WorldWideScience

Sample records for fuel reprocessing process

  1. Pyroelectrochemical process for reprocessing irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1982-01-01

    A pyroelectrochemical process for reprocessing irradiated fast reactor mixed oxide or carbide fuels is described. The fuel is dissolved in a bath of molten alkali metal sulfates. The Pu(SO 4 ) 2 formed in the bath is thermally decomposed, leaving crystalline PuO 2 on the bottom of the reaction vessel. Electrodes are then introduced into the bath, and UO 2 is deposited on the cathode. Alternatively, both UO 2 and PuO 2 may be electrodeposited. The molten salts, after decontamination by precipitating the fission products dissolved in the bath by introducing basic agents such as oxides, carbonates, or hydroxides, may be recycled. Since it is not possible to remove cesium from the molten salt bath, periodic disposal and partial renewal with fresh salts is necessary. The melted salts that contain the fission products are conditioned for disposal by embedding them in a metallic matrix

  2. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  3. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  4. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  5. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  6. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  7. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  8. Spent fuel reprocessing system availability definition by process simulation

    International Nuclear Information System (INIS)

    Holder, N.; Haldy, B.B.; Jonzen, M.

    1978-05-01

    To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported

  9. Wastes from fuel reprocessing

    International Nuclear Information System (INIS)

    Eschrich, H.

    1976-01-01

    Handling, treatment, and interim storage of radioactive waste, problems confronted with during the reprocessing of spent fuel elements from LWR's according to the Purex-type process, are dealt with in detail. (HR/LN) [de

  10. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  11. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  12. Pyrolytic electrochemical process for the reprocessing of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    The reprocessing is aimed at synthetic UO 2 -PuO 2 mixed oxides, UC-PuC mixed carbides and at oxides and carbides of U, Pu and Th from fast nuclear reactors. The nuclear fuel is dissolved in a salt melting bath. The conversion of the Pu(SO 4 ) 2 is done thermally and that of UO 2 is done electrolytically. The molten salts are returned to the input of the process and the fission products and the molten salts are conditioned. (DG) [de

  13. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  14. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  15. Handbook on process and chemistry of nuclear fuel reprocessing version 2

    International Nuclear Information System (INIS)

    2008-10-01

    Aqueous nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of aqueous reprocessing, because it contributes to establish and develop fuel reprocessing technology and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize aqueous reprocessing technology much widely. This handbook is the second edition of the first report, which summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing' from FY 1993 until FY 2000. (author)

  16. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  17. Simulation of spent fuel reprocessing processes: Realizations and prospects

    International Nuclear Information System (INIS)

    Boullis, B.

    1986-12-01

    The separation of uranium and plutonium in the Purex process is very complex and for the extension of reprocessing plants optimization of the process requires mathematical modelling. The development of this model is reviewed [fr

  18. Crud in the solvent extraction process for spent fuel reprocessing

    International Nuclear Information System (INIS)

    Chen Jing

    2004-01-01

    The crud occurred in Purex process is caused by the degradations of extractant and solvent and the existence of insoluble solid particle in the nuclear fuel reprocessing. The crud seriously affects the operation of the extraction column. The present paper reviews the study status on the crud in the Purex process. It is generally accepted that in the Purex process, particularly in the first cycle, the crud occurrence is related to the capillary chemistry phenomena resulting from the deposits of Zr with TBP degradation products HDBP, H 2 MBP, H 3 PO 4 and the insoluble particle RuO 2 and Pd. The occurrence of deposits and the type of crud are tightly related to the molar ratio of HDBP and Zr, and the aqueous pH. In addition, the effect of degradation products from the diluent, such as kerosene, is an unnegligible factor to cause the crud. The crud can be discharged from the extraction equipment with Na 2 CO 3 or oxalic acid. In the study on simulating the crud, the effects of the deposits of Zr with TBP degradation products HDBP, H 2 MBP and H 2 PO 4 , and the insoluble particle RuO 2 and Pd should be considered at the same time. (authors)

  19. Advanced fuel cycle on the basis of pyroelectrochemical process for irradiated fuel reprocessing and vibropacking technology

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Skiba, O.V.; Tsykanov, V.A.; Golovanov, V.N.; Bychkov, A.V.; Kisly, V.A.; Bobrov, D.A.

    2000-01-01

    For advanced nuclear fuel cycle in SSC RIAR there is developed the pyroelectrochemical process to reprocess irradiated fuel and produce granulated oxide fuel UO 2 , PuO 2 or (U,Pu)O 2 from chloride melts. The basic technological stage is the extraction of oxides as a crystal product with the methods either of the electrolysis (UO 2 and UO 2 -PuO 2 ) or of the precipitating crystalIization (PuO 2 ). After treating the granulated fuel is ready for direct use to manufacture vibropacking fuel pins. Electrochemical model for (U,Pu)O 2 coprecipitation is described. There are new processes being developed: electroprecipitation of mixed oxides - (U,Np)O 2 , (U,Pu,Np)O 2 , (U,Am)O 2 and (U,Pu,Am)O 2 . Pyroelectrochemical production of mixed actinide oxides is used both for reprocessing spent fuel and for producing actinide fuel. Both the efficiency of pyroelectrochemical methods application for reprocessing nuclear fuel and of vibropac technology for plutonium recovery are estimated. (author)

  20. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  1. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  2. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  3. Research on solvent extraction process for reprocessing of Th-U fuel from HTGR

    International Nuclear Information System (INIS)

    Bao Borong; Wang Gaodong; Qian Jun

    1992-05-01

    The unique properties of spent fuel from HTGR (high temperature gas cooled reactor) have been analysed. The single solvent extraction process using 30% TBP for separation and purification of Th-U fuel has been studied. In addition, the solvent extraction process for second uranium purification is also investigated to meet different needs of reprocessing and reproduction of Th-U spent fuel from HTGR

  4. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  5. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  6. Reprocessing in breeder fuel cycles

    International Nuclear Information System (INIS)

    Burch, W.D.; Groenier, W.S.

    1982-01-01

    Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with the first breeder demonstration reactor. A renewed commitment to moving forward with the construction of the Clinch River Breeder Reactor (CRBR) has been made, with startup anticipated near the end of this decade. While plans for the CRBR and its associated fuel cycle are still being firmed up, the basic research and development programs required to carry out the demonstrations have continued. This paper updates the status of the reprocessing plans and programs. Policies call for breeder recycle to begin in the early to mid-1990's. Contents of this paper are: (1) evolving plans for breeder reprocessing (demonstration reprocessing plant, reprocessing head-end colocated at an existing facility); (2) relationship to LWR reprocessing; (3) integrated equipment test (IET) facility and related hardware development activities (mechanical considerations in shearing and dissolving, remote operations and maintenance demonstration phase of IET, integrated process demonstration phase of IET, separate component development activities); and (4) supporting process R and D

  7. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  8. Development of new decladding system in the reprocessing process for FBR fuel

    International Nuclear Information System (INIS)

    Yamada, Seiya; Washiya, Tadahiro; Takeuchi, Masayuki; Koizumi, Tsutomu; Aose, Shinichi

    2005-01-01

    As a part of the feasibility study on commercialized fast reactor cycle systems, Japan Nuclear Cycle Development Institute (JNC) has been developing the fuel decladding technology for the dry reprocessing process (oxide electrowinning process) and aqueous reprocessing process. Particularly, in the oxide electrowinning process, the spent fuel should be reduced to powder for quick dissolution in the molten salt at electrolyzer. Therefore, JNC proposes new decladding system with innovative mechanical decladding devices. The decladding system consists of fuel crushing stage, hull separation stage and hull rinsing stage. In the fuel crushing stage, disassembled spent fuel pins are crushed and powdered by mechanical decladding device, then the following stage, the hull and the fuel powder are separated by magnetic separator. Only the fuel powder is fed to the electrolyzer. On the other side, the separated hull is melted by induction heating method, and the small amount of oxide included in the hull fragments is recovered at the hull rinsing stage. The recovered oxide fuel is fed back to the electrolyzer. In this paper, the basic performance of the element equipment that composes this new decladding system will be described. (author)

  9. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  10. Process behavior and environmental assessment of 14C releases from an HTGR fuel reprocessing facility

    International Nuclear Information System (INIS)

    Snider, J.W.; Kaye, S.V.

    1976-01-01

    Large quantities of 14 CO 2 will be evolved when graphite fuel blocks are burned during reprocessing of spent fuel from HTGR reactors. The possible release of some or all of this 14 C to the environment is a matter of concern which is investigated in this paper. Various alternatives are considered in this study for decontaminating and releasing the process off-gas to the environment. Concomitant radiological analyses have been done for the waste process scenarios to supply the necessary feedbacks for process design

  11. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  12. Consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Kuban, D.P.; Noakes, M.W.; Bradley, E.C.

    1987-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller or master, and the control system. The ASM is a remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program of (CFRP). This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, and reliability. It uses an all-gear force transmission system. The master arms were designed as a kinematic replica of ASM and use cable force transmission. Special digital control algorithms were developed to improve the system performance. The system is presently operational and undergoing evaluation. Preliminary testing has been completed and is reported. The system is now undergoing commercialization by transferring the technology to the private sector

  13. Mathematical modeling of processes of nuclear fuel extraction reprocessing

    International Nuclear Information System (INIS)

    Rozen, A.M.; Zel'venskij, M.Ya.

    1977-01-01

    A mathematical model of extraction process in the mixer-settlers is given which describes both a simple step process and extraction complicated with chemical reactions. The extraction equilibrium is described on the basis of theoretical data on the extraction mechanism using the mass action law and contains one empirical constant. The equations for concentration extraction constants of uranium(6) and uranium(4), plutonium(3, 4, 6), neptunium(4, 6) and zirconium(4) depending on the solution ion strength are given, which are obtained by treatment of numerous experimental data. On the example of the reductive reextraction process it is shown that there is a good coincidence of the calculated results of the suggested model with the experimental ones by Mc-Kay. By the method of matematical modeling the uranium and plutonium separation processes without reducers are investigated. The purification improvement of uranium extract, for example, is followed by the deterioration of the data on the other end of cascade i.e. purification of plutonium reextract from uranium and vice versa. To obtain a high grade of separation is possible only in comparatively long cascades and, besides, the regime parameters should be precisely observed

  14. Technical aspects of fuel reprocessing

    International Nuclear Information System (INIS)

    Groenier, W.S.

    1982-02-01

    The purpose of this paper is to present a brief description of fuel reprocessing and some present developments which show the reliability of nuclear energy as a long-term supply. The following topics are discussed: technical reasons for reprocessing; economic reasons for reprocessing; past experience; justification for advanced reprocessing R and D; technical aspects of current reprocessing development. The present developments are mainly directed at the reprocessing of breeder reactor fuels but there are also many applications to light-water reactor fuel reprocessing. These new developments involve totally remote operation, and maintenance. To demonstrate this advanced reprocessing concept, pilot-scale demonstration facilities are planned with commercial application occurring sometime after the year 2000

  15. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  16. Simulation codes of chemical separation process of spent fuel reprocessing. Tool for process development and safety research

    International Nuclear Information System (INIS)

    Asakura, Toshihide; Sato, Makoto; Matsumura, Masakazu; Morita, Yasuji

    2005-01-01

    This paper reviews the succeeding development and utilization of Extraction System Simulation Code for Advanced Reprocessing (ESSCAR). From the viewpoint of development, more tests with spent fuel and calculations should be performed with better understanding of the physico-chemical phenomena in a separation process. From the viewpoint of process safety research on fuel cycle facilities, it is important to know the process behavior of a key substance; being highly reactive but existing only trace amount. (author)

  17. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  18. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  19. Basic research on separation control of long life nuclides in fuel reprocessing processes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki; Usami, Go [Tokyo Univ. (Japan). Faculty of Engineering; Maeda, Mitsuru; Fujine, Sachio; Uchiyama, Gunzo; Kihara, Takehiro; Asakura, Toshihide; Hotoku, Shinobu

    1996-01-01

    The behavior of technetium (Tc) in nuclear fuel reprocessing processes has become the subject to be elucidated in the transition to distribution process by coextraction and the catalytic action in distribution process. In order to forecast or control the behavior of Tc in reprocessing processes, it is necessary to understand that at which valence Tc exists stably in respective processes. Tc is stable at 7 valence in nitric acid solution expected in reprocessing. In this research, the reaction speed of the oxidation and reduction reactions of rhenium (Re) which simulates Tc was measured by laser Raman spectroscopy which can do high speed analysis of valence. The experimental method is explained. The Raman spectra of Re in the experimental system of this research were measured in perchloric acid solution and nitric acid solution, and compared with the values in literatures. As the result, the validity of this research was assured. It was confirmed that Re(7) was not reduced by sulfamic acid and ascorbic acid. Re(7) was reduced by thiocyanic acid once, but was oxidized again by the reaction of thiocyanic acid and nitric acid. (K.I.)

  20. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  1. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  2. Laser induced photochemical and photophysical processes in fuel reprocessing: present scenario and future prospects

    International Nuclear Information System (INIS)

    Bhowmick, G.K.; Sarkar, S.K.; Ramanujam, A.

    2001-01-01

    State-of-art lasers can meet the very stringent requirements of nuclear technology and hence find application in varied areas of nuclear fuel cycle. Here, we discuss two specific applications in nuclear fuel reprocessing namely (a) add-on photochemical modifications of PUREX process where photochemical reactors replace the chemical reactors, and (b) fast, matrix independent sensitive laser analytical techniques. The photochemical modifications based on laser induced valency adjustment offers efficient separation, easy maintenance and over all reduction in the volume of radioactive waste. The analytical technique of time resolved laser induced fluorescence (TRLIF) has several attractive features like excellent sensitivity, element selective, and capability of on line remote process monitoring. For optically opaque solutions, optical excitation is detected by its conversion into thermal energy by non-radiative relaxation processes using the photo-thermal spectroscopic techniques. (author)

  3. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  4. Fuel reprocessing/fabrication interface

    International Nuclear Information System (INIS)

    Benistan, G.; Blanchon, T.; Galimberti, M.; Mignot, E.

    1987-01-01

    EDF has conducted a major research, development and experimental programme concerning the recycling of plutonium and reprocessed uranium in pressurized water reactors, in collaboration with its major partners in the nuclear fuel cycle industry. Studies already conducted have demonstrated the technical and economic advantages of this recycling, as also its feasibility with due observance of the safety and reliability criteria constantly applied throughout the industrial development of the nuclear power sector in France. Data feedback from actual experience will make it possible to control the specific technical characteristics of MOX and reprocessed uranium fuels to a higher degree, as also management, viewed from the economic standpoint, of irradiated fuels and materials recovered from reprocessing. The next step will be to examine the reprocessing of MOX for reprocessed uranium fuels, either for secondary recycling in the PWR units, or, looking further ahead, in the fast breeders or later generation PWR units, after a storage period of a few years

  5. A spectrophotometric study of cerium IV and chromium VI species in nuclear fuel reprocessing process streams

    International Nuclear Information System (INIS)

    Nickson, I D; Boxall, C; Jackson, A; Whillock, G O H

    2010-01-01

    Nuclear fuel reprocessing schemes such as PUREX and UREX utilise HNO 3 media. An understanding of the corrosion of process engineering materials such as stainless steel in such media is a major concern for the nuclear industry. Two key species are cerium and chromium which, as Ce(IV), Cr(VI), may act as corrosion accelerants. An on-line analytical technique for these quantities would be useful for determining the relationship between corrosion rate and [Ce(IV)] and [Cr(VI)]. Consequently, a strategy for simultaneous quantification of Ce(IV), Cr(VI) and Cr(III) in the presence of other ions found in average burn-up Magnox / PWR fuel reprocessing stream (Fe, Mg, Nd, Al) is being developed. This involves simultaneous UV-vis absorbance measurement at 620, 540, 450 nm, wavelengths where Ce and Cr absorb but other ions do not. Mixed solutions of Cr(VI) and Ce(IV) are found to present higher absorbance values at 540 nm than those predicted from absorbances recorded from single component solutions of those ions. This is attributed to the formation of a 3:1 Cr(VI)-Ce(IV) complex and we report on the complexation and UV-visible spectrophotometric characteristics of this species. To the best of our knowledge this is the first experimental study of this complex in aqueous nitric acid solution systems.

  6. Development of COMPAS, computer aided process flowsheet design and analysis system of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Homma, Shunji; Sakamoto, Susumu; Takanashi, Mitsuhiro; Nammo, Akihiko; Satoh, Yoshihiro; Soejima, Takayuki; Koga, Jiro; Matsumoto, Shiro

    1995-01-01

    A computer aided process flowsheet design and analysis system, COMPAS has been developed in order to carry out the flowsheet calculation on the process flow diagram of nuclear fuel reprocessing. All of equipments, such as dissolver, mixer-settler, and so on, in the process flowsheet diagram are graphically visualized as icon on a bitmap display of UNIX workstation. Drawing of a flowsheet can be carried out easily by the mouse operation. Not only a published numerical simulation code but also a user's original one can be used on the COMPAS. Specifications of the equipment and the concentration of components in the stream displayed as tables can be edited by a computer user. Results of calculation can be also displayed graphically. Two examples show that the COMPAS is applicable to decide operating conditions of Purex process and to analyze extraction behavior in a mixer-settler extractor. (author)

  7. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  8. Thorium base fuels reprocessing at the L.P.R. (Radiochemical Processes Laboratory) experimental plant

    International Nuclear Information System (INIS)

    Almagro, J.C.; Dupetit, G.A.; Deandreis, R.A.

    1987-01-01

    The availability of the LPR (Radiochemical Processes Laboratory) plant offers the possibility to demonstrate and create the necessary technological basis for thorium fuels reprocessing. To this purpose, the solvents extraction technique is used, employing TBP (at 30%) as solvent. The process is named THOREX, a one-cycle acid, which permits an adequate separation of Th 232 and U 233 components and fission products. For thorium oxide elements dissolution, the 'chopp-leach' process (installed at LPR) is used, employing a NO 3 H 13N, 0.05M FH and 0.1M Al (NO 3 ) 3 , as solvent. To adapt the pilot plant to the flow-sheet requirements proposed, minor modifications must be carried out in the interconnection of the existing decanting mixers. The input of the plant has been calculated by Origin Code modified for irradiations in reactors of the HWR type. (Author)

  9. Electrochemical reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    A method is described for the reprocessing of irradiated nuclear fuel which is particularly suitable for use with fuel from fast reactors and has the advantage of being a dry process in which there is no danger of radiation damage to a solvent medium as in a wet process. It comprises the steps of dissolving the fuel in a salt melt under such conditions that uranium and plutonium therein are converted to sulphate form. The plutonium sulphate may then be thermally decomposed to PuO 2 and removed. The salt melt is then subjected to electrolysis conditions to achieve cathodic deposition of UO 2 (and possibly PuO 2 ). The salt melt can then be recycled or conditioned for final disposal. (author)

  10. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  11. Fuel reprocessing plant: No qualitative differences as compared to other sensitive process plants

    International Nuclear Information System (INIS)

    Schweinoch, J.

    1986-01-01

    Nuclear power plants like the fuel reprocessing plant belong to the highly sensitive installations in respect of safety, but involve the same risks qualitatively as liquid-gas plants or chemical plants. Therefore no consequences for basic rights are discernible. The police can take adequate preventive measures. The regulations governing police action provide proper and sufficient warrants. (DG) [de

  12. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: The AIROX, RAHYD, and CARBOX pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.; Rhee, B.W. [Rockwell International Corp., Canoga Park, CA (United States). Energy Systems Group

    1979-09-30

    The state of the art of dry processing oxide, carbide, and metal fuel has been determined through an extensive literature review. Dry processing in one of the most proliferation resistant fuel reprocessing technologies available to date, and is one of the few which can be exported to other countries. Feasibility has been established for oxide, carbide, and metal fuel on a laboratory scale, and large-scale experiments on oxide and carbide fuel have shown viability of the dry processing concept. A complete dry processing cycle has been demonstrated by multicycle processing-refabrication-reirradiation experiments on oxide fuel. Additional experimental work is necessary to: (1) demonstrate the complete fuel cycle for carbide and metal fuel, (2) optimize dry processing conditions, and (3) establish fission product behavior. Dry process waste management is easier than for an aqueous processing facility since wastes are primarily solids and gases. Waste treatment can be accomplished by techniques which have been, or are being, developed for aqueous plants.

  13. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  14. PYRO, a system for modeling fuel reprocessing

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions

  15. Process development for fabrication of zircaloy- 4 of dissolver assembly for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.; Jairaj, R.N.; Ravi Shankar, A.; Kamachi Mudali, U.; Raj, Baldev

    2010-01-01

    Spent fuel reprocessing for fast breeder reactor (FBR) requires a dissolver made of a material which has resistance to corrosion as the process involves Nitric Acid as the process medium. Various materials to achieve minimum corrosion rates have been tried for this operation. Particularly the focus was on the use of advanced materials with high performance (corrosion rate and product life) for high concentrations greater than 8 N and temperatures (boiling and vapour) of Nitric Acid employed in the dissolver unit. The different commercially available materials like SS316L , Pure Titanium, Ti - 5% Ta and Ti - 5% Ta - 1.8% Nb were tried and the corrosion behavior of these materials was studied in detail. As this is continuous process of evolution of new materials, it was decided to try out zircaloy - 4 as the material of construction for construction due to its excellent corrosion resistance properties in Nitric Acid environment. The specifications were stringent and the geometrical configurations of the assembly were very intricate in shape. On accepting the challenge of fabrication of dissolver, NFC has made different fixtures for Electron Beam Welding and TIG Welding. Various trials were carried out for optimization of various operating parameter like beam current, Acceleration voltage, welding speed to get adequate weld penetration. Both EB welding and TIG welding process were standardized and qualified by carrying out a number of trials and testing these welds by various weld qualification procedures like radiography, Liquid dye penetrant testing etc. for different intricate weld geometries. All the welds were simulated with samples to optimize the weld parameters. Tests such as include metallographic (for microstructure and HAZ), mechanical (for weld strength) and chemical (material analysis for gases) were conducted and all the weld samples met the acceptable criteria. Finally the dissolver was made meeting stringent specifications. All the welds were checked

  16. Revisit of analytical methods for the process and plant control analyses during reprocessing of fast reactor fuels

    International Nuclear Information System (INIS)

    Subba Rao, R.V.

    2016-01-01

    CORAL (COmpact facility for Reprocessing of Advanced fuels in Lead cell) is an experimental facility for demonstrating the reprocessing of irradiated fast reactor fuels discharged from the Fast Breeder Test Reactor (FBTR). The objective of the reprocessing plant is to achieve nuclear grade plutonium and uranium oxides with minimum process waste volumes. The process flow sheet for the reprocessing of spent Fast Reactor Fuel consists of Transport of spent fuel, Chopping, Dissolution, Feed conditioning, Solvent Extraction cycle, Partitioning Cycle and Re-conversion of Plutonium nitrate and uranium nitrate to respective oxides. The efficiency and performance of the plant to achieve desired objective depends on the analyses of various species in the different steps adopted during reprocessing of fuels. The analytical requirements in the plant can be broadly classified as 1. Process control Analyses (Analyses which effect the performance of the plant- PCA); 2. Plant control Analyses (Analyses which indicates efficiency of the plant-PLCA); 3. Nuclear Material Accounting samples (Analyses which has bearing on nuclear material accounting in the plant - NUMAC) and Quality control Analyses (Quality of the input bulk chemicals as well as products - QCA). The analytical methods selected are based on the duration of analyses, precision and accuracies required for each type analytical requirement classified earlier. The process and plant control analyses requires lower precision and accuracies as compared to NUMAC analyses, which requires very high precision accuracy. The time taken for analyses should be as lower as possible for process and plant control analyses as compared to NUMAC analyses. The analytical methods required for determining U and Pu in process and plant samples from FRFR will be different as compared to samples from TRFR (Thermal Reactor Fuel Reprocessing) due to higher Pu to U ratio in FRFR as compared TRFR and they should be such that they can be easily

  17. History and current status of nuclear fuel reprocessing technology

    International Nuclear Information System (INIS)

    Funasaka, Hideyuki; Nagai, Toshihisa; Washiya, Tadahiro

    2008-01-01

    History and present state of fast breeder reactor was reviewed in series. As a history and current status of nuclear fuel reprocessing technology, this ninth lecture presented the progress of the FBR fuel reprocessing technology and advanced reprocessing processes. FBR fuel reprocessing technology had been developed to construct the reprocessing equipment test facilities (RETF) based on PUREX process technologies. With economics, reduction of environmental burdens and proliferation resistance taken into consideration, advanced aqueous method for nuclear fuel cycle activities has been promoted as the government's basic policy. Innovative technologies on mechanical disassembly, continuous rotary dissolver, crystallizer, solvent extraction and actinides recovery have been mainly studied. (T. Tanaka)

  18. Simplified nuclear fuel reprocessing flowsheet: a single-cycle Purex process

    International Nuclear Information System (INIS)

    Montuir, M.; Dinh, B.; Baron, P.

    2004-01-01

    A simplified flowsheet with only one purification cycle instead of three is proposed for reprocessing spent nuclear fuel using the Purex process. A single-cycle flowsheet minimizes the process equipment required, the number of control points before transfer between process units, and the solvent and effluent quantities. For the uranium stream, an alpha barrier is used to strip any residual contaminants (Np, Th, Pu) from the uranium-loaded solvent. This additional step eliminates the need for a second uranium cycle. For the plutonium stream, an additional βγ co-decontamination step and a higher plutonium concentration are required before the oxalate conversion step; a plutonium 'half-cycle' is added downstream. The unloaded solvent from this half-cycle is returned to the selective plutonium stripping step, allowing significant plutonium half-cycle losses. It should be possible to reduce the number of stages in the half-cycle extraction step by recycling the raffinate to the upstream separation process. (authors)

  19. Reprocessing of ''fast'' fuel in France

    International Nuclear Information System (INIS)

    Sauteron, J.; Bourgeois, M.; Le Bouhellec, J.; Miquel, P.

    1976-05-01

    The results of laboratory studies as well as pilot testing (AT-I La Hague, Marcoule, Fontenay-aux-Roses) in reprocessing of fast breeder reactor fuels are described. The paper covers all steps: head end, aqueous and fluoride volatility processes, and waste treatment. In conclusion, it is demonstrated why it is still too early to define a strategy of industrial reprocessing for this reactor type

  20. Indian experience in fuel reprocessing

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1977-01-01

    Plant scale experience in fuel reprocessing in India was started with the successful design, execution and commissioning of the Trombay plant in 1964 to reprocess aluminium clad metallic uranium fuel from the 40 MWt research reactor. The plant has helped in generating expertise and trained manpower for future reprocessing plants. With the Trombay experience, a larger plant of capacity 100 tonnes U/year to reprocess spent oxide fuels from the Tarapur (BWR) and Rajasthan (PHWR) power reactors has been built at Tarapur which is undergoing precommissioning trial runs. Some of the details of this plant are dealt with in this paper. In view of the highly corrosive chemical attack the equipment and piping are subjected to in a fuel reprocessing plant, some of them require replacement during their service if the plant life has to be extended. This calls for extensive decontamination for bringing the radiation levels low enough to establish direct accesss to such equipment. For making modifications in the plant to extend its life and also to enable expansion of capacity, the Trombay plant has been successfully decontaminated and partially decommissioned. Some aspects of thi decontamination campaign are presented in this paper

  1. Reprocessing and fuel fabrication systems

    International Nuclear Information System (INIS)

    Field, F.R.; Tooper, F.E.

    1978-01-01

    The study of alternative fuel cycles was initiated to identify a fuel cycle with inherent technical resistance to proliferation; however, other key features such as resource use, cost, and development status are major elements in a sound fuel cycle strategy if there is no significant difference in proliferation resistance. Special fuel reprocessing techniques such as coprocessing or spiking provide limited resistance to diversion. The nuclear fuel cycle system that will be most effective may be more dependent on the institutional agreements that can be implemented to supplement the technical controls of fuel cycle materials

  2. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  3. Method of separating plutonium from the process streams of a reprocessing plant for HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Herz, D.; Kankura, R.; Wenzel, U.

    1975-07-15

    The process streams of a reprocessing plant for Th-U fuel elements can be purified of Pu, using a chromatographic method. The process is based on the principles of extraction chromatography with the application of the method of breakthrough chromatography. The inert carrier consists of polytrifluoromonochloroethylene, TOA forming the steady-state phase and 2 M HNO/sub 3/ the mobile phase. After adjustment of the feed solution to the extraction conditions, Pu is extracted in the separating column to the steady-state phase. The height of the separating stages is expressed by the equation HTS (cm) = 0.2 + 0.65 u/sub 0/ (cm min/sup -1/). Due to the delayed Pu/Th exchange in TOA, it depends heavily on the linear flow velocity. Details are given of the design of a separating unit for a flowrate of 2 kg of heavy metal per day (the flowrate of the Jupiter plant). (12 fig, 4 tables)

  4. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  5. A computer aided solvent extraction process design in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Britto, S.E.; Purandare, H.D.; Lawande, S.V.

    1977-01-01

    A rigorous and conceptual design is attempted of the first step of flowsheet formulation for solvent extraction process for fuel reprocessing plant. The design incorporates three cycles of extraction contractors; the first optimised to maximise Pu recovery while the second and third cycles to maximise fission product decontaminations. There are three basic types of extraction steps in these different cycles requiring painstaking design, namely, extraction-scrub, Pu strip-scrub and simple strip. The extraction system to start with is: U nitrate - Pu nitrate - fission product nitrates - nitric acid - tri-butyl phosphate/diluent. With suitable simplifying assumptions and adopting the concept of discrete equilibrium stagewise operation, simple X-Y operating diagrams could be used. The calculations could therefore be done using McCabe Thiele graphical method. The procedure adopted was to consider the macro-component of U to obtain initial optimum flow sheet details and the number of theoretical stages for each contactor and later to incorporate the behaviour of Pu and fission products. A computer program was written to calculate, for different combinations of nitric acid salting strengths, (1) the U concentration profiles along the contractors and (2) the number of stages needed for various different solvent and aqueous phase flow ratios, using experimentally obtained equilibrium data. The method used is indicated and some samples of results obtained for three types of extraction-scrub operation studied are given. These simplified calculations provided the necessary insight into these difficult operations. (auth.)

  6. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  7. Nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    White, D.

    1981-01-01

    A simple friction device for cutting nuclear fuel wrappers comprising a thin metal disc clamped between two large diameter clamping plates. A stream of gas ejected from a nozzle is used as coolant. The device may be maintained remotely. (author)

  8. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  9. A study on adsorption onto TODGA resin after electrolytic reduction in ERIX process for reprocessing spent FBR-MOX fuel

    International Nuclear Information System (INIS)

    Hoshi, Harutaka; Arai, Tsuyoshi; Wei, Yuezhou; Kumagai, Mikio; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    For reprocessing spent FBR-MOX fuel, an advanced aqueous reprocessing process ''ERIX process'' has been developed. In this system, hydrazine is used as reduction holding reagent for the valance adjustment of U by electrolytic reduction in nitric acid solution. Therefore, hydrazine is contained in high level liquid waste after separation of U, Pu and Np. Effect of hydrazine on adsorption of FP onto TODGA resin was examined. When hydrazine concentration was less than 0.3 M, effect on the distribution coefficient was negligibly small. After electrolytic reduction, some elements exist as lower valence state. Ru and Tc are most difficult elements to control their behavior in aqueous process. The distribution coefficient of both Ru and Tc onto TODGA decreased after electrolytic reduction, because they are reduced to lower valence. Hence, it is difficult for Ru or Tc to diffuse to allover the process and separation of MA from Tc and Ru was enhanced by electrolytic reduction. (author)

  10. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  11. Spent fuel reprocessing method

    International Nuclear Information System (INIS)

    Shoji, Hirokazu; Mizuguchi, Koji; Kobayashi, Tsuguyuki.

    1996-01-01

    Spent oxide fuels containing oxides of uranium and transuranium elements are dismantled and sheared, then oxide fuels are reduced into metals of uranium and transuranium elements in a molten salt with or without mechanical removal of coatings. The reduced metals of uranium and transuranium elements and the molten salts are subjected to phase separation. From the metals of uranium and transuranium elements subjected to phase separation, uranium is separated to a solid cathode and transuranium elements are separated to a cadmium cathode by an electrolytic method. Molten salts deposited together with uranium to the solid cathode, and uranium and transuranium elements deposited to the cadmium cathode are distilled to remove deposited molten salts and cadmium. As a result, TRU oxides (solid) such as UO 2 , Pu 2 in spent fuels can be reduced to U and TRU by a high temperature metallurgical method not using an aqueous solution to separate them in the form of metal from other ingredients, and further, metal fuels can be obtained through an injection molding step depending on the purpose. (N.H.)

  12. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  13. Pilot studies of an extraction process for reprocessing of spent fuel from fast reactors: Hardware and process details of extractor selection

    International Nuclear Information System (INIS)

    Anisimov, V.I.; Pavlovich, V.B.; Smetanin, E.Ya.; Glazunov, N.V.; Shklyar, L.I.; Dubrovskii, V.G.; Serov, A.V.; Zakharkin, B.S.; Konorchenko, V.D.; Korotkov, I.A.; Neumoev, N.V.; Renard, E.V.

    1992-01-01

    While acknowledging the bold and persistent efforts of U.S. and Russian specialists to develop the concept of pyrochemical reprocessing of spent nuclear fuel from fast reactors on remote-controlled equipment for removal of actinides from the fission products one should recognize that the tasks of reprocessing such fuel can be handled only by using water-extraction technology, especially since the known Purex process continues to be improved to the point that a single-cycle scheme may be developed. This article presents results of pilot studies conducted in hot cells using multistage extractors in continuous counterflow operation; data on various extractor types used in reprocessing spent mixed oxide nuclear fuel; advantages and disadvantages of centrifugal and pulsed column extractor; comparison of column-type and centrifugal extractors; and extraction process

  14. Fuel reprocessing and environmental problem

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    1977-01-01

    The radioactive nuclides which are released from the reprocessing plants of nuclear fuel are 137 Cs, 106 Ru, 95 Zr and 3 H in waste water and 85 Kr in the atmosphere. This release affects the environment for example, the reprocessing plant of the Nuclear Fuel Service Co in the USA releases about 2 x 10 5 Ci/y of 85 Kr, which is evaluated as about 0.025 mr/y as external exposure dose. The radioactivity in milk around this plant was measured as less than 10 pCi/lit of 129sup(I. The radioactive concentration in the sea, especially in fish and shellfish, was measured near the reprocessing plant of Windscale in UK. The radioactive release rate from this plants more than 10)5sup( Ci/y as the total amount of )137sup(Cs, )3sup(H, )106sup(Ru, )95sup(Zr, )95sup(Nb, )90sup(Sr, )144sup(Ce, etc., and the radioactivity in seaweeds near Windscale is about 400 pCi/g as the maximum value, and the mayonnaise which was made of this seaweeds contained about 1 pCi/g of )106sup(Ru, which is estimated as about 7 mr/y for the digestive organ if 100 g is eaten every day. On the other hand, the experimental result is presented for the reprocessing plant of La Hague in France, in which the radioactive release rate from this plant is about 10)4sup( Ci/y, and the radioactivity in sea water and shellfish is about 4 pCi/l of )106sup(Ru and about 400 pCi/kg of )137 Cs, respectively, near this plant. The philosophy of ALAP (as low as practicable) is also applied to reprocessing plants. (Nakai, Y.)

  15. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  16. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  17. Industrial experience of irradiated nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Delange, M.

    1981-01-01

    At the moment and during the next following years, France and La Hague plant particularly, own the greatest amount of industrial experience in the field of reprocessing, since this experience is referred to three types of reactors, either broadly spread all through the world (GCR and LWR) or ready to be greatly developed in the next future (FBR). Then, the description of processes and technologies used now in France, and the examination of the results obtained, on the production or on the security points of view, are a good approach of the actual industrial experience in the field of spent fuel reprocessing. (author)

  18. Nuclear fuel reprocessing is challenged

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a brief discussion of litigation to determine if the Thermal Oxide Reprocessing Plant (THORP) in the United Kingdom will be allowed to operate. Litigants (including Greenpeace) contend that the government's December approval of discharge permits for the plant was unlawful without a public hearing. A description of the THORP process is also provided in this article

  19. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    International Nuclear Information System (INIS)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas; Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc; Grassi, Gabriele

    2015-01-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the 137 Cs and 134 Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a 137 Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional 3 He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  20. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    Energy Technology Data Exchange (ETDEWEB)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc [AREVA NC, La Hague plant - Nuclear Measurement Team, F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  1. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ilas, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  2. Reprocessing of irradiated fuel: pros and cons

    International Nuclear Information System (INIS)

    Lebedev, O.G.; Novikov, V.M.

    1991-01-01

    The acceptable-safety nuclear reactors (APWR, LMFBR, MSBR, MSCR) can be provided by the enrichment industry and by plutonium reserves. But steady accumulation of spent fuel will inevitably make to return to the problems of fuel recycle. PUREX-processing increases a danger of radionuclides spreading due to the presence of large buffer tanks. Using of compact fluoride - volatility process will sharply reduce a nuclide leakage likewise permit to reprocess a fuel with a burnup as high as possible. Success of a powerful robots development give an opportunity to design a fluoride-volatility plant twice cheaper than PUREX. (author)

  3. Reprocessing flowsheet and material balance for MEU spent fuel

    International Nuclear Information System (INIS)

    Abraham, L.

    1978-10-01

    In response to nonproliferation concerns, the high-temperature gas-cooled reactor (HTGR) Fuel Recycle Development Program is investigating the processing requirements for a denatured medium-enriched uranium--thorium (MEU/Th) fuel cycle. Prior work emphasized the processing requirements for a high-enriched uranium--thorium (HEU/Th) fuel cycle. This report presents reprocessing flowsheets for an HTGR/MEU fuel recycle base case. Material balance data have been calculated for reprocessing of spent MEU and recycle fuels in the HTGR Recycle Reference Facility (HRRF). Flowsheet and mass flow effects in MEU-cycle reprocessing are discussed in comparison with prior HEU-cycle flowsheets

  4. Inventory estimation for nuclear fuel reprocessing systems

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1987-01-01

    The accuracy of nuclear material accounting methods for nuclear fuel reprocessing facilities is limited by nuclear material inventory variations in the solvent extraction contactors, which affect the separation and purification of uranium and plutonium. Since in-line methods for measuring contactor inventory are not available, simple inventory estimation models are being developed for mixer-settler contactors operating at steady state with a view toward improving the accuracy of nuclear material accounting methods for reprocessing facilities. The authors investigated the following items: (1) improvements in the utility of the inventory estimation models, (2) extension of improvements to inventory estimation for transient nonsteady-state conditions during, for example, process upset or throughput variations, and (3) development of simple inventory estimation models for reprocessing systems using pulsed columns

  5. Reprocessing technology for present water reactor fuels

    International Nuclear Information System (INIS)

    McMurray, P.R.

    1977-01-01

    The basic Purex solvent extraction technology developed and applied in the U.S. in the 1950's provides a well-demonstrated and efficient process for recovering uranium and plutonium for fuel recycle and separating the wastes for further treatment and packaging. The technologies for confinement of radioactive effluents have been developed but have had limited utilization in the processing of commercial light water reactor fuels. Technologies for solidification and packaging of radioactive wastes have not yet been demonstrated but significant experience has been gained in laboratory and engineering scale experiments with simulated commercial reprocessing wastes and intermediate level wastes. Commercial scale experience with combined operations of all the required processes and equipment are needed to demonstrate reliable reprocessing centers

  6. FIPS: a process for the solidification of fission product solutions using a drum drier. [HTGR fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Halaszovich, St.; Laser, M.; Merz, E.; Thiele, D.

    1976-08-01

    A new process consisting of the steps concentration of the fission product solution, denitration of the solution by addition of formaldehyde, addition of glass-forming additives, drying of the slurry using a drum drier, melting of the dry product in the crucible by rising level in-pot-melting, and off-gas treatment and recovery of nitric acid is under development. A small plant with a capacity of 1 kg glass per hour has been tested in hot cells with fission product solutions from LWR fuel element reprocessing since December 1974. The equipment is very simple to operate and to control. No serious problems arose during operation.

  7. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  8. Reprocessing of MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Hough, N.

    1997-01-01

    UKAEA at Dounreay has been reprocessing MTR fuel for over 30 years. During that time considerable experience has been gained in the reprocessing of traditional HEU alloy fuel and more recently with dispersed fuel. Latterly a reprocessing route for silicide fuel has been demonstrated. Reprocessing of the fuel results in a recycled uranium product of either high or low enrichment and a liquid waste stream which is suitable for conditioning in a stable form for disposal. A plant to provide this conditioning, the Dounreay Cementation Plant is currently undergoing active commissioning. This paper details the plant at Dounreay involved in the reprocessing of MTR fuel and the treatment and conditioning of the liquid stream. (author)

  9. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    diagrammatic representations of the management of spent fuel arisings and of the Purex process itself. Annex II comprises six country reports collected from Member States which undertake reprocessing. They are entered into the database and indexed individually

  10. Statement on the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1984-01-01

    Oak Ridge National Laboratory has chosen the following objectives for future reprocessing plant design: reduced radiation exposure to workers; minimal environmental impact; improved plant operation and maintenance; improved accountability; no plutonium diversion; and reduced overall capital and operating cost. These objectives lead to a plant with totally remote operation. The Breeder Reactor Engineering Test (BRET) has been designed to perform a key role in demonstrating advanced reprocessing technology. It has been scheduled to be available to reprocess spent fuel from the Fast Flux Test Facility. The principal features of the Consolidated Fuel Reprocessing Program and of the BRET facility are appropriate for all reactor types

  11. Research and development of FBR fuel reprocessing in PNC

    International Nuclear Information System (INIS)

    Hoshino, T.

    1976-05-01

    The research program of the PNC for FBR fuel reprocessing in Japan is discussed. The general characteristics of FBR fuel reprocessing are pointed out and a comparison with LWR fuel is made. The R and D program is based on reprocessing using the aqueous Purex process. So far, some preliminary steps of the research program have been carried out, these include solvent extraction test, off-gas treatment test, voloxidation process study, solidification test of high-level liquid waste, and study of the dissolution behaviour of irradiated mixed oxide fuel. By the end of the 1980s, a pilot plant for FBR fuel reprocessing will be completed. For the design of the pilot plant, further research will be carried out in the following fields: head-end techniques; voloxidation process; dissolution and extraction techniques; waste treatment techniques. A time schedule for the different steps of the program is included

  12. Importance of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The following topics are discussed: world energy requirements; energy conservation and the economics of recycle environmental considerations and the timescale of reprocessing; and problems associated with reprocessing. The conclusion is reached that reprocessing is essential to the conservation of the world's energy resources and is an environmentally, and probably an economically, more acceptable option to the ''throw away'' alternative

  13. Reprocessing process simulation network; PRONET

    International Nuclear Information System (INIS)

    Mitsui, T.; Takada, H.; Kamishima, N.; Tsukamoto, T.; Harada, N.; Fujita, N.; Gonda, K.

    1991-01-01

    The effectiveness of simulation technology and its wide application to nuclear fuel reprocessing plants has been recognized recently. The principal aim of applying simulation is to predict the process behavior accurately based on the quantitative relations among substances in physical and chemical phenomena. Mitsubishi Heavy Industries Ltd. has engaged positively in the development and the application study of this technology. All the software products of its recent activities were summarized in the integrated form named 'PRONET'. The PRONET is classified into two independent software groups from the viewpoint of computer system. One is off-line Process Simulation Group, and the other is Dynamic Real-time Simulator Group. The former is called 'PRONET System', and the latter is called 'PRONET Simulator'. These have several subsystems with the prefix 'MR' meaning Mitsubishi Reprocessing Plant. Each MR subsystem is explained in this report. The technical background, the objective of the PRONET, the system and the function of the PRONET, and the future application to an on-line real-time simulator and the development of MR EXPERT are described. (K.I.)

  14. Predicting the behaviour or neptunium during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Drake, V.A.

    1988-01-01

    Behaviour of Np and its distribution over reprocessing flowsheet is studied due to the necessity of improvement of reprocessing methods of wastes formed during purex-process. Valency states of Np in solutions of reprocessing cycles, Np distribution in organic and acid phases, Np(5) oxidation by nitric acid at the stage of extraction, effect of U and Pu presence on Np behaviour, are considered. Calculation and experimental data are compared; the possibility of Np behaviour forecasting in the process of nuclear fuel reprocessing, provided initial data vay, is shown. 7 refs.; 4 figs.; 1 tab

  15. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  16. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Wagner, E.P.

    1999-01-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines

  17. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  18. The reprocessing of irradiated fuels improvement and extension of the solvent extraction process

    International Nuclear Information System (INIS)

    Faugeras, P.; Chesne, A.

    1964-01-01

    Improvements made in the conventional tri-butylphosphate process are described, in particular. the concentration and the purification of plutonium by one extraction cycle using tri-butyl-phosphate with reflux; and the use of an apparatus working continuously for precipitating plutonium oxalate, for calcining the oxalate, and for fluorinating the oxide. The modifications proposed for the treatment of irradiated uranium - molybdenum alloys are described, in particular, the dissolution of the fuel, and the concentration of the fission product solutions. The solvent extraction treatment is used also for the plutonium fuels utilized for the fast breeder reactor (Rapsodie) An outline of the process is presented and discussed, as well as the first experimental results and the plans for a pilot plant having a capacity of 1 kg/day. The possible use of tn-lauryl-amine in the plutonium purification cycle is now under consideration for the processing plant at La Hague. The flowsheet for this process and its performance are presented. The possibility of vitrification is considered for the final treatment of the concentrated radioactive wastes from the Marcoule (irradiated uranium) and La Hague (irradiated uranium-molybdenum) Centers. Three possible processes are described and discussed, as well as the results obtained from the operation of the corresponding experimental units using tracers. (authors) [fr

  19. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  20. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  1. Simplified probabilistic risk assessment in fuel reprocessing

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1993-01-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000

  2. Development of a real-time detection strategy for process monitoring during nuclear fuel reprocessing using the UREX+3a method

    International Nuclear Information System (INIS)

    Goddard, Braden; Charlton, William S.; McDeavitt, Sean M.

    2010-01-01

    Research highlights: → HPGe detectors are suitable for UREX+3a real-time spectroscopy. → HPGe N-type detectors may be suitable for a reprocessing facility. → Gamma ray self-shielding does not occur for pipe diameters less than 2 in. - Abstract: Reprocessing nuclear fuel is becoming more viable in the United States due to the anticipated increase in construction of nuclear power plants, the growing stockpile of existing used nuclear fuel, and a public desire to reduce the amount of this fuel. A new reprocessing facility will likely have state of the art controls and monitoring methods to safeguard special nuclear materials, as well as to provide real-time monitoring for process control. The focus of this research was to create a proof of concept to enable the development of a detection strategy that uses well established gamma and neutron measurement methods to characterize samples from the Uranium Extraction Plus 3a (UREX+3a) reprocessing method using a variety of detector types and measurement times. A facility that implemented real-time gamma detection equipment could improve product quality control and provide additional benefits, such as waste volume reduction. In addition to the spectral analyses, it was determined by Monte Carlo N Particle (MCNP) simulations that there is no noticeable self-shielding for internal pipe diameters less than 5.08 cm, indicating that no self-shielding correction factors are needed. Further, it was determined that High Purity Germanium (HPGe) N-type detectors have the high gamma ray energy resolution and neutron damage resistance that would be required in a reprocessing facility. Finally, the gamma ray spectra for the measured samples were simulated using MCNP and then the model was extended to predict the responses from an actual reprocessing scenario from UREX+3a applied to fuel that had a decay time of 3 years. The 3-year decayed fuel was more representative of commercially reprocessed fuel than the acquired UREX+3a

  3. Remote maintenance in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Herndon, J.N.

    1985-01-01

    Remote maintenance techniques applied in large-scale nuclear fuel reprocessing plants are reviewed with particular attention to the three major maintenance philosophy groupings: contact, remote crane canyon, and remote/contact. Examples are given, and the relative success of each type is discussed. Probable future directions for large-scale reprocessing plant maintenance are described along with advanced manipulation systems for application in the plants. The remote maintenance development program within the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is also described. 19 refs., 19 figs

  4. Reprocessing of spent fuel and public acceptance

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1977-01-01

    The public acceptance has to be considered regarding whole atomic power rather than the reprocessing of nuclear fuel separately, and the problems concerned are as follows; the release of radioactive materials in the normal and abnormal operations of reprocessing plants, the disposal of wastes with high level radioactivity, the transportation of high level radioactive material, the relation to the economic activity near nuclear plants, the environmental effect of 85 Kr. and 3 H, etc., and the physical protection for reprocessing facility itself, the special handling of the materials of very high radioactivity level such as fission products and plutonium, the radiation exposure of operators, and the demonstration of reprocessing techniques of commercial base, etc., as a part of the nuclear fuel cycle, and the relation between atomic power and other technologies in energy supply, the evalution of atomic power as the symbol of huge scale science, and the energy problem within the confrontation of economic development and the preservation of environment and resources regarding whole nuclear energy. The situations of fuel reprocessing in USA, UK, France, Germany and Japan are explained from the viewpoint of the history. The general background for the needs of nuclear energy in Japan, the image of nuclear energy and fuel reprocessing entertained by the general public, and the special feature of reprocessing techniques are described. (Nakai, Y.)

  5. Capability of minor nuclide confinement in fuel reprocessing

    International Nuclear Information System (INIS)

    Fujine, Sachio; Uchiyama, Gunzo; Mineo, Hideaki; Kihara, Takehiro; Asakura, Toshihide

    1999-01-01

    Experiment with spent fuels has started with the small scale reprocessing facility in NUCEF-BECKY αγ cell. Primary purpose of the experiment is to study the capability of long-lived nuclide confinement both in the PUREX flow sheet applied to the large scale reprocessing plant and also in the PARC (Partitioning Conundrum key process) flow sheet which is our proposal as a simplified reprocessing of one cycle extraction system. Our interests in the experiment are the behaviors of minor long-lived nuclides and the behaviors of the heterogeneous substances, such as sedimentation in the dissolver, organic cruds in the extraction banks. The significance of those behaviors will be assessed from the standpoint of the process safety of reprocessing for high burn-up fuels and MOX fuels. (author)

  6. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  7. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  8. Reprocessing of nuclear fuels - status report

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The paper gives a survey on reprocessing plants at present under construction, in operation, and planned, as well as on the most important process steps such as receipt, storage, conversion, the extraction process, purification of the end products, gaseous waste treatment and waste treatment, and repair and maintenance of reprocessing plants. An outline on operational experience with WAK follows. (HR/LN) [de

  9. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  10. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  11. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  12. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  13. Consolidated fuel reprocessing program. Developments for the future in reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.

    1982-01-01

    The future reprocessing developments focus on three major areas: (1) the retention of gaseous fission products to reduce off-site doses to very low values; (2) the initial steps of breakdown, shearing, and dissolution of breeder fuels; and (3) advanced facility and equipment concepts, which are expected to lead to a reliable, cost-effective, totally remotely operated and maintained plant. Work in the first area - removal of fission gases (the most important of which is 85 Kr) - is largely completed through tracer and bench-scale engineering equipment. Efforts are now mainly devoted to breeder fuels and advanced remote concepts. A facility, the Integrated Equipment Test Facility, which will be used to carry out much of this work, is nearing completion in Oak Ridge. In it a large, simulated, remote reprocessing cell will house a disassembly-shear machine for either breeder or LWR fuels, a rotary continuous dissolver, a solvent extraction cycle utilizing a new generation of centrifugal contactors, and related equipment

  14. Light water reactor fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    1977-07-01

    This document was originally intended to provide the basis for an environmental impact statement to assist ERDA in making decisions with respect to possible LWR fuel reprocessing and recycling programs. Since the Administration has recently made a decision to indefinitely defer reprocessing, this environmental impact statement is no longer needed. Nevertheless, this document is issued as a report to assist the public in its consideration of nuclear power issues. The statement compares the various alternatives for the LWR fuel cycle. Costs and environmental effects are compared. Safeguards for plutonium from sabotage and theft are analyzed

  15. Spent fuel reprocessing past experience and future prospects

    International Nuclear Information System (INIS)

    Megy, J.

    1983-09-01

    A large experience has been gathered from the early fifties till now in the field of spent fuel reprocessing. As the main efforts in the world have been made for developping the reactors and the fuel fabrication industry to feed them, the spent fuel reprocessing activities came later and have not yet reached the industrial maturity existing to day for plants such as PWRs. But in the principal nuclear countries spent fuel reprocessing is to day considered as a necessity with two simultaneous targets: 1. Recovering the valuable materials, uranium and plutonium. 2. Conditionning the radioactive wastes to ensure safe definitive storage. The paper reviews the main steps: 1. Reprocessing for thermal reactor fuels: large plants are already operating or in construction, but in parallel a large effort of R and D is still under way for improvements. 2. The development of fast breeder plants implies associated fuel reprocessing facilities: pilot plants have demonstrated the closing of the cycle. The main difficulties encountered will be examined and particularly the importance of taking into account the problems of effluents processing and wastes storage [fr

  16. On-Line Monitoring for Process Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plants

    International Nuclear Information System (INIS)

    Bryan, S.; Levitskaia, T.; Casella, A.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has established international safe- guards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and re- source burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using ultra-violet and visible, near infrared and Raman spectroscopy. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid solvent extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion, and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating with the PUREX flowsheet. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of

  17. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  18. Flowsheet development for HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Baxter, B.; Benedict, G.E.; Zimmerman, R.D.

    1976-01-01

    Development studies to date indicate that the HTGR fuel blocks can be effectively crushed with two stages of eccentric jaw crushing, followed by a double-roll crusher, a screener and an eccentrically mounted single-roll crusher for oversize particles. Burner development results indicate successful long-term operation of both the primary and secondary fluidized-bed combustion systems can be performed with the equipment developed in this program. Aqueous separation development activities have centered on adapting known Acid-Thorex processing technology to the HTGR reprocessing task. Significant progress has been made on dissolution of burner ash, solvent extraction feed preparation, slurry transfer, solids drying and solvent extraction equipment and flowsheet requirements

  19. Reprocessing method for spent fuel

    International Nuclear Information System (INIS)

    Fujie, Makoto; Shoji, Yuichi; Kobayashi, Tsuguyuki.

    1997-01-01

    After reducing oxides of uranium (U), plutonium (Pu) and miner actinides in spent fuels by magnesium (Mg) in a molten salt, rear earth element oxides and salts of alkali metals and alkaline earth metals contained in the molten salt phase are separated and removed. Further, the Mg phase containing the reduced metals is evaporated to separate and remove Mg, thereby recovering U, Pu and minor actinides. In a lithium (Li) process, Li 2 O also generated in the reduction step is regenerated to Li simultaneously, and the reduction is conducted while suppressing the Li 2 O concentration in the molten salt low. This can improve the reduction rate of oxides of U, Pu and minor actinides compared with conventional cases. Since Li 2 O is regenerated into Li in the reduction step of the Li process, deposited Li 2 O is not carried to an electrolysis purification step, and recovering rate of U, Pu and minor actinides is not lowered. (T.M.)

  20. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  1. Analytical chemistry needs for nuclear safeguards in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1977-01-01

    A fuel reprocessing plant designed to process 1500 tons of light water reactor fuel per year will recover 15 tons of Pu during that time, or approximately 40 to 50 kg of Pu per day. Conventional nuclear safeguards accountability has relied on batch accounting at the head and tail ends of the reprocessing plant with semi-annual plant cleanout to determine in-process holdup. An alternative proposed safeguards system relies on dynamic material accounting whereby in-line NDA and conventional analytical techniques provide indications on a daily basis of SNM transfers into the system and information of Pu holdup within the system. Some of the analytical requirements and problems for dynamic materials accounting in a nuclear fuel reprocessing plant are described. Some suggestions for further development will be proposed

  2. Melting process to condition decladding hulls generated by the reprocessing of LWR and FBR spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1981-01-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel, and volume reduction factors in the region of 5 to 7, corresponding to the theoretical density of the alloy obtained, are arrived at quite easily. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy, appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. The decreasing of fusion temperature is less spectacular with stainless steel; only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy which reduces the principal oxide components of glasses and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging although they were obtained using artificially contaminated hulls; they should therefore be considered with precaution and be confirmed by further tests in hot cells using real hulls

  3. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas

    International Nuclear Information System (INIS)

    Waggoner, R.C.

    1982-08-01

    A technical and economical analysis has been made of methods for collecting and concentrating krypton from the off-gas from a typical nuclear fuel reprocessing plant. The methods considered were cryogenic distillation, fluorocarbon absorption, mordenite adsorption, and selective permeation. The conclusions reached were: Cryogenic distillation is the only demonstrated route to date. Fluorocarbon absorption may offer economic and technical advantages if fully developed and demonstrated. Mordenite adsorption has been demonstrated only on a bench scale and is estimated to cost more than either cryogenic distillation or fluorocarbon absorption. Selective permeation through a silicone rubber membrane is not sufficiently selective for the route to be cost effective

  4. Fuel reprocessing: Citizens' questions and experts' answers

    International Nuclear Information System (INIS)

    1982-10-01

    In connection with the intention of DWK to erect a fuel reprocessing plant in the Oberpfalz, citizens have asked a great number of questions which are of interest to the general public. They have been collected, grouped into subject categories and answered by experts. (orig./HSCH) [de

  5. Consolidated fuel reprocessing program. Progress report, January 1-March 31, 1981

    International Nuclear Information System (INIS)

    1981-06-01

    Progress and activities are reported on process development, laboratory R and D, engineering research, engineering systems, Integrated Equipment Test (IET) facility operations, and HTGR fuel reprocessing

  6. Fuel fabrication and reprocessing at UKAEA Dounreay

    International Nuclear Information System (INIS)

    Anderson, B.

    1994-01-01

    The Dounreay fuel plants, which are the most flexible anywhere in the world, will continue to carry out work for foreign commercial customers. A number of German companies are important customers of UKAEA and examples of the wide variety of the work currently being carried out for them in the Dounreay plants is given (reprocessing and fabrication of fuel elements from and for research reactors). (orig./HP) [de

  7. Reprocessing on the whole fuel cycle operations

    International Nuclear Information System (INIS)

    Megy, J.

    1983-11-01

    Spent fuel reprocessing, in France, is become an industrial reality which takes an importance place in several fields: place surely essential in the fuel cycle from the energetic material economy and waste management point of view; place priority in the CEA (Commissariat a l'Energie Atomique) research and development programs; place in the industry where it is an important activity sector with the realizations in progress [fr

  8. Methodology for Determining the Radiological Status of a Process: Application to Decommissioning of a Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Girones, Ph.; Ducros, C.; Legoaller, C.; Lamadie, F.; Fulconis, J.M.; Thiebaut, V.; Mahe, C.

    2006-01-01

    Decommissioning a nuclear facility is subject to various constraints including regulatory safety requirements, but also the obligation to limit the waste volume and toxicity. To meet these requirements the activity level in each component must be known at each stage of decommissioning, from the preliminary studies to the final release of the premises. This document describes a set of methods used to determine the radiological state of a spent fuel reprocessing plant. This approach begins with a bibliographical survey covering the nature of the chemical processes, the operational phases, and the radiological assessments during the plant operating period. In this phase it is also very important to analyze incidents and waste management practices. All available media should be examined, including photos and videos which can provide valuable data and must not be disregarded. At the end of this phase, any items requiring verification or additional data are reviewed to define further investigations. Although it is not unusual at this point to carry out an additional bibliographical survey, the essential task is to carry out in situ measurements. The second phase thus consists in performing in situ measurement campaigns involving essentially components containing significant activity levels. The most routinely used methods combine the results of elementary measurements such as the dose rate or more sophisticated measurements such as gamma spectrometry using CdZnTe detectors and gamma imaging to estimate and localize the radioactivity. Each instrument provides part of the answer (location of a contamination hot spot, standard spectrum, activity). The results are combined and verified through the use of calculation codes: Mercure, Visiplan and Microshield. (authors)

  9. Ecological problems of fuel reprocessing

    International Nuclear Information System (INIS)

    Huebschmann, W.G.

    1981-01-01

    The problem of the effects of a reprocessing plant to its environment lies in the amount of the handled radioactivity and its longerity. According to the toxicity of the nuclides extensive measures for retainings and filtering are necessary, in order to keep the resulting radiation load in the surrounding within justified limits. The experiences with the WAK prove, that they managed to reduce that radiation load to values that are negligible compared with the natural one. The expected adaptation of the radiation protection legislation to the latest recommendations of the ICRP will in addition help to do more realistic estimations as to the radiotoxicity of certain nuclides (Kr-85, J-129), which means at lower levels than up to now. (orig./HP) [de

  10. Simulation of nuclear fuel reprocessing for safeguards

    International Nuclear Information System (INIS)

    Canty, M.J.; Dayem, H.A.; Kern, E.A.; Spannagel, G.

    1983-11-01

    For safeguarding the chemical process area of future reprocessing plants the near-real-time material accountancy (NRTMA) method might be applied. Experimental data are not yet available for testing the capability of the NRTMA method but can be simulated using a digital computer. This report describes the mathematical modeling of the Pu-bearing components of reprocessing plants and presents first results obtained by simulation models. (orig.) [de

  11. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  12. Problems of nuclear fuel reprocessing in Japan

    International Nuclear Information System (INIS)

    Tanaka, Naojiro

    1974-01-01

    The reprocessing capacity of the plant No. 1 of Power Reactor and Nuclear Fuel Development Corporation, which is scheduled to start operation in fiscal year 1975, will be insufficient after fiscal year 1978 for the estimated demand for reprocessing based on Japanese nuclear energy development program. Taking into consideration the results examined by JAIF's study team to Europe and the U.S., it is necessary that Japan builds 2nd reprocessing plant. But there will be a gap from 1978 to 1984 during which Japan must rely on overseas reprocessing services. The establishment of a reprocessing system is a task of national scale, and there are many problems to be solved before it can be done. These include the problems of site and environment, the problem of treatment and disposal of radioactive wastes, the raising of huge required funds and so on. Therefore, even if a private enterprise is allowed to undertake the task, it will be impossible to achieve the aim without the cooperation and assistance of the government. (Wakatsuki, Y.)

  13. Safety demonstration tests of postulated solvent fire accidents in extraction process of a fuel reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Tukamoto, Michio; Takada, Junichi; Koike, Tadao; Nishio, Gunji; Uno, Seiichiro; Kamoshida, Atsusi; Watanabe, Hironori; Hashimoto, Kazuichiro; Kitani, Susumu.

    1992-03-01

    Demonstration tests of hypothetical solvent fire in an extraction process of the reprocessing plant were carried out from 1984 to 1985 in JAERI, focusing on the confinement of radioactive materials during the fire by a large-scale fire facility (FFF) to evaluate the safety of air-ventilation system in the plant. Fire data from the demonstration test were obtained by focusing on fire behavior at cells and ducts in the ventilation system, smoke generation during the fire, transport and deposition of smoke containing simulated radioactive species in the ventilation system, confinement of radioactive materials, and integrity of HEPA filters by using the FFF simulating an air-ventilation system of the reference reprocessing plant in Japan. The present report is published in a series of the report Phase I (JAERI-M 91-145) of the demonstration test. Test results in the report will be used for the verification of a computer code FACE to evaluate the safety of postulated fire accidents in the reprocessing plant. (author)

  14. Historical fuel reprocessing and HLW management in Idaho

    International Nuclear Information System (INIS)

    Knecht, D.A.; Staiger, M.D.; Christian, J.D.

    1997-01-01

    This article review some of the key decision points in the historical development of spent fuel reprocessing and waste management practices at the Idaho Chemical Processing Plant that have helped ICPP to successfully accomplish its mission safely and with minimal impact on the environment. Topics include ICPP reprocessing development; batch aluminum-uranium dissolution; continuous aluminum uranium dissolution; batch zirconium dissolution; batch stainless steel dissolution; semicontinuous zirconium dissolution with soluble poison; electrolytic dissolution of stainless steel-clad fuel; graphite-based rover fuel processing; fluorinel fuel processing; ICPP waste management consideration and design decisions; calcination technology development; ICPP calcination demonstration and hot operations; NWCF design, construction, and operation; HLW immobilization technology development. 80 refs., 4 figs

  15. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  16. Reprocessing of spent nuclear fuel; Prerada isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    This report covers: chemical-technology investigation of modified purex process for reprocessing of spent fuel; implementation of the procedure for obtaining plutonium peroxide and oxalate; research in the field of uranium, plutonium, and fission products separation by inorganic ion exchangers and extraction by organic solutions; study of the fission products in the heavy water RA reactor.

  17. Reprocessing of spent nuclear fuel; Prerada isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing.

  18. An overview on dry reprocessing of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Ouyang Yinggen

    2002-01-01

    Although spent nuclear fuels have been reprocessed successfully for many years by the well-know Purex process based on solvent extraction, other reprocessing method which do not depend upon the use of organic solvents and aqueous media appear to have important potential advantage. There are two main non-aqueous methods for the reprocessing of spent fuel: fluoride-volatility process and pyro-electrochemical process. The presence of a poser in the process is that PuF 6 is obviously thermodynamically stable only in the presence of a large excess of fluorine. Pyro-electrochemical process is suited to processing metallic, oxide and carbide fuels. First, the fuel is dissolved in fresh salts, then, electrodes are introduced into the bath, U and Pu are deposited on the cathode, third, separation and refinement U and Pu are deposited on the cathode. There is a couple of contradictions in the process that are not in harmonious proportion in the fields on the nuclear fuel is dissolved the ability in the molten salt and corrosiveness of the molten salt for equipment used in the process

  19. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  20. Processes for the control of 14CO2 during reprocessing

    International Nuclear Information System (INIS)

    Notz, K.J.; Holladay, D.W.; Forsberg, C.W.; Haag, G.L.

    1980-01-01

    The fixation of 14 CO 2 may be required at some future time because of the significant fractional contribution of 14 C, via the ingestion pathway, to the total population dose from the nuclear fuel cycle, even though the actual quantity of this dose is very small when compared to natural background. The work described here was done in support of fuel reprocessing development, of both graphite fuel (HTGRs) and metal-clad fuel (LWRs and LMFBRs), and was directed to the control of 14 CO 2 released during reprocessing operations. However, portions of this work are also applicable to the control of 14 CO 2 released during reactor operation. The work described falls in three major areas: (1) The application of liquid-slurry fixation with Ca(OH) 2 , which converts the CO 2 to CaCO 3 , carried out after treatment of the CO 2 -containing stream to remove other gaseous radioactive components, mainly 85 Kr. This approach is primarily for application to HTGR fuel reprocessing. (2) The above process for CO 2 fixation, but used ahead of Kr removal, and followed by a molecular sieve process to take out the 85 Kr. This approach was developed for use with HTGR reprocessing, but certain aspects also have application to metal-clad fuel reprocessing and to reactor operation. (3) The use of solid Ba(OH) 2 hydrate reacting directly with the gaseous phase. This process is generally applicable to both reprocessing and to reactor operation

  1. UO2-7%Gd2O3 fuel process development by mechanical blending with reprocessing of waste products and usage of densification additive

    International Nuclear Information System (INIS)

    Santos, Lauro Roberto dos

    2009-01-01

    In the nuclear fuel cycle, reprocessing and storage of 'burned' fuels, either temporary or permanent, demand high investments and, in addition, can potentially generate environmental problems. A strategy to decrease these problems is to adopt measures to reduce the amount of waste generated. The usage of integrated burnable poison based on gadolinium is a measure that contributes to achieve this goal. The reason to use burnable poison is to control the neutron population in the reactor during the early life of the fresh reactor core or the beginning of each recharging fuel cycle, extending its cycle duration. Another advantage of using burnable poison is to be able to operate the reactor with higher burning rate, optimizing the usage of the fuel. The process of manufacturing UO 2 -Gd 2 O 3 integrated burnable fuel poison generates waste that, as much as possible, needs to be recycled. Blending of Gd 2 O 3 in UO 2 powder requires the usage of a special additive to achieve the final fuel pellet specified density. The objective of this work is to develop the process of obtaining UO 2 - 7% Gd 2 O 3 integrated burnable poison using densification additives, aluminum hydroxide (Al(OH)3), and reprocessing manufacturing waste products by mechanical blending. The content of 7%- Gd 2 O 3 is based on commercial PWR reactor fuels - Type Angra 2. The results show that the usage of Al(OH) 3 as an additive is a very effective choice that promotes the densification of fuel pellets with recycle up to 10%. Concentrations of 0,20 % of Al(OH) 3 were found to be the indicated amount on an 7 industrial scale, specially when the recycled products come from U 3 O 8 obtained by calcination of sintered pellets. This is particularly interesting because it is following the steps of sintering and rectifying of the pellets, which is generating the largest amounts of recycled material. (author)

  2. UO2-7%Gd2O3 fuel process development by mechanical blending with reprocessing of waste products and usage of densification additive

    International Nuclear Information System (INIS)

    Santos, Lauro Roberto dos

    2009-01-01

    In the nuclear fuel cycle, reprocessing and storage of 'burned' fuels, either temporary or permanent, demand high investments and, in addition, can potentially generate environmental problems. A strategy to decrease these problems is to adopt measures to reduce the amount of waste generated. The usage of integrated burnable poison based on gadolinium is a measure that contributes to achieve this goal. The reason to use burnable poison is to control the neutron population in the reactor during the early life of the fresh reactor core or the beginning of each recharging fuel cycle, extending its cycle duration. Another advantage of using burnable poison is to be able to operate the reactor with higher burning rate, optimizing the usage of the fuel. The process of manufacturing UO 2 -Gd 2 O 3 integrated burnable fuel poison generates waste that, as much as possible, needs to be recycled. Blending of Gd 2 O 3 in UO 2 powder requires the usage of a special additive to achieve the final fuel pellet specified density. The objective of this work is to develop the process of obtaining UO 2 - 7% Gd 2 O 3 integrated burnable poison using densification additives, aluminum hydroxide (Al(OH) 3 ), and reprocessing manufacturing waste products by mechanical blending. The content of 7%- Gd 2 O 3 is based on commercial PWR reactor fuels - Type Angra 2. The results show that the usage of Al(OH) 3 as an additive is a very effective choice that promotes the densification of fuel pellets with recycle up to 10%. Concentrations of 0,20 % of Al(OH) 3 were found to be the indicated amount on an industrial scale, specially when the recycled products come from U 3 O 8 obtained by calcination of sintered pellets. This is particularly interesting because it is following the steps of sintering and rectifying of the pellets, which is generating the largest amounts of recycled material. (author)

  3. Reprocessing of nuclear fuels: economical, ecological and technical aspects

    International Nuclear Information System (INIS)

    Kueffer, K.

    1994-01-01

    The report deals with the questions on reprocessing and final storage of spent fuel elements from the point of view of the Swiss. The contractual obligations were discussed, of the present situation of reprocessing and their assessment. 1 fig

  4. FaCT phase-I evaluation on the advanced aqueous reprocessing process (2). Development of mechanical disassembly and short stroke shearing systems for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Kitagaki, Toru; Higuchi, Hidetoshi; Fukushima, Mineo; Washiya, Tadahiro; Kobayashi, Tsuguyuki

    2011-01-01

    JAEA promotes a development of an advanced head-end process in FaCT project. We selected mechanical cutting method for disassembly process and short stroke method for shearing process. In the FaCT phase-I, the criteria was set for decision about the innovative technology and some fundamental performances of the innovative technology such as precision, speed, durability, operation performance and system concept were discussed by the engineering test and design work. We designed and fabricated an engineering-scale test device for mechanical disassembly and short stroke shearing and have carried out the engineering tests using simulated fuel assemblies. As a part of the engineering test results, the effects of cutting conditions on the durability of cutting tool and cutting stability were discussed. Also, the reduction of magazine width is effective to improve the precision of sheared pin length, and the bundle of simulated fuel pins were successfully sheared to 10 ± 5mm, which is a target for the sheared pin length. The criteria for the mechanical disassembly technology and the short stroke shearing technology were satisfied, so we judged that the development of innovative technologies has worth going on for the next phase in the FaCT project. (author)

  5. Retention of gaseous fission products in reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Burch, W.D.; Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-05-01

    The report is devoted to status of the development programme at the Oak Ridge National Laboratory on methods for retaining iodine-131 and 129, Krypton-85, Tritium and Carbon-14 in reprocessing LMFBR fuels. The Iodox process, Fluorocarbon absorption process and Voloxidation process are described for retention of iodine, Krypton-85 and Tritium, respectively. Flowsheets for the different processes are given and results of experimental runs in small engineering-scale equipment are reported

  6. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.

    1984-01-01

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.) [de

  7. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  8. Legal problems of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1987-01-01

    The contributions in this book are intended to exemplify the legal situation in connection with the reprocessing of spent nuclear fuel from the point of view of constitutional law, administrative law, and international law. Outline solutions are presented with regard to ensuring health, personal freedom, democratic rights and other rights, and are discussed. The author Rossnagel investigates whether the principle of essential matter can guarantee a parliamentary prerogative concerning this field of large-scale technology. The author Schmidt shows that there is no legal obligation of commitment to a reprocessing technology that would exclude research for or application of a less hazardous technology. The contribution by Baumann explains the problems presented by a technology not yet developed to maturity with regard to the outline approval of the technological concept, which is a prerequisite of any partial licence to be issued. The final contribution by Guendling investigates the duties under international law, as for instance transfrontier information, consultation, and legal protection, and how these duties can be better put into practice in order to comply the seriousness of the hazards involved in nuclear fuel reprocessing. (orig./HP) [de

  9. Fuel reprocessing at a loss to prove its justification

    International Nuclear Information System (INIS)

    Traube, K.

    1986-01-01

    Commercial utilization of nuclear energy is possible with or without fuel reprocessing of spent fuel elements. Demands on terminal storage are about equal in both cases. There is no reason - excluding the military one - to decide in favour of fuel reprocessing instead of direct terminal storage, for neither does fuel reprocessing offer advantages in regard of the safety of nuclear waste disposal, nor is it necessary to produce plutonium for the breeder reactor. Fuel reprocessing is analyzed considering those changed aspects with a view to scarcer uranium resources, juridical motives, and what is termed the development deficit. (DG) [de

  10. Fuel handling, reprocessing, and waste and related nuclear data aspects

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.; Wiese, H.W.

    1979-06-01

    The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uranium ores, enrichment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with respect to their potential operational impacts and long-term hazards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large PuO 2 content are described. The HTR fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. (orig.) [de

  11. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  12. Study of assessing aqueous reprocessing process for the pipeless reprocessing plant

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Morioka, Nobuo; Fumoto, Hiromichi; Nishimura, Kenji; Chikazawa, Takahiro

    2000-02-01

    The purpose of this study is to investigate the possibility of new reprocessing process for the purpose of introducing pipeless plant concept, where aqueous separation methods other than solvent extraction method are adopted in order to develop more economical FBR fuel (MOX fuel) reprocessing process. At it's first stage, literature survey on precipitation method, crystallization method and ion-exchange method was performed. Based on the results, following processes were candidated for pipeless reprocessing plant. (1) The process adopting crystallization method and peroxide precipitation method (2) The process adopting oxalate precipitation method (3) The process under mild aqueous conditions (crystallization method and precipitation method) (4) The process adopting crystallization method and ion-exchange method (5) The process adopting crystallization method and solvent extraction method. The processes (1)-(5) were compared with each others in terms of competitiveness to the conventional reference process, and merits and demerits were evaluated from the viewpoint of applicability to pipeless reprocessing plant, safety, economy, Efficiencies in consumption of Resources, non-proliferation, and, Operation and Maintenance. As a result, (1) The process adopting crystallization method and peroxide precipitation method was selected as the most reasonable process to pipeless plant. Preliminary criticality safety analyses, main process chemical flowsheet, main equipment list and layout of mobile vessels and stations were reported for the (1) process. (author)

  13. Nuclear fuel cycle: reprocessing. A bibliography

    International Nuclear Information System (INIS)

    Smith, L.B.

    1982-12-01

    This bibliography contains information on the reprocessing portion of the nuclear fuel cycle included in the Department of Energy's Energy Data Base from January 1981 through November 1982. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  14. The fuel reprocessing plant at Wackersdorf

    International Nuclear Information System (INIS)

    Held, M.

    1986-01-01

    For a more systematic discussion about the fuel reprocessing plant at Wackersdorf, the colloquium tried to cover the most important questions put forward in the controversies: economic efficiency and energy-political needs; safety and ecological repercussions; inner safety and consequences for basic rights and the regional economic structure; majority decisions and participation of the population of the region. Elements of evaluation are the conservation of resources, health, economic efficiency, and citizens' rights of liberty. The related basic ethical questions are considered. The 18 contributions are individually recorded in the data base. (DG) [de

  15. Nuclear fuel reprocessing: A time for decision

    International Nuclear Information System (INIS)

    O'Donnell, A.J.; Sandbery, R.O.

    1983-01-01

    Availability of adequate supplies of energy at an affordable cost is essential to continued growth of the world's economics. The tie between economic growth and electricity usage is particularly strong and the pervasive wordwide trend toward increasing electrification shows no signs of abating. Very few viable alternatives are available for supplying the projected increase in baseload electric generating capacity in the next several decades, and most industrialized nations have chosen nuclear power to play a major role. Sustained growth of nuclear power can only be achieved, however, by reprocessing spent fuel to recover and utilize the residual uranium and plutonium energy values

  16. Legal questions concerning the termination of spent fuel element reprocessing

    International Nuclear Information System (INIS)

    John, Michele

    2005-01-01

    The thesis on legal aspects of the terminated spent fuel reprocessing in Germany is based on the legislation, jurisdiction and literature until January 2004. The five chapters cover the following topics: description of the problem; reprocessing of spent fuel elements in foreign countries - practical and legal aspects; operators' responsibilities according to the atomic law with respect to the reprocessing of Geman spent fuel elements in foreign countries; compatibility of the prohibition of Geman spent fuel element reprocessing in foreign countries with international law, European law and German constitutional law; results of the evaluation

  17. EDRP public local inquiry, UKAEA/BNFL precognition on: PFR fuel reprocessing and radioactive waste management at Dounreay

    International Nuclear Information System (INIS)

    Pugh, O.

    1986-01-01

    A description of PFR fuel reprocessing at Dounreay is given, including brief details of fuel assembly transport, dismantling, chemical separation processes and reprocessing experience. The origin of radioactive wastes from PFR reprocessing, and the types of radioactive waste are outlined. The management of radioactive waste, including storage, treatment and disposal is described. (U.K.)

  18. Methodology for estimating reprocessing costs for nuclear fuels

    International Nuclear Information System (INIS)

    Carter, W.L.; Rainey, R.H.

    1980-02-01

    A technological and economic evaluation of reprocessing requirements for alternate fuel cycles requires a common assessment method and a common basis to which various cycles can be related. A methodology is described for the assessment of alternate fuel cycles utilizing a side-by-side comparison of functional flow diagrams of major areas of the reprocessing plant with corresponding diagrams of the well-developed Purex process as installed in the Barnwell Nuclear Fuel Plant (BNFP). The BNFP treats 1500 metric tons of uranium per year (MTU/yr). Complexity and capacity factors are determined for adjusting the estimated facility and equipment costs of BNFP to determine the corresponding costs for the alternate fuel cycle. Costs of capacities other than the reference 1500 MT of heavy metal per year are estimated by the use of scaling factors. Unit costs of reprocessed fuel are calculated using a discounted cash flow analysis for three economic bases to show the effect of low-risk, typical, and high-risk financing methods

  19. Reprocessing

    International Nuclear Information System (INIS)

    Couture, J.; Rougeau, J.-P.

    1987-01-01

    The course of development of a comprehensive nuclear power industry has its own pace which implies the timely progressive and consistent mastery of each industrial step. In the nuclear fuel it is not surprising that the back-end services have lastly reached the industrial stage. In France, we have now fully completed the industrial demonstration of the closed fuel cycle. Our experience covers all necessary steps : transportation of spent fuel, storage, reprocessing, waste conditioning, recovered uranium recycling, plutonium recycling in thermal MOX fuels, plutonium-based fuel for FBR. While FBR development is a long term target, recycling of fissile materials in present LWR reactors appears to be a source of noticable savings. In the meantime rational management of waste material is the key for increased safety and better environment protection. Reprocessing activity is certainly the major achievement of the back-end strategy. The proven efficiency of this technique as it is implemented at La Hague facility gives the full assurance of a smooth operation of the under completion UP3 unit. The base-load management system which applies during the first ten years of its operation will make possible a noticable reduction of the commercial price for reprocessing services by the end of the century. Industrial maturity being confirmed, economic maturity is now the outstanding merit of the reprocessing and recycling strategy. It is a permanent challenge, to which the response is definitely positive in the sense of reducing the nuclear KWh production cost. (author)

  20. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  1. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  2. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  3. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  4. A real-time data acquisition and processing system for the analytical laboratory automation of a HTR spent fuel reprocessing facility

    International Nuclear Information System (INIS)

    Watzlawik, K.H.

    1979-12-01

    A real-time data acquisition and processing system for the analytical laboratory of an experimental HTR spent fuel reprocessing facility is presented. The on-line open-loop system combines in-line and off-line analytical measurement procedures including data acquisition and evaluation as well as analytical laboratory organisation under the control of a computer-supported laboratory automation system. In-line measurements are performed for density, volume and temperature in process tanks and registration of samples for off-line measurements. Off-line computer-coupled experiments are potentiometric titration, gas chromatography and X-ray fluorescence analysis. Organisational sections like sample registration, magazining, distribution and identification, multiple data assignment and especially calibrations of analytical devices are performed by the data processing system. (orig.) [de

  5. Remotex and servomanipulator needs in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Garin, J.

    1981-01-01

    Work on the conceptual design of a pilot-scale plant for reprocessing breeder reactor fuels is being performed at Oak Ridge National Laboratory. The plant design will meet all current federal regulations for repocessing plants and will serve as prototype for future production plants. A unique future of the concept is the incorporation of totally remote operation and maintenance of the process equipment within a large barn-like hot cell. This approach, caled Remotex, utilizes servomanipulators coupled with television viewing to extend man's capabilities into the hostile cell environment. The Remotex concept provides significant improvements for fuel reprocessing plants and other nuclear facilities in the areas of safeguarding nuclear materials, reducing radiation exposure, improving plant availability, recovering from unplanned events, and plant decommissioning

  6. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  7. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  8. Safety problems in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Amaury, P.; Jouannaud, C.; Niezborala, F.

    1979-01-01

    The document first situates the reprocessing in the fuel cycle as a whole. It shows that a large reprocessing plant serves a significant number of reactors (50 for a plant of 1500 tonnes per annum). It then assesses the potential risks with respect to the environment as well as with respect to the operating personnel. The amounts of radioactive matter handled are very significant and their easily dispersible physical form represents very important risks. But the low potential energy likely to bring about this dispersion and the very severe and plentiful confinement arrangements are such that the radioactive risks are very small, both with respect to the environment and the operating personnel. The problems of the interventions for maintenance or repairs are mentioned. The intervention techniques in a radioactive environment are perfected, but they represent the main causes of operating personnel irradiation. The design principle applied in the new plants take this fact into account, involving a very significant effort to improve the reliability of the equipment and ensuring the provision of devices enabling the failing components to be replaced without causing irradiation of the personnel [fr

  9. Ventilating system for reprocessing of nuclear fuel rods

    International Nuclear Information System (INIS)

    Szulinski, M.J.

    1981-01-01

    In a nuclear facility such as a reprocessing plant for nuclear fuel rods, the central air cleaner discharging ventilating gas to the atmosphere must meet preselected standards not only as to the momentary concentration of radioactive components, but also as to total quantity per year. In order to comply more satisfactorily with such standards, reprocessing steps are conducted by remote control in a plurality of separate compartments. The air flow for each compartment is regulated so that the air inventory for each compartment has a slow turnover rate of more than a day but less than a year, which slow rate is conveniently designated as quasihermetic sealing. The air inventory in each such compartment is recirculated through a specialized processing unit adapted to cool and/or filter and/or otherwise process the gas. Stale air is withdrawn from such recirculating inventory and fresh air is injected (eg., By the less than perfect sealing of a compartment) into such recirculating inventory so that the air turnover rate is more than a day but less than a year. The amount of air directed through the manifold and duct system from the reprocessing units to the central air cleaner is less than in reprocessing plants of conventional design

  10. Airborne effluent control for LMFBR fuel reprocessing plants

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-01-01

    A significant part of the LMFBR fuel reprocessing development program has been devoted to the development of efficient removal systems for the volatile fission products, including 131 I, krypton, tritium, 129 I, and most recently 14 C. Flowsheet studies have indicated that very significant reductions of radioactive effluents can be achieved by integrating advanced effluent control systems with new concepts of containment and ventilation; however, the feasibility of such has not yet been established, nor have the economics been examined. This paper presents a flowsheet for the application of advanced containment systems to the processing of LMFBR fuels and summarizes the status and applicability of specific fission product removal systems

  11. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  12. Development of a dry-mechanical graphite separation process and elimination of the separated carbon for the reprocessing of spherical HTR fuel elements

    International Nuclear Information System (INIS)

    Kronschnabel, H.

    1982-01-01

    Due to the C-14 distribution the separation of the particle-free outer region of the spherical HTR fuel element with subsequent solidification of the separated carbon makes it possible to reduce by half the remaining C-14 inventory in the inner particle region to be further treated. Separation of the particle-free outer region by a newly developed sphere-peeling milling machine, conditioning the graphite into compacts and in-situ cementation into a salt-mine are the basic elements of this head-end process variation. An annual cavern volume of approx. 2000 m 3 will be needed to ultimately store the graphite of the particle-free outer region, which corresponds to a reprocessing capacity of 50 GWsub(e) installed HTR power. The brush-disintegration of the remaining inner particle region and the resulting peel-brush-preparation are capable of separating 95% of the graphite without any heavy metal losses. With the mentioned reprocessing capacity an annual cavern volume of approx. 16.500 m 3 is required. (orig.) [de

  13. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is stipulated under the provisions of reprocessing business in the law concerning regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and to execute them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, security area, surrounding monitoring area, worker, radioactive waste and facility for discharging into the sea. The application for the designation for reprocessing business under the law shall include the maximum reprocessing capacities per day and per year of each kind of spent fuel, to be reprocessed and the location, structure and equipment of reprocessing facilities as specified in the regulation. Records shall be made in each works or enterprise on the inspection, operation and maintenance of reprocessing facilities, radiation control, accidents and weather, and kept for particular periods respectively. Reprocessing enterprisers shall set up control area, security area and surrounding monitoring area to restrict entrance, etc. Specified measures shall be taken by these enterprisers concerning the exposure radiation doses of workers. Reprocessing facilities shall be inspected and examined more than once a day. The regular self-inspection and operation of reprocessing facilities, the transport and storage of nuclear fuel materials, the disposal of radioactive wastes in works or enterprises where reprocessing facilities are located, and security rules are defined in detail, respectively. (Okada, K.)

  14. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  15. Chemical engineering in fuel reprocessing. The French experience

    International Nuclear Information System (INIS)

    Viala, M.; Sombret, C.; Bernard, C.; Miquel, P.; Moulin, J.P.

    1992-01-01

    Reprocessing is the back-end of the nuclear fuel cycle, designed to recover valuable fissile materials, especially plutonium, and to condition safely all the wastes ready for disposal. For its new commercial reprocessing plants (UP 3 and UP 2 800) COGEMA decided to include many engineering innovations as well as new processes and key-components developed by CEA. UP 3 is a complete new plant with a capacity of 800 t/y which was put in operation in August 1990. UP 2 800 is an extension of the existing UP 2 facility, designed to achieve the same annual capacity of 800 t/y, to be put in operation at the end of 1993 by the commissioning of a new head-end and highly active chemical process facilities

  16. Deactivating a major nuclear fuels reprocessing facility

    International Nuclear Information System (INIS)

    LeBaron, G.J.

    1997-01-01

    This paper describes three key processes used in deactivating the Plutonium Uranium Extraction (PUREX) Facility, a large, complex nuclear reprocessing facility, 15 months ahead of schedule and $77 million under budget. The organization was reengineered to refine its business processes and more effectively organize around the deactivation work scope. Multi-disciplined work teams were formed to be self-sufficient and empowered to make decisions and perform work. A number of benefits were realized by reengineering. A comprehensive process to develop end points which clearly identified specific results and the post-project facility configuration was developed so all areas of a facility were addressed. Clear and specific end points allowed teams to focus on completing deactivation activities and helped ensure there were no unfulfilled end-of-project expectations. The RCRA regulations require closure of permitted facilities within 180 days after cessation of operations which may essentially necessitate decommissioning. A more cost effective approach was adopted which significantly reduced risk to human health and the environment by taking the facility to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to disposition. PUREX thus became the first large reprocessing facility with active TSD [treatment, storage, and disposal] units to be deactivated under the RCRA regulations

  17. Measurement and behaviour of technetium in fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Ferguson, C.; Kyffin, T.W.

    1986-02-01

    A method is described for the spectrophotometric measurement of technetium in plant solutions from the reprocessing of fast reactor fuel. The technetium is selectively extracted using tri-iso-octylamine. After back extraction, thiocyanate is added, in the presence of tetrabutyl-ammonium hydroxide, to form the red hexa-thiocyanato anionic complex in a chloroform medium. The concentration of the technetium is then calculated from the spectrophotometric measurement of this complex. This method was applied to bulk samples, collected during a PFR fuel reprocessing campaign, to identify the main routes followed by technetium through the reprocessing plant. In order to understand the probable behaviour of technetium in the process plant streams, an investigation into the influence of plutonium IV nitrate on the extraction of Tc (VII) into 20%v/v tributyl phosphate/odourless kerosene solution from nitric acid solutions, was initiated. The results of this investigation, along with the known distribution coefficient for the extraction of the uranyl/technetium complex U0 2 (N0 3 )(Tc0 4 ).2TBP and the redox chemistry of technetium, are used to predict the probable behaviour of technetium in the process plant streams. This predicted behaviour is compared with the experimental results and reasonable agreement is obtained between experiment and theory, considering the history of the samples analysed. (author)

  18. Reprocessing of AHWR spent-fuel: Challenges and strategies

    International Nuclear Information System (INIS)

    Kant, S.

    2005-01-01

    Reprocessing of advanced heavy water reactor (AHWR) spent-fuel involves separation of Th, 233 U and Pu, from the fission products and from one another. A proper combination of Purex and Thorex processes is required. The technology development for a reprocessing facility is extremely complex owing to high fissile content, high levels of irradiation, presence high of levels of 232 U, difficulty in thoria dissolution, presence of thorium as the major constituent, problems due to third phase formation with Th, etc. It demands for development of suitable dissolution, solvent extraction, criticality control, U-Pu partitioning, and other equipments and/or techniques. Process modelling, simulation and optimisation are crucial in predicting behaviour of equipments/cycles, and in arriving at safe and optimum flowsheet. A significant success in this field has been achieved. This paper describes the reprocessing aspects pertaining to AHWR spent-fuel, indicating the major technological challenges, strategies to be followed and development requirements. A schematic flowsheet is proposed for Th- 233 U-Pu separation. (author)

  19. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  20. Consolidated fuel reprocessing program. Progress report, July 1-September 30, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    Technical progress is reported in overview fashion in the following areas: process development, laboratory R and D, engineering research, engineering systems, integrated equipment test facility (IET) operations, and HTGR fuel reprocessing

  1. Benefit analysis of reprocessing and recycling light water reactor fuel

    International Nuclear Information System (INIS)

    1976-12-01

    The macro-economic impact of reprocessing and recycling fuel for nuclear power reactors is examined, and the impact of reprocessing on the conservation of natural uranium resources is assessed. The LWR fuel recycle is compared with a throwaway cycle, and it is concluded that fuel recycle is favorable on the basis of economics, as well as being highly desirable from the standpoint of utilization of uranium resources

  2. Development of remote fuel pushing system in Reprocessing Plant, Tarapur

    International Nuclear Information System (INIS)

    Chandra, Munish; Coelho, G.; Kodilkar, S.S.; Mishra, A.K.; Bajpai, D.D.; Nair, M.K.T.

    1990-01-01

    Power Reactor Fuel Reprocessing Plant (PREFRE), Tarapur has been processing spent fuel arising from Pressurized Heavy Water Reactors for quite some time. The process adopted in the plant is purex process with chopleach head end treatment. The head end treatment involves loading of ten spent fuel bundles in the charging cask at a time in the fuel bay and aligning the cask with the transfer port and subsequently pushing all the ten bundles together into the fuel magazine. At present the fuel is pushed into the magazine manually. Since the ten bundles weigh approximately 200 Kg. and involves pushing of 9.4 meters length, the operation is carried out using stainless steel screwed pipes, in steps of five lengths. The entire operation requires a large number of trained skilled workers and is found to be tedious. To solve this problem a hydraulic cum pneumatic fuel pushing system has been designed, fabricated, tested and is in the process of installation in the fuel handling area. This paper describes various requirements, constraints and dimensional details arising in the incorporation of such a system to be back fitted in an existing plant, though many of these constraints can be avoided in future plants. Further, complete sequence of operations, technical specifications regarding the telescopic hydraulic power pack and associated controls incorporated in the system are highlighted. (author). 2 figs

  3. Present status of fuel reprocessing plant in PNC

    International Nuclear Information System (INIS)

    Koyama, Kenji

    1981-01-01

    In the fuel reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation, its hot test has now been completed. For starting its full-scale operation duly, the data are being collected on the operation performance and safety. The construction was started in June, 1971, and completed in October, 1974. In July, 1977, spent fuel was accepted in the plant, and the hot test was started. In September, the same year, the first fuel shearing was made. So far, a total of about 31 t U from both BWR and PWR plants has been processed, thus the hot test was entirely completed. The following matters are described: hot test and its results, research on Pu and U mixed extraction, utilization of product plutonium, development of safeguard technology, and repair work on the acid recovery evaporation tank. (J.P.N.)

  4. Reprocessing of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Bourgeois, M.

    1981-05-01

    A PUREX process specially adapted to fast neutron reactor fuels is employed. The results obtained indicate that the aqueous process can be applied to this type of fuel: almost 10 years operation at the AT 1 plant which processes fuel from RAPSODIE; the good results obtained at the MARCOULE pilot plant on large batches of reference fuels. The CEA is continuing its work to transfer this technology onto an industrial scale. Industrial prototypes and the launching of the TOR (traitement d'oxydes rapides) project will facilitate this transfer. In 1984, it is expected that fast fuels will be able to be processed on a significant scale and that supplementary R and D facilities will be available [fr

  5. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  6. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  7. The importance of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The subject is discussed under the following main headings: introduction; world energy requirement; energy conservation and the economics of recycle; environmental considerations and the timescale of reprocessing; and problems associated with reprocessing. It is concluded that reprocessing is essential to the conservation of the world's energy resources and is an environmentally and probably an economically more acceptable option to the 'throw away' alternative. The associated problems of proliferation and terrorism, although of the utmost importance, can and will be solved. (U.K.)

  8. Multiservice utility plug for remote fuel reprocessing

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Jensen, D.A.

    1979-10-01

    This paper presents the design of a multiservice utility plug and drive system to be used for reliably engaging and disengaging all utility connections automatically that serve large portable equipment modules. The modules are arranged into a fuel processing production line within the Fuels and Materials Examination Laboratory. The utility plugs allow the modules to be easily replaced, rearranged or removed for maintenance

  9. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1980-01-01

    The office ordinance is established under the provisions related to reprocessing businesses of the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors, to enforce the provisions. The basic terms are defined, such as exposure radiation dose; accumulated dose; controlled area; maintenance area; surrounding watch area; employee; radioactive waste; the facilities for discharge to sea. An application for the designation of reprocessing businesses shall be filed, listing the following matters: the maximum daily and yearly reprocessing capacities for each kind of spent fuel; the location and general structure of reprocessing facilities; the structures of buildings; the structure and equipments of main reprocessing facilities, the storage facilities for products and the disposal facilities for radioactive wastes; the equipments of measuring and control system facilities and radiation control facilities, etc. Records shall be made on the inspection of reprocessing facilities, radiation control, operation, maintenance, the accidents of reprocessing facilities and weather, and kept for the period from one to ten years, respectively. Any person engaging in reprocessing businesses shall set up control, maintenance and surrounding watch areas, and take specified measures to restrict the entrance of persons. The measures to be taken against exposure radiation dose, the inspection, regular independent examination and operation of reprocessing facilities and other related matters are stipulated in detail. (Okada, K.)

  10. Fuel processing. Wastes processing

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2000-01-01

    The gaseous, liquid and solid radioactive effluents generated by the fuel reprocessing, can't be release in the environment. They have to be treated in order to respect the limits of the pollution regulations. These processing are detailed and discussed in this technical paper. A second part is devoted to the SPIN research program relative to the separation of the long life radionuclides in order to reduce the radioactive wastes storage volume. (A.L.B.)

  11. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  12. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  13. Open problems in reprocessing of a molten salt reactor fuel

    International Nuclear Information System (INIS)

    Lelek, Vladimir; Vocka, Radim

    2000-01-01

    The study of fuel cycle in a molten salt reactor (MSR) needs deeper understanding of chemical methods used for reprocessing of spent nuclear fuel and preparation of MSR fuel, as well as of the methods employed for reprocessing of MSR fuel itself. Assuming that all the reprocessing is done on the basis of electrorefining, we formulate some open questions that should be answered before a flow sheet diagram of the reactor is designed. Most of the questions concern phenomena taking place in the vicinity of an electrode, which influence the efficiency of the reprocessing and sensibility of element separation. Answer to these questions would be an important step forward in reactor set out. (Authors)

  14. Safety aspects of solvent nitration in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Wilbourn, R.G.

    1977-06-01

    Reprocessing of HTGR fuels requires evaporative concentration of uranium and thorium nitrate solutions. The results of a bench-scale test program conducted to assess the safety aspects of planned concentrator operations are reported

  15. Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium in fast breeder reactors (FBRs) fuel reprocessing

    International Nuclear Information System (INIS)

    Govindan, P.; Palamalai, A.; Vijayan, K.S.; Subba Rao, R.V.; Venkataraman, M.; Natarajan, R.

    2013-01-01

    Ammonium uranyl carbonate (AUC) based process of simultaneous partitioning and reconversion for uranium and plutonium is developed for the recovery of uranium and plutonium present in spent fuel of fast breeder reactors (FBRs). Effect of pH on the solubility of carbonates of uranium and plutonium in ammonium carbonate medium is studied. Effect of mole ratios of uranium and plutonium as a function of uranium and plutonium concentration at pH 8.0-8.5 for effective separation of uranium and plutonium to each other is studied. Feasibility of reconversion of plutonium in carbonate medium is also studied. The studies indicate that uranium is selectively precipitated as AUC at pH 8.0-8.5 by adding ammonium carbonate solution leaving plutonium in the filtrate. Plutonium in the filtrate after acidified with concentrated nitric acid could also be precipitated as carbonate at pH 6.5-7.0 by adding ammonium carbonate solution. A flow sheet is proposed and evaluated for partitioning and reconversion of uranium and plutonium simultaneously in the FBR fuel reprocessing. (author)

  16. The reprocessing of fast reactor fuels - the TOR project

    International Nuclear Information System (INIS)

    Calame-Longjean, A.; Le Bouhellec, J.; Schwob, Y.

    1982-01-01

    A description is given of development work on the proposed new French facility for the reprocessing of fast reactor fuel. This is the TOR facility (Traitement des Oxydes Rapides). Block diagrams give details of the TOR project as a whole and of the main line and R and D line of the TOR 1 facility which is a new works devoted to the head of the process. Modifications to existing plant which will form the TOR 2 and TOR 3 facilities are also described. (U.K.)

  17. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  18. Existing reflection seismic data re-processing

    International Nuclear Information System (INIS)

    Higashinaka, Motonori; Sano, Yukiko; Kozawa, Takeshi

    2005-08-01

    This document is to report the results of existing seismic data re-processing around Horonobe town, Hokkaido, Japan, which is a part of the Horonobe Underground Research Project. The main purpose of this re-processing is to recognize the subsurface structure of Omagari Fault and fold system around Omagari Fault. The seismic lines for re-processing are TYHR-A3 line and SHRB-2 line, which JAPEX surveyed in 1975. Applying weathering static correction using refraction analysis and noise suppression procedure, we have much enhanced seismic profile. Following information was obtained from seismic re-processing results. TYHR-A3 line: There are strong reflections, dipping to the west. These reflections are corresponding western limb of anticline to the west side of Omagari Fault. SHRB-2 line: There are strong reflections, dipping to the west, at CDP 60-140, while there are reflections, dipping to the east, to the east side of CDP 140. These reflections correspond to the western limb and the eastern limb of the anticline, which is parallel to Omagari FAULT. This seismic re-processing provides some useful information to know the geological structure around Omagari Fault. (author)

  19. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  20. Development of remote maintenance technology for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kawahara, Akira; Saito, Masayuki; Kawamura, Hironobu; Yamade, Atsushi; Sugiyama, Sen; Sugiyama, Sakae.

    1986-01-01

    In the plants for reprocessing spent nuclear fuel containing fission products, due to the facts that the facilities are in high radiations fields, and the surfaces of equipments are contaminated with radioactive substances, the troubles of process equipments are directly connected to the remarkable drop of the rate of operation of the facilities. Therefore, the development of various remote maintenance techniques has been carried out so far, but this time, Hitachi Ltd. got a chance to take part in the repair of spent fuel dissolving tanks in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp. and the development of several kinds of remote checkup equipment related to the repair work. Especially in the repair of the dissolving tanks, a radiation-withstanding checkup and repair apparatus which has high remote operability taking the conditions of radioactive environment and the restriction of the repaired objects in consideration was required, and a dissolving tank repairing robot composed of six kinds has been developed. The key points of the development were the selective use of high radiation-withstanding parts and materials, small size structure and the realization of full remote operability. The full remote maintenance apparatus of this kind is unique in the world, and applicable to wide fields. (Kako, I.)

  1. Aerosol release factor for Pu as a consequence of an ion exchange resin fire in the process cell of a fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bhanti, D.P.; Malvankar, S.V.; Kotrappa, P.; Somasundaram, S.; Raghunath, B.; Curtay, A.M.

    1988-12-01

    One of the upper limit accidents usually considered in the safety analysis of a fuel reprocessing plant is an accidental explosion, followed by a fire, of an ion exchange column containing resin loaded with large quantities of plutonium. In such accidents, a certain fraction (release factor) of Pu is released in the form of an aerosol into the ventilation system, and finally to the environment through HEPA filters and the stack. The present study was undertaken to determine the aerosol release factor for Pu in the process cell of a typical fuel reprocessing plant. Geometrically similar scaled-down models of three different sizes were built, and suitably scaled-down quantities of resin loaded with thorium in nitric acid medium were burnt in these model cells. Thorium was used in place of Pu because of its physical and chemical similarities with Pu. The release factor was obtained by comparing the amount of Th in air with the total. The study also dealt with aerosol characteristics and kinematics of process of fire. The aerosol release factors for the three models were found to lie in the range 0.01-0.07%, and varied non-monotonically with model size. The analysis of scaled down results in conjunction with simplified aerosol modelling yielded the release factor for the actual cell conditions as 0.012% with an upper limit value of 0.1%. The particle size analysis based on Th-radioactivity and particle-mass indicated nonuniform tagging of Th to aerosol particles. These particles were irregularly shaped, but not as long chain-like aggregates. The study proposes, with a reasonable degree of conservatism, the release factor of 0.1% for such fires, and aerosol parameters, AMAD and sigma/sub g/, as 2 m and 2 respectively. However, for situations significantly different from the present one, the release factor of 1% recommended by the American National Standards Institute may be used with a greater degree of confidence in the light of the present work.

  2. Safety aspects of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Donoghue, J.K.; Charlesworth, F.R.; Fairbairn, A.

    1977-01-01

    The establishment of the basic process must include the determination of the sensitivity of the process to operational errors or plant failures. The probability, and consequences of escapes of activity must be evaluated and emergency procedures set up to deal with accidents which might lead to such escapes. The administrative arrangements for safety should include a safety evaluation and advisory service independent of line management. A quality assurance strategy for the construction and commissioning stages is important. The design and construction of the plant must include: (i) Attention to plant reliability. Maintenance and inspection procedures to maintain reliability must be adopted and the design should include measures to facilitate in-service inspection of highly-active plant. (ii) Suitable and sufficient means of detection and prevention of malfunction, including criticality, bearing in mind both the timescale of development of the fault and its consequences. (iii) Measures for containment of activity. Penetrations from active into operating areas should be eliminated or minimised and maintenance should be separated from operational areas. Secondary containment beyond that provided for operations of a significant magnitude. A ventilation system with appropriate gas clean-up, monitoring and discharge facilities is required. (iv) Adequate shielding, with particular attention paid to multiple activities in a single operational area which might lead to an operator being exposed to radiation from operations which are beyond his control. (v) Means of accounting for active materials and for their recovery, transfer and disposal in the event of a forced shut down. (vi) Suitable methods for segregation and control of wastes within the plant and for their discharge. Solid or liquid wastes should be subject to delay and monitoring procedures before release. Facilities for storage of waste must be subject to the same safety principles as the plant itself. (vii) Final

  3. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  4. Fuel reprocessing: safety analysis of extraction cycles

    International Nuclear Information System (INIS)

    Dinh, B.; Mauborgne, B.; Baron, P.; Mercier, J.P.

    1991-01-01

    An essential part of the safety analysis related to the extraction cycles of reprocessing plants, is the analysis of their behaviour during steady-state and transient operations, by means of simulation codes. These codes are based on the chemical properties of the main species involved (distribution coefficient and kinetics) and the hydrodynamics inside the contactors (mixer-settlers and pulsed columns). These codes have been consolidated by comparison of calculations with experimental results. The safety analysis is essentially performed in two steps. The first step is a parametric sensitivity analysis of the chemical flowsheet operated: the effect of a misadjustment (flowrate of feed, solvent, etc) is evaluated by successive steady-state calculations. These calculations help the identification of the sensitive parameters for the risk of plutonium accumulation, while indicating the permissible level of misadjustment. These calculations also serve to identify the parameters which should be measured during plant operation. The second step is the study of transient regimes, for the most sensitive parameters related to plutonium accumulation risk. The aim is to confirm the conclusions of the first step and to check that the characteristic process parameters chosen effectively allow, the early and reliable detection of any drift towards a plutonium accumulating regime. The procedures to drive the process backwards to a specified convenient steady-state regime from a drifting-state are also verified. The identification of the sensitive parameters, the process status parameters and the process transient analysis, allow a good control of process operation. This procedure, applied to the first purification cycle of COGEMA's UP3-A La Hague plant has demonstrated the total safety of facility operations

  5. General requirements applicable to the production, inspection, processing, packaging and storage of various types of waste resulting from the reprocessing of fuels irradiated in pressurized light water reactors

    International Nuclear Information System (INIS)

    1982-09-01

    The Fundamental Safety Rules applicable to certain types of nuclear installation are intended to clarify the conditions of which observance, for the type of installation concerned and for the subject that they deal with, is considered as equivalent to compliance with regulatory French technical practice. These Rules should facilitate safety analysises and the clear understanding between persons interested in matters related to nuclear safety. They in no way reduce the operator's liability and pose no obstacle to statutory provisions in force. For any installation to which a Fundamental Safety Rule applies according to the foregoing paragraph, the operator may be relieved from application of the Rule if he shows proof that the safety objectives set by the Rule are attained by other means that he proposes within the framework of statutory procedures. Furthermore, the Central Service for the Safety of Nuclear Installations reserves the right at all times to alter any Fundamental Safety Rule, as required, should it deem this necessary, while specifying the applicability conditions. This rule is intended to define the general provisions applicable to the production, inspection, processing, packaging and storage of the different types of wastes resulting from the reprocessing of fuels irradiated in a PWR

  6. Evironmental assessment factors relating to reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-05-01

    This document is in two parts. Part I presents the criteria and evaluation factors, based primarily on US experience, which may be used to carry out an environmental assessment of spent fuel reprocessing. The concept of As Low as is Reasonably Achievable (ALARA) is introduced in limiting radiation exposure. The factors influencing both occupational and general public radiation exposure are reviewed. Part II provides information on occupational and general public radiation exposure in relation to reprocessing taken from various sources including UNSCEAR and GESMO. Some information is provided in relation to potential accidents at reprocessing or MOX fuel refabrication plants. The magnitude of the services, energy, land use and non-radiological effluents for the reference design of reprocessing plant are also presented

  7. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under provisions concerning the reprocessing business in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area; employee; radioactive waste and marine discharging facilities. Any person who gets permission for design of reprocessing facilities and method of the construction shall file an application, listing name and address of the person and the works or the place of enterprise where reprocessing facilities are to be set up, design of such facilities and method of the construction, in and out-put chart of nuclear fuel materials in reprocessing course, etc. Records shall be made and kept for particularly periods in each works or enterprise on inspection of reprocessing facilities, control of dose, operation, maintenance, accident of reprocessing facilities and weather. Detailed prescriptions are settled on entrance limitation to controlled area, exposure dose, inspection and check, regular independent examination and operation of reprocessing facilities, transportation in the works or the enterprise, storage, disposal, safeguard and measures in dangerous situations, etc. Reports shall be filed on exposure dose of employees and other specified matters in the forms attached and in the case otherwise defined. (Okada, K.)

  8. Roles of programmable logic controllers in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Mishra, Hrishikesh; Balakrishnan, V.P.; Pandya, G.J.

    1999-01-01

    Fuel charging facility is another application of Programmable Logic Controllers (PLC) in fuel reprocessing plants, that involves automatic operation of fuel cask dolly, charging motor, pneumatic doors, clutches, clamps, stepper motors and rod pushers in a pre-determined sequence. Block diagram of ACF system is given for underlining the scope of control and interlocks requirements involved for automation of the fuel charging system has been provided for the purpose at KARP Plant, Kalpakkam

  9. Fuel reprocessing and waste management in the UK

    International Nuclear Information System (INIS)

    Heafield, W.; Griffin, N.L.

    1994-01-01

    The currently preferred route for the management of irradiated fuel in the UK is reprocessing. This paper, therefore, concentrates on outlining the policies, practices and achievement of British Nuclear Fuels plc (BNFL) associated with the management of its irradiated fuel facilities at Sellafield. The paper covers reprocessing and how the safe management of each of the major waste categories is achieved. BNFL's overall waste management policy is to develop, in close consultation with the regulatory authorities, a strategy to minimize effluent discharges and provide a safe, cost effective method of treating and preparing for disposal all wastes arising on the site

  10. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  11. Report of the study grou: Data Processing in Reprocessing Plants

    International Nuclear Information System (INIS)

    1976-08-01

    A study group to examine Data Processing in Spent Fuel Reprocessing Plants was created at the request of the Head of Productions and entrusted to the Director of the La Hague Centre. The groupe was made up of engineers working in different fields: piloting, architecture, building outfits, services etc. To begin with the group examined the solutions proposed by the La Hague Centre for the replacement of data processing units in service at the time but too old and unreliable to meet the safety rules laid down. Secondly, as a contribution towards France's heritage in the fuel reprocessing field, the group investigated systems and configurations for possible application to the equipment of future plants. The results of these studies were submitted in January 1974 [fr

  12. Reprocessing RTR fuel in the La Hague plants

    International Nuclear Information System (INIS)

    Thomasson, J.; Drain, F.; David, A.

    2001-01-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  13. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, F-78140 Velizy (France); Drain, F.; David, A. [SGN, F-78182 Saint Quentin en Yvelines (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  14. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, 78 - Velizy Villacoublay (France); Drain, F.; David, A. [SGN, 78 - Saint Quentin en Yveline (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for their research and testing reactors spent fuel back-end management. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  15. On-line control of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Parus, I.; Kierzek, J.; Zoltowski, T.

    1977-01-01

    The development trends in the field of chemical processes control and the present state of the development of continuous composition analysers has been described. On this background the peculiarities of on-line control methods for spent nuclear fuel reprocessing have been discussed. The measuring methods for direct and indirect determination of chemical composition and nuclear safety are reviewed in detail. The review comprises such methods as: measurement of α, γ and neutron radiation emitted both by nuclides present in technological solutions and using external sources of different radiation, X-ray fluorescence, measurements of physicochemical parameters connected with the composition (pH, density, electrical conductivity), polarography and spectrophotometry. At the end of this review some new trends in process control based on dynamic process models have been presented. (author)

  16. Waste Minimization Study on Pyrochemical Reprocessing Processes

    International Nuclear Information System (INIS)

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-01-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal

  17. Economic feasibility study of regional centers for nuclear fuel reprocessing in the developing countries

    International Nuclear Information System (INIS)

    Bakeshloo, A.A.

    1977-01-01

    The fuel cycle costs for the following three different economic alternatives were studied: (1) Reprocessing in an industrialized country (such as the U.S.); (2) Reprocessing in the individual developing country; (3) Reprocessing in a regional center. The nuclear fuel cycle cost for the ''Throw-away'' fuel cycle was evaluated. Among the six regions which were considered in this study, region one (South America including Mexico) was selected for the economic analysis of the nuclear fuel cycle for the above three alternatives. For evaluation of the cases where the fuel is reprocessed in a regional center or in an individual developing country, a unit reprocessing cost equation was developed. An economic evaluation was developed to estimate the least expensive method for transporting radioactive nuclear material by either leased or purchased shipping casks. The necessary equations were also developed for estimating plutonium transportation and the safeguard costs. On the basis of nuclear material and services requirements and unit costs for each component, the levelized nuclear fuel cycle costs for each alternative were estimated. Finally, by a comparison of cost, among these three alternatives plus the ''Throw-away'' case,it was found that it is not at all economical to build individual reprocessing plants inside the developing countries in region one. However, it also was found that the economic advantage of a regional center with respect to the first alternative is less than a 4% difference between their total fuel cycle costs. It is concluded that there is no great economic advantage in any developing countries to seek to process their fuel in one of the advanced countries. Construction of regional reprocessing centers is an economically viable concept

  18. Methodology for evaluation of alternative technologies applied to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Selvaduray, G.S.; Goldstein, M.K.; Anderson, R.N.

    1977-07-01

    An analytic methodology has been developed to compare the performance of various nuclear fuel reprocessing techniques for advanced fuel cycle applications including low proliferation risk systems. The need to identify and to compare those processes, which have the versatility to handle the variety of fuel types expected to be in use in the next century, is becoming increasingly imperative. This methodology allows processes in any stage of development to be compared and to assess the effect of changing external conditions on the process

  19. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  20. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  1. Microbial transformations of radionuclides released from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Francis, A.J.

    2007-01-01

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed. (author)

  2. French experience and prospects in the reprocessing of fast breeder reactor fuels

    International Nuclear Information System (INIS)

    Megy, J.

    1983-06-01

    Experience acquired in France in the field of reprocessing spent fuels from fast breeder reactors is recalled. Emphasis is put on characteristics and quantities of spent fuels reprocessed in La Hague and Marcoule facilities. Then reprocessing developments with the realisation of the new pilot plant TOR at Marcoule, new equipments and study of industrial reprocessing units are reviewed [fr

  3. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  4. Safety aspects in fuel reprocessing and radioactive waste management

    International Nuclear Information System (INIS)

    Agarwal, K.

    2018-01-01

    Nuclear energy is used for generation of electricity and for production of a wide range of radionuclides for use in research and development, healthcare and industry. Nuclear industry uses nuclear fission as source of energy so a large amount of energy is available from very small amount of fuel. As India has adopted c losed fuel cycle , spent nuclear fuel from nuclear reactor is considered as a material of resource and reprocessed to recovery valuable fuel elements. Main incentive of reprocessing is to use the uranium resources effectively by recovering/recycling Pu and U present in the spent fuel. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Program is the attention paid from the very beginning to the safe management of radioactive waste

  5. Cleaning and extraction apparatus in a nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Nakamura, Yoshiaki.

    1983-01-01

    Purpose : To eliminate the requirement for the decomposition and cleaning of a centrifugal extractor upon re-processing of FBR type reactor fuels, by preventing solid fission products from depositing on a rotary body of the centrifugal extractor. Constitution : A cleaning and extraction apparatus comprising a combination of a centrifugal cleaner and a centrifugal extractor is used for shortening the contact time between the process liquid and the extraction solvent in FBR type reactor fuel re-processing, and variable parameters are adjusted so that the following equation can be satisfied for avoiding the deposition of solids onto the rotary body of the centrifugal extractor: lsub(e). (rsub(le) 2 + rsub(2r) 2 ) . Nsub(e) . Qsub(c)/ lsub(c) (rsub(lc) 2 + rsub(2c) 2 ) . Nsub(c) . Qsub(e) < 0.8 where Qsub(c) : flow rate to be processed in a centrifugal cleaner, lsub(c) : length of the rotary body, rsub(2c) : radius of a rotary body, rsub(le) : distance from the center to the liquid-extracting hole of the rotary body center to the liquid-extraction hole, Nsub(c) : number of revolution of the rotary body, Qsub(e) : amount of flowrate to be treated in the centrifugal extractor, lsub(e) : length of the rotary body, rsub(2e) : radius for the rotary body, rsub(le) : distance from the center of the rotary body to the liquid discharging aperture and Nsub(e) : number of rotation of the rotary body. (Ikeda, J.)

  6. Chemical process developments in reprocessing from 1965--1975 in the Institute for Hot Chemistry

    International Nuclear Information System (INIS)

    Baumgaertner, F.

    Work on the aqueous reprocessing of fuels is described. The following are discussed: LABEX (laboratory-scale extraction), MILLI facility (1 kg/day), problems of aqueous reprocessing, centrifugal extractor development, radiolytic products from Purex process, and TAMARA facility. Results of the MILLI operation are reviewed. Solutions to problems are discussed

  7. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    International Nuclear Information System (INIS)

    Devisme, F.; Juvenelle, A.; Touron, E.

    2001-01-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of 129 I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L -1 ) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  8. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the Purex process

    Energy Technology Data Exchange (ETDEWEB)

    Devisme, F.; Juvenelle, A.; Touron, E. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN/DRCP, 30 - Marcoule (France)

    2001-07-01

    An enhanced separation process designed to recover and purify molecular iodine desorbed during dissolution is described in the context of {sup 129}I management in the Purex process for transmutation or interim storage. It involves reducing acid scrubbing with hydroxyl-ammonium nitrate followed by oxidation with hydrogen peroxide to obtain selective desorption. The stoichiometry and kinetics are determined for each step and an experimental validation program is now in progress using a small pilot facility equipped with a scrubbing column. The technical feasibility of the process has already been demonstrated: room-temperature scrubbing with a HAN solution (0,5 mol.L{sup -1}) at a pH of about 5 results in 99% iodine trapping efficiency; the subsequent desorption yield is 99,5%. (author)

  9. Results on the separation of micro-drops after the extraction process in reprocessing plants for nuclear power plant fuels

    International Nuclear Information System (INIS)

    Rebelein, F.; Blass, E.

    1987-01-01

    This research process aims at the separation of micro-drops from liquid process-flows. In order to characterize the liquid-liquid dispersions a measuring technique for the drop size was adapted and batch settling experiments were performed. In continuous steady state experiments the separation of dispersions with the aid of fibre beds was examined. These experiments provided batch settling times and the separation performance as a function of drop size, volumetric throughput, kind and thickness of fibre, bed depth and hold-up for fibre bed settlers. A progression project will examine an electrostatic settler for comparison. There are application possibilities for the achieved results in all separation processes in the range of nuclear power techniques, of the chemical industry and of waste-water technology. (orig.) With 18 refs., 3 tabs., 33 figs [de

  10. Survey of economics of spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1976-01-01

    Literature data are surveyed on the economic problems of reprocessing spent fuel from light-water reactors in the period 1970 to 1975 and on the capacity of some reprocessing plants, such as NFS, Windscale, Marcoule, etc. The sharp increase in capital and production costs is analyzed and the future trend is estimated. The question is discussed of the use of plutonium and the cost thereof. The economic advantageousness previously considered to be the primary factor is no longer decisive due to new circumstances. The main objective today is to safeguard uninterrupted operation of nuclear power plants and the separation of radioactive wastes from the fuel cycle and the safe disposal thereof. (Oy)

  11. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  12. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  13. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  14. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  15. Cost analysis of the US spent nuclear fuel reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas, Austin TX (United States); Cady, K.B. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca NY (United States)

    2009-09-15

    The US Department of Energy is actively seeking ways in which to delay or obviate the need for additional nuclear waste repositories beyond Yucca Mountain. All of the realistic approaches require the reprocessing of spent nuclear fuel. However, the US currently lacks the infrastructure to do this and the costs of building and operating the required facilities are poorly established. Recent studies have also suggested that there is a financial advantage to delaying the deployment of such facilities. We consider a system of government owned reprocessing plants, each with a 40 year service life, that would reprocess spent nuclear fuel generated between 2010 and 2100. Using published data for the component costs, and a social discount rate appropriate for intergenerational analyses, we establish the unit cost for reprocessing and show that it increases slightly if deployment of infrastructure is delayed by a decade. The analysis indicates that achieving higher spent fuel discharge burnup is the most important pathway to reducing the overall cost of reprocessing. The analysis also suggests that a nuclear power production fee would be a way for the US government to recover the costs in a manner that is relatively insensitive to discount and nuclear power growth rates. (author)

  16. Process information systems in nuclear reprocessing

    International Nuclear Information System (INIS)

    Jaeschke, A.; Keller, H.; Orth, H.

    1987-01-01

    On a production management level, a process information system in a nuclear reprocessing plant (NRP) has to fulfill conventional operating functions and functions for nuclear material surveillance (safeguards). Based on today's state of the art of on-line process control technology, the progress in hardware and software technology allows to introduce more process-specific intelligence into process information systems. Exemplified by an expert-system-aided laboratory management system as component of a NRP process information system, the paper demonstrates that these technologies can be applied already. (DG) [de

  17. Alternate extractants to tributyl phosphate for reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Crouse, D.J.; Arnold, W.D.; Hurst, F.J.

    1983-01-01

    Both tri(n-hexyl) phosphate (THP) and tri(2-ethylhexyl) phosphate (TEHP) have some important potential process advantages over TBP for reactor fuel reprocessing. These include negligible aqueous phase solubility and less tendency toward third phase and crud formation. The alkyl chain branching of TEHP makes it much more stable to chemical degradation than TBP and probably also accounts for its much weaker ruthenium extraction. The higher uranium and plutonium extraction power of THP and TEHP allows higher solvent loadings in extraction but makes them somewhat more difficult to strip. The phase separation properties of 1.09 M solutions of THP and TEHP are inferior to those of 1.09 M TBP (30 vol %) but are favorable at lower concentrations. Use of more dilute THP and TEHP solutions is recommended for this reason and to obtain a better balance of extraction power in the extraction versus stripping steps

  18. Falling film evaporators: organic solvent regeneration in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Garcin, I.

    1989-01-01

    The aim of this work was to improve knowledge about working of falling film evaporators used in nuclear fuel reprocessing plants for organic solvent regeneration. The first part deals with a non evaporation film. An original film thickness measuring technique was used; infrared thermography. It gave indications on hydrodynamics and wave amplitude and pointed out thermocapillary forces to be the cause of bad wetting of the heated wall. By another way we showed that a small slit spacing on the film distributor, an enhanced surface roughness and an important liquid flow rate favour a better wetting. The second part deals with evaporation of a binary solvent mixture. Experiments in an industrial evaporator corroborated the fact that it is essential for the efficiency of the apparatus to work at high flow rates. We propose an over-simple model which can be used to estimate performances of co-current falling film evaporators of the process [fr

  19. Monitoring of releases from an irradiated fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    At its UP 2 plant, the La Hague facility reprocesses irradiated fuel by the PUREX process. The fuel stems from graphite/gas, natural-uranium reactors and pressurized or boiling water enriched-uranium reactors. The gaseous effluents are collected and purified by high-efficiency washing and filtration. After purification the gas stream is discharged into the atmosphere by a single stack, 100m high and 6m in diameter, located at a high point on the site (184m). The radionuclides released into the air are: krypton-85, iodine-129 and -131, and tritium. The liquid effluents are collected by drainage systems, which transfer them to the effluent treatment station in the case of active or suspect solutions. Active solutions undergo treatment by chemical and physical processes. After purification the waste water is released into the sea by an underwater drainage system 5km long, which brings the outlet point into the middle of a tidal current 2km offshore. The radionuclides contained in the purified waste water are fission products originating from irradiated fuels in only slightly variable proportions, in which ruthenium-rhodium-106 predominates. Traces of the transuranium elements are also found in these solutions

  20. Hydrothermal synthesis for fabrication and reprocessing of MOX nuclear fuel

    International Nuclear Information System (INIS)

    Ohta, Suguru; Yamamura, Tomoo; Shirasaki, Kenji; Satoh, Isamu; Shikama, Tatsuo

    2011-01-01

    To improve the nuclear proliferation resistance and to minimize use of chemicals, a new reprocessing and fabrication process of 'mixed oxide' (MOX) fuel was proposed and studied by using simulated spent fuel solutions. The process is consisting of the two steps, i.e. the removal of fission product (FP) from dissolved spent fuel by using carbonate solutions (Step-1), and hydrothermal synthesis of uranium dioxides (Step-2). In Step-1, rare earth (the precipitation ratio: 90%) and alkaline earth (10-50% for Sr) as FP were removed based on their low solubility of hydroxides and carbonate salts, with uranium kept dissolved for the certain carbonate solutions of weak base (Type 2) or mixtures of relatively strong base and weak base (Type 3). In Step-2, the features of uranium dioxides UO 2+x particles, i.e. stoichiometry (x=0.05-0.2), size (0.2-3 μm) and shape (cubic, spherical, rectangular parallelpiped, etc.), were controlled, and the cesium was removed down to 40 ppm by an addition of organic additives. The decontamination factors (DF) for cesium exceeds 10 5 , whereas the total DF of all the simulated FP were as low as the order of 10 which requires future studies for removal of alkaline earth, Re and Tc etc. (author)

  1. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  2. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  3. A survey of methods to immobilize tritium and carbon-14 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1991-02-01

    This report reviews the literature on methods to separate and immobilize tritium ( 3 H) and carbon-14 ( 14 C) released from U0 2 fuel in a nuclear fuel reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future application in Canada. The calculated inventories of both 3 H and 14 C in used fuel are low; special measures to limit releases of these radionuclides from reprocessing plants are not currently in place, and may not be necessary in future. If required, however, several possible approaches to the concentration and immobilization of both radionuclides are available for development. Technology to control these radionuclides in reactor process streams is in general more highly developed than for reprocessing plant effluent, and some control methods may be adaptable to reprocessing applications

  4. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  5. Reprocessing of spent nuclear fuels. Status and trends

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs

  6. Implications of ICPR 60 for nuclear fuel reprocessing in france

    International Nuclear Information System (INIS)

    Mathieu, P.

    1992-01-01

    The ICRP 60 publication intends to guide the regulatory agencies on the main rules and principle of protection. The text contains recommendations for practices and for emergencies. The following report intends to develop the possible consequences of the publication for the reprocessing of spent fuel as managed by COGEMA in the plants of La Hague and Marcoule. (author)

  7. Reasons for and against reprocessing of spent fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Gries, W

    1983-06-01

    In the following the reasons for and against the main methods of waste disposal are compared. The author examines the advantages and disadvantages of waste disposal by reprocessing of spent fuel assemblies or by immediate ultimate storage. To get a general idea the pros and cons are arranged and analysed according to the following subjects: - technology/science, - safety/environment, - profitability, - political aspects.

  8. General criteria for the project of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-01-01

    Recommendations are presented establishing the general criteria for the project of nuclear fuel reprocessing plants to be licensed according to the legislation in effect. They apply to all the plant's systems, components and structures which are important to operation safety and to the public's health and safety. (F.E.) [pt

  9. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  10. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  11. Safety recycling of reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Weinlaender, W.

    Additionally to the measures, which descent from the conventional safety techniques, a series of supplementary protective measures have to be taken in connection with the Atomic Energy Law, the Radiation Protection Ordinance and the nuclear-technical practice, which in particular guarantee a safe enclosure and a safe residual heat rejection of the handled radioactive material and an avoidance of nuclear chain reactions. The most important plant malfunctions to be considered within the scope of the plant safety control according to the atomic law are, the radioactivity release due to mechanical damage of fuel elements, containment leakage, explosions in process equipment and/or vessels, burning of run out organic solvents, criticality malfunctions, and the already mentioned accidental failure of after-heat removal. If we let alone the extremely low probabilities for the occurrence of such accidents due to the selected methods, the layout of the equipment and by taking the required quality warranty measures into consideration, and infer such accidents in spite of this, the resulting radiation doses outside the plant are in all cases much lower than 5 rem, which is the design limit according to the regulations for radiation protection. (orig./HP) [de

  12. Fuel reprocessing at THORP: profitability and public liabilities

    International Nuclear Information System (INIS)

    Berkhout, F.

    1992-01-01

    Since the economics of British Nuclear Fuels Limited's (BNFL) Thermal Oxide Reprocessing Plant (THORP) were analysed in an earlier report, a number of domestic and international developments have affected the prospects for THORP. The present report outlines these changes, and analyses their implications for the profits and public liabilities associated with the project. Timing is of some significance because once THORP becomes radioactive (planned to occur in March 1993) the bill for decommissioning the plant will rise from a trivial sum to a very large one - Pound 900 million (1992 prices) in BNFL's own estimates. The report begins with a brief outline of reprocessing and the THORP project. It then examines the market prospects for reprocessing beyond THORP's first ten years and revises BNFL's own projections. It then considers the potential profitability of THORP in relation to various possible cost increases and finally outlines the possible implications of different THORP scenarios for the public purse. (author)

  13. The French R and D programme for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Auchapt, P.; Bourgeois, M.; Calame-Longjean, A.; Miquel, P.; Sauteron, J.

    1979-01-01

    The process employed is the Purex process adapted to the specific case of fast breeder reactor fuels. The results achieved have demonstrated that the aqueous method can be applied to these fuels: nearly ten years of operation in the ATl workshop which reprocesses RAPSODIE fuels, and the good results obtained at the Marcoule pilot facility on large batches of fuel attest to this achievement. The CEA effort continues principally on extrapolation to industrial scale, thanks mainly to experiments conducted on industrial prototypes and to the launching of the TOR project, which will, as of 1984, allow reprocessing of FBR fuels on a significant scale, and which will provide extensive additional resources for R and D activities

  14. The refurbishment of the D1206 fuel reprocessing plant

    International Nuclear Information System (INIS)

    Bailey, G.

    1988-01-01

    The term decommissioning can be applied not only to reactors but to any nuclear plant, laboratory, building or part of a building that may have been associated with radioactive material and needs to be restored to clean conditions. In this case the decommissioning and reconstruction of the Dounreay Fast Reactor fuel reprocessing plant, so that plutonium oxide could be reprocessed as well as enriched uranium fuel, is described. The work included improving containment and shielding, building a new head-end treatment cave for the more complex and larger fuel elements, improving the ventilation and constructing a new dissolver. In this paper the breakdown cave and dissolver cell are described and compared and the work done explained. (U.K.)

  15. Remote maintenance in TOR fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Eymery, R.; Constant, M.; Malterre, G.

    1986-11-01

    The TOR facility which is undergoing commissioning tests has a capacity of 5 T. HM/year which is enough for reprocessing all the Phenix fuel, with an excess capacity which is to be used for other fast reactors fuels. It is the result of enlargement and renovation of the old Marcoule pilot facility. A good load factor is expected through the use of equipment with increased reliability and easy maintenance. TOR will also be used to test new equipment developed for the large breeder fuel reprocessing plant presently in the design stage. The latter objective is specifically important for the parts of the plant involving mechanical equipment which are located in a new building: TOR 1. High reliability and flexibility will be obtained in this building thanks to the attention given to the integrated remote handling system [fr

  16. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  17. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1978-01-01

    In compliance with ''The law for the regulations of nuclear source material, nuclear fuel material and reactors'' these regulations prescribe concerning reprocessing facilities: The procedures to apply for the approval of the design and method of construction and the approval of the change thereof; as well as the procedure to apply for the inspection of the facilities, and details of the inspection (in sections 2-6). After that, the regulations require the enterpriser of reprocessing business to keep necessary records and take necessary measures for safety concerning the facilities, operation of reprocessing equipments, and transportation, storage on disposal of used fuel, materials separated therefrom or materials contaminated by either of them (in sections 8-16). Further, the regulations prescribe the procedure to apply for the approval of the safety rule required to the enterpriser of reprocessing business by above mentioned law and specifies items which should be included into the rule (section 17). Moreover, the regulations require the enterpriser to submit reports of each use of the internationally controllled material and specifies the items which should be included into these reports (section 19). (Matsushima, A.)

  18. Air conditioning facilities in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kawasaki, Michitaka; Oka, Tsutomu

    1987-01-01

    Reprocessing plants are the facilities for separating the plutonium produced by nuclear reaction and unconsumed remaining uranium from fission products in the spent fuel taken out of nuclear reactors and recovering them. The fuel reprocessing procedure is outlined. In order to ensure safety in handling radioactive substances, triple confinement using vessels, concrete cells and buildings is carried out in addition to the prevention of criticality and radiation shielding, and stainless steel linings and drip trays are installed as occasion demands. The ventilation system in a reprocessing plant is roughly divided into three systems, that is, tower and tank ventilation system to deal with offgas, cell ventilation system for the cells in which main towers and tanks are installed, and building ventilation system. Air pressure becomes higher from tower and tank system to building system. In a reprocessing plant, the areas in a building are classified according to dose rate. The building ventilation system deals with green and amber areas, and the cell ventilation system deals with red area. These three ventilation systems are explained. Radiation monitors are installed to monitor the radiation dose rate and air contamination in working places. The maintenance and checkup of ventilation systems are important. (Kako, I.)

  19. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  20. Analysis and study of spent fuel reprocessing technology from birth to present

    International Nuclear Information System (INIS)

    Takahashi, Keizo

    2006-01-01

    As for the nuclear fuel reprocessing of the spent fuel, although there was argument of pros and cons, it was decided to start Rokkasho reprocessing project further at the Japan Atomic Energy Commission of ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' in year 2004. The operation of Tokai Reprocessing is going steadily to reprocess spent fuel more than 1,100 tons. In this paper, history, present status and future of reprocessing technology is discussed focusing from military Pu production, Magnox fuel reprocessing to oxide fuel reprocessing. Amount of reprocessed fuel are estimated based on fuel type. Then, history of reprocessing, US, UK, France, Germany, Russian, Belgian and Japan is presented and compared on technology, national character, development organization, environmental protection, and high active waste vitrification. Technical requirements are increased from Pu production fuel, Magnox fuel and oxide fuel mainly because of higher burnup. Reprocessing technology is synthetic of engineering and accumulation of operational experience. The lessons learned from the operational experience of the world will be helpful for establishment of nuclear fuel reprocessing technology in Japan. (author)

  1. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  2. Radiation protection aspects in decommissioning of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kotrappa, P.; Joshi, P.P.; Theyyunni, T.K.; Sidhwa, B.M.; Nadkarni, M.N.

    1980-01-01

    The decontamination of a fuel reprocessing plant which underwent partial decommissioning is described. The following radiation protection aspects of the work are discussed: dismantling and removal of process vessels, columns and process off-gas filters; decontamination of various process areas; and management of liquid and solid wastes. The work was completed safely by using personnel protective equipment such as plastic suits and respirators (gas, particulate and fresh air). Total dose commitment for this work was around 3000 man-rems, including dose received by staff for certain jobs related to the operation of a section of the plant. The external dose was kept below the annual limit of 5000 mrems for any individual. No internal contamination incident occurred which caused a dose commitment in excess of 10% of the annual limit. The fact that all the work was completed by the staff normally associated with the operation of the plant contributed significantly to the management and control of personnel exposures. (H.K.)

  3. Melting process to condition decladding hulls generated by the reprocessing of L.W.R. and F.B.R. spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1980-11-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel with volume reduction factors of 5 to 7. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. With stainless steel, only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging, they should be confirmed by further tests in hot cells using real hulls. This study has made it possible to determine the principal parameters necessitated by the setting up of an industrial furnace project. The realisation of fusion compaction units for waste from fuel hulls generated by future reprocessing plants seems to be a real short-term possibility

  4. Abnormal reactions in a evaporator in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu

    2003-01-01

    In order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions, a development of a calculation code is under way. Mock-up tests were performed to investigate the fluid dynamic behavior of the organic solvent in the evaporator. Based on these results, the model of the calculation code was constructed. This report describes the results of mock-up tests and the model of the calculation code. (author)

  5. Assembly of laboratory line for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Fidler, J.; Chotivka, V.

    1979-01-01

    The dismantling of a laboratory line for spent fuel reprocessing after the termination of the research programme and the procedures for hot and semi-hot cell decontamination are described. The equipment was mostly disassembled in smaller parts which were then decontaminated by wiping them with cotton wool soaked in detergent and citric acid, varnished with two-component epoxi varnish, wrapped into multiple polyethylene foils, sealed in PVC bags and thus ready for transport. (B.S.)

  6. The reasons for and against reprocessing of spent fuel elements

    International Nuclear Information System (INIS)

    Gries, W.

    1983-01-01

    In the following the reasons for and against the main methods of waste disposal are compred. The author examines the advantages and disadvantages of waste disposal by reprocessing of spent fuel assemblies or by immediate ultimate storage. To get a general idea the pros and cons are arranged and analysed according to the following subjects: - technology/science, - safety/environment, - profitability, - political aspects. (orig./UA) [de

  7. Fuel reprocessing data validation using the isotope correlation technique

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, and graphite reactors) operating in a variety of modes (power, research, and production reactors), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (- 0.02 ± 0.23)% for the measured U-235 and (+ 0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems

  8. A comprehensive fuel nuclide analysis at the reprocessing plant

    International Nuclear Information System (INIS)

    Arenz, H.J.; Koch, L.

    1983-01-01

    The composition of spent fuel can be determined by various methods. They rely partially on different information. Therefore the synopsis of the results of all methods permits a detection of systematic errors and their explanation. Methods for determining the masses of fuel nuclides at the reprocessing input point range from pure calculations (shipper data) to mere experimental determinations (volumetric analysis). In between, a mix of ''fresh'' experimental results and ''historical'' data is used to establish a material balance. Deviations in the results obtained by the individual methods can be attributed to the information source, which is unique for the method in question. The methodology of the approach consists of three steps: by paired comparison of the operator analysis (usually volumetric or gravimetric) with remeasurements the error components are determined on a batch-by-batch basis. Using the isotope correlation technique the operator data as well as the remeasurements are checked on an inter-batch basis for outliers, precision and bias. Systematic errors can be uncovered by inter-lab comparison of remeasurements and confirmed by using historical information. Experience collected during the reprocessing of LWR fuel at two reprocessing plants prove the flexibility and effectiveness of this approach. An example is presented to demonstrate its capability in detecting outliers and determining systematic errors. (author)

  9. Status of radioiodine control for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Burger, L.L.; Scheele, R.D.

    1983-07-01

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used

  10. The future of reprocessing: a synergy of enhanced processes and new approaches

    International Nuclear Information System (INIS)

    Boullis, B.; Josso, F.; Montmain, J.; Buffereau, M.

    1996-01-01

    The December 30, 1991 french law has led scientists to develop new reprocessing processes in order to implement different strategies for the management of long-lived radioactive wastes from spent fuels. Various existing reprocessing processes and facility operation supervision and control techniques (PUREX, DIAMEX, SESAME, ACTINEX, DIAPASON) are briefly described. Three leading CEA scientists discuss the challenges of the future and according research programs. (C.B.)

  11. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  12. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  13. Engineering study: Fast Flux Test Facility fuel reprocessing

    International Nuclear Information System (INIS)

    Beary, M.M.; Raab, G.J.; Reynolds, W.R. Jr.; Yoder, R.A.

    1974-01-01

    Several alternatives were studied for reprocessing FFTF fuels at Hanford. Alternative I would be to decontaminate and trim the fuel at T Plant and electrolytically dissolve the fuel at Purex. Alternative II would be to decontaminate and shear leach the fuels in a new facility near Purex. Alternative III would be to decontaminate and store fuel elements indefinitely at T Plant for subsequent offsite shipment. Alternative I, 8 to 10 M$ and 13 quarter-years; for Alternative II, 24 to 28 M$ and 20 quarter-years; for Alternative III, 3 to 4 M$ and 8 quarter-years. Unless there is considerable slippage in the FFTF shipping schedule, it would not be possible to build a new facility as described in Alternative II in time without building temporary storage facilities at T Plant, as described in Alternative III

  14. Plant for retention of 14C in reprocessing plants for LWR fuel elements

    International Nuclear Information System (INIS)

    Braun, H.; Gutowski, H.; Bonka, H.; Gruendler, D.

    1983-01-01

    The 14 C produced from nuclear power plants is actually totally emitted from nuclear power plants and reprocessing plants. Using the radiation protection principles proposed in ICRP 26, 14 C should be retained at heavy water moderated reactors and reprocessing plants due to a cost-benefit analysis. In the frame of a research work to cost-benefit analysis, which was sponsored by the Federal Minister of the Interior, an industrial plant for 14 C retention at reprocessing plants for LWR fuel elements has been planned according to the double alkali process. The double alkali process has been chosen because of the sufficient operation experience in the conventional chemical technique. In order to verify some operational parameters and to gain experiences, a cold test plant was constructed. The experiment results showed that the double alkali process is a technically suitable method with high operation security. Solidifying CaCO 3 with cement gives a product fit for final disposal

  15. Recent R/D towards aqueous reprocessing of FBR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mallika, C.; Pandey, N.K.; Kumar, S.; Kamachi Mudali, U. [Materials, Process and Equipment Development Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-07-01

    The mixed Pu-rich carbide spent fuel with a burn up of 155 GWd/t from the Fast Breeder Test Reactor is being reprocessed in a hot-cell facility by PUREX process. Based on the input from the operation of this facility, research and development activities were carried out to improve the recovery, decontamination factors, economy and to reduce the waste volumes. Reduction of uranyl ions in a continuous flow electrochemical reactor and electrolytic as well as chemical reduction of 4 M HNO{sub 3} from liquid waste could be performed in continuous mode. Using the optimized parameters, suitable electrolytic cells/experimental setups were designed for the plant capacity of 6 L/h. Studies on the extraction kinetics of Ru with 30% TBP (tributyl phosphate) in NPH revealed that better decontamination factor with respect to Ru can be achieved using fast contactors like centrifugal extractors (CEs). Towards developing a spent solvent recovery system to reduce organic waste volumes, a pilot plant was set up, which could recover diluent as top product of distillation column and 40% TBP as bottom product from inactive degraded solvent. A solvent recovery system using short path distillation was also developed for installation in hot cells. (authors)

  16. Alpha-contaminated waste from reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Sumner, W.

    1982-01-01

    The anticipated alpha-waste production rates from the Barnwell Nuclear Fuel Reprocessing plant is discussed. The estimated alpha-waste production rate from the 1500 metric ton/year plant is about 85,000 ft 3 /year at the 10 nCi/g limit. Most of this waste is estimated to come from the separation facility, and the major waste sources were cladding, which was 27%, and low-level contact-handled general process trash, which was estimated at 32% of the total. It was estimated that 45% of the waste was combustible and 72% of the waste was compactible. These characteristics could have a significant impact on the final volumes as disposed. Changing the alpha-waste limit from 10 nCi/g to 100 nCi/g was estimated to reduce the amount of alpha waste produced by about 20%. Again, the uncertainty in this value obviously has to be substantial. One has to recognize that these estimates were just that; they were not based on any operating experience. The total plutonium losses to waste, including the high-level waste, was estimated to be 1.5%. The cladding waste was estimated to be contaminated with alpha emitters to the extent of 10 4 to 10 5 nCi/g

  17. Thermochemical properties of media for pyrometallurgical nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hosoya, Yuji; Terai, Takayuki

    1998-01-01

    Molten chloride/cadmium system is considered to be applied to a solvent in pyrochemical reprocessing of spent nuclear fuel. In this work, phase diagrams for molten chloride systems were constructed, using NdCl 3 as an imitative substance in place of UCl 3 or PuCl 3 . Hastelloy-X (Ni/Cr21/Fe18/Mo9/W) was examined as a structural material for the corrosion-resistance against molten chloride baths containing NdCl 3 . The process of corrosion was thermochemically discussed and the form of the corrosion was illustrated. Rutherford backscattering spectroscopy was successfully applied to determine the elemental distribution profile of specimens tested on the compatibility with molten chloride mixture at elevated temperature. Ferritic steel was also examined as another candidate material for the compatibility with molten cadmium covered with LiCl-KCl eutectic salt. Variation of near-surface composition was observed by comparing the results of Rutherford backscattering spectroscopy obtained before and after the dipping. (author)

  18. Nuclear material inventory estimation in a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Bennett, J.E.; Beyerlein, A.L.

    1981-01-01

    A new approach in the application of modern system identification and estimation techniques is proposed to help nuclear reprocessing facilities meet the nuclear accountability requirement proposed by the International Atomic Energy Agency. The proposed identification and estimation method considers the material inventory in a portion of the chemical separations area of a reprocessing facility. The method addresses the nonlinear aspects of the problem, the time delay through the separation facility, and the lack of measurement access. The method utilizes only input-output measured data and knowledge of the uncertainties associated with the process and measured data. 14 refs

  19. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    International Nuclear Information System (INIS)

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS

  20. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    Directory of Open Access Journals (Sweden)

    Nick R. Soelberg

    2013-01-01

    Full Text Available The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs, have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  1. Energies and media nr 30. Conditions for the nuclear sector. The fuel cycle and wastes. The usefulness of fuel reprocessing. Wastes

    International Nuclear Information System (INIS)

    2009-10-01

    After some comments on recent events in the nuclear sector in different countries (energy policy and projects in the USA, Europe, China, India, Russia), this issue proposes some explanations on the nuclear fuel cycle and on nuclear wastes: involved processes and products from mining to reprocessing and recycling, usefulness of reprocessing (future opportunities of fast neutron reactors, present usefulness of reprocessing with the recycling of separated fissile materials), impact of reprocessing on the environment in La Hague (gas and liquid releases, release standard definition), and the destiny of wastes

  2. The measurement of neptunium in fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.; Kyffin, T.W.

    1986-02-01

    Analytical techniques have been developed to measure neptunium in the feed, waste and product streams of a fast reactor fuel reprocessing plant. The estimated level of one microgram per milligram of plutonium in some solutions presented severe separation and measurement problems. An initial separation stage was essential, and both ion exchange and solvent extraction using thenoyltrifluoroacetone were studied. The redox chemistry of neptunium necessary to achieve good separation is considered. Spectrophotometry measurement of the stable neptunium/arsenazo III complex was selected for the final neptunium determination with additional analysis by radiometric methods. Incomplete recovery of neptunium during the separation stages necessitated yield measurements, using either neptunium-237 as an internal standard or the short lived gamma active neptunium-239 isotope as a tracer. The distribution of neptunium between the waste and product streams is discussed, in relation to the chemistry of neptunium in the reprocessing plant. (author)

  3. Development of centrifugal contactor for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Takeuchi, Masayuki; Suganuma, Takashi; Aose, Shinichi; Ogino, Hideki

    2003-01-01

    In the Feasibility Study on Commercialized Fast Reactor Cycle Systems, the aqueous reprocessing technology is nominated as a candidate for future reprocessing system, which supposes to apply a centrifugal contactor in the extraction process. For the reprocessing plant, the centrifugal contactor has great advantages such as reducing solvent degradation, improving of equipment utilization rate, compact designing of equipment layout and critical safety domination. From these advantages, the centrifugal contactor is crucial equipment in the aqueous reprocessing process. Since 1985, JNC has been developing the centrifugal contactor. The single unit development has been accomplished and basic characteristics such as extraction performance, fluidic performance and remote maintenance performance have been determined. A durability test has been conducted for high longevity, with consideration given to the nitric acid mist and estimation of the equipment lifetime. System test equipment with centrifugal contactors of engineering scale was installed, and uranium test was conducted. Up to now, a standard flow sheet test in the extraction process and mal-operation test assuming the one stage shutdown condition have been performed. (author)

  4. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  5. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  6. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    International Nuclear Information System (INIS)

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-01-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R and D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R and D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants

  7. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  8. Advance purex process for the new reprocessing plants in France and in Japan

    International Nuclear Information System (INIS)

    Viala, M.

    1991-01-01

    In the early Eighties, Japanese utilities formed the Japan Nuclear Fuel Service Co (JNFS), which is in charge of the construction and the operation of the first commercial reprocessing plant in Japan to be erected in Rokkasho Village, Aomori Prefecture. Following a thorough worldwide examination of available processes and technologies, JNFS selected the French technology developed for UP3 and UP2 800 for the plants' main facilities. For these three new plants, the 40-year old PUREX process which is used worldwide for spent fuel reprocessing, has been significantly improved. This paper describes some of the innovative features of the selected processes

  9. Processing of spent nuclear fuel from light water reactors

    International Nuclear Information System (INIS)

    Sraier, V.

    1978-11-01

    A comprehensive review is given of the reprocessing of spent nuclear fuel from LWR's (covering references up to No. 18 (1977) of INIS inclusively). Particular attention is devoted to waste processing, safety, and reprocessing plants. In the addendum, the present status is shown on the example of KEWA, the projected large German fuel reprocessing plant. (author)

  10. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents

  11. Savannah River Laboratory data banks for risk assessment of fuel reprocessing plants

    International Nuclear Information System (INIS)

    Durant, W.S.

    1981-10-01

    The Savannah River Laboratory maintains a series of computerized data banks primarily as an aid in probabilistic risk assessment studies in the fuel reprocessing facilities. These include component failure rates, generic incidents, and reports of specific deviations from normal operating conditions. In addition to providing data for probability studies, these banks, have served as a valuable aid in trend analysis, equipment histories, process hazards analysis, consequence assessments, incident audit, process problem solving, and training

  12. The Planning of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeborg, T U; Haeffner, E; Hultgren, Aa

    1963-10-15

    A shielded volume (42 m{sup 3}) in the hot laboratory at Kjeller, Norway, has been used for the installation of a small pilot plant intended for studies on nuclear fuel reprocessing. During the first period of operation (1963) a plutonium separation method (the Silex process) developed at AB Atomenergi will be studied. This document is a description of the project during the stage of technical planning and chemical process development.

  13. Apparatus and method for reprocessing and separating spent nuclear fuels

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H.; Coops, M.S.

    1983-01-01

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A non-oxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel. (author)

  14. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2008-01-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  15. Consolidated fuel reprocessing. Program progress report, April 1-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This progress report is compiled from major contributions from three programs: (1) the Advanced Fuel Recycle Program at ORNL; (2) the Converter Fuel Reprocessing Program at Savannah River Laboratory; and (3) the reprocessing components of the HTGR Fuel Recycle Program, primarily at General Atomic and ORNL. The coverage is generally overview in nature; experimental details and data are limited.

  16. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  17. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  18. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  19. Behavior of Nb fission product during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Gue, J.P.

    1977-02-01

    Investigations on niobium fission product behavior in nitric acid and tributyl phosphate media have been carried out in order to explain the difficulties encountered in separating this element from fissile materials during spent nuclear fuel reprocessing. The studies have shown that in nitric acid solution, pentavalent niobium has a colloidal hydroxide form. The so-obtained sols were characterized by light scattering, electronic microscopy, electrophoresis and ultracentrifugation methods. In heterogeneous extracting media containing tributyl phosphate and dibutyl phosphoric acid the niobium hydroxide sols could be flocculated by low dibutyl phosphoric acid concentration or extracted into the organic phase containing an excess of dibutyl phosphoric acid [fr

  20. On the possibility of reprocessing of fuel elements of dispersion type with copper matrix by pyrochemical methods

    International Nuclear Information System (INIS)

    Vasin, B.D.; Ivanov, V.A.; Shchetinskij, A.V.; Vavilov, S.K.; Savochkin, Yu.P.; Bychkov, A.V.; Kormilitsyn, M.V.

    2005-01-01

    A consideration is given to pyrochemical processes suitable for separation of uranium dioxide from structural materials when reprocessing cermet type fuel elements. The estimation of the possibility to apply liquid antimony and bismuth, potassium and copper chlorides melts is made. The specimens compacted of copper and uranium dioxide powders in a stainless steel can are used as simulators of fuel element sections. It is concluded that the dissolution of structural materials in molten salts at the stage of uranium dioxide concentration is the process of choice for reprocessing of dispersion type fuel elements [ru

  1. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  2. Compilation of papers presented to the KTG conference on 'Advanced LWR fuel elements: Design, performance and reprocessing', 17-18 November 1988, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-05-01

    The two expert groups of the Nuclear Society (KTG), 'chemistry and waste disposal' and 'fuel elements' discussed interdisciplinary problems concerning the development and reprocessing of advanced fuel elements. The 10 lectures deal with waste disposal, mechanical layout, operating behaviour, operating experiences and new developments of fuel elements for water moderated reactors as well as operational experiences of the Karlsruhe reprocessing plant (WAK) with reprocessing of high burnup LWR and MOX fuel elements, the distribution of fission products, the condition of the fission products during dissolution and with the effects of the higher burnup of fuel elements on the PUREX process. (DG) [de

  3. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    International Nuclear Information System (INIS)

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions

  4. Removal of actinides from selected nuclear fuel reprocessing wastes

    International Nuclear Information System (INIS)

    Navratil, J.D.; Thompson, G.H.

    1979-01-01

    The US Department of Energy awarded Oak Ridge National Laboratory a program to develop a cost-risk-benefit analysis of partitioning long-lived nuclides from waste and transmuting them to shorter lived or stable nuclides. Two subtasks of this program were investigated at Rocky Flats. In the first subtask, methods for solubilizing actinides in incinerator ash were tested. Two methods appear to be preferable: reaction with ceric ion in nitric acid or carbonate-nitrate fusion. The ceric-nitric acid system solubilizes 95% of the actinides in ash; this can be increased by 2 to 4% by pretreating ash with sodium hydroxide to solubilize silica. The carbonate-nitrate fusion method solubilizes greater than or equal to 98% of the actinides, but requires sodium hydroxide pretreatment. Two additional disadvantages are that it is a high-temperature process, and that it generates a lot of salt waste. The second subtask comprises removing actinides from salt wastes likely to be produced during reactor fuel fabrication and reprocessing. A preliminary feasibility study of solvent extraction methods has been completed. The use of a two-step solvent extraction system - tributyl phosphate (TBP) followed by extraction with a bidentate organophosphorous extractant (DHDECMP) - appears to be the most efficient for removing actinides from salt waste. The TBP step would remove most of the plutonium and > 99.99% of the uranium. The second step using DHDECMP would remove > 99.91% of the americium and the remaining plutonium (> 99.98%) and other actinides from the acidified salt waste. 8 figures, 11 tables

  5. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. Instead of releasing the 85 Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing 85 Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of 85 Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for 85 Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated 3 H and 14 C also encourage delaying implementation of the 85 Kr recovery in the early plants

  6. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  7. Reprocessing ability of high density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Gay, A.; Belieres, M.

    1997-01-01

    The development of a new high density fuel is becoming a key issue for Research Reactors operators. Such a new fuel should be a Low Enrichment Uranium (LEU) fuel with a high density, to improve present in core performances. It must be compatible with the reprocessing in an industrial plant to provide a steady back-end solution. Within the framework of a work group CEA/CERCA/COGEMA on new fuel development for Research Reactors, COGEMA has performed an evaluation of the reprocessing ability of some fuel dispersants selected as good candidates. The results will allow US to classify these fuel dispersants from a reprocessing ability point of view. (author)

  8. Reprocessing of spent nuclear fuels in OECD countries

    International Nuclear Information System (INIS)

    1977-01-01

    This report deals with the adequacy of projected reprocessing capacity, the short-term measures proposed in view of the lack of sufficient reprocessing capacity, the longer term measures proposed in view of the lack of sufficient reprocessing capacity, the alternatives to reprocessing and the cooperative arrangements

  9. Report of the IAEA advisory group meeting on LMFBR fuel reprocessing

    International Nuclear Information System (INIS)

    1976-05-01

    A summary of the papers and discussions of the meeting is presented, reviewing the status of development in LMFBR fuel reprocessing and focusing attention on important problem areas. The following topics are discussed: Transport, storage and removal of sodium; decladding and shearing; dissolution; Purex process; fluoride volatility method; off-gas purification; waste disposal. Status reports of national programmes of Belgium, France, Federal Republic of Germany, Italy, Japan, United Kingdom, USSR and USA are included

  10. Investigation of special resins for the extraction-chromatogaphic separation of Np and Pu from the process stream of a reprocessing plant for HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G

    1977-03-15

    The effectiveness of several special resins for extraction chromatographic separation of plutonium and neptunium from the process streams of a reprocessing plant was investigated. These special resins consisted of polystyrol and were loaded with Tri-n-octylamine (TOA) during the polymerization process. A commercial structural body of polytrifluormonochlorethylene (Voltalef), subsequently wetted with TOA, served as reference material. Despite its good separation characteristics, this separation body has considerable disadvantages. The individual particles of separation body are only approximately spherical, the homogeneity of the separation bed is consequently only moderate. This size (85% less than 0.062 mm) and the shape of the separation body particles cause high pressure loss in the solution which streams through. Filling the column with the Voltalef separation body is very complicated and often not reproducible. A relatively high elution rate of the stationary phase and low radiation resistance are other disadvantages of this separation body. Because of the unfavorable characteristics of the Voltalef separation body, the above mentioned polystyrol resins have been developed by the Bayer firm. The individual separation body particles of these resins have ideal spherical shape. The diameter of the spheres is 0.4 to 0.6 mm, causing only slight pressure losses in a chromatographic column. A homogeneous and compact column fill is much simpler to achieve with these resins than with Voltalef. Radiation resistance and elution rate of the polystyrol resins correspond to the expectations which must be met during hot operation. The separation characteristics of the investigated polystyrol resins are not optimum, however. The relatively large separation body particles considerably delay the establishment of equilibrium, for two reasons. The rate-determining step during loading is diffusion through an aqueous film, which surrounds the separation body particles.

  11. Critical experiment needs and plans of the consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Primm, R.T.

    1984-01-01

    An integral part of the United States Department of Energy (DOE) plan for the development of breeder reactors is the development of the capability for fuel reprocessing. The Consolidated Fuel Reprocessing Program (CFRP) was established by the DOE to identify and conduct research and development activities in this area. The DOE is currently proposing that a capability to reprocess fast reactor fuel be established in the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. This capability would include conversion of plutonium nitrate to plutonium oxide. The reprocessing line is designated the Breeder Reprocessing Engineering Test (BRET). Criticality safety remains an important critetion in the design of the BRET. The different steps in the reprocessing are reviewed and areas where additional critical experiments are needed have been indentified as also areas where revision or clarification of existing criticality safety standards are desirable

  12. A review of reprocessing, partitioning, and transmutation of spent nuclear fuel and the implications for Canada

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2006-01-01

    The current status of the reprocessing, partitioning, and transmutation of used nuclear fuel are reviewed in the context of assessing the possible application of these technologies to used CANDU fuel. The status of commercial reprocessing is briefly surveyed and recent progress in world R and D programs on the transmutation of FP's and actinides using Accelerator Driven Systems is summarized. The implications of reprocessing for Canada are explored from the point of view of a long strategy for managing used CANDU fuel in terms of the costs of initiating reprocessing domestically at some time in the future including public and occupational radiation doses, and the wastes generated. (author)

  13. Study of the chemical behaviour of technetium during irradiated fuels reprocessing

    International Nuclear Information System (INIS)

    Zelverte, A.

    1988-04-01

    This paper deals with the preparation of the lower oxidation states +III +IV and +V of technetium in nitric acid and its behaviour during the reprocessing of nuclear fuels (PUREX process). The first part of this work is a bibliographical study of this element in solution without any strong ligand. By chemical and electrochemical technics, pentavalent, tetravalent and trivalent technetium species, were prepared in nitric acid. The following chemical reactions are studied: - trivalent and tetravalent technetium oxidation by nitrate ion. - hydrazine and tetravalent uranium oxidation catalysed by technetium: in those reactions, we point out unequivocally the prominent part of trivalent and tetravalent technetium, - technetium behaviour towards hydroxylamine. Technetium should not cause any disturbance in the steps where hydroxylamine is employed to destroy nitrous acid and hydrazine replacement by hydroxylamine in uranium-plutonium partition could contribute to a best reprocessing of nuclear fuels [fr

  14. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  15. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    International Nuclear Information System (INIS)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO 2 fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed

  16. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  17. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  18. Administrative and managerial controls for the operation of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidelines are provided for the administrative and managerial controls necessary for the safe and efficient operation of nuclear fuel reprocessing plants. Topics covered include: administrative organization; review and audit; facility administrative policies and procedures; and tests and inspections. Recognizing that administrative practices vary among organizations operating nuclear fuel reprocessing plants, the standard incorporates flexibility that provides for compliance by any organization

  19. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance

  20. CAD system applications to the nuclear fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Morita, Eiji; Matsumoto, Tadakuni; Shikakura, Sakae; Furuya, Kousei; Sakurai, Shin-ichi.

    1994-01-01

    Effective supporting techniques of design, operation, and maintenance of the reprocessing facility have been developed using the Intergraph CAD system. Two and three dimensional views of the process cells were utilized to rationalize the equipment layout and material handling flows, and to check the piping interference. Interferences of the remote maintenance equipment with the process equipments were also evaluated by the pictures on the CAD display. The newest virtual reality technology will help our future development of the more natural simulation for the remote maintenance operator training. (author)

  1. Materials management in an internationally safeguarded fuels reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  2. Dynamic behaviour of solvent contactors in fuel reprocessing plants- an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Raju, R P; Siddiqui, H R [Nuclear Waste Management Group, Bhabha Atomic Research Centre, Mumbai (India); Murthy, K K; Kansra, V P [Fuel Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fuel reprocessing plants carry out separation of useful fissile and fertile materials from spent nuclear fuels by isolating highly radioactive fission products using solvent extraction method. In the fuel reprocessing step of nuclear fuel cycle, optimisation of process parameters in the PUREX flowsheet design is of great importance particularly on account of the need to realize high degree of recovery of fissile and fertile materials and to ensure proper control on concentrations of fissile element in process streams for avoidance of criticality. In counter-current solvent contactors of PUREX flowsheet there are a variety of processes conditions which may cause plutonium accumulations that requires attention to ascertain safe Pu concentrations within the contactors. A study was carried out using the PUREX process mathematical model Solvent Extraction Program Having Interacting Solutes (SEPHIS) for pulsed solvent contactors in PREFRE-1, Tarapur and PREFRE-2, Kalpakkam flowsheets for optimising the process parameters in plutonium purification cycles. The study was extended to predict the behaviour of contactors handling plutonium bearing solutions under certain anticipated deviations in the process parameters. Modifications wherever necessary were carried out to the original SEPHIS code. This paper discusses the results obtained during this analysis. (author). 2 figs., 2 tabs.

  3. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    International Nuclear Information System (INIS)

    Van Hecke, K.; Goethals, P.

    2006-01-01

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  4. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  5. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  6. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  7. Design of vertical thermosiphon reboilers for operation under vacuum conditions application in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Moore, M.J.C.; Keys, M.H.; Plumb, G.R.

    1988-01-01

    Reprocessing of nuclear fuel requires concentration of uranium, plutonium and other active effluent streams at various stages for purification, storage or solidification. This is usually achieved by evaporation and in U.K. plant such processes are often carried out under reduced pressure. For high throughput streams, there are considerable advantages in using vertical thermosiphon systems for evaporation and for recovery of nitric acid. However, data for such systems at reduced pressure is limited and the development by John Brown E and C Ltd of a computer program for reliable prediction of thermosiphon performance was carried out on behalf of British Nuclear Fuels Plc using data from operating plant. (author)

  8. Automatization of laboratory extraction installation intended for investigations in the field of reprocessing of spenf fuels

    International Nuclear Information System (INIS)

    Vznuzdaev, E.A.; Galkin, B.Ya.; Gofman, F.Eh.

    1981-01-01

    Automatized stand for solving the problem of optimum control on technological extraction process in the spent fuel reprocessing by means of an automatized control system which is based on the means of computation technick is described in the paper. Preliminary experiments which had been conducted on the stand with spent fuel from WWER-440 reactor have shown high efficiency of automatization and possibility to conduct technological investigations in a short period of time and to have much of information which can not be obtained by ordinary organisation of work [ru

  9. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Alexandre, D.

    1986-05-01

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen [fr

  10. Surveillance system using the CCTV at the fuel transfer pond in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Hayakawa, T.; Fukuhara, J.; Ochiai, K.; Ohnishi, T.; Ogata, Y.; Okamoto, H.

    1991-01-01

    The Fuel Transfer Pond (FTP) in the Tokai Reprocessing Plant (TRP) is a strategic point for safeguards. Spent fuels, therefore, in the FTP have been surveyed by the surveillance system using the underwater CCTV. This system was developed through the improvement of devices composed of cameras and VCRs and the provision of tamper resistance function as one of the JASPAS (Japan Support Program for Agency Safeguards) program. The purpose of this program is to realize the continuous surveillance of the slanted tunnel through which the spent fuel on the conveyor is moved from the FTP to the Mechanical Processing Cell (MPC). This paper reports that, when this surveillance system is applied to an inspection device, the following requirements are needed: To have the ability of continuous and unattended surveillance of the spent fuel on the conveyor path from the FTP to the MPC; To have the tamper resistance function for continuous and unattended surveillance of the spent fuel

  11. Confinement of ruthenium oxides volatilized during nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Maas, E.T. Jr.; Longo, J.M.

    1980-01-01

    While many materials have been suggested and employed as trapping agents for gaseous oxides of fission product ruthenium volatilized during nuclear fuels reprocessing, none that is known to form thermodynamically stable compounds with rutheniunm has been utilized. We have employed alkaline earth metal compounds for this purpose because of their ability to form stable mixed metal oxide phases with ruthenium. Results of experiments in which RuO 4 was volatilized from either a solid source (RuO 2 .xH 2 O) or from solution [Ru(NO)(NO 3 ) 3 ] in HNO 3 and passed through beds of alkaline earth metal carbonates and calcium oxide held at 600 to 750 0 C have demonstrated that compounds of formulation MRuO 3 (M = calcium, strontium, barium) are formed. Under oxidizing conditions, these materials exist as stable ceramic phases, whereas under reducing conditions, they are transformed into intimate mixtures of the alkaline earth metal oxide and nonvolatile ruthenium metal

  12. Sludge behavior in centrifugal contactor operation for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Okamura, Nobuo; Koizumi, Kenji

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) has been developing the centrifugal contactor for spent fuel reprocessing. In this study, we investigated the sludge behavior in centrifugal contactors at three different scales. The operational conditions (the flow rate and rotor speed) were varied. Most insoluble particles such as sludge remained in the rotor via centrifugal force. The capture ratio of sludge in the contactor was measured as a function of particle size at various flow rates, rotor speeds, and contactor scales. The sludge adhered and accumulated inside the rotor as the operational time increased, and the operational conditions influenced the capture ratio of the sludge; a lower flow rate and higher rotor speed increased the capture ratio. The results confirmed that Stokes' law can be applied to estimate the experimental result on the behavior of the capture ratio for centrifugal contactors with different scales. (author)

  13. Studies on application on airlift in fuel reprocessing engineering

    International Nuclear Information System (INIS)

    Prasad, A.N.; Balasubramanian, G.R.; Ranganathan, K.

    1977-01-01

    The experiments have been conducted to study the possibility of using airlift for: (1) metering the radioactive fluids by metering the prime air used and (2) transport of these fluids. It is found that airlift can be used for metering directly or a part of a metering system. It can transport radioactive fluids e.g. concentrated plutonium solutions. It can be adopted to transfer completely solutions between tanks at the same level. The problem of entrainment of liquid by air can be sufficiently reduced by introducing suitable de-entrainers. The major advantage is the absence of any moving parts and its wider flow rate ranges. It is, thus, a valuable tool for a fuel reprocessing engineer. (M.G.B.)

  14. Advanced teleoperation in nuclear applications: consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Hamel, W.R.; Feldman, M.J.; Martin, H.L.

    1984-01-01

    A new generation of integrated remote maintenance systems is being developed to meet the needs of future nuclear fuel reprocessing at the Oak Ridge National Laboratory. Development activities cover all aspects of an advanced teleoperated maintenance system with particular emphasis on a new force-reflecting servomanipulator concept. The new manipulator, called the advanced servomanipulator, is microprocessor controlled and is designed to achieve force-reflection performance near that of mechanical master/slave manipulators. The advanced servomanipulator uses a gear-drive transmission which permits modularization for remote maintainability (by other advanced servomanipulators) and increases reliability. Human factors analysis has been used to develop an improved man/machine interface concept based upon colographic displays and menu-driven touch screens. Initial test and evaluation of two advanced servomanipulator slave arms and several other development components have begun. 9 references, 5 figures

  15. Spent fuel reprocessing and minor actinide partitioning safety related research at the UK National Nuclear Laboratory

    International Nuclear Information System (INIS)

    Carrott, Michael; Flint, Lauren; Gregson, Colin; Griffiths, Tamara; Hodgson, Zara; Maher, Chris; Mason, Chris; McLachlan, Fiona; Orr, Robin; Reilly, Stacey; Rhodes, Chris; Sarsfield, Mark; Sims, Howard; Shepherd, Daniel; Taylor, Robin; Webb, Kevin; Woodall, Sean; Woodhead, David

    2015-01-01

    The development of advanced separation processes for spent nuclear fuel reprocessing and minor actinide recycling is an essential component of international R and D programmes aimed at closing the nuclear fuel cycle around the middle of this century. While both aqueous and pyrochemical processes are under consideration internationally, neither option will gain broad acceptance without significant advances in process safety, waste minimisation, environmental impact and proliferation resistance; at least when compared to current reprocessing technologies. The UK National Nuclear Laboratory (NNL) is developing flowsheets for innovative aqueous separation processes. These include advanced PUREX options (i.e. processes using tributyl phosphate as the extractant for uranium, plutonium and possibly neptunium recovery) and GANEX (grouped actinide extraction) type processes that use diglycolamide based extractants to co-extract all transuranic actinides. At NNL, development of the flowsheets is closely linked to research on process safety, since this is essential for assessing prospects for future industrialisation and deployment. Within this context, NNL is part of European 7. Framework projects 'ASGARD' and 'SACSESS'. Key topics under investigation include: hydrogen generation from aqueous and solvent phases; decomposition of aqueous phase ligands used in separations prior to product finishing and recycle of nitric acid; dissolution of carbide fuels including management of organics generated. Additionally, there is a strong focus on use of predictive process modelling to assess flowsheet sensitivities as well as engineering design and global hazard assessment of these new processes. (authors)

  16. EdF speaks about economic advantages of fuel reprocessing as compared with interim storage

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The French company Electricite de France (EdF) will prefer nuclear fuel reprocessing and plutonium recycling to spent fuel storage also in the years after 2000. This option is economically advantageous if the proportional cost of reprocessing does not exceed 1900 FRF/kg heavy metal. Economic analysis shows that this is feasible. EdF will soon have to reprocess annually about 1000 Mt spent fuel to supply enough plutonium for MOX fuel fabrication to feed as many as 28 PWR units and the Superphenix reactor. Spent fuel reprocessing is seen as promising as long as the efficiency of the MOX fuel approaches that of natural uranium based fuel. The French national industrial, political and legal context of EdF operations is also considered. (P.A.)

  17. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  18. Current Status of Spent Fast Reactor Fuel Reprocessing and Waste Treatment in Various Countries: United States of America

    International Nuclear Information System (INIS)

    2011-01-01

    Due to the previous strategic US decision on treating SNF as waste and not pursuing the reprocessing option, development work for the FR fuel cycle was only performed in a few laboratories, although interest is now increasing again. ORNL together with ANL have been influential in promoting the wider use of centrifugal contactors (favoured due to the high fissile content and decay power of FR fuel materials), associated remote handling systems and hardware prototypes for most unit operations in the reprocessing conceptual designs in the context of their development of the Consolidated Fuel Reprocessing Program. There is limited experience with reprocessing tests on the Fast Flux Text Facility (FFTF) MOX fuel. ORNL has undertaken small tests on laboratory scale dissolution and solvent extraction of MOX fuel irradiated to 220 GW/t HM burnup at around 2 kg batch scale [180-186]. The initiative called the breeder reprocessing engineering test (BRET) was started in the 1980s with a focus on the developmental activity of the US DOE to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the FFTF. The process was supposed to be installed at the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site, Richland, Washington. The major objectives of BRET were to: - Develop and demonstrate reprocessing technology and systems for breeder fuel; - Close the fuel cycle for the FFTF; - Provide an integrated test of breeder reactor fuel cycle technology - reprocessing, safeguards and waste management. The quest for pyrochemical alternatives to aqueous reprocessing has been under way in the USA since the late 1950s. Approaches examined at various levels of development and for a variety of fuels include alloy melting, FP volatilization and adsorption, fluoride and chloride volatility methods, redox solvent extractions between liquid salt and metal phases, precipitation and fractional crystallization, and electrowinning and electro

  19. Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal

    International Nuclear Information System (INIS)

    1993-10-01

    The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that open-quotes Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.close quotes This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity

  20. Possibilities of tritium removal from waste waters of pressurized water reactors and fuel reprocessing plants

    International Nuclear Information System (INIS)

    Ribnikar, S.V.; Pupezin, J.D.

    1975-01-01

    Starting from parameters known for heavy water production processes, a parallel was made with separation of tritium from water. The quantity in common is the total cascade flow. The most efficient processes appear to be hydrogen sulfide, water exchange, hydrogen- and water distillation. Prospects of application of new processes are discussed briefly. Problems concerning detritiation of pressurized water reactors and large fuel reprocessing plants are analyzed. Detritiation of the former should not present problems. With the latter, economical detritiation can be achieved only after some plant flow patterns are changed. (U.S.)

  1. The reprocessing of irradiated fuels improvement and extension of the solvent extraction process; Le traitement des combustibles irradies amelioration et extension du procede utilisant les solvants

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P; Chesne, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    Improvements made in the conventional tri-butylphosphate process are described, in particular. the concentration and the purification of plutonium by one extraction cycle using tri-butyl-phosphate with reflux; and the use of an apparatus working continuously for precipitating plutonium oxalate, for calcining the oxalate, and for fluorinating the oxide. The modifications proposed for the treatment of irradiated uranium - molybdenum alloys are described, in particular, the dissolution of the fuel, and the concentration of the fission product solutions. The solvent extraction treatment is used also for the plutonium fuels utilized for the fast breeder reactor (Rapsodie) An outline of the process is presented and discussed, as well as the first experimental results and the plans for a pilot plant having a capacity of 1 kg/day. The possible use of tn-lauryl-amine in the plutonium purification cycle is now under consideration for the processing plant at La Hague. The flowsheet for this process and its performance are presented. The possibility of vitrification is considered for the final treatment of the concentrated radioactive wastes from the Marcoule (irradiated uranium) and La Hague (irradiated uranium-molybdenum) Centers. Three possible processes are described and discussed, as well as the results obtained from the operation of the corresponding experimental units using tracers. (authors) [French] On decrit les ameliorations apportees au procede classique utilisant le phosphate tributylique, et notamment la concentration et la purification du plutonium par un cycle d'extraction au tributylphosphate avec reflux, l'utilisation d'un appareillage continu de precipitation d'oxalate de plutonium, de calcination de l'oxalate, et de fluoration de l'oxyde. On presente les modifications envisagees pour le traitement des alliages uranium-molybdene irradies, principalement en ce qui concerne la dissolution du combustible et la concentration des solutions de produits de fission

  2. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  3. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  4. Dissolution behavior of irradiated mixed oxide fuel with short stroke shearing for fast reactor reprocessing

    International Nuclear Information System (INIS)

    Ikeuchi, Hirotomo; Sano, Yuichi; Shibata, Atsuhiro; Koizumi, Tsutomu; Washiya, Tadahiro

    2013-01-01

    An efficient dissolution process was established for future reprocessing in which mixed-oxide (MOX) fuels with high plutonium contents and dissolver solution with high heavy-metal (HM) concentrations (more than 500 g dm -3 ) will be treated. This dissolution process involves short stroke shearing of fuels (∼10 mm in length). The dissolution kinetics of irradiated MOX fuels and the effects of the Pu content, HM concentration, and fuel form on the dissolution rate were investigated. Irradiated fuel was found to dissolve as 10 2 -10 3 times fast as non-irradiated fuel, but the rate decreased with increasing Pu content. Kinetic analysis based on the fragmentation model, which considers the penetration and diffusion of nitric acid through fuel matrices prior to chemical reaction, indicated that the dissolution rate of irradiated fuel was affected not only by the volume ratio of liquid to solid (L/S ratio) but also by the exposed surface area per unit mole of nitric acid (A/m ratio). The penetration rate of nitric acid is expected to be decreased at high HM concentrations by a reduction in the L/S ratio, but enhanced by shearing the fuel pieces with short strokes and thus enlarging the A/m ratio. (author)

  5. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R.; Harrison, R. [UKAEA, Nuclear Materials Control Dep., Dounreay (United Kingdom)

    1997-07-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  6. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    International Nuclear Information System (INIS)

    Barrett, T.R.; Harrison, R.

    1997-01-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  7. Commissioning and Operational Experience in Power Reactor Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: spradhan@barctara.gov.in [Tarapur Based Reprocessing Plant, Bhabha Atomic Research Centre, Tarapur (India)

    2014-10-15

    After completing design, construction, commissioning, operation and maintenance experience of the reprocessing plants at Tarapur, Mumbai and Kalpakkam a new reprocessing plant is commissioned and put into operation at BARC, Tarapur since 2011. Subsequent to construction clearance, commissioning of the plant is taken in many steps with simultaneous review by design and safety committees. In spite of vast experience, all the staff was retrained in various aspects of process and utility operations and in operation of innovative changes incorporated in the design. Operating personnel are licensed through an elaborate procedure consisting of various check lists followed by personnel interview. Commissioning systems were divided in sub-systems. Sub-systems were commissioned independently and later integrated testing was carried out. For commissioning, extreme operating conditions were identified in consultation with designers and detailed commissioning procedures were made accordingly. Commissioning was done in different conditions to ensure safety, smooth operation and maintainability. Few modifications were carried out based on commissioning experience. Technical specifications for operation of the plant are made in consultation with designers and reviewed by safety committees. Operation of the plant was carried out after successful commissioning trials with Deep Depleted Uranium (DDU). Emergency operating procedures for each design basis accident were made. Performance of various systems, subsystems are quite satisfactory and the plant has given very good capacity factor. (author)

  8. Ministerial ordinance on the establishment of a reserve fund for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    1984-01-01

    The ministerial ordinance provides for a reserve fund for spent nuclear fuel reprocessing, according to the Electricity Enterprises Act. The Government designates an electricity enterprise that must deposit a reserve fund for spent nuclear fuel reprocessing. The electricity enterprise concerned must deposit a certain sum of money as a reserve fund which is the payment left over from spent fuel reprocessing at the end of a fiscal year minus the same at the end of the preceding year less a certain sum, when the former exceeds the latter. Then, concerning the remainder of the reserve fund in the preceding year, a certain sum must be subtracted from this reserve fund. (Mori, K.)

  9. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-08-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  10. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-01-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  11. Fast reactor fuel reprocessing development in the United States: an overview

    International Nuclear Information System (INIS)

    Groenier, W.S.; Burch, W.D.

    1979-01-01

    As a result of the reduced nuclear power demand and the growing concerns over the potential proliferation of sensitive nuclear materials, there has not been a necessity to make immediate decisions regarding near-term reprocessing and breeder reactor commercialization. Programs which formed the basic thrust of nuclear development in the early 1970's have already been adjusted: increased emphasis on problems of radioactive waste management; increased attention to nonproliferation objectives and subsequent reorientation of the overall fuel cycle and breeder programs; increased emphasis on a once-through light-water reactor technology; increased concern for a more detailed knowledge of the uranium resource base; reorientation of the uranium enrichment programs; and exploration of alternative fuel cycles (such as thorium) to minimize the use of plutonium. Nevertheless, major strategic decisions still loom over breeder commercialization, the breeder's requisite demand for reprocessing, and the future role of more proliferation-resistant nuclear technologies. The current program in the United States is organized to provide the necessary technology for the reprocessing of breeder fuels on a timetable that is consistent with the reactor development and demonstration program. Also addressed in this paper are the present day concerns of environmental protection, safety, nuclear material safeguards, and proliferation resistance. It is structured on the well-known Purex processing method but includes new efforts aimed at advanced and alternative fuels. At the present time, the program consists mainly of a generic effort that is planned to progress through an integrated equipment engineering demonstration to an eventual pilot-plant operation. Each of these facilities is viewed as a test bed for advanced and alternative processing steps to address the many significant technical and political issues. 16 figures

  12. Contribution to the study of the degradation of the solvent used in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Goasmat, F.

    1984-01-01

    The degradation of a mixed solvent (tributylphosphate - hydrocarbons) in a fuel reprocessing plant (UP 2 at La Hague, France) is studied in this thesis. Laboratory studies on degradation mechanisms, decomposition products and regeneration processes are reviewed in a bibliographic synthesis. Solvent degradation is investigated on a real solvent from a reprocessing plant. Influence of degradation on solvent performance is shown and regeneration processes should be improved. Many regeneration processes are tested on solvent from the plant and results are discussed. Separation and analysis of degradation products show the polyfunctional structure of compounds formed [fr

  13. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for such matters as designation of reprocessing undertaking, permission of construction of reprocessing facilities, permission and approval of alteration (of plan for reprocessing facilities), etc. The regulations also cover application for prior inspection, execution of prior inspection, technical standards concerning performance of reprocessing facilities, certificate of prior inspection, reprocessing facilities subject to welding inspection, application for welding inspection, execution of welding inspection, facilities not subject to welding inspection, approval of welding method, welding inspection for imported equipment, certificate of welding inspection, reprocessing facilities subject to regular inspection, application for regular inspection, technical standards for regular inspection, operation plan, application for approval of joint management, record keeping, restriction on access to areas under management, measures concerning exposure to radioactive rays, patrol and checking in reprocessing facilities, operation of reprocessing facilities, self-imposed regular inspection of reprocessing facilities, transportation within plant or operation premises, storage, waste disposal within plant or operation premises, safety rules, notice of disassembly, measures for emergency, notice of abolition of business, notice of disorganization, measures concerning cancellation of designation, submission of report, etc. (Nogami, K.)

  14. The transport of irradiated fuel. An activity closely related to reprocessing

    International Nuclear Information System (INIS)

    Lenail, B.; Curtis, H.W.

    1987-01-01

    With a proven reprocessing capacity of 400 tonnes of uranium per year and the rapid expansion of this capacity, the need to feed the reprocessing plants at La Hague has become vital to ensure continuous and economic reprocessing. The programming of transports by the reprocessor and transporter to ensure a constant supply of fuel for reprocessing has therefore become increasingly important. These transports use the public roads and the railway system and the reprocessor and transporter must cooperate in maintaining the highest possible standards of safety. Safety must take priority over all other factors, including the economics of the operation

  15. On permission of reprocessing project change at the Reprocessing Works of the Japan Nuclear Fuel Ltd. (Reply)

    International Nuclear Information System (INIS)

    1997-01-01

    The Nuclear Safety Commission replied as follows to the Prime Minister on July 14, 1997 on permission of reprocessing project change at the Reprocessing Works of the Japan Nuclear Fuel Ltd. inquired on Dec. 26, 1996. Contents of the inquiry consisted of change of refinery facility and its related instruments, integration of low level wasted liquid treating instrument and change of low level solid waste treating instrument, integration of high level wasted liquid storing building and high level wasted liquid glassification building, installation of used fuel transporting container maintenance instrument and its relating instruments, and so forth. As a result of careful discussion at the Commission for these items, they were admitted to be valid on her technical ability and her safety. (G.K.)

  16. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  17. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  18. Development of pulsed plate columns for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Jenkins, J.A.; Logsdail, D.H.; Lyall, E.; Myers, P.E.; Partridge, B.A.

    1987-01-01

    The UK Atomic Energy Authority has undertaken a development programme on solvent extraction equipment for reprocessing fast reactor fuels. As part of this programme a solvent extraction pilot plant has been built at Harwell in which a variety of flowsheet conditions can be simulated using the system uranyl nitrate/nitric acid (UN/HNO 3 ) - 20% tri-n-butyl phosphate in odourless kerosene (TBP/OK). The main purpose of present pilot plant operations is to study the performance of pulsed plate columns, with the following specific objectives: to measure the volumetric throughput capacity of the columns, - to study the effect of scale-up of column diameter on U mass transfer performance, - to provide hydraulic and mass transfer data for a dynamic simulation model of pulsed column operation, - to develop and test instruments and ancillary equipment. This poster describes the pilot plant and is illustrated by experimental data, with particular reference to an external settler for controlling the removal of aqueous phase from columns operated with the aqueous phase dispersed

  19. Design of an advanced human-centered supervisory system for a nuclear fuel reprocessing system

    International Nuclear Information System (INIS)

    Riera, B.; Lambert, M.; Martel, G.

    1999-01-01

    In the field of highly automated processes, our research concerns supervisory system design adapted to supervisory and default diagnosis by human operators. The interpretation of decisional human behaviour models shows that the tasks of human operators require different information, which has repercussions on the supervisory system design. We propose an advanced human-centred supervisory system (AHCSS) which is more adapted to human-beings, because it integrates new representation of the production system,(such as functional and behavioural aspects) with the use of advanced algorithms of detection and location. Based on an approach using these new concepts, and AHCSS was created for a nuclear fuel reprocessing system. (authors)

  20. Dynamic considerations in the development of centrifugal separators used for reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    Strunk, W.D.; Singh, S.P.; Tuft, R.M.

    1988-01-01

    The development of centrifugal separators has been a key ingredient in improving the process used for reprocessing of spent nuclear fuel. The separators are used to segregate uranium and plutonium from the fission products produced by a controlled nuclear reaction. The separators are small variable speed centrifuges, designed to operate in a harsh environment. Dynamic problems were detected by vibration analysis and resolved using modal analysis and trending. Problems with critical speeds, resonances in the base, balancing, weak components, precision manufacturing, and short life have been solved

  1. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  2. Design development of robotic system for on line sampling in fuel reprocessing

    International Nuclear Information System (INIS)

    Balasubramanian, G.R.; Venugopal, P.R.; Padmashali, G.K.

    1990-01-01

    This presentation describes the design and developmental work that is being carried out for the design of an automated sampling system for fast reactor fuel reprocessing plants. The plant proposes to use integrated sampling system. The sample is taken across regular process streams from any intermediate hold up pot. A robot system is planned to take the sample from the sample pot, transfer it to the sample bottle, cap the bottle and transfer the bottle to a pneumatic conveying station. The system covers a large number of sample pots. Alternate automated systems are also examined (1). (author). 4 refs., 2 figs

  3. An analysis of development and research on spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Borges Silverio, Leticia; Queiroz Lamas, Wendell de

    2011-01-01

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated.

  4. An analysis of development and research on spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Borges Silverio, Leticia; Lamas, Wendell de Queiroz [University of Taubate, Postgraduate Programme in Mechanical Engineering, Rua Daniel Danelli, s/n, Jd. Morumbi, Taubate, SP 12060-440 (Brazil)

    2011-01-15

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated. (author)

  5. Characterization of the head end cells at the West Valley Nuclear Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Vance, R.F.

    1986-11-01

    The head-end cells at the West Valley Nuclear Fuel Reprocessing Plant are characterized in this report. These cells consist of the Process Mechanical Cell (PMC) where irradiated nuclear fuel was trimmed of excess hardware and sheared into short segments; and the General Purpose Cell (GPC) where the segments were collected and stored prior to dissolution, and leached hulls were packaged for disposal. Between 1966 and 1972, while Nuclear Fuels Services operated the plant, these cells became highly contaminated with radioactive materials. The purpose of this characterization work was to develop technical information as a basis of decontamination and decommissioning planning and engineering. It was accomplished by performing remote in-cell visual examinations, radiation surveys, and sampling. Supplementary information was obtained from available written records, out-of-cell inspections, and interviews with plant personnel

  6. Optimizing Endoscope Reprocessing Resources Via Process Flow Queuing Analysis.

    Science.gov (United States)

    Seelen, Mark T; Friend, Tynan H; Levine, Wilton C

    2018-05-04

    The Massachusetts General Hospital (MGH) is merging its older endoscope processing facilities into a single new facility that will enable high-level disinfection of endoscopes for both the ORs and Endoscopy Suite, leveraging economies of scale for improved patient care and optimal use of resources. Finalized resource planning was necessary for the merging of facilities to optimize staffing and make final equipment selections to support the nearly 33,000 annual endoscopy cases. To accomplish this, we employed operations management methodologies, analyzing the physical process flow of scopes throughout the existing Endoscopy Suite and ORs and mapping the future state capacity of the new reprocessing facility. Further, our analysis required the incorporation of historical case and reprocessing volumes in a multi-server queuing model to identify any potential wait times as a result of the new reprocessing cycle. We also performed sensitivity analysis to understand the impact of future case volume growth. We found that our future-state reprocessing facility, given planned capital expenditures for automated endoscope reprocessors (AERs) and pre-processing sinks, could easily accommodate current scope volume well within the necessary pre-cleaning-to-sink reprocessing time limit recommended by manufacturers. Further, in its current planned state, our model suggested that the future endoscope reprocessing suite at MGH could support an increase in volume of at least 90% over the next several years. Our work suggests that with simple mathematical analysis of historic case data, significant changes to a complex perioperative environment can be made with ease while keeping patient safety as the top priority.

  7. Design aspects of water usage in the Windscale nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wharton, J.; Bullock, M.J.

    1982-01-01

    The safeguard requirements of a nuclear fuel reprocessing plant place unique constraints on a designer which, in turn, affect the scope for the exercise of water economy. These constraints are examined within the context of the British Nuclear Fuels Limited reprocessing plants at Windscale and indicate the scope for water conservation. The plants and their design principles are described with particular reference to water services and usage. Progressive design development is discussed to illustrate the increasing importance of water economy. (author)

  8. Evaluation of practicability of aluminosilicate additive fuel. Influence of aluminosilicate for reprocessing and corrosion of pellet

    International Nuclear Information System (INIS)

    Matsunaga, Junji; Kashibe, Shinji; Kinoshita, Mika; Ishimoto, Shinji; Harada, Kenichi

    2014-01-01

    Al-Si-O additive fuel is a modified pellet to improve the pellet-cladding interaction (PCI) resistance. This practicability assessment concerns the effect of Al-Si-O addition on the reprocessing and steam corrosion behavior. To address these concerns, a fuel dissolution test in nitric acid and a pellet corrosion test in humidified gas were carried out using the irradiated Al-Si-O additive fuel. Regardless of the Al-Si-O concentration, the dissolution rates of all Al-Si-O additive fuels were faster than that of the standard fuel. The morphology of the insoluble residue obtained from the irradiated Al-Si-O additive fuel could be considered as acceptable for retrieval by the clarification process using a conventional precipitation model. The corrosion resistance of the irradiated Al-Si-O additive fuel to high-temperature (at 1273 K) humidified gas was comparable to or better than that of the standard fuel. The result was interpreted as being due to a large grain size effect by Al-Si-O addition. (author)

  9. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  10. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  11. General requirements applicable to the production, inspection, processing, packaging and storage of high activity wastes packed in glass form and resulting from the reprocessing of fuels irradiated in pressurized light water reactors

    International Nuclear Information System (INIS)

    1982-11-01

    The Fundamental Safety Rules applicable to certain types of nuclear installation are intended to clarify the conditions of which observance, for the type of installation concerned and for the subject that they deal with, is considered as equivalent to compliance with regulatory French technical practice. These Rules should facilitate safety analysises and the clear understanding between persons interested in matters related to nuclear safety. They in no way reduce the operator's liability and pose no obstacle to statutory provisions in force. For any installation to which a Fundamental Safety Rule applies according to the foregoing paragraph, the operator may be relieved from application of the Rule if he shows proof that the safety objectives set by the Rule are attained by other means that he proposes within the framework of statutory procedures. Furthermore, the Central Service for the Safety of Nuclear Installations reserves the right at all times to alter any Fundamental Safety Rule, as required, should it deem this necessary, while specifying the applicability conditions. This rule is intended to define the general provisions applicable to the production, inspection, processing, packaging and storage of wastes, resulting from the reprocessing of fuels irradiated in a PWR, packaged in the form of glass

  12. Nondestructive determination of residual fuel on leached hulls and dissolver sludges from LWR fuel reprocessing

    International Nuclear Information System (INIS)

    Wuerz, H.; Wagner, K.; Becker, H.J.

    1990-01-01

    In reprocessing plants leached hulls and dissolver sludges represent rather important intermediate level α-waste streams. A control of the Pu content of these waste streams is desirable. The nondestructive assay method to be preferred would be passive neutron counting. However, before any decision on passive neutron monitoring becomes possible a characterization of hulls and sludges in terms of Pu content and neutron emission is necessary. For the direct determination of plutonium on hulls and in sludges, as coming from reprocessing, an active neutron measurement is required. A simple, and sufficiently sensitive active neutron method which can easily be installed uses as stationary Cf-252 neutron source. This method was used for the characterization of hulls and sludges in terms of plutonium content and total neutron emission in the WAK. Meanwhile a total of 28 batches of leached hulls and 22 batches of dissolver sludges from reprocessing of PWR fuel have been assayed. The paper describes the assay method used and gives an analysis of the error sources together with a discussion of the results and the accuracies obtained in a reprocessing plant. (orig./HP)

  13. Economic assessment factors relating to spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    This paper is in two parts. Part I discusses the factors to be applied in an economic assessment of reprocessing. It sets forth three basic cost components, namely capital costs, operating costs and the cost of capital utilization. It lists the various components of each cost area. Part II proposes a relationship between these respective cost areas, tabulates a range of costs and then develops unit costs for reprocessing operations. Finally, an addendum to the paper gives a more detailed breakdown of the capital costs of a reprocessing plant

  14. Status and trends in spent fuel reprocessing. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1999-08-01

    Spent fuel management has always been an important part of the nuclear fuel cycle and is still one of the most important activities in all countries exploiting the peaceful use of nuclear energy. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and to coordinate and encourage closer co-operation among Member States in certain research and developing activities that are of common interest. As part of spent fuel management, reprocessing activities have been reviewed from time to time on a low profile level under the terminology 'spent fuel treatment'. However, spent fuel treatment covers, in broad terms, spent fuel storage (short, interim and long term), fuel rod consolidation, reprocessing and, in case the once-through cycle is selected, conditioning of the spent fuel for disposal. Hence the reprocessing activities under the heading 'spent fuel treatment' were somewhat misleading. Several meetings on spent fuel treatment have been organized during the fast decade: an Advisory Group meeting (AGM) in 1992, a Technical Committee meeting in 1995 and recently an Advisory Group meeting from 7 to 10 September 1998. The objectives of the meetings were to review the status and trends of spent fuel reprocessing, to discuss the environmental impact and safety aspects of reprocessing facilities and to define the most important issues in this field. Notwithstanding the fact that the Summary of the report does not include aspects of military reprocessing, some of the national presentations do refer to some relevant aspects (e.g. experience, fissile stockpiles)

  15. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  16. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  17. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  18. Management and disposal of used nuclear fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    1983-01-01

    The subject is dealt with in chapters, entitled: introduction (general statement of problem); policy framework (criteria for waste management policy); waste management and disposal, as practised and planned (general; initial storage; reprocessing and conditioning of reprocessing wastes; intermediate storage; transportation; packaging; disposal); international co-operation. Details of the situation in each country concerned (Australia, Belgium, Canada, France, Federal Republic of Germany, Spain, Sweden, Switzerland and United Kingdom) are included as annexes. (U.K.)

  19. The reprocessing of irradiated fuels by halides and their compounds

    International Nuclear Information System (INIS)

    Bourgeois, M.; Faugeras, P.

    1964-01-01

    A brief description is given of the experiments leading to the choice of the process volatilization of fluorides by gas phase attack. The chemical process is described for certain current types of clad Fuels: the aluminium or the zirconium cladding is first volatilized as chloride by attack with gaseous hydrogen chloride. The uranium is then transformed into volatile hexafluoride by attack with fluorine. These reactions are carried out consecutively in the same reactor in the presence of a fluidized bed of alumina which facilitates heat exchange. The experiments have been carried out in quantities from 100 gms to several kilograms of fuel, first without activity, and then with tracers. A description is given of the laboratory research which was carried out simultaneously on the separation of uranium and plutonium fluorides. Finally, an apparatus is described which is intended to test the process on irradiated fuel at an activity level of several thousands of curies of fission products. (authors) [fr

  20. Applications of chemical sensors in spent fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Achuthan, P.V.

    2012-01-01

    Environmental friendly power generation is essential to preserve the quality of life for the future generations. For more than fifty years, nuclear energy has proven its potential as an economically and commercially viable alternative to conventional energy. More over it is a clean source of energy with minimum green house effect. Recent data on climate changes have stressed the need for more caution on atmospheric discharges, hence a revival of interest in nuclear energy is in the offing. The entire world is committed to protect the atmosphere from polluting agents. Even nuclear power plants and the fuel cycle facilities are looking forward to reduce the already low gaseous emissions further and also to develop ways and means of controlling the impact of the small but significant radiotoxicity of the wastes generated in the nuclear fuel cycle. Spent fuel reprocessing and associated waste management, an integral part of the nuclear fuel cycle, employs chemical processes for the recovery of fuel value and for the conditioning of the reprocessed waste. In this respect they can be classified as a chemical plant dealing with radioactive materials. Hence it is essential to keep the gaseous, liquid and solid discharges at the lowest possible levels to comply with the regulations of discharges stipulated by the regulatory authorities. Elaborate cleaning and detection systems are needed for effective control of these discharges from both radioactive and chemical contamination point of view. Even though radiation detectors, which are non specific to the analytes, are the major tools for these controls, analyte specific chemical sensors can play a vital role in controlling the chemical vapours/gases generated during processing. The presentation will cover the major areas where chemical sensors play a significant role in this industry. (author)

  1. Fuel salt reprocessing influence on the MSFR behavior and on its associated reprocessing unit

    International Nuclear Information System (INIS)

    Doligez, X.

    2010-10-01

    In order to face with the growing of the energy demand, the nuclear industry has to reach the fourth generation technology. Among those concept, molten salt reactor, and especially the fast neutron spectrum configuration, seems very promising: indeed breeding is achievable while the feedback coefficient are still negative. However, the reprocessing salt scheme is not totally set down yet. A lot of uncertainties remain on chemical properties of the salt. Thanks to numerical simulation we studied the behavior of the molten Salt Fast Reactor coupled to a nominal reprocessing unit. We are now able to determine heat transfer and radiation in each elementary step of the unit and, by this way determine those that need special study for radioprotection. We also studied which elements are fundamental to extract for the reactor operation. Finally, we present a sensibility analysis of the chemical uncertainties to few relevant properties of the reactor behavior. (author)

  2. Safety aspects of reprocessing and plutonium fuel facilities in power reactor and nuclear fuel development corporation

    International Nuclear Information System (INIS)

    Sato, S.; Akutsu, H.; Nakajima, K.; Kono, K.; Muto, T.

    1977-01-01

    PNC completed the construction of the first Japanese reprocessing plant in 1974, and the startup is now under way. The plant will have a capacity of 0.7 metric tons of spent fuel per day. Various safety measures for earthquake, radiation, criticality, fire, explosion and leakage of radioactive materials are provided in the plant. 8,000 Ci of Kr-85 and 50 Ci of H-3 per day will be released from the plant to enviroment. Skin dose is conservatively estimated to be about 30 mrem per year. Liquid waste containing 0.7 Ci per day will be discharged into the sea. Whole body dose is conservatively estimated to be 10 mrem per year. R and D for removal of Kr-85 and reducing radioactivity released into the sea are being carried out. Developmental works for solidification of radioactive liquid waste are also being conducted. Safety control in plutonium handling work for both R and D and fuel fabrication has been successfully conducted without significant abnormal occurrence in these ten years. By ''zero-contamination control policy'', surface contamination and airborne contamination in operation rooms are maintained at the background level in usual operation. The intake of plutonium was found at the maximum about one-hundredths of the MPB. External exposure has been generally controlled below three-tenths rem for three months, by shielding and mechanization of process. The radioactivity concentration of exhaust air and liquid effluent disposal is ensured far below the regulation level. Nuclear material control is maintained by a computer system, and no criticality problem has occurred. The safeguard system and installation has been improved, and is sufficient to satisfy the IAEA regulation

  3. The economics of reprocessing versus direct disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Bunn, M.; Holdren, J.P.; Fetter, S.; Zwaan, B. van der

    2007-01-01

    The economics of reprocessing versus direct disposal of spent nuclear fuel are assessed. The break-even uranium price at which reprocessing spent nuclear fuel from existing light water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is estimated for a wide range of reprocessing prices and other fuel cycle costs and parameters. The contribution of each fuel cycle option to the cost of electricity is also estimated. A similar analysis is performed for the breakeven uranium price at which deploying fast neutron reactors (FRs) would become competitive compared with a once-through fuel cycle in LWRs, for a range of differences in capital cost between LWRs and FRs. Available information about reprocessing prices and various other fuel cycle costs and input parameters are reviewed, as well as the quantities of uranium likely to be recoverable worldwide at a range of different possible future prices. It is concluded that the once-through fuel cycle is likely to remain significantly cheaper than reprocessing and recycling in either LWRs or FRs for at least the next 50 years. Finally, there is a discussion of how scarce and expensive repository space would have to become before separation and transmutation would be economically attractive. (author)

  4. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  5. Prospect of spent fuel reprocessing and back-end cycling in China in 1990's

    International Nuclear Information System (INIS)

    Ke Youzhi; Wang Rengtao

    1987-01-01

    According to the CHinese Program of nuclear energy in 1990's, the amount of spent fuel by the year 2000 is estimated in this paper. Reprocessing is considered as an important link in the back-end fuel cycle. A pilot plant is scheduled for hot start up in 1996. The main goal of the study is LWR spent fuel reprocessing. We will use the experience gained from reprocessing of production reactor fuel and last research results. The advanced foreign technigue and experience will be introduced. The study emphasizes on the test of technology, equipments, instrumentation and automation, development of remote maintenance and decontamination. China will start to demonstrate the way for fuel cycle. (author)

  6. Process pump operating problems and equipment failures, F-Canyon Reprocessing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    Durant, W.S.; Starks, J.B.; Galloway, W.D.

    1987-02-01

    A compilation of operating problems and equipment failures associated with the process pumps in the Savannah River Plant F-Canyon Fuel Reprocessing Facility is presented. These data have been collected over the 30-year operation of the facility. An analysis of the failure rates of the pumps is also presented. A brief description of the pumps and the data bank from which the information was sorted is also included

  7. Method of reprocessing nuclear fuel using vacuum freeze-drying method

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Kondo, Isao.

    1989-01-01

    Solutions of plutonium nitrate and uranyl nitrate, spent solvents and liquid wastes separated by the treatment in the solvent extractant steps in the wet processing steps of re-processing plants or fuel fabrication plants are processed by means of freeze-drying under vacuum. Then, the solutions of plutonium nitrate and uranyl nitrate are separated into nitrates and liquid condensates and the spent solvents are freeze-dried. Thus, they are separated into tri-n-butyl phosphate, diester, monoester and n-dodecane and the liquid wastes are processed by means of freeze-drying and separated into liquids and residues. In this way, since sodium carbonate, etc. are not used, the amount of resultant liquid wastes is reduced and sodium is not contained in liquid wastes sent to an asphalt solidification step and a vitrification step, the processing steps can be simplified. (S.T.)

  8. The uranium and thorium separation in the chemical reprocessing of the irradiated fuel of thorium and uranium mixed oxides

    International Nuclear Information System (INIS)

    Oliveira, E.F. de.

    1984-09-01

    A bibliographic research has been carried out for reprocessing techniques of irradiated thorium fuel from nuclear reactors. The Thorex/Hoechst process has been specially considered to establish a method for reprocessing thorium-uranium fuel from PWR. After a series of cold tests performed in laboratory it was possible to set the behavior of several parameters affecting the Thorex/Hoechst process. Some comments and suggestions are presented for modifications in the process flosheet conditions. A discussion is carried out for operational conditions such as the aqueous to organic flow ratio the acidity of strip and scrub solutions in the process steps for thorium and uranium recovery. The operation diagrams have been constructed using equilibrium experimental data which correspond to conditions observed in laboratory. (Author) [pt

  9. Consolidated fuel reprocessing programme: Analysis of various options for the breeder fuel cycle in the USA

    International Nuclear Information System (INIS)

    Stradley, J.G.; Burch, W.D.; Yook, H.R.

    1986-01-01

    The United States Department of Energy (DOE) has established a programme to develop innovative liquid metal reactor (LMR) designs to assist in developing future U.S. reactor strategy. The paper describes studies in progress to examine various fuel cycle strategies that relate to the reactor strategy. Three potential fuel cycle options that focus on supporting an initial 1300 MW(e) reactor station have been defined: (1) Completion and utilization of the Breeder Reprocessing Engineering Test/Secure Automated Fabrication (BRET/SAF) in the Fuels and Materials Examination Facility (FMEF) at Hanford, Washington; (2) a co-located fuel cycle facility; and (3) delayed closure of the fuel cycle for five to ten years. The BRET, designed as a development facility, has sufficient capacity to service the needs of an initial module at an LMR station. It appears feasible to increase this capacity and to utilize SAF in the FMEF to accommodate the projected output (up to 35 MtHM/year) from the 1300 MW(e) liquid-metal concepts under study. Plans developed within the United States Consolidated Management Office for an initial reactor project have envisioned that cost savings could be realized by delaying the closure of the fuel cycle as long as supplies of plutonium could be obtained relatively inexpensively. This might prove to be only five to ten years, but even that period might be long enough for the fuel cycle costs to be spread over more than one reactor rather than loaded on the initial project. This concept is being explored as is the question of the future coupling of a light water reactor reprocessing industry for plutonium supply to breeder recycle

  10. Safety analyses for reprocessing and waste processing

    International Nuclear Information System (INIS)

    1983-03-01

    Presentation of an incident analysis of process steps of the RP, simplified considerations concerning safety, and safety analyses of the storage and solidification facilities of the RP. A release tree method is developed and tested. An incident analysis of process steps, the evaluation of the SRL-study and safety analyses of the storage and solidification facilities of the RP are performed in particular. (DG) [de

  11. A view from the nuclear fuel reprocessing industry

    International Nuclear Information System (INIS)

    Smith, R.; Hartley, G.

    1982-01-01

    Radiological protection in UK nuclear industry is discussed, with special reference to British Nuclear Fuels Ltd. The following aspects are covered: historical introduction, relevant legislation and general principles; radioactive decay processes (fission, fission products, radio-isotopes, ionising radiations, neutrons); risk assessment (historical, biological radiation effects; ICRP recommendations, dose limits); cost effectiveness of protection; plant design principles; examples of containment (shielding, ventilation and contamination control required for various types of radioactive materials, e.g. fission products, plutonium, depleted uranium; fuel rod storage ponds and decanning caves; fission products at dissolution stage; glovebox handling of Pu operations; critical assembly of fissile materials; surface contamination control; monitoring radiation levels). (U.K.)

  12. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Yoshiuji, Takahiro

    1998-12-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  13. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki; Yoshiuji, Takahiro

    1998-01-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  14. Modeling of Pu(IV) extraction and HNO3 speciation in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    De-Sio, S.

    2012-01-01

    The PUREX process is a solvent extraction method dedicated to the reprocessing of irradiated nuclear fuel in order to recover pure uranium and plutonium from aqueous solutions of concentrated nitric acid. The tri-n-butylphosphate (TBP) is used as the extractant in the organic phase. The aim of this thesis work was to improve the modeling of liquid-liquid extraction media in nuclear fuel reprocessing. First, Raman and 14 N NMR measurements, coupled with theoretical calculations based on simple solutions theory and BIMSA modeling, were performed in order to get a better understanding of nitric acid dissociation in binary and ternary solutions. Then, Pu(IV) speciation in TBP after extraction from low nitric acid concentrations was investigated by EXAFS and vis-NIR spectroscopies. We were able to show evidence of the extraction of Pu(IV) hydrolyzed species into the organic phase. A new structural study was conducted on An(VI)/TBP and An(IV)/TBP complexes by coupling EXAFS measurements with DFT calculations. Finally, extraction isotherms modeling was performed on the Pu(IV)/HNO 3 /H 2 O/TBP 30%/dodecane system (with Pu at tracer scale) by taking into account deviation from ideal behaviour in both organic and aqueous phases. The best modeling was obtained when considering three plutonium (IV) complexes in the organic phase: Pu(OH) 2 (NO 3 ) 2 (TBP) 2 , Pu(NO 3 ) 4 (TBP) 2 and Pu(NO 3 ) 4 (TBP) 3 . (author) [fr

  15. Advanced concepts under development in the United States Breeder-Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.

    1981-01-01

    Advanced concepts and techniques for the fuel reprocessing step are being developed. These concepts have been incorporated into the conceptual design of a Hot Experimental Facility (HEF), which is intended to demonstrate reprocessing of the first US breeder demonstration reactor. To achieve system reliability and reduce occupational doses, a concept of totally remote operation and maintenance (termed Remotex) has been conceived and is being developed. In this concept, maintenance and mechanical operations are accomplished with remotely operated bilateral force-reflecting electronic master/slave manipulators. Suitable transport systems, coupled with remote closed-circuit television viewing, are provided to extend man's capabilities into the hostile cell environment. New equipment concepts are being developed for the fuel dismantling and shearing step, a high-temperature dry process termed voloxidation to remove tritium, a continuous rotary dissolver, and for an improved centrifugal solvent contractor. Techniques have been developed, using engineering-scale equipment with active tracers for retention of 85 Kr, radioiodine, 14 C, and 3 H

  16. Reprocessing of nuclear fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.

    1986-01-01

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets

  17. Coordinated safeguards for materials management in a fuel reprocessing plant. Volume I

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.; Augustson, R.H.; Barnes, J.W.

    1977-09-01

    A materials management system is described for safeguarding special nuclear materials in a fuel-reprocessing plant. Recently developed nondestructive-analysis techniques and process-monitoring devices are combined with conventional chemical analyses and process-control instrumentation for improved materials accounting data. Unit-process accounting based on dynamic material balances permits localization of diversion in time and space, and the application of advanced statistical methods supported by decision-analysis theory ensures optimum use of accounting information for detecting diversion. This coordinated safeguards system provides maximum effectiveness consistent with modest cost and minimum process interference. Modeling and simulation techniques are used to evaluate the sensitivity of the system to single and multiple thefts and to compare various safeguards options. The study identifies design criteria that would improve the safeguardability of future plants

  18. AKUT: a process for the separation of aerosols, krypton, and tritium from burner off-gas in HTR-fuel reprocessing

    International Nuclear Information System (INIS)

    Laser, M.; Barnert-Wiemer, H.; Beaujean, H.; Merz, E.; Vygen, H.

    1975-01-01

    The AKUT process consists of the following process steps: (1) aerosol retention by an electrostatic separator followed by HEPA filters, (2) oxidation of CO with O 2 or reaction of excess O 2 with CO, respectively, (3) compression, (4) scrubbing and/or liquefaction, (5) separation of krypton by distillation, and (6) separation of tritiated water and iodine by adsorption or chemical reaction. Liquefied off-gas with low permanent gas content resulting from graphite burning with oxygen may be distilled at ambient temperature. Off-gas with higher permanent gas content from burning with oxygen enriched air must be processed at lower temperature. The ambient temperature flow sheet is preferable from an economic as well as safety point of view. (U.S.)

  19. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  20. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  1. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  2. Nitrogen oxide closed system in the future reprocessing process

    International Nuclear Information System (INIS)

    Tanaka, S.; Takaoku, Y.; Sumida, Y.; Moriya, T.; Araya, S.

    2006-01-01

    Full text: Full text: The aqueous reprocessing process for the future type reactor like as Fast Breeder Reactor(FBR) is being developed in many institutes, while the existence of sodium nitrate as the secondary waste is considered as problematic due to an enormous quantity of sodium nitrate generated and the difficulty in its handling for disposal. As a means for solving the problem, a complete recycle of nitric acid and salt free system is considered, but it become a constraint in the process constitution. We have devised the alternative system, which shall approve the generation of sodium nitrate, and make the choice of a wide reprocessing process. Under this system nitric acid within sodium nitrate shall be reduced and made into harmless gas, while at the same time, the remaining sodium compound shall be re-used in a suitable form. In order to prevent the accumulation of radioactivity by re-use, we propose to use a part of remaining sodium compound as substitution of the fresh sodium within the glass material used for the vitrified solid waste. As a result of using this system, the waste originating from sodium nitrate can be reduced to 'zero'. We have studied a typical application case for the future reprocessing process, and got a good result at an economical point of view

  3. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  4. Chemical analysis used in nuclear fuels reprocessing of uranium and thorium

    International Nuclear Information System (INIS)

    Schvartzman, M.M.A.M.

    1986-01-01

    An overall review of the analytical chemistry in nuclear fuel reprocessing is done. In Purex and Thorex process flowsheets, the analyses required to the control of the process, balance and accountability of fissile and fertile materials, and final product specification are pointed out. Some analytical methods applied to the determination of uranium, plutonium, thorium, nitric acid, tributylphosphate and fission products are described. Specific features of the analytical laboratories are presented. The radioactivity level of the samples requires facilities as shielded cells and glove boxes, and handling by remote control. Finally it is reported an application of one analytical method to evaluate thorium content in organic and aqueous solutions, in cold tests of Thorex process. These tests were performed at CDTN/NUCLEBRAS. (author) [pt

  5. Technical specifications on the welding in fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Motonobu; Uryu, Mitsuru; Matsui, N.; Nakazawa, Fumio; Imanishi, Makoto; Koizumi; Kazuhiko; Sugawara, Junichi; Tanaka, Hideo

    1999-04-01

    The past specifications SGN of the welding in JNC was reexamined for the reprocessing plants in order to further promote the quality control. The specification first concerns the quality of raw materials, items of the quality tests, material management, and qualification standards of the welders. It extends over details of the welding techniques, welding design, welding testings, inspection and the judgment standards. (H. Baba)

  6. Transmutation Strategy Using Thorium-Reprocessed Fuel ADS for Future Reactors in Vietnam

    Directory of Open Access Journals (Sweden)

    Thanh Mai Vu

    2013-01-01

    Full Text Available Nuclear power is believed to be a key to the energy security for a developing country like Vietnam where the power demanding increases rapidly every year. Nevertheless, spent nuclear fuel from nuclear power plants is the source of radiotoxic and proliferation risk. A conceptual design of ADS utilizing thorium fuel as a based fuel and reprocessed fuel as a seed for nuclear waste transmutation and energy production is proposed as one of the clean, safe, and economical solutions for the problem. In the design, 96 seed assemblies and 84 blanket assemblies were inserted into the core to make a heterogeneous subcritical core configuration. Introducing thorium fuel into the core offers an effective way to transmute plutonium and minor actinide (MA and gain energy from this process. Transmutation rate as a function of burnup is estimated using MCNPX 2.7.0 code. Results show that by using the seed-blanket designed ADS, at 40 GWd/t burnup, 192 kg of plutonium and 156 kg of MA can be eliminated. Equivalently, 1  ADS can be able to transmute the transuranic (TRU waste from 2  LWRs. 14 units of ADS would be required to eliminate TRUs from the future reactors to be constructed in Vietnam.

  7. A survey of methods for separating and immobilizing krypton-85 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-12-01

    This report reviews the literature on methods to separate and immobilize krypton-85 arising from dissolution or prior treatment of nuclear fuel in a reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future applications in Canada. Cryogenic distillation is the most fully demonstrated method of separation of krypton from off-gases, but it is complex. In particular, it requires pretreatment of the gas stream to eliminate several other components before the final distillation. The most highly developed alternative process is fluorocarbon adsorption, while several other processes have been investigated on a bench scale. The simplest method of storing radioactive krypton is in compressed-gas cylinders, but the risks of accidental release are increased by the corrosive nature of the decay product, rubidium. Encapsulation in either a metal matrix or a hydrothermally vitrified zeolite appears to offer the most secure immobilization of krypton. Processes for both types of material have been demonstrated inactively on a scale approaching that required for treatment of off-gases from a commercial-scale fuel reprocessing plant. Low-operating temperatures and pressures of the metal encapsulation process, compared with encapsulation in zeolites, represent a definite advantage, but electrical power requirements for the former process are relatively high. It appears that suitable technology is available for separation and immobilization of radioactive krypton, should the need arise in Canada in the future

  8. Advanced Purex process for the new French reprocessing plants

    International Nuclear Information System (INIS)

    Viala, M.; Ledermann, P.; Pradel, P.

    1993-01-01

    The paper describes the main process innovations of the new Cogema reprocessing plants of La Hague (UP3 and UP2 800). Major improvements of process like the use of rotary dissolvers and annular columns, and also entirely new processes like solvent distillation and plutonium oxidizing dissolution, yield an advanced Purex process. The results of these innovations are significant improvements for throughput, end-products purification performances and waste minimization. They contribute also to limit personnel exposure. The main results of the first three years of operation are described. (author). 3 refs., 5 figs

  9. The use of artificial intelligence for safeguard fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from minirun campaigns conducted at the Barnwell Nuclear Fuels Plant have been utilized to study the suitability of computer-based artificial intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software. The computer software accepted as input process data customarily used for process operations that had previously been recorded on magnetic tape during the 1980 miniruns. The OPS5 AI language was used to construct an expert system for simulated monitoring of the process. Such expert systems facilitate the employment of the heuristic reasoning used by human observers to form reasoned conclusions from incomplete, inaccurate, or otherwise fuzzy data

  10. Role of the consolidated fuel reprocessing program in the United States Breeder Reactor Program

    International Nuclear Information System (INIS)

    Ballard, W.W.; Burch, W.D.

    1980-01-01

    While present US policy precludes the commercial reprocessing of LWR fuels and the recycle of plutonium, the policy does encompass the need to continue a program to develop the technology for reprocessing breeder fuels. Some questions have again risen this year as to the pace of the entire breeder program, including recycle, and the answers are evolving. This paper and the other companion papers which describe several aspects of the Consolidated Fuel Reprocessing Program take a longer-range perspective on the total program. Whether the program is implemented in the general time frame described is dependent on future government actions dedicated to carrying out a systematic program that would permit breeders to be commercialized early in the next century

  11. Methods and calculations for regional, continental, and global dose assessments from a hypothetical fuel reprocessing facility

    International Nuclear Information System (INIS)

    Schubert, J.F.; Kern, C.D.; Cooper, R.E.; Watts, J.R.

    1978-01-01

    The Savannah River Laboratory (SRL) is coordinating an interlaboratory effort to provide, test, and use state-of-the-art methods for calculating the environmental impact to an offsite population from the normal releases of radionuclides during the routine operation of a fuel-reprocessing plant. Results of this effort are the estimated doses to regional, continental, and global populations. Estimates are based upon operation of a hypothetical reprocessing plant at a site in the southeastern United States. The hypothetical plant will reprocess fuel used at a burn rate of 30 megawatts/metric ton and a burnup of 33,000 megawatt days/metric ton. All fuel will have been cooled for at least 365 days. The plant will have a 10 metric ton/day capacity and an assumed 3000 metric ton/year (82 percent online plant operation) output. Lifetime of the plant is assumed to be 40 years

  12. Symposium on the reprocessing of irradiated fuels. Book 3, Session V

    Energy Technology Data Exchange (ETDEWEB)

    None

    1959-12-31

    Book three of this conference has a single-focused session V entitled Engineering and Economics, with 16 papers. The session is concerned with several phases of chemical reprocessing of fuels which are of a general nature. Hot labs, radiochemical analytical facilities, and high level development cells are described. Dissolution equipment, contactors, flow generation, measurement, and control equipment, samplers, connectors, carriers, valves, filters, and hydroclones are described and discussed. Papers are included on: radiation safety, chemical safety, radiochemical plant operating experience in the U.S., and heavy element isotopic buildup. The general economics of solvent extraction processing is discussed, and capital and operating costs for several U. S. plants given. The Atomic Energy Commission's chemical processing programs and administration are evaluated and the services offered and charges therefore are listed.

  13. Symposium on the reprocessing of irradiated fuels. Book 3, Session V

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-12-31

    Book three of this conference has a single-focused session V entitled Engineering and Economics, with 16 papers. The session is concerned with several phases of chemical reprocessing of fuels which are of a general nature. Hot labs, radiochemical analytical facilities, and high level development cells are described. Dissolution equipment, contactors, flow generation, measurement, and control equipment, samplers, connectors, carriers, valves, filters, and hydroclones are described and discussed. Papers are included on: radiation safety, chemical safety, radiochemical plant operating experience in the U.S., and heavy element isotopic buildup. The general economics of solvent extraction processing is discussed, and capital and operating costs for several U. S. plants given. The Atomic Energy Commission's chemical processing programs and administration are evaluated and the services offered and charges therefore are listed.

  14. The Assessment of Radioactive Liquid Waste Treatment Generated From The Fuel Reprocessing Plant Using Chemical Coagulation Method

    International Nuclear Information System (INIS)

    Kuncoro Arief, H; M Birmano, Dj

    1998-01-01

    Reprocessing of nuclear spent fuel produced 8 lot of radioactive liquid waste still bearing uranium and transuranium. The assessment of the radioactive liquid waste treatment with FeCI 3 as coagulant has been done. Decontamination factor and separation efficiency can be calculated from known activities of initial and post-treatment wastes. It can be concluded that some factors i.e. pH of treatment process, quantity of coagulant, mixing rate, and mixing time have influenced the treatment product

  15. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    International Nuclear Information System (INIS)

    Prince, B.E.; Hadley, S.W.

    1983-01-01

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of the time-dependent aspects of plutonium requirements and supply relative to this transition

  16. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  17. The use of artificial intelligence for safeguarding fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs

  18. Process analysis in a THTR trial reprocessing plant

    International Nuclear Information System (INIS)

    Brodda, B.G.; Filss, P.; Kirchner, H.; Kroth, K.; Lammertz, H.; Schaedlich, W.; Brocke, W.; Buerger, K.; Halling, H.; Watzlawik, K.H.

    1979-01-01

    The demands on an analytical control system for a THTR trial reprocessing plant are specified. In a rather detailed example, a typical sampling, sample monitoring and measuring process is described. Analytical control is partly automated. Data acquisition and evaluation by computer are described for some important, largely automated processes. Sample management and recording of in-line and off-line data are carried out by a data processing system. Some important experiments on sample taking, sample transport and on special analysis are described. (RB) [de

  19. Policy in France regarding the back-end of the fuel cycle reprocessing/recycling route

    International Nuclear Information System (INIS)

    Gloaguen, A.; Lenail, B.

    1991-01-01

    The decision taken in early 1970s to base the French power policy on the use of pressurized water reactors also included the strategy for the back end of the nuclear fuel cycle based on reprocessing, waste conditioning for the final disposal in the most suitable form in terms of safety and plutonium recycling to fast breeder reactors. Twenty years have elapsed, and substantial development and investment have been made. New evidences have emerged especially regarding breeder development, and the initial choice has been proved to be sound. EDF and COGEMA, the French utility and fuel cycle companies, respectively, are working together in order to take the best advantage of past efforts. The good behavior of MOX fuel in EDF reactors and the excellent start of the UP3 reprocessing plant of La Hague, which was completed and commissioned in August, 1990, made EDF and COGEMA extremely confident for future decision. The French choice made in favor of fuel reprocessing the history of fuel reprocessing in France, the policy concerning the back end of nuclear fuel cycle of EDF, and the present consideration and circumstances on this matter are reported. (K.I.)

  20. Fuel reprocessing plant - no solution for the economy of the region

    International Nuclear Information System (INIS)

    Elvers, G.

    1986-01-01

    Both for the construction and operation stage, the direct and indirect impact of the fuel reprocessing plant on employment on the whole will be negative. It is not altogether certain either that there will be no adverse effects for the areas of tourism. The top organization of German trade unions (DGB) holds that a different structure-political concept from the one represented by the large-scale project of the fuel reprocessing plant would be more appropriate for the region. Employment in the steel and construction industries must be safeguarded by corresponding programmes, and new employment must be created in small- and medium-size companies. (DG) [de

  1. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  2. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath

    International Nuclear Information System (INIS)

    Fernandes, Damaris

    2002-01-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U 3+ /U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al 2 O 3 with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U 3+ /U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U 3+ /U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  3. Studies in biological excretion of inhaled plutonium in the case of a few occupational workers in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hedge, A.G.; Chandramouli, S.; Iyer, R.S.; Bhat, I.S.

    1992-01-01

    A power reactor fuel reprocessing plant is in operation at Tarapur. The various processes involved in the plant are: fuel rod cutting, dissolution in nitric acid, separation of plutonium, and handling of separated plutonium. The chemical form of plutonium could be nitrate, TBP complex, or oxide depending upon the nature of the process involved. Possible internal exposure to plant personnel occurs mainly by inhalation and occasionally through a contaminated wound. Occupational workers are regularly monitored for internal contamination by urinary excretion analysis as well as by in-vivo lung counting. This paper presents a follow-up study of plutonium elimination in four inhalation exposure cases. (author) 8 refs.; 6 figs

  4. Computer aided process control equipment at the Karlsruhe reprocessing pilot plant, WAK

    International Nuclear Information System (INIS)

    Winter, R.; Finsterwalder, L.; Gutzeit, G.; Reif, J.; Stollenwerk, A.H.; Weinbrecht, E.; Weishaupt, M.

    1991-01-01

    A computer aided process control system has been installed at the Karlsruhe Spent Fuel Reprocessing Plant, WAK. All necessary process control data of the first extraction cycle is collected via a data collection system and is displayed in suitable ways on a screen for the operator in charge of the unit. To aid verification of displayed data, various measurements are associated to each other using balance type process modeling. Thus, deviation of flowsheet conditions and malfunctioning of measuring equipment are easily detected. (orig.) [de

  5. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.; Thomas, I. [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA 99354 (United States)

    2013-07-01

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

  6. Study of the stability of organic ligands usable for the spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Draye, Micheline

    1994-01-01

    The first part of this research thesis on the stability of organic ligands in radioactive environment, reports the study of the stability of the dicyclohexano-18-crown-6 (DCH18C6) in radioactive environment by using several analytical techniques (nuclear magnetic resonance or NMR, X-ray diffraction, Fourier transform infrared spectroscopy or FTIR, gas chromatography or GC, and coupled gas chromatography/mass spectroscopy). The seven main radiolysis products of DCH18C6 are identified and then synthesised to be tested in radioactive environment. These products are soluble in nitric medium, and partially precipitate plutonium, but cannot in any case disturb the reprocessing process based on a continuous extraction system. Chemical yields are computed and DCH18C6 appears to be a serious candidate for the reprocessing of spent nuclear fuels. The second part reports the study of the stability of the poly(4-vinylpyridine) or P4VP in radioactive environment. It appears that gamma radiations produce radicals in the P4VP which recombine in function of the irradiation dose. However, this material is very stable in acid environment and radioactive environment [fr

  7. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  8. Current status on advanced aqueous reprocessing process (next) in FaCT project

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Myochin, Munetaka; Koyama, Tomozo

    2009-01-01

    Japan Atomic Energy Agency (JAEA) launched the Fast Reactor Cycle Technology Development (FaCT) project in cooperation with the Japanese electric utilities in 2006. An integration of the advanced aqueous reprocessing concept and the simplified pelletizing fuel fabrication was selected as the most promising fuel cycle system. In order to accomplish the integration, R and D tasks were launched as FaCT Project in 2006 by Japanese joint team. The New Extraction System for TRU Recovery (NEXT) system is an advanced aqueous reprocessing concept which was based on the well established aqueous reprocessing for LWR spent fuel and newly applied processes such as uranium crystallization and extraction chromatography for MAs recovery. Main task of the NEXT process is to develop the TRU recovery process and equipments with high reliability, criticality safety, high durability and remote maintainability. In the FaCT project, all innovative technologies are planned to be developed within the next decade focusing on the future commercialization of FBR cycle systems. The judgment of the adoption of each innovative technology will be made by 2010 based on the results of R and Ds. The development of each technology is to be completed by around 2015. By the same time, it is scheduled to present the conceptual design of commercial and demonstrative fast reactor cycle facilities. The six items (Disassembling and shearing, Fuel dissolution, Uranium Crystallization, Single cycle co-extraction of U, Pu and Np, MA recovery by extraction chromatography and Waste treatment) have been identified as the issues to be developed corresponding to each process step. Current R and D status and prospects of this system until around 2015 is reported. (author)

  9. Process component inventory in a large commercial reprocessing facility

    International Nuclear Information System (INIS)

    Canty, M.J.; Berliner, A.; Spannagel, G.

    1983-01-01

    Using a computer simulation program, the equilibrium operation of the Pu-extraction and purification processes of a reference commercial reprocessing facility was investigated. Particular attention was given to the long-term net fluctuations of Pu inventories in hard-to-measure components such as the solvent extraction contractors. Comparing the variance of these inventories with the measurement variance for Pu contained in feed, analysis and buffer tanks, it was concluded that direct or indirect periodic estimation of contactor inventories would not contribute significantly to improving the quality of closed material balances over the process MBA

  10. Floor response spectra of the main process building of a reprocessing plant against earthquake, airplane crash and blast

    International Nuclear Information System (INIS)

    Hilpert, H.J.

    1987-01-01

    In the general concept of the planned reprocessing plant for spent fuel elements, the main process building has the central function. This building will be designed to withstand earthquake, airplane crash and blast. This report deals with the stress on components and systems due to vibration of the building, the floor response spectra

  11. Problem statement: international safeguards for a light-water reactor fuels reprocessing plant

    International Nuclear Information System (INIS)

    Shipley, J.P.; Hakkila, E.A.; Dietz, R.J.; Cameron, C.P.; Bleck, M.E.; Darby, J.L.

    1979-03-01

    This report considers the problem of developing international safeguards for a light-water reactor (LWR) fuel reprocessing/conversion facility that combines the Purex process with conversion of plutonium nitrate to the oxide by means of plutonium (III) oxalate precipitation and calcination. Current international safeguards systems are based on the complementary concepts of materials accounting and containment and surveillance, which are designed to detect covert, national diversion of nuclear material. This report discusses the possible diversion threats and some types of countermeasures, and it represents the first stage in providing integrated international safeguards system concepts that make optimum use of available resources. The development of design methodology to address this problem will constitute a significant portion of the subsequent effort. Additionally, future technology development requirements are identified. 8 figures, 1 table

  12. Trivalent lanthanide/actinide separation in the spent nuclear fuel wastes' reprocessing

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. Since the trivalent actinides and lanthanides have similar chemistries, it is rather difficult to separate them from each other. The aim of presented work was to study solvent extraction of Am(III) and Eu(III) in a system containing diethylhemi-BTP (6-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine) and COSAN (protonated bis(chlorodicarbollido)cobalt(III)). The system was chosen by several groups working in the integrated EC research Project EUROPART. Several physicochemical properties of the extraction system were analyzed and discussed

  13. Determination of free acidity in nuclear fuel reprocessing streams by fiber optic aided spectrophotometric technique

    International Nuclear Information System (INIS)

    Ganesh, S.; Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2014-01-01

    A fiber optic aided spectrophotometric technique has been developed for the determination of free acidity in nuclear fuel reprocessing streams. The developed method is simple, accurate and applicable to all ranges of nitric acid and heavy metal concentrations relevant to the purex process. The method is based on the formation of yellow colour with an acid-sensitive indicator such as chrome azurol s, the intensity of yellow colour is proportional to the acid concentration. The system obeys Lambert-Beer's law at 455 nm in the range of acidity 1-10 M of nitric acid. The results obtained are reproducible with standard deviation 2% and relative error is less than 3%. The results obtained by the developed technique are in good agreement with those obtained by the standard procedure. This method is adaptable for remote operation and on-line monitoring. (author)

  14. Filter safety tests under solvent fire in a cell of nuclear-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji

    1988-01-01

    In a nuclear-fuel reprocessing plant, a solvent fire in an extraction process is postulated. Since 1983, large scale solvent fire tests were carried out by Fire/Filter Facility to demonstrate solvent burning behavior in the cell, HEPA filter integrity by the fire and radioactive confinement by air-ventilation of the plant under postulated fire conditions. From results of 30 % TBP-70 % n-dodecane fire, burning rate of solvent in the cell, smoke generation rate and smoke deposition onto duct surface were obtained by a relation between air-ventilation rate into the cell and burning surface area of the solvent. The endurance of HEPA filter due to smoke plugging was measured by a pressure drop across the filter during the fire. The confinement of radioactive materials from the burning solvent was determined by the measurement of airborne concentrations in the cell for stable nuclei simulated fission products, radioactive tracers and uranium nitrate. (author)

  15. Assessment of the insertion of reprocessed fuel spiked with thorium in a PWR core

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Victor F.; Monteiro, Fabiana B.A.; Pereira, Claubia, E-mail: victorfc@fis.grad.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Reprocessed fuel by UREX+ technique and spiked with thorium was inserted in a PWR core and neutronic parameters have been analyzed. Based on the Final Safety Analysis Report (FSAR) of the Angra-2 reactor, the core was modeled and simulated with SCALE6.0 package. The neutronic data evaluation was carried out by the analysis of the effective and infinite multiplication factors, and the fuel evolution during the burnup. The conversion ratio (CR) was also evaluated. The results show that, when inserting reprocessed fuel spiked with thorium, the insertion of burnable poison rods is not necessary, due to the amount of absorber isotopes present in the fuel. Besides, the conversion ratio obtained was greater than the presented by standard UO{sub 2} fuel, indicating the possibility of extending the burnup. (author)

  16. Development of process simulation code for reprocessing plant and process analysis for solvent degradation and solvent washing waste

    International Nuclear Information System (INIS)

    Tsukada, Tsuyoshi; Takahashi, Keiki

    1999-01-01

    We developed a process simulation code for an entire nuclear fuel reprocessing plant. The code can be used on a PC. Almost all of the equipment in the reprocessing plant is included in the code and the mass balance model of each item of equipment is based on the distribution factors of flow-out streams. All models are connected between the outlet flow and the inlet flow according to the process flow sheet. We estimated the amount of DBP from TBP degradation in the entire process by using the developed code. Most of the DBP is generated in the Pu refining process by the effect of α radiation from Pu, which is extracted in a solvent. On the other hand, very little of DBP is generated in the U refining process. We therefore propose simplification of the solvent washing process and volume reduction of the alkali washing waste in the U refining process. The first Japanese commercial reprocessing plant is currently under construction at Rokkasho Mura, Recently, for the sake of process simplification, the original process design has been changed. Using our code, we analyzed the original process and the simplified process. According our results, the volume of alkali waste solution in the low-level liquid treatment process will be reduced by half in the simplified process. (author)

  17. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  18. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  19. Gas chromatographic determination of Di-n-butyl phosphate in radioactive lean organic solvent of FBTR carbide fuel reprocessing

    International Nuclear Information System (INIS)

    Velavendan, P.; Ganesh, S.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work Di-n- butyl phosphate (DBP) a degraded product of Tri-n-butyl phosphate (TBP) formed by acid hydrolysis and radiolysis in the PUREX process was analyzed. Lean organic streams of different fuel burn-up FBTR carbide fuel reprocessing solution was determined by standard Gas Chromatographic technique. The method involves the conversion of non-volatile Di-n-butyl phosphate into volatile and stable derivatives by the action of diazomethane and then determined by Gas Chromatograph (GC). A calibration graph was made for DBP concentration range of 200-2000 ppm with correlation coefficient of 0.99587 and RSD 1.2 %. (author)

  20. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Nair, M.K.T.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Rao, M.K.; Mathur, J.N.; Murali, M.S.; Iyer, R.H.; Badheka, L.P.; Banerji, A.

    1994-01-01

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs

  1. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Deshingkar, D S; Chitnis, R R; Wattal, P K; Theyyunni, T K; Nair, M K.T. [Bhabha Atomic Research Centre, Bombay (India). Process Engineering and Systems Development Div.; Ramanujam, A; Dhami, P S; Gopalakrishnan, V; Rao, M K [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Group; Mathur, J N; Murali, M S; Iyer, R H [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.; Badheka, L P; Banerji, A [Bhabha Atomic Research Centre, Bombay (India). Bio-organic Div.

    1994-12-31

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs.

  2. Studies relating to construction materials to be used in different options for head end treatment in reprocessing of mixed carbide fuel of plutonium and uranium

    International Nuclear Information System (INIS)

    Rajan, S.K.; Palamalai, A.; Ravi, T.N.; Sampath, M.; Raman, V.R.; Balasubramanian, G.R.

    1993-01-01

    Mixed carbide of uranium and plutonium has been chosen as the fuel for the first core of Fast Breeder Test Reactor, installed in the Indira Gandhi Centre for Atomic Research. Reprocessing of this fuel is one of the vital steps to prove the viability of the fuel cycle. The head end treatment process introduces constraints in the reprocessing of carbide fuel when compared to the commonly used mixed oxide fuel. Three head end processes, namely direct oxidation, pyrohydrolysis and direct dissolution in nitric acid with oxidation of organic acids were considered for study for exercising the choice. The paper briefly describes the three processes. In each process probable material of construction and related problems are discussed. (author). 3 refs, 5 figs, 7 tabs

  3. Reprocessed and combined thorium fuel cycles in a PER system with a micro heterogeneous approaches

    International Nuclear Information System (INIS)

    Monteiro, Fabiana B.A.; Castro, Victor F.; Faria, Rochkhudson B. de; Pereira, Claubia; Fortini, Angela

    2015-01-01

    A micro heterogeneous approaches were used to study the behavior of reprocessed fuel spiked with thorium in a PWR fuel element considering (TRU-Th) cycle. The goal is to achieve a higher burnup using three different configurations to model the fuel element using SCALE 6.0. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a spent PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment. The spent fuel remained in the cooling pool for five years and then reprocessed using the UREX+ technique. Three configurations of micro heterogeneous approaches were analyzed, and the k inf and plutonium evolution during the burnup were evaluated. The preliminary results show that the behavior of advanced fuel based on transuranic elements spiked with thorium, and micro heterogeneous approach are satisfactory in PWRs, and the configuration that use a combination of Th and TRU (configuration 1) seems to be the most promising once has higher values for k inf during the burnup, compared with other configurations. (author)

  4. Study on the abnormal reaction in an evaporator at a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu; Ohsaki, Hiroshi

    2004-01-01

    The calculation code was constructed in order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions. This report describes the model of the calculation code and the result of the trial calculation. (author)

  5. Radioactive waste management: a series of bibliographies. Nuclear fuel cycle: reprocessing. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on spent fuel reprocessing included in the Department of Energy's Energy Data Base from December 1982 through December 1983. The 555 citations in this bibliography are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  6. Nondestructive measurement of spent fuel assemblies at the Tokai Reprocessing and Storage Facility

    International Nuclear Information System (INIS)

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Lee, D.M.

    1979-12-01

    Nondestructive verification of irradiated fuel assemblies is an integral part of any safeguards system for a reprocessing facility. Available techniques are discussed with respect to the level of verification provided by each. A combination of high-resolution gamma spectrometry, neutron detectors, and gross gamma activity profile monitors provide a maximum amount of information in a minimum amount of time

  7. Mechanism of 232U production in MTR fuel evolution of activity in reprocessed uranium

    International Nuclear Information System (INIS)

    Harbonnier, G.; Lelievre, B.; Fanjas, Y.; Naccache, S.J.P.

    1993-01-01

    The use of reprocessed uranium for research reactor fuel fabrication implies to keep operators safe from the hard gamma rays emitted by 232 U daughter products. CERCA has carried out, with the help of French CEA and COGEMA, a detailed study to determine the evolution of the radiation dose rate associated with the use of this material. (author)

  8. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  9. Reprocessing of spent nuclear fuels. Status and trends; Upparbetning av anvaent kaernbraensle. Laege och trender

    Energy Technology Data Exchange (ETDEWEB)

    Hultgren, Aa

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs.

  10. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  11. Why reprocess

    International Nuclear Information System (INIS)

    Greenwood, T.

    1977-01-01

    Prospective costs of reprocessing, waste management, and mixed oxide fuel fabrication have risen so much that the costs of U/P recycle and of spent fuel storage are nearly equal. This paper reviews the current state of the reprocessing industry, with a list of facilities all over the world, and examines the incentives and disincentives other than short-term economics that will affect the decision of states to acquire their own reprocessing facilities. Finally, it examines the possibility of avoiding a widespread commercial reprocessing industry

  12. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Paviet-Hartmann, P. [Idaho National Laboratory, 995 University Blvd, Idaho Falls, ID 83402 (United States); Riddle, C. [Idaho National Laboratory, Material and Fuel Complex, Idaho Falls, ID 83415-6150 (United States); Campbell, K. [University of Nevada Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV 89144 (United States); Mausolf, E. [Pacific Northwest National Laboratory, 902 Batelle Blvd, Richland, WA 99352 (United States)

    2013-07-01

    The most widely used reductant to partition plutonium from uranium in the Purex process was ferrous sulfamate, other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, platinum catalyzed hydrogen, and hydrazine, hydroxylamine salts. New candidates to replace hydrazine or hydroxylamine nitrate (HAN) are pursued worldwide. They may improve the performance of the industrial Purex process towards different operations such as de-extraction of plutonium and reduction of the amount of hydrazine which will limit the formation of hydrazoic acid. When looking at future recycling technologies using hydroxamic ligands, neither acetohydroxamic acid (AHA) nor formohydroxamic acid (FHA) seem promising because they hydrolyze to give hydroxylamine and the parent carboxylic acid. Hydroxyethylhydrazine, HOC{sub 2}H{sub 4}N{sub 2}H{sub 3} (HEH) is a promising non-salt-forming reductant of Np and Pu ions because it is selective to neptunium and plutonium ions at room temperature and at relatively low acidity, it could serve as a replacement of HAN or AHA for the development of a novel used nuclear fuel recycling process.

  13. Identification of potential safety-related incidents applicable to a breeder fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.

    1980-01-01

    The current emphasis on safety in all phases of the nuclear fuel cycle requires that safety features be identified and included in designs of nuclear facilities at the earliest possible stage. A popular method for the early identification of these safety features is the Preliminary Hazards Analysis. An extension of this analysis is to illustrate the nature of a hazard by its effects in accident situations, that is, to identify what are called safety-related incidents. Some useful tools are described which have been used at the Savannah River Laboratory, SRL, to make Preliminary Hazards Analyses as well as safety analyses of facilities for processing spent nuclear fuels from both power and production reactors. These tools have also been used in safety studies of waste handling operations at the Savannah River Plant. The tools are the SRL Incidents Data Bank and the What If meeting. The application of this methodology to a proposed facility which has breeder fuel reprocessing capability, the Hot Experimental Facility (HEF) is illustrated

  14. Development of remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Kunikata, Michio; Kawamura, Hironobu.

    1985-01-01

    For nuclear facilities, various types of remote maintenance and inspection devices have been developed to reduce radiation exposure to workers, save labor, and improve the operating rate of the plant. Existing robot technology, however, could not be employed when we were recently called upon to inspect and repair pinhole defects which had occurred in the spent fuel dissolvers of the Power Reactor and Nuclear Fuel Development Corporation's Tokai Reprocessing Plant, because the work had to be done in an extremely radioactive environment, conditions too extreme for conventional robots. For this reason, we developed highly radiation-resistant repair robots capable of fully remote-controlled operation inside the barrels of the dissolvers, which have the inconvenient shape of 270 mm inside diameter and 6 m length. The process for developing the six different repair robots and the their functions are described in this paper. This development was sponsored by the Power Reactor and Nuclear Fuel Development Corporation (PNC) under contract with Hitachi, Ltd. (author)

  15. Removal of spent fuel from the TVR reactor for reprocessing and proposals for the RA reactor spent fuel handling

    International Nuclear Information System (INIS)

    Volkov, E.B.; Konev, V.N.; Shvedov, O.V.; Bulkin, S.Yu; Sokolov, A.V.

    2002-01-01

    The 2,5 MW heavy-water moderated and cooled research reactor TVR was located at the Moscow Institute for Theoretical and Experimental Physics site. In 1990 the final batch of spent nuclear fuel (SNF) from the TVR reactor was transported for reprocessing to Production Association (PA) 'Mayak'. This transportation of the SNF was a part of TVR reactor decommissioning. The special technology and equipment was developed in order to fulfill the preparation of TVR SNF for transportation. The design of the TVR reactor and the fuel elements used are similar to the design and fuel elements of the RA reactor. Two different ways of RA spent fuel elements for transportation to reprocessing plant are considered: in aluminum barrels, and in additional cans. The experience and equipment used for the preparing TVR fuel elements for transportation can help the staff of RA reactor to find the optimal way for these technical operations. (author)

  16. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    International Nuclear Information System (INIS)

    Bishop, W.P.; Miraglia, F.J. Jr.

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts

  17. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, W.P.; Miraglia, F.J. Jr. (eds.)

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts.

  18. Experimental, economical and ecological substantiation of fuel cycle based on pyroelectrochemical reprocessing and vibropac technology

    International Nuclear Information System (INIS)

    Ivanov, V.B.; Skiba, O.V.; Mayershin, A.A.; Bychkov, A.V.; Demidova, L.S.; Porodnov, P.T.

    1997-01-01

    The humanity comes to the border of centuries. While growing the population, capacity of manufacture in various industries increases. It will be impossible to solve problems, facing the humanity, without introducing safe and high-efficient technologies. The following principles are considered to be the most important ones for technologies of the future: 1) The closed cycle, i.e. internal isolation of technological processes, aimed at reducing a gross output of dangerous substances, which are harmful to an environment, from industry, 2) Optimization of technological systems which is intended for achieving necessary results (both technological and commercial) with the maximal exception of excessive stages and processes, 3) Maximum level of internally inherent safety, i.e. using processes, in which safety is based not only on engineering barriers of safety, but also on its own, > properties of technological system, which creates a low degree of ecological damage probability. These principles have influence both on general safety and on economy in equal degree. The external nuclear fuel cycle, as a complex technological system, is to be built under the same principles. It is necessary to take into account, that, as a whole, the technologies connected with reprocessing and preparation of nuclear fuel were formed in 50-s years and, besides, the majority of modern technologies were developed as military technologies continuation. It is for this reason, that many technologies have not been optimized yet if real society needs are taken into consideration. (J.P.N.)

  19. THE ECONOMICS OF REPROCESSING vs. DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Bunn, Matthew; Fetter, Steve; Holdren, John P.; Zwaan, Bob van der

    2003-01-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices

  20. BNFL Sellafield assessment of public radiation exposure due to liquid effluents from fuel reprocessing

    International Nuclear Information System (INIS)

    Hunt, G.J.

    1982-01-01

    Individual (critical group) doses resulting from liquid discharges from the British Nuclear Fuels Limited (BNFL) Sellafield Works have been derived in a form normalised to unit radionuclide discharge rates. This has been done for the purpose of providing a basis for predicting doses in the event of nuclear fuel from a future Sizewell 'B' power station being reprocessed. These doses would have to be reviewed in the light of prevailing circumstances at the time when the actual discharges are known. (author)

  1. Determination of overall decontamination factors for common impurity elements in PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pant, D.K.; Bhalerao, B.A.; Gupta, K.K.; Kulkarni, P.G.; Gurba, P.B.; Janardan, P.; Changrani, R.D.; Dey, P.K.

    2009-01-01

    An attempt has been made to determine overall decontamination factors for elemental impurities normally encountered in the U 3 O 8 product obtained by reprocessing of PHWR spent fuel. The solution obtained by dissolution of spent fuel and corresponding U 3 O 8 product were analyzed for 24 elemental impurities by ICP-AES for this purpose. Decontamination factors achieved for major neutron poisons are in the range of 200-400. (author)

  2. Legal problems connected with irradiated fuel reprocessing and its waste storage

    International Nuclear Information System (INIS)

    Nercy, B. de.

    1981-10-01

    In view of its nature, an irradiated nuclear fuel reprocessing operation -and the contracts implementing it between the reprocessor and the customer- raises certain difficult legal problems. This paper analyses this question from the legal viewpoint, in particular as regards nuclear fuel and material ownership and products or waste arising therefrom, as well as in the context of rules of international trade and non-proliferation standards. (NEA) [fr

  3. Environmental control aspects for fabrication, reprocessing and waste disposal of alternative LWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Nolan, A.M.; Lewallen, M.A.; McNair, G.W.

    1979-11-01

    Environmental control aspects of alternative fuel cycles have been analyzed by evaluating fabrication, reprocessing, and waste disposal operations. Various indices have been used to assess potential environmental control requirements. For the fabrication and reprocessing operations, 50-year dose commitments were used. Waste disposal was evaluated by comparing projected nuclide concentrations in ground water at various time periods with maximum permissible concentrations (MPCs). Three different fabrication plants were analyzed: a fuel fabrication plant (FFP) to produce low-activity uranium and uranium-thorium fuel rods; a plutonium fuel refabrication plant (PFRFP) to produce plutonium-uranium and plutonium-thorium fuel rods; and a uranium fuel refabrication plant (UFRFP) to produce fuel rods containing the high-activity isotopes 232 U and 233 U. Each plant's dose commitments are discussed separately. Source terms for the analysis of effluents from the fuel reprocessing plant (FRP) were calculated using the fuel burnup codes LEOPARD, CINDER and ORIGEN. Effluent quantities are estimated for each fuel type. Bedded salt was chosen for the waste repository analysis. The repository site is modeled on the Waste Isolation Pilot Program site in New Mexico. Wastes assumed to be stored in the repository include high-level vitrified waste from the FRP, packaged fuel residue from the FRP, and transuranic (TRU) contaminated wastes from the FFP, PFRFP, and UFRFP. The potential environmental significance was determined by estimating the ground-water concentrations of the various nuclides over a time span of a million years. The MPC for each nuclide was used along with the estimated ground-water concentration to generate a biohazard index for the comparison among fuel compositions

  4. Safety demonstration test on solvent fire in fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Hashimoto, Kazuichiro

    1989-03-01

    This report summarizes a fundamental of results obtained in the Reprocessing Plant Safety Demonstration Test Program which was performed under the contract between the Science and Technology Agency of Japan and the Japan Atomic Energy Research Institute. In this test program, a solvent fire was hypothesized, and such data were obtained as fire behavior, smoke behavior and integrity of exhaust filters in the ventilation system. Through the test results, it was confirmed that under the fire condition in hypothetical accident, the integrity of the cell and the cell ventilation system were maintained, and the safety function of the exhaust filters was maintained against the smoke loading. Analytical results by EVENT code agreed well with the present test data on the thermofluid flow in a cell ventilation system. (author)

  5. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  6. Work on fuel reprocessing at the Boris Kidric Institute of Nuclear Sciences at Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Pavasovic, V.

    1969-01-01

    Activity in the region of fuel reprocessing since 1959 up to now has been reported. During that period all necessary conditions were created to enable successful work in that domain (hot laboratory with all necessary devices was constructed, the corresponding staff was trained, also the connections with other research centers were established dealing with these problems). Among the procedures Purex procedure was selected and laboratory plant was constructed to investigate different variants of this procedure. A pre-project has been made in cooperation with the Norway experts covering semi-industrial reprocessing plant. A device for countercurrent extraction is also under development (author) [sr

  7. Fuel reprocessing of the fast molten salt reactor: actinides et lanthanides extraction

    International Nuclear Information System (INIS)

    Jaskierowicz, S.

    2012-01-01

    The fuel reprocessing of the molten salt reactor (Gen IV concept) is a multi-steps process in which actinides and lanthanides extraction is performed by a reductive extraction technique. The development of an analytic model has showed that the contact between the liquid fuel LiF-ThF 4 and a metallic phase constituted of Bi-Li provide firstly a selective and quantitative extraction of actinides and secondly a quantitative extraction of lanthanides. The control of this process implies the knowledge of saline phase properties. Studies of the physico-chemical properties of fluoride salts lead to develop a technique based on potentiometric measurements to evaluate the fluoro-acidity of the salts. An acidity scale was established in order to classify the different fluoride salts considered. Another electrochemical method was also developed in order to determine the solvation properties of solutes in fluoride F- environment (and particularly ThF 4 by F-) in reductive extraction technique, a metallic phase is also involved. A method to prepare this phase was developed by electro-reduction of lithium on a bismuth liquid cathode in LiCl-LiF melt. This technique allows to accurately control the molar fraction of lithium introduced into the liquid bismuth, which is a main parameter to obtain an efficient extraction. (author)

  8. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  9. Construction of a system for aid in running irradiated fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Allanic, A.L.

    1993-01-01

    The availability of a diagnostic aid tool may prove to be extremely useful for monitoring complex processes such as those employed in nuclear fuel reprocessing plants. In the case of a malfunction, the choice of a corrective action demands the accurate knowledge of the disturbed state, because the same action applied to two distinct states of the process may have different consequences. The very high non-linearity of the responses of the process and the complexity of the mechanisms involved preclude the use of expert systems to perform the diagnosis. It was therefore decided to construct a diagnostic program based on the use of an available model allowing the dynamic simulation of the process. The program serves to identify a disturbance from its consequences, thus in some way achieving the 'inversion' of the model. The method adopted uses a regular mesh of a disturbance space and uses simulation to calculate the corresponding response space, in which a point close to the measured response is identified, thus helping to locate the disturbance. Tests on simulated and experimental data proved fairly conclusive, making it possible to consider the application of techniques used in industrial processes, despite the scale of the data processing resources required

  10. The situation of radioactive waste management in the fuel reprocessing facility (for fiscal 1979)

    International Nuclear Information System (INIS)

    1981-01-01

    In the fuel reprocessing facility of Power Reactor and Nuclear Fuel Development Corporation (PNC), the release of radioactive gaseous and liquid wastes was so controlled as not to exceed the set standards. Of the radioactive liquid wastes, concentrated wastes and sludge are stored in tanks. Radioactive solid wastes are suitably stored in containers. The situation of radioactive waste management in the fuel reprocessing facility in fiscal 1979 (from April, 1979, to March, 1980) is presented on the basis of the radiation control report made by PNC. The release of radioactive gaseous and liquid wastes was below the set standards. The following data are given in tables: the released quantity of radioactive gaseous and liquid wastes, the cumulative stored amount of radioactive liquid wastes, the produced quantity and cumulative stored amount of radioactive solid wastes; (for reference) the released quantity of radioactive gaseous and liquid wastes in fiscal 1977, 1978 and 1979. (J.P.N.)

  11. Radioactive waste management in a fuel reprocessing facility in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    In the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation, radioactive gaseous and liquid waste are released not exceeding the respective permissible levels. Radioactive concentrated solutions are stored at the site. Radioactive solid waste are stored appropriately at the site. In fiscal 1982, the released quantities of radioactive gaseous and liquid waste were both below the permissible levels. The results of radioactive waste management in the fuel reprocessing facility in fiscal 1982 are given in the tables: the released quantities of radioactive gaseous and liquid waste, the produced quantities of radioactive solid waste, and the stored quantities of radioactive concentrated solutions and of radioactive solid waste as of the end of fiscal 1982. (Mori, K.)

  12. Radioactive wastes management in fiscal year 1983 in the fuel reprocessing plant

    International Nuclear Information System (INIS)

    1985-01-01

    In the nuclear fuel reprocessing plant of Power Reactor and Nuclear Fuel Development Corporation, the releases of radioactive gaseous and liquid wastes are so managed not to exceed the respective objective release levels. Of the radioactive liquid wastes, the high level concentrated wastes are stored in tanks and the low level wastes are stored in tanks or asphalt solidified. For radioactive solid wastes, high level solid wastes are stored in casks, low level solid wastes and asphalt solids in drums etc. The releases of radioactive gaseous and liquid wastes in the fiscal year 1983 were below the objective release levels. The radioactive wastes management in the fuel reprocessing plant in fiscal year 1983 is given in tables, the released quantities, the stored quantities, etc. (Mori, K.)

  13. Contaminants of the bismuth phosphate process as signifiers of nuclear reprocessing history

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Sweet, Lucas E.

    2012-01-01

    Reagents used in spent nuclear fuel recycling impart unique contaminant patterns into the product stream of the process. Efforts are underway at Pacific Northwest National Laboratory to characterize and understand the relationship between these patterns and the process that created them. A main challenge to this effort, recycling processes that were employed at the Hanford site from 1944-1989 have been retired for decades. This precludes direct measurements of the contaminant patterns that propagate within product streams of these facilities. In the absence of any operating recycling facilities at Hanford, we have taken a multipronged approach to cataloging contaminants of U.S. reprocessing activities using: (1) historical records summarizing contaminants within the final Pu metal button product of these facilities; (2) samples of opportunity that represent intermediate products of these processes; and (3) lab-scale experiments and model simulations designed to replicate contaminant patterns at each stage of nuclear fuel reprocessing. This report provides a summary of the progress and results from Fiscal Year (April 1, 2010-September 30) 2011.

  14. Electrochemical Methods for Reprocessing Defective Fuel Elements and for Decontaminating Equipment

    International Nuclear Information System (INIS)

    Mikheykin, S. V.; Rybakov, K. A.; Simonov, V. P.

    2002-01-01

    Reprocessing of fuel elements receives much consideration in nuclear engineering. Chemical and electrochemical methods are used for the purpose. For difficultly soluble materials based on zirconium alloys chemical methods are not suitable. Chemical reprocessing of defective or irradiated fuel elements requires special methods for their decladding because the dissolution of the clad material in nitric acid is either impossible (stainless steel, Zr alloys) or quite slow (aluminium). Fuel elements are cut in air-tight glove-boxes equipped with a dust collector and a feeder for crushed material. Chemical treatment is not free from limitations. For this reason we started a study of the feasibility of electrochemical methods for reprocessing defective and irradiated fuel elements. A simplified electrochemical technology developed makes it possible to recover expensive materials which were earlier wasted or required multi-step treatment. The method and an electrochemical cell are suitable for essentially complete dissolution of any fuel elements, specifically those made of materials which are difficultly soluble by chemical methods

  15. NO/sub x/ emissions from Hanford nuclear fuels reprocessing plants

    International Nuclear Information System (INIS)

    Pajunen, A.L.; Dirkes, R.L.

    1978-01-01

    Operation of the existing Hanford nuclear fuel reprocessing facilities will increase the release of nitrogen oxides (NO/sub x/) to the atmosphere over present emission rates. Stack emissions from two reprocessing facilities, one waste storage facility and two coal burning power plants will contain increased concentrations of NO/sub x/. The opacity of the reprocessing facilities' emissions is predicted to periodically exceed the State and local opacity limit of twenty percent. Past measurements failed to detect differences in the ambient air NO/sub x/ concentration with and without reprocessing plant operations. Since the facilities are not presently operating, increases in the non-occupational ambient air NO/sub x/ concentration were predicted from theoretical diffusion models. Based on the calculations, the annual average ambient air NO/sub x/ concentration will increase from the present level of less than 0.004 ppM to less than 0.006 ppM at the Hanford site boundaries. The national standard for the annual mean ambient air NO 2 concentration is 0.05 ppM. Therefore, the non-occupational ambient air NO/sub x/ concentration will not be increased to significant levels by reprocessing operations in the Hanford 200 Areas

  16. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    Directory of Open Access Journals (Sweden)

    Rodrigues Davide

    2015-12-01

    Full Text Available The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile material and to separate the minor actinides from fission products. The reprocessing involves several chemical steps based on redox and acido-basic properties of the various elements contained in the fuel salt. One challenge is to perform a selective extraction of actinides and lanthanides in spent liquid fuel. Extraction of actinides and lanthanides are successively performed by a reductive extraction in liquid bismuth pool containing metallic lithium as a reductive reagent. The objective of this paper is to give a description of the several steps of the reprocessing retained for the molten salt fast reactor (MSFR concept and to present the initial results obtained for the reductive extraction experiments realized in static conditions by contacting LiF-ThF4-UF4-NdF3 with a lab-made Bi-Li pool and for which extraction efficiencies of 0.7% for neodymium and 14.0% for uranium were measured. It was concluded that in static conditions, the extraction is governed by a kinetic limitation and not by the thermodynamic equilibrium.

  17. Conceptual design study on advanced aqueous reprocessing system for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Takata, Takeshi; Koma, Yoshikazu; Sato, Koji; Kamiya, Masayoshi; Shibata, Atsuhiro; Nomura, Kazunori; Ogino, Hideki; Koyama, Tomozo; Aose, Shin-ichi

    2003-01-01

    As a feasibility study on commercialized fast reactor cycle system, a conceptual design study is being progressed for the aqueous and pyrochemical processes from the viewpoint of economical competitiveness, efficient utilization of resources, decreasing environmental impact and proliferation resistance in Japan Nuclear Cycle Development Institute (JNC). In order to meet above-mentioned requirements, the survey on a range of reprocessing technologies and the evaluation of conceptual plant designs against targets for the future fast reactor cycle system have been implemented as the fist phase of the feasibility study. For an aqueous reprocessing process, modification of the conventional PUREX process (a solvent extraction process with purification of U/Pu, with nor recovery of minor actinides (MA)) and investigation of alternatives for the PUREX process has been carried out and design study of advanced aqueous reprocessing system and its alternatives has been conducted. The conceptual design of the advanced aqueous reprocessing system has been updated and evaluated by the latest R and D results of the key technologies such as crystallization, single-cycle extraction, centrifugal contactors, recovery of Am/Cm and waste processing. In this paper, the outline of the design study and the current status of development for advanced aqueous reprocessing system, NEXT process, are mentioned. (author)

  18. Use of fuel reprocessing plant instrumentation for international safeguards

    International Nuclear Information System (INIS)

    Ayers, A.L.

    1977-01-01

    The International Atomic Energy Agency has a program for developing instrumentation to be used by safeguards inspectors at reprocessing facilities. These instruments have generally been individual pieces of equipment for improving the accuracy of existing measurement instrumentation or equipment to perform nondestructive assay on a selected basis. It is proposed that greater use be made of redundant plant instrumentation and data recovery systems that could augment plant instrumentation to verify the validity of plant measurements. Use of these methods for verfication must be proven as part of an operating plant before they can be relied upon for safeguards surveillance. Inspectors must be qualified in plant operations, or have ready access to those so qualified, if the integrity of the operation is to be properly assessed. There is an immediate need for the development and in-plant proof testing of an integrated gamma, passive neutron, and active neutron measurement system for drum quantities of radioactive trash. The primary safeguards effort should be limited to plutonium and highly enriched uranium

  19. Stabilization of neptunium valence states in nitric media for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Feldhaus, P.

    1996-12-01

    A possibility of standarizing the extraction-behavior of Neptunium during the reprocessing of spent nuclear fuel corresponding to PUREX-Process was investigated. The aim of the work was a qualitative dirigation of the Transuraniumelement (TRUE) into the raffinat of the first extraction cycle by a complete redoxconversion of the Neptunium valence states to unextractable Np(V). In the beginning the theoretical and experimental research focussed on the redoxchemistry of the actinide during the fuel dissolution and the feed preparation. Thereby the nitrous acid, which is produced by a radiological, photochemical and reductive degradation of the nitric acid, revealed an ambivalent influence on the Neptunium valences. By a short-term increase in HNO 2 -concentration the Np(V)-fraction could be obviously risen. The use of some stabilizing reagents inhibited a later reoxidation to Np(VI) also catalyzed by nitrous acid. The urea used for this purpose also led to a further increase in the obtained conversion rates due to a Np(VI)-reduction. The analysis of the valence distribution was performed by an extraction method. This had been compared to chromatographic separation in some preliminary investigations and had turned out to be comparably reliable and easily manageable. (orig.) [de

  20. Review of design criteria for Criticality Accident Alarm System (CAAS) used in Fuel Reprocessing Facility

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Basu, Pew; Sivasubramaniyan, K.; Venkatraman, B.

    2016-01-01

    Though fuel cycle facilities handling fissile materials are designed with careful criticality safety analysis, the criticality accident cannot be ruled out completely. Criticality Accident Alarm System (CAAS) is being installed as part of criticality safety management in fuel cycle facilities. CAAS system being used in India, is ECIL make, ionization chamber based gamma detector, which houses three identical detectors and works on 2/3 logic. As per ISO 7753 and ANSI/ANS-8.3, the CAAS must be designed to be capable of detecting any minimum accident occurs which could be of concern. Based on this, alarm limit used in CAAS is: 4 R/h (fast transient excursion) and 3 mR in 0.5 sec (slow excursion). In case of reprocessing facilities wherein process tanks located in heavy shielding, identification of CAAS installation locations require detailed radiation transport calculations. A study has been taken to estimate the gamma dose rate from thick concrete hot cells in order to determine the locations of CAAS to meet the present design criteria of alarm limit

  1. Composite reprocessing of spent nuclear fuel - is a way to low waste nuclear power

    International Nuclear Information System (INIS)

    Kosyakov, Valentin

    2005-01-01

    Further development of nuclear power in many respects depend on the solution of the problems connected to high level radioactive wastes (HLRW), containing highly toxic long-lived radionuclides. Long-term controlled storage of HLRW manages expensively and any advanced technology of reprocessing of spent nuclear fuel (SNF), besides recovery of the basic products, should be aimed at the reduction of this waste amount. However, the existing SNF reprocessing technology, using PUREX - process, is aimed only at extraction of uranium and plutonium, considering the remaining fraction (other transuranium elements and all fission products) as HLRW. In this work an attempt is made to give quantitative and qualitative characteristics to the isotopes and the elements which are included in the composition of HLRW after 15-years storage. Depending on the radiation properties of the isotopes included, these elements were divided into three categories: 1. The elements represented by only stable isotopes; 2. The elements represented by mostly low radioactive isotopes; 3. The elements represented by highly toxic long-lived radionuclides. As a result it appeared, that the weight percentage of the elements of the first, the second and the third categories in HLRW was: 60, 25 and 15% respectively. It means, that the amount of the real HLRW to be disposed in a deep geological repository could be reduced at least by a factor of 6, if to recover completely only 7 most dangerous elements (Sr, J, Cs, Sm, Np, Am and Cm) from the solution remaining after extraction of uranium and plutonium. Then it is meaningful to recover the elements of the first category from the remaining mix. As the main part of this fraction is represented by rare earth elements and noble metals, which can easily find many useful application. (author)

  2. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  3. The development of basic glass formulations for solidifying HLW from nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Jiang Yaozhong; Tang Baolong; Zhang Baoshan; Zhou Hui

    1995-01-01

    Basic glass formulations 90U/19, 90U/20, 90Nd/7 and 90Nd/10 applied in electric melting process are developed by using the mathematical model of the viscosity and electric resistance of waste glass. The yellow phase does not occur for basic glass formulations 90U/19 and 90U/20 solidifying HLW from nuclear fuel reprocessing plant when the waste loading is 20%. Under the waste loading is 16%, the process and product properties of glass 90U/19 and 90U/20 come up to or surpass the properties of the same kind of foreign waste glasses, and other properties are about the same to them of foreign waste glasses. The process and product properties of basic glass formulations 90Nd/7 and 90Nd/10 used for the solidification of 'U replaced by Nd' liquid waste are almost similar to them of 90U/19 and 90U/20. These properties fairly meet the requirements of 'joint test' (performed at KfK-INE, Germany). Among these formulations, 90Nd/7 is applied in cold engineering scale electric melting test performed at KfK-INE in Germany. The main process properties of cold test is similar to laboratory results

  4. Reprocessing of fast reactor fuels in the UP2 plant at La Hague

    International Nuclear Information System (INIS)

    Chenevier, F.; Grellard, J.; Wauquier, J.M.

    The installations of the UP2 plant and particularly the geometry of the HAO shop equipment were defined for reprocessing fuels from the ordinary water system. The high fissile substance level of fuels from the fast neutron system necessitated certain modifications to the installations and some operating restrictions so that they could be treated in the existing installation. After reviewing the characteristics of the reference fuel and describing the particular restrictions to be respected for safety-criticality, the choices made with respect to installation modifications and operating restrictions are presented. The observations made during a first treatment campaign confirm the validity of the options chosen [fr

  5. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    International Nuclear Information System (INIS)

    Park, Jee Won; Jeong, C. J.; Yang, M. S.

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs

  6. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Jeong, C. J.; Yang, M. S

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs.

  7. Evaluation of methods for seismic analysis of nuclear fuel reprocessing and fabrication facilities

    International Nuclear Information System (INIS)

    Arthur, D.F.; Dong, R.G.; Murray, R.C.; Nelson, T.A.; Smith, P.D.; Wight, L.H.

    1978-01-01

    Methods of seismic analysis for critical structures and equipment in nuclear fuel reprocessing plants (NFRPs) and mixed oxide fuel fabrication plants (MOFFPs) are evaluated. The purpose of this series of reports is to provide the NRC with a technical basis for assessing seismic analysis methods and for writing regulatory guides in which methods ensuring the safe design of nuclear fuel cycle facilities are recommended. The present report evaluates methods of analyzing buried pipes and wells, sloshing effects in large pools, earth dams, multiply supported equipment, pile foundations, and soil-structure interactions

  8. Reprocessing method of ceramic nuclear fuels in low-melting nitrate molten salts

    International Nuclear Information System (INIS)

    Brambilla, G.; Caporali, G.; Zambianchi, M.

    1976-01-01

    Ceramic nuclear fuel is reprocessed through a method wherein the fuel is dispersed in a molten eutectic mixture of at least two alkali metal nitrates and heated to a temperature in the range between 200 and 300 0 C. That heated mixture is then subjected to the action of a gaseous stream containing nitric acid vapors, preferably in the presence of a catalyst such as sodium fluoride. Dissolved fuel can then be precipitated out of solution in crystalline form by cooling the solution to a temperature only slightly above the melting point of the bath

  9. Estimation of gamma dose rate from hulls and shield design for the hull transport cask of Fuel Reprocessing Plant (FRP)

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)

  10. Nuclear fuel cycle reprocessing and waste management technology

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1992-01-01

    In this address, the status of global and US nuclear fuel cycles is briefly reviewed. Projections for Europe and the Pacific basin include a transition towards mixed uranium and plutonium oxide (MOX) recycle in thermal and, eventually, fast reactors. Major environmental benefits could be expected by the development of fast reactor technology. Published estimates of the principal greenhouse gas emission from nuclear operations are reviewed. The final section notes the reduction in radiation dose uptake by operators and general public which can be anticipated when fast reactor and thermal reactor fuel cycles are compared. The major reduction follows elimination of the uranium mining/milling operation

  11. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  12. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  13. Development of Spectrophotometric Process Monitors for Aqueous Reprocessing Facilities

    International Nuclear Information System (INIS)

    Smith, N.; Krebs, J.; Hebden, A.

    2015-01-01

    The safeguards envelope of an aqueous reprocessing plant can be extended beyond traditional measures to include surveillance of the process chemistry itself. By observing the concentration of accountable species in solution directly, a measure of real time accountancy can be applied. Of equal importance, select information on the process chemistry can be determined that will allow the operator and inspectors to verify that the process is operating as intended. One of the process monitors that can be incorporated is molecular spectroscopy, such as UV-Visible absorption spectroscopy. Argonne National Laboratory has developed a process monitoring system that can be tailored to meet the specific chemistry requirements of a variety of processes. The Argonne Spectroscopic Process monitoring system (ASP) is composed of commercial-off-the-shelf (COTS) spectroscopic hardware, custom manufactured sample handling components (to meet end user requirements) and the custom Plutonium and Uranium Measurement and Acquisition System (PUMAS) software. Two versions of the system have been deployed at the Savannah River Site's H-Canyon facility, tailored for high and low concentration streams. (author)

  14. Analysis of triso packing fraction and fissile material to DB-MHR using LWR reprocessed fuel

    International Nuclear Information System (INIS)

    Silva, Clarysson A.M. da; Pereira, Claubia; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Gual, Maritza R.

    2013-01-01

    Gas-cooled and graphite-moderated reactor is being considered the next generation of nuclear power plants because of its characteristic to operate with reprocessed fuel. The typical fuel element consists of a hexagonal block with coolant and fuel channels. The fuel pin is manufactured into compacted ceramic-coated particles (TRISO) which are used to achieve both a high burnup and a high degree of passive safety. This work uses the MCNPX 2.6.0 to simulate the active core of Deep Burn Modular Helium Reactor (DB-MHR) employing PWR (Pressurized Water Reactor) reprocessed fuel. However, before a complete study of DB-MHR fuel cycle and recharge, it is necessary to evaluate the neutronic parameters to some values of TRISO Packing Fractions (PF) and Fissile Material (FM). Each PF and FM combination would generate the best behaviour of neutronic parameters. Therefore, this study configures several PF and FM combinations considering the heterogeneity of TRISO layers and lattice. The results present the best combination of PF and FM values according with the more appropriated behaviour of the neutronic parameters during the burnup. In this way, the optimized combination can be used to future works of MHR fuel cycle and recharge. (author)

  15. The use of curium neutrons to verify plutonium in spent fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    Miura, N.

    1994-05-01

    For safeguards verification of spent fuel, leached hulls, and reprocessing wastes, it is necessary to determine the plutonium content in these items. We have evaluated the use of passive neutron multiplicity counting to determine the plutonium content directly and also to measure the 240 Pu/ 244 Cm ratio for the indirect verification of the plutonium. Neutron multiplicity counting of the singles, doubles, and triples neutrons has been evaluated for measuring 240 Pu, 244 Cm, and 252 Cf. We have proposed a method to establish the plutonium to curium ratio using the hybrid k-edge densitometer x-ray fluorescence instrument plus a neutron coincidence counter for the reprocessing dissolver solution. This report presents the concepts, experimental results, and error estimates for typical spent fuel applications

  16. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  17. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  18. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  19. A numerical simulation of 129I in the atmosphere emitted from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A global chemical transport model, MOZART-4, is applied to investigate the behavior of 129 I emitted from nuclear fuel reprocessing plants in Europe (Sellafield in the UK and La Hague in France). The result of numerical simulation for more than fifty-year period from the 1950s is validated by comparison with measurements of 129 I around the world and analyzed to clarify the characteristic of the distributions of concentration and deposition of 129 I. The modeled concentrations of 129 I in precipitation in Europe and the United States and inventories in the seawater around Japan and the Gulf of Mexico are in the same order as measurements. the emitted 129 I to the atmosphere is distributed all over the Northern Hemisphere due mainly to the prevailing westerlies and can be an important source of supply of artificial 129 I for the seawater remote from the point source such as a nuclear fuel reprocessing plant. (author)

  20. Performance of an accountability measurement system at an operating fuel reprocessing facility

    International Nuclear Information System (INIS)

    Wade, M.A.; Spraktes, F.W.; Hand, R.L.; Baldwin, J.M.; Filby, E.E.; Lewis, L.C.

    1978-01-01

    The ICPP has been engaged for 25 years in the recovery of uranium from spent reactor fuels. In concert with the reprocessing activity, an accountability measurements system has been operated throughout the history of the ICPP. The structure and functions of the accountability measurements system are presented. Its performance is evaluated in order to illustrate the relation of analytical methodology to the overall measurements system. 6 figures, 5 tables