysis of spent fuel heatup following a hypothetical accident involving drainage of the storage pool is presented. Computations based upon a new computer code called SFUEL have been performed to assess the effect of decay time, fuel element design, storage rack design, packing density, room ventilation, drainage level, and other variables on the heatup characteristics of the spent fuel and to predict the conditions under which clad failure will occur. Possible storage pool design modifications and/or onsite emergency action have also been considered

  11. Thermal Analysis Evaluation of Spent Fuel Storage Rack for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangjin; Oh, Jinho; Kwak, Jinsung; Lee, Jongmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Spent fuel storage rack is to store spent fuel assemblies. The spent fuel storage rack is submerged in the designated pool for cooling. Due to the condition change of the pool water, the effect of thermal load on spent fuel storage rack must be analyzed and evaluated. In this paper, thermal stress analysis is performed and evaluated on a spent fuel storage rack. For thermal stress evaluation of the spent fuel storage rack, load combinations and allowable criteria in ASME Sec. III NB-3220 are applied. In cases of A-1 and B-1, the same temperature applied on the whole model, thermal stress doesn't occur because there is no constraint about the thermal expansion. The support frame is located on the pool bottom in free standing type and the racks are located in the support frame with enough space. Thermal expansion was considered and reflected in the design of spent fuel storage rack in advance. Thermal stress analysis is performed and evaluated on a spent fuel storage rack with consideration of pool water temperature variation. The thermal analysis including a linear heat transfer and the thermal stress analysis is performed for the racks and support frame and resulted stresses are within allowable criteria.

  12. Safety and engineering aspects of spent fuel storage. Proceedings of an international symposium held in Vienna, 10-14 October 1994

    International Nuclear Information System (INIS)

    1995-01-01

    Spent fuel management is one of the most vital, and common, problems for countries with nuclear reactors. In the closed nuclear fuel cycle, further storage capacity may be required to match the arisings of spent fuel with the available capacity of reprocessing plants. With respect to the once-through cycle, interim storage of spent fuel is required until a final repository has been constructed and is in service. Though present spent fuel storage technologies provide adequate protection to the population and the environment, there is keen interest in seeing whether further improvements can be achieved in the area of spent fuel storage. This Symposium was a co-operative effort between the Nuclear Energy Agency of the OECD and the IAEA. Such meetings have been organized once every four years since 1987. The purpose is to: exchange information on the state of the art and on prospects for spent fuel storage; discuss the worldwide situation and the major factors influencing national policies in this field; and identify the most important direction that national efforts and international co-operation should take in this area. Over 140 participants from 39 countries and 4 international organizations attended the Symposium. Thirty-five full papers and 13 posters were presented and are included in these Proceedings. Refs, figs and tabs

  13. How Canada has controlled the spent fuel storage problem

    International Nuclear Information System (INIS)

    Mosey, D.

    1985-01-01

    A report on the irradiated fuel storage workshop held in Toronto in October 1984. In particular Canada's attitude to spent fuel is examined. The basic fuel cycle has been envisaged as running from mining and refining, through interim storage to final geologic disposal, with reprocessing as an option to be considered when it looks economically attractive. (U.K.)

  14. Storage of spent fuel from power reactors in India management and experience

    International Nuclear Information System (INIS)

    Changrani, R.D.; Bajpai, D.D.; Kodilkar, S.S.

    1999-01-01

    The spent fuel management programme in India is based on closing the nuclear fuel cycle with reprocessing option. This will enable the country to enhance energy security through maximizing utilization of available limited uranium resources while pursuing its Three Stage Nuclear Power Programme. Storage of spent fuel in water pools remains as prevailing mode in the near term. In view of inventory build up of spent fuel, an Away-From-Reactor (AFR) On-Site (OS) spent fuel storage facility has been made operational at Tarapur. Dry storage casks also have been developed as 'add on' system for additional storage of spent fuels. The paper describes the status and experience pertaining to spent fuel storage practices in India. (author)

  15. Current perceptions of spent nuclear fuel behavior in water pool storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1977-06-01

    A survey was conducted of a cross section of U.S. and Canadian fuel storage pool operators to define the spent fuel behavior and to establish the range of pool storage environments. There is no evidence for significant corrosion degradation. Fuel handling causes only minimal damage. Most fuel bundles with defects generally are stored without special procedures. Successful fuel storage up to 18 years with benign water chemistry has been demonstrated. 2 tables

  16. Behaviour of spent fuel assemblies during extended storage

    International Nuclear Information System (INIS)

    1987-04-01

    This report is the final report of the IAEA Co-ordinated Research Programme on Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST, Phase I, 1981-86). It contains the results on wet and dry spent fuel storage technologies obtained from 11 institutes (10 countries: Austria, Canada, Czechoslovakia, Finland, German Democratic Republic, Hungary, Japan, Sweden, USA and USSR) participating in the BEFAST CRP during the time period 1981-86. Names of participating institutes and chief investigators are given. The interim spent fuel storage has been recognized as an important independent step in the nuclear fuel cycle. Due to the delay in commercial reprocessing of spent fuel in some cases it should be stored up to 30-50 years or more before reprocessing or final disposal. This programme was evaluated by all its participants and observers as very important and helpful for the nuclear community and it was decided to continue it further (1986-91) as BEFAST, Phase II

  17. Design considerations and operating experience with wet storage of Ontario Hydro's irradiated fuel

    International Nuclear Information System (INIS)

    Frost, C.R.; Naqvi, S.J.; McEachran, R.A.

    1987-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor irradiated fuel storage water pools (or irradiated fuel bays) are described. There are two types of bay known respectively as primary bays and auxiliary bays, used for at-reactor irradiated fuel storage. Irradiated fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. The major considerations in irradiated fuel bay design, including site-specific requirements, reliability and quality assurance, are discussed. The monitoring of critical fuel bay components, such as bay liners, the development of high storage density fuel containers, and the use of several irradiated fuel bays at each reactor site have all contributed to the safe handling of the large quantities of irradiated fuel over a period of about 25 years. Routine operation of the irradiated fuel bays and some unusual bay operational events are described. For safety considerations, the irradiated fuel in storage must retain its integrity. Also, as fuel storage is an interim process, likely for 50 years or more, the irradiated fuel should be retrievable for downstream fuel management phases such as reprocessing or disposal. A long-term experimental program is being used to monitor the integrity of irradiated fuel in long-term wet storage. The well characterized fuel, some of which has been in wet storage since 1962 is periodically examined for possible deterioration. The evidence from this program indicates that there will be no significant change in irradiated fuel integrity (and retrievability) over a 50 year wet storage period

  18. Features and safety aspects of spent fuel storage facility, Tarapur

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Tarapur is designed to store spent fuel arising from PHWRs in different parts of the country. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Tarapur was hot commissioned after regulatory clearances

  19. The Storage of Power Development and Research Reactor Fuel at Sellafield

    International Nuclear Information System (INIS)

    Standring, P.N.; Callaghan, A.H.C.

    2009-01-01

    Sellafield Limited has extensive experience of building and operating spent nuclear fuel storage facilities on the Sellafield site. Since the first operation in 1952, a total of six storage facilities have been built in support of reprocessing spent fuel. Currently, four of these facilities are operational and two are undergoing decommissioning activities. Whilst the routine spent fuel operations are primarily associated with managing Magnox, Advanced Gas Reactor and LWR fuel from power generation reactors, management services to other fuel types are offered. Examples of these services include the storage of British naval training reactor fuel; the reprocessing of two skips of aluminium clad uranium metal fuel from Swedish AB SVAFO and the management of fuel from the UK Power Development Programme. The current paper provides an account of the management of the UK's Power Development Programme fuel stored on the Sellafield site. The fuel has been pond stored for up to 42 years and periodic inspection during this time has revealed no significant deterioration of the fuel, particularly that which has been containerised during its storage period. The paper also outlines some of the issues associated with the recovery and transfer of long stored fuel and assessment of the fuel storage can longevity if the material is not reprocessed. (author)

  20. Spent fuel treatment to allow storage in air

    International Nuclear Information System (INIS)

    Williams, K.L.

    1988-01-01

    During Fiscal Year 1987 (FY-87), research began at the Idaho National Engineering Laboratory (INEL) to develop a treatment material and process to coat fuel rods in commercial spent fuel assemblies to allow the assemblies to be stored in hot (up to 380 0 C) air without oxidation of the fuel. This research was conducted under a research and development fund provided by the U.S. Department of Energy (DOE) and independently administered by EG and G Idaho, Inc., DOE's prime contractor at the INEL. The objectives of the research were to identify and evaluate possible treatment processes and materials, identify areas of uncertainty, and to recommend the most likely candidate to allow spent fuel dry storage in hot air. The results of the research are described: results were promising and several good candidates were identified, but further research is needed to examine the candidates to the point where comparison is possible

  1. Storage of Spent Nuclear Fuel in Norway: Status and Prospects

    International Nuclear Information System (INIS)

    Bennett, Peter; Larsen, Erlend

    2014-01-01

    Spent Nuclear Fuel (SNF) in Norway has arisen from irradiation of fuel in the JEEP I and JEEP II reactors at Kjeller, and in the Halden Boiling Water Reactor (HBWR) in Halden. In total there are some 16 tonnes of SNF, all of which is currently stored on-site, in either wet or dry storage facilities. The greater part of the SNF, 12 tonnes, consists of aluminium-clad fuel, of which 10 tonnes is metallic uranium fuel and the remainder oxide (UO 2 ). Such fuel presents significant challenges with respect to long-term storage and disposal. Current policy is that existing spent fuel will, as far as possible considering its suitability for later direct disposal, be stored until final disposal is possible. Several committees have advised the Government of Norway on, among others, policy issues, storage methods and localisation of a storage facility. Both experts and stakeholders have participated in these committees. This paper presents an overview of the spent fuel in Norway and a description of current storage arrangements. The prospects for long-term storage are then described, including a summary of recommendations made to government, the reactions of various stakeholders to these recommendations, the current status, and the proposed next steps. A recommended policy is to construct a new storage facility for the fuel to be stored for a period of at least 50 years. In the meantime a national final disposal facility should be constructed and taken into operation. It has been recommended that the aluminium-clad fuel be reprocessed in an overseas commercial facility to produce a stable waste form for storage and disposal. This recommendation is controversial, and a decision has not yet been taken on whether to pursue this option. An analysis of available storage concepts for the more modern fuel types resulted in the recommendation to use dual-purpose casks. In addition, it was recommended to construct a future storage facility in a rock hall instead of a free

  2. Corrosion of aluminum-clad alloys in wet spent fuel storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1995-09-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting processing or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced significant pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1995, but the ultimate solution is to remove the fuel from the basins and to process it to a more stable form using existing and proven technology. This report presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as other fuel storage basins within the Department of Energy production sites

  3. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  4. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  5. Problems of the Spent Nuclear Fuel Storage

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    Approximately 99% of the radioactivity in waste, produced in the process of operating a nuclear power plant, is contained in spent nuclear fuel. Safe handling and storage of the spent nuclear fuel is an important factor of a nuclear plant safety. Today at Ignalina NPP the spent fuel is stored in special water pools, located in the same buildings as the reactors. The volume of the pools is limited, for unit one the pool will be fully loaded in 1998, for unit 2 - in 2000. The further operation of the plant will only be possible if new storage is constructed. In 1994 contract with German company GNB was signed for the supply of 20 containers of the CASTOR type. Containers were delivered in accordance with agreed schedule. In the end of 1995 a new tender for new storage options was announced in order to minimize the storage costs. A proposal from Canadian company AECL now is being considered as one of the most suitable and negotiations to sign the contract started. (author)

  6. Behaviour of power and research reactor fuel in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Canosa, J [Nuclear Waste Management Organization (Canada)

    2012-07-01

    Canada has developed extensive experience in both wet and dry storage of CANDU fuel. Fuel has been stored in water pools at CANDU reactor sites for approximately 45 years, and in dry storage facilities for a large part of the past decade. Currently, Canada has 38 450 t U of spent fuel in storage, of which 8850 t U are in dry storage. In June 2007, the Government of Canada selected the Adaptive Phased Management (APM) approach, recommended by the Nuclear Waste Management Organization (NWMO), for the long-term management of Canada's nuclear-fuel waste. The Canadian utilities and AECL are conducting development work in extended storage systems as well as research on fuel behaviour under storage conditions. Both activities have as ultimate objective to establish a technical basis for assuring the safety of long-term fuel storage.

  7. Materials accountancy and control for power reactors and associated spent-fuel storage

    International Nuclear Information System (INIS)

    Ek, P.

    1982-01-01

    Materials accountancy and control at power reactors is an integrated part of the Swedish National System of Accuntancy and Control of Nuclear Materials. The nuclear material is stratified on the basis of measurement accuracy. The physical form of the material makes item accountability applicable on the rod level. Consequently, fuel assembly dismantling and fuel rod exchanges present special problems. Both physical inventory verification and the shipment of irradiated fuel are extensive operations involving inspections and controls on inventory records and fuel elements. A method for nondestructive measurement of irradiated fuel is under development in cooperation with the IAEA. The method has been tested at a reactor station with encouraging results. An away from reactor storage facility for spent fuel is under construction in Sweden. Optical verificationof each fuel element at all times is one of the basic facility control requirements. The receiving/shipping area of the storage facility is being designed and equipped to make NDA-measurements feasible. The overlal cooperation with the IAEA in matters related to safeguarding power reactors is proceeding smoothly. There are, however, some differences of opinion, for example, as regards material stratification (Key Measurement Points) and verification procedures

  8. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  9. Used fuel extended storage security and safeguards by design roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); England, Jeffrey [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Scherer, Carolynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Michael. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rauch, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  10. At-reactor storage of spent fuel for life-of-plant

    International Nuclear Information System (INIS)

    Fuierer, A.A.

    1990-01-01

    The management of commercial spent fuel is a fairly broad topic beginning with the discharge from a reactor, its storage on-site, its transport from the reactor site to a U.S. Department of Energy (DOE) facility, and its ultimate disposal in a geologic repository. This paper discusses spent-fuel management in the at-reactor phase. There are two basic methods for at-reactor storage of spent fuel. The first is wet storage in a pool, and the second is dry storage external to the plant in some form of cask or vault. Spent-fuel consolidation will impact the utility and the DOE waste system. Some of these impacts have a positive effect and some have a negative effect, and each will vary somewhat for each utility. Spent-fuel consolidation and life-of-plant storage will be an increased burden to utilities but will likely result in significant cost savings to the overall waste management system and by proper integration can result in significant institutional benefits

  11. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  12. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    Science.gov (United States)

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  13. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Conatser, E.R.; Thomas, J.E.

    2000-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These ∼2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show

  14. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Thomas, Jay

    1999-01-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S.-origin from foreign research reactors to the United States. As of July 1999, over 18% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These 2400 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into L-Area in April 1997 and approximately 86 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment will be explained to show how the empty

  15. Overview of the spent nuclear fuel storage facilities at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Conatser, E.R.; Thomas, J.E. [Westinghouse Savannah River Company, Aiken, SC 29808 (United States)

    2000-07-01

    The May 1996 Record of Decision on a Proposed Nuclear Weapons Nonproliferation Policy concerning Foreign Research Reactor Spent Nuclear Fuel initiated a 13 year campaign renewing a policy to support the return of spent nuclear fuel containing uranium of U.S. origin from foreign research reactors to the United States. As of December 1999, over 22% of the approximately 13,000 spent nuclear fuel assemblies from participating countries have been returned to the Savannah River Site (SRS). These {approx}2650 assemblies are currently stored in two dedicated SRS wet storage facilities. One is the Receiving Basin for Off-site Fuels (RBOF) and the other as L-Basin. RBOF, built in the early 60's to support the 'Atoms for Peace' program, has been receiving off-site fuel for over 35 years. RBOF has received approximately 1950 casks since startup and has the capability of handling all of the casks currently used in the FRR program. However, RBOF is 90% filled to capacity and is not capable of storing all of the fuel to be received in the program. L-Basin was originally used as temporary storage for materials irradiated in SRS's L-Reactor. New storage racks and other modifications were completed in 1996 that improved water quality and allowed the L-Basin to receive, handle and store spent nuclear fuel assemblies and components from off-site. The first foreign cask was received into the L-Area in April 1997 and approximately 105 foreign and domestic casks have been received since that time. This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels (RBOF) and L-Basin facilities. It will illustrate each step of the fuel receipt program from arrival of casks at SRS through cask unloading and decontamination. It will follow the fuel handling process, from fuel unloading, through the cropping and bundling stages, and final placement in the wet storage rack. Decontamination methods and equipment

  16. Device with pivoting base for the storage of nuclear fuel

    International Nuclear Information System (INIS)

    Raymond, T.E.

    1978-01-01

    A storage rack for nuclear fuel assemblies comprising lower and upper bearers to support and hold fuel assemblies in their vertical position is described. The feature of this rack is the lower supporting device which comprises a pivoting base on which rests each fuel assembly, thereby enabling the fuel assembly not be subjected to any fatigue during storage [fr

  17. Concrete storage cask for interim storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Nabemoto, Toyonobu; Fujiwara, Hiroaki; Kobayashi, Shunji; Shionaga, Ryosuke

    2004-01-01

    Experiments and analytical evaluation of the fabrication, non-destructive inspection and structural integrity of reinforced concrete body for storage casks were carried out to demonstrate the concrete storage cask for spent fuel generated from nuclear power plants. Analytical survey on the type of concrete material and fabrication method of the storage cask was performed and the most suitable fabrication method for the concrete body was identified to reduce concrete cracking. The structural integrity of the concrete body of the storage cask under load conditions during storage was confirmed and the long term integrity of concrete body against degradation dependent on environmental factors was evaluated. (author)

  18. Final safety analysis report for the irradiated fuels storage facility

    International Nuclear Information System (INIS)

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  19. Spent LWR fuel storage costs: reracking, AR basins, and AFR basins

    International Nuclear Information System (INIS)

    1980-01-01

    Whenever possible, fuel storage requirements will be met by reracking existing reactor basins and/or transfer of fuel to available space in other reactor basins. These alternatives represent not only the lowest cost storage options but also the most timely. They are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than those that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the least costly alternative for most utilities will be use of a Federal AFR. Storage costs of $100,000 to $150,000 MTU at a AFR are less costly than charges of up to $320,000/MTU that could be incurred by the use of AR basins. AFR storage costs do not include transportation from the reactor to the AFR. This cost would be paid by the utility separately. Only when a utility requires annual storage capacity for 100 MTU of spent fuel can self-storage begin to compete with AFR costs. The large reactor complexes discharging these fuel quantities are not currently those that require relief from fuel storage problems

  20. Post-Irradiation Examinations for Resolving Fuel Issues in Long Term Storage

    International Nuclear Information System (INIS)

    Karlsson, Joakim K.H.; Alvarez Holston, Anna-Maria

    2014-01-01

    In many countries extended long term dry storage is the solution for storage of spent nuclear fuel for the foreseeable future. The expected storage times have increased over the last years and today storage times of up to 300 years is anticipated. With such long storage times, requirements on transportability and retrievability of the fuel have become more important. Hitherto most investigations on fuel behaviour during dry storage have been focused on cladding creep and the impact of hydrogen and hydrides in the cladding. Creep data gives input to creep models and creep to rupture data helps to set criteria for maximum allowable internal rod pressure. Hydrides lower the ductility of the cladding and this is more pronounced with radially oriented hydrides. As the temperature decreases over time in a dry storage cask dissolved hydrogen will precipitate forming hydrides in addition to hydrides already present. Assuming there is sufficient hoop stress in the cladding, the new hydrides would be radially oriented. Together with lost ductility Delayed Hydride Cracking (DHC) could be a potential mechanism for rod failure over tens of years of dry storage as the temperature drops from about 350 deg. C to 150 deg. C. Hydride embrittlement and the DHC mechanism have been studied in the first Studsvik Cladding Integrity Project (SCIP), although the focus in this program has mainly been on higher temperatures relevant for operating conditions rather than on dry storage conditions. In addition to the mechanisms mentioned there are other failure mechanisms that could potentially threaten the cladding fuel integrity and retrievability. In case there is residual water or moisture available in the cask, or even in the fuel due to existing fuel failures, radiolysis gives free hydrogen and oxygen. In failed fuel this may cause fuel oxidation and swelling affecting fuel integrity. The hydrogen gas pressure will not threaten the cask but be available for cladding uptake. Furthermore

  1. Options for the interim storage of spent fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    1995-01-01

    Different concepts for the interim storage of spent fuel arising from operation of a NPP are discussed. We considered at reactor as well as away from reactor storage options. Included are enhancements of existing storage capabilities and construction of a new wet or dry storage facility. (author)

  2. Alternatives for water basin spent fuel storage: executive summary and comparative evaluation

    International Nuclear Information System (INIS)

    Viebrock, J.M.

    1979-09-01

    A five part report identifies and evaluates alternatives to conventional methods for water basin storage of irradiated light water reactor fuel assemblies (spent fuel). A recommendation is made for development or further evaluation of one attractive alternative: Proceed to develop fuel disassembly with subsequent high density storage of fuel pins (pin storage). The storage alternatives were evaluated for emplacement at reactor, in existing away-from-reactor storage facilities and in new away-from-reactor facilities. In the course of the study, the work effort necessarily extended beyond the pool wall in scope to properly assess the affects of storage alternatives on AFT systems

  3. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  4. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel

    International Nuclear Information System (INIS)

    Hazelton, R.F.

    1987-09-01

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs

  5. Dry storage of spent nuclear fuel in UAE – Economic aspect

    International Nuclear Information System (INIS)

    Al Saadi, Sara; Yi, Yongsun

    2015-01-01

    Highlights: • Cost analysis of interim storage of spent nuclear fuel in the UAE was performed. • Two scenarios were considered: accelerated transfer of SNF and max. use of fuel pool. • Additional cost by accelerated transfer of SNF to dry storage was not significant. • Multiple regression analysis was applied to the resulting dry storage costs. • Dry storage costs for different cases could be expressed by single equations. - Abstract: Cost analysis of dry storage of spent nuclear fuel (SNF) discharged from Barakah nuclear power plants in the UAE was performed using three variables: average fuel discharge rate (FD), discount rate (d), and cooling time in a spent fuel pool (T cool ). The costs of dry storage as an interim spent fuel storage option in the UAE were estimated and compared between the following two scenarios: Scenario 1 is ‘accelerated transfer of spent fuel to dry storage’ that SNF will be transferred to dry storage facilities as soon as spent fuel has been sufficiently cooled down in a pool for the dry storage; Scenario 2 is defined as ‘maximum use of spent fuel pool’ that SNF will be stored in a pool as long as possible till the amount of stored SNF in the pool reaches the capacity of the pools and, then, to be moved to dry storage. A sensitivity analysis on the costs was performed and multiple regression analysis was applied to the resulting net present values (NPVs) for Scenarios 1 and 2 and ΔNPV that is difference in the net present values between the two scenarios. The results showed that NPVs and ΔNPV could be approximately expressed by single equations with the three variables. Among the three variables, the discount rate had the largest effect on the NPVs of the dry storage costs. However, ΔNPV was turned out to be equally sensitive to the discount rate and cooling period. Over the ranges of the variables, the additional cost for accelerated fuel transfer (Scenario 1) ranged from 86.4 to 212.9 million $. Calculated using

  6. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  7. Structure for nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Ebata, Sakae; Nichiei, Shinji.

    1979-01-01

    Purpose: To enable leak detection in nuclear fuel storage pools, as well as prevent external leakages while keeping the strength of the constructional structures. Constitution: Protection plates are provided around pool linear plates and a leak reception is provided to the bottom. Leakages are detected by leak detecting pipeways and the external leakages are prevented by collecting them in a detection area provided in the intermediate layer. Since ferro-reinforcements at the bottom wall of the pool are disconnected by the protection plate making it impossible to form the constructional body, body hunches are provided to the bottom wall of the pool for processing the ferro-reinforcements. (Yoshino, Y.)

  8. Degradation of EBR-II driver fuel during wet storage

    International Nuclear Information System (INIS)

    Pahl, R. G.

    2000-01-01

    Characterization data are reported for sodium bonded EBR-II reactor fuel which had been stored underwater in containers since the 1981--1982 timeframe. Ten stainless steel storage containers, which had leaked water during storage due to improper sealing, were retrieved from the ICPP-603 storage basin at the Idaho National Engineering and Environmental Laboratory (INEEL) in Idaho. In the container chosen for detailed destructive analysis, the stainless steel cladding on the uranium alloy fuel had ruptured and fuel oxide sludge filled the bottom of the container. Headspace gas sampling determined that greater than 99% hydrogen was present. Cesium 137, which had leached out of the fuel during the aqueous corrosion process, dominated the radionuclide source term of the water. The metallic sodium from the fuel element bond had reacted with the water, forming a concentrated caustic solution of NaOH

  9. Role of transportation in the utilities' management of spent fuel storage

    International Nuclear Information System (INIS)

    Newman, D.F.

    1985-01-01

    Additional spent fuel storage can be provided by using a combination of wet and dry storage technologies, with the technology or technologies used in any specific instance being determined by the particular circumstances involved. The capability for spent fuel storage at a reactor site can be enhanced using any one or a combination of the following: expansion of existing pool storage capacity; more efficient use of available capacity; and addition of an independent spent fuel storage installation (ISFSI). Each of these methods, which are described more fully below, have characteristics that may make them more or less suitable for use, depending on the nuclear power plant where they will be deployed, the magnitude of the need for additional storage, the utility's overall spent fuel management strategy, and other factors. 15 refs., 2 figs., 2 tabs

  10. Spent fuel storage requirements. An update of DOE/RL-83-1

    International Nuclear Information System (INIS)

    1984-05-01

    Spent fuel storage capacities at some commercial light water reactors (LWRs) are inadequate to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information voluntarily supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) Federal Interim Storage (FIS) Program and the spent fuel research, development, and demonstration (RD and D) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. This report is the latest in a series published by the DOE on LWR spent fuel storage requirements. Since the planning needs of the CSFM program focus on the near-term management of spent fuel inventories from commercial nuclear power reactors, the estimates in this report cover the ten-year period from the present through 1983. The report also assesses the possible impacts of using various concepts to reduce the requirements for additional storage capacity

  11. Spent fuel dry storage technology development: report of consolidated thermal data

    International Nuclear Information System (INIS)

    Lundberg, W.L.

    1980-09-01

    Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada Test Site soil without exceeding the current fuel clad temperature limit (715 0 F). The document also assesses the ability to thermally analyze near-surface drywells and above-ground storage casks and it identifies analysis development areas. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Analysis uncertainties, however, still exist but they lie mainly in the numerical input area. Soil thermal conductivity, of primary importance in analysis, requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed. In the experimental area, tests with two BWR spent fuel assemblies encapsulated in a single canister should be performed to establish the fuel clad and canister temperature relationship. This is needed to supplement similar experimental work which has already been completed with PWR fuel

  12. Leak testing fuel stored in the ICPP fuel storage basin

    International Nuclear Information System (INIS)

    Lee, J.L.; Rhodes, D.W.

    1977-06-01

    Irradiated fuel to be processed at the Idaho Chemical Processing Plant is stored under water at the CPP-603 Fuel Storage Facility. Leakage of radionuclides through breaks in the cladding of some of the stored fuels contaminates the water with radionuclides resulting in radiation exposure to personnel during fuel handling operations and contamination of the shipping casks. A leak test vessel was fabricated to test individual fuel assemblies which were suspected to be leaking. The test equipment and procedures are described. Test results demonstrated that a leaking fuel element could be identified by this method; of the eleven fuel assemblies tested, six were estimated to be releasing greater than 0.5 Ci total radionuclides/day to the basin water

  13. Alternative concepts for spent fuel storage basin expansion at Morris Operation

    International Nuclear Information System (INIS)

    Graf, W.A. Jr.; King, C.E.; Miller, G.P.; Shadel, F.H.; Sloat, R.J.

    1980-08-01

    Alternative concepts for increasing basin capabilities for storage of spent fuel at the Morris Operation have been defined in a series of simplified flow diagrams and equipment schematics. Preliminary concepts have been outlined for (1) construction alternatives for an add-on basin, (2) high-density baskets for storage of fuel bundles or possible consolidated fuel rods in the existing or add-on basins, (3) modifications to the existing facility for increasing cask handling and fuel receiving capabilities and (4) accumulation, treatment and disposal of radwastes from storage operations. Preliminary capital and operating costs have been prepared and resource and schedule requirements for implementing the concepts have been estimated. The basin expansion alternatives would readily complement potential dry storage projects at the site in an integrated multi-stage program that could provide a total storage capacity of up to 7000 tonnes of spent fuel

  14. Storage experience in Hungary with fuel from research reactors

    International Nuclear Information System (INIS)

    Gado, J.; Hargitai, T.

    1996-01-01

    In Hungary several critical assemblies, a training reactor and a research reactor have been in operation. The fuel used in the research and training reactors are of Soviet origin. Though spent fuel storage experience is fairly good, medium and long term storage solutions are needed. (author)

  15. Dry spent fuel storage in the 1990's

    International Nuclear Information System (INIS)

    Roberts, J.P.

    1991-01-01

    In the US, for the decade of the 1990's, at-reactor-site dry spent fuel storage has become the predominant option outside of reactor spent fuel pools. This development has resulted from failure, in the 1980's, of a viable reprocessing option for commercial power reactors, and delay in geologic repository development to an operational date at or beyond the year 2010. Concurrently, throughout the 1980's, aggressive technical and regulatory efforts by the Federal Government, coordinated with nuclear industry, have led to successful evolution of dry spent fuel storage as a utility option

  16. Spent nuclear fuel storage pool thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Gay, R.R.

    1984-01-01

    Storage methods and requirements for spent nuclear fuel at U.S. commercial light water reactors are reviewed in Section 1. Methods of increasing current at-reactor storage capabilities are also outlined. In Section 2 the development of analytical methods for the thermal-hydraulic analysis of spent fuel pools is chronicled, leading up to a discussion of the GFLOW code which is described in Section 3. In Section 4 the verification of GFLOW by comparisons of the code's predictions to experimental data taken inside the fuel storage pool at the Maine Yankee nuclear power plant is presented. The predictions of GFLOW using 72, 224, and 1584 node models of the storage pool are compared to each other and to the experimental data. An example of thermal licensing analysis for Maine Yankee using the GFLOW code is given in Section 5. The GFLOW licensing analysis is compared to previous licensing analysis performed by Yankee Atomic using the RELAP-4 computer code

  17. 78 FR 32077 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-05-29

    ... Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct... All-purpose Storage (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel... CoC No. 1031, MAGNASTOR[supreg] System listing within the ``List of Approved Spent Fuel Storage Casks...

  18. Storage of water reactor spent fuel in water pools. Survey of world experience

    International Nuclear Information System (INIS)

    1982-01-01

    Following discharge from a nuclear reactor, spent fuel has to be stored in water pools at the reactor site to allow for radioactive decay and cooling. After this initial storage period, the future treatment of spent fuel depends on the fuel cycle concept chosen. Spent fuel can either be treated by chemical processing or conditioning for final disposal at the relevant fuel cycle facilities, or be held in interim storage - at the reactor site or at a central storage facility. Recent forecasts predict that, by the year 2000, more than 150,000 tonnes of heavy metal from spent LWR fuel will have been accumulated. Because of postponed commitments regarding spent fuel treatment, a significant amount of spent fuel will still be held in storage at that time. Although very positive experience with wet storage has been gained over the past 40 years, making wet storage a proven technology, it appears desirable to summarize all available data for the benefit of designers, storage pool operators, licensing agenices and the general public. Such data will be essential for assessing the viability of extended water pool storage of spent nuclear fuel. In 1979, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD jointly issued a questionnaire dealing with all aspects of water pool storage. This report summarizes the information received from storage pool operators

  19. Heat transfer modelling in a spent-fuel dry storage system

    International Nuclear Information System (INIS)

    Ritz, J.B.; Le Bonhomme, S.

    2001-01-01

    The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)

  20. The shutdown reactor: Optimizing spent fuel storage cost

    International Nuclear Information System (INIS)

    Pennington, C.W.

    1995-01-01

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wet and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec's findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest

  1. Fire hazard analysis for the fuel supply shutdown storage buildings

    International Nuclear Information System (INIS)

    REMAIZE, J.A.

    2000-01-01

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility

  2. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel rods

    International Nuclear Information System (INIS)

    Hoovler, G.S.; Baldwin, M.N.

    1981-04-01

    Criticla arrays of 2.5%-enriched UO 2 fuel rods that simulate underwater rod storage of spent power reactor fuel are being constructed. Rod storage is a term used to describe a spent fuel storage concept in which the fuel bundles are disassembled and the rods are packed into specially designed cannisters. Rod storage would substantially increase the amount of fuel that could be stored in available space. These experiments are providing criticality data against which to benchmark nuclear codes used to design tightly packed rod storage racks

  3. Information handbook on independent spent fuel storage installations

    International Nuclear Information System (INIS)

    Raddatz, M.G.; Waters, M.D.

    1996-12-01

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996

  4. Conceptual design study of a concrete canister spent-fuel storage facility

    International Nuclear Information System (INIS)

    Lidfors, E.D.; Tabe, T.; Johnson, H.M.

    1979-01-01

    This report presents a conceptual design study for the interim storage of CANDU spent fuel in concrete canisters. The canisters will be concrete flasks, which contain fuel prepackaged in double steel containment, and will be cooled by natural air convection. This is one of the methods proposed as a potential alternative to water pool storage. A preliminary study of this concept was done by CAFS (Committee Assessing Fuel Storage), and WNRE (Whiteshell Nuclear Research Establishment) is currently conducting a development and demonstration program. This study of a central facility for the storage of all Canadian spent fuel arisings to the year 2000 was completed in 1975. A brief description of the facilities required and the operations involved, a summary of costs, a survey of the monitoring requirements and a prediction of the personnel exposures associated with this method of storing spent fuel are reported here. The estimated total cost of interim storage in cylindrical canisters at a central site is $6.02/kg U (1975 dollars). Approximately half of this cost is incurred in the shipment of fuel from the reactors to the storage facility. (author)

  5. A central spent fuel storage in Sweden

    International Nuclear Information System (INIS)

    Gustafsson, B.; Hagberth, R.

    1978-01-01

    A planned central spent fuel storage facility in Sweden is described. The nuclear power program and quantities of spent fuel generated in Sweden is discussed. A general description of the facility is given with emphasis on the lay-out of the buildings, transport casks and fuel handling. Finally a possible design of a Swedish transportation system is discussed. (author)

  6. Status of work at PNL supporting dry storage of spent fuel

    International Nuclear Information System (INIS)

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1992-01-01

    Three projects related to dry storage of light-water reactor spent fuel are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage for periods up to 40 years

  7. Spent fuel receipt and storage at the Morris Operation

    International Nuclear Information System (INIS)

    Astrom, K.A.; Eger, K.J.

    1978-06-01

    Operating and maintenance activities in an independent spent fuel storage facility are described, and current regulations governing such activities are summarized. This report is based on activities at General Electric's licensed storage facility located near Morris, Illinois, and includes photographs of cask and fuel handling equipment used during routine operations

  8. Safety Aspects of Long Term Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Botsch, Wolfgang; Smalian, S.; Hinterding, P.; Drotleff, H.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    As a consequence of the lack of a final repository for spent nuclear fuel (SF) and high level waste (HLW), long term interim storage of SF and HLW will be necessary. As with the storage of all radioactive materials, the long term storage of SF and HLW must conform to safety requirements. Safety aspects such as safe enclosure of radioactive materials, safe removal of decay heat, sub-criticality and avoidance of unnecessary radiation exposure must be achieved throughout the complete storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. In Germany, dry storage of SF in casks fulfils both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground; one storage facility has also been built as a rock tunnel. In all these facilities the safe enclosure of radioactive materials in dry storage casks is achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat is ensured by the design of the storage containers and the storage facility, which also secures to reduce the radiation exposure to acceptable levels. TUV and BAM, who work as independent experts for the competent authorities, inform about spent fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All relevant safety issues such as safe enclosure, shielding, removal of decay heat and sub-criticality are checked and validated with state-of-the-art methods and computer codes before the license approval. In our presentation we discuss which of these aspects need to be examined closer for a long term interim storage. It is shown

  9. Activity release during the dry storage of fuel assemblies

    International Nuclear Information System (INIS)

    Valentine, M.K.; Fettel, W.; Gunther, H.

    1991-01-01

    This paper reports that wet storage is the predominant storage method in the USA for spent fuel assemblies. Nevertheless, most utilities have stretched their storage capacities and several reactors will lose their full-core reserve in the 90's. A great variety of out-of-pool storage methods already exist, including the FUELSTOR vault-type dry storage concept. A FUELSTOR vault relies on double containment of the spent fuel (intact cladding as the primary containment and sealing of assemblies in canisters filled with an inert gas as the secondary containment) to reduce radiation levels at the outside wall of the vault to less than site boundary levels. Investigation of accident scenarios reveals that radiation release limits are only exceeded following complete failure of all canisters and simultaneous cladding breach for more than 40% of the rods (or for more than 1% of failed rods if massive fuel oxidation occurs following cladding failure). Such failures are considered highly improbable. Thus, it can be concluded that this type of dry storage is safe and individual canister monitoring is not required in the facility

  10. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    International Nuclear Information System (INIS)

    Sabourin, G.

    1998-01-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  11. Benchmarking criticality analysis of TRIGA fuel storage racks.

    Science.gov (United States)

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel. Copyright © 2016. Published by Elsevier Ltd.

  12. Spent Fuel Transfer to Dry Storage Using Unattended Monitoring System

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Park, Soo Jin

    2009-01-01

    There are 4 CANDU reactors at Wolsung site together with a spent fuel dry storage associated with unit 1. These CANDU reactors, classified as On-Load Reactor (OLR) for Safeguards application, change 16- 24 fuel bundles with fresh fuel in everyday. Especially, the spent fuel bundles are transferred from spent fuel bays to dry storage throughout a year because of the insufficient capacity of spent fuel pond. Safeguards inspectors verify the spent fuel transfer to meet safeguards purposes according to the safeguards criteria by means of inspector's presence during the transfer campaign. For the verification, 60-80 person-days of inspection (PDIs) are needed during approximately 3 months for each unit. In order to reduce the inspection effort and operators' burden, an Unattended Monitoring System (UMS) was designed and developed by the IAEA for the verification of spent fuel bundles transfers from wet storage to dry storage. Based on the enhanced cooperation of CANDU reactors between the ROK and the IAEA, the IAEA installed the UMS at Wolsung unit 2 in January 2005 at first. After some field trials during the transfer campaign, this system is being replaced the traditional human inspection since September 1, 2006 combined with a Short Notice Inspection (SNI) and a near-real time Mailbox Declaration

  13. Integrated spent fuel storage and transportation system using NUHOMS

    International Nuclear Information System (INIS)

    Lehnert, R.; McConaghy, W.; Rosa, J.

    1990-01-01

    As utilities with nuclear power plants face increasing near term spent fuel store needs, various systems for dry storage such as the NUTECH Horizontal Modular Storage (NUHOMS) system are being implemented to augment existing spent fuel pool storage capacities. These decisions are based on a number of generic and utility specific considerations including both short term and long term economics. Since the US Department of Energy (DOE) is tasked by the Nuclear Waste Policy Act with the future responsibility of transporting spent fuel from commercial nuclear power plants to a Monitored Retrievable Storage (MRS) facility anchor a permanent geologic repository, the interfaces between the utilities at-reactor dry storage system and the DOE's away-from-reactor transportation system become important. This paper presents a study of the interfaces between the current at-reactor NUHOMS system and the future away-from-reactor DOE transportation system being developed under the Office of Civilian Radioactive Waste Management (OCRWM) program. 7 refs., 9 figs., 1 tab

  14. Cost analysis methodology of spent fuel storage

    International Nuclear Information System (INIS)

    1994-01-01

    The report deals with the cost analysis of interim spent fuel storage; however, it is not intended either to give a detailed cost analysis or to compare the costs of the different options. This report provides a methodology for calculating the costs of different options for interim storage of the spent fuel produced in the reactor cores. Different technical features and storage options (dry and wet, away from reactor and at reactor) are considered and the factors affecting all options defined. The major cost categories are analysed. Then the net present value of each option is calculated and the levelized cost determined. Finally, a sensitivity analysis is conducted taking into account the uncertainty in the different cost estimates. Examples of current storage practices in some countries are included in the Appendices, with description of the most relevant technical and economic aspects. 16 figs, 14 tabs

  15. Spent fuel storage requirements. An update of DOE/RL-85-2

    International Nuclear Information System (INIS)

    1986-10-01

    Utility projections of spent fuel storage capacities indicate that some commercial light water reactors (LWRs) have inadequate capacity to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. This report is the latest in a series published by the DOE on LWR spent fuel storage requirements. The estimates in this report cover the period from the present through the year 2000. Although the DOE objective is to begin accepting spent fuel for final disposal in 1998, types of fuel and the receipt rates to be shipped are not yet known. Hence, this report makes no assumption regarding such fuel shipments. The report also assesses the possible impacts of increased fuel exposure and spent fuel transshipment on the requirements for additional storage capacity

  16. Inspection and Analysis of Aluminum Storage Racks in Spent Fuel Storage Basins

    International Nuclear Information System (INIS)

    Howell, J.P.; Nelson, D.Z.

    1998-07-01

    Aluminum-clad spent nuclear fuel is stored in water filled basins at the Savannah River Site awaiting processing or other disposition. After more than 35 years of service underwater, the aluminum storage racks that position the fuel bundles in the basin were replaced. During the removal of the racks from the basin, a failure occurred in one of the racks and the Savannah River Technology Center was asked to investigate. This paper presents results of the failure analysis and provides a discussion of the effects of corrosion on the structural integrity of the storage racks

  17. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  18. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    International Nuclear Information System (INIS)

    Liu, Hua Kun

    2013-01-01

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells

  19. Current status of the first interim spent fuel storage facility in Japan

    International Nuclear Information System (INIS)

    Shinbo, Hitoshi; Kondo, Mitsuru

    2008-01-01

    In Japan, storage of spent fuels outside nuclear power plants was enabled as a result of partial amendments to the Nuclear Reactor Regulation Law in June 2000. Five months later, Mutsu City in Aomori Prefecture asked the Tokyo Electric Power Company (TEPCO) to conduct technical surveys on siting of the interim spent fuel storage facility (we call it 'Recyclable-Fuel Storage Center'). In April 2003, TEPCO submitted the report on siting feasibility examination, concluded that no improper engineering data for siting, construction of the facility will be possible from engineering viewpoint. Siting Activities for publicity and public acceptance have been continued since then. After these activities, Aomori Prefecture and Mutsu City approved siting of the Recyclable Fuel Storage Center in October 2005. Aomori Prefecture, Mutsu City, TEPCO and Japan Atomic Power Company (JAPC) signed an agreement on the interim spent fuel storage Facility. A month later, TEPCO and JAPC established Recyclable-Fuel Storage Company (RFS) in Mutsu City through joint capital investment, specialized in the first interim spent fuel storage Facility in Japan. In May 2007, we made an application for establishment permit, following safety review by regulatory authorities. In March 2008, we started the preparatory construction. RFS will safely store of spent fuels of TEPCO and JAPC until they will be reprocessed. Final storage capacity will be 5,000 ton-U. First we will construct the storage building of 3,000 ton-U to be followed by second building. We aim to start operation by 2010. (author)

  20. Spent fuel storage requirements, 1988

    International Nuclear Information System (INIS)

    1988-10-01

    Historical inventories of spent fuel and Department of Energy (DOE) estimates of future discharges from US commercial nuclear reactors are presented for the next 20 years, through the year 2007. The eventual needs for additional spent fuel storage capacity are estimated. These estimates are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December 1987 and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to DOE through the 1988 RW-859 data survey and by DOE estimates of future nuclear capacity, generation, and spent fuel discharges. 12 refs., 3 figs., 28 tabs

  1. Storage for the Fast Flux Test Facility unirradiated fuel in the Plutonium Finishing Plant Complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment evaluates the proposed action to relocate and store unirradiated Fast Flux Test Facility fuel in the Plutonium Finishing Plant Complex on the Hanford Site, Richland, Washington. The US Department of Energy has decided to cease fuel fabrication activities in the 308 Building in the 300 Area. This decision was based on a safety concern over the ability of the fuel fabrication portion of the 308 Building to withstand a seismic event. The proposed action to relocate and store the fuel is based on the savings that could be realized by consolidating security costs associated with storage of the fuel. While the 308 Building belowgrade fuel storage areas are not at jeopardy by a seismic event, the US Department of Energy is proposing to cease storage operations along with the related fabrication operations. The US Department of Energy proposes to remove the unirradiated fuel pins and fuel assemblies from the 308 Building and store them in Room 192A, within the 234-5Z Building, a part of the Plutonium Finishing Plant Complex, located in the 200 West Area. Minor modifications to Room 192A would be required to accommodate placement of the fuel. The US Department of Energy estimates that removing all of the fuel from the 308 Building would save $6.5 million annually in security expenditures for the Fast Flux Test Facility. Environmental impacts of construction, relocation, and operation of the proposed action and alternatives were evaluated. This evaluation concluded that the proposed action would have no significant impacts on the human environment

  2. Data needs for long-term dry storage of LWR fuel. Interim report

    International Nuclear Information System (INIS)

    Einziger, R.E.; Baldwin, D.L.; Pitman, S.G.

    1998-04-01

    The NRC approved dry storage of spent fuel in an inert environment for a period of 20 years pursuant to 10CFR72. However, at-reactor dry storage of spent LWR fuel may need to be implemented for periods of time significantly longer than the NRC's original 20-year license period, largely due to uncertainty as to the date the US DOE will begin accepting commercial spent fuel. This factor is leading utilities to plan not only for life-of-plant spent-fuel storage during reactor operation but also for the contingency of a lengthy post-shutdown storage. To meet NRC standards, dry storage must (1) maintain subcriticality, (2) prevent release of radioactive material above acceptable limits, (3) ensure that radiation rates and doses do not exceed acceptable limits, and (4) maintain retrievability of the stored radioactive material. In light of these requirements, this study evaluates the potential for storing spent LWR fuel for up to 100 years. It also identifies major uncertainties as well as the data required to eliminate them. Results show that the lower radiation fields and temperatures after 20 years of dry storage promote acceptable fuel behavior and the extension of storage for up to 100 years. Potential changes in the properties of dry storage system components, other than spent-fuel assemblies, must still be evaluated

  3. Spent fuel and high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Trigerman, S.

    1988-06-01

    The subject of spent fuel and high-level radioactive waste storage, is bibliographically reviewed. The review shows that in the majority of the countries, spent fuels and high-level radioactive wastes are planned to be stored for tens of years. Sites for final disposal of high-level radioactive wastes have not yet been found. A first final disposal facility is expected to come into operation in the United States of America by the year 2010. Other final disposal facilities are expected to come into operation in Germany, Sweden, Switzerland and Japan by the year 2020. Meanwhile , stress is placed upon the 'dry storage' method which is carried out successfully in a number of countries (Britain and France). In the United States of America spent fuels are stored in water pools while the 'dry storage' method is still being investigated. (Author)

  4. Apparatus for the storage of transport- and storage-containers containing radioactive fuel elements

    International Nuclear Information System (INIS)

    Vox, A.

    1983-01-01

    The invention concerns an apparatus for the storage of transport and storage containers containing radioactive fuel elements. For each transport or storage container there is a separate silo-type container of steel, concrete, prestressed concrete or suchlike breakproof and fireproof material, to be placed in the open, that can be opened for removal and placing of the transport or storage container respectively. (orig.) [de

  5. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  6. Remote technology related to the handling, storage and disposal of spent fuel. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Reduced radiation exposure, greater reliability and cost savings are all potential benefits of the application of remote technologies to the handling of spent nuclear fuel. Remote equipment and technologies are used to some extent in all facilities handling fuel and high-level wastes whether they are for interim storage, processing/repacking, reprocessing or disposal. In view of the use and benefits of remote technologies, as well as recent technical and economic developments in the area, the IAEA organized the Technical Committee Meeting (TCM) on Remote Technology Related to the Handling, Storage and/or Disposal of Spent Fuel. Twenty-one papers were presented at the TCM, divided into five general areas: 1. Choice of technologies; 2. Use of remote technologies in fuel handling; 3. Use of remote technologies for fuel inspection and characterization; 4. Remote maintenance of facilities; and 5. Current and future developments. Refs, figs and tabs.

  7. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  8. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.

    2012-01-01

    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  9. Status of spent fuel storage facilities in Switzerland

    International Nuclear Information System (INIS)

    Beyeler, P.C.; Lutz, H.R.; Heesen, W. von

    1999-01-01

    Planning of a dry spent fuel storage facility in Switzerland started already 15 years ago. The first site considered for a central interim storage facility was the cavern of the decommissioned pilot nuclear plant at Lucens in the French-speaking part of Switzerland. This project was terminated in the late eighties because of lack of public acceptance. The necessary acceptance was found in the small town of Wuerenlingen which has hosted for many years the Swiss Reactor Research Centre. The new project consists of centralised interim storage facilities for all types of radioactive waste plus a hot cell and a conditioning and incinerating facility. It represents a so-called integrated storage solution. In 1990, the new company 'ZWILAG Zwischenlager Wuerenlingen AG' (ZWILAG) was founded and the licensing procedures according to the Swiss Atomic law were initiated. On August 26, 1996 ZWILAG got the permit for construction of the whole facility including the operating permit for the storage facilities. End of construction and commissioning are scheduled for autumn 1999. The nuclear power station Beznau started planning a low level waste and spent fuel storage facility on its own, because in 1990 its management thought that by 1997 the first high active waste from the reprocessing facilities in France would have to be taken back. This facility at the Beznau site, called ZWIBEZ, was licensed according to a shorter procedure so its construction was finished by 1997. The two facilities for high level waste and spent fuel provide space for a total of 278 casks, which is sufficient for the waste and spent fuel of the four Swiss nuclear power stations including their life extension programme. (author)

  10. Dry storage of spent nuclear fuel: present principles

    International Nuclear Information System (INIS)

    Vapirev, E.; Christoskov, I.; Boyadjiev, Z.

    1998-01-01

    The basic principles for the dry storage of spent nuclear fuel are presented in accordance to the author's understanding. The are: 1) Storage in the air at a low temperature (below 200 o C) or in a inert atmosphere (nitrogen, helium) at a temperature up to 300-400 o C; 2) Passive cooling by air; 3) Multiple barriers to the propagation of fission products and trans-uraniums: fuel palette, fuel pin cladding, a containment or a canister, a single or a double cover of the container; 4) Control of the condition of the atmosphere within the double cover - pressure monitoring, helium concentration monitoring (if the atmosphere in the container is of helium or contains traces of helium). Based on publications, observations and discussion during the recent years, several principles are propose for discussion. It is proposed: 4) Stored fuel must be regarded as defective; 5) Active control of the integrity of the protective barriers of of the composition of the storage atmosphere - principle of the 'control barrier' or the 'control atmosphere'; 6) Introduction of the procedure of 'check up of the condition of SNF' by visual control or sampling of the storage atmosphere for the technologies which do not provide for monitoring the integrity of barriers or of the storage atmosphere. Principle 4 is being gradually accepted in modern technologies. Principle 5 is observed in the double-purpose containers and in some of MVDS technologies. A common feature of the technologies of horizontal and vertical canister storage in concrete modules is the absence of control of the integrity of barriers or of the composition of the atmosphere. To these technologies, if they are not revised, principle 6 applies

  11. Project management for the Virginia power spent fuel storage project

    International Nuclear Information System (INIS)

    Smith, M.

    1992-01-01

    Like Duke Power, Virginia Power has been involved in spent fuel storage expansion studies for a long time - possibly a little longer than Duke Power. Virginia Power's initial studies date back to the late 70s and into the early 80s. Large variety of storage techniques are reviewed including reracking and transshipment. Virginia Power also considered construction a new spent fuel pool. This was one of the options that was considered early on since Virginia Power started this process before any dry storage techniques had been proven. Consolidation of spent fuel is something that was also studied. Finally, construction of dry storage facility was determined to be the technology of choice. They looked a large variety of dry storage technologies and eventually selected dry storage in metal casks at Surry. There are many of reasons why a utility may choose one technology over another. In Virginia Power's situation, additional storage was needed at Surry much earlier than at other utilities. Virginia Power was confronted with selecting a storage technique and having to be a leader in that it was the first U.S. utility to implement a dry storage system

  12. Management and storage of nuclear fuel from Belgian research reactors

    International Nuclear Information System (INIS)

    Gubel, P.

    1996-01-01

    Experiences and problems with the storage of irradiated fuel at research reactors in Belgium are described. In particular, interim storage problems exist for spent fuel elements at the BR2 and the shut down BR3 reactors in Mol. (author). 1 ref

  13. Conceptual design of reactor TRIGA PUSPATI (RTP) spent fuel storage rack

    International Nuclear Information System (INIS)

    Tonny Lanyau; Mohd Fazli Zakaria; Zaredah Hashim; Ahmad Nabil Ab Rahim; Mohammad Suhaimi Kassim

    2010-01-01

    PUSPATI TRIGA Reactor (RTP) is a pool type research reactor with 1MW thermal power. It has been safely operated since 28 June 1982. During 28 years of safe operation, there are several systems and components of the RTP that have been maintained, repaired, upgraded and replaced in order to maintain its function and safety conditions. RTP has been proposed to be upgraded so that optimum operation of RTP could be achieved as well as fulfill the future needs. Thus, competencies and technical capabilities were needed to design and develop the reactor system. In the meantime, there is system or component need to be maintained such as fuel elements. Since early operation, most of the fuel elements still can be used and none of the fuel elements was replaced or sent for reprocessing and final disposal. Towards the power upgrading, preparation of spent fuel storage is needed for temporary storing of the fuels discharged from the reactor core. The spent fuel storage rack will be located in the spent fuel pool to accommodate the spent fuels before it is send to reprocessing or final disposal. This paper proposes the conceptual design of the spent fuel storage rack. The output of this paper focused on the physical and engineering design of the spent fuel storage. (author)

  14. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures

  15. International symposium on storage of spent fuel from power reactors. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This book of extended synopses includes papers presented at the International Symposium on Storage of Spent Fuel from Power Reactors organized by IAEA and held in Vienna from 9 to 13 November 1998. It deals with the problems of spent fuel management being an outstanding stage in the nuclear fuel cycle, strategy of interim spent fuel storage, transportation and encapsulation of spent fuel elements from power reactors. Spent fuel storage facilities at reactor sites are always wet while spent fuel storage facilities away from reactor are either wet or dry including casks and vaults. Different design solutions and constructions of storage or transportation casks as well as storing facilities are presented, as well as status of spent fuel storage together with experiences achieved in a number of member states, in the frame of safety, licensing and regulating procedures Refs, figs, tabs

  16. The optimization of spent fuel assembly storage racks in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Yan

    2005-01-01

    This paper gives an evaluation of the spent fuel assembly storage racks in the nuclear power plants at home and abroad, focusing on the characteristics of the high density storage racks and the aseismatic design. It mainly discusses structures and characteristics of the spent fuel assembly storage racks in the Qinshan nuclear power phase II project. Concluding the crucial technical difficulties of the high density spent fuel assembly storage racks: the neutron-absorbing materials, the structural aseismatic design technology and the security analysis technology, this paper firstly generalizes several important neutron-absorbing materials, then introduces the evolution of the aseismatic design of the spent fuel assembly storage racks . In the last part, it describes the advanced aseismatic analysis technology in the Qinshan nuclear power phase II project. Through calculation and analysis for such storage racks, the author concludes several main factors that could have an influence on the aseismatic performance and thus gives the key points and methods for designing the optimal racks and provides some references for the design of advanced spent fuel assembly storage racks in the future. (authors)

  17. CRITICALITY SAFETY CONTROL OF LEGACY FUEL FOUND AT 105-K WEST FUEL STORAGE BASIN

    International Nuclear Information System (INIS)

    JENSEN, M.A.

    2005-01-01

    In August 2004, two sealed canisters containing spent nuclear fuel were opened for processing at the Hanford Site's K West fuel storage basin. The fuel was to be processed through cleaning and sorting stations, repackaged into special baskets, placed into a cask, and removed from the basin for further processing and eventual dry storage. The canisters were expected to contain fuel from the old Hanford C Reactor, a graphite-moderated reactor fueled by very low-enriched uranium metal. The expected fuel type was an aluminum-clad slug about eight inches in length and with a weight of about eight pounds. Instead of the expected fuel, the two canisters contained several pieces of thin tubes, some with wire wraps. The material was placed into unsealed canisters for storage and to await further evaluation. Videotapes and still photographs of the items were examined in consultation with available retired Hanford employees. It was determined that the items had a fair probability of being cut-up pieces of fuel rods from the retired Hanford Plutonium Recycle Test Reactor (PRTR). Because the items had been safely handled several times, it was apparent that a criticality safety hazard did not exist when handling the material by itself, but it was necessary to determine if a hazard existed when combining the material with other known types of spent nuclear fuel. Because the PRTR operated more than 40 years ago, investigators had to rely on a combination of researching archived documents, and utilizing common-sense estimates coupled with bounding assumptions, to determine that the fuel items could be handled safely with other spent nuclear fuel in the storage basin. As older DOE facilities across the nation are shut down and cleaned out, the potential for more discoveries of this nature is increasing. As in this case, it is likely that only incomplete records will exist and that it will be increasingly difficult to immediately characterize the nature of the suspect fissionable

  18. Safety issues of dry fuel storage at RSWF

    International Nuclear Information System (INIS)

    Clarksean, R.L.; Zahn, T.P.

    1995-01-01

    Safety issues associated with the dry storage of EBR-II spent fuel are presented and discussed. The containers for the fuel have been designed to prevent a leak of fission gases to the environment. The storage system has four barriers for the fission gases. These barriers are the fuel cladding, an inner container, an outer container, and the liner at the RSWF. Analysis has shown that the probability of a leak to the environment is much less than 10 -6 per year, indicating that such an event is not considered credible. A drop accident, excessive thermal loads, criticality, and possible failure modes of the containers are also addressed

  19. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    Peehs, M.; Garzarolli, F.; Goll, W.

    1999-01-01

    Although the safety of a dry long-term spent fuel store is scarcely influenced if a few fuel rods start to leak during extended storage - since all confinement systems are designed to retain gaseous activity safely - it is a very conservative safety goal to avoid the occurrence of systematic rod defects. To assess the extended storage performance of a spent fuel assembly (FA), the experience can be collated into 3 storage modes: I - fast rate of temperature decrease δ max ≥ δ ≥ 300 deg. C, II - medium rate of decrease for the fuel rod dry storage temperature 300 deg. C > δ ≥ 200 deg. C, III - slow to negligible rate of temperature decrease for δ 2 -fuel are practically immobile during storage. Consequently all fission-product-driven defect mechanisms will not take place. The leading defect mechanism - also for fuel rods with increased burnup - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. The allowable uniform strain of the cladding is 1 - 2%. Calculations were performed to predict the dry storage performance of fuel assemblies with a burnup ≤ 55 GW · d/tHM based on the fuel assemblies end of life (EOL)-data and on a representative curve T = f(t). The maximum allowable hot spot temperature of a fuel rod in the CASTOR V cask was between 348 deg. C (U FA) and 358 deg. C (MOX FA). The highest hoop strain predicted after 40 years of storage is 0.77% proving that spent LWR fuel dry storage is safe. (author)

  20. Engineering program in order to increase the irradiated fuel storage capacity in pool facilities of Juragua

    International Nuclear Information System (INIS)

    Rodriguez R, J.

    1996-01-01

    In 1993, a technical program in the spent fuel storage area of Nuclear Plant Juragua was launched. Such a program tries to carry out an engineering assessment of the possibility of increasing the spent fuel storage capacity in pool storage facilities by using high density racks (re-racking) instead of the original (non-compact) ones. The purpose of the above-mentioned program is to evaluate possible solutions that can be applied to the construction works prior to plant operation. The first stage of the program for the 1994-95 period is an ongoing Engineering-Economic Feasibility Study (EEFS), which endeavors to examine the capabilities of the reloading pool in Unit-1 Reactor building and long-term storage pool in auxiliary building in high density storage conditions. Technical details of the EEFS and reached results and difficulties are described. (author). 5 refs., 2 figs

  1. Spent fuel storage capacities. An update of DOE/RL-84-1

    International Nuclear Information System (INIS)

    1985-10-01

    Spent fuel storage capacities at some commercial light water reactors (LWRs) are inadequate to handle projected spent fuel discharges. This report presents estimates of potential near-term requirements for additional LWR spent fuel storage capacity, based on information supplied by utilities operating commercial nuclear power plants. These estimates provide information needed for planning the Department of Energy's (DOE) activities to be carried out under the DOE's Commercial Spent Fuel Management (CSFM) Program, in conjunction with the requirements of the Nuclear Waste Policy Act of 1982. The estimates in this report cover the period from the present through the year 2000. Although the DOE objective is to begin accepting spent fuel for final disposal in 1998, types of fuel and the receipt rates to be shipped are not yet known. Hence, this report makes no assumption regarding such fuel shipments. The resport also assesses the possible impacts of increased fuel exposure and spent fuel transhipment on the requirements for additional storage capacity

  2. Nuclear spent fuel dry storage in the EWA reactor shaft

    International Nuclear Information System (INIS)

    Mieleszczenko, W.; Moldysz, A.; Hryczuk, A.; Matysiak, T.

    2001-01-01

    The EWA reactor was in operation from 1958 until February 1995. Then it was subjected to the decommissioning procedure. Resulting from a prolonged operation of Polish research reactors a substantial amount of nuclear spent fuel of various types, enrichment and degree of burnup have been accumulated. The technology of storage of spent nuclear fuel foresees the two stages of wet storing in a water pool (deferral period from tens to several dozens years) and dry storing (deferral period from 50 to 80 years). In our case the deferral time in the water environment is pretty significant (the oldest fuel elements have been stored in water for more than 40 years). Though the state of stored fuel elements is satisfactory, there is a real need for changing the storage conditions of spent fuel. The paper is covering the description of philosophy and conceptual design for construction of the spent fuel dry storage in the decommissioned EWA reactor shaft. (author)

  3. Current status on the spent fuel dry storage management in Taiwan

    International Nuclear Information System (INIS)

    Chen, H.T.; Liu, C.H.

    2006-01-01

    Full text: Full text: One of the high priority issues for the continuous operation of nuclear power plants is how to manage and store spent fuel. In recent years, interim dry storage of spent fuel has become a significant solution in extending the storage capacity at a nuclear reactor site that lacks sufficient spent fuel pool storage capacity as in the world, and also in Taiwan. Although the re-racking project for the spent fuel pools has been undertaken, the Taiwan Power Company (TPC) Chinshan nuclear power plant still will lose its full core reserve by the year 2010. TPC has declared to build an on-site interim dry storage facility, this followed by geological disposal represents the most suitable option at this time. TPC is expected to submit the application for construction permit in 2006; preoperational test and storage should be put into operation by the end of 2008. Interim dry storage is a passive system. Materials used play a crucial role in the safety function of cask. The competent authority of spent fuel management in Taiwan, FCMA/AEC, will carry out a confirmatory evaluation regarding heat dissipation, structural seismic analysis, and radiation shielding to assure available safety function for casks after reviewing safety analysis report submitted by TPC. Third party inspection has been required to enhance quality assurance program and foreign technical consultation will be arranged. Although the security level for such facility will be kept to the same level as an NPP, a comprehensive analysis against a commercial airplane attack on cask should be made and addressed in the supplement of SAR. Licensing hearing is also required before issuing the construction permit. The paper presents the review plan and regulatory requirements for the licensing of an interim dry storage of spent fuel, the licensing procedure, and the development of dry storage cask for spent fuel in Taiwan

  4. Ex-vessel nuclear fuel transfer system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a fuel transfer area and a fuel storage area while the fuel assemblies remain completely submerged in a continuous body of coolant is described. A fuel transfer area filled with reactor coolant communicating with the reactor vessel below the reactor coolant level provides a transfer area for fuel assemblies in transit to and from the reactor vessel. A positioning mechanism comprising at least one rotatable plug disposed on a fuel transfer tank located outside the reactor vessel cooperates with either the fuel transfer area or the fuel storage area to position a fuel assembly in transit. When in position, a transporting mechanism cooperating with the positioning mechanism lifts or lowers a chosen fuel assembly. The transporting mechanism together with the positioning mechanism are capable of transferring a fuel assembly between the fuel transfer area and the fuel storage area

  5. Spent nuclear fuel storage. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1997-07-01

    The bibliography contains citations concerning spent nuclear fuel storage technologies, facilities, sites, and assessment. References review wet and dry storage, spent fuel casks and pools, underground storage, monitored and retrievable storage systems, and aluminum-clad spent fuels. Environmental impact, siting criteria, regulations, and risk assessment are also discussed. Computer codes and models for storage safety are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. International management and storage of plutonium and spent fuel

    International Nuclear Information System (INIS)

    1978-09-01

    The first part of this study discusses certain questions that may arise from the disseminated production and storage of plutonium and, in the light of the relevant provisions of the Agency's Statute, examines possible arrangements for the storage of separated plutonium under international auspices and its release to meet energy or research requirements. The second part of the study deals similarly with certain problems presented by growing accumulations of spent fuel from light-water reactors in various countries and examines possible solutions, including the establishment of regional or multinational spent fuel storage facilities

  7. Storage device for a long nuclear reactor fuel element and/or a long nuclear reactor fuel element part

    International Nuclear Information System (INIS)

    Vogt, M.; Schoenwitz, H.P.; Dassbach, W.

    1986-01-01

    The storage device can be erected in a dry storage room for new fuel elements and also in a storage pond for irradiated fuel elements. It consists of shells, which are arranged vertically and which have a lid. A suspension for the fuel element is provided on the underside of the lid, which acts as a support against squashing or bending in case of vertical forces acting (earthquake). (DG) [de

  8. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-02

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.

  9. Hydrogen storage and fuel cells

    Science.gov (United States)

    Liu, Di-Jia

    2018-01-01

    Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.

  10. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37 0 C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8 0 C (100 0 F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance

  11. Spent fuel storage rack

    International Nuclear Information System (INIS)

    Kurokawa, Hideaki; Kumagaya, Naomi; Oda, Masashi; Matsuda, Masami; Maruyama, Hiromi; Yamanaka, Tsuneyasu.

    1997-01-01

    The structure of a spent fuel storage rack is determined by the material, thickness, size of square cylindrical tubes (the gap between spent fuel assemblies and the square cylindrical tubes) and pitch of the arrangement (the gap between each of the square cylindrical tubes). In the present invention, the thickness and the pitch of the arrangement of the square tubes are optimized while evaluating subcriticality. Namely, when the sum of the thickness of the water gap at the outer side (the pitch of arrangement of the cylindrical tubes) and the thickness of the cylindrical tubes is made constant, the storage rack is formed by determining the thickness of the cylindrical tubes which is smaller than the optimum value among the combination of the thickness of the water gap at the outer side and that of the cylindrical tube under the effective multiplication factor to be performed. Then, the weight of the rack can be reduced, and the burden of the load on the bottom of the pool can be reduced. Further, the amount of the constitutional materials of the rack itself can be reduced thereby capable of reducing the cost for the materials of the rack. (T.M.)

  12. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  13. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  14. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  15. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  16. Neutron physical aspects of the storage of BWR fuel elements

    International Nuclear Information System (INIS)

    Woloch, F.; Sdouz, G.; Suda, M.

    1980-01-01

    For the storage of BWR fuel elements in a high density fuel rack using boronated steel absorbers and in a fuel rack with a larger pitch without absorber, criticality calculations are performed. The cooling water density is varied for the storage without absorbers. For the selected pitches of 16.5 cm for the high density fuel rack and 25 cm for the fuel rack without absorber respectively the ksub(infinitely) values of 0.933 and 0.748 are obtained. The dependence of the results on different calculational methods and on the influence of the variation of three important design parameters, i.e. of the concentration of boron, of the thickness of the boronated steel and of the watergap is investigated for the high density fuel rack. The average isothermal temperature coefficient is obtained for the high density fuel rack as -4.5 x 10 -40 sup(0)C -1 and as approx. 2.0 x 10 -40 sup(0)C -1 for the fuel rack without absorbers. For both ways of storage the aspects of safety of the results are discussed thoroughly. (orig.) 891 RW/orig. 892 CKA [de

  17. An integrated methodology to evaluate a spent nuclear fuel storage system

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun

    2008-02-01

    This study introduced a methodology that can be applied for development of a dry storage system for spent nuclear fuels. It consisted of several design activities that includes development of a simplified program to analyze the amount of spent nuclear fuels from reflecting the practical situation in spent nuclear fuel management and a simplified program to evaluate the cost of 4 types of representing storage system to choose the most competitive option considering economic factor. As verification of the implementation of the reference module to practical purpose, a simplified thermal analysis code was suggested that can see fulfillment of limitation of temperature in long term storage and oxidation analysis. From the thermal related results, the reference module can accommodate full range of PHWR spent nuclear fuels and significant portion of PWR ones too. From the results, the reference storage system can be concluded that has fulfilled the important requirements in terms of long term integrity and radiological safety. Also for the purpose of solving scattered radiation along with deep penetration problems in cooling storage system, small but efficient design alternation was suggested together with its efficiency that can reduce scattered radiation by 1/3 from the original design. Along with the countermeasure for the shielding problem, in consideration of PWR spent nuclear fuels, simplified criticality analysis methodology retaining conservativeness was proposed. The results show the reference module is efficient low enrichment PWR spent nuclear fuel and even relatively high enrichment fuels too if burnup credit is taken. As conclusive remark, the methodology is simple but efficient to plan a concept design of convective cooling type of spent nuclear fuels storage. It can be also concluded that the methodology derived in this study and the reference module has feasibility in practical implementation to mitigate the current complex situation in spent fuel

  18. Corrosion surveillance in spent fuel storage pools

    International Nuclear Information System (INIS)

    Howell, J.P.

    1996-01-01

    In mid-1991, corrosion of aluminum-clad spent nuclear fuel was observed in the light-water filled basins at the Savannah River site. A corrosion surveillance program was initiated in the P, K, L-Reactor basins and in the Receiving Basin for Offsite Fuels (RBOF). This program verified the aggressive nature of the pitting corrosion and provided recommendations for changes in basin operations to permit extended longer term interim storage. The changes were implemented during 1994--1996 and have resulted in significantly improved basin water quality with conductivity in the 1--3 microS/cm range. Under these improved conditions, no new pitting has been observed over the last three years. This paper describes the corrosion surveillance program at SRS and what has been learned about the corrosion of aluminum-clad in spent fuel storage pools

  19. Storage, transportation and disposal system for used nuclear fuel assemblies

    Science.gov (United States)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  20. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    International Nuclear Information System (INIS)

    Howell, J.P.; Burke, S.D.

    1996-01-01

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980's and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy

  1. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.P.; Burke, S.D.

    1996-02-20

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  2. Licensing of spent nuclear fuel dry storage in Russia

    International Nuclear Information System (INIS)

    Kislov, A.I.; Kolesnikov, A.S.

    1999-01-01

    The Federal nuclear and radiation safety authority of Russia (Gosatomnadzor) being the state regulation body, organizes and carries out the state regulation and supervision for safety at handling, transport and storage of spent nuclear fuel. In Russia, the use of dry storage in casks will be the primary spent nuclear fuel storage option for the next twenty years. The cask for spent nuclear fuel must be applied for licensing by Gosatomnadzor for both storage and transportation. There are a number of regulations for transportation and storage of spent nuclear fuel in Russia. Up to now, there are no special regulations for dry storage of spent nuclear fuel. Such regulations will be prepared up to the end of 1998. Principally, it will be required that only type B(U)F, packages can be used for interim storage of spent nuclear fuel. Recently, there are two dual-purpose cask designs under consideration in Russia. One of them is the CONSTOR steel concrete cask, developed in Russia (NPO CKTI) under the leadership of GNB, Germany. The other cask design is the TUK-104 cask of KBSM, Russia. Both cask types were designed for spent nuclear RBMK fuel. The CONSTOR steel concrete cask was designed to be in full compliance with both Russian and IAEA regulations for transport of packages for radioactive material. The evaluation of the design criteria by Russian experts for the CONSTOR steel concrete cask project was performed at a first stage of licensing (1995 - 1997). The CONSTOR cask design has been assessed (strength analysis, thermal physics, nuclear physics and others) by different Russian experts. To show finally the compliance of the CONSTOR steel concrete cask with Russian and IAEA regulations, six drop tests have been performed with a 1:2 scale model manufactured in Russia. A test report was prepared. The test results have shown that the CONSTOR cask integrity is guaranteed under both transport and storage accident conditions. The final stage of the certification procedure

  3. Characterization of the 309 building fuel transfer pit and storage basin

    International Nuclear Information System (INIS)

    Hale, N.S.

    1998-01-01

    This document identifies radiological, chemical and physical conditions inside the Fuel Transfer Pit and Fuel Storage Basins. These spaces are located inside the Plutonium Recycle Test Reactor structure (309 Building.) The fuel handling and storage feature of the PRTR were primarily located in these spaces. The conditions were assessed as part of overall 309 Building transition

  4. Application of burnup credit for PWR spent fuel storage pool

    International Nuclear Information System (INIS)

    Shin, Hee Sung; Ro, Seung-Gy; Bae, Kang Mok; Kim, Ik Soo; Shin, Young Joon

    1999-01-01

    A study on the application of burnup credit for a PWR spent fuel storage pool has been investigated using a computer code system such as CSAS6 module of SCALE 4.3 in association with 44-group SCALE cross-section library. The calculation bias of the code system at a 95% probability with a 95% confidence level seems to be 0.00951 by benchmarking the system for forty six experimental data. With the aid of this computer code system, criticality analysis has been performed for the PWR spent fuel storage pool. Uncertainties due to postulated abnormal and accidental conditions, and manufacturing tolerance such as stainless steel thickness of storage rack, fuel enrichment, fuel density and box size have statistically been combined and resulted in 0.00674. Also, isotopic correction factor which was based on the calculated and measured concentration of 43 isotopes for both selected actinides and fission products important in burnup credit application has been taken into account in the criticality analysis. It is revealed that the minimum burnup with the corrected isotopic concentrations as required for the safe storage is 5,730 MWd/tU in enriched fuel of 5.0 wt%. (author)

  5. Design considerations, operating and maintenance experience with wet storage of Ontario Hydro's used fuel

    International Nuclear Information System (INIS)

    Frost, C.R.

    1989-01-01

    The characteristics of Ontario Hydro's fuel and at-reactor used fuel storage water pools (or used fuel bays) are described. There are two types of bay, known respectively as primary bays and auxiliary bays, used for at- reactor used fuel storage. Used fuel is discharged remotely from Ontario Hydro's reactors to the primary bays for initial storage and cooling. The auxiliary bays are used to receive and store fuel after its initial cooling in the primary bay, and provide additional storage capacity as needed. With on- power fueling of reactors, each reactor of greater than 500 MW(e) net discharges an average of 10 or more used fuel bundles to bay storage every full power day. The logistics of handling such large quantities of used fuel bundles (corresponding to about 300 te/year of uranium for a 4 unit station) present a challenge to designers and operators. The major considerations in used fuel bay design, including site- specific requirements, reliability and quality assurance, are discussed

  6. Detection of fission products release in the research reactor 'RA' spent fuel storage pool

    International Nuclear Information System (INIS)

    Matausek, M.V.; Vukadin, Z.; Pavlovic, S.; Maksin, T.; Idakovic, Z.; Marinkovic, N.

    1997-05-01

    Spent fuel resulting from 25 years of operating the 6.5/10 MW thermal heavy water moderated and cooled research reactor RA at the VINCA Institute is presently all stored in the temporary spent fuel storage pool in the basement of the reactor building. In 1984, the reactor was shut down for refurbishment, which for a number of reasons has not yet been completed. Recent investigations show that independent of the future status of the research reactor, safe disposal of the so far irradiated fuel must be the subject of primary concern. The present status of the research reactor RA spent fuel storage pool at the VINCA Institute presents a serious safety problem. Action is therefore initiated in two directions. First, safety of the existing spent fuel storage should be improved. Second, transferring spent fuel into another, presumably dry storage space should be considered. By storing the previously irradiated fuel of the research reactor RA in a newly built storage space, sufficient free space will be provided in the existing spent fuel storage pool for the newly irradiated fuel when the reactor starts operation again. In the case that it would be decided to decommission the research reactor RA, the newly built storage space would provide safe disposal for the fuel irradiated so far

  7. Nuclear criticality assessment of LEU and HEU fuel element storage

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1984-01-01

    Criticality aspects of storing LEU (20%) and HEU (93%) fuel elements have been evaluated as a function of 235 U loading, element geometry, and fuel type. Silicide, oxide, and aluminide fuel types have been evaluated ranging in 235 U loading from 180 to 620 g per element and from 16 to 23 plates per element. Storage geometry considerations have been evaluated for fuel element separations ranging from closely packed formations to spacings of several centimeters between elements. Data are presented in a form in which interpolations may be made to estimate the eigenvalue of any fuel element storage configuration that is within the range of the data. (author)

  8. Status and current spent fuel storage practices in the United States

    International Nuclear Information System (INIS)

    Lake, W.H.

    1999-01-01

    Brief discussions are presented on the history and state of spent fuel generation by utilities that comprise the United States commercial nuclear power industry, the current situation regarding the Federal government's nuclear waste policy, and evolving spent fuel storage practices. These evolving spent fuel storage practices are the result of private sector initiatives, but appear to be influenced by various external factors. The paper is not intended to provide a comprehensive appraisal of the storage initiatives being conducted by the private sector. The focus, instead, is on the Federal government's role and activities related to spent fuel management. Although the Federal government has adopted a policy calling for deep geological disposal of spent fuel, the US Congress has recently begun to consider expanding that policy to include a centralized interim storage facility. In the absence of such an expanded policy, the Department of Energy has performed some preliminary activities that would expedite development of a centralized interim storage facility, if Congress were to enact such a policy. The Department's current activities with regard to developing a centralized interim storage facility, which are consistent with the current policy, are described in the paper. The paper also describes two important technical development activities that have been conducted by the Department of Energy to support improved efficiency in spent fuel management. The Department's activities regarding development of a burnup credit methodology, and a dry transfer system are summarized. (author)

  9. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R.E.; McKinnon, M.A.; Machiels, A.J.

    1999-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive

  10. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R. E.

    1998-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  11. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule... (MAGNASTOR[supreg]) System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... for the MAGNASTOR[supreg] System cask design within the list of approved spent fuel storage casks that...

  12. Spent fuel and materials performance in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, P [ENRESA (Spain)

    2012-07-01

    According to the 6th General Radioactive Waste Plan, spent fuel in Spain shall have to be gathered in a Centralised Temporary Storage (CTS) during some decades in order to have time for a decision concerning its final fate: direct disposal at a geological repository or partitioning and transmutation if technology opens this possibility when the decision will be taken, expected in 2050. The CTS technology has already been chosen as a vault type building based in spent fuel dry storage. To support the use of this technology, a number of programmes have been completed or are still in progress, mostly concerned about high burnup fuel issues and new cladding materials. These programmes are directly managed by ENRESA alone or in joint venture with other parties, at a national and international level. Apart from that, there are contacts with other countries organisms who share similar interests with Spanish ones. The objectives are: Review of spent fuel data relevant for future storage in Spain; Perform destructive and non-destructive examinations on irradiated and non-irradiated fuel rods relevant to Spanish spent fuel management.

  13. Canadian experience with wet and dry fuel storage concepts

    International Nuclear Information System (INIS)

    Mayman, S.A.

    1978-07-01

    Canada has been storing fuel in water-filled pools for 30 years. There have been no significant problems, but until recently little effort has been invested in quantitative assessment of fuel performance under storage conditions. Work is now in progress to provide such information. Storage pools at nuclear generating stations have operated satisfactorily. The Canadian nuclear industry has nevertheless been studying methods for reducing storage costs and/or increasing reliability. Various concepts, using both water and air cooling, have been suggested. One such concept - the air-cooled concrete canister - is presently under test at the Whiteshell Nuclear Research Establishment. (author)

  14. Designing a safeguards approach for the transfer and storage of used fuel

    International Nuclear Information System (INIS)

    Benjamin, Robert; Truong, Q.S. Bob; Keeffe, Richard; Whiting, Neville; Green, Brian

    2001-01-01

    Full text: To provide needed space in the bays for continued CANDU reactor discharges, used fuel must be moved from the bays to dry storage facilities, which are built on site. Over the next decades, used fuel in the bays in Canada will be loaded into containers or transfer flasks and moved to the dry storage facilities. The IAEA currently verifies the transfer of used fuel to dry storage at the Point Lepreau and Gentilly and Pickering CANDU reactor stations. When the Bruce Used Fuel Dry Storage Facility starts operating in 2002 followed by the Darlington Used Fuel Dry Storage Facility in 2007-2009 increased Agency safeguards resources will be required. Safeguarding these new facilities and the flow of fuel to them would place additional demand on IAEA resources if the current approach, which relies heavily upon inspectors being present at the facility, were used. In a continuous search for more efficient approaches, the IAEA, the Canadian Nuclear Safety Commission, and the facility operators are working together to develop a safeguards scheme that depends less upon inspectors and more upon instruments, operator activity and remote monitoring. This paper describes the current approach to safeguarding used fuel in transit and in storage at the Pickering site and how that approach might be applied to the Bruce site. Alternative approaches are also discussed and their application to existing and future used fuel dry storage facilities is considered. Safeguards approaches under existing Safeguards Criteria are compared with approaches that might be possible under a safeguards regime strengthened by the Additional Protocol, and with approaches optimised under Integrated Safeguards. The technologies being considered to safeguard used fuel include position tracking using Global Positioning System (GPS), Geospatial Information System (GIS), radio frequency techniques, electronic seals, operator activity and remote surveillance and monitoring. (author)

  15. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  16. 78 FR 16619 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ...-0308] RIN 3150-AJ22 List of Approved Spent Fuel Storage Casks: MAGNASTOR[supreg] System AGENCY: Nuclear... proposing to amend its spent fuel storage regulations by revising the NAC International, Inc., Modular Advanced Generation Nuclear All-purpose Storage (MAGNASTOR[supreg]) Cask System listing within the ``List...

  17. Immobilization of radioactive waste sludge from spent fuel storage pool

    International Nuclear Information System (INIS)

    Pavlovic, R.; Plecas, I.

    1998-01-01

    In the last forty years, in FR Yugoslavia, as result of the research reactors' operation and radionuclides application in medicine, industry and agriculture, radioactive waste materials of the different categories and various levels of specific activities were generated. As a temporary solution, these radioactive waste materials are stored in the two hanger type interim storages for solid waste and some type of liquid waste packed in plastic barrels, and one of three stainless steal underground containers for other types of liquid waste. Spent fuel elements from nuclear reactors in the Vinca Institute have been temporary stored in water filled storage pool. Due to the fact that the water in the spent fuel elements storage pool have not been purified for a long time, all metallic components submerged in the water have been hardly corroded and significant amount of the sludge has been settled on the bottom of the pool. As a first step in improving spent fuel elements storage conditions and slowing down corrosion in the storage spent fuel elements pool we have decided to remove the sludge from the bottom of the pool. Although not high, but slightly radioactive, this sludge had to be treated as radioactive waste material. Some aspects of immobilisation, conditioning and storage of this sludge are presented in this paper. (author

  18. Storage of thermal reactor fuels - Implications for the back end of the fuel cycle in the UK

    International Nuclear Information System (INIS)

    Hambley, D.

    2016-01-01

    Fuel from UK's Advanced Gas-Cooled Reactors (AGRs) is being reprocessed, however reprocessing will cease in 2018 and the strategy for fuel that has not been reprocessed is for it to be placed into wet storage until it can be consigned to a geological disposal facility in around 2080. Although reprocessing of LWR fuel has been undertaken in the UK, and this option is not precluded for current and future LWRs, all utilities planning to operate LWRs are intending to use At-Reactor storage pending geological disposal. This strategy will result in a substantial change in the management of spent fuel that could affect the back end of the fuel cycle for over a century. This paper presents potential fuel storage scenarios for two options: the current nuclear power replacement strategy, which will see 16 GWe of new capacity installed by 2030 and a median strategy, intended to ensure implementation of the UK's carbon reduction target, involving 48 GWe of nuclear capacity installed by 2040. The potential scale, distribution and timing of fuel storage and disposal operations have been assessed and changes to the current industrial activity are highlighted to indicate potential effects on public acceptance of back end activities. (authors)

  19. Development of Accident Scenario for Interim Spent Fuel Storage Facility Based on Fukushima Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongjin; Choi, Kwangsoon; Yoon, Hyungjoon; Park, Jungsu [KEPCO-E and C, Yongin (Korea, Republic of)

    2014-05-15

    700 MTU of spent nuclear fuel is discharged from nuclear fleet every year and spent fuel storage is currently 70.9% full. The on-site wet type spent fuel storage pool of each NPP(nuclear power plants) in Korea will shortly exceed its storage limit. Backdrop, the Korean government has rolled out a plan to construct an interim spent fuel storage facility by 2024. However, the type of interim spent fuel storage facility has not been decided yet in detail. The Fukushima accident has resulted in more stringent requirements for nuclear facilities in case of beyond design basis accidents. Therefore, there has been growing demand for developing scenario on interim storage facility to prepare for beyond design basis accidents and conducting dose assessment based on the scenario to verify the safety of each type of storage.

  20. Storage arrangements for nuclear fuel

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A storage arrangement for spent nuclear fuel either irradiated or pre-irradiated or for vitrified waste after spent fuel reprocessing, comprises a plenum chamber which has a base pierced by a plurality of openings each of which has sealed to it an open topped tube extending downwards and closed at its lower end. The plenum chamber, with the tubes, forms an air-filled enclosure associated with an exhaust system for exhausting air from the system through filters to maintain the interior of the enclosure at sub-atmospheric pressure. The tubes are arranged to accommodate the stored fuel and the arrangement includes a means for producing a flow of cooling air over the exterior of the tubes so that the latter effectively form a plurality of heat exchangers in close proximity to the fuel. The air may be caused to flow over the tube surfaces by a natural thermosyphon process. (author)

  1. A cooling concept of spent fuels in lag storage system

    International Nuclear Information System (INIS)

    Park, Jeong-Hwa; Yoo, Jae-Hyung; Park, Hyun-Soo

    1991-01-01

    A cooling concept of spent fuels by natural convection of hot cell air in storage pits was developed. Each storage pit was considered to be located below the hot cell floor and to accommodate only one spent fuel assembly. The aim of this study is to apply an appropriate cooling system to the design of a hot cell where considerable heat-generating fuels are handled. In such operations as disassembling, rod consolidation and packaging of spent fuels, a number of assemblies are on stand-by in the cell before and/or after the operations. A lag storage system can be used for temporary storage of spent fuels in nuclear facilities. Since the air in contact with bare fuel assemblies is potentially contaminated, it must be exhausted through high-efficiency particulate air (HEPA) filters. If the storage pit is completely isolated from the hot cell space, then it will require another separate ventilation system by forced convection of air, which will result in additional cost for the construction. In this work, however, a cooling system was proposed where natural convection of hot cell air itself is achieved by thermo-syphon. The cold air from the hot cell is supplied to the inlet provided at the bottom of each pit through the gap between the concrete pit wall and the interior thermal shield. This thermal shield is needed to form flow channels for cold and heated air, and to prevent the concrete from over-heating. The heated air exhausts from the outlet located at the top of cell wall. No additional HEPA filters are needed in this system because the heated air is routed back to the hot cell due to buoyancy-induced flow. The technical feasibility of this concept was validated by thermal analyses. As the key design constraints are the surface temperature of fuel cladding and the concrete temperature of the storage pit, the thermal analyses were focused on these parameters whether they follow within allowable limits or not. (author)

  2. A study for providing additional storage spaces to ET-RR-1 spent fuel

    International Nuclear Information System (INIS)

    El-Kady, A.; Ashoub, N.; Saleh, H.G.

    1995-01-01

    The ET-RR-1 reactor spent fuel storage pool is a trapezoidal aluminum tank concrete shield and of capacity 10 m 3 . It can hold up to 60 fuel assemblies. The long operation history of the ET-RR-1 reactor resulted in a partially filled spent fuel storage with the remaining spaces not enough to host a complete load from the reactor. This work have been initiated to evaluate possible alternative solutions for providing additional storage spaces to host the available EK-10 fuel elements after irradiation and any foreseen fuel in case of reactor upgrading. Several alternate solutions have been reviewed and decision on the most suitable one is under study. These studies include criticality calculation of some suggested alternatives like reracking the present spent fuel storage pool and double tiering by the addition of a second level storage rack above the existing rack. The two levels may have different factor. Criticality calculation of the double tiering possible accident was also studied. (author)

  3. Remote inspection of the IFSF spent fuel storage rack

    International Nuclear Information System (INIS)

    Uldrich, E.D.

    1996-01-01

    The Irradiated Fuel Storage Facility (IFSF) is a dry storage facility for spent nuclear fuels located at the Idaho Chemical Processing Plant; it was constructed in the 1970's specifically for the Fort Saint Vrain spent reactor fuels. Currently, it is being used for various spent fuels. It was not known if IFSF would met current DOE seismic criteria, so re-analysis was started, with the rack being analyzed first. The rack was inspected to determine the as-built condition. LazrLyne and VideoRuler were used in lieu of using a tape measure with the camera. It was concluded that when a visual inspection shows widely varying weld sizes, the engineer has to use all resources available to determine the most probable specified weld sizes

  4. Spent fuel interim storage

    International Nuclear Information System (INIS)

    Bilegan, Iosif C.

    2003-01-01

    The official inauguration of the spent fuel interim storage took place on Monday July 28, 2003 at Cernavoda NNP. The inaugural event was attended by local and central public authority representatives, a Canadian Government delegation as well as newsmen from local and central mass media and numerous specialists from Cernavoda NPP compound. Mr Andrei Grigorescu, State Secretary with the Economy and Commerce Ministry, underlined in his talk the importance of this objective for the continuous development of nuclear power in Romania as well as for Romania's complying with the EU practice in this field. Also the excellent collaboration between the Canadian contractor AECL and the Romanian partners Nuclear Montaj, CITON, UTI, General Concret in the accomplishment of this unit at the planned terms and costs. On behalf of Canadian delegation, spoke Minister Don Boudria. He underlined the importance which the Canadian Government affords to the cooperation with Romania aiming at specific objectives in the field of nuclear power such as the Cernavoda NPP Unit 2 and spent fuel interim storage. After traditional cutting of the inaugural ribbon by the two Ministers the festivities continued on the Cernavoda NPP Compound with undersigning the documents regarding the project completion and a press conference

  5. SCALE6.1 Hybrid Shielding Methodology For The Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Matijevic, M.; Pevec, D.; Trontl, K.

    2015-01-01

    The SCALE6.1/MAVRIC hybrid deterministic-stochastic shielding methodology was used for dose rates calculation of the generic spent fuel dry storage installation. The neutron-gamma dose rates around the cask array were calculated over a large problem domain in order to determine the boundary of the controlled area. The FW-CADIS methodology, based on the deterministic forward and adjoint solution over the phase - space, was used for optimized, global Monte Carlo results over the mesh tally. The cask inventory was modeled as homogenized material corresponding to 20 fuel assemblies from a standard mid - sized PWR reactor. The global simulation model was an array of 32 casks in 2 rows with concrete foundations and external air, which makes a large spatial domain for shielding calculations. The dose rates around the casks were determined using FW-CADIS method with weighted adjoint source and mesh tally covering a portion of spatial domain of interest. The conservatively obtained dose rates give the upper boundary, since the activation reduction of sources was not taken into account when sequential filling of the dry storage will start. The effective area of the dry storage installation can be additionally reduced with lowering concrete foundation under the ground, embankment raising, and with extra concrete walls, that would additionally lower the dominant gamma dose rates. (author).

  6. Commentary on spent fuel storage at Morris operation

    International Nuclear Information System (INIS)

    Eger, K.J.; Zima, G.E.

    1979-10-01

    The General Electric Company is providing technical support to Battelle Pacific Northwest Laboratories in the analysis of the design, operation, and maintenance experience in the handling of nuclear fuel at the Independent Spent Fuel Storage Facility. The purpose of this report is to provide a description of spent fuel handling activities and systems, and an analysis of the storage performance as developed over the seven year operational history of the Morris Operation. Design considerations and performance are analyzed for both the basin and key supporting systems. The bases for this analysis are the provisions for containing radioactive by-product materials, for shielding from the radiation they emit, and for preventing the formation of a critical array. These provisions have been met effectively over the history of storage at Morris. The release of radioactive materials is minimized by the protection of the cladding integrity, the containment of the basin water, the removal of radioactive and other contaminants from the water, and by filtering and then dispersing the basin air. Four auxiliary systems are provided to accomplish this, the basin leak detection system, the filter, the coolers, and the building ventilation system. This successful history notwithstanding, action to reduce personnel exposure, to improve fuel handling reliability and to lessen the potential for accidents continues to be taken

  7. Creep Analysis of Aluminum-Based Spent Nuclear Fuel in Repository Storage

    International Nuclear Information System (INIS)

    Gong, C.; Lam, P.S.; Sindelar, R.L.

    1998-07-01

    Aluminum-clad, aluminum-based spent nuclear fuels (Al SNF) from foreign and domestic research reactors are being consolidated at the Savannah River Site (SRS). These fuels are planned to be put into dry storage followed by disposal in the federal repository. Temperature conditions in storage and disposal systems due to nuclear decay heat sources will promote creep information of the fuel elements. Excessive deformation of the Al SNF will cause gross distortion (slump) of the fuels and may cause gross cladding rupture

  8. Further analysis of extended storage of spent fuel. Final report of a co-ordinated research programme on the behaviour of spent fuel assemblies during extended storage (BEFAST-III) 1991-1996

    International Nuclear Information System (INIS)

    1997-05-01

    Considerable quantities of spent fuel continue to be produced and to accumulate in a number of countries. Although some new reprocessing facilities have been constructed, many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology. However, dry storage is becoming increasingly used with many countries considering dry storage for the longer term. This Technical Document is the final report of the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST-III, 1991-1996). It contains analyses of wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries (Canada, Finland, France, Germany, Hungary, the Republic of Korea, Japan, the Russian Federation, Slovakia, Spain, Sweden, the United Kingdom and the USA) which participated in the co-ordinated research programme as participants or observers. The report contains information presented during the three Research Co-ordination meetings and also data which were submitted by the participants in response to request by the Scientific Secretary. 48 refs, 4 tabs

  9. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  10. Utilization of the NFS West Valley Installation for spent fuel storage

    International Nuclear Information System (INIS)

    MacDonald, R.W.

    1978-04-01

    Several thousand MT of capacity of AFR storage will be required in the 1980's. The pool at NFS has capacity for an additional 60 MT of BWR fuel or 150 MT of PWR assemblies. Zircaloy-clad LWR fuel can be stored in pools for up to 100 years. Environmental effects are discussed. Expansion of the pool capacity for as much as 1000 MT more, either by using more compact storage racks or constructing a new pool or an independent pool, is considered. Some indication of the environmental impacts of expanded fuel storage capacity at West Valley is offered by experience at Barnwell

  11. Onsite dry spent-fuel storage: Becoming more of a reality

    International Nuclear Information System (INIS)

    1994-01-01

    An overview is presented of dry spent-fuel storage facilities operated at nuclear power plant sites in the USA. The experience of the utilities Virginia Power, Carolina Power and Light Company, Duke Power, Public Service Company of Colorado a Baltimore Gas and Electric is outlined. The spent fuel storage procedure using the Sierra Nuclear container system is described. Plans for the construction of additional storage facilities are mentioned. Dry stores are also operated at nuclear power plants that have been shut down. (J.B.). 1 fig

  12. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study

  13. Conceptual study of dry storage method for spent fuel assemblies based on honeycomb concrete overpack (COP). Phase 1

    International Nuclear Information System (INIS)

    Hida, Yoshio; Hayashi, Shigeki; Katsuyama, Yoshiaki; Hashimoto, Hirohide; Murata, Takashi

    2017-01-01

    fuel assemblies are over packed by a concrete shielding , the external shape of which is a hexagonal prism. The concrete overpacks are aligned side-by-side without gaps and placed on the ground to form honeycomb-patterned assemblies. The concrete overpack is designed to feature inside air flow paths for natural convection cooling, including one air flow path in the bottom part allows an inspection passage. To fasten the overpacks each to each creates a strong honeycomb assemblies; making the freestanding structure on the ground ensures resistance to earthquakes. This concept enables safer dry storage in a relatively small area of land, at relatively low cost, and also makes it possible to gradually expand the facility to accommodate the spent fuel generated over time. (author)

  14. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1979-08-01

    This volume contains the following appendices: LWR fuel cycle, handling and storage of spent fuel, termination case considerations (use of coal-fired power plants to replace nuclear plants), increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data, characteristics of nuclear fuel, away-from-reactor storage concept, spent fuel storage requirements for higher projected nuclear generating capacity, and physical protection requirements and hypothetical sabotage events in a spent fuel storage facility

  15. Improving of spent fuel monitoring in condition of Slovak wet interim spent fuel storage facility

    International Nuclear Information System (INIS)

    Miklos, M.; Krsjak, V.; Bozik, M.; Vasina, D.

    2008-01-01

    Monitoring of WWER fuel assemblies condition in Slovakia is presented in the paper. The leak tightness results of fuel assemblies used in Slovak WWER units in last 20 years are analyzed. Good experiences with the 'Sipping system' are described. The Slovak wet interim spent fuel storage facility in NPP Jaslovske Bohunice was build and put in operation in 1986. Since 1999, leak tests of WWER-440 fuel assemblies are provided by special leak tightness detection system 'Sipping in Pool' delivered by Framatome-ANP facility with external heating for the precise detection of active specimens. Another system for monitoring of fuel assemblies condition was implemented in December 2006 under the name 'SVYPP-440'. First non-active tests started at February 2007 and are described in the paper. Although those systems seems to be very effective, the detection time of all fuel assemblies in one storage pool is too long (several months). Therefore, a new 'on-line' detection system, based on new sorbent KNiFC-PAN for effective 134 Cs and 137 Cs activity was developed. This sorbent was compared with another type of sorbent NIFSIL and results are presented. The design of this detection system and its possible application in the Slovak wet spent fuel storage facility is discussed. For completeness, the initial results of the new system are also presented. (authors)

  16. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Atomic Energy of Canada Limited, Montreal, PQ (Canada)

    1998-07-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  17. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    International Nuclear Information System (INIS)

    Viebrock, J.M.

    1981-09-01

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  18. Technical framework to facilitate foreign spent fuel storage and geologic disposal in Russia

    International Nuclear Information System (INIS)

    Jardine, L.J.; Halsey, W.G.; Cmith, C.F.

    2000-01-01

    The option of storage and eventual geologic disposal in Russia of spent fuel of US origin used in Taiwan provides a unique opportunity that can benefit many parties. Taiwan has a near term need for a spent fuel storage and geologic disposal solution, available financial resources, but limited prospect for a timely domestic solution. Russia has significant spent fuel storage and transportation management experience, candidate storage and repository sites, but limited financial resources available for their development. The US has interest in Taiwan energy security, national security and nonproliferation interests in Russian spent fuel storage and disposal and interest in the US origin fuel. While it is understood that such a project includes complex policy and international political issues as well as technical issues, the goal of this paper is to begin the discussion by presenting a technical path forward to establish the feasibility of this concept for Russia

  19. Problem of spent fuel storage from commercial nuclear reactors in USA

    International Nuclear Information System (INIS)

    Elagin, Yu.P.

    1996-01-01

    The problem on spent fuel storage in the USA is considered. According to the law and agreement, concluded with electrical companies, the USA should begin to receive the spent fuel from commercial reactors in 1998, however they are not ready for it. The consortium for constructing a centralized storage, financed from private sources for its temporary disposition is established recently. The spent fuel receipt is planned for 2002

  20. NEDO fuel/storage technology subcommittee. 18th project report meeting; NEDO nenryo chozo gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Taro Yamayasu, a NEDO (New Energy and Industrial Technology Development Organization) director, reports fuel and storage technologies, taking reference to the research and development of technologies relating to fuel cell power generation, cell power storage system of a novel type, ceramic gas turbine, superconductor-generated power application, wide-area energy utilization network system (urbane eco-energy system), high-temperature superconductor-supported flywheel power storage, demonstration of a novel method of load levelling, demonstration test for the establishment of a centralized control system, and so forth. Reported also is research and development involving a molten carbonate fuel cell power generation system, current status of distributed cell power storage system development (large lithium secondary storage battery technology development), current status of superconductor-generated power application technology, regenerative cycle type 2-shaft ceramic gas turbine for a 300kW-class cogeneration system, high-density latent heat transportation, and so forth. (NEDO)

  1. Validation concerns for dry storage of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Trumble, E.F.

    1994-01-01

    Recent decisions by the Department of Energy have accelerated the need for storage options to support the return of foreign research reactor (FRR) fuel to the United States. Many of these returns consist of fuel types which contain highly enriched uranium and are aluminum clad. These attributes present many challenges not experienced in the fuel storage designs for commercial nuclear fuels where the fuels have lower enrichment and the cladding is more robust. Historically, returned FRR fuel has been stored for short periods in basins where it is cooled and then sent to be reprocessed. However, a severe lack of basin space and questionable availability of reprocessing facilities necessitates the development of other proposals. One proposed option is to store the FRR fuel in a dry state, thus reducing the corrosion problems associated with aluminum cladding. A drawback to this type of storage, however, is the lack of experimental data for this type of fuel under dry storage conditions. This lack of data has led to recent discussions over the accuracy of some of the current multigroup cross section libraries when applied to dry, fast systems of uranium and aluminum. This concern is evaluated for the specific case of Material Test Reactor (MTR) fuel (MTR is >60% of FRR fuel), a review of applicable experiments is presented and a new experiment is proposed

  2. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  3. Implications of alpha-decay for long term storage of advanced heavy water reactor fuels

    International Nuclear Information System (INIS)

    Pencer, J.; McDonald, M.H.; Roubtsov, D.; Edwards, G.W.R.

    2017-01-01

    Highlights: •Alpha decays versus storage time are calculated for examples of advanced heavy water reactor fuels. •Estimates are made for fuel swelling and helium bubble formation as a function of time. •These predictions are compared to predictions for natural uranium fuel. •Higher rates of damage are predicted for advanced heavy water reactor fuels than natural uranium. -- Abstract: The decay of actinides such as 238 Pu, results in recoil damage and helium production in spent nuclear fuels. The extent of the damage depends on storage time and spent fuel composition and has implications for the integrity of the fuels. Some advanced nuclear fuels intended for use in pressurized heavy water pressure tube reactors have high initial plutonium content and are anticipated to exhibit swelling and embrittlement, and to accumulate helium bubbles over storage times as short as hundreds of years. Calculations are performed to provide estimates of helium production and fuel swelling associated with alpha decay as a function of storage time. Significant differences are observed between predicted aging characteristics of natural uranium and the advanced fuels, including increased helium concentrations and accelerated fuel swelling in the latter. Implications of these observations for long term storage of advanced fuels are discussed.

  4. A safety study on the wet storage of spent fuel

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Whang, Joo Ho; Lee, Hoo Kun; Choi, Jong Won; Lee, Jong Geun

    1989-02-01

    This study is to provide data related with a basic design of the spent fuel storage facility in the field of radiation and to establish the safety assessment methodology of away from reactor spent fuel storage facility. This is in progress and continue upto the year of 1991. The mathematical model which predict the quantity of environmental release of fission and corrosion products from spent fuel received and stored in wet storage facility operated in normal conditions was prepared. The decay characteristic of domestic spent fuels are analysed and then the coefficients for the prediction of the decay heat by simple formular was determined. This correlations could predict decay heat of spent fuel with ±10% difference from ORIGEN2 results. The release factor of cobalt out of PWR spent fuel in PIE pool is 7.97 x 10-12∼8.49 x 10-11 Ci/ sec-rod, which appears to be linear without being connected with the types of fuel defects, but that of cesium varies with the defect type and the exposure time in water. In water condition, release factor of uranium out of CANDU fuel pellets appears to be about 5 x 10-8/day, whose tendency is similar to that of cesium of the latter half of the exposure time of water. (Author)

  5. Bulk Fuel Storage and Delivery Systems Infrastructure Military Construction Requirements for Japan

    National Research Council Canada - National Science Library

    Padgett, Gary

    2000-01-01

    .... Specifically, this audit evaluated requirements for bulk fuel storage facilities at three locations in Japan. We also evaluated the management control program as it relates to the bulk fuel storage military construction requirements validation process.

  6. Design and operational experience of the NUHOMS-24P spent fuel storage system

    International Nuclear Information System (INIS)

    McConaghy, W.J.; Lehnert, R.A.; Rasmussen, R.W.

    1991-01-01

    The NUHOMS spent fuel storage system provides a safe and economical method for the dry storage of spent fuel assemblies either at an independent spent fuel storage installation (ISFSI) at reactor or at a centralized storage facility away from reactor. The system consists of three major safety-related components: a dry shielded canister (DSC) which provides a high integrity containment boundary and a controlled storage environment for the fuel; a reinforced concrete horizontal storage module (HSM) which houses the stored DSCs and provides radiation shielding, protection against natural phenomena and an efficient means for decay heat removal; and a transfer cask which provides for the safe shielded transfer of DSCs from a plant spent fuel pool to a HSM. The NUHOMS system is designed and licensed to the requirements of 10 CFR 72 and ANS/ANSI 57.9 for ISFSIs. The NUHOMS concept was developed in early 1980s, and in 1987, a larger version of the NUHOMS system, 24P, was developed. The operational features of NUHOMS and the loading experience at Oconee are reported. (K.I.)

  7. Dry Storage at long term of nuclear fuels: Influence of the fuel design and commercial irradiation conditions

    International Nuclear Information System (INIS)

    Marino, Armando C

    2009-01-01

    The BaCo code was applied to simulate the behaviour for a PHWR fuel under storage conditions showing a strong dependence on the original design of the fuel and the irradiation history. In particular, the results of the statistical analysis of BaCo indicate that the integrity of the fuel is influenced by the manufacture tolerances and the solicitations during the NPP irradiation. The main conclusion of the present study is that the fuel temperature of the device should be carefully controlled in order to ensure safe storage conditions. [es

  8. Corrosion surveillance program of aluminum spent fuel elements in wet storage sites

    International Nuclear Information System (INIS)

    Linardi, E; Haddad, R

    2012-01-01

    Due to different degradation issues observed in aluminum-clad spent fuel during long term storage in water, the IAEA implemented in 1996 a Coordinated Research Project (CRP) and a Regional Project for Latin America, on Corrosion of Research Reactor Aluminum Clad Spent Fuel in Water. Argentine has been among the participant countries of these projects, carrying out spent fuel corrosion surveillance activities in its storage facilities. As a result of the research a large database on corrosion of aluminum-clad fuel has been generated. It was determined that the main types of corrosion affecting the spent fuel are pitting and galvanic corrosion due to contact with stainless steel. It was concluded that the quality of the water is the critical factor to control in a spent fuel storage facility. Another phase of the program is being conducted currently, which began in 2011 with the immersion of test racks in the RA1 reactor pool, and in the Research Reactor Spent Fuel Storage Facility (FACIRI), located in Ezeiza Atomic Center. This paper presents the results of the chemical analysis of the water performed so far, and its relationship with the examination of the coupons extracted from the sites (author)

  9. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  10. Report by the committee assessing fuel storage

    International Nuclear Information System (INIS)

    Morgan, W.W.

    1977-11-01

    Various concepts for interim storage of spent nuclear fuel have been considered. Preliminary design studies and cost estimates have been prepared for the following concepts: two with water cooling - prolonged pool storage at a generating station and pool storage at a central site - , three with air cooling at a central site - ''canister'', ''convection vault'', and ''conduction vault'' - and one underground storage scheme in rock salt. Costs (1972 dollars) were estimated including transportation and a perpetual care fund for maintenance and periodical renewal of the storage facility. Part 2 provides details of the concepts and costing methods. All concepts gave moderate costs providing a contribution of about 0.1 m$/kWh to the total unit energy cost. Advantages and disadvantages of the respective schemes are compared. (author)

  11. Handling final storage of unreprocessed spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-01-01

    The present second report from KBS describes how the safe final storage of spent unreprocessed nuclear fuel can be implemented. According to the Swedish Stipulation Law, the owner must specify in which form the waste is to be stored, how final storage is to be effected, how the waste is to be transported and all other aspects of fuel handling and storage which must be taken into consideration in judging whether the proposed final storage method can be considered to be absolutely safe and feasible. Thus, the description must go beyond general plans and sketches. The description is therefore relatively detailed, even concerning those parts which are less essential for evaluating the safety of the waste storage method. For those parts of the handling chain which are the same for both alternatives of the Stipulation Law, the reader is referred in some cases to the first report. Both of the alternatives of the Stipulation Law may be used in the future. Handling equipment and facilities for the two storage methods are so designed that a combination in the desired proportions is practically feasible. In this first part of the report are presented: premises and data, a description of the various steps of the handling procedure, a summary of dispersal processes and a safety analysis. (author)

  12. New concept for ARS dry spent fuel storage

    International Nuclear Information System (INIS)

    Doroszlai, P.G.K.; Johanson, N.W.; Patak, H.N.

    1980-01-01

    The dry fully passive and modular away-from-reactor (AFR) storage concept has been presented before for a size of 1500 to 3000 MTHM. Here it is suggested that the same concept is applicable for a small AR storage facility of 200 MTHM. Detailed investigations and feasibility studies have shown this concept to be economically interesting. Dry storage in the proposed concept has some other inherent advantages: spent fuel is stored in a dry and inert atmosphere, where no corrosion nor determination of cladding is to be expected during extended storage periods; storage canister and the silo concrete are additional barriers against activity release and increase therefore the security for long term safety; there are only passive systems involved where the heat is dissipated by natural convection and there is no need for additional emergency systems or special redundancy; concept of AR storage should be relatively easily licensed, as all requirements or constructions are well known standards of engineering; this storage concept creates no secondary waste nor contamination making decomissioning simple after retransfer of spent fuel canisters; manpower requirements for operation and maintenance is very small; operating costs are estimated to be some 2 US $/kg U (1980); investment costs are calculated to be 96 US $/kg U (May 1980) for a total size of 200 MTHM stored

  13. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    Science.gov (United States)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  14. Intermediate storage of radioactive waste and spent nuclear fuel at the Kola Peninsula

    International Nuclear Information System (INIS)

    Bohmer, N.

    1999-01-01

    The problem of nuclear waste and disused nuclear submarines are a product of the arms race and the Cold War. Russia still continues to build new nuclear submarines, but there are very few provisions being made to properly store old nuclear submarines, and develop sufficient storage facilities for spent nuclear fuel and other radioactive waste. A solution to this problem is proposed: to construct a new regional interim storage facilities at Kola for the spent nuclear fuel instead of transporting it to Mayak, the existing reprocessing plant. This storage should have the capacity to handle the fuel in the existing storage and the fuel still on board of retired nuclear submarines. Its lifetime should be 50 years. later it would be possible to make a decision on the future of this fuel

  15. Compact spent fuel storage at the Atucha I nuclear power plant

    International Nuclear Information System (INIS)

    Antonaccio, Carlos; Conde, Alberto; Flores, Alexis; Masciotra, Humberto; Sala, Guillermo; Zanni, Pablo

    2000-01-01

    The object of this report is to verify the possibility to increase the available storage of irradiated fuel assemblies, placed in the spent fuel pools of the Atucha I nuclear power plant. There is intends the realization of structural modifications in the storage bracket-suspension beam (single and double) for the upper and lower level of the four spent fuel pools. With these modifications that increase the storage capacity 25%, would arrive until the year 2014, it dates dear for the limit of the commercial operation of nuclear power plant. The increase of the capacity in function of the permissible stress for the supports of the bracket-suspension beam. They should be carried out 5000 re-accommodations of irradiated fuel assemblies. The task would demand approximately 3 years. (author)

  16. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Science.gov (United States)

    2010-01-01

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... Systems, Inc. SAR Title: Topical Safety Analysis Report for the Castor V/21 Cask Independent Spent Fuel... Title: Topical Safety Analysis Report for the NAC Storage/Transport Cask for Use at an Independent Spent...

  17. Evaluation of burnup credit for fuel storage analysis -- Experience in Spain

    International Nuclear Information System (INIS)

    Conde, J.M.; Recio, M.

    1995-01-01

    Several Spanish light water reactor commercial nuclear power plants are close to maximum spent-fuel pool storage capacity. The utilities are working on the implementation of state-of-the-art methods to increase the storage capacity, including both changes in the pool design (recracking) and the implementation of new analysis approaches with reduced conservation (burnup credit). Burnup credit criticality safety analyses have been approved for two pressurized water reactor plants (four units) and one boiling water reactor (BWR); an other BWR storage analysis is being developed at this moment. The elimination of the ''fresh fuel assumption'' increases the complexity of the criticality analysis to be performed, sometimes putting into question the capability of the analytic tools to properly describe this new situation and increasing the scope of the scenarios to be analyzed. From a regulatory perspective, the reactivity reduction associated with burnup of the fuel can be given credit only if the exposure of each fuel bundle can be known with enough accuracy. Subcriticality of spent-fuel storage depends mainly on the initial fuel enrichment, storage geometry, fuel exposure history, and cooling time. The last two aspects introduced new uncertainties in the criticality analysis that should be quantified in an adequate way. In addition, each and every fuel bundle has its own specific exposure history, so that strong assumptions and simplified calculational schemes have to be developed to undertake the analysis. The Consejo de Seguridad Nuclear (CSN), Spanish regulatory authority on the matter of nuclear safety and radiation protection, plays an active role in the development of analysis methods to support burnup credit, making proposals that may be beneficial in terms of risk and cost while keeping the widest safety margins possible

  18. Spent fuel storage requirements 1987

    International Nuclear Information System (INIS)

    1987-09-01

    Historical inventories of spent fuel and utility estimates of future discharges from US commercial nuclear reactors are presented through the year 2005. The ultimate needs for additional storage capacity are estimated. These estimtes are based on the maximum capacities within current and planned at-reactor facilities and on any planned transshipments of fuel to other reactors or facilities. Historical data through December, 1986, and projected discharges through the end of reactor life are used in this analysis. The source data was supplied by the utilities to the DOE Energy Information Administration (EIA) through the 1987 RW-859 data survey. 14 refs., 4 figs., 9 tabs

  19. Storage container for radioactive fuel elements

    International Nuclear Information System (INIS)

    1984-01-01

    The interim storage cask for spent fuel elements or the glass moulds for high-level radioactive waste are made up of heat-resistant, reinforced concrete with chambers and highgrade steel lining. Cooling systems with natural air circulation are connected with the chambers. (HP) [de

  20. Generic environmental impact statement on handling and storage of spent light water power reactor fuel. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Detailed appendices are included with the following titles: light water reactor fuel cycle, present practice, model 1000MW(e) coal-fired power plant, increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data (1976-2000), characteristics of nuclear fuel, and ''away-from-reactor'' storage concept

  1. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  2. Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.

    Science.gov (United States)

    1997-04-30

    The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...

  3. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  4. Storage device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Kempf, B.

    1983-01-01

    The storage device, which can be flexibly matched to the number of fuel rods to be stored and is not tied to a space, has a vertical support post situated on the floor and a stiff upright also situated vertically on the floor, which is used to accommodate at least one fuel rod. The stiff upright is connected directly to the support post by connections which can be undone, or form locking via another vertical stiff upright situation on the floor. (orig./HP) [de

  5. Fuel Behaviour in Transport after Dry Storage: a Key Issue for the Management of used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, Herve

    2014-01-01

    Interim used fuel dry storage has been developed in many countries providing an intermediate solution while waiting for evaluation and decisions concerning future use (such as recycling) or disposal sites. There is an important industrial experience feedback and excellent safety records. It appears that the duration of interim storage may become longer than initially expected. At the start of storage operations 40 years was considered sufficiently long to make a decision on either recycling or direct disposal of used nuclear fuel. Now it is said that storage time may have to be extended. Whatever the choice for the management of used fuel, it will finally have to be transported from the storage facility to another location, for recycling or final disposal. Bearing in mind the important principle that radioactive waste shall be managed in such a way that undue burdens will not be imposed on future generations, there is no guarantee that the fuel characteristics can be maintained in perpetuity. On the other hand, transport accident conditions from applicable regulation (IAEA SSR-6) are very severe for irradiated materials. Therefore, in compliance with transport regulations, the safety analysis of the fuel in transport after storage is mandatory. This paper will give an overview of the current situation related to the used fuel behaviour in transport after dry storage. On this matter there are some elements of information already available as well as some gaps of knowledge. Several national R and D programs and international teams are presently addressing these gaps. A lot of R and D work has already been done. An objective of these R and D projects is to aid decision makers. It is important to fix a limit and not to multiply intermediate operations because it means higher costs and more uncertainties. The identified gaps concern the following issues especially for high burn-up (HBU) fuels: thermal model for casks, degradation process of fuel material, cladding creep

  6. Development of Integrity Evaluation Technology for the Long-term Spent Fuel Dry Storage System (1st year Report)

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kook, Dong Hak; Kim, Jun Sub

    2010-05-01

    Korea has operated 16 Pressurized Water Reactors(PWR) and has a plan to construct additional nuclear power reactors as only PWR. This causes a big issue of PWR spent fuel accumulation problem now and in the future. KRMC(Korea Radioactive waste Management Coorporation) which was established in 2009 is charged with managing all kinds of radioactive waste that is produced in Korea. KRMC is considering spent fuel dry storage as an option to solve this spent fuel problem and developing the related engineering techniques. KAERI(Korea Atomic Energy Research Institute) also participated in this development and focused on evaluating the spent fuel dry storage system integrity for a long term operation. This report is the first year research product. The aims of the first year work scope are surveying and analyzing models which could anticipate degradation phenomena of the all dry storage components(spent fuel, structure materials, and equipment materials) and selecting items of the tests which are planned to perform in the next project stage. The major work areas consist of 'spent fuel degradation evaluation model development', 'test senario development', 'long-term evaluation of structural material characteristics', and 'dry storage system structure degradation model development'. These works were successfully achieved. This report is expected to contribute for the second year work which includes degradation model development and test senario development, and next project stage

  7. A complete NUHOMS {sup registered} solution for storage and transport of high burnup spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bondre, J. [Transnuclear, Inc. (AREVA Group), Fremont, CA (United States)

    2004-07-01

    The discharge burnups of spent fuel from nuclear power plants keep increasing with plants discharging or planning to discharge fuel with burnups in excess of 60,000 MWD/MTU. Due to limited capacity of spent fuel pools, transfer of older cooler spent fuel from fuel pool to dry storage, and very limited options for transport of spent fuel, there is a critical need for dry storage of high burnup, higher heat load spent fuel so that plants could maintain their full core offload reserve capability. A typical NUHOMS {sup registered} solution for dry spent fuel storage is shown in the Figure 1. Transnuclear, Inc. offers two advanced NUHOMS {sup registered} solutions for the storage and transportation of high burnup fuel. One includes the NUHOMS {sup registered} 24PTH system for plants with 90.7 Metric Ton (MT) crane capacity; the other offers the higher capacity NUHOMS {sup registered} 32PTH system for higher crane capacity. These systems include NUHOMS {sup registered} - 24PTH and -32PTH Transportable Canisters stored in a concrete storage overpack (HSM-H). These canisters are designed to meet all the requirements of both storage and transport regulations. They are designed to be transported off-site either directly from the spent fuel pool or from the storage overpack in a suitable transport cask.

  8. Interim storage of spent fuel elements in the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Szabo, B.

    1998-01-01

    The interim storage of spent fuel cassettes of the Paks NPP provides storage for 50 years at the Paks NPP site. The modular dry storage technology is presented. The technological design and the licensing of the facility has been made by the GEC Alsthom ESL firm. This storage facility can accommodate 450 fuel cassettes until their final disposal. (R.P.)

  9. Failed (leaking) spent fuel management and storage in the Paks NPP

    International Nuclear Information System (INIS)

    Burjan, T.

    2011-01-01

    At the cycle 22, unit 4, Paks NPP the fissile contents raised irregularly in the water of the primary circuit. At the end of the cycle sipping tests were performed for the entire core to find out the leaking fuel assembly primarily responsible for this phenomenon. The identified leaking assembly temporarily was placed in the Spent Fuel Relaxing Pool. For measuring environmental impact of leaking assemblies an investigation program was developed and implemented. The assessment covered the following: effects of the leaking fuel on the water of relaxing pool and on the gaseous emissions in case open storage; in case when the leaking cassette is in a special hermetical storage case, how much gas is collected in the locked case and what is its composition; how to change the measured sipping test signal depending on relaxing time of leaking fuel cassettes. Based on the evaluation of the investigation program results the NPP modified the operational instructions for the treatment and storage of failed fuel assemblies. (author)

  10. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  11. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    International Nuclear Information System (INIS)

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  12. Behavior of high-density spent-fuel storage racks

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-08-01

    Included in this report is a summary of information on neutron-absorbing materials such as B 4 C in an aluminum matrix or organic binder material, stainless steel-boron and aluminum-boron alloys, and stainless steetl-clad cadmium that are used in high-density spent fuel storage racks. A list of the types of neutron-absorbing materials being used in spent fuel storage racks at domestic commercial plants is provided. Recent cases at several domestic plants where swelling of rack side plates (where the B 4 C in an aluminum matrix and B 4 C in an organic binder material were located) occurred are reviewed

  13. Borated concrete for ZPPR fuel storage

    International Nuclear Information System (INIS)

    Gasidlo, J.M.

    1985-01-01

    Fuel handling at the Zero Power Plutonium Reactor (ZPPR) led to two requirements for storage of ZPPR fuel: a low neutron multiplication and shielded storage to minimize personnel doses. Boron-poisoned concrete was chosen as the storge medium with boron frit as the poisoning agent. The calculated effects of water content and boron concentration led to specifying a concrete with a water content that was higher than ordinary concrete. The finite size of the boron frit particles caused concern about reduced effectiveness due to self-shielding. The self-shielding was evaluated using optical path lengths for spheres and tabulated self-shielding for slabs. The results showed that the finite-sized particles were at least 80% as effective as infinitely dilute absorption. Neutron and gamma dose rates measured in the vault verified that personnel could work in the vault on a regular basis without exceeding personnel dose limits. 4 refs., 3 figs., 7 tabs

  14. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Klein, J.A.; Turner, D.W.

    1994-01-01

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation's total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shielding Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory's (ORNL's) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels

  15. 76 FR 70331 - List of Approved Spent Fuel Storage Casks: MAGNASTOR ® System, Revision 2

    Science.gov (United States)

    2011-11-14

    ... Fuel Storage Casks: MAGNASTOR [supreg] System, Revision 2 AGENCY: Nuclear Regulatory Commission. ACTION... its spent fuel storage regulations by revising the NAC International, Inc. (NAC) MAGNASTOR [supreg] System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 2 to...

  16. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2011-01-13

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to... the NUHOMS[supreg] HD Horizontal Modular Storage System for Irradiated Nuclear Fuel. [[Page 2279...

  17. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  18. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  19. Fire Hazards Analysis for the 200 Area Interim Storage Area

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards

  20. Compact approach to monitored retrievable storage of spent fuel

    International Nuclear Information System (INIS)

    Muir, D.W.

    1984-09-01

    Recent federal waste-management legislation has raised national interest in monitored retrievable storage (MRS) of unprocessed spent fuel from civilian nuclear power plants. We have reviewed the current MRS design approaches, and we have examined an alternative concept that is extremely compact in terms of total land use. This approach may offer substantial advantages in the areas of monitoring and in safeguards against theft, as well as in reducing the chances of groundwater contamination. Total facility costs are roughly estimated and found to be generally competitive with other MRS concepts. 4 references, 3 figures, 3 tables

  1. An assessment of temperature history on concrete silo dry storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    Lee, Dong-Gyu; Sung, Nak-Hoon; Park, Jea-Ho; Chung, Sung-Hwan

    2016-01-01

    Highlights: • We performed thermal analysis to predict the temperature distribution in the concrete silo. • Thermal analysis of the concrete silo was based on CFD code. • Temperature distribution and history for storage period was presented. • Thermal analysis results and test results agreed well. • The correlations can predict the maximum fuel temperature over storage period. - Abstract: Concrete silo is a dry storage system for spent fuel generated from CANDU reactors. The silo is designed to remove passively the decay heat from spent fuel, as well as to secure the integrity of spent fuel during storage period. Dominant heat transfer mechanisms must be characterized and validated for the thermal analysis model of the silo, and the temperature history along storage period could be determined by using the validated thermal analysis model. Heat transfer characteristics on the interior and exterior of fuel basket in the silo were assessed to determine the temperature history of silo, which is necessary for evaluating the long-term degradation behavior of CANDU spent fuel stored in the silo. Also a methodology to evaluate the temperature history during dry storage period was proposed in this study. A CFD model of fuel basket including fuel bundles was suggested and temperature difference correlation between fuel bundles and silo’s internal member, as a function of decay heat of fuel basket considering natural convection and radiation heat transfer, was deduced. Temperature difference between silo’s internal cavity and ambient air was determined by using a concept of thermal resistance, which was validated by CFD analysis. Fuel temperature was expressed as a function of ambient temperature and decay heat of fuel basket in the correlation, and fuel temperature along storage period was determined. Therefore, it could be used to assess the degradation behavior of spent fuel by applying the degradation mechanism expressed as a function of spent fuel

  2. Proceedings of the Topical Meeting on the safety of nuclear fuel cycle intermediate storage facilities

    International Nuclear Information System (INIS)

    1998-01-01

    The CSNI Working Group on Fuel Cycle Safety held an International Topical Meeting on safety aspects of Intermediate Storage Facilities in Newby Bridge, England, from 28 to 30 October 1997. The main purpose of the meeting was to provide a forum for the exchange of information on the technical issues on the safety of nuclear fuel cycle facilities (intermediate storage). Titles of the papers are: An international view on the safety challenges to interim storage of spent fuel. Interim storage of intermediate and high-level waste in Belgium: a description and safety aspects. Encapsulated intermediate level waste product stores at Sellafield. Safety of interim storage facilities of spent fuel: the international dimension and the IAEA's activities. Reprocessing of irradiated fuel and radwaste conditioning at Belgoprocess site: an overview. Retrieval of wastes from interim storage silos at Sellafield. Outline of the fire and explosion of the bituminization facility and the activities of the investigation committee (STAIJAERI). The fire and explosion incident of the bituminization facility and the lessons learned from the incident. Study on the scenario of the fire incident and related analysis. Study on the scenario of the explosion incident and related analysis. Accident investigation board report on the May 14, 1997 chemical explosion at the plutonium reclamation facility, Hanford site, Richland, Washington. Dry interim storage of spent nuclear fuel elements in Germany. Safe and effective system for the bulk receipt and storage of light water reactor fuel prior to reprocessing. Receiving and storage of glass canisters at vitrified waste storage center of Japan Nuclear Fuel Ltd. Design and operational experience of dry cask storage systems. Sellafield MOX plant; Plant safety design (BNFL). The assessment of fault studies for intermediate term waste storage facilities within the UK nuclear regulatory regime. Non-active and active commissioning of the thermal oxide

  3. Economics of National Waste Terminal Storage Spent Fuel Pricing Study

    International Nuclear Information System (INIS)

    1978-05-01

    The methodology for equitably pricing commercial nuclear spent fuel management is developed, and the results of four sample calculations are presented. The spent fuel management program analyzed places encapsulated spent fuel in bedded salt while maintaining long-term retrievability. System design was reasonable but not optimum. When required, privately-owned Away From Reactor (AFR) storage is provided and the spent fuel placed in AFR storage is eventually transported to final storage. Applicable Research and Development and Government Overhead are included. The cost of each component by year was estimated from the most recent applicable data source available. These costs were input to the pricing methodology to establish a one-time charge whose present value exactly recovered the present value of the expenditure flow. The four cases exercised were combinations of a high and a low quantity of spent fuel managed, with a single repository (venture) or a multiple repository (campaign) approach to system financial structure. The price for spent fuel management calculated ranged from 116 to 152 dollars (1978) per kilogram charged initially to the reactor. The effect of spent fuel receiving rate on price is illustrated by the fact that the extremes of price did not coincide with the cases having the extremes of undiscounted cost. These prices for spent fuel management are comparable in magnitude to other fuel cycle costs. The range of variation is small because of compensating effects, i.e., additional costs for high early deliveries (AFR and transportation) versus lower present value of future revenue for later delivery cases. The methodology contains numerous conservative assumptions, provisions for contingencies, and covers the complete set of spent fuel management expenses

  4. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    International Nuclear Information System (INIS)

    McDeavitt, Sean

    2016-01-01

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  5. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  6. American proposals for long range storage of irradiated fuel

    International Nuclear Information System (INIS)

    Sugier, Annie

    1978-01-01

    The American politics of irradiated fuel management is reviewed, the short-range storage of huge amounts of wastes being the fundamental problem. Two steps are considered: the ''At the Reactor'' storage, ensured by the electricity companies, and the ''Away From Reactor'' storage on the DOE's responsibility. A technical and economical study has been carried out in order to estimate the cost of the AFR provisory storage and a project of taxation has been established on this basis [fr

  7. American proposals for long range storage of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sugier, A [CEA, 75 - Paris (France). Dept. des Programmes

    1978-12-01

    The American politics of irradiated fuel management is reviewed, the short-range storage of huge amounts of wastes being the fundamental problem. Two steps are considered: the ''At the Reactor'' storage, ensured by the electricity companies, and the ''Away From Reactor'' storage on the DOE's responsibility. A technical and economical study has been carried out in order to estimate the cost of the AFR provisory storage and a project of taxation has been established on this basis.

  8. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-07

    ...] RIN 3150-AI75 List of Approved Spent Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1 AGENCY...), NUHOMS[supreg] HD System listing within the ``List of Approved Spent Fuel Storage Casks'' to include... Modular Storage System for Irradiated Nuclear Fuel. Docket Number: 72-1030. Certificate Expiration Date...

  9. Deriving Area-storage Curves of Global Reservoirs

    Science.gov (United States)

    Mu, M.; Tang, Q.

    2017-12-01

    Basic information including capacity, dam height, and largest water area on global reservoirs and dams is well documented in databases such as GRanD (Global Reservoirs and Dams), ICOLD (International Commission on Large Dams). However, though playing a critical role in estimating reservoir storage variations from remote sensing or hydrological models, area-storage (or elevation-storage) curves of reservoirs are not publicly shared. In this paper, we combine Landsat surface water extent, 1 arc-minute global relief model (ETOPO1) and GRanD database to derive area-storage curves of global reservoirs whose area is larger than 1 km2 (6,000 more reservoirs are included). First, the coverage polygon of each reservoir in GRanD is extended to where water was detected by Landsat during 1985-2015. Second, elevation of each pixel in the reservoir is extracted from resampled 30-meter ETOPO1, and then relative depth and frequency of each depth value is calculated. Third, cumulative storage is calculated with increasing water area by every one percent of reservoir coverage area and then the uncalibrated area-storage curve is obtained. Finally, the area-storage curve is linearly calibrated by the ratio of calculated capacity over reported capacity in GRanD. The derived curves are compared with in-situ reservoir data collected in Great Plains Region in US, and the results show that in-situ records are well captured by the derived curves even in relative small reservoirs (several square kilometers). The new derived area-storage curves have the potential to be employed in global monitoring or modelling of reservoirs storage and area variations.

  10. Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA

    Directory of Open Access Journals (Sweden)

    José Luis Fuentes-Bargues

    2017-06-01

    Full Text Available The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA. Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain. HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants.

  11. Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA.

    Science.gov (United States)

    Fuentes-Bargues, José Luis; González-Cruz, Mª Carmen; González-Gaya, Cristina; Baixauli-Pérez, Mª Piedad

    2017-06-30

    The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP) and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA). Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain). HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants.

  12. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  13. Design and fabrication of transport/storage packaging for spent fuels

    International Nuclear Information System (INIS)

    Nagahama, Hayao; Kakunai, Haruo

    1989-01-01

    Dry storage in containers is one of several methods for storing spent fuel dischaged from nuclear power plants. Kobe Steel and Transnucleaire (France) have jointly developed large-capacity, safe transport/storage packaging for use in this storage method. This paper outlines the packaging, the manufacturing of a prototype model, and an active storage demonstration test involving the prototype model. (author)

  14. 75 FR 27463 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1; Correction

    Science.gov (United States)

    2010-05-17

    ... Fuel Storage Casks: NUHOMS[supreg] HD System Revision 1; Correction AGENCY: Nuclear Regulatory... fuel storage casks to add revision 1 to the NUHOMS HD spent fuel storage cask system. This action is... Federal Register on May 7, 2010 (75 FR 25120), that proposes to amend the regulations that govern storage...

  15. Regional spent fuel storage facility (RSFSF)

    International Nuclear Information System (INIS)

    Dyck, H.P.

    1999-01-01

    The paper gives an overview of the meetings held on the technology and safety aspects of regional spent fuel storage facilities. The questions of technique, economy and key public and political issues will be covered as well as the aspects to be considered for implementation of a regional facility. (author)

  16. Comparison of wet and dry storage of spent nuclear fuels

    International Nuclear Information System (INIS)

    Soederman, E.

    1998-06-01

    Technologies for interim storage of spent nuclear fuels are reviewed. Pros and cons of wet and dry storage are discussed. No conclusions about preferences for one or the other technologies can be made

  17. Dry storage of MTR spent fuel from the Argentine radioisotope production reactor RA-3

    International Nuclear Information System (INIS)

    Di Marco, A.; Gillaume, E.J.; Ruggirello, G.; Zaweruchi, A.

    1996-01-01

    The nuclear fuel elements of the RA-3 reactor consist in 19 rectangular fuel plates held in position by two lateral structural plates. The whole assembly is coupled to the lower nozzles that fits in the reactor core grid. The inner plates are 1.5 mm thick, 70.5 mm wide and 655 mm long and the outer plates are 100 mm longer. The fuel plates are formed by a core of an AI-U alloy co-laminated between two plates of Al. Enrichment is 90% 235 U. After being extracted from the reactor, the fuel elements have been let to cool down in the reactor storage pool and finally moved to the storage facility. This facility is a grid of vertical underground channels connected by a piping system. The system is filled with processed and controlled water. At the present the storage capacity of the facility is near to be depleted and some indications of deterioration of the fuel elements has been detected. Due to the present status of the facility and the spent fuel stored there, a decision has been taken to proceed to modify the present underwater storage to dry storage. The project consist in: a) Decontamination and conditioning of the storage channels to prepare them for dry storage. b) Disassembly of the fuel elements in hot cells in order to can only the active fuel plates in an adequate tight canister. c) The remnant structural pieces will be treated as low level waste. (author). 10 figs

  18. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  19. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  20. Creep and shrinkage analysis for concrete spent fuel dry storage module

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)], E-mail: zhangd@aecl.ca

    2009-07-01

    CANDU reactors are designed in Canada and are built and operated worldwide to produce electricity economically with no emission of green house gases. This paper presents creep and shrinkage analysis for a concrete spent fuel dry storage module of a CANDU nuclear power plant. Creep and shrinkage analysis was performed using a method outlined in American Concrete Institute (ACI) code, and then the creep and shrinkage strains were analyzed in a finite element model to obtain the structural behavior of the concrete module. This demonstrated that the creep and shrinkage analysis for concrete spent fuel dry storage is reasonable. AECL's spent fuel dry storage module is adequate to resist the time-dependent effects due to creep and shrinkage of concrete. (author)

  1. Creep and shrinkage analysis for concrete spent fuel dry storage module

    International Nuclear Information System (INIS)

    Zhang, D.

    2009-01-01

    CANDU reactors are designed in Canada and are built and operated worldwide to produce electricity economically with no emission of green house gases. This paper presents creep and shrinkage analysis for a concrete spent fuel dry storage module of a CANDU nuclear power plant. Creep and shrinkage analysis was performed using a method outlined in American Concrete Institute (ACI) code, and then the creep and shrinkage strains were analyzed in a finite element model to obtain the structural behavior of the concrete module. This demonstrated that the creep and shrinkage analysis for concrete spent fuel dry storage is reasonable. AECL's spent fuel dry storage module is adequate to resist the time-dependent effects due to creep and shrinkage of concrete. (author)

  2. 75 FR 33736 - List of Approved Spent Fuel Storage Casks: MAGNASTOR System, Revision 1

    Science.gov (United States)

    2010-06-15

    ... Fuel Storage Casks: MAGNASTOR System, Revision 1 AGENCY: Nuclear Regulatory Commission. ACTION... storage cask regulations by revising the NAC International, Inc. (NAC), MAGNASTOR System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No. 1 to Certificate of...

  3. 105-N Fuel Storage Basin dewatering conceptual plan

    International Nuclear Information System (INIS)

    Schilperoort, D.L.

    1996-11-01

    This conceptual plan discusses the processes that will be used for draining and disposing of water from the 105-N Fuel Storage Basin (N Basin), and includes a description of the activities to control surface contamination and potential high dose rates encountered during dewatering. The 105-N Fuel Storage Basin is located in the 100-N Area of the Hanford Site in Richland, Washington. The processes for water disposal include water filtration, water sampling and analysis, tanker loading and unloading, surface decontamination and sealing, and clean out and disposal of residual debris and sediments during final pumping to remove the N Basin water. Water disposal is critical for the deactivation of N Reactor. A Memorandum of Understanding (MOU) between the US Department of Energy (DOE) Environmental Restoration (ER) Program and DOE Waste Management (WM) Program establishes the 200 East Effluent Treatment Facility (ETF) as the final treatment and disposal site for N Basin water and identifies pre-treatment requirements. This MOU states that water delivery will be completed no later than October 31, 1996, and will require a revision due to the current de-watering schedule date. The current MOU requires four micron filtration prior to shipment to ETF. The MOU revision for delivery date extension seeks to have the filtration limit increased to five microns, which eliminates the need for a second filter system and simplifies dewatering. For the purposes of this plan, it will be assumed that five micron filtration will be used

  4. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  5. Overview of technical Issues Associated with the Long Term Storage of Light Water Reactor used Nuclear Fuel

    International Nuclear Information System (INIS)

    Sorenson, Ken B.

    2014-01-01

    The nuclear power technical community is developing the technical basis for demonstrating the safety of storing used nuclear fuel for extended periods of time. The combination of reactor operations that off-load spent fuel to interim storage, coupled with delays in repository construction, has resulted in the expectation that storage periods may be for longer periods of time than originally intended. As more fuel continues to be off-loaded from operating reactors, the need for expanded interim storage also increases. As repository programs are delayed, interim storage requirements will likely exceed licensing term limits. To address these operational realities, there has been a concerted international effort to identify and prioritize the technical issues that need to be addressed in order to demonstrate the safety of storing used nuclear fuel for extended periods of time. Since this is an international effort, different storage systems, regulations, and policies need to be considered. This results in differences in technical issues, as well as differences in priorities. However, this effort also identifies important commonalities in some technical areas that need to be addressed. A broad-based international evaluation of these technical issues provides a better understanding of technical concerns as they relate to individual storage systems and specific national regulatory frameworks. While there are several international activities underway that are focused on long term storage, this paper will discuss the activities of the Electric Power Research Institute (EPRI)/Extended Storage Collaboration Program (ESCP) International Subcommittee. A status report detailing the identification and prioritization of the technical issues was presented at the PSAM11 Conference in June 2012 (1). Since that conference, a final report has been completed by the EPRI/ESCP International Subcommittee (2). This paper will provide important results of the final report as well as

  6. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  7. Organic Carbon Storage in China's Urban Areas

    Science.gov (United States)

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  8. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  9. Design ampersand operational experience of the NUHOMS reg-sign-24P spent fuel storage system

    International Nuclear Information System (INIS)

    McConaghy, W.J.; Lehnert, R.A.; Rasmussen, R.W.

    1991-01-01

    The NUHOMS reg-sign Spent Fuel Storage System provides a safe and economical method for the dry storage of spent fuel assemblies either at an at-reactor Independent Spent Fuel Storage Installation (ISFSI) or at a centralized away-from-reactor (AFR) storage facility. The system consists of three major safety related components: a dry shielded canister (DSC) which provides a high integrity containment boundary and a controlled storage environment for the fuel; a reinforced concrete horizontal storage module (HSM) which houses the stored DSC and provides radiation shielding, protection against natural phenomena, and an efficient means for decay heat removal; and a transfer cask which provides for the safe shielded transfer of the DSC from the plant spent fuel pool to the HSM. The NUHOMS reg-sign system is designed and licensed to the requirements of 10 CFR 72 and ANS/ANSI 57.9 for ISFSIs

  10. Expanded spent fuel storage project at Yankee Atomic Electric Plant

    International Nuclear Information System (INIS)

    Chin, S.L.

    1980-01-01

    A detailed discussion on the project at the Yankee Rowe power reactor for expanding the capacity of the at-reactor storage pool by building double-tier storage racks. Various alternatives for providing additional capacity were examined by the operators. Away-from-reactor alternatives included shipment to existing privately owned facilities, a regional independent storage facility, and transshipments to other New England nuclear power plant pools. At-reactor alternatives evaluated included a new pool modification of the existing structure and finally, modification of the spent fuel pit. The establishment of a federal policy precluding transshipment of spent fuel prohibited the use of off-site alternatives. The addition of another pool was too expensive. The possibility of modifying an existing on-site structure required a new safety evaluation by the regulatory group with significant cost and time delays. Therefore, the final alternative - utilizing the existing spent fuel pool with some modification - was chosen due to cost, licensing possibility, no transport requirements, and the fact that the factors involved were mainly under the control of the operator. Modification of the pool was accomplished in phases. In the first phase, a dam was installed in the center of the pool (after the spent fuel was moved to one end). In the second phase, the empty end of the pool was drained and lined with stainless steel and the double-tier rack supports were added. In the third phase, the pool was refilled and the dam was removed. Then the spent fuel was moved into the completed end. In the fourth phase, the dam was replaced and the empty part of the pool was drained. The liner and double-tier rack supports were installed, the pool was refilled, and the dam was removed.The project demonstrated that the modification of existing spent fuel fuel pools for handling double-tier fuel racks is a viable solution for increasing the storage capacity at the reactor

  11. Department of Energy report on fee for spent nuclear fuel storage and disposal services

    International Nuclear Information System (INIS)

    1980-10-01

    Since the July 1978 publication of an estimated fee for storage and disposal, several changes have occurred in the parameters which impact the spent fuel fee. DOE has mounted a diversified program of geologic investigations that will include locating and characterizing a number of potential repository sites in a variety of different geologic environments with diverse rock types. As a result, the earliest operation date of a geologic repository is now forecast for 1997. Finally, expanded spent fuel storage capabilities at reactors have reduced the projected quantities of fuel to be stored and disposed of. The current estimates for storage and disposal are presented. This fee has been developed from DOE program information on spent fuel storage requirements, facility availability, facility cost estimates, and research and development programs. The discounted cash flow technique has used the most recent estimates of cost of borrowing by the Federal Government. This estimate has also been used in calculating the Federal charge for uranium enrichment services. A prepayment of a percentage of the storage portion of the fee is assumed to be required 5 years before spent fuel delivery. These funds and the anticipated $300 million in US Treasury borrowing authority should be sufficient to finance the acquisition of storage facilities. Similarly, a prepayment of a percentage of the disposal portion would be collected at the same time and would be used to offset disposal research and development expenditures. The balance of the storage and disposal fees will be collected upon spent fuel delivery. If disposal costs are different from what was estimated, there will be a final adjustment of the disposal portion of the fee when the spent fuel is shipped from the AFR for permanent disposal. Based on current spent fuel storage requirements, at least a 30 percent prepayment of the fee will be required

  12. Storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Machado, O.J.; Moore, J.T.; Cooney, B.F.

    1989-01-01

    This patent describes a rack for storing nuclear fuel assemblies. The rack including a base, an array of side-by-side fuel-storage locations, each location being a hollow body of rectangular transverse cross section formed of metallic sheet means which is readily bent, each body having a volume therein dimensioned to receive a fuel assembly. The bodies being mounted on the base with each body secured to bodies adjacent each body along welded joints, each joint joining directly the respective contiguous corners of each body and of bodies adjacent to each body and being formed by a series of separate welds spaced longitudinally between the tops and bottoms of the secured bodies along each joint. The spacings of the separate welds being such that the response of the rack when it is subjected to the anticipated seismic acceleration of the rack, characteristic of the geographical regions where the rack is installed, is minimized

  13. Safety analysis of LWR irradiated fuel element pool storages before reprocessing

    International Nuclear Information System (INIS)

    Lefort, G.; Leclerc, J.; Hoffman, A.; Frejaville, C.; Domage, M.

    1984-01-01

    The protection of operators and environment requires imperatively that the safety must be taken into account as early as the design of the pools takes place and working conditions are defined. The analysis of criticality, irradiation, contamination, external or internal aggression hazards... allows to draw the main constraints which must be retained in the sizing of these pools: the criticality risk needs distances between fuel elements which results in a not very good utilization of the available area which leads to the utilization of neutron shieldings or requires a safe knowledge of the fuel elements burn up; the irradiation and contamination risks require a special quality of the pool water (temperature, activity, purity...) a good tightness of the basins to locate and to isolate the dubions fuel elements; the external or internal aggression risks such as earthquakes, missiles or loads drops, explosion, imply the civil engineering and involve the use of special technical devices. A brief presentation of the pool storages of the next UP2-800 and UP3 A reprocessing plants allows to show how the requirement drawn by safety analysis have been enforced, while carrying out civil engineering works without equivalent in the world, in this field. The foreseeable evolution of the uranium enrichment rate and burn-up of next PWR fuel elements have an effect upon the risk evaluations; a device apparatus, developed in CEA, for the measurement of burn up and cooling time is presented. At least, a short presentation of the mechanical structure durability studies of the reception and storage spent fuels installations are allowed to improve our knowledge in working conditions and in case of serious accidents

  14. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    International Nuclear Information System (INIS)

    Rashid, J.; Machiels, A.

    2001-01-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  15. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J. [ANATECH Research Corp., San Diego, CA (United States); Machiels, A. [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  16. Dry spent fuel storage experience at overseas nuclear stations focus USA

    International Nuclear Information System (INIS)

    Bradley, T. L.; Kumar, S.; Marcelli, D. G.

    1997-01-01

    This paper provides a summary of US dry spent fuel storage experience, including application of this experience outside the United States. Background information on the US nuclear and spent fuel storage industry is provided as a basis for discussing the various types of options and systems available. An overview of technology options is presented, including systems being used and/or considered by the US government and private sector, as well as a discussion of overall system design, licensing and operation. Factors involved in selecting the best available technology option for a specific site or group of sites are presented, along with a typical timeline for project implementation. Cross-geographical use of technologies under different regulatory and technological regimes is also discussed. The paper concludes that dry storage is safe and reliable based on a successful ten year period. The information presented may be considered for use in the development of dry spent fuel storage in Korea and other countries. (author)

  17. Spent-fuel-storage requirements: an update of DOE/RL-82-1

    International Nuclear Information System (INIS)

    1983-01-01

    Spent fuel storage requirements as projected through the year 2000 for US light water reactor (LWR) nuclear power plants were calculated using information supplied by the utilities reflecting plant status as of September 30, 1982. Projections through the year 2000 combined fuel discharge projections of the utilities with the assumed discharges of typical reactors required to meet the nuclear capacity of 132 gigawatts electrical (GWe) projected by the Energy Information Administration (EIA) for the year 2000. Three cases were developed and are summarized. A reference case, or maximum at-reactor (AR) capacity case, assumes that all reactor storage pools are increased to their maximum capacities, as estimated by the utilities, for spent fuel storage utilizing currently licensed technologies. Rod consolidation and dry storage technologies were not considered. The reference case assumes no transshipments between pools except as currently licensed by the Nuclear Regulatory Commission (NRC). This case identifies an initial requirement for 13 metric tons uranium (MTU) of additional storage in 1984, and a cumulative requirement for 13,090 MTU additional storage in the year 2000. The reference case is bounded by two alternative cases. One, a current capacity case, assumes that only those pool storage capacity increases currently planned by the operating utilities will occur. The second, or maximum capacity with transshipment case, assumes maximum development of pool storage capacity as described above and also assumes no constraints on transshipment of spent fuel among pools of reactors of like type (BWR) within a given utility. In all cases, a full core discharge capability is assumed to be maintained for each reactor, except that only one FCR is maintained when two reactors share a common pool. 1 figure, 12 tables

  18. 78 FR 63375 - List of Approved Spent Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS® Cask System

    Science.gov (United States)

    2013-10-24

    ... Fuel Storage Casks: Transnuclear, Inc. Standardized NUHOMS[supreg] Cask System AGENCY: Nuclear...] Cask System listing within the ``List of Approved Spent Fuel Storage Casks'' to include Amendment No..., Inc. Standardized NUHOMS[supreg] Cask System listing within the ``List of Approved Spent Fuel Storage...

  19. Combined storage system for LWR spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Baxter, B.J.; Ganley, J.T.; Washington, J.A.

    1983-01-01

    The MODREX storage system consists of four basic elements: (1) the storage canister, (2) the storage module, (3) the storage cask, and (4) the transport cask. The storage canister is the heart of the system and, when used in combination with the module or either of the casks, allows the MODREX system to respond quickly to varied storage system requirements. The MODREX system can be used to hold either spent fuel assemblies or canistered solidified HLW. The ability to combine a basic storage canister with either a concrete module or a metal cask provides flexibility to meet a wide range of storage requirements. The spent fuel is stored in a dry, inert atmosphere, which essentially eliminates corrosion or deterioration of the cladding during extended storage periods. The storage canister and concrete storage module provide additional barriers against radioactivity release, enhancing long-term safety. Heat dissipation is passive, eliminating the need for additional emergency cooling systems or special redundancy. Modular, expandable construction permits minimum initial investment and capital carrying charges; additional capacity is built and paid for only as it is needed, retaining flexibility. 6 references, 2 figures, 1 table

  20. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

  1. Baseline descriptions for LWR spent fuel storage, handling, and transportation

    International Nuclear Information System (INIS)

    Moyer, J.W.; Sonnier, C.S.

    1978-04-01

    Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables

  2. Study for the selection of a supplementary spent fuel storage facility for KANUPP

    International Nuclear Information System (INIS)

    Ahmed, W.; Iqbal, M.J.; Arshad, M.

    1999-01-01

    Steps taken for construction of the spent fuel facility of Karachi Nuclear Power Plant (KANUPP) are the following: choice of conceptual design and site selection; preliminary design and preparation of Preliminary Safety Analysis Report (PSAR); Construction of the facility and preparation of PSAR; testing/commissioning and loading of the storage facility. Characterisation of the spent fuel is essential for design of the storage facility. After comparison of various storage types, it seems that construction of dry storage facility based on concrete canisters at KANUPP site is a suitable option to enhance the storage capacity

  3. On the neutronics of spent fuel storage pools

    International Nuclear Information System (INIS)

    Caro, R.; Martinez-Val, J.M.; Donoso, E.

    1980-01-01

    The neutron physics of light-water-reactor fuel elements storage is analyzed for reviewing the calculation methodologies and pointing out its characteristics, specially those related to the safety analysis report. Some numerical results are presented, involving both clean and poisoned storage pools. Besides the conventional criticality calculations in nominal and accidental circumstances, the so-called optimum moderation phenomenon is dealt with special emphasis. (author)

  4. The status of spent fuel storage in the UK

    International Nuclear Information System (INIS)

    Dunn, M.J.; Topliss, I.R.

    1999-01-01

    Nuclear generating capacity in the UK is static with no units currently under construction. There are three main nuclear fuel types used in the UK for Magnox reactors, AGRs and PWRs. All Magnox fuel will ultimately be reprocessed following a short period of interim storage. AGR fuel will either be reprocessed or long term stored in ponds. PWR fuel will be stored underwater at the reactor site for the foreseeable future, with no decision as yet made to its ultimate management route. (author)

  5. Safety research activities for Japanese regulations of spent fuel interim storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Japan Nuclear Energy Safety Organization (JNES) carries out (a) preparation of technical documents, (b) technical evaluations of standards (prepared by academic societies), etc. and (c) other R and D activities, to support Nuclear Regulation Authority (NRA: which controls the regulations for Spent Fuel Interim Storage Facilities). In 2012 fiscal year, JNES carried out dynamic test of spent fuel to examine the integrity of spent fuel under cask drop accidents, and preparation for PWR spent fuel storage test to prove long term integrity of spent fuel and cask itself. Some of these tests will be also carried out in 2013 fiscal year and after. (author)

  6. Subsurface storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    Richards, L.M.; Szulinski, M.J.

    1979-01-01

    The Atlantic Richfield Company has developed the concept of storing spent fuel in dry caissons. Cooling is passive; safety and safeguard features appear promising. The capacity of a caisson to dissipate heat depends on site-specific soil characteristics and on the diameter of the caisson. It is estimated that approx. 2 kW can be dissipated in the length of one fuel element. Fuel elements can be stacked with little effect on temperature. A spacing of approx. 7.5 m (25 ft) between caissons appears rasonable. Business planning indicates a cost of approx. 0.2 mill/kWh for a 15-yr storage period. 12 figures, 4 tables

  7. Spent fuel storage requirements for nuclear utilities and OCRWM [Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Wood, T.W.

    1990-03-01

    Projected spent fuel generation at US power reactors exceeds estimated aggregate pool storage capacity by approximately 30,000 metric tons of uranium (MTU). Based on the current repository schedule, little of the spent fuel inventory will be disposed of prior to shutdown of existing reactors, and a large additional capacity for surface storage of spent fuel will be required, either at reactors or at a centralized DOE storage site. Allocation of this storage requirement across the utility-DOE interface, and the resulting implications for reactor sites and the performance of the federal waste management system, were studied during the DOE MRS System Study and again subsequent to the reassessment of the repository schedule. Spent fuel logistics and cost results from these analyses will be used in definition of spent fuel storage capacity requirements for the federal system. 9 refs., 8 figs., 1 tab

  8. Concept study for interim storage of research reactor fuel elements in transport and storage casks. Transport and storage licensing procedure for the CASTOR MTR 2 cask. Final report

    International Nuclear Information System (INIS)

    Weiss, M.

    2001-01-01

    As a result of the project, a concept was to be developed for managing spent fuel elements from research reactors on the basis of the interim storage technology existing in Germany, in order to make the transition to direct disposal possible in the long term. This final report describes the studies for the spent fuel management concept as well as the development of a transport and storage cask for spent fuel elements from research reactors. The concept analyses were based on data of the fuel to be disposed of, as well as the handling conditions for casks at the German research reactors. Due to the quite different conditions for handling of casks at the individual reactors, it was necessary to examine different cask concepts as well as special solutions for loading the casks outside of the spent fuel pools. As a result of these analyses, a concept was elaborated on the basis of a newly developed transport and storage cask as well as a mobile fuel transfer system for the reactor stations, at which a direct loading of the cask is not possible, as the optimal variant. The cask necessary for this concept with the designation CASTOR trademark MTR 2 follows in ist design the tried and tested principles of the CASTOR trademark casks for transport and interim storage of spent LWR fuel. With the CASTOR trademark MTR 2, it is possible to transport and to place into long term interim storage various fuel element types, which have been and are currently used in German research reactors. The technical development of the cask has been completed, the documents for the transport license as type B(U)F package design and for obtaining the storage license at the interim storage facility of Ahaus have been prepared, submitted to the licensing authorities and to a large degree already evaluated positively. The transport license of the CASTOR trademark MTR 2 has been issued for the shipment of VKTA-contents and FRM II compact fuel elements. (orig.)

  9. Technical, economic and institutional aspects of regional spent fuel storage facilities

    International Nuclear Information System (INIS)

    2005-11-01

    A particular challenge facing countries with small nuclear programmes is the preparation for extended interim storage and then disposal of their spent nuclear fuel. The costs and complications of providing for away-from-reactor storage facilities and/or geological repositories for relatively small amounts of spent fuel may be prohibitively high, motivating interest in regional solutions. This publication addresses the technical, economic and institutional aspects of regional spent fuel storage facilities (RSFSF) and is based on the results of a series of meetings on this topic with participants from IAEA Member States. Topics discussed include safety criteria and standards, safeguards and physical protection, fuel acceptance criteria, long term stability of systems and stored fuel, selection of site, infrastructure aspects, storage technology, licensing, operations, transport, decommissioning, as well as research and development. Furthermore the publication comprises economic, financial and institutional considerations including organizations and legal aspects followed by political and public acceptance and ethical considerations. Approaches and processes for implementation are discussed, as well as the overall benefits and risks of implementing a regional facility. It is illustrated that implementing a RSFSF facility would involve simultaneously addressing a wide range of diverse challenges. The appendix to this report tabulates the numerous issues that have been touched upon in the study. It appears, however, from the discussions that the challenges can in principle be met; the RSFSF concept is technically feasible and potentially economically viable. The technical committees producing this report did not identify any obvious institutional deficiencies that would prevent completion of such a project. Storing spent fuel in a few safe, reliable, secure facilities could enhance safeguards, physical protection and non-proliferation benefits. The committee also

  10. Pyramid mountain diesel fuel storage site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Brolmsa, M.; Sandau, C. [Jacques Whitford Environment Ltd., Burnaby, BC (Canada)

    2005-07-01

    Remediation activities during the decommissioning of a microwave tower facility where a tram line was used to transfer diesel fuel from the base of a mountain to its summit were described. As the site was leased from Parks Canada, federal guidelines were used to assess levels of contamination. Underground storage tanks (USTs) used for diesel storage had been replaced with aboveground storage tanks (AST) in 1994. Remediation was also complicated by the remote location and altitude of the site, as well as by extreme weather conditions. Hand auguring and test pitting were used at both the summit and base to allow characterization and preliminary delineation of impacted soils. A heavy lift helicopter was used to place demolition and excavation equipment on the summit. An excavator was used to remove hydrocarbon impacted soils. Following the remedial excavation for the summit diesel AST, residual soil impacts in excess of the applicable remediation guidelines were present at the bottom of the tank nest and under a floor slab. An environmental liner was installed, and a quantitative screening level risk assessment demonstrated the low level of risk for the area, as well as for waste oil impacted soils on the slope below the summit. Contaminants of potential concern were barium, zinc, naphthalene, and petroleum hydrocarbon fractions F1-F4. It was concluded that there are now no unacceptable ecological or human risks from residual impacts at the site. 1 tab., 19 figs.

  11. Dry storage facility for spent fuel or high-level wastes

    International Nuclear Information System (INIS)

    Geoffroy, J.; Dobremelle, M.; Fabre, J.C.; Bonnet, C.

    1989-01-01

    The French Atomic Energy Commission (CEA) has specific irradiated fuels which, due to their properties, cannot be reprocessed directly in existing industrial facilities. Accordingly, for the spent fuels from the EL4 and OSIRIS power plants, the CEA has been faced with the problem of selecting a process that will allow the storage of these materials under satisfactory technical and economic conditions. The authors discuss how three conditions must be satisfied to store irradiated fuels releasing heat: containment of radioactive materials, biological shielding, and thermal cooling to guarantee an acceptable temperature- level throughout. In view of the need for an interim storage facility using a simple cooling process requiring only minimal maintenance and monitoring, dry storage in a concrete vault cooled by natural convection was selected. This choice was made within the framework of a research and development program in which theoretical heat transfer investigations and mock-up tests confirmed the feasibility of cooling by natural convection

  12. Assessment of nitrogen as an atmosphere for dry storage of spent LWR fuel

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Knox, C.A.; White, G.D.

    1985-09-01

    Interim dry storage of spent light-water reactor (LWR) fuel is being developed as a licensed technology in the United States. Because it is anticipated that license agreements will specify dry storage atmospheres, the behavior of spent LWR fuel in a nitrogen atmosphere during dry storage was investigated. In particular, the thermodynamics of reaction of nitrogen compounds (expected to form in the cover gas during dry storage) and residual impurities (such as moisture and oxygen) with Zircaloy cladding and with spent fuel at sites of cladding breaches were examined. The kinetics of reaction were not considered it was assumed that the 20 to 40 years of interim dry storage would be sufficient for reactions to proceed to completion. The primary thermodynamics reactants were found to be NO 2 , N 2 O, H 2 O 2 , and O 2 . The evaluation revealed that the limited inventories of these reactants produced by the source terms in hermetically sealed dry storage systems would be too low to cause significant spent fuel degradation. Furthermore, the oxidation of spent fuel to degrading O/U ratios is unlikely because the oxidation potential in moist nitrogen limits O/U ratios to values less than UO/sub 2.006/ (the equilibrium stoichiometric form in equilibrium with moist nitrogen). Tests were performed with bare spent UO 2 fuel and nonirradiated UO 2 pellets (with no Zircaloy cladding) in a nitrogen atmosphere containing moisture concentrations greater than encountered under dry storage conditions. These tests were performed for at least 1100 h at temperatures as high as 380 0 C, where oxidation reactions proceed in a matter of minutes. No visible degradation was detected, and weight changes were negligible

  13. Thermal safety analysis of a dry storage cask for the Korean standard spent fuel - 16159

    International Nuclear Information System (INIS)

    Cha, Jeonghun; Kim, S.N.; Choi, K.W.

    2009-01-01

    A conceptual dry storage facility, which is based on a commercial dry storage facility, was designed for the Korea standard spent nuclear fuel (SNF) and preliminary thermal safety analysis was performed in this study. To perform the preliminary thermal analysis, a thermal analysis method was proposed. The thermal analysis method consists of 2 parts. By using the method, the surface temperature of the storage canister corresponding to the SNF clad temperature was calculated and the adequate air duct area was decided using the calculation result. The initial temperature of the facility was calculated and the fire condition and half air duct blockage were analyzed. (authors)

  14. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A.

    1998-01-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. Many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their 137 Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the 137 Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A 137 Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment

  15. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    Science.gov (United States)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  16. Development of Methodology and Field Deployable Sampling Tools for Spent Nuclear Fuel Interrogation in Liquid Storage

    International Nuclear Information System (INIS)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-01-01

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI

  17. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI

  18. Extended used Fuel Storage: EPRI Perspective and Collaboration Initiatives

    International Nuclear Information System (INIS)

    Kessler, John; Waldrop, Keith

    2014-01-01

    This paper describes three main activities the Electric Power Research Institute (EPRI) is undertaking to establish the technical bases for extended (long-term) storage: the Extended Storage Collaboration Program (ESCP); inspection of stainless steel (SS) used fuel dry storage canisters currently in service; and a proposed data collection from a full-scale, bolted lid, metal cask containing high burnup (>45 GWd/MTU) used fuel (the 'Demo'). ESCP is a voluntary organization focused on information sharing and providing the opportunity for more formal collaboration. The SS canister inspection program involves visual examination, canister surface temperature measurements, and collection of contaminants accumulating on the canister surfaces during operation. The Demo program involves the use of a specially instrumented lid allowing for the introduction of thermocouples inside the loaded cask as was as providing the ability to collect cask cavity gas samples. (authors)

  19. Evaluation of strategies for end storage of high-level reactor fuel

    International Nuclear Information System (INIS)

    2001-01-01

    This report evaluates a national strategy for end-storage of used high-level reactor fuel from the research reactors at Kjeller and in Halden. This strategy presupposes that all the important phases in handling the high-level material, including temporary storage and deposition, are covered. The quantity of spent fuel from Norwegian reactors is quite small. In addition to the technological issues, ethical, environmental, safety and economical requirements are emphasized

  20. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  1. Bruce used fuel dry storage project evolution from Pickering to Bruce

    International Nuclear Information System (INIS)

    Young, R.E.

    1996-01-01

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container's capacity increased to 600 bundles; the container's lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs

  2. Compact approach to long-term monitored retrievable storage of spent fuel

    International Nuclear Information System (INIS)

    Muir, D.W.

    1986-01-01

    We examine a new approach to monitored retrievable storage (MRS) that is extremely compact in terms of total land use and may offer increased security and reduced environmental impact, relative to current designs. This approach involves embedding the spent fuel assemblies in monolithic blocks of metallic aluminum. While this would clearly require increased effort in the spent-fuel packaging phase, it would offer in return the above-mentioned environmental advantages, plus the option of easily extending the surface-storage time scale from several years to several decades if a need for longer storage times should arise in the future

  3. Bruce used fuel dry storage project evolution from Pickering to Bruce

    Energy Technology Data Exchange (ETDEWEB)

    Young, R E [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1997-12-31

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container`s capacity increased to 600 bundles; the container`s lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs.

  4. Seismic analysis of spent nuclear fuel storage racks

    International Nuclear Information System (INIS)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B.; Harstead, G.A.; Marquet, F.

    1996-01-01

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. No structural benefit from the BSS is assumed. This paper describes the methods used to perform seismic analysis of high density spent fuel storage racks. The sensitivity of important parameters such as the effect of variation of coefficients of friction between the rack legs and the pool floor and fuel loading conditions (consolidated and unconsolidated) are also discussed in the paper. Results of this study are presented. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, and the type of the seismic event. This paper presents several of the mathematical models usually used. Friction cannot be precisely predicted, so a range of friction coefficients is assumed. The range assumed for the analysis is 0.2 to 0.8. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are normally analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies

  5. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  6. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage

    International Nuclear Information System (INIS)

    In, Wangkee; Kwack, Youngkyun; Kook, Donghak; Koo, Yanghyun

    2014-01-01

    A dry storage system is used for the interim storage of spent fuel prior to permanent depository and/or recycling. The spent fuel is initially stored in a water pool for more than 5 years at least after dispatch from the reactor core and is transported to dry storage. The dry cask contains a multiple number of spent fuel assemblies, which are cooled down in the spent fuel pool. The dry cask is usually filled up with helium gas for increasing the heat transfer to the environment outside the cask. The dry storage system has been used for more than a decade in United States of America (USA) and the European Union (EU). Korea is also developing a dry storage system since its spent fuel pool is anticipated to be full within 10 years. The spent fuel will be stored in a dry cask for more than 40 years. The integrity and safety of spent fuel are important for long-term dry storage. The long-term storage will experience the degradation of spent fuel such as the embrittlement of fuel cladding, thermal creep and hydride reorientation. High burn-up fuel may expedite the material degradation. It is known that the cladding temperature has a strong influence on the material degradation. Hence, it is necessary to accurately predict the local distribution of the cladding temperature using the Computational Fluid Dynamics (CFD) approach. The objective of this study is to apply the CFD method for predicting the three-dimensional distribution of fuel temperature in a dry cask. This CFD study simulated the dry cask for containing the 21 fuel assemblies under development in Korea. This paper presents the fluid velocity and temperature distribution as well as the fuel temperature. A two-step CFD approach was applied to simulate the heat and fluid flow in a dry storage of 21 spent fuel assemblies. The first CFD analysis predicted the helium flow and temperature in a dry cask by a assuming porous body of the spent fuel. The second CFD analysis was to simulate a spent fuel assembly in the

  7. Conceptual design of an interim dry storage system for the Atucha nuclear power plant spent fuels

    International Nuclear Information System (INIS)

    Nassini, Horacio E.P.; Fuenzalida Troyano, C.S.; Bevilacqua, Arturo M.; Bergallo, Juan E.

    2005-01-01

    The Atucha I nuclear power station, after completing the rearrangement and consolidation of the spent fuels in the two existing interim wet storage pools, will have enough room for the storage of spent fuel from the operation of the reactor till December 2014. If the operation is extended beyond 2014, or if the reactor is decommissioned, it will be necessary to empty both pools and to transfer the spent fuels to a dry storage facility. This paper shows the progress achieved in the conceptual design of a dry storage system for Atucha I spent fuels, which also has to be adequate, without modifications, for the storage of fuels from the second unity of the nuclear power station, Atucha II, that is now under construction. (author) [es

  8. Scheme of higher-density storage of spent nuclear fuel in Chernobyl NPP interim storage facility no. 1

    International Nuclear Information System (INIS)

    Britan, P.M.

    2008-01-01

    On 29. March 2000 the Cabinet of Ministers of Ukraine issued a decree prescribing that the last operating unit of Chernobyl NPP be shut down before its design lifetime expiry. In accordance with the Contract concluded on 14 June 1999 between the National Energy-generating Company 'Energoatom' and the Consortium of Framatome, Campenon Bernard-SGE and Bouygues, in order to store the spent ChNPP fuel a new interim dry storage facility (ISF-2) for spent ChNPP fuel would be built. Currently the spent nuclear fuel (spent fuel assemblies - SFAs) is stored in reactor cooling pools and in the reactors on Units 1, 2, 3, as well as in the wet Interim Storage Facility (ISF-1). Taking into account the expected delay with the commissioning of ISF-2, and in connection with the scheduled activities to build the New Safe Confinement (including the taking-down of the existing ventilation stack of ChNPP Units 3 and 4) and the expiry of the design operation life of Units 1 and 2, it is expedient to remove the nuclear fuel from Units 1, 2 and 3. This is essential to improve nuclear safety and ensure that the schedule of construction of the New Safe Confinement is met. The design capacity of ISF-1 (17 800 SFAs) is insufficient to store all SFAs (21 284) currently on ChNPP. A technically feasible option that has been applied on other RBMK plants is denser storage of spent nuclear fuel in the cooling ponds of the existing ISF-1. The purpose of the proposed modifications is to introduce changes to the ISF-1 design supported by necessary justifications required by the Ukrainian codes with the objective of enabling the storage of additional SFAs in the existing storage space (cooling pools). The need for the modification is caused by the requirement to remove nuclear fuel from the ChNPP units as soon as possible, before the work begins to decommission these units, as well as to create safe conditions for the construction of the New Safe Confinement over the existing Shelter Unit. (author)

  9. Operation and maintenance of spent fuel storage and transportation casks/containers

    International Nuclear Information System (INIS)

    2007-01-01

    Member States have a growing need for casks for spent fuel storage and transportation. A variety of casks has been developed and is in use at an increasing number of sites. This has resulted in an accumulation of experience that will provide valuable information for other projects in spent fuel management. This publication provides a comprehensive review of information on the cask operation and maintenance associated with spent fuel storage. It draws upon generic knowledge from industrial experience and applications and is intended to serve as a basis for better planning and implementation in future projects

  10. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear Regulatory Commission. ACTION: Proposed... spent fuel storage cask regulations by revising the Holtec International HI-STORM 100 dry cask storage... Amendment No. 8 to CoC No. 1014 and does not include other aspects of the HI-STORM 100 dry storage cask...

  11. Seismic upgrading of the spent fuel storage building at Kozloduy NPP

    International Nuclear Information System (INIS)

    Alexandrov, A.; Borov, V.; Jordanov, M.; Karamanski, T.; Mihaylov, K.

    2001-01-01

    The Spent Fuel Storage Building at Kozloduy NPP site has been analysed for new review level earthquake with 0.2 g peak ground acceleration (compared to the initial design basis earthquake with 0.1 g PGA). The preliminary seismic analysis of the existing building structure using the 5% site specific response spectrum showed the need of seismic structural upgrading. Two upgrading concepts were evaluated on the basis of several factors. The main factor considered was preventing the collapse of the hall structure and the travelling cranes on the fuel storage area during and after a SSE. A three dimensional finite element model was created for the investigation of the seismic response of the existing structure and for the design of the building upgrading. The modelling of the heavy travelling crane and its sub-crane structure was one of the key points. Different configurations of the new upgrading and strengthening structures were investigated. Some interesting conclusions have been drawn from the experience in analysing and upgrading of such a complex industrial structure, comprised of elements with substantial differences in material, rigidity, construction and general behaviour. (author)

  12. Criticality and Its Uncertainty Analysis of Spent Fuel Storage Rack for Research Reactor

    International Nuclear Information System (INIS)

    Han, Tae Young; Park, Chang Je; Lee, Byung Chul

    2011-01-01

    For evaluating the criticality safety of spent fuel storage rack in an open pool type research reactor, a permissible upper limit of criticality should be determined. It can be estimated from the criticality upper limit presented by the regulatory guide and an uncertainty of criticality calculation. In this paper, criticalities for spent fuel storage rack are carried out at various conditions. The calculation uncertainty of MCNP system is evaluated from the calculation results for the benchmark experiments. Then, the upper limit of criticality is determined from the uncertainties and the calculated criticality of the spent fuel storage rack is evaluated

  13. Czech interim spent fuel storage facility: operation experience, inspections and future plans

    International Nuclear Information System (INIS)

    Fajman, V.; Bartak, L.; Coufal, J.; Brzobohaty, K.; Kuba, S.

    1999-01-01

    The paper describes the situation in the spent fuel management in the Czech Republic. The interim Spent Fuel Storage Facility (ISFSF) at Dukovany, which was commissioned in January 1997 and is using dual transport and storage CASTOR - 440/84 casks, is briefly described. The authors deal with their experience in operating and inspecting the ISFSF Dukovany. The structure of the basic safety document 'Limits and Conditions of Normal Operation' is also mentioned, including the experience of the performance. The inspection activities focused on permanent checking of the leak tightness of the CASTOR 440/84 casks, the maximum cask temperature and inspections monitoring both the neutron and gamma dose rate as well as the surface contamination. The results of the inspections are mentioned in the presentation as well. The operator's experience with re-opening partly loaded and already dried CASTOR-440/84 cask, after its transport from NPP Jaslovske Bohunice to the NPP Dukovany is also described. The paper introduces briefly the concept of future spent fuel storage both from the NPP Dukovany and the NPP Temelin, as prepared by the CEZ. The preparatory work for the Central Interim Spent Nuclear Fuel Storage Facility (CISFSF) in the Czech Republic and the information concerning the planned storage technology for this facility is discussed in the paper as well. The authors describe the site selection process and the preparatory steps concerning new spent fuel facility construction including the Environmental Impact Assessment studies. (author)

  14. Study on increasing spent fuel storage capacity at Juragua NPP

    International Nuclear Information System (INIS)

    Guerra Valdes, R.; Lopez Aldama, D.; Rodriguez Gual, M.; Garcia Yip, F.

    1999-01-01

    The delay in decision about the final disposal of the spent fuel, led to longer interim storage. The reracking og the storage pools was an economical and feasible option to increase the storage capacity on the site. Reracking of the storage facility led to the analysis of the new conditions for criticality, shielding, residual heat removal and mechanical loads over the structures. This paper includes a summary of the studies on criticality and dose rate changes in the vicinity of the storage pool of Juragua NPP

  15. NUHOMS modular spent-fuel storage system: Design, licensing and construction

    International Nuclear Information System (INIS)

    McLean, J.C.

    1990-08-01

    Carolina Power ampersand Light Company, the US Department of Energy, and the Electric Power Research Institute are participating in a cooperative program to demonstrate the NUHOMS (NUTECH Horizontal Modular Storage) System for storing spent nuclear fuel. This storage concept/design was developed by NUTECH Engineers, which is also participating in the project. The project involves the design, construction, and testing of three reinforced concrete storage modules and three stainless steel canisters at the H. B. Robinson Steam Electric Plant. Testing will focus on (1) the system's operating and fuel handling features, and (2) verification of the design basis of the thermal and shielding performance of the storage modules. As part of the project, NRC approval of the NUTECH Topical Report on NUHOMS has been obtained as well as issuance of a 10CFR Part 72 Materials License for the H. B. Robinson site. 6 refs., 13 figs., 22 tabs

  16. Third international spent fuel storage technology symposium/workshop: proceedings. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    The scope of this meeting comprised dry storage and rod consolidation, emphasizing programs on water reactor fuel with zirconium alloy cladding. Volume 2 contains the papers from the poster session and workshops that were conducted during the meeting. There were 18 poster presentations. Four workshops were held: Fuel Integrity; Storage System Modeling and Analysis; Rod Consolidation Technology; and System Integration and Optimization. Individual papers were processed for inclusion in the Energy Data Base

  17. Shielding analysis of the LMR in-vessel fuel storage experiments

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1994-01-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this paper were conducted at the Oak Ridge National Laboratory's Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present paper describes the 2- and 3-D calculations and results corresponding to a limited subset of those IVFS experiments in which the US LMR program had a particular interest

  18. Control of corrosion in an aqueous nuclear fuel storage basin

    International Nuclear Information System (INIS)

    Zimmerman, C.A.

    1981-01-01

    Observations made during thirty years of experience in operating a nuclear fuel storage basin, used for storing a wide variety of spent nuclear fuels underwater have identified several forms of corrosion such as galvanic, pitting and crevice attack. Examples of some of the forms of corrosion observed and their causes are discussed, along with the measures taken to mitigate the corrosive attack. The paper also describes the procedure used to reduce corrosion by: surveillance of design, selection of materials for application in the basin, and inspection of items in the storage basin

  19. Fuel Saving on Diesel Genset using PV/Battery Spike Cutting in Remote Area Microgrid

    Directory of Open Access Journals (Sweden)

    Dwi Atmaja Tinton

    2018-01-01

    Full Text Available Diesel Generator set was found to be a favorite power generator in a remote area. In this area, diesel genset usually consumes a significant amount of diesel fuel with higher fuel price than an urban area. Diesel Generator capacity conventionally prepared twice bigger or more than the existing load to prevent any load spike from designated equipment. This work implements an Energy Management System to cut the spike with the support from battery storage unit and photovoltaic module. Once the Energy Management System cut the load spike using battery/photovoltaics, Diesel Generator loads no longer need to be irrelevantly bigger than the existing load. The current experiment in the remote island at Raja Ampat archipelago indicates that the using of 80 kVA Diesel Generator can be reduced to 42 kVA Diesel Generator. This Diesel Generator replacement induces fuel consumption up to 50 %. With this designed work, a smart microgrid with PV-Battery-Diesel can be installed in a designated remote area with lower fuel consumption.

  20. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.

    1989-01-01

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections