WorldWideScience

Sample records for fuel reprocessing dissolution

  1. Historical fuel reprocessing and HLW management in Idaho

    International Nuclear Information System (INIS)

    Knecht, D.A.; Staiger, M.D.; Christian, J.D.

    1997-01-01

    This article review some of the key decision points in the historical development of spent fuel reprocessing and waste management practices at the Idaho Chemical Processing Plant that have helped ICPP to successfully accomplish its mission safely and with minimal impact on the environment. Topics include ICPP reprocessing development; batch aluminum-uranium dissolution; continuous aluminum uranium dissolution; batch zirconium dissolution; batch stainless steel dissolution; semicontinuous zirconium dissolution with soluble poison; electrolytic dissolution of stainless steel-clad fuel; graphite-based rover fuel processing; fluorinel fuel processing; ICPP waste management consideration and design decisions; calcination technology development; ICPP calcination demonstration and hot operations; NWCF design, construction, and operation; HLW immobilization technology development. 80 refs., 4 figs

  2. Dissolution behavior of irradiated mixed oxide fuel with short stroke shearing for fast reactor reprocessing

    International Nuclear Information System (INIS)

    Ikeuchi, Hirotomo; Sano, Yuichi; Shibata, Atsuhiro; Koizumi, Tsutomu; Washiya, Tadahiro

    2013-01-01

    An efficient dissolution process was established for future reprocessing in which mixed-oxide (MOX) fuels with high plutonium contents and dissolver solution with high heavy-metal (HM) concentrations (more than 500 g dm -3 ) will be treated. This dissolution process involves short stroke shearing of fuels (∼10 mm in length). The dissolution kinetics of irradiated MOX fuels and the effects of the Pu content, HM concentration, and fuel form on the dissolution rate were investigated. Irradiated fuel was found to dissolve as 10 2 -10 3 times fast as non-irradiated fuel, but the rate decreased with increasing Pu content. Kinetic analysis based on the fragmentation model, which considers the penetration and diffusion of nitric acid through fuel matrices prior to chemical reaction, indicated that the dissolution rate of irradiated fuel was affected not only by the volume ratio of liquid to solid (L/S ratio) but also by the exposed surface area per unit mole of nitric acid (A/m ratio). The penetration rate of nitric acid is expected to be decreased at high HM concentrations by a reduction in the L/S ratio, but enhanced by shearing the fuel pieces with short strokes and thus enlarging the A/m ratio. (author)

  3. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  4. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  5. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  6. Research and development of FBR fuel reprocessing in PNC

    International Nuclear Information System (INIS)

    Hoshino, T.

    1976-05-01

    The research program of the PNC for FBR fuel reprocessing in Japan is discussed. The general characteristics of FBR fuel reprocessing are pointed out and a comparison with LWR fuel is made. The R and D program is based on reprocessing using the aqueous Purex process. So far, some preliminary steps of the research program have been carried out, these include solvent extraction test, off-gas treatment test, voloxidation process study, solidification test of high-level liquid waste, and study of the dissolution behaviour of irradiated mixed oxide fuel. By the end of the 1980s, a pilot plant for FBR fuel reprocessing will be completed. For the design of the pilot plant, further research will be carried out in the following fields: head-end techniques; voloxidation process; dissolution and extraction techniques; waste treatment techniques. A time schedule for the different steps of the program is included

  7. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  8. Reprocessing of AHWR spent-fuel: Challenges and strategies

    International Nuclear Information System (INIS)

    Kant, S.

    2005-01-01

    Reprocessing of advanced heavy water reactor (AHWR) spent-fuel involves separation of Th, 233 U and Pu, from the fission products and from one another. A proper combination of Purex and Thorex processes is required. The technology development for a reprocessing facility is extremely complex owing to high fissile content, high levels of irradiation, presence high of levels of 232 U, difficulty in thoria dissolution, presence of thorium as the major constituent, problems due to third phase formation with Th, etc. It demands for development of suitable dissolution, solvent extraction, criticality control, U-Pu partitioning, and other equipments and/or techniques. Process modelling, simulation and optimisation are crucial in predicting behaviour of equipments/cycles, and in arriving at safe and optimum flowsheet. A significant success in this field has been achieved. This paper describes the reprocessing aspects pertaining to AHWR spent-fuel, indicating the major technological challenges, strategies to be followed and development requirements. A schematic flowsheet is proposed for Th- 233 U-Pu separation. (author)

  9. Electrochemical Methods for Reprocessing Defective Fuel Elements and for Decontaminating Equipment

    International Nuclear Information System (INIS)

    Mikheykin, S. V.; Rybakov, K. A.; Simonov, V. P.

    2002-01-01

    Reprocessing of fuel elements receives much consideration in nuclear engineering. Chemical and electrochemical methods are used for the purpose. For difficultly soluble materials based on zirconium alloys chemical methods are not suitable. Chemical reprocessing of defective or irradiated fuel elements requires special methods for their decladding because the dissolution of the clad material in nitric acid is either impossible (stainless steel, Zr alloys) or quite slow (aluminium). Fuel elements are cut in air-tight glove-boxes equipped with a dust collector and a feeder for crushed material. Chemical treatment is not free from limitations. For this reason we started a study of the feasibility of electrochemical methods for reprocessing defective and irradiated fuel elements. A simplified electrochemical technology developed makes it possible to recover expensive materials which were earlier wasted or required multi-step treatment. The method and an electrochemical cell are suitable for essentially complete dissolution of any fuel elements, specifically those made of materials which are difficultly soluble by chemical methods

  10. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  11. Consolidated fuel reprocessing program. Developments for the future in reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.

    1982-01-01

    The future reprocessing developments focus on three major areas: (1) the retention of gaseous fission products to reduce off-site doses to very low values; (2) the initial steps of breakdown, shearing, and dissolution of breeder fuels; and (3) advanced facility and equipment concepts, which are expected to lead to a reliable, cost-effective, totally remotely operated and maintained plant. Work in the first area - removal of fission gases (the most important of which is 85 Kr) - is largely completed through tracer and bench-scale engineering equipment. Efforts are now mainly devoted to breeder fuels and advanced remote concepts. A facility, the Integrated Equipment Test Facility, which will be used to carry out much of this work, is nearing completion in Oak Ridge. In it a large, simulated, remote reprocessing cell will house a disassembly-shear machine for either breeder or LWR fuels, a rotary continuous dissolver, a solvent extraction cycle utilizing a new generation of centrifugal contactors, and related equipment

  12. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-01-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  13. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-08-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  14. Chemical dissolution of spent fuel and cladding using complexed fluoride species

    International Nuclear Information System (INIS)

    Rance, P.J.W.; Freeman, G.A.; Mishin, V.; Issoupov, V.

    2001-01-01

    The dissolution of LWR fuel cladding using two fluoride ion donors, HBF 4 and K 2 ZrF 6 , in combination with nitric acid has been investigated as a potential reprocessing head-end process suitable for chemical decladding and fuel dissolution in a single process step. Maximum zirconium concentrations in the order of 0,75 to 1 molar have been achieved and dissolution found to continue to low F:Zr ratios albeit at ever decreasing rates. Dissolution rates of un-oxidised zirconium based fuel claddings are fast, whereas oxidised materials exhibit an induction period prior to dissolution. Data is presented relating to the rates of dissolution of cladding and UO 2 fuels under various conditions. (author)

  15. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  16. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  17. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  18. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  19. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  20. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing

    International Nuclear Information System (INIS)

    Cheroux, L.

    2001-01-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  1. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  2. Studies on the dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Nemoto, Shin-ichi; Shibata, Atsuhiro; Shioura, Takao; Okamoto, Fumitoshi; Tanaka, Yasumasa

    1995-01-01

    At the Chemical Processing Facility(CPF) in the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation(PNC), since 1982 Laboratory scale hot experiments have been carried out on the development of reprocessing technology for FBR mixed oxide fuel. The spent fuel pins which have been used in out experiments were irradiated in Experimental Fast Reactor 'Joyo' Phenix (France) and DFR(UK). Burn-up of the fuel pins were 4,400-100,000 MWd/t. This paper Summarizes a dissolution study that have been performed to define the Key parameters affecting dissolution rate such as concentration of nitric acid, burn-up, and temperature. And this paper also discusses about the character of releasing 85 Kr in chopping and dissolution process, and about the amount of insoluble residue. (author)

  3. Reprocessing technology of liquid metal cooled fast breeder reactor fuel

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Broothaerts, J.; Heylen, P.R.; Eschrich, H.; Geel, J. van

    1974-11-01

    All the important aspects of LMFBR fuel reprocessing are critically reviewed in this report. Storage and transportation techniques using sodium, inert gas, lead, molten salts and organic coolants are comparatively discussed in connection with cooling time and de-activation techniques. Decladding and fuel disaggregation of UO 2 -PuO 2 fuel are reviewed according to the present state of R and D in the main nuclear powers. Strong emphasis is put on on voloxidation, mechanical pulverization and molten salt disaggregation in connection with volatilization of gaseous fission products. Release of fission gases and the resulting off-gas treatment are discussed in connection with cooling time, burn up and dissagregation techniques. The review is limited to tritium, iodine xenon-krypton and radioactive airborne particulates. Dissolution, solvent extraction and plutonium purification problems specifically connected to LMFBR fuel are reviewed with emphasis on the differences between LWR and fast fuel reprocessing. Finally the categories of wastes produced by reprocessing are analysed according to their origin in the plant and their alpha emitters content. The suitable waste treatment techniques are discussed in connection with the nature of the wastes and the ultimate disposal technique. (author)

  4. Technical aspects of fuel reprocessing

    International Nuclear Information System (INIS)

    Groenier, W.S.

    1982-02-01

    The purpose of this paper is to present a brief description of fuel reprocessing and some present developments which show the reliability of nuclear energy as a long-term supply. The following topics are discussed: technical reasons for reprocessing; economic reasons for reprocessing; past experience; justification for advanced reprocessing R and D; technical aspects of current reprocessing development. The present developments are mainly directed at the reprocessing of breeder reactor fuels but there are also many applications to light-water reactor fuel reprocessing. These new developments involve totally remote operation, and maintenance. To demonstrate this advanced reprocessing concept, pilot-scale demonstration facilities are planned with commercial application occurring sometime after the year 2000

  5. Studies on the fission products behavior during dissolution process of BWR spent fuel

    International Nuclear Information System (INIS)

    Sato, K.; Nakai, E.; Kobayashi, Y.

    1987-01-01

    In order to obtain basic data on fission products behavior in connection with the head end process of fuel reprocessing, especially to obtain better understanding on undissolved residues, small scale dissolution studies were performed by using BWR spent fuel rods which were irradiated as monitoring fuel rods under the monitoring program for LWR fuel assembly performance entitled PROVING TEST ON RELIABILITY OF FUEL ASSEMBLY . The Zircaloy-2 claddings and the fuel pellets were subjected individually to the following studies on 1) release of fission products during dissolution process, 2) characterization of undissolved residues, and 3) analysis of the claddings. This paper presents comprehensive descriptions of the fission products behavior during dissolution process, based on detailed and through PIE conducted by JNFS under the sponsorship of MITI (Ministry of International Trade and Industry)

  6. Fuel reprocessing/fabrication interface

    International Nuclear Information System (INIS)

    Benistan, G.; Blanchon, T.; Galimberti, M.; Mignot, E.

    1987-01-01

    EDF has conducted a major research, development and experimental programme concerning the recycling of plutonium and reprocessed uranium in pressurized water reactors, in collaboration with its major partners in the nuclear fuel cycle industry. Studies already conducted have demonstrated the technical and economic advantages of this recycling, as also its feasibility with due observance of the safety and reliability criteria constantly applied throughout the industrial development of the nuclear power sector in France. Data feedback from actual experience will make it possible to control the specific technical characteristics of MOX and reprocessed uranium fuels to a higher degree, as also management, viewed from the economic standpoint, of irradiated fuels and materials recovered from reprocessing. The next step will be to examine the reprocessing of MOX for reprocessed uranium fuels, either for secondary recycling in the PWR units, or, looking further ahead, in the fast breeders or later generation PWR units, after a storage period of a few years

  7. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  8. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  9. Reprocessing of MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Hough, N.

    1997-01-01

    UKAEA at Dounreay has been reprocessing MTR fuel for over 30 years. During that time considerable experience has been gained in the reprocessing of traditional HEU alloy fuel and more recently with dispersed fuel. Latterly a reprocessing route for silicide fuel has been demonstrated. Reprocessing of the fuel results in a recycled uranium product of either high or low enrichment and a liquid waste stream which is suitable for conditioning in a stable form for disposal. A plant to provide this conditioning, the Dounreay Cementation Plant is currently undergoing active commissioning. This paper details the plant at Dounreay involved in the reprocessing of MTR fuel and the treatment and conditioning of the liquid stream. (author)

  10. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  11. On the possibility of reprocessing of fuel elements of dispersion type with copper matrix by pyrochemical methods

    International Nuclear Information System (INIS)

    Vasin, B.D.; Ivanov, V.A.; Shchetinskij, A.V.; Vavilov, S.K.; Savochkin, Yu.P.; Bychkov, A.V.; Kormilitsyn, M.V.

    2005-01-01

    A consideration is given to pyrochemical processes suitable for separation of uranium dioxide from structural materials when reprocessing cermet type fuel elements. The estimation of the possibility to apply liquid antimony and bismuth, potassium and copper chlorides melts is made. The specimens compacted of copper and uranium dioxide powders in a stainless steel can are used as simulators of fuel element sections. It is concluded that the dissolution of structural materials in molten salts at the stage of uranium dioxide concentration is the process of choice for reprocessing of dispersion type fuel elements [ru

  12. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  13. Flowsheet development for HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Baxter, B.; Benedict, G.E.; Zimmerman, R.D.

    1976-01-01

    Development studies to date indicate that the HTGR fuel blocks can be effectively crushed with two stages of eccentric jaw crushing, followed by a double-roll crusher, a screener and an eccentrically mounted single-roll crusher for oversize particles. Burner development results indicate successful long-term operation of both the primary and secondary fluidized-bed combustion systems can be performed with the equipment developed in this program. Aqueous separation development activities have centered on adapting known Acid-Thorex processing technology to the HTGR reprocessing task. Significant progress has been made on dissolution of burner ash, solvent extraction feed preparation, slurry transfer, solids drying and solvent extraction equipment and flowsheet requirements

  14. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  15. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  16. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  17. Behavior of iodine in the dissolution of spent nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Tsutomu; Komatsu, Kazunori; Takahashi, A. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    The results of laboratory-scale experiments concerning the behavior of iodine in the dissolution of spent nuclear fuels, which were carried out at the Japan Atomic Energy Research Institute, are summarized. Based on previous and new experimental results, the difference in quantity of residual iodine in the fuel solution between laboratory-scale experiments and reprocessing plants is discussed, Iodine in spent fuels is converted to the following four states: (1) oxidation into I{sub 2} by nitric acid, (2) oxidation into I{sub 2} by nitrous acid generated in the dissolution, (3) formation of a colloid of insoluble iodides such as AgI and PdI{sub 2}, and (4) deposition on insoluble residue. Nitrous acid controls the amount of colloid formed. As a result, up to 10% of iodine in spent fuels is retained in the fuel solution, up to 3% is deposited on insoluble residue, and the balance volatilizes to the off-gas, Contrary to earlier belief, when the dissolution is carried out in 3 to 4 M HNO{sub 3} at 100{degrees}C, the main iodine species in a fuel solution is a colloid, not iodate, Immediately after its formation, the colloid is unstable and decomposes partially in the hot nitric acid solution through the following reaction: AgI(s) + 2HNO{sub 3}(aq) = {1/2}I{sub 2}(aq) + AgNO{sub 3}(aq) + NO{sub 2}(g) + H{sub 2}O(1). For high concentrations of gaseous iodine, I{sub 2}(g), and NO{sub 2}, this reaction is reversed towards formation of the colloid (AgI). Since these concentrations are high near the liquid surface of a plant-scale dissolver, there is a possibility that the colloid is formed there through this reversal, Simulations performed in laboratory-scale experiments demonstrated this reversal, This phenomenon can be one reason the quantity of residual iodine in spent fuels is higher in reprocessing plants than in laboratory-scale experiments. 17 refs., 5 figs., 3 tabs.

  18. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  19. Determination of overall decontamination factors for common impurity elements in PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pant, D.K.; Bhalerao, B.A.; Gupta, K.K.; Kulkarni, P.G.; Gurba, P.B.; Janardan, P.; Changrani, R.D.; Dey, P.K.

    2009-01-01

    An attempt has been made to determine overall decontamination factors for elemental impurities normally encountered in the U 3 O 8 product obtained by reprocessing of PHWR spent fuel. The solution obtained by dissolution of spent fuel and corresponding U 3 O 8 product were analyzed for 24 elemental impurities by ICP-AES for this purpose. Decontamination factors achieved for major neutron poisons are in the range of 200-400. (author)

  20. Fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Philippone, R.L.; Kaiser, R.A.

    1989-01-01

    Because of different economic, social and political factors, there has been a tendency to compartmentalize the commercial nuclear power industry into separate power and fuel cycle operations to a greater degree in some countries compared to other countries. The purpose of this paper is to describe how actions in one part of the industry can affect the other parts and recommend an overall systems engineering approach which incorporates more cooperation and coordination between individual parts of the fuel cycle. Descriptions are given of the fuel cycle segments and examples are presented of how a systems engineering approach has benefitted the fuel cycle. Descriptions of fuel reprocessing methods and the waste forms generated are given. Illustrations are presented describing how reprocessing options affect waste management operations and how waste management decisions affect reprocessing

  1. Development of new decladding system in the reprocessing process for FBR fuel

    International Nuclear Information System (INIS)

    Yamada, Seiya; Washiya, Tadahiro; Takeuchi, Masayuki; Koizumi, Tsutomu; Aose, Shinichi

    2005-01-01

    As a part of the feasibility study on commercialized fast reactor cycle systems, Japan Nuclear Cycle Development Institute (JNC) has been developing the fuel decladding technology for the dry reprocessing process (oxide electrowinning process) and aqueous reprocessing process. Particularly, in the oxide electrowinning process, the spent fuel should be reduced to powder for quick dissolution in the molten salt at electrolyzer. Therefore, JNC proposes new decladding system with innovative mechanical decladding devices. The decladding system consists of fuel crushing stage, hull separation stage and hull rinsing stage. In the fuel crushing stage, disassembled spent fuel pins are crushed and powdered by mechanical decladding device, then the following stage, the hull and the fuel powder are separated by magnetic separator. Only the fuel powder is fed to the electrolyzer. On the other side, the separated hull is melted by induction heating method, and the small amount of oxide included in the hull fragments is recovered at the hull rinsing stage. The recovered oxide fuel is fed back to the electrolyzer. In this paper, the basic performance of the element equipment that composes this new decladding system will be described. (author)

  2. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  3. Indian experience in fuel reprocessing

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1977-01-01

    Plant scale experience in fuel reprocessing in India was started with the successful design, execution and commissioning of the Trombay plant in 1964 to reprocess aluminium clad metallic uranium fuel from the 40 MWt research reactor. The plant has helped in generating expertise and trained manpower for future reprocessing plants. With the Trombay experience, a larger plant of capacity 100 tonnes U/year to reprocess spent oxide fuels from the Tarapur (BWR) and Rajasthan (PHWR) power reactors has been built at Tarapur which is undergoing precommissioning trial runs. Some of the details of this plant are dealt with in this paper. In view of the highly corrosive chemical attack the equipment and piping are subjected to in a fuel reprocessing plant, some of them require replacement during their service if the plant life has to be extended. This calls for extensive decontamination for bringing the radiation levels low enough to establish direct accesss to such equipment. For making modifications in the plant to extend its life and also to enable expansion of capacity, the Trombay plant has been successfully decontaminated and partially decommissioned. Some aspects of thi decontamination campaign are presented in this paper

  4. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  5. Chemical problems associated with reprocessing

    International Nuclear Information System (INIS)

    Chesne, A.

    1981-09-01

    This paper is an attempt to pinpoint the chemical problems raised by the reprocessing of oxide base fuels. Taking the reprocessing of slightly irradiated metallic fuels as a reference, for which long experience has been gained, a review is made of the various stages of the Purex process, in which the increase in mass and activity of the actinides and fission products engenders constraints related to the recovery of fissile materials, their purification, the release rate and, in general, the operation of the installations. The following subjects are discussed: dissolution from the standpoint of dissolution residues and iodine trapping, extraction cycles with respect to the behavior of ruthenium, neptunium, plutonium, technetium and palladium, the recycling of medium activity wastes

  6. Compilation of papers presented to the KTG conference on 'Advanced LWR fuel elements: Design, performance and reprocessing', 17-18 November 1988, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-05-01

    The two expert groups of the Nuclear Society (KTG), 'chemistry and waste disposal' and 'fuel elements' discussed interdisciplinary problems concerning the development and reprocessing of advanced fuel elements. The 10 lectures deal with waste disposal, mechanical layout, operating behaviour, operating experiences and new developments of fuel elements for water moderated reactors as well as operational experiences of the Karlsruhe reprocessing plant (WAK) with reprocessing of high burnup LWR and MOX fuel elements, the distribution of fission products, the condition of the fission products during dissolution and with the effects of the higher burnup of fuel elements on the PUREX process. (DG) [de

  7. Report of the IAEA advisory group meeting on LMFBR fuel reprocessing

    International Nuclear Information System (INIS)

    1976-05-01

    A summary of the papers and discussions of the meeting is presented, reviewing the status of development in LMFBR fuel reprocessing and focusing attention on important problem areas. The following topics are discussed: Transport, storage and removal of sodium; decladding and shearing; dissolution; Purex process; fluoride volatility method; off-gas purification; waste disposal. Status reports of national programmes of Belgium, France, Federal Republic of Germany, Italy, Japan, United Kingdom, USSR and USA are included

  8. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  9. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  10. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  11. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  12. Reprocessing in breeder fuel cycles

    International Nuclear Information System (INIS)

    Burch, W.D.; Groenier, W.S.

    1982-01-01

    Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with the first breeder demonstration reactor. A renewed commitment to moving forward with the construction of the Clinch River Breeder Reactor (CRBR) has been made, with startup anticipated near the end of this decade. While plans for the CRBR and its associated fuel cycle are still being firmed up, the basic research and development programs required to carry out the demonstrations have continued. This paper updates the status of the reprocessing plans and programs. Policies call for breeder recycle to begin in the early to mid-1990's. Contents of this paper are: (1) evolving plans for breeder reprocessing (demonstration reprocessing plant, reprocessing head-end colocated at an existing facility); (2) relationship to LWR reprocessing; (3) integrated equipment test (IET) facility and related hardware development activities (mechanical considerations in shearing and dissolving, remote operations and maintenance demonstration phase of IET, integrated process demonstration phase of IET, separate component development activities); and (4) supporting process R and D

  13. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  14. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  15. Microbial transformations of radionuclides released from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Francis, A.J.

    2007-01-01

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed. (author)

  16. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  17. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  18. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  19. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  20. Remote maintenance in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Herndon, J.N.

    1985-01-01

    Remote maintenance techniques applied in large-scale nuclear fuel reprocessing plants are reviewed with particular attention to the three major maintenance philosophy groupings: contact, remote crane canyon, and remote/contact. Examples are given, and the relative success of each type is discussed. Probable future directions for large-scale reprocessing plant maintenance are described along with advanced manipulation systems for application in the plants. The remote maintenance development program within the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is also described. 19 refs., 19 figs

  1. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  2. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  3. Reprocessing of spent fuel and public acceptance

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1977-01-01

    The public acceptance has to be considered regarding whole atomic power rather than the reprocessing of nuclear fuel separately, and the problems concerned are as follows; the release of radioactive materials in the normal and abnormal operations of reprocessing plants, the disposal of wastes with high level radioactivity, the transportation of high level radioactive material, the relation to the economic activity near nuclear plants, the environmental effect of 85 Kr. and 3 H, etc., and the physical protection for reprocessing facility itself, the special handling of the materials of very high radioactivity level such as fission products and plutonium, the radiation exposure of operators, and the demonstration of reprocessing techniques of commercial base, etc., as a part of the nuclear fuel cycle, and the relation between atomic power and other technologies in energy supply, the evalution of atomic power as the symbol of huge scale science, and the energy problem within the confrontation of economic development and the preservation of environment and resources regarding whole nuclear energy. The situations of fuel reprocessing in USA, UK, France, Germany and Japan are explained from the viewpoint of the history. The general background for the needs of nuclear energy in Japan, the image of nuclear energy and fuel reprocessing entertained by the general public, and the special feature of reprocessing techniques are described. (Nakai, Y.)

  4. Spent fuel dissolution mechanisms

    International Nuclear Information System (INIS)

    Ollila, K.

    1993-11-01

    This study is a literature survey on the dissolution mechanisms of spent fuel under disposal conditions. First, the effects of radiolysis products on the oxidative dissolution mechanisms and rates of UO 2 are discussed. These effects have mainly been investigated by using electrochemical methods. Then the release mechanisms of soluble radionuclides and the dissolution of the UO 2 matrix including the actinides, are treated. Experimental methods have been developed for measuring the grain-boundary inventories of radionuclides. The behaviour of cesium, strontium and technetium in leaching tests shows different trends. Comparison of spent fuel leaching data strongly suggests that the release of 90 Sr into the leachant can be used as a measure of the oxidation/dissolution of the fuel matrix. Approaches to the modelling UO 2 , dissolution are briefly discussed in the next chapter. Lastly, the use of natural material, uraninite, in the evaluation of the long-term performance of spent fuel is discussed. (orig.). (81 ref., 37 figs., 8 tabs.)

  5. History and current status of nuclear fuel reprocessing technology

    International Nuclear Information System (INIS)

    Funasaka, Hideyuki; Nagai, Toshihisa; Washiya, Tadahiro

    2008-01-01

    History and present state of fast breeder reactor was reviewed in series. As a history and current status of nuclear fuel reprocessing technology, this ninth lecture presented the progress of the FBR fuel reprocessing technology and advanced reprocessing processes. FBR fuel reprocessing technology had been developed to construct the reprocessing equipment test facilities (RETF) based on PUREX process technologies. With economics, reduction of environmental burdens and proliferation resistance taken into consideration, advanced aqueous method for nuclear fuel cycle activities has been promoted as the government's basic policy. Innovative technologies on mechanical disassembly, continuous rotary dissolver, crystallizer, solvent extraction and actinides recovery have been mainly studied. (T. Tanaka)

  6. Spent fuel reprocessing past experience and future prospects

    International Nuclear Information System (INIS)

    Megy, J.

    1983-09-01

    A large experience has been gathered from the early fifties till now in the field of spent fuel reprocessing. As the main efforts in the world have been made for developping the reactors and the fuel fabrication industry to feed them, the spent fuel reprocessing activities came later and have not yet reached the industrial maturity existing to day for plants such as PWRs. But in the principal nuclear countries spent fuel reprocessing is to day considered as a necessity with two simultaneous targets: 1. Recovering the valuable materials, uranium and plutonium. 2. Conditionning the radioactive wastes to ensure safe definitive storage. The paper reviews the main steps: 1. Reprocessing for thermal reactor fuels: large plants are already operating or in construction, but in parallel a large effort of R and D is still under way for improvements. 2. The development of fast breeder plants implies associated fuel reprocessing facilities: pilot plants have demonstrated the closing of the cycle. The main difficulties encountered will be examined and particularly the importance of taking into account the problems of effluents processing and wastes storage [fr

  7. Fuel reprocessing at a loss to prove its justification

    International Nuclear Information System (INIS)

    Traube, K.

    1986-01-01

    Commercial utilization of nuclear energy is possible with or without fuel reprocessing of spent fuel elements. Demands on terminal storage are about equal in both cases. There is no reason - excluding the military one - to decide in favour of fuel reprocessing instead of direct terminal storage, for neither does fuel reprocessing offer advantages in regard of the safety of nuclear waste disposal, nor is it necessary to produce plutonium for the breeder reactor. Fuel reprocessing is analyzed considering those changed aspects with a view to scarcer uranium resources, juridical motives, and what is termed the development deficit. (DG) [de

  8. Report of third regular inspection of Tokai reprocessing facilities, Power Reactor and Nuclear Fuel Development Corp

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The reprocessing facilities passed the inspection before use on December 25, 1980, and started the full operation. Since then, this is the third regular inspection. It was begun on April 1, 1986, and finished on August 18, 1986, with the inspection of the rate of recovery of products. The reprocessing facilities which became the object of inspection were the facilities for accepting and storing spent fuel, the reprocessing facilities proper (the facilities of shearing, dissolution, separation, refining, denitration and recovery of acid and solvent), the facilities for storing products, measurement and control system, radioactive waste facilities, radiation control facilities and attached facilities (power, water, steam and testing). The main works carried out during the period of this regular inspection were the repair of an enriched uranium dissolution tank by welding, the renewal of a piping for a low activity waste liquid storing tank, and the removal of a washing tank. The total exposure dose in the first half of fiscal year 1986 was about 30.81 man-rem. (Kako, I.)

  9. Analysis and study of spent fuel reprocessing technology from birth to present

    International Nuclear Information System (INIS)

    Takahashi, Keizo

    2006-01-01

    As for the nuclear fuel reprocessing of the spent fuel, although there was argument of pros and cons, it was decided to start Rokkasho reprocessing project further at the Japan Atomic Energy Commission of ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' in year 2004. The operation of Tokai Reprocessing is going steadily to reprocess spent fuel more than 1,100 tons. In this paper, history, present status and future of reprocessing technology is discussed focusing from military Pu production, Magnox fuel reprocessing to oxide fuel reprocessing. Amount of reprocessed fuel are estimated based on fuel type. Then, history of reprocessing, US, UK, France, Germany, Russian, Belgian and Japan is presented and compared on technology, national character, development organization, environmental protection, and high active waste vitrification. Technical requirements are increased from Pu production fuel, Magnox fuel and oxide fuel mainly because of higher burnup. Reprocessing technology is synthetic of engineering and accumulation of operational experience. The lessons learned from the operational experience of the world will be helpful for establishment of nuclear fuel reprocessing technology in Japan. (author)

  10. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  11. Evaluation of practicability of aluminosilicate additive fuel. Influence of aluminosilicate for reprocessing and corrosion of pellet

    International Nuclear Information System (INIS)

    Matsunaga, Junji; Kashibe, Shinji; Kinoshita, Mika; Ishimoto, Shinji; Harada, Kenichi

    2014-01-01

    Al-Si-O additive fuel is a modified pellet to improve the pellet-cladding interaction (PCI) resistance. This practicability assessment concerns the effect of Al-Si-O addition on the reprocessing and steam corrosion behavior. To address these concerns, a fuel dissolution test in nitric acid and a pellet corrosion test in humidified gas were carried out using the irradiated Al-Si-O additive fuel. Regardless of the Al-Si-O concentration, the dissolution rates of all Al-Si-O additive fuels were faster than that of the standard fuel. The morphology of the insoluble residue obtained from the irradiated Al-Si-O additive fuel could be considered as acceptable for retrieval by the clarification process using a conventional precipitation model. The corrosion resistance of the irradiated Al-Si-O additive fuel to high-temperature (at 1273 K) humidified gas was comparable to or better than that of the standard fuel. The result was interpreted as being due to a large grain size effect by Al-Si-O addition. (author)

  12. Reprocessing RTR fuel in the La Hague plants

    International Nuclear Information System (INIS)

    Thomasson, J.; Drain, F.; David, A.

    2001-01-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  13. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, F-78140 Velizy (France); Drain, F.; David, A. [SGN, F-78182 Saint Quentin en Yvelines (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  14. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, 78 - Velizy Villacoublay (France); Drain, F.; David, A. [SGN, 78 - Saint Quentin en Yveline (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for their research and testing reactors spent fuel back-end management. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  15. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  16. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  17. Statement on the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1984-01-01

    Oak Ridge National Laboratory has chosen the following objectives for future reprocessing plant design: reduced radiation exposure to workers; minimal environmental impact; improved plant operation and maintenance; improved accountability; no plutonium diversion; and reduced overall capital and operating cost. These objectives lead to a plant with totally remote operation. The Breeder Reactor Engineering Test (BRET) has been designed to perform a key role in demonstrating advanced reprocessing technology. It has been scheduled to be available to reprocess spent fuel from the Fast Flux Test Facility. The principal features of the Consolidated Fuel Reprocessing Program and of the BRET facility are appropriate for all reactor types

  18. Current Status of Spent Fast Reactor Fuel Reprocessing and Waste Treatment in Various Countries: United States of America

    International Nuclear Information System (INIS)

    2011-01-01

    Due to the previous strategic US decision on treating SNF as waste and not pursuing the reprocessing option, development work for the FR fuel cycle was only performed in a few laboratories, although interest is now increasing again. ORNL together with ANL have been influential in promoting the wider use of centrifugal contactors (favoured due to the high fissile content and decay power of FR fuel materials), associated remote handling systems and hardware prototypes for most unit operations in the reprocessing conceptual designs in the context of their development of the Consolidated Fuel Reprocessing Program. There is limited experience with reprocessing tests on the Fast Flux Text Facility (FFTF) MOX fuel. ORNL has undertaken small tests on laboratory scale dissolution and solvent extraction of MOX fuel irradiated to 220 GW/t HM burnup at around 2 kg batch scale [180-186]. The initiative called the breeder reprocessing engineering test (BRET) was started in the 1980s with a focus on the developmental activity of the US DOE to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the FFTF. The process was supposed to be installed at the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site, Richland, Washington. The major objectives of BRET were to: - Develop and demonstrate reprocessing technology and systems for breeder fuel; - Close the fuel cycle for the FFTF; - Provide an integrated test of breeder reactor fuel cycle technology - reprocessing, safeguards and waste management. The quest for pyrochemical alternatives to aqueous reprocessing has been under way in the USA since the late 1950s. Approaches examined at various levels of development and for a variety of fuels include alloy melting, FP volatilization and adsorption, fluoride and chloride volatility methods, redox solvent extractions between liquid salt and metal phases, precipitation and fractional crystallization, and electrowinning and electro

  19. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  20. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  1. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  2. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    Energy Technology Data Exchange (ETDEWEB)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc [AREVA NC, La Hague plant - Nuclear Measurement Team, F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  3. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    International Nuclear Information System (INIS)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas; Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc; Grassi, Gabriele

    2015-01-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the 137 Cs and 134 Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a 137 Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional 3 He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  4. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    International Nuclear Information System (INIS)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation

  5. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  6. Legal questions concerning the termination of spent fuel element reprocessing

    International Nuclear Information System (INIS)

    John, Michele

    2005-01-01

    The thesis on legal aspects of the terminated spent fuel reprocessing in Germany is based on the legislation, jurisdiction and literature until January 2004. The five chapters cover the following topics: description of the problem; reprocessing of spent fuel elements in foreign countries - practical and legal aspects; operators' responsibilities according to the atomic law with respect to the reprocessing of Geman spent fuel elements in foreign countries; compatibility of the prohibition of Geman spent fuel element reprocessing in foreign countries with international law, European law and German constitutional law; results of the evaluation

  7. Handbook on process and chemistry of nuclear fuel reprocessing version 2

    International Nuclear Information System (INIS)

    2008-10-01

    Aqueous nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of aqueous reprocessing, because it contributes to establish and develop fuel reprocessing technology and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize aqueous reprocessing technology much widely. This handbook is the second edition of the first report, which summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing' from FY 1993 until FY 2000. (author)

  8. Reprocessing flowsheet and material balance for MEU spent fuel

    International Nuclear Information System (INIS)

    Abraham, L.

    1978-10-01

    In response to nonproliferation concerns, the high-temperature gas-cooled reactor (HTGR) Fuel Recycle Development Program is investigating the processing requirements for a denatured medium-enriched uranium--thorium (MEU/Th) fuel cycle. Prior work emphasized the processing requirements for a high-enriched uranium--thorium (HEU/Th) fuel cycle. This report presents reprocessing flowsheets for an HTGR/MEU fuel recycle base case. Material balance data have been calculated for reprocessing of spent MEU and recycle fuels in the HTGR Recycle Reference Facility (HRRF). Flowsheet and mass flow effects in MEU-cycle reprocessing are discussed in comparison with prior HEU-cycle flowsheets

  9. Wastes from fuel reprocessing

    International Nuclear Information System (INIS)

    Eschrich, H.

    1976-01-01

    Handling, treatment, and interim storage of radioactive waste, problems confronted with during the reprocessing of spent fuel elements from LWR's according to the Purex-type process, are dealt with in detail. (HR/LN) [de

  10. Consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Kuban, D.P.; Noakes, M.W.; Bradley, E.C.

    1987-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller or master, and the control system. The ASM is a remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program of (CFRP). This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, and reliability. It uses an all-gear force transmission system. The master arms were designed as a kinematic replica of ASM and use cable force transmission. Special digital control algorithms were developed to improve the system performance. The system is presently operational and undergoing evaluation. Preliminary testing has been completed and is reported. The system is now undergoing commercialization by transferring the technology to the private sector

  11. Capability of minor nuclide confinement in fuel reprocessing

    International Nuclear Information System (INIS)

    Fujine, Sachio; Uchiyama, Gunzo; Mineo, Hideaki; Kihara, Takehiro; Asakura, Toshihide

    1999-01-01

    Experiment with spent fuels has started with the small scale reprocessing facility in NUCEF-BECKY αγ cell. Primary purpose of the experiment is to study the capability of long-lived nuclide confinement both in the PUREX flow sheet applied to the large scale reprocessing plant and also in the PARC (Partitioning Conundrum key process) flow sheet which is our proposal as a simplified reprocessing of one cycle extraction system. Our interests in the experiment are the behaviors of minor long-lived nuclides and the behaviors of the heterogeneous substances, such as sedimentation in the dissolver, organic cruds in the extraction banks. The significance of those behaviors will be assessed from the standpoint of the process safety of reprocessing for high burn-up fuels and MOX fuels. (author)

  12. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R. T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Strachan, D. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ilas, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, B. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Soelberg, N. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is

  13. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  14. Spent fuel reprocessing system availability definition by process simulation

    International Nuclear Information System (INIS)

    Holder, N.; Haldy, B.B.; Jonzen, M.

    1978-05-01

    To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported

  15. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  16. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  17. Dissolution of FFTF vendor fuel

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone

  18. Dissolution of FFTF vendor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone.

  19. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is stipulated under the provisions of reprocessing business in the law concerning regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and to execute them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, security area, surrounding monitoring area, worker, radioactive waste and facility for discharging into the sea. The application for the designation for reprocessing business under the law shall include the maximum reprocessing capacities per day and per year of each kind of spent fuel, to be reprocessed and the location, structure and equipment of reprocessing facilities as specified in the regulation. Records shall be made in each works or enterprise on the inspection, operation and maintenance of reprocessing facilities, radiation control, accidents and weather, and kept for particular periods respectively. Reprocessing enterprisers shall set up control area, security area and surrounding monitoring area to restrict entrance, etc. Specified measures shall be taken by these enterprisers concerning the exposure radiation doses of workers. Reprocessing facilities shall be inspected and examined more than once a day. The regular self-inspection and operation of reprocessing facilities, the transport and storage of nuclear fuel materials, the disposal of radioactive wastes in works or enterprises where reprocessing facilities are located, and security rules are defined in detail, respectively. (Okada, K.)

  20. PYRO, a system for modeling fuel reprocessing

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions

  1. Operational experiences in radiation protection in fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Meenakshisundaram, V.; Rajagopal, V.; Santhanam, R.; Baskar, S.; Madhusoodanan, U.; Chandrasekaran, S.; Balasundar, S.; Suresh, K.; Ajoy, K.C.; Dhanasekaran, A.; Akila, R.; Indira, R.

    2008-01-01

    The Compact Reprocessing facility for Advanced fuels in Lead cells (CORAL), situated at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam is a pilot plant to reprocess the mixed carbide fuel, for the first time in the world. Reprocessing of fuel with varying burn-ups up to 155 G Wd/t, irradiated at Fast Breeder Test Reactor (FBTR), has been successfully carried out at CORAL. Providing radiological surveillance in a fuel reprocessing facility itself is a challenging task, considering the dynamic status of the sources and the proximity of the operator with the radioactive material and it is more so in a fast reactor fuel reprocessing facility due to handling of higher burn-up fuels associated with radiation fields and elevated levels of fissile material content from the point of view of criticality hazard. A very detailed radiation protection program is in place at CORAL. This includes, among others, monitoring the release of 85 Kr and other fission products and actinides, if any, through stack on a continuous basis to comply with the regulatory limits and management of disposal of different types of radioactive wastes. Providing radiological surveillance during the operations such as fuel transport, chopping and dissolution and extraction cycle was without any major difficulty, as these were carried out in well-shielded and high integrity lead cells. Enforcement of exposure control assumes more importance during the analysis of process samples and re-conversion operations due to the presence of fission product impurities and also since the operations were done in glove boxes and fume hoods. Although the radiation fields encountered in process area were marginally higher, due to the enforcement of strict administrative controls, the annual exposure to the radiation workers was well within the regulatory limit. As the facility is being used as test bed for validation of prototype equipment, periodic inspection and maintenance of components such as centrifuge

  2. Revisit of analytical methods for the process and plant control analyses during reprocessing of fast reactor fuels

    International Nuclear Information System (INIS)

    Subba Rao, R.V.

    2016-01-01

    CORAL (COmpact facility for Reprocessing of Advanced fuels in Lead cell) is an experimental facility for demonstrating the reprocessing of irradiated fast reactor fuels discharged from the Fast Breeder Test Reactor (FBTR). The objective of the reprocessing plant is to achieve nuclear grade plutonium and uranium oxides with minimum process waste volumes. The process flow sheet for the reprocessing of spent Fast Reactor Fuel consists of Transport of spent fuel, Chopping, Dissolution, Feed conditioning, Solvent Extraction cycle, Partitioning Cycle and Re-conversion of Plutonium nitrate and uranium nitrate to respective oxides. The efficiency and performance of the plant to achieve desired objective depends on the analyses of various species in the different steps adopted during reprocessing of fuels. The analytical requirements in the plant can be broadly classified as 1. Process control Analyses (Analyses which effect the performance of the plant- PCA); 2. Plant control Analyses (Analyses which indicates efficiency of the plant-PLCA); 3. Nuclear Material Accounting samples (Analyses which has bearing on nuclear material accounting in the plant - NUMAC) and Quality control Analyses (Quality of the input bulk chemicals as well as products - QCA). The analytical methods selected are based on the duration of analyses, precision and accuracies required for each type analytical requirement classified earlier. The process and plant control analyses requires lower precision and accuracies as compared to NUMAC analyses, which requires very high precision accuracy. The time taken for analyses should be as lower as possible for process and plant control analyses as compared to NUMAC analyses. The analytical methods required for determining U and Pu in process and plant samples from FRFR will be different as compared to samples from TRFR (Thermal Reactor Fuel Reprocessing) due to higher Pu to U ratio in FRFR as compared TRFR and they should be such that they can be easily

  3. Open problems in reprocessing of a molten salt reactor fuel

    International Nuclear Information System (INIS)

    Lelek, Vladimir; Vocka, Radim

    2000-01-01

    The study of fuel cycle in a molten salt reactor (MSR) needs deeper understanding of chemical methods used for reprocessing of spent nuclear fuel and preparation of MSR fuel, as well as of the methods employed for reprocessing of MSR fuel itself. Assuming that all the reprocessing is done on the basis of electrorefining, we formulate some open questions that should be answered before a flow sheet diagram of the reactor is designed. Most of the questions concern phenomena taking place in the vicinity of an electrode, which influence the efficiency of the reprocessing and sensibility of element separation. Answer to these questions would be an important step forward in reactor set out. (Authors)

  4. Reprocessing and fuel fabrication systems

    International Nuclear Information System (INIS)

    Field, F.R.; Tooper, F.E.

    1978-01-01

    The study of alternative fuel cycles was initiated to identify a fuel cycle with inherent technical resistance to proliferation; however, other key features such as resource use, cost, and development status are major elements in a sound fuel cycle strategy if there is no significant difference in proliferation resistance. Special fuel reprocessing techniques such as coprocessing or spiking provide limited resistance to diversion. The nuclear fuel cycle system that will be most effective may be more dependent on the institutional agreements that can be implemented to supplement the technical controls of fuel cycle materials

  5. Studies relating to construction materials to be used in different options for head end treatment in reprocessing of mixed carbide fuel of plutonium and uranium

    International Nuclear Information System (INIS)

    Rajan, S.K.; Palamalai, A.; Ravi, T.N.; Sampath, M.; Raman, V.R.; Balasubramanian, G.R.

    1993-01-01

    Mixed carbide of uranium and plutonium has been chosen as the fuel for the first core of Fast Breeder Test Reactor, installed in the Indira Gandhi Centre for Atomic Research. Reprocessing of this fuel is one of the vital steps to prove the viability of the fuel cycle. The head end treatment process introduces constraints in the reprocessing of carbide fuel when compared to the commonly used mixed oxide fuel. Three head end processes, namely direct oxidation, pyrohydrolysis and direct dissolution in nitric acid with oxidation of organic acids were considered for study for exercising the choice. The paper briefly describes the three processes. In each process probable material of construction and related problems are discussed. (author). 3 refs, 5 figs, 7 tabs

  6. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  7. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  8. Methodology for estimating reprocessing costs for nuclear fuels

    International Nuclear Information System (INIS)

    Carter, W.L.; Rainey, R.H.

    1980-02-01

    A technological and economic evaluation of reprocessing requirements for alternate fuel cycles requires a common assessment method and a common basis to which various cycles can be related. A methodology is described for the assessment of alternate fuel cycles utilizing a side-by-side comparison of functional flow diagrams of major areas of the reprocessing plant with corresponding diagrams of the well-developed Purex process as installed in the Barnwell Nuclear Fuel Plant (BNFP). The BNFP treats 1500 metric tons of uranium per year (MTU/yr). Complexity and capacity factors are determined for adjusting the estimated facility and equipment costs of BNFP to determine the corresponding costs for the alternate fuel cycle. Costs of capacities other than the reference 1500 MT of heavy metal per year are estimated by the use of scaling factors. Unit costs of reprocessed fuel are calculated using a discounted cash flow analysis for three economic bases to show the effect of low-risk, typical, and high-risk financing methods

  9. Characterization of the head end cells at the West Valley Nuclear Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Vance, R.F.

    1986-11-01

    The head-end cells at the West Valley Nuclear Fuel Reprocessing Plant are characterized in this report. These cells consist of the Process Mechanical Cell (PMC) where irradiated nuclear fuel was trimmed of excess hardware and sheared into short segments; and the General Purpose Cell (GPC) where the segments were collected and stored prior to dissolution, and leached hulls were packaged for disposal. Between 1966 and 1972, while Nuclear Fuels Services operated the plant, these cells became highly contaminated with radioactive materials. The purpose of this characterization work was to develop technical information as a basis of decontamination and decommissioning planning and engineering. It was accomplished by performing remote in-cell visual examinations, radiation surveys, and sampling. Supplementary information was obtained from available written records, out-of-cell inspections, and interviews with plant personnel

  10. Critical experiment needs and plans of the consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Primm, R.T.

    1984-01-01

    An integral part of the United States Department of Energy (DOE) plan for the development of breeder reactors is the development of the capability for fuel reprocessing. The Consolidated Fuel Reprocessing Program (CFRP) was established by the DOE to identify and conduct research and development activities in this area. The DOE is currently proposing that a capability to reprocess fast reactor fuel be established in the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. This capability would include conversion of plutonium nitrate to plutonium oxide. The reprocessing line is designated the Breeder Reprocessing Engineering Test (BRET). Criticality safety remains an important critetion in the design of the BRET. The different steps in the reprocessing are reviewed and areas where additional critical experiments are needed have been indentified as also areas where revision or clarification of existing criticality safety standards are desirable

  11. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  12. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  13. Reprocessing of ''fast'' fuel in France

    International Nuclear Information System (INIS)

    Sauteron, J.; Bourgeois, M.; Le Bouhellec, J.; Miquel, P.

    1976-05-01

    The results of laboratory studies as well as pilot testing (AT-I La Hague, Marcoule, Fontenay-aux-Roses) in reprocessing of fast breeder reactor fuels are described. The paper covers all steps: head end, aqueous and fluoride volatility processes, and waste treatment. In conclusion, it is demonstrated why it is still too early to define a strategy of industrial reprocessing for this reactor type

  14. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications. This report provides an overview of the status of reprocessing technology and its future prospects in terms of various criteria in Section 2. Section 3 provides a review of emerging technologies which have been attracting the interest of Member States, especially in the international initiatives for future development of innovative nuclear systems. A historical review of IAEA activities associated with spent fuel reprocessing, traceable back to the mid-1970s, is provided in Section 4, and conclusions in Section 5. A list of references is provided at the end the main text for readers interested in further information on the related topics. Annex I summarizes the current status of reprocessing facilities around the world, including the civil operational statistics of Purex-based plants, progress with decommissioning and

  15. UP3 plant first reprocessing campaigns

    International Nuclear Information System (INIS)

    Leudet, A.; Hugelmann, D.; Fournier, W.; Dalverny, G.

    1991-01-01

    The UP3 plant start up has been achieved in two successive steps. The first one, from November 89 to April 90, involved all the facilities but T1, the head-end facility. During that period, shearing, dissolution and the first cycle extraction operations were performed in UP2 plant. 100 tons of fuel have been reprocessed that way. The second step began in August 1990, with the T1 facility start-up and the reprocessing of the resulting active solutions in the rest of the plant. This second phase involving the entire UP3 plant continued until the end of January 1991. At that time, 160 tons of fuel have been completely treated in UP3 plant

  16. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  17. Light water reactor fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    1977-07-01

    This document was originally intended to provide the basis for an environmental impact statement to assist ERDA in making decisions with respect to possible LWR fuel reprocessing and recycling programs. Since the Administration has recently made a decision to indefinitely defer reprocessing, this environmental impact statement is no longer needed. Nevertheless, this document is issued as a report to assist the public in its consideration of nuclear power issues. The statement compares the various alternatives for the LWR fuel cycle. Costs and environmental effects are compared. Safeguards for plutonium from sabotage and theft are analyzed

  18. Reprocessing ability of high density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Gay, A.; Belieres, M.

    1997-01-01

    The development of a new high density fuel is becoming a key issue for Research Reactors operators. Such a new fuel should be a Low Enrichment Uranium (LEU) fuel with a high density, to improve present in core performances. It must be compatible with the reprocessing in an industrial plant to provide a steady back-end solution. Within the framework of a work group CEA/CERCA/COGEMA on new fuel development for Research Reactors, COGEMA has performed an evaluation of the reprocessing ability of some fuel dispersants selected as good candidates. The results will allow US to classify these fuel dispersants from a reprocessing ability point of view. (author)

  19. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  20. Fuel reprocessing and environmental problem

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    1977-01-01

    The radioactive nuclides which are released from the reprocessing plants of nuclear fuel are 137 Cs, 106 Ru, 95 Zr and 3 H in waste water and 85 Kr in the atmosphere. This release affects the environment for example, the reprocessing plant of the Nuclear Fuel Service Co in the USA releases about 2 x 10 5 Ci/y of 85 Kr, which is evaluated as about 0.025 mr/y as external exposure dose. The radioactivity in milk around this plant was measured as less than 10 pCi/lit of 129sup(I. The radioactive concentration in the sea, especially in fish and shellfish, was measured near the reprocessing plant of Windscale in UK. The radioactive release rate from this plants more than 10)5sup( Ci/y as the total amount of )137sup(Cs, )3sup(H, )106sup(Ru, )95sup(Zr, )95sup(Nb, )90sup(Sr, )144sup(Ce, etc., and the radioactivity in seaweeds near Windscale is about 400 pCi/g as the maximum value, and the mayonnaise which was made of this seaweeds contained about 1 pCi/g of )106sup(Ru, which is estimated as about 7 mr/y for the digestive organ if 100 g is eaten every day. On the other hand, the experimental result is presented for the reprocessing plant of La Hague in France, in which the radioactive release rate from this plant is about 10)4sup( Ci/y, and the radioactivity in sea water and shellfish is about 4 pCi/l of )106sup(Ru and about 400 pCi/kg of )137 Cs, respectively, near this plant. The philosophy of ALAP (as low as practicable) is also applied to reprocessing plants. (Nakai, Y.)

  1. French experience and prospects in the reprocessing of fast breeder reactor fuels

    International Nuclear Information System (INIS)

    Megy, J.

    1983-06-01

    Experience acquired in France in the field of reprocessing spent fuels from fast breeder reactors is recalled. Emphasis is put on characteristics and quantities of spent fuels reprocessed in La Hague and Marcoule facilities. Then reprocessing developments with the realisation of the new pilot plant TOR at Marcoule, new equipments and study of industrial reprocessing units are reviewed [fr

  2. Reprocessing free nuclear fuel production via fusion fission hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Kotschenreuther, Mike, E-mail: mtk@mail.utexas.edu [Intitute for Fusion Studies, University of Texas at Austin (United States); Valanju, Prashant; Mahajan, Swadesh [Intitute for Fusion Studies, University of Texas at Austin (United States)

    2012-05-15

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively 'new' cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th{sup 232}-U{sup 233} conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO{sub 2} matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U{sup 235} fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  3. Reprocessing free nuclear fuel production via fusion fission hybrids

    International Nuclear Information System (INIS)

    Kotschenreuther, Mike; Valanju, Prashant; Mahajan, Swadesh

    2012-01-01

    Fusion fission hybrids, driven by a copious source of fusion neutrons can open qualitatively “new” cycles for transmuting nuclear fertile material into fissile fuel. A totally reprocessing-free (ReFree) Th 232 –U 233 conversion fuel cycle is presented. Virgin fertile fuel rods are exposed to neutrons in the hybrid, and burned in a traditional light water reactor, without ever violating the integrity of the fuel rods. Throughout this cycle (during breeding in the hybrid, transport, as well as burning of the fissile fuel in a water reactor) the fissile fuel remains a part of a bulky, countable, ThO 2 matrix in cladding, protected by the radiation field of all fission products. This highly proliferation-resistant mode of fuel production, as distinct from a reprocessing dominated path via fast breeder reactors (FBR), can bring great acceptability to the enterprise of nuclear fuel production, and insure that scarcity of naturally available U 235 fuel does not throttle expansion of nuclear energy. It also provides a reprocessing free path to energy security for many countries. Ideas and innovations responsible for the creation of a high intensity neutron source are also presented.

  4. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  5. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  6. Fuel reprocessing and waste management in the UK

    International Nuclear Information System (INIS)

    Heafield, W.; Griffin, N.L.

    1994-01-01

    The currently preferred route for the management of irradiated fuel in the UK is reprocessing. This paper, therefore, concentrates on outlining the policies, practices and achievement of British Nuclear Fuels plc (BNFL) associated with the management of its irradiated fuel facilities at Sellafield. The paper covers reprocessing and how the safe management of each of the major waste categories is achieved. BNFL's overall waste management policy is to develop, in close consultation with the regulatory authorities, a strategy to minimize effluent discharges and provide a safe, cost effective method of treating and preparing for disposal all wastes arising on the site

  7. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  8. The economics of reprocessing versus direct disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Bunn, M.; Holdren, J.P.; Fetter, S.; Zwaan, B. van der

    2007-01-01

    The economics of reprocessing versus direct disposal of spent nuclear fuel are assessed. The break-even uranium price at which reprocessing spent nuclear fuel from existing light water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is estimated for a wide range of reprocessing prices and other fuel cycle costs and parameters. The contribution of each fuel cycle option to the cost of electricity is also estimated. A similar analysis is performed for the breakeven uranium price at which deploying fast neutron reactors (FRs) would become competitive compared with a once-through fuel cycle in LWRs, for a range of differences in capital cost between LWRs and FRs. Available information about reprocessing prices and various other fuel cycle costs and input parameters are reviewed, as well as the quantities of uranium likely to be recoverable worldwide at a range of different possible future prices. It is concluded that the once-through fuel cycle is likely to remain significantly cheaper than reprocessing and recycling in either LWRs or FRs for at least the next 50 years. Finally, there is a discussion of how scarce and expensive repository space would have to become before separation and transmutation would be economically attractive. (author)

  9. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  10. Benefit analysis of reprocessing and recycling light water reactor fuel

    International Nuclear Information System (INIS)

    1976-12-01

    The macro-economic impact of reprocessing and recycling fuel for nuclear power reactors is examined, and the impact of reprocessing on the conservation of natural uranium resources is assessed. The LWR fuel recycle is compared with a throwaway cycle, and it is concluded that fuel recycle is favorable on the basis of economics, as well as being highly desirable from the standpoint of utilization of uranium resources

  11. Characterization of the insoluble sludge from the dissolution of irradiated fast breeder reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Haruka; Arai, Yoichi; Shibata, Atsuhiro; Nomura, K.; Takeuchi, M. [Japan Atomic Energy Agency - JAEA, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki, 319-1194 (Japan)

    2016-07-01

    Insoluble sludge is generated in the reprocessing of spent fuel. The sludge obtained from the dissolution of irradiated fuel from the Joyo experimental fast reactor was analyzed to evaluate its chemical form. The sludge was collected by the filtration of the dissolved fuel solution, and then washed in nitric acid. The yields of the sludge weight were less than 1% of the total fuel weight. The chemical composition of the sludge was analyzed after decomposition by alkaline fusion. Molybdenum, technetium, ruthenium, rhodium, and palladium were found to be the main constituent elements of the sludge. X-ray diffraction patterns of the sludge were attributable to Mo{sub 4}Ru{sub 4}RhPd, regardless of the experimental conditions. The concentrations of molybdenum and zirconium in the dissolved fast reactor fuel solutions were low, indicating that zirconium molybdate hydrate (ZMH) is produced in negligible amounts in the process. (authors)

  12. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1980-01-01

    The office ordinance is established under the provisions related to reprocessing businesses of the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors, to enforce the provisions. The basic terms are defined, such as exposure radiation dose; accumulated dose; controlled area; maintenance area; surrounding watch area; employee; radioactive waste; the facilities for discharge to sea. An application for the designation of reprocessing businesses shall be filed, listing the following matters: the maximum daily and yearly reprocessing capacities for each kind of spent fuel; the location and general structure of reprocessing facilities; the structures of buildings; the structure and equipments of main reprocessing facilities, the storage facilities for products and the disposal facilities for radioactive wastes; the equipments of measuring and control system facilities and radiation control facilities, etc. Records shall be made on the inspection of reprocessing facilities, radiation control, operation, maintenance, the accidents of reprocessing facilities and weather, and kept for the period from one to ten years, respectively. Any person engaging in reprocessing businesses shall set up control, maintenance and surrounding watch areas, and take specified measures to restrict the entrance of persons. The measures to be taken against exposure radiation dose, the inspection, regular independent examination and operation of reprocessing facilities and other related matters are stipulated in detail. (Okada, K.)

  13. Operation of Nuclear Fuel Based on Reprocessed Uranium for VVER-type Reactors in Competitive Nuclear Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Troyanov, V.; Molchanov, V.; Tuzov, A. [TVEL Corporation, 49 Kashirskoe shosse, Moscow 115409 (Russian Federation); Semchenkov, Yu.; Lizorkin, M. [RRC ' Kurchatov Institute' (Russian Federation); Vasilchenko, I.; Lushin, V. [OKB ' Gidropress' (Russian Federation)

    2009-06-15

    Current nuclear fuel cycle of Russian nuclear power involves reprocessed low-enriched uranium in nuclear fuel production for some NPP units with VVER-type LWR. This paper discusses design and performance characteristics of commercial nuclear fuel based on natural and reprocessed uranium. It presents the review of results of commercial operation of nuclear fuel based on reprocessed uranium on Russian NPPs-unit No.2 of Kola NPP and unit No.2 of Kalinin NPP. The results of calculation and experimental validation of safe fuel operation including necessary isotope composition conformed to regulation requirements and results of pilot fuel operation are also considered. Meeting the customer requirements the possibility of high burn-up achieving was demonstrated. In addition the paper compares the characteristics of nuclear fuel cycles with maximum length based on reprocessed and natural uranium considering relevant 5% enrichment limitation and necessity of {sup 236}U compensation. The expedience of uranium-235 enrichment increasing over 5% is discussed with the aim to implement longer fuel cycles. (authors)

  14. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  15. An overview on dry reprocessing of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Ouyang Yinggen

    2002-01-01

    Although spent nuclear fuels have been reprocessed successfully for many years by the well-know Purex process based on solvent extraction, other reprocessing method which do not depend upon the use of organic solvents and aqueous media appear to have important potential advantage. There are two main non-aqueous methods for the reprocessing of spent fuel: fluoride-volatility process and pyro-electrochemical process. The presence of a poser in the process is that PuF 6 is obviously thermodynamically stable only in the presence of a large excess of fluorine. Pyro-electrochemical process is suited to processing metallic, oxide and carbide fuels. First, the fuel is dissolved in fresh salts, then, electrodes are introduced into the bath, U and Pu are deposited on the cathode, third, separation and refinement U and Pu are deposited on the cathode. There is a couple of contradictions in the process that are not in harmonious proportion in the fields on the nuclear fuel is dissolved the ability in the molten salt and corrosiveness of the molten salt for equipment used in the process

  16. Consolidated fuel reprocessing. Program progress report, April 1-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This progress report is compiled from major contributions from three programs: (1) the Advanced Fuel Recycle Program at ORNL; (2) the Converter Fuel Reprocessing Program at Savannah River Laboratory; and (3) the reprocessing components of the HTGR Fuel Recycle Program, primarily at General Atomic and ORNL. The coverage is generally overview in nature; experimental details and data are limited.

  17. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under provisions concerning the reprocessing business in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area; employee; radioactive waste and marine discharging facilities. Any person who gets permission for design of reprocessing facilities and method of the construction shall file an application, listing name and address of the person and the works or the place of enterprise where reprocessing facilities are to be set up, design of such facilities and method of the construction, in and out-put chart of nuclear fuel materials in reprocessing course, etc. Records shall be made and kept for particularly periods in each works or enterprise on inspection of reprocessing facilities, control of dose, operation, maintenance, accident of reprocessing facilities and weather. Detailed prescriptions are settled on entrance limitation to controlled area, exposure dose, inspection and check, regular independent examination and operation of reprocessing facilities, transportation in the works or the enterprise, storage, disposal, safeguard and measures in dangerous situations, etc. Reports shall be filed on exposure dose of employees and other specified matters in the forms attached and in the case otherwise defined. (Okada, K.)

  18. Symposium on the reprocessing of irradiated fuels. Book 3, Session V

    Energy Technology Data Exchange (ETDEWEB)

    None

    1959-12-31

    Book three of this conference has a single-focused session V entitled Engineering and Economics, with 16 papers. The session is concerned with several phases of chemical reprocessing of fuels which are of a general nature. Hot labs, radiochemical analytical facilities, and high level development cells are described. Dissolution equipment, contactors, flow generation, measurement, and control equipment, samplers, connectors, carriers, valves, filters, and hydroclones are described and discussed. Papers are included on: radiation safety, chemical safety, radiochemical plant operating experience in the U.S., and heavy element isotopic buildup. The general economics of solvent extraction processing is discussed, and capital and operating costs for several U. S. plants given. The Atomic Energy Commission's chemical processing programs and administration are evaluated and the services offered and charges therefore are listed.

  19. Symposium on the reprocessing of irradiated fuels. Book 3, Session V

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-12-31

    Book three of this conference has a single-focused session V entitled Engineering and Economics, with 16 papers. The session is concerned with several phases of chemical reprocessing of fuels which are of a general nature. Hot labs, radiochemical analytical facilities, and high level development cells are described. Dissolution equipment, contactors, flow generation, measurement, and control equipment, samplers, connectors, carriers, valves, filters, and hydroclones are described and discussed. Papers are included on: radiation safety, chemical safety, radiochemical plant operating experience in the U.S., and heavy element isotopic buildup. The general economics of solvent extraction processing is discussed, and capital and operating costs for several U. S. plants given. The Atomic Energy Commission's chemical processing programs and administration are evaluated and the services offered and charges therefore are listed.

  20. Legal problems of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1987-01-01

    The contributions in this book are intended to exemplify the legal situation in connection with the reprocessing of spent nuclear fuel from the point of view of constitutional law, administrative law, and international law. Outline solutions are presented with regard to ensuring health, personal freedom, democratic rights and other rights, and are discussed. The author Rossnagel investigates whether the principle of essential matter can guarantee a parliamentary prerogative concerning this field of large-scale technology. The author Schmidt shows that there is no legal obligation of commitment to a reprocessing technology that would exclude research for or application of a less hazardous technology. The contribution by Baumann explains the problems presented by a technology not yet developed to maturity with regard to the outline approval of the technological concept, which is a prerequisite of any partial licence to be issued. The final contribution by Guendling investigates the duties under international law, as for instance transfrontier information, consultation, and legal protection, and how these duties can be better put into practice in order to comply the seriousness of the hazards involved in nuclear fuel reprocessing. (orig./HP) [de

  1. Reprocessing of nuclear fuels: economical, ecological and technical aspects

    International Nuclear Information System (INIS)

    Kueffer, K.

    1994-01-01

    The report deals with the questions on reprocessing and final storage of spent fuel elements from the point of view of the Swiss. The contractual obligations were discussed, of the present situation of reprocessing and their assessment. 1 fig

  2. A survey of methods for separating and immobilizing krypton-85 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-12-01

    This report reviews the literature on methods to separate and immobilize krypton-85 arising from dissolution or prior treatment of nuclear fuel in a reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future applications in Canada. Cryogenic distillation is the most fully demonstrated method of separation of krypton from off-gases, but it is complex. In particular, it requires pretreatment of the gas stream to eliminate several other components before the final distillation. The most highly developed alternative process is fluorocarbon adsorption, while several other processes have been investigated on a bench scale. The simplest method of storing radioactive krypton is in compressed-gas cylinders, but the risks of accidental release are increased by the corrosive nature of the decay product, rubidium. Encapsulation in either a metal matrix or a hydrothermally vitrified zeolite appears to offer the most secure immobilization of krypton. Processes for both types of material have been demonstrated inactively on a scale approaching that required for treatment of off-gases from a commercial-scale fuel reprocessing plant. Low-operating temperatures and pressures of the metal encapsulation process, compared with encapsulation in zeolites, represent a definite advantage, but electrical power requirements for the former process are relatively high. It appears that suitable technology is available for separation and immobilization of radioactive krypton, should the need arise in Canada in the future

  3. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  4. Reprocessing technology for present water reactor fuels

    International Nuclear Information System (INIS)

    McMurray, P.R.

    1977-01-01

    The basic Purex solvent extraction technology developed and applied in the U.S. in the 1950's provides a well-demonstrated and efficient process for recovering uranium and plutonium for fuel recycle and separating the wastes for further treatment and packaging. The technologies for confinement of radioactive effluents have been developed but have had limited utilization in the processing of commercial light water reactor fuels. Technologies for solidification and packaging of radioactive wastes have not yet been demonstrated but significant experience has been gained in laboratory and engineering scale experiments with simulated commercial reprocessing wastes and intermediate level wastes. Commercial scale experience with combined operations of all the required processes and equipment are needed to demonstrate reliable reprocessing centers

  5. Evironmental assessment factors relating to reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-05-01

    This document is in two parts. Part I presents the criteria and evaluation factors, based primarily on US experience, which may be used to carry out an environmental assessment of spent fuel reprocessing. The concept of As Low as is Reasonably Achievable (ALARA) is introduced in limiting radiation exposure. The factors influencing both occupational and general public radiation exposure are reviewed. Part II provides information on occupational and general public radiation exposure in relation to reprocessing taken from various sources including UNSCEAR and GESMO. Some information is provided in relation to potential accidents at reprocessing or MOX fuel refabrication plants. The magnitude of the services, energy, land use and non-radiological effluents for the reference design of reprocessing plant are also presented

  6. Advanced fuel cycle on the basis of pyroelectrochemical process for irradiated fuel reprocessing and vibropacking technology

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Skiba, O.V.; Tsykanov, V.A.; Golovanov, V.N.; Bychkov, A.V.; Kisly, V.A.; Bobrov, D.A.

    2000-01-01

    For advanced nuclear fuel cycle in SSC RIAR there is developed the pyroelectrochemical process to reprocess irradiated fuel and produce granulated oxide fuel UO 2 , PuO 2 or (U,Pu)O 2 from chloride melts. The basic technological stage is the extraction of oxides as a crystal product with the methods either of the electrolysis (UO 2 and UO 2 -PuO 2 ) or of the precipitating crystalIization (PuO 2 ). After treating the granulated fuel is ready for direct use to manufacture vibropacking fuel pins. Electrochemical model for (U,Pu)O 2 coprecipitation is described. There are new processes being developed: electroprecipitation of mixed oxides - (U,Np)O 2 , (U,Pu,Np)O 2 , (U,Am)O 2 and (U,Pu,Am)O 2 . Pyroelectrochemical production of mixed actinide oxides is used both for reprocessing spent fuel and for producing actinide fuel. Both the efficiency of pyroelectrochemical methods application for reprocessing nuclear fuel and of vibropac technology for plutonium recovery are estimated. (author)

  7. EdF speaks about economic advantages of fuel reprocessing as compared with interim storage

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The French company Electricite de France (EdF) will prefer nuclear fuel reprocessing and plutonium recycling to spent fuel storage also in the years after 2000. This option is economically advantageous if the proportional cost of reprocessing does not exceed 1900 FRF/kg heavy metal. Economic analysis shows that this is feasible. EdF will soon have to reprocess annually about 1000 Mt spent fuel to supply enough plutonium for MOX fuel fabrication to feed as many as 28 PWR units and the Superphenix reactor. Spent fuel reprocessing is seen as promising as long as the efficiency of the MOX fuel approaches that of natural uranium based fuel. The French national industrial, political and legal context of EdF operations is also considered. (P.A.)

  8. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  9. Predicting the behaviour or neptunium during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Drake, V.A.

    1988-01-01

    Behaviour of Np and its distribution over reprocessing flowsheet is studied due to the necessity of improvement of reprocessing methods of wastes formed during purex-process. Valency states of Np in solutions of reprocessing cycles, Np distribution in organic and acid phases, Np(5) oxidation by nitric acid at the stage of extraction, effect of U and Pu presence on Np behaviour, are considered. Calculation and experimental data are compared; the possibility of Np behaviour forecasting in the process of nuclear fuel reprocessing, provided initial data vay, is shown. 7 refs.; 4 figs.; 1 tab

  10. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  11. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents

  12. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  13. Thorex reprocessing characterization

    International Nuclear Information System (INIS)

    1978-11-01

    The purpose of this report is to bring together, in highly condensed form, information which would need to be considered in planning a commercial reprocessing plant for recovering 233 U-Th reactor fuel. This report does not include a discussion of process modifications which would be required for thorium-base fuels that contain plutonium (such as would be required for thorium fuels containing 235 U or 233 U denatured with 238 U). It is the intent of this paper to address only the basic Thorex process for treating 233 U-Th fuels. As will be pointed out, the degree of development of the various proposed operations varies widely, from preliminary laboratory experiments for the dissolution of Zircaloy-clad thoria to engineering scale demonstration of the recovery of moderately irradiated thorium by a solvent extraction process (Thorex)

  14. Status and trends in spent fuel reprocessing. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1999-08-01

    Spent fuel management has always been an important part of the nuclear fuel cycle and is still one of the most important activities in all countries exploiting the peaceful use of nuclear energy. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and to coordinate and encourage closer co-operation among Member States in certain research and developing activities that are of common interest. As part of spent fuel management, reprocessing activities have been reviewed from time to time on a low profile level under the terminology 'spent fuel treatment'. However, spent fuel treatment covers, in broad terms, spent fuel storage (short, interim and long term), fuel rod consolidation, reprocessing and, in case the once-through cycle is selected, conditioning of the spent fuel for disposal. Hence the reprocessing activities under the heading 'spent fuel treatment' were somewhat misleading. Several meetings on spent fuel treatment have been organized during the fast decade: an Advisory Group meeting (AGM) in 1992, a Technical Committee meeting in 1995 and recently an Advisory Group meeting from 7 to 10 September 1998. The objectives of the meetings were to review the status and trends of spent fuel reprocessing, to discuss the environmental impact and safety aspects of reprocessing facilities and to define the most important issues in this field. Notwithstanding the fact that the Summary of the report does not include aspects of military reprocessing, some of the national presentations do refer to some relevant aspects (e.g. experience, fissile stockpiles)

  15. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  16. Analytical chemistry needs for nuclear safeguards in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1977-01-01

    A fuel reprocessing plant designed to process 1500 tons of light water reactor fuel per year will recover 15 tons of Pu during that time, or approximately 40 to 50 kg of Pu per day. Conventional nuclear safeguards accountability has relied on batch accounting at the head and tail ends of the reprocessing plant with semi-annual plant cleanout to determine in-process holdup. An alternative proposed safeguards system relies on dynamic material accounting whereby in-line NDA and conventional analytical techniques provide indications on a daily basis of SNM transfers into the system and information of Pu holdup within the system. Some of the analytical requirements and problems for dynamic materials accounting in a nuclear fuel reprocessing plant are described. Some suggestions for further development will be proposed

  17. Cost analysis of the US spent nuclear fuel reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas, Austin TX (United States); Cady, K.B. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca NY (United States)

    2009-09-15

    The US Department of Energy is actively seeking ways in which to delay or obviate the need for additional nuclear waste repositories beyond Yucca Mountain. All of the realistic approaches require the reprocessing of spent nuclear fuel. However, the US currently lacks the infrastructure to do this and the costs of building and operating the required facilities are poorly established. Recent studies have also suggested that there is a financial advantage to delaying the deployment of such facilities. We consider a system of government owned reprocessing plants, each with a 40 year service life, that would reprocess spent nuclear fuel generated between 2010 and 2100. Using published data for the component costs, and a social discount rate appropriate for intergenerational analyses, we establish the unit cost for reprocessing and show that it increases slightly if deployment of infrastructure is delayed by a decade. The analysis indicates that achieving higher spent fuel discharge burnup is the most important pathway to reducing the overall cost of reprocessing. The analysis also suggests that a nuclear power production fee would be a way for the US government to recover the costs in a manner that is relatively insensitive to discount and nuclear power growth rates. (author)

  18. Problems of nuclear fuel reprocessing in Japan

    International Nuclear Information System (INIS)

    Tanaka, Naojiro

    1974-01-01

    The reprocessing capacity of the plant No. 1 of Power Reactor and Nuclear Fuel Development Corporation, which is scheduled to start operation in fiscal year 1975, will be insufficient after fiscal year 1978 for the estimated demand for reprocessing based on Japanese nuclear energy development program. Taking into consideration the results examined by JAIF's study team to Europe and the U.S., it is necessary that Japan builds 2nd reprocessing plant. But there will be a gap from 1978 to 1984 during which Japan must rely on overseas reprocessing services. The establishment of a reprocessing system is a task of national scale, and there are many problems to be solved before it can be done. These include the problems of site and environment, the problem of treatment and disposal of radioactive wastes, the raising of huge required funds and so on. Therefore, even if a private enterprise is allowed to undertake the task, it will be impossible to achieve the aim without the cooperation and assistance of the government. (Wakatsuki, Y.)

  19. Safety aspects in fuel reprocessing and radioactive waste management

    International Nuclear Information System (INIS)

    Agarwal, K.

    2018-01-01

    Nuclear energy is used for generation of electricity and for production of a wide range of radionuclides for use in research and development, healthcare and industry. Nuclear industry uses nuclear fission as source of energy so a large amount of energy is available from very small amount of fuel. As India has adopted c losed fuel cycle , spent nuclear fuel from nuclear reactor is considered as a material of resource and reprocessed to recovery valuable fuel elements. Main incentive of reprocessing is to use the uranium resources effectively by recovering/recycling Pu and U present in the spent fuel. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Program is the attention paid from the very beginning to the safe management of radioactive waste

  20. Selection of dissolution process for spent fuels and preparation of corrosion test solution simulated to dissolver (contract research)

    International Nuclear Information System (INIS)

    Motooka, Takafumi; Terakado, Shogo; Koya, Toshio; Hamada, Shozo; Kiuchi, Kiyoshi

    2001-03-01

    In order to evaluate the reliability of reprocessing equipment materials used in the Rokkasho Reprocessing Plant, we have proceeded a mock-up test and laboratory tests for getting corrosion parameters. In a dissolver made of zirconium, the simulation of test solutions to the practical solution which includes the high concentration of radioactive elements such as FP and TRU is one of the important issues with respect to the life prediction. On this experiment, the dissolution process of spent fuels and the preparation of test solution for evaluating the corrosion resistance of dissolver materials were selected. These processes were tested in the No.3 cell of WASTEF. The test solution for corrosion tests was prepared by adjusting the uranium and nitric acid concentrations. (author)

  1. Releases of radioiodine from the Karlsruhe nuclear fuel reprocessing plant as a result of spontaneous fission of actinides

    International Nuclear Information System (INIS)

    Schuettelkopf, H.

    1977-02-01

    Fro, 23,7,1976 to 28.7.76 and from 8.3.76 to 9.16.76 50 pCi 131 I/m 3 , 116 pCi 133 I/m 3 und 195 pCi 135 I/m 3 were measured on an average in 11 samples of waste air from the Karlsruhe Nuclear Fuel Reprocessing Plant (WAK). During these time intervals no dissolution of fuel material was performed. From 16.9.76 to 27.10.76 18 charges of nuclear fuel were dissolved. During this period 3.3 pCi 131 I/m 3 and 7.9 pCi 133 I/m 3 were obtained as mean waste air concentrations which were higher than the lower detection limit of the method of measurement used. 244 Cm, 242 Cm, 242 Pu, 240 Pu and 238 Pu are responsible for the production of radioiodine in nuclear fuel by spontaneous fission. 244 Cm is the most important nuclide in highly active waste solutions (HAL). The cumulative fission yield is well approximated by 3% for 13 I and by 6% for 133 I. The radioiodine is set free during fuel dissolution by venting of tanks and HAL pipes and during the vritification of such solutions. The radioiodine produced by spontaneous fission is released from WAK only by venting of tanks and HAL pipes. Corresponding to the conditions of venting, air concentrations as high as 4.4 pCi 131 I/m 3 and 8.2 pCi 133 I/m 3 are expected. These concentrations agree well with air concentrations measured during the period of fuel dissolution. Based on plausible assumptions the 131 I and 133 I waste air concentrations for the period of outage are calculated from an evaporated volume of HAL in the pipes corresponding to about 10 g of 244 Cm and with 40% equilibrium between I 2 in evaporated HAL and in waste air. In the worst case 131 I-concentrations in the waste air of WAK result in an annual release of 0.2 mCi 131 I. This value is less than 1% of the authorized annual releases of 1976. For a reprocessing plant of 1,400 t/a capacity the annual expected release of 131 I lies in the mCi range. (orig.) [de

  2. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  3. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  4. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  5. The refurbishment of the D1206 fuel reprocessing plant

    International Nuclear Information System (INIS)

    Bailey, G.

    1988-01-01

    The term decommissioning can be applied not only to reactors but to any nuclear plant, laboratory, building or part of a building that may have been associated with radioactive material and needs to be restored to clean conditions. In this case the decommissioning and reconstruction of the Dounreay Fast Reactor fuel reprocessing plant, so that plutonium oxide could be reprocessed as well as enriched uranium fuel, is described. The work included improving containment and shielding, building a new head-end treatment cave for the more complex and larger fuel elements, improving the ventilation and constructing a new dissolver. In this paper the breakdown cave and dissolver cell are described and compared and the work done explained. (U.K.)

  6. Inventory estimation for nuclear fuel reprocessing systems

    International Nuclear Information System (INIS)

    Beyerlein, A.L.; Geldard, J.F.

    1987-01-01

    The accuracy of nuclear material accounting methods for nuclear fuel reprocessing facilities is limited by nuclear material inventory variations in the solvent extraction contactors, which affect the separation and purification of uranium and plutonium. Since in-line methods for measuring contactor inventory are not available, simple inventory estimation models are being developed for mixer-settler contactors operating at steady state with a view toward improving the accuracy of nuclear material accounting methods for reprocessing facilities. The authors investigated the following items: (1) improvements in the utility of the inventory estimation models, (2) extension of improvements to inventory estimation for transient nonsteady-state conditions during, for example, process upset or throughput variations, and (3) development of simple inventory estimation models for reprocessing systems using pulsed columns

  7. Nuclear fuel reprocessing expansion strategies

    International Nuclear Information System (INIS)

    Gallagher, J.M.

    1975-01-01

    A description is given of an effort to apply the techniques of operations research and energy system modeling to the problem of determination of cost-effective strategies for capacity expansion of the domestic nuclear fuel reprocessing industry for the 1975 to 2000 time period. The research also determines cost disadvantages associated with alternative strategies that may be attractive for political, social, or ecological reasons. The sensitivity of results to changes in cost assumptions was investigated at some length. Reactor fuel types covered by the analysis include the Light Water Reactor (LWR), High-Temperature Gas-Cooled Reactor (HTGR), and the Fast Breeder Reactor (FBR)

  8. Studies in biological excretion of inhaled plutonium in the case of a few occupational workers in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hedge, A.G.; Chandramouli, S.; Iyer, R.S.; Bhat, I.S.

    1992-01-01

    A power reactor fuel reprocessing plant is in operation at Tarapur. The various processes involved in the plant are: fuel rod cutting, dissolution in nitric acid, separation of plutonium, and handling of separated plutonium. The chemical form of plutonium could be nitrate, TBP complex, or oxide depending upon the nature of the process involved. Possible internal exposure to plant personnel occurs mainly by inhalation and occasionally through a contaminated wound. Occupational workers are regularly monitored for internal contamination by urinary excretion analysis as well as by in-vivo lung counting. This paper presents a follow-up study of plutonium elimination in four inhalation exposure cases. (author) 8 refs.; 6 figs

  9. Fuel reprocessing data validation using the isotope correlation technique

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, and graphite reactors) operating in a variety of modes (power, research, and production reactors), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (- 0.02 ± 0.23)% for the measured U-235 and (+ 0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems

  10. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  11. Survey of economics of spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1976-01-01

    Literature data are surveyed on the economic problems of reprocessing spent fuel from light-water reactors in the period 1970 to 1975 and on the capacity of some reprocessing plants, such as NFS, Windscale, Marcoule, etc. The sharp increase in capital and production costs is analyzed and the future trend is estimated. The question is discussed of the use of plutonium and the cost thereof. The economic advantageousness previously considered to be the primary factor is no longer decisive due to new circumstances. The main objective today is to safeguard uninterrupted operation of nuclear power plants and the separation of radioactive wastes from the fuel cycle and the safe disposal thereof. (Oy)

  12. Electrochemical reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    A method is described for the reprocessing of irradiated nuclear fuel which is particularly suitable for use with fuel from fast reactors and has the advantage of being a dry process in which there is no danger of radiation damage to a solvent medium as in a wet process. It comprises the steps of dissolving the fuel in a salt melt under such conditions that uranium and plutonium therein are converted to sulphate form. The plutonium sulphate may then be thermally decomposed to PuO 2 and removed. The salt melt is then subjected to electrolysis conditions to achieve cathodic deposition of UO 2 (and possibly PuO 2 ). The salt melt can then be recycled or conditioned for final disposal. (author)

  13. Air conditioning facilities in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kawasaki, Michitaka; Oka, Tsutomu

    1987-01-01

    Reprocessing plants are the facilities for separating the plutonium produced by nuclear reaction and unconsumed remaining uranium from fission products in the spent fuel taken out of nuclear reactors and recovering them. The fuel reprocessing procedure is outlined. In order to ensure safety in handling radioactive substances, triple confinement using vessels, concrete cells and buildings is carried out in addition to the prevention of criticality and radiation shielding, and stainless steel linings and drip trays are installed as occasion demands. The ventilation system in a reprocessing plant is roughly divided into three systems, that is, tower and tank ventilation system to deal with offgas, cell ventilation system for the cells in which main towers and tanks are installed, and building ventilation system. Air pressure becomes higher from tower and tank system to building system. In a reprocessing plant, the areas in a building are classified according to dose rate. The building ventilation system deals with green and amber areas, and the cell ventilation system deals with red area. These three ventilation systems are explained. Radiation monitors are installed to monitor the radiation dose rate and air contamination in working places. The maintenance and checkup of ventilation systems are important. (Kako, I.)

  14. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  15. Reprocessing on the whole fuel cycle operations

    International Nuclear Information System (INIS)

    Megy, J.

    1983-11-01

    Spent fuel reprocessing, in France, is become an industrial reality which takes an importance place in several fields: place surely essential in the fuel cycle from the energetic material economy and waste management point of view; place priority in the CEA (Commissariat a l'Energie Atomique) research and development programs; place in the industry where it is an important activity sector with the realizations in progress [fr

  16. Economic feasibility study of regional centers for nuclear fuel reprocessing in the developing countries

    International Nuclear Information System (INIS)

    Bakeshloo, A.A.

    1977-01-01

    The fuel cycle costs for the following three different economic alternatives were studied: (1) Reprocessing in an industrialized country (such as the U.S.); (2) Reprocessing in the individual developing country; (3) Reprocessing in a regional center. The nuclear fuel cycle cost for the ''Throw-away'' fuel cycle was evaluated. Among the six regions which were considered in this study, region one (South America including Mexico) was selected for the economic analysis of the nuclear fuel cycle for the above three alternatives. For evaluation of the cases where the fuel is reprocessed in a regional center or in an individual developing country, a unit reprocessing cost equation was developed. An economic evaluation was developed to estimate the least expensive method for transporting radioactive nuclear material by either leased or purchased shipping casks. The necessary equations were also developed for estimating plutonium transportation and the safeguard costs. On the basis of nuclear material and services requirements and unit costs for each component, the levelized nuclear fuel cycle costs for each alternative were estimated. Finally, by a comparison of cost, among these three alternatives plus the ''Throw-away'' case,it was found that it is not at all economical to build individual reprocessing plants inside the developing countries in region one. However, it also was found that the economic advantage of a regional center with respect to the first alternative is less than a 4% difference between their total fuel cycle costs. It is concluded that there is no great economic advantage in any developing countries to seek to process their fuel in one of the advanced countries. Construction of regional reprocessing centers is an economically viable concept

  17. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  18. Fuel fabrication and reprocessing at UKAEA Dounreay

    International Nuclear Information System (INIS)

    Anderson, B.

    1994-01-01

    The Dounreay fuel plants, which are the most flexible anywhere in the world, will continue to carry out work for foreign commercial customers. A number of German companies are important customers of UKAEA and examples of the wide variety of the work currently being carried out for them in the Dounreay plants is given (reprocessing and fabrication of fuel elements from and for research reactors). (orig./HP) [de

  19. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  20. The French R and D programme for fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Auchapt, P.; Bourgeois, M.; Calame-Longjean, A.; Miquel, P.; Sauteron, J.

    1979-01-01

    The process employed is the Purex process adapted to the specific case of fast breeder reactor fuels. The results achieved have demonstrated that the aqueous method can be applied to these fuels: nearly ten years of operation in the ATl workshop which reprocesses RAPSODIE fuels, and the good results obtained at the Marcoule pilot facility on large batches of fuel attest to this achievement. The CEA effort continues principally on extrapolation to industrial scale, thanks mainly to experiments conducted on industrial prototypes and to the launching of the TOR project, which will, as of 1984, allow reprocessing of FBR fuels on a significant scale, and which will provide extensive additional resources for R and D activities

  1. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Yoshiuji, Takahiro

    1998-12-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  2. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki; Yoshiuji, Takahiro

    1998-01-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  3. Measurement of soluble nuclide dissolution rates from spent fuel

    International Nuclear Information System (INIS)

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  4. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1978-01-01

    In compliance with ''The law for the regulations of nuclear source material, nuclear fuel material and reactors'' these regulations prescribe concerning reprocessing facilities: The procedures to apply for the approval of the design and method of construction and the approval of the change thereof; as well as the procedure to apply for the inspection of the facilities, and details of the inspection (in sections 2-6). After that, the regulations require the enterpriser of reprocessing business to keep necessary records and take necessary measures for safety concerning the facilities, operation of reprocessing equipments, and transportation, storage on disposal of used fuel, materials separated therefrom or materials contaminated by either of them (in sections 8-16). Further, the regulations prescribe the procedure to apply for the approval of the safety rule required to the enterpriser of reprocessing business by above mentioned law and specifies items which should be included into the rule (section 17). Moreover, the regulations require the enterpriser to submit reports of each use of the internationally controllled material and specifies the items which should be included into these reports (section 19). (Matsushima, A.)

  5. Criticality management of Tokai reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Ichiro [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-01-01

    In fuel cycle centers a number of equipment and vessels of various types and of complex design are used in several processes, i.e. dissolution of spent fuels, separation and storage of uranium and plutonium from fission products and transuranium elements. For each processes, Monte Carlo codes are frequently applied to manage the fuel criticality. Safety design depends largely on specific features of each facilities. The present report describes status of criticality management for main processes in Tokai Reprocessing Facility, JNC, and the criticality conditions specifically existing there. The guiding principle throughout consists of mass control, volume control, design (form) control, concentration control, and control due to employment of neutron poisons. (S. Ohno)

  6. Industrial experience of irradiated nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Delange, M.

    1981-01-01

    At the moment and during the next following years, France and La Hague plant particularly, own the greatest amount of industrial experience in the field of reprocessing, since this experience is referred to three types of reactors, either broadly spread all through the world (GCR and LWR) or ready to be greatly developed in the next future (FBR). Then, the description of processes and technologies used now in France, and the examination of the results obtained, on the production or on the security points of view, are a good approach of the actual industrial experience in the field of spent fuel reprocessing. (author)

  7. Safeguards approach for irradiated fuel

    International Nuclear Information System (INIS)

    Harms, N.L.; Roberts, F.P.

    1987-03-01

    IAEA verification of irradiated fuel has become more complicated because of the introduction of variations in what was once presumed to be a straightforward flow of fuel from reactors to reprocessing plants, with subsequent dissolution. These variations include fuel element disassembly and reassembly, rod consolidation, double-tiering of fuel assemblies in reactor pools, long term wet and dry storage, and use of fuel element containers. This paper reviews future patterns for the transfer and storage of irradiated LWR fuel and discusses appropriate safeguards approaches for at-reactor storage, reprocessing plant headend, independent wet storage, and independent dry storage facilities

  8. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    International Nuclear Information System (INIS)

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system

  9. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L., E-mail: jerden@anl.gov [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Frey, Kurt [University of Notre Dame, Notre Dame, IN 46556 (United States); Ebert, William [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • This model accounts for chemistry, temperature, radiolysis, U(VI) minerals, and hydrogen effect. • The hydrogen effect dominates processes determining spent fuel dissolution rate. • The hydrogen effect protects uranium oxide spent fuel from oxidative dissolution. - Abstract: The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO{sub 2} and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO{sub 2} and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO{sub 2} and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H{sub 2}O{sub 2} and O{sub 2}). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit

  10. Prospect of spent fuel reprocessing and back-end cycling in China in 1990's

    International Nuclear Information System (INIS)

    Ke Youzhi; Wang Rengtao

    1987-01-01

    According to the CHinese Program of nuclear energy in 1990's, the amount of spent fuel by the year 2000 is estimated in this paper. Reprocessing is considered as an important link in the back-end fuel cycle. A pilot plant is scheduled for hot start up in 1996. The main goal of the study is LWR spent fuel reprocessing. We will use the experience gained from reprocessing of production reactor fuel and last research results. The advanced foreign technigue and experience will be introduced. The study emphasizes on the test of technology, equipments, instrumentation and automation, development of remote maintenance and decontamination. China will start to demonstrate the way for fuel cycle. (author)

  11. Administrative and managerial controls for the operation of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidelines are provided for the administrative and managerial controls necessary for the safe and efficient operation of nuclear fuel reprocessing plants. Topics covered include: administrative organization; review and audit; facility administrative policies and procedures; and tests and inspections. Recognizing that administrative practices vary among organizations operating nuclear fuel reprocessing plants, the standard incorporates flexibility that provides for compliance by any organization

  12. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  13. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    International Nuclear Information System (INIS)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-01-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  14. Spent fuel reprocessing and minor actinide partitioning safety related research at the UK National Nuclear Laboratory

    International Nuclear Information System (INIS)

    Carrott, Michael; Flint, Lauren; Gregson, Colin; Griffiths, Tamara; Hodgson, Zara; Maher, Chris; Mason, Chris; McLachlan, Fiona; Orr, Robin; Reilly, Stacey; Rhodes, Chris; Sarsfield, Mark; Sims, Howard; Shepherd, Daniel; Taylor, Robin; Webb, Kevin; Woodall, Sean; Woodhead, David

    2015-01-01

    The development of advanced separation processes for spent nuclear fuel reprocessing and minor actinide recycling is an essential component of international R and D programmes aimed at closing the nuclear fuel cycle around the middle of this century. While both aqueous and pyrochemical processes are under consideration internationally, neither option will gain broad acceptance without significant advances in process safety, waste minimisation, environmental impact and proliferation resistance; at least when compared to current reprocessing technologies. The UK National Nuclear Laboratory (NNL) is developing flowsheets for innovative aqueous separation processes. These include advanced PUREX options (i.e. processes using tributyl phosphate as the extractant for uranium, plutonium and possibly neptunium recovery) and GANEX (grouped actinide extraction) type processes that use diglycolamide based extractants to co-extract all transuranic actinides. At NNL, development of the flowsheets is closely linked to research on process safety, since this is essential for assessing prospects for future industrialisation and deployment. Within this context, NNL is part of European 7. Framework projects 'ASGARD' and 'SACSESS'. Key topics under investigation include: hydrogen generation from aqueous and solvent phases; decomposition of aqueous phase ligands used in separations prior to product finishing and recycle of nitric acid; dissolution of carbide fuels including management of organics generated. Additionally, there is a strong focus on use of predictive process modelling to assess flowsheet sensitivities as well as engineering design and global hazard assessment of these new processes. (authors)

  15. THE ECONOMICS OF REPROCESSING vs. DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Bunn, Matthew; Fetter, Steve; Holdren, John P.; Zwaan, Bob van der

    2003-01-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices

  16. Spent nuclear fuel reprocessing and international law. Germany's obligations under international law in matters of spent fuel reprocessing and the relevant contracts concluded with France and the United Kingdom

    International Nuclear Information System (INIS)

    Heintschel v Heinegg, W.

    1999-01-01

    The review presented is an excerpt from an expert opinion written by the author in December last year, in response to changes in nuclear energy policy announced by the new German government. The reprocessing of spent nuclear fuels from German power reactors in the reprocessing facilities of France (La Hague) and the UK (Sellafield) is not only based on contracts concluded by the German electric utilities and the French COGEMA or the British BNFL, but has been agreed as well by an exchange of diplomatic notes between the French Ministry of Foreign Affairs and the German ambassador in Paris, the German Foreign Ministry and the French ambassador as well as the British ambassador in Bonn. The article therefore first examines from the angle of international law the legal obligations binding the states involved, and Germany in particular, in matters of spent fuel reprocessing contracts. The next question arising in this context and discussed by the article is that of whether and how much indemnification can be demanded by the reprocessing companies, or their governments, resp., if Germany should discontinue spent fuel reprocessing and thus might be made liable for breach of the bilateral agreements. (orig/CB) [de

  17. Simplified probabilistic risk assessment in fuel reprocessing

    International Nuclear Information System (INIS)

    Solbrig, C.W.

    1993-01-01

    An evaluation was made to determine if a backup mass tracking computer would significantly reduce the probability of criticality in the fuel reprocessing of the Integral Fast Reactor. Often tradeoff studies, such as this, must be made that would greatly benefit from a Probably Risk Assessment (PRA). The major benefits of a complete PRA can often be accrued with a Simplified Probabilistic Risk Assessment (SPRA). An SPRA was performed by selecting a representative fuel reprocessing operation (moving a piece of fuel) for analysis. It showed that the benefit of adding parallel computers was small compared to the benefit which could be obtained by adding parallelism to two computer input steps and two of the weighing operations. The probability of an incorrect material moves with the basic process is estimated to be 4 out of 100 moves. The actual values of the probability numbers are considered accurate to within an order of magnitude. The most useful result of developing the fault trees accrue from the ability to determine where significant improvements in the process can be made. By including the above mentioned parallelism, the error move rate can be reduced to 1 out of 1000

  18. Fuel reprocessing: Citizens' questions and experts' answers

    International Nuclear Information System (INIS)

    1982-10-01

    In connection with the intention of DWK to erect a fuel reprocessing plant in the Oberpfalz, citizens have asked a great number of questions which are of interest to the general public. They have been collected, grouped into subject categories and answered by experts. (orig./HSCH) [de

  19. Dissolution of mixed oxide fuel as a function of fabrication variables

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution properties of mechanically blended mixed oxide fuel were very dependent on the six fuel fabrication variables studied. Fuel sintering temperature, source of PuO 2 and PuO 2 content of the fuel had major effects: (1) as the sintering temperature was increased from 1400 to 1700 0 C, pellet dissolution was more complete; (2) pellets made from burned metal derived PuO 2 were more completely dissolved than pellets made from calcined nitrate derived PuO 2 which in turn were more completely dissolved than pellets made from calcined nitrate derived PuO 2 ; (3) as the PuO 2 content decreased from 25 to 15 wt % PuO 2 , pellet dissolution was more complete. Preferential dissolution of uranium occurred in all the mechanically blended mixed oxide. Unirradiated mixed oxide fuel pellets made by the Sol Gel process were generally quite soluble in nitric acid. Unirradiated mixed oxide fuel pellets made by the coprecipitation process dissolved completely and rapidly in nitric acid. Fuel made by the coprecipitation process was more completely dissolved than fuel made by the Sol Gel process which, in turn, was more completely dissolved than fuel made by mechanically blending UO 2 and PuO 2 as shown below. Addition of uncomplexed fluoride to nitric acid during fuel dissolution generally rendered all fuel samples completely dissolvable. In boiling 12M nitric acid, 95 to 99% of the plutonium which was going to dissolve did so in the first hour. Irradiated mechanically blended mixed oxide fuel with known fuel fabrication conditions was also subjected to fuel dissolution tests. While irradiation was shown to increase completeness of plutonium dissolution, poor dissolubility due to adverse fabrication conditions (e.g., low sintering temperature) remained after irradiation

  20. Waste form dissolution in bedded salt

    International Nuclear Information System (INIS)

    Kaufman, A.M.

    1980-01-01

    A model was devised for waste dissolution in bedded salt, a hydrologically tight medium. For a typical Spent UnReprocessed Fuel (SURF) emplacement, the dissolution rate wll be diffusion limited and will rise to a steady state value after t/sub eq/ approx. = 250 (1+(1-epsilon 0 ) K/sub D//epsilon 0 ) (years) epsilon 0 is the overpack porosity and K/sub d/ is the overpack sorption coefficient. The steady state dissolution rate itself is dominated by the solubility of UO 2 . Steady state rates between 5 x 10 -5 and .5 (g/year) are achievable by SURF emplacements in bedded salt without overpack, and rates between 5 x 10 -7 and 5 x 10 -3 (g/year) with an overpack having porosity of 10 -2

  1. Remote maintenance in TOR fast reactor fuel reprocessing facility

    International Nuclear Information System (INIS)

    Eymery, R.; Constant, M.; Malterre, G.

    1986-11-01

    The TOR facility which is undergoing commissioning tests has a capacity of 5 T. HM/year which is enough for reprocessing all the Phenix fuel, with an excess capacity which is to be used for other fast reactors fuels. It is the result of enlargement and renovation of the old Marcoule pilot facility. A good load factor is expected through the use of equipment with increased reliability and easy maintenance. TOR will also be used to test new equipment developed for the large breeder fuel reprocessing plant presently in the design stage. The latter objective is specifically important for the parts of the plant involving mechanical equipment which are located in a new building: TOR 1. High reliability and flexibility will be obtained in this building thanks to the attention given to the integrated remote handling system [fr

  2. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  3. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  4. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  5. Roles of programmable logic controllers in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Mishra, Hrishikesh; Balakrishnan, V.P.; Pandya, G.J.

    1999-01-01

    Fuel charging facility is another application of Programmable Logic Controllers (PLC) in fuel reprocessing plants, that involves automatic operation of fuel cask dolly, charging motor, pneumatic doors, clutches, clamps, stepper motors and rod pushers in a pre-determined sequence. Block diagram of ACF system is given for underlining the scope of control and interlocks requirements involved for automation of the fuel charging system has been provided for the purpose at KARP Plant, Kalpakkam

  6. Characterization of released radionuclides in the gas phase during cutting and dissolution of irradiated fuel elements of CANDU type reactors at EUREX pilot plant

    International Nuclear Information System (INIS)

    Alonzo, G.; Castellani, F.; Curzio, G.; Gentili, A.; Pieve, L.

    1982-01-01

    This article deals with measurements on off-gas during reprocessing of Pickering spent fuel elements. On-line equipment, samplers and analysis systems are described. Airborne particulates collected on filters and iodine 129 collected on impregnated charcoal are analyzed by gamma spectrometry, krypton 85 is analyzed by on-line gamma counting and tritium by radiochromatography. Activity and concentration are given for each isotope during mechanical process and dissolution and for the gaseous effluent in the different sampling points. Results are compared with activity in the spent fuel calculated by the ORIGEN code

  7. Reprocessing of irradiated fuel: pros and cons

    International Nuclear Information System (INIS)

    Lebedev, O.G.; Novikov, V.M.

    1991-01-01

    The acceptable-safety nuclear reactors (APWR, LMFBR, MSBR, MSCR) can be provided by the enrichment industry and by plutonium reserves. But steady accumulation of spent fuel will inevitably make to return to the problems of fuel recycle. PUREX-processing increases a danger of radionuclides spreading due to the presence of large buffer tanks. Using of compact fluoride - volatility process will sharply reduce a nuclide leakage likewise permit to reprocess a fuel with a burnup as high as possible. Success of a powerful robots development give an opportunity to design a fluoride-volatility plant twice cheaper than PUREX. (author)

  8. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  9. A comprehensive fuel nuclide analysis at the reprocessing plant

    International Nuclear Information System (INIS)

    Arenz, H.J.; Koch, L.

    1983-01-01

    The composition of spent fuel can be determined by various methods. They rely partially on different information. Therefore the synopsis of the results of all methods permits a detection of systematic errors and their explanation. Methods for determining the masses of fuel nuclides at the reprocessing input point range from pure calculations (shipper data) to mere experimental determinations (volumetric analysis). In between, a mix of ''fresh'' experimental results and ''historical'' data is used to establish a material balance. Deviations in the results obtained by the individual methods can be attributed to the information source, which is unique for the method in question. The methodology of the approach consists of three steps: by paired comparison of the operator analysis (usually volumetric or gravimetric) with remeasurements the error components are determined on a batch-by-batch basis. Using the isotope correlation technique the operator data as well as the remeasurements are checked on an inter-batch basis for outliers, precision and bias. Systematic errors can be uncovered by inter-lab comparison of remeasurements and confirmed by using historical information. Experience collected during the reprocessing of LWR fuel at two reprocessing plants prove the flexibility and effectiveness of this approach. An example is presented to demonstrate its capability in detecting outliers and determining systematic errors. (author)

  10. Reprocessing in the thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.

    1984-01-01

    An overview of the authors personal view is presented on open questions in regard to still required research and development work for the thorium fuel cycle before its application in a technical-industrial scale may be tackled. For a better understanding, all stations of the back-end of the thorium fuel cycle are briefly illustrated and their special features discussed. They include storage and transportation measures, all steps of reprocessing, as well as the entire radioactive waste treatment. Knowledge gaps are, as far as they are obvious, identified and proposals put forward for additional worthwile investigations. (orig.) [de

  11. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  12. Investigation of the gas formation in dissolution process of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Zhang Qinfen; Liao Yuanzhong; Chen Yongqing; Sun Shuyun; Fan Yincheng

    1987-12-01

    The gas formation in dissolution process of two kinds of nuclear fuels was studied. The results shows that the maximum volume flow released from dissolution system is composed of two parts. One of them is air remained in dissolver and pushed out by acid vapor. The other is produced in dissolution reaction. The procedure of calculating the gas amount produced in dissolution process has been given. It is based on variation of components of dissolution solution. The gas amount produced in dissolution process of spent UO 2 fuel elements was calculated. The condenser system and loading volume of disposal system of tail gas of dissolution of spent fuel were discussed

  13. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  14. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  15. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  16. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  17. Present state of reprocessing

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The operation of several reprocessing plants - industrial size and pilot plants - has made it possible to build up substantial experience in the processing of irradiated fuels. More than 28,000 tons of fuels from gas-graphite reactors were processed on an industrial basis in Britain and France. For the treatment of both metallic fuels and high burn-up UO 2 -fuels, a solvent extraction process is applied which is based on the Purex process with a TBP kerosene mixture as extractant. A shear-leach technique is used for the break-down of the bundle elements and dissolution of the uranium oxide in nitric acid. Mechanically agitated extractors and pulsed columns have proved to be reliable equipment. The products are uranyl nitrate and plutonium nitrate. Process chemicals are recycled to minimize the volume of radioactive waste and precautions are taken to prevent uncontrolled escape of radioactivity. The technical status will be described as well as experience from pilot operation. (orig.) [de

  18. Policy in France regarding the back-end of the fuel cycle reprocessing/recycling route

    International Nuclear Information System (INIS)

    Gloaguen, A.; Lenail, B.

    1991-01-01

    The decision taken in early 1970s to base the French power policy on the use of pressurized water reactors also included the strategy for the back end of the nuclear fuel cycle based on reprocessing, waste conditioning for the final disposal in the most suitable form in terms of safety and plutonium recycling to fast breeder reactors. Twenty years have elapsed, and substantial development and investment have been made. New evidences have emerged especially regarding breeder development, and the initial choice has been proved to be sound. EDF and COGEMA, the French utility and fuel cycle companies, respectively, are working together in order to take the best advantage of past efforts. The good behavior of MOX fuel in EDF reactors and the excellent start of the UP3 reprocessing plant of La Hague, which was completed and commissioned in August, 1990, made EDF and COGEMA extremely confident for future decision. The French choice made in favor of fuel reprocessing the history of fuel reprocessing in France, the policy concerning the back end of nuclear fuel cycle of EDF, and the present consideration and circumstances on this matter are reported. (K.I.)

  19. The transport of irradiated fuel. An activity closely related to reprocessing

    International Nuclear Information System (INIS)

    Lenail, B.; Curtis, H.W.

    1987-01-01

    With a proven reprocessing capacity of 400 tonnes of uranium per year and the rapid expansion of this capacity, the need to feed the reprocessing plants at La Hague has become vital to ensure continuous and economic reprocessing. The programming of transports by the reprocessor and transporter to ensure a constant supply of fuel for reprocessing has therefore become increasingly important. These transports use the public roads and the railway system and the reprocessor and transporter must cooperate in maintaining the highest possible standards of safety. Safety must take priority over all other factors, including the economics of the operation

  20. Remotex and servomanipulator needs in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Garin, J.

    1981-01-01

    Work on the conceptual design of a pilot-scale plant for reprocessing breeder reactor fuels is being performed at Oak Ridge National Laboratory. The plant design will meet all current federal regulations for repocessing plants and will serve as prototype for future production plants. A unique future of the concept is the incorporation of totally remote operation and maintenance of the process equipment within a large barn-like hot cell. This approach, caled Remotex, utilizes servomanipulators coupled with television viewing to extend man's capabilities into the hostile cell environment. The Remotex concept provides significant improvements for fuel reprocessing plants and other nuclear facilities in the areas of safeguarding nuclear materials, reducing radiation exposure, improving plant availability, recovering from unplanned events, and plant decommissioning

  1. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  2. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    International Nuclear Information System (INIS)

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-01-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R and D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R and D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants

  3. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. Instead of releasing the 85 Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing 85 Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of 85 Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for 85 Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated 3 H and 14 C also encourage delaying implementation of the 85 Kr recovery in the early plants

  4. Radioactive waste management in a fuel reprocessing facility in fiscal 1982

    International Nuclear Information System (INIS)

    1984-01-01

    In the fuel reprocessing facility of the Power Reactor and Nuclear Fuel Development Corporation, radioactive gaseous and liquid waste are released not exceeding the respective permissible levels. Radioactive concentrated solutions are stored at the site. Radioactive solid waste are stored appropriately at the site. In fiscal 1982, the released quantities of radioactive gaseous and liquid waste were both below the permissible levels. The results of radioactive waste management in the fuel reprocessing facility in fiscal 1982 are given in the tables: the released quantities of radioactive gaseous and liquid waste, the produced quantities of radioactive solid waste, and the stored quantities of radioactive concentrated solutions and of radioactive solid waste as of the end of fiscal 1982. (Mori, K.)

  5. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  6. The velocity dependent dissolution of spent nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Nutt, W.M.

    1990-02-01

    A model describing the dissolution of fission products and transuranic isotopes from spent nuclear fuel into flowing ground water has been developed. This model is divided into two parts. The first part of the model calculates the temperature within a consolidated spent fuel waste form at a given time and ground water velocity. This model was used to investigate whether water flowing at rates representative of a geological repository located at Yucca Mountain, Nevada, will cool a wasteform consisting of consolidated spent nuclear fuel pins. Time and velocity dependent temperature profiles were generated. These profiles were input into the second model, which calculates the dissolution rate of waste isotopes from a spent fuel pin. Two dissolution limiting processes were modeled; the processes are dissolution limited by the solubility limit of an isotopes in the ground water, and dissolution limited by the diffusion of waste isotopes from the interior of a spent fuel pin to the surface where dissolution can occur

  7. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  8. A review of reprocessing, partitioning, and transmutation of spent nuclear fuel and the implications for Canada

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2006-01-01

    The current status of the reprocessing, partitioning, and transmutation of used nuclear fuel are reviewed in the context of assessing the possible application of these technologies to used CANDU fuel. The status of commercial reprocessing is briefly surveyed and recent progress in world R and D programs on the transmutation of FP's and actinides using Accelerator Driven Systems is summarized. The implications of reprocessing for Canada are explored from the point of view of a long strategy for managing used CANDU fuel in terms of the costs of initiating reprocessing domestically at some time in the future including public and occupational radiation doses, and the wastes generated. (author)

  9. Safety aspects of solvent nitration in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Wilbourn, R.G.

    1977-06-01

    Reprocessing of HTGR fuels requires evaporative concentration of uranium and thorium nitrate solutions. The results of a bench-scale test program conducted to assess the safety aspects of planned concentrator operations are reported

  10. On permission of reprocessing project change at the Reprocessing Works of the Japan Nuclear Fuel Ltd. (Reply)

    International Nuclear Information System (INIS)

    1997-01-01

    The Nuclear Safety Commission replied as follows to the Prime Minister on July 14, 1997 on permission of reprocessing project change at the Reprocessing Works of the Japan Nuclear Fuel Ltd. inquired on Dec. 26, 1996. Contents of the inquiry consisted of change of refinery facility and its related instruments, integration of low level wasted liquid treating instrument and change of low level solid waste treating instrument, integration of high level wasted liquid storing building and high level wasted liquid glassification building, installation of used fuel transporting container maintenance instrument and its relating instruments, and so forth. As a result of careful discussion at the Commission for these items, they were admitted to be valid on her technical ability and her safety. (G.K.)

  11. A survey of methods to immobilize tritium and carbon-14 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1991-02-01

    This report reviews the literature on methods to separate and immobilize tritium ( 3 H) and carbon-14 ( 14 C) released from U0 2 fuel in a nuclear fuel reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future application in Canada. The calculated inventories of both 3 H and 14 C in used fuel are low; special measures to limit releases of these radionuclides from reprocessing plants are not currently in place, and may not be necessary in future. If required, however, several possible approaches to the concentration and immobilization of both radionuclides are available for development. Technology to control these radionuclides in reactor process streams is in general more highly developed than for reprocessing plant effluent, and some control methods may be adaptable to reprocessing applications

  12. Stabilization of neptunium valence states in nitric media for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Feldhaus, P.

    1996-12-01

    A possibility of standarizing the extraction-behavior of Neptunium during the reprocessing of spent nuclear fuel corresponding to PUREX-Process was investigated. The aim of the work was a qualitative dirigation of the Transuraniumelement (TRUE) into the raffinat of the first extraction cycle by a complete redoxconversion of the Neptunium valence states to unextractable Np(V). In the beginning the theoretical and experimental research focussed on the redoxchemistry of the actinide during the fuel dissolution and the feed preparation. Thereby the nitrous acid, which is produced by a radiological, photochemical and reductive degradation of the nitric acid, revealed an ambivalent influence on the Neptunium valences. By a short-term increase in HNO 2 -concentration the Np(V)-fraction could be obviously risen. The use of some stabilizing reagents inhibited a later reoxidation to Np(VI) also catalyzed by nitrous acid. The urea used for this purpose also led to a further increase in the obtained conversion rates due to a Np(VI)-reduction. The analysis of the valence distribution was performed by an extraction method. This had been compared to chromatographic separation in some preliminary investigations and had turned out to be comparably reliable and easily manageable. (orig.) [de

  13. Role of the consolidated fuel reprocessing program in the United States Breeder Reactor Program

    International Nuclear Information System (INIS)

    Ballard, W.W.; Burch, W.D.

    1980-01-01

    While present US policy precludes the commercial reprocessing of LWR fuels and the recycle of plutonium, the policy does encompass the need to continue a program to develop the technology for reprocessing breeder fuels. Some questions have again risen this year as to the pace of the entire breeder program, including recycle, and the answers are evolving. This paper and the other companion papers which describe several aspects of the Consolidated Fuel Reprocessing Program take a longer-range perspective on the total program. Whether the program is implemented in the general time frame described is dependent on future government actions dedicated to carrying out a systematic program that would permit breeders to be commercialized early in the next century

  14. Ministerial ordinance on the establishment of a reserve fund for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    1984-01-01

    The ministerial ordinance provides for a reserve fund for spent nuclear fuel reprocessing, according to the Electricity Enterprises Act. The Government designates an electricity enterprise that must deposit a reserve fund for spent nuclear fuel reprocessing. The electricity enterprise concerned must deposit a certain sum of money as a reserve fund which is the payment left over from spent fuel reprocessing at the end of a fiscal year minus the same at the end of the preceding year less a certain sum, when the former exceeds the latter. Then, concerning the remainder of the reserve fund in the preceding year, a certain sum must be subtracted from this reserve fund. (Mori, K.)

  15. Why reprocess

    International Nuclear Information System (INIS)

    Greenwood, T.

    1977-01-01

    Prospective costs of reprocessing, waste management, and mixed oxide fuel fabrication have risen so much that the costs of U/P recycle and of spent fuel storage are nearly equal. This paper reviews the current state of the reprocessing industry, with a list of facilities all over the world, and examines the incentives and disincentives other than short-term economics that will affect the decision of states to acquire their own reprocessing facilities. Finally, it examines the possibility of avoiding a widespread commercial reprocessing industry

  16. Design aspects of water usage in the Windscale nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wharton, J.; Bullock, M.J.

    1982-01-01

    The safeguard requirements of a nuclear fuel reprocessing plant place unique constraints on a designer which, in turn, affect the scope for the exercise of water economy. These constraints are examined within the context of the British Nuclear Fuels Limited reprocessing plants at Windscale and indicate the scope for water conservation. The plants and their design principles are described with particular reference to water services and usage. Progressive design development is discussed to illustrate the increasing importance of water economy. (author)

  17. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  18. Reprocessing of spent nuclear fuels. Status and trends

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs

  19. EDRP public local inquiry, UKAEA/BNFL precognition on: PFR fuel reprocessing and radioactive waste management at Dounreay

    International Nuclear Information System (INIS)

    Pugh, O.

    1986-01-01

    A description of PFR fuel reprocessing at Dounreay is given, including brief details of fuel assembly transport, dismantling, chemical separation processes and reprocessing experience. The origin of radioactive wastes from PFR reprocessing, and the types of radioactive waste are outlined. The management of radioactive waste, including storage, treatment and disposal is described. (U.K.)

  20. Back-end of the nuclear fuel cycle. A comparison of the direct disposal and reprocessing options

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.

    1997-01-01

    Based on the need to address public concerns, the need to ensure long-term safety and an ethical concern for future generations, many countries are developing technology to dispose of nuclear fuel waste. The waste substances in used fuel can be disposed of either by directly disposing of the used fuel assemblies themselves, or by disposing of the long-lived waste from fuel reprocessing. The basic thesis of this paper is that the direct disposal of either used fuel or of the long-lived heat-generating and non-heat generating waste that arise from reprocessing is technically and economically feasible and that both options will meet the fundamental objectives of protecting human health and the environment. Decisions about whether, or when, to reprocess used fuel, or about whether to dispose of used fuel directly, are not fundamentally waste management issues. (author)

  1. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgas composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.

  2. Fuel reprocessing at THORP: profitability and public liabilities

    International Nuclear Information System (INIS)

    Berkhout, F.

    1992-01-01

    Since the economics of British Nuclear Fuels Limited's (BNFL) Thermal Oxide Reprocessing Plant (THORP) were analysed in an earlier report, a number of domestic and international developments have affected the prospects for THORP. The present report outlines these changes, and analyses their implications for the profits and public liabilities associated with the project. Timing is of some significance because once THORP becomes radioactive (planned to occur in March 1993) the bill for decommissioning the plant will rise from a trivial sum to a very large one - Pound 900 million (1992 prices) in BNFL's own estimates. The report begins with a brief outline of reprocessing and the THORP project. It then examines the market prospects for reprocessing beyond THORP's first ten years and revises BNFL's own projections. It then considers the potential profitability of THORP in relation to various possible cost increases and finally outlines the possible implications of different THORP scenarios for the public purse. (author)

  3. Thorium base fuels reprocessing at the L.P.R. (Radiochemical Processes Laboratory) experimental plant

    International Nuclear Information System (INIS)

    Almagro, J.C.; Dupetit, G.A.; Deandreis, R.A.

    1987-01-01

    The availability of the LPR (Radiochemical Processes Laboratory) plant offers the possibility to demonstrate and create the necessary technological basis for thorium fuels reprocessing. To this purpose, the solvents extraction technique is used, employing TBP (at 30%) as solvent. The process is named THOREX, a one-cycle acid, which permits an adequate separation of Th 232 and U 233 components and fission products. For thorium oxide elements dissolution, the 'chopp-leach' process (installed at LPR) is used, employing a NO 3 H 13N, 0.05M FH and 0.1M Al (NO 3 ) 3 , as solvent. To adapt the pilot plant to the flow-sheet requirements proposed, minor modifications must be carried out in the interconnection of the existing decanting mixers. The input of the plant has been calculated by Origin Code modified for irradiations in reactors of the HWR type. (Author)

  4. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  5. Important matter by confirmation of administrative office regarding repair of enriched uranium dissolution tanks in reprocessing plant of Power Reactor and Nuclear Fuel Development Corp

    International Nuclear Information System (INIS)

    1985-01-01

    The Nuclear Safety Commission acknowledged the policy of handling this matter by Science and Technology Agency after having received a report from the Committee on Examination of Nuclear Fuel Safety on April 11, 1985, and carried out the deliberation. The investigation and deliberation of this matter were instructed by the NSC to the Committee on January 24, 1985. It was confirmed that the repair welding applied to the place of leak of the dissolution tanks would not hinder the expected test dissolution, and if the leak occurs, the measures to detect it properly have been taken. In order to confirm the soundness of the repair welding, the Power Reactor and Nuclear Fuel Development Corp. is to carry out the test dissolution for about 400 hours per one tank dividing into three runs, and the observation of appearance is to be made after every run. The time of test dissolution, the items and contents of inspection were confirmed to be adequate. Moreover, the immersion corrosion test of test pieces and the long term corrosion test in a laboratory are to be carried out. (Kako, I.)

  6. Fuel reprocessing plant - no solution for the economy of the region

    International Nuclear Information System (INIS)

    Elvers, G.

    1986-01-01

    Both for the construction and operation stage, the direct and indirect impact of the fuel reprocessing plant on employment on the whole will be negative. It is not altogether certain either that there will be no adverse effects for the areas of tourism. The top organization of German trade unions (DGB) holds that a different structure-political concept from the one represented by the large-scale project of the fuel reprocessing plant would be more appropriate for the region. Employment in the steel and construction industries must be safeguarded by corresponding programmes, and new employment must be created in small- and medium-size companies. (DG) [de

  7. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  8. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  9. Comparison of uranium dissolution rates from spent fuel and uranium dioxide

    International Nuclear Information System (INIS)

    Steward, S.A.; Gray, W.J.

    1994-01-01

    Two similar sets of dissolution experiments, resulting from a statistical experimental design were performed in order to examine systematically the effects of temperature (25--75 degree C), dissolved oxygen (0.002-0.2 atm overpressure), pH (8--10) and carbonate concentrations (2--200 x 10 -4 molar) on aqueous dissolution of UO 2 and spent fuel. The average dissolution rate was 8.6 mg/m 2 ·day for UO 2 and 3.1 mg/m 2 ·day for spent fuel. This is considered to be an insignificant difference; thus, unirradiated UO 2 and irradiated spent fuel dissolved at about the same rate. Moreover, regression analyses indicated that the dissolution rates of UO 2 and spent fuel responded similarly to changes in pH, temperature, and carbonate concentration. However, the two materials responded very differently to dissolved oxygen concentration. Approximately half-order reaction rates with respect to oxygen concentration were found for UO 2 at all conditions tested. At room temperature, spent fuel dissolution (reaction) rates were nearly independent of oxygen concentration. At 75 degree C, reaction orders of 0.35 and 0.73 were observed for spent fuel, and there was some indication that the reaction order with respect to oxygen concentration might be dependent on pH and/or carbonate concentration as well as on temperature

  10. Dissolution flowsheet for high flux isotope reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Foster, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  11. Reprocessed and combined thorium fuel cycles in a PER system with a micro heterogeneous approaches

    International Nuclear Information System (INIS)

    Monteiro, Fabiana B.A.; Castro, Victor F.; Faria, Rochkhudson B. de; Pereira, Claubia; Fortini, Angela

    2015-01-01

    A micro heterogeneous approaches were used to study the behavior of reprocessed fuel spiked with thorium in a PWR fuel element considering (TRU-Th) cycle. The goal is to achieve a higher burnup using three different configurations to model the fuel element using SCALE 6.0. The reprocessed fuels were obtained using the ORIGEN 2.1 code from a spent PWR standard fuel (33,000 MWd/tHM burned), with 3.1% of initial enrichment. The spent fuel remained in the cooling pool for five years and then reprocessed using the UREX+ technique. Three configurations of micro heterogeneous approaches were analyzed, and the k inf and plutonium evolution during the burnup were evaluated. The preliminary results show that the behavior of advanced fuel based on transuranic elements spiked with thorium, and micro heterogeneous approach are satisfactory in PWRs, and the configuration that use a combination of Th and TRU (configuration 1) seems to be the most promising once has higher values for k inf during the burnup, compared with other configurations. (author)

  12. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, W.P.; Miraglia, F.J. Jr. (eds.)

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts.

  13. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    International Nuclear Information System (INIS)

    Bishop, W.P.; Miraglia, F.J. Jr.

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts

  14. Oxidative dissolution of ADOPT compared to standard UO2 fuel

    International Nuclear Information System (INIS)

    Nilsson, Kristina; Roth, Olivia; Jonsson, Mats

    2017-01-01

    In this work we have studied oxidative dissolution of pure UO 2 and ADOPT (UO 2 doped with Al and Cr) pellets using H 2 O 2 and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO 2 and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO 2 pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO 2. This could be attributed to differences in exposed surface area. However, fission products with low UO 2 solubility display a higher relative release from ADOPT fuel compared to standard UO 2 -fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO 2 which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO 2 fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  15. Ventilating system for reprocessing of nuclear fuel rods

    International Nuclear Information System (INIS)

    Szulinski, M.J.

    1981-01-01

    In a nuclear facility such as a reprocessing plant for nuclear fuel rods, the central air cleaner discharging ventilating gas to the atmosphere must meet preselected standards not only as to the momentary concentration of radioactive components, but also as to total quantity per year. In order to comply more satisfactorily with such standards, reprocessing steps are conducted by remote control in a plurality of separate compartments. The air flow for each compartment is regulated so that the air inventory for each compartment has a slow turnover rate of more than a day but less than a year, which slow rate is conveniently designated as quasihermetic sealing. The air inventory in each such compartment is recirculated through a specialized processing unit adapted to cool and/or filter and/or otherwise process the gas. Stale air is withdrawn from such recirculating inventory and fresh air is injected (eg., By the less than perfect sealing of a compartment) into such recirculating inventory so that the air turnover rate is more than a day but less than a year. The amount of air directed through the manifold and duct system from the reprocessing units to the central air cleaner is less than in reprocessing plants of conventional design

  16. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  17. Consolidated fuel reprocessing program. Progress report, January 1-March 31, 1981

    International Nuclear Information System (INIS)

    1981-06-01

    Progress and activities are reported on process development, laboratory R and D, engineering research, engineering systems, Integrated Equipment Test (IET) facility operations, and HTGR fuel reprocessing

  18. Dissolution of Used Nuclear Fuel Using a TBP/N-Paraffin Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shehee, T. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DelCul, G. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-02

    The dissolution of unirradiated used nuclear fuel (UNF) pellets pretreated for tritium removal was demonstrated using a tributly phosphate (TBP) solvent. Dissolution of pretreated fuel in TBP could potentially combine dissolution with two cycle of solvent extraction required for separating the actinides and lanthanides from other fission products. Dissolutions were performed using UNF surrogates prepared from both uranyl nitrate and uranium trioxide produced from the pretreatment process by adding selected actinide and stable fission product elements. In laboratory-scale experiments, the U dissolution efficiency ranged from 80-99+% for both the nitrate and oxide surrogate fuels. On average, 80% of the Pu and 50% of the Np and Am in the nitrate surrogate dissolved; however, little of the transuranic elements dissolved in the oxide form. The majority of the 3+ lanthanide elements dissolved. Only small amounts of Sr (0-1.6%) and Mo (0.1-1.7%) and essentially no Cs, Ru, Zr, or Pd dissolved.

  19. A literature survey on the dissolution mechanism of spent fuel under disposal conditions

    International Nuclear Information System (INIS)

    Ollila, Kaija

    1989-06-01

    In Finland spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. As part of the YJT (Nuclear Waste Commission of Finnish Power Companies) - program, the solubiliy and dissolution mechanisms of unirradiated UO 2 are experimentally investigated as a function of groundwater conditions. This study is a literature survey on the leaching and dissolution studies carried out with spent fuel. It consists first a review on characterization studies of spent fuel. Then the solubilities and release mechanisms of the radionuclides from spent fuel in granitic or related groundwaters are discussed, including the dissolution of UO 2 matrix, and the leaching of fission products and actinides. Lastly approaches to modelling the dissolution of spent fuel are shortly discussed

  20. Radioactive wastes management in fiscal year 1983 in the fuel reprocessing plant

    International Nuclear Information System (INIS)

    1985-01-01

    In the nuclear fuel reprocessing plant of Power Reactor and Nuclear Fuel Development Corporation, the releases of radioactive gaseous and liquid wastes are so managed not to exceed the respective objective release levels. Of the radioactive liquid wastes, the high level concentrated wastes are stored in tanks and the low level wastes are stored in tanks or asphalt solidified. For radioactive solid wastes, high level solid wastes are stored in casks, low level solid wastes and asphalt solids in drums etc. The releases of radioactive gaseous and liquid wastes in the fiscal year 1983 were below the objective release levels. The radioactive wastes management in the fuel reprocessing plant in fiscal year 1983 is given in tables, the released quantities, the stored quantities, etc. (Mori, K.)

  1. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  2. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  3. Chemical engineering in fuel reprocessing. The French experience

    International Nuclear Information System (INIS)

    Viala, M.; Sombret, C.; Bernard, C.; Miquel, P.; Moulin, J.P.

    1992-01-01

    Reprocessing is the back-end of the nuclear fuel cycle, designed to recover valuable fissile materials, especially plutonium, and to condition safely all the wastes ready for disposal. For its new commercial reprocessing plants (UP 3 and UP 2 800) COGEMA decided to include many engineering innovations as well as new processes and key-components developed by CEA. UP 3 is a complete new plant with a capacity of 800 t/y which was put in operation in August 1990. UP 2 800 is an extension of the existing UP 2 facility, designed to achieve the same annual capacity of 800 t/y, to be put in operation at the end of 1993 by the commissioning of a new head-end and highly active chemical process facilities

  4. Characterization of spent fuel hulls and dissolution residues

    International Nuclear Information System (INIS)

    Gue, J.P.; Andriessen, H.

    1985-04-01

    The main results obtained within the framework of CEC programmes, by KFK, UKAEA and CEA, are reviewed concerning the characterization of dissolution wastes. The contents were determined of the main radioactive emitters contained in the hulls originating in a whole fuel assembly sampled at the La Hague plant, or from Dounreay PFR fuels. Radiochemical characterizations were carried out by different methods including neutron emission measurement, alpha and beta-gamma spectrometry, and mass spectrometry. Decontamination of the hulls by using rinsings and supplementary treatment were also dealt with. The ignition and explosion risks associated with the zircaloy fines formed during the shearing of LWR fuels were examined, and the ignition properties of irradiated and unirradiated zircaloy powders were determined and compared. The physical properties and compositions of the dissolution residues of PFR fuels were defined, in order to conduct tests on the immobilization of these wastes in cement

  5. Engineering study: Fast Flux Test Facility fuel reprocessing

    International Nuclear Information System (INIS)

    Beary, M.M.; Raab, G.J.; Reynolds, W.R. Jr.; Yoder, R.A.

    1974-01-01

    Several alternatives were studied for reprocessing FFTF fuels at Hanford. Alternative I would be to decontaminate and trim the fuel at T Plant and electrolytically dissolve the fuel at Purex. Alternative II would be to decontaminate and shear leach the fuels in a new facility near Purex. Alternative III would be to decontaminate and store fuel elements indefinitely at T Plant for subsequent offsite shipment. Alternative I, 8 to 10 M$ and 13 quarter-years; for Alternative II, 24 to 28 M$ and 20 quarter-years; for Alternative III, 3 to 4 M$ and 8 quarter-years. Unless there is considerable slippage in the FFTF shipping schedule, it would not be possible to build a new facility as described in Alternative II in time without building temporary storage facilities at T Plant, as described in Alternative III

  6. The fuel reprocessing plant at Wackersdorf

    International Nuclear Information System (INIS)

    Held, M.

    1986-01-01

    For a more systematic discussion about the fuel reprocessing plant at Wackersdorf, the colloquium tried to cover the most important questions put forward in the controversies: economic efficiency and energy-political needs; safety and ecological repercussions; inner safety and consequences for basic rights and the regional economic structure; majority decisions and participation of the population of the region. Elements of evaluation are the conservation of resources, health, economic efficiency, and citizens' rights of liberty. The related basic ethical questions are considered. The 18 contributions are individually recorded in the data base. (DG) [de

  7. Pyrochemical reprocessing of molten salt fast reactor fuel: focus on the reductive extraction step

    Directory of Open Access Journals (Sweden)

    Rodrigues Davide

    2015-12-01

    Full Text Available The nuclear fuel reprocessing is a prerequisite for nuclear energy to be a clean and sustainable energy. In the case of the molten salt reactor containing a liquid fuel, pyrometallurgical way is an obvious way. The method for treatment of the liquid fuel is divided into two parts. In-situ injection of helium gas into the fuel leads to extract the gaseous fission products and a part of the noble metals. The second part of the reprocessing is performed by ‘batch’. It aims to recover the fissile material and to separate the minor actinides from fission products. The reprocessing involves several chemical steps based on redox and acido-basic properties of the various elements contained in the fuel salt. One challenge is to perform a selective extraction of actinides and lanthanides in spent liquid fuel. Extraction of actinides and lanthanides are successively performed by a reductive extraction in liquid bismuth pool containing metallic lithium as a reductive reagent. The objective of this paper is to give a description of the several steps of the reprocessing retained for the molten salt fast reactor (MSFR concept and to present the initial results obtained for the reductive extraction experiments realized in static conditions by contacting LiF-ThF4-UF4-NdF3 with a lab-made Bi-Li pool and for which extraction efficiencies of 0.7% for neodymium and 14.0% for uranium were measured. It was concluded that in static conditions, the extraction is governed by a kinetic limitation and not by the thermodynamic equilibrium.

  8. NO/sub x/ emissions from Hanford nuclear fuels reprocessing plants

    International Nuclear Information System (INIS)

    Pajunen, A.L.; Dirkes, R.L.

    1978-01-01

    Operation of the existing Hanford nuclear fuel reprocessing facilities will increase the release of nitrogen oxides (NO/sub x/) to the atmosphere over present emission rates. Stack emissions from two reprocessing facilities, one waste storage facility and two coal burning power plants will contain increased concentrations of NO/sub x/. The opacity of the reprocessing facilities' emissions is predicted to periodically exceed the State and local opacity limit of twenty percent. Past measurements failed to detect differences in the ambient air NO/sub x/ concentration with and without reprocessing plant operations. Since the facilities are not presently operating, increases in the non-occupational ambient air NO/sub x/ concentration were predicted from theoretical diffusion models. Based on the calculations, the annual average ambient air NO/sub x/ concentration will increase from the present level of less than 0.004 ppM to less than 0.006 ppM at the Hanford site boundaries. The national standard for the annual mean ambient air NO 2 concentration is 0.05 ppM. Therefore, the non-occupational ambient air NO/sub x/ concentration will not be increased to significant levels by reprocessing operations in the Hanford 200 Areas

  9. Radiation protection experience during active commissioning of the Thorp reprocessing plant

    International Nuclear Information System (INIS)

    Spour, K.; Hutton, E.

    1996-01-01

    BNFL's Thermal Oxide Reprocessing Plant (Thorp) reprocesses uranium oxide fuel assemblies which have been irradiated in thermal reactors in the UK and overseas. Plans for the plant were first announced in 1974. Application for planning permission was submitted in 1977, and government permission to construct the plant was granted after the Windscale inquiry in 1977. The plant was given the license to start active commissioning in head end in early 1994, and then in chemical plants in late 1994. Presently the whole of the process is being challenged in a planned commissioning strategy which will last into 1996. Thorp is designed to reprocess the spent oxide fuel into uranium trioxide (UO 3 ) and plutonium dioxide (PuO 2 ). The Thorp complex can be essentially broken down into three distinct areas: Thorp receipt and storage provides pond storage for fuel awaiting reprocessing in Thorp. Head end fuel is transferred from receipt and storage into the feed pond where it is monitored to check fissile content, burn up and cooling time. The individual fuel assemblies for LWR fuel, or cans in the case of AGR fuel, are transferred onto the shear elevator and carried up to the shear cave. The fuel is sheared into small lengths to optimize the dissolution of the fuel inside the cladding. The sheared fuel and cladding debris is directed via a chute into one of three dissolvers, each with a nominal 1.8 teU capacity and dissolved in 8M nitric acid for approximately 16 hours. The cladding hulls are retained in a removable basket and sent for encapsulation. Insoluble fission products and fine particles of cladding are removed by centrifugation. Clarified dissolver solution is then accounted for by measurements taken for volume, mass and isotopic composition. Following this, the solution is transferred to buffer storage tarns and fed onto the chemical separation area. The liquor is transferred to the chemical separation area where it undergoes first cycle separation in pulsed columns

  10. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  11. Reprocessing decision

    International Nuclear Information System (INIS)

    Heising, C.D.

    1978-01-01

    The United States must decide whether to permit, delay, or prohibit the reprocessing and recycling of nuclear spent fuel. To permit reprocessing would allow recycle as early as 1985; to delay the decision for a later administration to deal with means spent fuel would mount up at nuclear reactor sites; to prohibit would eliminate recycling and mandate permanent storage. Bayesian decision analysis was used to examine reprocessing costs associated with risks and economic benefits. Three distinct categories of risk that are important in the nuclear fuel cycle are discussed. These are: health, environment, and safety risks; nuclear theft and sabotage; and nuclear weapons proliferation risks. Results are discussed from comparing nine routes to weapons-usuable mterial available to nonweapons states that desire a nuclear capability. These are: production reactor and military reporcessor; research reacotr and military reprocessor; power plant plus military reprocessor or commercial reprocessor; enrichment (centrifuge, gaseous diffusion, electromagnetic separation, or aerodynamic jet cascade); and accelerator. It was found that the commercial power reactor-commercial reprocessor route is comparatively unattractive to a nonweapons state. In summary, allowing nuclear fuel reprocessing to go forward in the United States can be expected to increase the costs to society by a maximum $360 million a year. This is approximately one-seventh of the expected benefit (reduced electricity bills) to be dderived by society from closing the fuel cycle. It appears that the permitting reprocessing now is logically preferable to delaying or prohibiting the technology, the author concludes

  12. Reprocessing

    International Nuclear Information System (INIS)

    Couture, J.; Rougeau, J.-P.

    1987-01-01

    The course of development of a comprehensive nuclear power industry has its own pace which implies the timely progressive and consistent mastery of each industrial step. In the nuclear fuel it is not surprising that the back-end services have lastly reached the industrial stage. In France, we have now fully completed the industrial demonstration of the closed fuel cycle. Our experience covers all necessary steps : transportation of spent fuel, storage, reprocessing, waste conditioning, recovered uranium recycling, plutonium recycling in thermal MOX fuels, plutonium-based fuel for FBR. While FBR development is a long term target, recycling of fissile materials in present LWR reactors appears to be a source of noticable savings. In the meantime rational management of waste material is the key for increased safety and better environment protection. Reprocessing activity is certainly the major achievement of the back-end strategy. The proven efficiency of this technique as it is implemented at La Hague facility gives the full assurance of a smooth operation of the under completion UP3 unit. The base-load management system which applies during the first ten years of its operation will make possible a noticable reduction of the commercial price for reprocessing services by the end of the century. Industrial maturity being confirmed, economic maturity is now the outstanding merit of the reprocessing and recycling strategy. It is a permanent challenge, to which the response is definitely positive in the sense of reducing the nuclear KWh production cost. (author)

  13. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  14. Consolidated fuel reprocessing program. Progress report, July 1-September 30, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    Technical progress is reported in overview fashion in the following areas: process development, laboratory R and D, engineering research, engineering systems, integrated equipment test facility (IET) operations, and HTGR fuel reprocessing

  15. Reprocessing: experience and future outlooks

    International Nuclear Information System (INIS)

    Rapin, M.

    1981-01-01

    It is shown that reprocessing is the best way to cope with irradiated fuels since it provides an optimized waste conditioning for long term storage, the possibility to recycle fissile material and the reduction of Pu diversion risk. The reprocessing constraints are discussed from political, technical, safety, public acceptance, and economical points of view. The French reprocessing programme (thermal reactor fuel fast breeder fuels) is presented together with a short review of the reprocessing experience and outlooks out of France [fr

  16. Study of the dissolution of (U,P)O2 mixed oxides with a high plutonium content

    International Nuclear Information System (INIS)

    Fournier, S.

    2001-01-01

    Plutonium from nuclear reactors is partially integrated in the fuel cycle as Mixed OXide (U,Pu)O 2 (MOX). Their dissolution in nitric acid is needed to reprocess them in present reprocessing plants. The main difficulty of this study is that dissolution is a phenomenon depending on solution characteristics as well as the structural properties of the pellets, which depend themselves on the material fabrication process. After showing kinetic and thermodynamic dissolution data of mixed oxides in nitric media, an inventory of the parameters which affect the dissolution process has been made. A separable variable concept was introduced in order to describe the process by studying separately the role of chemical parameters of the solution and geometric parameters of the material. The first part of the study estimates the effect of nitric solution chemical parameters (concentrations, acidity, temperature) on the dissolution and underlines the role of the oxide surface protonation step. The second part of this work deals with the study of surface area evolution for materials with controlled plutonium rich heterogeneities. Experimental results show that the pellet surface undergoes erosion and is progressively weakened by the formation of fault lines in the bulk of the material followed by the dispersion of sub-millimeter fragments in the solution. An heterogeneous kinetic model derived from study of solid-gas interface systems has been applied to fuel pellets dissolution, allowing a mechanism to be proposed, based on surface dissolution of the oxide as well as fault creation in the volume. The dissolution kinetics are therefore dependant on the microstructure and mechanical strength and cohesion of the pellets. (author)

  17. Fuel handling, reprocessing, and waste and related nuclear data aspects

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.; Wiese, H.W.

    1979-06-01

    The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uranium ores, enrichment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with respect to their potential operational impacts and long-term hazards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large PuO 2 content are described. The HTR fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. (orig.) [de

  18. Assessment of the insertion of reprocessed fuel spiked with thorium in a PWR core

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Victor F.; Monteiro, Fabiana B.A.; Pereira, Claubia, E-mail: victorfc@fis.grad.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    Reprocessed fuel by UREX+ technique and spiked with thorium was inserted in a PWR core and neutronic parameters have been analyzed. Based on the Final Safety Analysis Report (FSAR) of the Angra-2 reactor, the core was modeled and simulated with SCALE6.0 package. The neutronic data evaluation was carried out by the analysis of the effective and infinite multiplication factors, and the fuel evolution during the burnup. The conversion ratio (CR) was also evaluated. The results show that, when inserting reprocessed fuel spiked with thorium, the insertion of burnable poison rods is not necessary, due to the amount of absorber isotopes present in the fuel. Besides, the conversion ratio obtained was greater than the presented by standard UO{sub 2} fuel, indicating the possibility of extending the burnup. (author)

  19. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    Directory of Open Access Journals (Sweden)

    Nick R. Soelberg

    2013-01-01

    Full Text Available The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs, have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  20. Measurement and behaviour of technetium in fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Ferguson, C.; Kyffin, T.W.

    1986-02-01

    A method is described for the spectrophotometric measurement of technetium in plant solutions from the reprocessing of fast reactor fuel. The technetium is selectively extracted using tri-iso-octylamine. After back extraction, thiocyanate is added, in the presence of tetrabutyl-ammonium hydroxide, to form the red hexa-thiocyanato anionic complex in a chloroform medium. The concentration of the technetium is then calculated from the spectrophotometric measurement of this complex. This method was applied to bulk samples, collected during a PFR fuel reprocessing campaign, to identify the main routes followed by technetium through the reprocessing plant. In order to understand the probable behaviour of technetium in the process plant streams, an investigation into the influence of plutonium IV nitrate on the extraction of Tc (VII) into 20%v/v tributyl phosphate/odourless kerosene solution from nitric acid solutions, was initiated. The results of this investigation, along with the known distribution coefficient for the extraction of the uranyl/technetium complex U0 2 (N0 3 )(Tc0 4 ).2TBP and the redox chemistry of technetium, are used to predict the probable behaviour of technetium in the process plant streams. This predicted behaviour is compared with the experimental results and reasonable agreement is obtained between experiment and theory, considering the history of the samples analysed. (author)

  1. Removal of actinides from high-level wastes generated in the reprocessing of commercial fuels

    International Nuclear Information System (INIS)

    Bond, W.D.; Leuze, R.E.

    1975-09-01

    Progress is reported on a technical feasibility study of removing the very long-lived actinides (uranium, neptunium, plutonium, americium, and curium) from high-level wastes generated in the commercial reprocessing of spent nuclear fuels. The study was directed primarily at wastes from the reprocessing of light water reactor (LWR) fuels and specifically to developing satisfactory methods for reducing the actinide content of these wastes to values that would make 1000-year-decayed waste comparable in radiological toxicity to natural uranium ore deposits. Although studies are not complete, results thus far indicate the most promising concept for actinide removal includes both improved recovery of actinides in conventional fuel reprocessing and secondary processing of the high-level wastes. Secondary processing will be necessary for the removal of americium and curium and perhaps some residual plutonium. Laboratory-scale studies of separations methods that appear most promising are reported and conceptual flowsheets are discussed. (U.S.)

  2. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    International Nuclear Information System (INIS)

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS

  3. Present status of fuel reprocessing plant in PNC

    International Nuclear Information System (INIS)

    Koyama, Kenji

    1981-01-01

    In the fuel reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation, its hot test has now been completed. For starting its full-scale operation duly, the data are being collected on the operation performance and safety. The construction was started in June, 1971, and completed in October, 1974. In July, 1977, spent fuel was accepted in the plant, and the hot test was started. In September, the same year, the first fuel shearing was made. So far, a total of about 31 t U from both BWR and PWR plants has been processed, thus the hot test was entirely completed. The following matters are described: hot test and its results, research on Pu and U mixed extraction, utilization of product plutonium, development of safeguard technology, and repair work on the acid recovery evaporation tank. (J.P.N.)

  4. Oxidative dissolution of ADOPT compared to standard UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kristina [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Roth, Olivia [Studsvik Nuclear AB, SE-611 82 Nyköping (Sweden); Jonsson, Mats, E-mail: matsj@kth.se [School of Chemical Science and Engineering, Applied Physical Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2017-05-15

    In this work we have studied oxidative dissolution of pure UO{sub 2} and ADOPT (UO{sub 2} doped with Al and Cr) pellets using H{sub 2}O{sub 2} and gammaradiolysis to induce the process. There is a small but significant difference in the oxidative dissolution rate of UO{sub 2} and ADOPT pellets, respectively. However, the difference in oxidative dissolution yield is insignificant. Leaching experiments were also performed on in-reactor irradiated ADOPT and UO{sub 2} pellets under oxidizing conditions. The results indicate that the U(VI) release is slightly slower from the ADOPT pellet compared to the UO{sub 2.} This could be attributed to differences in exposed surface area. However, fission products with low UO{sub 2} solubility display a higher relative release from ADOPT fuel compared to standard UO{sub 2}-fuel. This is attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel. The release of Cs is higher from UO{sub 2} which is attributed to the larger grain size of ADOPT. - Highlights: •Oxidative dissolution of ADOPT fuel is compared to standard UO{sub 2} fuel. •Only marginal differences are observed. •The main difference observed is in the relative release rate of fission products. •Differences are claimed to be attributed to a lower matrix solubility imposed by the dopants in ADOPT fuel.

  5. Conversion of fuel hulls to zirconate ion exchangers for stabilization of wastes from the thorium fuel cycle

    International Nuclear Information System (INIS)

    Levine, H.S.

    1978-01-01

    A conceptual reprocessing and waste management scheme for Zircaloy clad ThO 2 fuel was formulated to eliminate problems associated with concurrent dissolution of fuel and cladding in the conventional chop-leach headend step. These problems are avoided by use of a modified headend step to form oxide fuel and cladding process streams. A chlorinating agent then converts the cladding hulls and adhering fuel into volatile and nonvolatile chloride fractions. The former product is processed, by use of the Zircaloy conversion process, to form an inorganic ion exchange material and combined with HLLW from subsequent fuel reprocessing to form a stable and refractory waste form. The nonvolatile chloride fraction would be recovered, processed to remove chloride ions, and recombined with the main oxide fuel process stream for further treatment by use of the Thorex process

  6. Nuclear fuel cycle: reprocessing. A bibliography

    International Nuclear Information System (INIS)

    Smith, L.B.

    1982-12-01

    This bibliography contains information on the reprocessing portion of the nuclear fuel cycle included in the Department of Energy's Energy Data Base from January 1981 through November 1982. The abstracts are grouped by subject category. Entries in the subject index also facilitate access by subject. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  7. Reprocessing of spent nuclear fuel; Prerada isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing.

  8. Spent fuel dissolution studies FY 1991 to 1994

    International Nuclear Information System (INIS)

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections

  9. Reprocessing and waste management in the UK

    International Nuclear Information System (INIS)

    Mogg, C.S.; Howarth, G.G.

    1987-01-01

    The paper concerns the progress in irradiated fuel reprocessing and waste management at the Sellafield site. Magnox fuel reprocessing is reviewed and oxide fuel reprocessing, due to commence in the early 1990s, is compared with existing practices. The article describes how magnox fuel reprocessing will be sustained by recent additions of new plant and shows how waste management downstream of reprocessing will be integrated across the Sellafield site. This article was first presented as a paper at the Waste Management '87 (1-5 March, Tucson, Arizona) conference. (author)

  10. Safety problems in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Amaury, P.; Jouannaud, C.; Niezborala, F.

    1979-01-01

    The document first situates the reprocessing in the fuel cycle as a whole. It shows that a large reprocessing plant serves a significant number of reactors (50 for a plant of 1500 tonnes per annum). It then assesses the potential risks with respect to the environment as well as with respect to the operating personnel. The amounts of radioactive matter handled are very significant and their easily dispersible physical form represents very important risks. But the low potential energy likely to bring about this dispersion and the very severe and plentiful confinement arrangements are such that the radioactive risks are very small, both with respect to the environment and the operating personnel. The problems of the interventions for maintenance or repairs are mentioned. The intervention techniques in a radioactive environment are perfected, but they represent the main causes of operating personnel irradiation. The design principle applied in the new plants take this fact into account, involving a very significant effort to improve the reliability of the equipment and ensuring the provision of devices enabling the failing components to be replaced without causing irradiation of the personnel [fr

  11. Importance of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The following topics are discussed: world energy requirements; energy conservation and the economics of recycle environmental considerations and the timescale of reprocessing; and problems associated with reprocessing. The conclusion is reached that reprocessing is essential to the conservation of the world's energy resources and is an environmentally, and probably an economically, more acceptable option to the ''throw away'' alternative

  12. Reprocessing of spent nuclear fuel; Prerada isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    This report covers: chemical-technology investigation of modified purex process for reprocessing of spent fuel; implementation of the procedure for obtaining plutonium peroxide and oxalate; research in the field of uranium, plutonium, and fission products separation by inorganic ion exchangers and extraction by organic solutions; study of the fission products in the heavy water RA reactor.

  13. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  14. Airborne effluent control for LMFBR fuel reprocessing plants

    International Nuclear Information System (INIS)

    Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-01-01

    A significant part of the LMFBR fuel reprocessing development program has been devoted to the development of efficient removal systems for the volatile fission products, including 131 I, krypton, tritium, 129 I, and most recently 14 C. Flowsheet studies have indicated that very significant reductions of radioactive effluents can be achieved by integrating advanced effluent control systems with new concepts of containment and ventilation; however, the feasibility of such has not yet been established, nor have the economics been examined. This paper presents a flowsheet for the application of advanced containment systems to the processing of LMFBR fuels and summarizes the status and applicability of specific fission product removal systems

  15. Direction of reprocessing technology development based on 30 years operation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nomura, S; Tanaka, T.; Ohshima, H.

    2006-01-01

    Full text: Full text: Recent global interest focuses the possibility of recycling of spent fuel with advanced fast reactor fuel cycle system. Goal of closed fuel cycle is to achieve the maximum use of uranium resources and minimum disposal of waste by multi recycle of TRU as a competitive nuclear energy system. The future reprocessing and fuel fabrication system should be synchronized completely with the advanced reactor system and waste treatment and disposal back-end system to complete closed fuel cycle. To realize such system, current reprocessing system should be changed to handle Pu-U-Minor Actinide with more reductions in the cost and less waste volume, as well as an inherent proliferation resistance. For the successful industrialization of advanced reprocessing technology, it is necessary to combine three key elements of R and D efforts, engineering base demonstration and experiences of plant operation. Tokai Reprocessing Facilities licensed a maximum capacity of 0.7tHM/day began a hot operation in 1977 and reprocessed l,100tHM U02 spent fuel and 20tHM ATR-MOX with a continuous technological improvements under IAEA full scope safeguards. With 30 years experience, candidate of key technologies proposed for realizing the next advanced reprocessing are as follows: 1) Simplified co-extraction process of Pu-Np-U by using multistage centrifugal extractors in stead of pulsed columns; 2) Corrosion free components in acid condition by using corrosion resistant refractory alloys and ceramics; 3) Co-conversion technology to MA containing MOX powder by micro-wave heating method for a short process for MA containing MOX pellets fabrication; 4) Advanced verification of high level radioactive liquid waste combining separation technology of TRU and LLFP elements; 5) Advanced chemical analysis and monitoring system for TRU elements in a plant. These advanced reprocessing technologies will be applied mainly to reprocess the LWR spent fuel accumulated past and future

  16. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  17. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  18. Energies and media nr 30. Conditions for the nuclear sector. The fuel cycle and wastes. The usefulness of fuel reprocessing. Wastes

    International Nuclear Information System (INIS)

    2009-10-01

    After some comments on recent events in the nuclear sector in different countries (energy policy and projects in the USA, Europe, China, India, Russia), this issue proposes some explanations on the nuclear fuel cycle and on nuclear wastes: involved processes and products from mining to reprocessing and recycling, usefulness of reprocessing (future opportunities of fast neutron reactors, present usefulness of reprocessing with the recycling of separated fissile materials), impact of reprocessing on the environment in La Hague (gas and liquid releases, release standard definition), and the destiny of wastes

  19. Fast reactor fuel reprocessing development in the United States: an overview

    International Nuclear Information System (INIS)

    Groenier, W.S.; Burch, W.D.

    1979-01-01

    As a result of the reduced nuclear power demand and the growing concerns over the potential proliferation of sensitive nuclear materials, there has not been a necessity to make immediate decisions regarding near-term reprocessing and breeder reactor commercialization. Programs which formed the basic thrust of nuclear development in the early 1970's have already been adjusted: increased emphasis on problems of radioactive waste management; increased attention to nonproliferation objectives and subsequent reorientation of the overall fuel cycle and breeder programs; increased emphasis on a once-through light-water reactor technology; increased concern for a more detailed knowledge of the uranium resource base; reorientation of the uranium enrichment programs; and exploration of alternative fuel cycles (such as thorium) to minimize the use of plutonium. Nevertheless, major strategic decisions still loom over breeder commercialization, the breeder's requisite demand for reprocessing, and the future role of more proliferation-resistant nuclear technologies. The current program in the United States is organized to provide the necessary technology for the reprocessing of breeder fuels on a timetable that is consistent with the reactor development and demonstration program. Also addressed in this paper are the present day concerns of environmental protection, safety, nuclear material safeguards, and proliferation resistance. It is structured on the well-known Purex processing method but includes new efforts aimed at advanced and alternative fuels. At the present time, the program consists mainly of a generic effort that is planned to progress through an integrated equipment engineering demonstration to an eventual pilot-plant operation. Each of these facilities is viewed as a test bed for advanced and alternative processing steps to address the many significant technical and political issues. 16 figures

  20. Removal of spent fuel from the TVR reactor for reprocessing and proposals for the RA reactor spent fuel handling

    International Nuclear Information System (INIS)

    Volkov, E.B.; Konev, V.N.; Shvedov, O.V.; Bulkin, S.Yu; Sokolov, A.V.

    2002-01-01

    The 2,5 MW heavy-water moderated and cooled research reactor TVR was located at the Moscow Institute for Theoretical and Experimental Physics site. In 1990 the final batch of spent nuclear fuel (SNF) from the TVR reactor was transported for reprocessing to Production Association (PA) 'Mayak'. This transportation of the SNF was a part of TVR reactor decommissioning. The special technology and equipment was developed in order to fulfill the preparation of TVR SNF for transportation. The design of the TVR reactor and the fuel elements used are similar to the design and fuel elements of the RA reactor. Two different ways of RA spent fuel elements for transportation to reprocessing plant are considered: in aluminum barrels, and in additional cans. The experience and equipment used for the preparing TVR fuel elements for transportation can help the staff of RA reactor to find the optimal way for these technical operations. (author)

  1. Methodology for evaluation of alternative technologies applied to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Selvaduray, G.S.; Goldstein, M.K.; Anderson, R.N.

    1977-07-01

    An analytic methodology has been developed to compare the performance of various nuclear fuel reprocessing techniques for advanced fuel cycle applications including low proliferation risk systems. The need to identify and to compare those processes, which have the versatility to handle the variety of fuel types expected to be in use in the next century, is becoming increasingly imperative. This methodology allows processes in any stage of development to be compared and to assess the effect of changing external conditions on the process

  2. Study of the chemical behaviour of technetium during irradiated fuels reprocessing

    International Nuclear Information System (INIS)

    Zelverte, A.

    1988-04-01

    This paper deals with the preparation of the lower oxidation states +III +IV and +V of technetium in nitric acid and its behaviour during the reprocessing of nuclear fuels (PUREX process). The first part of this work is a bibliographical study of this element in solution without any strong ligand. By chemical and electrochemical technics, pentavalent, tetravalent and trivalent technetium species, were prepared in nitric acid. The following chemical reactions are studied: - trivalent and tetravalent technetium oxidation by nitrate ion. - hydrazine and tetravalent uranium oxidation catalysed by technetium: in those reactions, we point out unequivocally the prominent part of trivalent and tetravalent technetium, - technetium behaviour towards hydroxylamine. Technetium should not cause any disturbance in the steps where hydroxylamine is employed to destroy nitrous acid and hydrazine replacement by hydroxylamine in uranium-plutonium partition could contribute to a best reprocessing of nuclear fuels [fr

  3. Assembly of laboratory line for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Fidler, J.; Chotivka, V.

    1979-01-01

    The dismantling of a laboratory line for spent fuel reprocessing after the termination of the research programme and the procedures for hot and semi-hot cell decontamination are described. The equipment was mostly disassembled in smaller parts which were then decontaminated by wiping them with cotton wool soaked in detergent and citric acid, varnished with two-component epoxi varnish, wrapped into multiple polyethylene foils, sealed in PVC bags and thus ready for transport. (B.S.)

  4. Cost probability analysis of reprocessing spent nuclear fuel in the US

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Deinert, M.R.

    2012-01-01

    The methods by which nuclear power's radioactive signature could be reduced typically require the reprocessing of spent nuclear fuel. However, economic assessments of the costs that are associated with doing this are subject to a high degree of uncertainty. We present a probabilistic analysis of the costs to build, operate and decommission the facilities that would be required to reprocess all US spent nuclear fuel generated over a one hundred year time frame, starting from a 2010 power production rate. The analysis suggests a total life-cycle cost of 2.11 ± 0.26 mills/kWh, with a 90% and 99% confidence that the overall cost would remain below 2.45 and 2.75 mills/kWh respectively. The most significant effects on cost come from the efficiency of the reactor fleet and the growth rate of nuclear power. The analysis shows that discounting results in life-cycle costs decreasing as recycling is delayed. However the costs to store spent fuel closely counter the effect of discounting when an intergenerational discount rate is used.

  5. An analysis of development and research on spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Borges Silverio, Leticia; Queiroz Lamas, Wendell de

    2011-01-01

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated.

  6. An analysis of development and research on spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Borges Silverio, Leticia; Lamas, Wendell de Queiroz [University of Taubate, Postgraduate Programme in Mechanical Engineering, Rua Daniel Danelli, s/n, Jd. Morumbi, Taubate, SP 12060-440 (Brazil)

    2011-01-15

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated. (author)

  7. Reasons for and against reprocessing of spent fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Gries, W

    1983-06-01

    In the following the reasons for and against the main methods of waste disposal are compared. The author examines the advantages and disadvantages of waste disposal by reprocessing of spent fuel assemblies or by immediate ultimate storage. To get a general idea the pros and cons are arranged and analysed according to the following subjects: - technology/science, - safety/environment, - profitability, - political aspects.

  8. General criteria for the project of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-01-01

    Recommendations are presented establishing the general criteria for the project of nuclear fuel reprocessing plants to be licensed according to the legislation in effect. They apply to all the plant's systems, components and structures which are important to operation safety and to the public's health and safety. (F.E.) [pt

  9. Worldwide reprocessing supply and demand

    International Nuclear Information System (INIS)

    Pinto, S.

    1987-01-01

    The aim of this paper is to broadly examine the current situation in the LWR fuel reprocessing services market on a worldwide basis through 2010. The main factors influencing this market (nuclear programs, fuel discharges, reprocessing capacities, buyer philosophies, etc.) are identified in the paper and the most important are highlighted and discussed in more detail. Emphasis has been placed on the situation with respect to reprocessing in those countries having a significant influence on the reprocessing market

  10. Research on solvent extraction process for reprocessing of Th-U fuel from HTGR

    International Nuclear Information System (INIS)

    Bao Borong; Wang Gaodong; Qian Jun

    1992-05-01

    The unique properties of spent fuel from HTGR (high temperature gas cooled reactor) have been analysed. The single solvent extraction process using 30% TBP for separation and purification of Th-U fuel has been studied. In addition, the solvent extraction process for second uranium purification is also investigated to meet different needs of reprocessing and reproduction of Th-U spent fuel from HTGR

  11. Legal problems connected with irradiated fuel reprocessing and its waste storage

    International Nuclear Information System (INIS)

    Nercy, B. de.

    1981-10-01

    In view of its nature, an irradiated nuclear fuel reprocessing operation -and the contracts implementing it between the reprocessor and the customer- raises certain difficult legal problems. This paper analyses this question from the legal viewpoint, in particular as regards nuclear fuel and material ownership and products or waste arising therefrom, as well as in the context of rules of international trade and non-proliferation standards. (NEA) [fr

  12. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  13. Environmental control aspects for fabrication, reprocessing and waste disposal of alternative LWR and LMFBR fuels

    International Nuclear Information System (INIS)

    Nolan, A.M.; Lewallen, M.A.; McNair, G.W.

    1979-11-01

    Environmental control aspects of alternative fuel cycles have been analyzed by evaluating fabrication, reprocessing, and waste disposal operations. Various indices have been used to assess potential environmental control requirements. For the fabrication and reprocessing operations, 50-year dose commitments were used. Waste disposal was evaluated by comparing projected nuclide concentrations in ground water at various time periods with maximum permissible concentrations (MPCs). Three different fabrication plants were analyzed: a fuel fabrication plant (FFP) to produce low-activity uranium and uranium-thorium fuel rods; a plutonium fuel refabrication plant (PFRFP) to produce plutonium-uranium and plutonium-thorium fuel rods; and a uranium fuel refabrication plant (UFRFP) to produce fuel rods containing the high-activity isotopes 232 U and 233 U. Each plant's dose commitments are discussed separately. Source terms for the analysis of effluents from the fuel reprocessing plant (FRP) were calculated using the fuel burnup codes LEOPARD, CINDER and ORIGEN. Effluent quantities are estimated for each fuel type. Bedded salt was chosen for the waste repository analysis. The repository site is modeled on the Waste Isolation Pilot Program site in New Mexico. Wastes assumed to be stored in the repository include high-level vitrified waste from the FRP, packaged fuel residue from the FRP, and transuranic (TRU) contaminated wastes from the FFP, PFRFP, and UFRFP. The potential environmental significance was determined by estimating the ground-water concentrations of the various nuclides over a time span of a million years. The MPC for each nuclide was used along with the estimated ground-water concentration to generate a biohazard index for the comparison among fuel compositions

  14. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  15. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  16. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    International Nuclear Information System (INIS)

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions

  17. Dynamic behaviour of solvent contactors in fuel reprocessing plants- an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Raju, R P; Siddiqui, H R [Nuclear Waste Management Group, Bhabha Atomic Research Centre, Mumbai (India); Murthy, K K; Kansra, V P [Fuel Reprocessing Group, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Fuel reprocessing plants carry out separation of useful fissile and fertile materials from spent nuclear fuels by isolating highly radioactive fission products using solvent extraction method. In the fuel reprocessing step of nuclear fuel cycle, optimisation of process parameters in the PUREX flowsheet design is of great importance particularly on account of the need to realize high degree of recovery of fissile and fertile materials and to ensure proper control on concentrations of fissile element in process streams for avoidance of criticality. In counter-current solvent contactors of PUREX flowsheet there are a variety of processes conditions which may cause plutonium accumulations that requires attention to ascertain safe Pu concentrations within the contactors. A study was carried out using the PUREX process mathematical model Solvent Extraction Program Having Interacting Solutes (SEPHIS) for pulsed solvent contactors in PREFRE-1, Tarapur and PREFRE-2, Kalpakkam flowsheets for optimising the process parameters in plutonium purification cycles. The study was extended to predict the behaviour of contactors handling plutonium bearing solutions under certain anticipated deviations in the process parameters. Modifications wherever necessary were carried out to the original SEPHIS code. This paper discusses the results obtained during this analysis. (author). 2 figs., 2 tabs.

  18. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  19. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  20. Development of remote maintenance technology for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kawahara, Akira; Saito, Masayuki; Kawamura, Hironobu; Yamade, Atsushi; Sugiyama, Sen; Sugiyama, Sakae.

    1986-01-01

    In the plants for reprocessing spent nuclear fuel containing fission products, due to the facts that the facilities are in high radiations fields, and the surfaces of equipments are contaminated with radioactive substances, the troubles of process equipments are directly connected to the remarkable drop of the rate of operation of the facilities. Therefore, the development of various remote maintenance techniques has been carried out so far, but this time, Hitachi Ltd. got a chance to take part in the repair of spent fuel dissolving tanks in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp. and the development of several kinds of remote checkup equipment related to the repair work. Especially in the repair of the dissolving tanks, a radiation-withstanding checkup and repair apparatus which has high remote operability taking the conditions of radioactive environment and the restriction of the repaired objects in consideration was required, and a dissolving tank repairing robot composed of six kinds has been developed. The key points of the development were the selective use of high radiation-withstanding parts and materials, small size structure and the realization of full remote operability. The full remote maintenance apparatus of this kind is unique in the world, and applicable to wide fields. (Kako, I.)

  1. Nondestructive determination of residual fuel on leached hulls and dissolver sludges from LWR fuel reprocessing

    International Nuclear Information System (INIS)

    Wuerz, H.; Wagner, K.; Becker, H.J.

    1990-01-01

    In reprocessing plants leached hulls and dissolver sludges represent rather important intermediate level α-waste streams. A control of the Pu content of these waste streams is desirable. The nondestructive assay method to be preferred would be passive neutron counting. However, before any decision on passive neutron monitoring becomes possible a characterization of hulls and sludges in terms of Pu content and neutron emission is necessary. For the direct determination of plutonium on hulls and in sludges, as coming from reprocessing, an active neutron measurement is required. A simple, and sufficiently sensitive active neutron method which can easily be installed uses as stationary Cf-252 neutron source. This method was used for the characterization of hulls and sludges in terms of plutonium content and total neutron emission in the WAK. Meanwhile a total of 28 batches of leached hulls and 22 batches of dissolver sludges from reprocessing of PWR fuel have been assayed. The paper describes the assay method used and gives an analysis of the error sources together with a discussion of the results and the accuracies obtained in a reprocessing plant. (orig./HP)

  2. Methods and calculations for regional, continental, and global dose assessments from a hypothetical fuel reprocessing facility

    International Nuclear Information System (INIS)

    Schubert, J.F.; Kern, C.D.; Cooper, R.E.; Watts, J.R.

    1978-01-01

    The Savannah River Laboratory (SRL) is coordinating an interlaboratory effort to provide, test, and use state-of-the-art methods for calculating the environmental impact to an offsite population from the normal releases of radionuclides during the routine operation of a fuel-reprocessing plant. Results of this effort are the estimated doses to regional, continental, and global populations. Estimates are based upon operation of a hypothetical reprocessing plant at a site in the southeastern United States. The hypothetical plant will reprocess fuel used at a burn rate of 30 megawatts/metric ton and a burnup of 33,000 megawatt days/metric ton. All fuel will have been cooled for at least 365 days. The plant will have a 10 metric ton/day capacity and an assumed 3000 metric ton/year (82 percent online plant operation) output. Lifetime of the plant is assumed to be 40 years

  3. A study on dissolution and leaching behaviour of spent nuclear fuels

    International Nuclear Information System (INIS)

    Lee, Chang Heon; Im, Hee Jung; Kim, Jong Gu; Park, Yang Soon; Ha, Yeong Keong

    2010-12-01

    This state of the art report describes a leaching behaviour of spent nuclear fuels which should be considered for safety assessment of spent nuclear fuel disposal in a deep geological repository. A decisive factor of a dissolution of UO 2 , a matrix of the fuel, is chemical characters (redox potential, pH, concentration of inorganic anions, water radiolysis subsequent by radiation field of the fuels) of ground water expected to be in contact with the fuels after the container has failed due to corrosion as well as atmosphere condition of a deep geological repository, which can change the oxidation state of UO 2 . The release rates of radionuclides from UO 2 matrix depend largely on their location within the fuels, that is, the radionuclides fixed in the fuel/cladding gap and grain boundaries are rapidly released. However, the radionuclides within the grains of the fuel are slowly released, and then their release rate is governed by a dissolution behaviour of UO 2

  4. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  5. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  6. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  7. Spent fuel dissolution rates as a function of burnup and water chemistry

    International Nuclear Information System (INIS)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of 129 I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and ∼ 65 MWd/kgM. (2) Oxidation of spent fuel up to the U 4 O 9+x stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of 129 I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and 129 I gap inventory for US LWR fuels

  8. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  9. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  10. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  11. Implications of ICPR 60 for nuclear fuel reprocessing in france

    International Nuclear Information System (INIS)

    Mathieu, P.

    1992-01-01

    The ICRP 60 publication intends to guide the regulatory agencies on the main rules and principle of protection. The text contains recommendations for practices and for emergencies. The following report intends to develop the possible consequences of the publication for the reprocessing of spent fuel as managed by COGEMA in the plants of La Hague and Marcoule. (author)

  12. From laboratory experiments to a geological disposal vault: calculation of used nuclear fuel dissolution rates

    International Nuclear Information System (INIS)

    Sunder, S.; Shoesmith, D.W.; Kolar, M.; Leneveu, D.M.

    1998-01-01

    Calculation of used nuclear fuel dissolution rates in a geological disposal vault requires a knowledge of the redox conditions in the vault. For redox conditions less oxidizing than those causing UO 2 oxidation to the U 3 O 7 , stage, a thermodynamically-based model is appropriate. For more oxidizing redox conditions a kinetic or an electrochemical model is needed to calculate these rates. The redox conditions in a disposal vault will be affected by the radiolysis of groundwater by the ionizing radiation associated with the fuel. Therefore, we have calculated the alpha-, beta- and gamma-dose rates in water in contact with the reference used fuel in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) as a function of cooling time. Also, we have determined dissolution rates of UO 2 fuel as a function of alpha and gamma dose rates from our electrochemical measurements. These room-temperature rates are used to calculate the dissolution rates of used fuel at 100 o C, the highest temperature expected in a container in the CNFWMP, as a function of time since emplacement. It is shown that beta radiolysis of water will be the main cause of oxidation of used CANDU fuel in a failed container. The use of a kinetic or an electrochemical corrosion model, to calculate fuel dissolution rates, is required for a period of ∼1000 a following emplacement of copper containers in the geologic disposal vault envisaged in the CNFWMP. Beyond this time period a thermodynamically-based model adequately predicts the fuel dissolution rates. The results presented in this paper can be adopted to calculate used fuel dissolution rates for other used UO 2 fuels in other waste management programs. (author)

  13. Nuclear fuel reprocessing: A time for decision

    International Nuclear Information System (INIS)

    O'Donnell, A.J.; Sandbery, R.O.

    1983-01-01

    Availability of adequate supplies of energy at an affordable cost is essential to continued growth of the world's economics. The tie between economic growth and electricity usage is particularly strong and the pervasive wordwide trend toward increasing electrification shows no signs of abating. Very few viable alternatives are available for supplying the projected increase in baseload electric generating capacity in the next several decades, and most industrialized nations have chosen nuclear power to play a major role. Sustained growth of nuclear power can only be achieved, however, by reprocessing spent fuel to recover and utilize the residual uranium and plutonium energy values

  14. Burner and dissolver off-gas treatment in HTR fuel reprocessing

    International Nuclear Information System (INIS)

    Barnert-Wiemer, H.; Heidendael, M.; Kirchner, H.; Merz, E.; Schroeder, G.; Vygen, H.

    1979-01-01

    In the reprocessing of HTR fuel, essentially all of the gaseous fission products are released during the heat-end tratment, which includes burning of the graphite matrix and dissolving of the heavy metallic residues in THOREX reagent. Three facilities for off-gas cleaning are described, the status of the facility development and test results are reported. Hot tests with a continuous dissolver for HTR-type fuel (throughput 2 kg HM/d) with a closed helium purge loop have been carried out. Preliminary results of these experiments are reported

  15. Spent fuel waste form characteristics: Grain and fragment size statistical dependence for dissolution response

    International Nuclear Information System (INIS)

    Stout, R.B.; Leider, H.; Weed, H.; Nguyen, S.; McKenzie, W.; Prussin, S.; Wilson, C.N.; Gray, W.J.

    1991-04-01

    The Yucca Mountain Project of the US Department of Energy is investigating the suitability of the unsaturated zone at Yucca Mountain, NV, for a high-level nuclear waste repository. All of the nuclear waste will be enclosed in a container package. Most of the nuclear waste will be in the form of fractured UO 2 spent fuel pellets in Zircaloy-clad rods from electric power reactors. If failure of both the container and its enclosed clad rods occurs, then the fragments of the fractured UO 2 spent fuel will be exposed to their surroundings. Even though the surroundings are an unsaturated zone, a possibility of water transport exists, and consequently, UO 2 spent fuel dissolution may occur. A repository requirement imposes a limit on the nuclide release per year during a 10,000 year period; thus the short term dissolution response from fragmented fuel pellet surfaces in any given year must be understood. This requirement necessitates that both experimental and analytical activities be directed toward predicting the relatively short term dissolution response of UO 2 spent fuel. The short term dissolution response involves gap nuclides, grain boundary nuclides, and grain volume nuclides. Analytical expressions are developed that describe the combined geometrical influences of grain boundary nuclides and grain volume nuclides on the dissolution rate of spent fuel. 7 refs., 1 fig

  16. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  17. Estimation of gamma dose rate from hulls and shield design for the hull transport cask of Fuel Reprocessing Plant (FRP)

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)

  18. Operating experience in reprocessing

    International Nuclear Information System (INIS)

    Schueller, W.

    1983-01-01

    Since 1953, reprocessing has accumulated 180 years of operating experience in ten plants, six of them with 41 years of operation in reprocessing oxide fuel from light water reactors. After abortive, premature attempts at what is called commercial reprocessing, which had been oriented towards the market value of recoverable uranium and plutonium, non-military reprocessing technologies have proved their technical feasibility, since 1966 on a pilot scale and since 1976 on an industrial scale. Reprocessing experience obtained on uranium metal fuel with low and medium burnups can now certainly be extrapolated to oxide fuel with high burnup and from pilot plants to industrial scale plants using the same technologies. The perspectives of waste management of the nuclear power plants operated in the Federal Republic of Germany should be viewed realistically. The technical problems still to be solved are in a balanced relationship to the benefit arising to the national economy out of nuclear power generation and can be solved in time, provided there are clearcut political boundary conditions. (orig.) [de

  19. Factors affecting the differences in reactivity and dissolution rates between UO2 and spent nuclear fuel

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Tait, J.C.; Sunder, S.; Steward, S.; Russo, R.E.; Rudnicki, J.D.

    1996-08-01

    Strategies for the permanent disposal of spent nuclear fuel are being investigated by the U.S. Department of Energy at the Yucca Mountain site and by Atomic Energy of Canada Limited (AECL) in plutonic rock formations in the Canadian Shield. Uranium dioxide is the primary constituent of spent nuclear fuel and dissolution of the matrix is regarded as a necessary step for the release of radionuclides to repository groundwaters. In order to develop models to describe the dissolution of the U0 2 fuel matrix and subsequent release of radionuclides, it is necessary to understand both chemical and oxidative dissolution processes and how they can be affected by parameters such as groundwater composition, pH, temperature, surface area, radiolysis and redox potential. This report summarizes both published and on-going dissolution studies of U0 2 and both LWR and CANDU spent fuels being conducted at the Pacific Northwest Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory in the U.S. and at AECL's Whiteshell Laboratories in Canada. The studies include both dissolution tests and electrochemical experiments to measure uranium dissolution rates. The report focuses on identifying differences in reactivity towards aqueous dissolution between U0 2 and spent fuel samples as well as estimating bounding values for uranium dissolution rates. This review also outlines the basic tenets for the development of a dissolution model that is based on electrochemical principles. (author). 49 refs., 2 tabs., 11 figs

  20. Pyroelectrochemical process for reprocessing irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1982-01-01

    A pyroelectrochemical process for reprocessing irradiated fast reactor mixed oxide or carbide fuels is described. The fuel is dissolved in a bath of molten alkali metal sulfates. The Pu(SO 4 ) 2 formed in the bath is thermally decomposed, leaving crystalline PuO 2 on the bottom of the reaction vessel. Electrodes are then introduced into the bath, and UO 2 is deposited on the cathode. Alternatively, both UO 2 and PuO 2 may be electrodeposited. The molten salts, after decontamination by precipitating the fission products dissolved in the bath by introducing basic agents such as oxides, carbonates, or hydroxides, may be recycled. Since it is not possible to remove cesium from the molten salt bath, periodic disposal and partial renewal with fresh salts is necessary. The melted salts that contain the fission products are conditioned for disposal by embedding them in a metallic matrix

  1. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  2. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  3. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  4. Studies of dissolution solutions of ruthenium metal, oxide and mixed compounds in nitric acid

    International Nuclear Information System (INIS)

    Mousset, F.; Eysseric, C.; Bedioui, F.

    2004-01-01

    Ruthenium is one of the fission products generated by irradiated nuclear fuel. It is present throughout all the steps of nuclear fuel reprocessing-particularly during extraction-and requires special attention due to its complex chemistry and high βγ activity. An innovative electro-volatilization process is now being developed to take advantage of the volatility of RuO 4 in order to eliminate it at the head end of the Purex process and thus reduce the number of extraction cycles. Although the process operates successfully with synthetic nitrato-RuNO 3+ solutions, difficulties have been encountered in extrapolating it to real-like dissolution solutions. In order to better approximate the chemical forms of ruthenium found in fuel dissolution solutions, kinetic and speciation studies on dissolved species were undertaken with RuO 2 ,xH 2 O and Ru 0 in nitric acid media. (authors)

  5. Safeguards implementation in UP3 reprocessing plant

    International Nuclear Information System (INIS)

    Laurent, J.P.; Regnier, J.; Talbourdet, Y.; De Jong, P.

    1991-01-01

    The implementation of safeguards in a large size reprocessing plant is a challenge, considering the high throughput of nuclear material and the sophisticated automation of such facilities. In the case of UP3, a pragmatic and realistic approach has been devised and is applied through an efficient cooperation between the safeguards organizations, the french national authorities and the operator. In essence, they consist in verification of every significant inputs and outputs, in timely analysis by NDA (e.g. solutions of dissolution through an on site k-edge equipment), in monitoring selected parts of the inprocess inventory and in specific containment/surveillance systems for the spent fuel storage ponds and the PuO2 storage. (author)

  6. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    Gay, E.C.; Tomczuk, Z.; Miller, W.E.

    1993-01-01

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  7. Retention of gaseous fission products in reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Burch, W.D.; Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-05-01

    The report is devoted to status of the development programme at the Oak Ridge National Laboratory on methods for retaining iodine-131 and 129, Krypton-85, Tritium and Carbon-14 in reprocessing LMFBR fuels. The Iodox process, Fluorocarbon absorption process and Voloxidation process are described for retention of iodine, Krypton-85 and Tritium, respectively. Flowsheets for the different processes are given and results of experimental runs in small engineering-scale equipment are reported

  8. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation

  9. Consolidated fuel reprocessing programme: Analysis of various options for the breeder fuel cycle in the USA

    International Nuclear Information System (INIS)

    Stradley, J.G.; Burch, W.D.; Yook, H.R.

    1986-01-01

    The United States Department of Energy (DOE) has established a programme to develop innovative liquid metal reactor (LMR) designs to assist in developing future U.S. reactor strategy. The paper describes studies in progress to examine various fuel cycle strategies that relate to the reactor strategy. Three potential fuel cycle options that focus on supporting an initial 1300 MW(e) reactor station have been defined: (1) Completion and utilization of the Breeder Reprocessing Engineering Test/Secure Automated Fabrication (BRET/SAF) in the Fuels and Materials Examination Facility (FMEF) at Hanford, Washington; (2) a co-located fuel cycle facility; and (3) delayed closure of the fuel cycle for five to ten years. The BRET, designed as a development facility, has sufficient capacity to service the needs of an initial module at an LMR station. It appears feasible to increase this capacity and to utilize SAF in the FMEF to accommodate the projected output (up to 35 MtHM/year) from the 1300 MW(e) liquid-metal concepts under study. Plans developed within the United States Consolidated Management Office for an initial reactor project have envisioned that cost savings could be realized by delaying the closure of the fuel cycle as long as supplies of plutonium could be obtained relatively inexpensively. This might prove to be only five to ten years, but even that period might be long enough for the fuel cycle costs to be spread over more than one reactor rather than loaded on the initial project. This concept is being explored as is the question of the future coupling of a light water reactor reprocessing industry for plutonium supply to breeder recycle

  10. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    International Nuclear Information System (INIS)

    Okano, Masanori; Kuno, Takehiko; Shirouzu, Hidetomo; Yamada, Keiji; Sakai, Toshio; Takahashi, Ichiro; Charlton, William S.; Wells, Cyndi A.; Hemberger, Philip H.

    2006-12-01

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  11. The measurement of neptunium in fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Mair, M.A.; Savage, D.J.; Kyffin, T.W.

    1986-02-01

    Analytical techniques have been developed to measure neptunium in the feed, waste and product streams of a fast reactor fuel reprocessing plant. The estimated level of one microgram per milligram of plutonium in some solutions presented severe separation and measurement problems. An initial separation stage was essential, and both ion exchange and solvent extraction using thenoyltrifluoroacetone were studied. The redox chemistry of neptunium necessary to achieve good separation is considered. Spectrophotometry measurement of the stable neptunium/arsenazo III complex was selected for the final neptunium determination with additional analysis by radiometric methods. Incomplete recovery of neptunium during the separation stages necessitated yield measurements, using either neptunium-237 as an internal standard or the short lived gamma active neptunium-239 isotope as a tracer. The distribution of neptunium between the waste and product streams is discussed, in relation to the chemistry of neptunium in the reprocessing plant. (author)

  12. Investigation of the dissolution of uranium dioxide in nitric media: a new approach aiming at understanding interface mechanisms

    International Nuclear Information System (INIS)

    Delwaulle, Celine

    2011-01-01

    This research thesis deals with the back-end cycle of the nuclear fuel by improving, modernizing and optimizing the processes used for all types of fuels which are to be re-processed. After a presentation of the industrial context and of the state of the art concerning dissolution kinetic data for uranium dioxide and mixed oxide, the author proposes a model which couples dissolution kinetics and hydrodynamics of a solid in presence of auto-catalytic species, in order to better understand phenomena occurring at the solid-liquid-gas interface. The next part reports dissolution experiments on a non-radioactive material (copper) and out of a nuclear environment. Then, the author identifies steps which are required to transpose this experiment within a nuclear environment. The first results obtained on uranium dioxide are discussed. Recommendations for further studies conclude the report

  13. Facility for electrochemical dissolution of rejected fuel elements

    International Nuclear Information System (INIS)

    Deniskin, V.P.; Filatov, O.N.; Konovalov, E.A.; Kolesnikov, B.P.; Bukharin, A.D.

    2003-01-01

    A facility for electrochemical dissolution of rejected fuel elements with the stainless steel can and uranium of 90% enrichment is described. The start-adjustment works and trial-commercial tests of the facility are carried out. A s a result its technological parameters are determined [ru

  14. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  15. Reprocessing in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rossney, G [United Reprocessors G.m.b.H., Karlsruhe (F.R. Germany)

    1976-04-01

    The status of reprocessing activities within the member organizations of United Reprocessors is reviewed. The U.K. government has approved overseas deals by BNFL which will help to pay for their planned plant of 1000 te U p.a. at Windscale. In Germany KEWA has selected a site at Aschenburg as a fuel cycle centre where they plan to build a utility financed reprocessing plant of 1500 te U p.a. France has formed a new fuel cycle corporation, Cogema, which hopes to participate in the large volume of Japanese business negotiated by BNFL. United Reprocessors have agreed to pool their technology which may be available to organisations wishing to construct reprocessing plants in their own countries.

  16. Reprocessing method of ceramic nuclear fuels in low-melting nitrate molten salts

    International Nuclear Information System (INIS)

    Brambilla, G.; Caporali, G.; Zambianchi, M.

    1976-01-01

    Ceramic nuclear fuel is reprocessed through a method wherein the fuel is dispersed in a molten eutectic mixture of at least two alkali metal nitrates and heated to a temperature in the range between 200 and 300 0 C. That heated mixture is then subjected to the action of a gaseous stream containing nitric acid vapors, preferably in the presence of a catalyst such as sodium fluoride. Dissolved fuel can then be precipitated out of solution in crystalline form by cooling the solution to a temperature only slightly above the melting point of the bath

  17. Examining the Conservatisms in Dissolution Rates of Commercial Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Hanson, Brady D.

    2008-01-01

    Most models for commercial spent nuclear fuel dissolution are based on data obtained from single-pass flow-through tests. These tests are designed to have a high water volume to fuel surface area ratio so that the concentration of radionuclides in solution are below solubility limits and thus back reactions and the formation of alteration products are minimized. While this method is ideal for determining the dependence of the dissolution rate on various parameters, it is important to examine the differences between these tests and the realistic scenarios that will exist in a geologic repository. Many of the inherent conservatisms that are part of the models are examined. These conservatisms include: limited water, short-term vs. long-term rates, groundwater effects, non-congruent release, radiolysis, and fuel chemistry effects. Each of these conservatisms has the potential to decrease the currently modeled dissolution rates by between a factor of 2 and 200. The combined effects are unknown, but, if quantified, could significantly improve the waste form performance relative to current models.

  18. The reasons for and against reprocessing of spent fuel elements

    International Nuclear Information System (INIS)

    Gries, W.

    1983-01-01

    In the following the reasons for and against the main methods of waste disposal are compred. The author examines the advantages and disadvantages of waste disposal by reprocessing of spent fuel assemblies or by immediate ultimate storage. To get a general idea the pros and cons are arranged and analysed according to the following subjects: - technology/science, - safety/environment, - profitability, - political aspects. (orig./UA) [de

  19. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  20. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  1. From the reactor to waste disposal: the back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Madic, C.

    1988-05-01

    The oxide fuels discharged from LWRs represent the bulk of spent fuels to be managed. For a 1 GWe LWR about 27 tonnes of spent fuels are discharged each year. This makes the total amount of spent LWR oxide fuels discharged worldwide in 1986 close to 4500 tonnes. For France, 750 tonnes of spent oxide fuels were discharged in 1986. Three alternatives are available: final disposal, interim storage, and reprocessing. This paper focusses on reprocessing option. The reprocessing is based on the PUREX Process comprising: 1/ fuel dissolution in nitric acid after shearing the fuel assembly, 2/ separation of uranium and plutonium by TBP extraction. After purification, the major actinides can be reused. A wide gap exists today between the amount of fuels discharged from LWRs and the reprocessing capacities. France has the broadest experience in reprocessing commercial LWR oxide fuels, with more than 2200 tonnes already reprocessed at La Hague. This plant will have a total reprocessing capacity of 1600 t/y in the early nineties. The minor actinides present in the spent fuels, neptunium, americium and curium, will be packaged with the fission products in glass blocks. For a 1 Gwe LWR, about 3.5 m 3 of vitrified HAW and 83 m 3 of MAW will be produced each year. All the wastes produced during reprocessing operations with an alpha activity > 0.1 Ci/t will be stored in deep geological repositories in the future. Studies are underway to determine the ideal geological sites. The solution to this problem is undoubtedly a key to the progress in the production of nuclear electricity

  2. Dissolution off-gases at the marcoule pilot facility: Iodine trapping and off-gas characterization unit

    International Nuclear Information System (INIS)

    Pouyat, D.; Vignau, B.; Roux, J.P.

    1993-01-01

    The Marcoule Pilot Reprocessing Facility (APM) reprocesses spent fuel from light water reactors and fast breeder reactors. A batch dissolution process is used with an annual throughput capacity of 5 metric tons. The off-gas treatment unit is described together with its characterization laboratory in order to highlight the functions and potential of the facilities. The objectives are consistent with the Marcoule site policy regarding diminished iodine release and investigation of the off-gas treatment process. The equipment used to meet these objectives is described from a functional standpoint. The facility implements measurement techniques to allow continuous quantitative measurements of nitrogen oxides, oxygen, iodine and krypton, as well as continuous monitoring of the demister inlet flow by γ spectrometry. Sorbents used for iodine trapping may be tested over a wide range of operating conditions (temperature, flow rate, iodine concentration) with representative dissolution off-gases. An X-ray and γ counting system is used to assess the activity of the adsorbed radionuclides, notably 129 I

  3. On the Impact of the Fuel Dissolution Rate Upon Near-Field Releases From Nuclear Waste Disposal

    Directory of Open Access Journals (Sweden)

    A Pereira

    2016-09-01

    Full Text Available Calculations of the impact of the dissolution of spent nuclear fuel on the release from a damaged canister in a KBS-3 repository are presented. The dissolution of the fuel matrix is a complex process and the dissolution rate is known to be one of the most important parameters in performance assessment models of the near-field of a geological repository. A variability study has been made to estimate the uncertainties associated with the process of fuel dissolution. The model considered in this work is a 3D model of a KBS-3 copper canister. The nuclide used in the calculations is Cs-135. Our results confirm that the fuel degradation rate is an important parameter, however there are considerable uncertainties associated with the data and the conceptual models. Consequently, in the interests of safety one should reduce, as far as possible, the uncertainties coupled to fuel degradation.

  4. THORP and the economics of reprocessing

    International Nuclear Information System (INIS)

    Berkhout, F.; Walker, W.

    1990-11-01

    This Report compares the costs of reprocessing spent fuels at the new THORP reprocessing plant at Sellafield with the alternative of storing them prior to final disposal. It finds that even when the cost of constructing THORP is treated as a sunk cost, reprocessing has no decisive economic advantage over spent fuel storage. Electric utilities in Western Europe and Japan have already largely paid for the construction of the new British and French reprocessing plants. Today, their economic judgements therefore depend on the future costs of operating and eventually decommissioning the plants, and of dealing with the resulting wastes and separated products. The costs attached to reprocessing have risen mainly due to the higher estimated costs of waste management and decommissioning, and to the costs of coping with unwanted plutonium. Most of these costs are passed directly on to utilities and thus electricity consumers under the terms of cost-plus contracts. Using cost estimates favourable to the reprocessing option, the total future undiscounted liabilities arising from the first ten years of THORP reprocessing come to Pound 2.4-3.7 billion at today's prices. This compares with the more predictable although still burdensome fuel storage, conditioning and disposal costs of Pound 3.0-3.8 billion. If disposal is not anticipated, the economic advantage shifts decisively in favour of spent fuel storage: Pound 0.9-1.3 billion against Pound 1.4-2.4 billion for reprocessing. (author)

  5. Development of a real-time detection strategy for process monitoring during nuclear fuel reprocessing using the UREX+3a method

    International Nuclear Information System (INIS)

    Goddard, Braden; Charlton, William S.; McDeavitt, Sean M.

    2010-01-01

    Research highlights: → HPGe detectors are suitable for UREX+3a real-time spectroscopy. → HPGe N-type detectors may be suitable for a reprocessing facility. → Gamma ray self-shielding does not occur for pipe diameters less than 2 in. - Abstract: Reprocessing nuclear fuel is becoming more viable in the United States due to the anticipated increase in construction of nuclear power plants, the growing stockpile of existing used nuclear fuel, and a public desire to reduce the amount of this fuel. A new reprocessing facility will likely have state of the art controls and monitoring methods to safeguard special nuclear materials, as well as to provide real-time monitoring for process control. The focus of this research was to create a proof of concept to enable the development of a detection strategy that uses well established gamma and neutron measurement methods to characterize samples from the Uranium Extraction Plus 3a (UREX+3a) reprocessing method using a variety of detector types and measurement times. A facility that implemented real-time gamma detection equipment could improve product quality control and provide additional benefits, such as waste volume reduction. In addition to the spectral analyses, it was determined by Monte Carlo N Particle (MCNP) simulations that there is no noticeable self-shielding for internal pipe diameters less than 5.08 cm, indicating that no self-shielding correction factors are needed. Further, it was determined that High Purity Germanium (HPGe) N-type detectors have the high gamma ray energy resolution and neutron damage resistance that would be required in a reprocessing facility. Finally, the gamma ray spectra for the measured samples were simulated using MCNP and then the model was extended to predict the responses from an actual reprocessing scenario from UREX+3a applied to fuel that had a decay time of 3 years. The 3-year decayed fuel was more representative of commercially reprocessed fuel than the acquired UREX+3a

  6. Evaluation of source term parameters for spent fuel disposal in foreign countries. (2) Dissolution rates of spent fuel matrices and construction materials for fuel assemblies

    International Nuclear Information System (INIS)

    Kitamura, Akira; Chikazawa, Takahiro; Tachi, Yukio; Akahori, Kuniaki

    2016-01-01

    The Japanese geological disposal program has started researching disposal of spent nuclear fuel (SF) in deep geological strata (hereafter 'direct disposal of SF') as an alternative management option other reprocessing followed by vitrification and geological disposal of high-level radioactive waste. We conducted literature survey of dissolution rate of SF matrix and constructing materials (e.g. zircaloy cladding and control rods) selected in safety assessment reports for direct disposal of SF in Europe and United States. We also investigated basis of release rate determination and assignment of uncertainties in the safety assessment reports. Furthermore, we summarized major conclusions proposed by some European projects governed by European Commission. It was found that determined release rates are fairly similar to each other due to use of similar literature data in all countries of interest. It was also found that the determined release rates were including conservativeness because it was difficult to assign uncertainties quantitatively. It is expected that these findings are useful as fundamental information for determination of the release rates for the safety assessment of Japanese SF disposal system. (author)

  7. Analysis of triso packing fraction and fissile material to DB-MHR using LWR reprocessed fuel

    International Nuclear Information System (INIS)

    Silva, Clarysson A.M. da; Pereira, Claubia; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Gual, Maritza R.

    2013-01-01

    Gas-cooled and graphite-moderated reactor is being considered the next generation of nuclear power plants because of its characteristic to operate with reprocessed fuel. The typical fuel element consists of a hexagonal block with coolant and fuel channels. The fuel pin is manufactured into compacted ceramic-coated particles (TRISO) which are used to achieve both a high burnup and a high degree of passive safety. This work uses the MCNPX 2.6.0 to simulate the active core of Deep Burn Modular Helium Reactor (DB-MHR) employing PWR (Pressurized Water Reactor) reprocessed fuel. However, before a complete study of DB-MHR fuel cycle and recharge, it is necessary to evaluate the neutronic parameters to some values of TRISO Packing Fractions (PF) and Fissile Material (FM). Each PF and FM combination would generate the best behaviour of neutronic parameters. Therefore, this study configures several PF and FM combinations considering the heterogeneity of TRISO layers and lattice. The results present the best combination of PF and FM values according with the more appropriated behaviour of the neutronic parameters during the burnup. In this way, the optimized combination can be used to future works of MHR fuel cycle and recharge. (author)

  8. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  9. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  10. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  11. The use of curium neutrons to verify plutonium in spent fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    Miura, N.

    1994-05-01

    For safeguards verification of spent fuel, leached hulls, and reprocessing wastes, it is necessary to determine the plutonium content in these items. We have evaluated the use of passive neutron multiplicity counting to determine the plutonium content directly and also to measure the 240 Pu/ 244 Cm ratio for the indirect verification of the plutonium. Neutron multiplicity counting of the singles, doubles, and triples neutrons has been evaluated for measuring 240 Pu, 244 Cm, and 252 Cf. We have proposed a method to establish the plutonium to curium ratio using the hybrid k-edge densitometer x-ray fluorescence instrument plus a neutron coincidence counter for the reprocessing dissolver solution. This report presents the concepts, experimental results, and error estimates for typical spent fuel applications

  12. Development of simulation code for FBR spent fuel dissolution with rotary drum type continuous dissolver

    International Nuclear Information System (INIS)

    Sano, Yuichi; Katsurai, Kiyomichi; Washiya, Tadahiro; Koizumi, Tsutomu; Matsumoto, Satoshi

    2011-01-01

    Japan Atomic Energy Agency (JAEA) has been studying rotary drum type continuous dissolver for FBR spent fuel dissolution. For estimating the fuel dissolution behavior under several operational conditions in this dissolver, we have been developing the simulation code, PLUM, which mainly consists of 3 modules for calculating chemical reaction, mass transfer and thermal balance in the rotary drum type continuous dissolver. Under the various conditions where dissolution experiments were carried out with the batch-wise dissolver for FBR spent fuel and with the rotary drum type continuous dissolver for UO 2 fuel, it was confirmed that the fuel dissolution behaviors calculated by the PLUM code showed good agreement with the experimental ones. Based on this result, the condition for obtaining the dissolver solution with high HM (heavy metal : U and Pu) concentration (∼500g/L), which is required for the next step, i.e. crystallization process, was also analyzed by this code and appropriate operational conditions with the rotary drum type continuous dissolver, such as feedrate, concentration and temperature of nitric acid, could be clarified. (author)

  13. A view from the nuclear fuel reprocessing industry

    International Nuclear Information System (INIS)

    Smith, R.; Hartley, G.

    1982-01-01

    Radiological protection in UK nuclear industry is discussed, with special reference to British Nuclear Fuels Ltd. The following aspects are covered: historical introduction, relevant legislation and general principles; radioactive decay processes (fission, fission products, radio-isotopes, ionising radiations, neutrons); risk assessment (historical, biological radiation effects; ICRP recommendations, dose limits); cost effectiveness of protection; plant design principles; examples of containment (shielding, ventilation and contamination control required for various types of radioactive materials, e.g. fission products, plutonium, depleted uranium; fuel rod storage ponds and decanning caves; fission products at dissolution stage; glovebox handling of Pu operations; critical assembly of fissile materials; surface contamination control; monitoring radiation levels). (U.K.)

  14. Advanced concepts under development in the United States Breeder-Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.

    1981-01-01

    Advanced concepts and techniques for the fuel reprocessing step are being developed. These concepts have been incorporated into the conceptual design of a Hot Experimental Facility (HEF), which is intended to demonstrate reprocessing of the first US breeder demonstration reactor. To achieve system reliability and reduce occupational doses, a concept of totally remote operation and maintenance (termed Remotex) has been conceived and is being developed. In this concept, maintenance and mechanical operations are accomplished with remotely operated bilateral force-reflecting electronic master/slave manipulators. Suitable transport systems, coupled with remote closed-circuit television viewing, are provided to extend man's capabilities into the hostile cell environment. New equipment concepts are being developed for the fuel dismantling and shearing step, a high-temperature dry process termed voloxidation to remove tritium, a continuous rotary dissolver, and for an improved centrifugal solvent contractor. Techniques have been developed, using engineering-scale equipment with active tracers for retention of 85 Kr, radioiodine, 14 C, and 3 H

  15. Corrosion resistance of metallic materials for use in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Legry, J.P.; Pelras, M.; Turluer, G.

    1989-01-01

    This paper reviews the corrosion resistance properties required from metallic materials to be used in the various developments of the PUREX process for nuclear fuel reprocessing. Stainless steels, zirconium or titanium base alloys are considered for the various plant components, where nitric acid is the main electrolyte with differing acid and nitrate concentrations, temperature and oxidizing species. (author)

  16. Study on safety of crystallization method applied to dissolver solution in fast breeder reactor reprocessing

    International Nuclear Information System (INIS)

    Okuno, Hiroshi; Fujine, Yukio; Asakura, Toshihide; Murazaki, Minoru; Koyama, Tomozo; Sakakibara, Tetsuro; Shibata, Atsuhiro

    1999-03-01

    The crystallization method is proposed to apply for recovery of uranium from dissolution liquid, enabling to reduce handling materials in later stages of reprocessing used fast breeder reactor (FBR) fuels. This report studies possible safety problems accompanied by the proposed method. Crystallization process was first defined in the whole reprocessing process, and the quantity and the kind of treated fuel were specified. Possible problems, such as criticality, shielding, fire/explosion, and confinement, were then investigated; and the events that might induce accidental incidents were discussed. Criticality, above all the incidents, was further studied by considering exampled criticality control of the crystallization process. For crystallization equipment, in particular, evaluation models were set up in normal and accidental operation conditions. Related data were selected out from the nuclear criticality safety handbooks. The theoretical densities of plutonium nitrates, which give basic and important information, were estimated in this report based on the crystal structure data. The criticality limit of crystallization equipment was calculated based on the above information. (author)

  17. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electrorefiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electrorefiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electrorefiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour

  18. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  19. The case for reprocessing: the operational experience of a modern reprocessing industry

    International Nuclear Information System (INIS)

    Giraud, J.P.; Kelly, W.

    1993-01-01

    Reprocessing is a high-tech industry that works. An impressive effort of R and D, industrial deployment and operational experience has been accumulated by COGEMA and BNFL, leading these companies to offer a commercial service which is the only proper management of spent fuel and waste that is both technically demonstrated and qualified by the safety authorities of European and overseas countries. Reprocessing, as every technology-based industry will continue to progress in the future. Recycling the fissile materials reclaimed from spent fuel: uranium and plutonium, is the complementary and indispensable last link to effectively close the fuel cycle and control in particular the production of plutonium and other long-lived actinides. This paper will describe the state of development attained in France and Great Britain and will underline the main advantages of the reprocessing/recycling strategy

  20. Effect of a cement buffer on spent fuel dissolution

    International Nuclear Information System (INIS)

    Mennecart, Thierry; Cachoir, Christelle; Lemmens, Karel; Gielen, Ben; Vercauter, Regina

    2012-01-01

    The Belgian agency for radioactive waste has selected the super-container design with an Ordinary Portland Cement (OPC) buffer as the reference design for geological disposal of High-Level Waste (HLW) and Spent Fuel (SF) in the Boom Clay formation. In the super-container design, the canisters of HLW or SF will be enclosed by a 30 mm thick carbon steel overpack and a 700 mm thick concrete buffer. The overpack will prevent contact with the (cementitious) pore water during the thermal phase. On the other hand, once the overpack will be locally perforated, the high pH of the incoming water may have an impact on the lifetime of the waste. Most published data and national programs are related to clayey backfill materials, and few studies are reported in alkaline media. Hence, a set of experiments was conducted to evaluate the behavior of spent fuel (UO 2 dissolution rate and UO 2 solubility) in such an environment. The objective was to estimate the spent fuel dissolution rate in super-container conditions for use in preliminary performance assessment calculations

  1. Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal

    International Nuclear Information System (INIS)

    1993-10-01

    The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that open-quotes Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.close quotes This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity

  2. The situation of radioactive waste management in the fuel reprocessing facility (for fiscal 1979)

    International Nuclear Information System (INIS)

    1981-01-01

    In the fuel reprocessing facility of Power Reactor and Nuclear Fuel Development Corporation (PNC), the release of radioactive gaseous and liquid wastes was so controlled as not to exceed the set standards. Of the radioactive liquid wastes, concentrated wastes and sludge are stored in tanks. Radioactive solid wastes are suitably stored in containers. The situation of radioactive waste management in the fuel reprocessing facility in fiscal 1979 (from April, 1979, to March, 1980) is presented on the basis of the radiation control report made by PNC. The release of radioactive gaseous and liquid wastes was below the set standards. The following data are given in tables: the released quantity of radioactive gaseous and liquid wastes, the cumulative stored amount of radioactive liquid wastes, the produced quantity and cumulative stored amount of radioactive solid wastes; (for reference) the released quantity of radioactive gaseous and liquid wastes in fiscal 1977, 1978 and 1979. (J.P.N.)

  3. ASGARD - Advanced fuelS for Generation IV reActors: Reprocessing and Dissolution

    International Nuclear Information System (INIS)

    Ekberg, C.; Retegan, T.; De Visser-Tynova, E.; Wallenius, J.; Sarsfield, M.

    2013-01-01

    Conclusion: Thanks to its interdiciplinary nature ASGARD has created a common platform for many aspects of novel nuclear fuel cycles, 25% into the project everything is running according to plan with significant advances in most domains. The training and education scheme used in ASGARD has already been successfully implemented allowing young scientists in the field to present their results internationally and also visit other ASGARD labs. The future collaboration with e.g. SACESS and CINCH II will enable the creation of significant added value to the communities involved. More will come. We have only begun.....

  4. The importance of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The subject is discussed under the following main headings: introduction; world energy requirement; energy conservation and the economics of recycle; environmental considerations and the timescale of reprocessing; and problems associated with reprocessing. It is concluded that reprocessing is essential to the conservation of the world's energy resources and is an environmentally and probably an economically more acceptable option to the 'throw away' alternative. The associated problems of proliferation and terrorism, although of the utmost importance, can and will be solved. (U.K.)

  5. Dissolution of nuclear fuel samples for analytical purposes. I

    International Nuclear Information System (INIS)

    Krtil, J.

    1983-01-01

    Main attention is devoted to procedures for dissolving fuels based on uranium metal and its alloys, uranium oxides and carbides, plutonium metal, plutonium dioxide, plutonium carbides, mixed PuC-UC carbides and mixed oxides (PuU)O 2 . Data from the literature and experience gained with the dissolution of nuclear fuel samples at the Central Control Laboratory of the Nuclear Research Institute at Rez are given. (B.S.)

  6. Management of reprocessed uranium. Current status and future prospects

    International Nuclear Information System (INIS)

    2007-02-01

    There is worldwide interest in developing advanced and innovative technologies for nuclear fuel cycles, minimizing waste and environmental impacts. As of the beginning of 2003, about 171000 tonnes heavy metal spent nuclear fuel is in storage, while smaller amounts have been reprocessed. In several countries, including France, India, Japan and the Russian Federation, spent fuel has been viewed as a national energy resource. Some countries hold reprocessed uranium as the result of their commercial reprocessing service contracts for reprocessing the spent fuel of others. Reprocessed uranium has a potential value for recycling either directly or after appropriate treatment. This report analyses the existing options, approaches and developments in the management of reprocessed uranium. It includes the technical issues involved in managing reprocessed uranium which are RepU arisings, storage, chemical conversion, re-enrichment, fuel fabrication, transport, reactor irradiation, subsequent reprocessing and disposal options, as well as assessment of holistic environmental impacts. The objective of this document is to overview the information on the current status and future trends in the management of RepU and to identify major issues to be considered for future projects

  7. Thoria/thoria-urania dissolution studies for reprocessing application

    International Nuclear Information System (INIS)

    Srinivas, C.; Yalmali, Vrunda; Pente, A.S.; Wattal, P.K.; Misra, S.D.

    2012-06-01

    Thoria dissolution is normally conducted in 13M nitric acid in the presence of 0.03M sodium fluoride or HF as catalyst and 0.1M aluminium nitrate for mitigation of fluoride related corrosion of SS 304L dissolver vessel. Addition of aluminium nitrate in such high concentrations has undesirable consequences in the downstream high level radioactive liquid waste vitrification process at 900-1000 degC. Besides, because of the highly corrosive nature of fluoride ion, lowering its concentration in the dissolution reaction is advantageous in reducing the corrosion of dissolver and other downstream equipments. The present work was done with twin objectives of avoiding aluminium nitrate addition and lowering the fluoride ion concentration during dissolution reaction. High temperature sintered thoria and thoria-4 weight% urania dissolution reactions were investigated in the absence of aluminium nitrate and at reduced fluoride concentrations. Corrosion rates of SS 304L zircaloy in various dissolvent mixtures were studied by weight loss method. These studies clearly showed that aluminium nitrate addition for control of fluoride related corrosion of SS 304L can be avoided when zircaloy-clad thoria/thoria-urania pellets are dissolved. Dissolved zirconium ion was observed to be as effective as aluminium ion. Moreover, dissolution could be achieved with reasonable reaction rates at reduced fluoride concentration of 0.005-0.01M instead of 0.03M by changing the method of addition of the fluoride catalyst. (author)

  8. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  9. Apparatus and method for reprocessing and separating spent nuclear fuels

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H.; Coops, M.S.

    1983-01-01

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A non-oxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel. (author)

  10. Reprocessing the truth

    International Nuclear Information System (INIS)

    Goldsmith, E.; Bunyard, P.; Hildyard, N.

    1978-01-01

    Comments are made on the Report by the Inspector, Mr. Justice Parker, after the public inquiry into the application by British Nuclear Fuels Limited for permission to construct and operate a thermal oxide reprocessing plant at their Windscale works. Particular questions raised include: corrosion or storage of spent fuel, vitrification of radioactive waste; radiation effects, and permissible levels; radioactive emissions, critical groups and critical pathways; risks; reprocessing economics; commitment to the FBR; sociological aspects, including employment, nuclear weapon proliferation and terrorism, and Britain's moral responsibilities. (U.K.)

  11. Current status on advanced aqueous reprocessing process (next) in FaCT project

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Myochin, Munetaka; Koyama, Tomozo

    2009-01-01

    Japan Atomic Energy Agency (JAEA) launched the Fast Reactor Cycle Technology Development (FaCT) project in cooperation with the Japanese electric utilities in 2006. An integration of the advanced aqueous reprocessing concept and the simplified pelletizing fuel fabrication was selected as the most promising fuel cycle system. In order to accomplish the integration, R and D tasks were launched as FaCT Project in 2006 by Japanese joint team. The New Extraction System for TRU Recovery (NEXT) system is an advanced aqueous reprocessing concept which was based on the well established aqueous reprocessing for LWR spent fuel and newly applied processes such as uranium crystallization and extraction chromatography for MAs recovery. Main task of the NEXT process is to develop the TRU recovery process and equipments with high reliability, criticality safety, high durability and remote maintainability. In the FaCT project, all innovative technologies are planned to be developed within the next decade focusing on the future commercialization of FBR cycle systems. The judgment of the adoption of each innovative technology will be made by 2010 based on the results of R and Ds. The development of each technology is to be completed by around 2015. By the same time, it is scheduled to present the conceptual design of commercial and demonstrative fast reactor cycle facilities. The six items (Disassembling and shearing, Fuel dissolution, Uranium Crystallization, Single cycle co-extraction of U, Pu and Np, MA recovery by extraction chromatography and Waste treatment) have been identified as the issues to be developed corresponding to each process step. Current R and D status and prospects of this system until around 2015 is reported. (author)

  12. Present status of foreign reprocessing technology

    International Nuclear Information System (INIS)

    Otagaki, Takao; Ishikawa, Yasusi; Mori, Jyunichi

    2000-03-01

    In considering extensively and evaluating advanced nuclear fuel recycle technologies then selecting credible one among those technology options and establishing practicable plan of future fast reactor fuel recycle technology, it is important to investigate foreign reprocessing information extensively and minutely as much as possible then to know trends of reprocessing technology development in the world and present technology level of each country. This report is intending to present information of the status and the technology of operating, constructing and closed foreign reprocessing facilities in the world, including, mixed oxide (MOX) fuel reprocessing technology. The conceptual study of 'Foreign Reprocessing Technology Database' was also performed in order to add or revise the information easily. The eight countries, France, The U.K., Russia, The U.S., Germany, Belgium, India and China, were studied regarding outline of the facilities, operation status, future plan, technical information of process flow sheet, primary components, maintenance system etc, construction and operating costs, accidents or troubles, decommissioning status. (author)

  13. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  14. The reprocessing of fast reactor fuels - the TOR project

    International Nuclear Information System (INIS)

    Calame-Longjean, A.; Le Bouhellec, J.; Schwob, Y.

    1982-01-01

    A description is given of development work on the proposed new French facility for the reprocessing of fast reactor fuel. This is the TOR facility (Traitement des Oxydes Rapides). Block diagrams give details of the TOR project as a whole and of the main line and R and D line of the TOR 1 facility which is a new works devoted to the head of the process. Modifications to existing plant which will form the TOR 2 and TOR 3 facilities are also described. (U.K.)

  15. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electro-refiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electro-refiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electro-refiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour. (author)

  16. Reprocessing of spent nuclear fuels in OECD countries

    International Nuclear Information System (INIS)

    1977-01-01

    This report deals with the adequacy of projected reprocessing capacity, the short-term measures proposed in view of the lack of sufficient reprocessing capacity, the longer term measures proposed in view of the lack of sufficient reprocessing capacity, the alternatives to reprocessing and the cooperative arrangements

  17. Experience and prospects in reprocessing

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1997-01-01

    Reprocessing nuclear fuels is a long and successful industrial story. For decades, commercial reprocessing plants have been operating in France, the United Kingdom and Japan. The industrial outcome is clear and widely recognized: thousand tons of spent fuels have been reprocessed in these plants. Over the years, these facilities have been adapted to new types of fuel. Thus, the nuclear industry has fully demonstrated its ability to cope with technological change and its capacity to adapt itself to improvements. For decades, technical capability has been stressed and emphasized by nuclear industrial leaders as the most important point. This is no longer the case. Today the industry has to face a new commercial reality and to find the most adaptable answer to the utilities' requirements. This paper presents the current achievements and medium and long-term trends of the nuclear reprocessing activity, the ongoing commercial changes and gives an outlook for future evolutions. International political factors will also be examined. (author)

  18. Scope and dissolution studies and characterization of irradiated nuclear fuel in Atalante Hot Cell Facilities (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Dancausse, Jean-Philippe; Reynier Tronche, Nathalie; Ferlay, Gilles; Herlet, Nathalie; Eysseric, Cathrine; Esbelin, Eric

    2005-01-01

    Since 1999, several studies on nuclear fuels were realised in C11/C12 Atalante Hot Cell. This paper presents firstly an overview of the apparatus used for fuel dissolution and characterisation like reactor design, gas trapping flask and solid/liquid separation. Then, the general methodology is described as a function of fuel, temperature, reagents, showing for each step, the reachable experimental data: Dissolution rate, chemical and radiochemical fuel composition including volatile LLRN, insoluble mass, composition, morphology, cladding chemical, radiochemical and physical characterisation using SIMS (made in Cadarache/LECA facilities), MEB. To conclude, some of the obtained results on 129I and 14C composition of oxide fuels, rate of dissolution and first results on dissolution studies of RERTR UMo fuel will be detailed. (Author)

  19. Evaluation of methods for seismic analysis of nuclear fuel reprocessing and fabrication facilities

    International Nuclear Information System (INIS)

    Arthur, D.F.; Dong, R.G.; Murray, R.C.; Nelson, T.A.; Smith, P.D.; Wight, L.H.

    1978-01-01

    Methods of seismic analysis for critical structures and equipment in nuclear fuel reprocessing plants (NFRPs) and mixed oxide fuel fabrication plants (MOFFPs) are evaluated. The purpose of this series of reports is to provide the NRC with a technical basis for assessing seismic analysis methods and for writing regulatory guides in which methods ensuring the safe design of nuclear fuel cycle facilities are recommended. The present report evaluates methods of analyzing buried pipes and wells, sloshing effects in large pools, earth dams, multiply supported equipment, pile foundations, and soil-structure interactions

  20. Challenges associated with extending spent fuel storage until reprocessing or disposal

    International Nuclear Information System (INIS)

    Carlsen, Brett; Saegusa, Toshiari; Wasinger, Karl; Grahn, Per; Wolff, Dietmar; Waters, Michael; Bevilacqua, Arturo

    2014-01-01

    Existing spent fuel storage (SFS) practices are the result of the past presumptions that an end point, e.g. sufficient reprocessing and/or disposal capacity, would be available within the short term (approximately 50 years). Consequently, long term storage (between approximately 50 and 100 years) considerations have not been included in planning the back end of the nuclear fuel cycle. The present reality shows that no country has yet neither licensed nor built nor operated a deep geological repository for spent fuel (SF) and/or high level waste (HLW). Further, present and projected SF generation rates - more than 10 000 metric tons of heavy metal (MTHM) a year - far exceed the current capacity for disposal - 0 MTHM - or reprocessing - 4 800 MTHM a year - and will continue to do so for the rest of this decade. As a result, the SFS periods will extend. Moreover, as the SFM end point - reprocessing and/or disposal - is not presently defined with certainty in most countries, SFS periods will extend over periods within or beyond the long term in those countries. The IAEA has started in October 2010 a programmatic activity to consider challenges associated with extending SFS durations. After four consultants meetings and two technical meetings, a need has been identified for a SFS framework based on renewable storage periods - with as many renewals as may be needed - to ensure safe and secure SFS until sufficient reprocessing and/or disposal capacity is implemented. Over the course of the technical meetings, the consultants have worked with delegates of 36 Member States and 2 International Organizations to emphasize the importance of establishing programs that can provide sufficient confidence that age-related degradation will be recognized and addressed to effectively prevent unacceptable consequences. This paper considers a number of topics from the perspective of assuring safe and effective SFS as storage periods extend including: SFS concepts, packaging of SF

  1. Study on the abnormal reaction in an evaporator at a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu; Ohsaki, Hiroshi

    2004-01-01

    The calculation code was constructed in order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions. This report describes the model of the calculation code and the result of the trial calculation. (author)

  2. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  3. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    International Nuclear Information System (INIS)

    Van Hecke, K.; Goethals, P.

    2006-01-01

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  4. Optimization of the sizes and dates of starting up of reprocessing plants

    International Nuclear Information System (INIS)

    Nagashima, Kikusaburo

    1977-01-01

    It is desirable to complete the nuclear fuel cycle domestically for promoting nuclear power generation in Japan, and the reprocessing of spent fuel is indispensable. However, the capacity of the reprocessing plant in PNC and the reprocessing by the commissioning to foreign countries will be insufficient by the latter half of 1980s. In the planning of the second reprocessing plant in Japan, the following problems remain yet to be solved. The international regulation and the laws in Japan regarding the storage and transport of spent fuel, the disposal of radioactive wastes, and the recycling of plutonium must be established. The consensus of the public on the necessity and the safety of fuel reprocessing must be obtained. The technical investigation about fuel reprocessing and related business must be carried out sufficiently, including the necessity of introducing the technology from abroad. The economy and various conditions for industrializing fuel reprocessing must be studied. The economy of fuel reprocessing plants, the reprocessing cost taking escalation into account, mean reprocessing cost, the optimization of the time of starting full operation and the time of starting-up, the rise of reprocessing cost due to the escalation of operational cost are explained. Numerical calculation was carried out about the second reprocessing plant in Japan, and the results are examined. (Kako, I.)

  5. Cleaning and extraction apparatus in a nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Nakamura, Yoshiaki.

    1983-01-01

    Purpose : To eliminate the requirement for the decomposition and cleaning of a centrifugal extractor upon re-processing of FBR type reactor fuels, by preventing solid fission products from depositing on a rotary body of the centrifugal extractor. Constitution : A cleaning and extraction apparatus comprising a combination of a centrifugal cleaner and a centrifugal extractor is used for shortening the contact time between the process liquid and the extraction solvent in FBR type reactor fuel re-processing, and variable parameters are adjusted so that the following equation can be satisfied for avoiding the deposition of solids onto the rotary body of the centrifugal extractor: lsub(e). (rsub(le) 2 + rsub(2r) 2 ) . Nsub(e) . Qsub(c)/ lsub(c) (rsub(lc) 2 + rsub(2c) 2 ) . Nsub(c) . Qsub(e) < 0.8 where Qsub(c) : flow rate to be processed in a centrifugal cleaner, lsub(c) : length of the rotary body, rsub(2c) : radius of a rotary body, rsub(le) : distance from the center to the liquid-extracting hole of the rotary body center to the liquid-extraction hole, Nsub(c) : number of revolution of the rotary body, Qsub(e) : amount of flowrate to be treated in the centrifugal extractor, lsub(e) : length of the rotary body, rsub(2e) : radius for the rotary body, rsub(le) : distance from the center of the rotary body to the liquid discharging aperture and Nsub(e) : number of rotation of the rotary body. (Ikeda, J.)

  6. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs.

  7. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    International Nuclear Information System (INIS)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs

  8. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  9. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  10. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  11. Applications of chemical sensors in spent fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Achuthan, P.V.

    2012-01-01

    Environmental friendly power generation is essential to preserve the quality of life for the future generations. For more than fifty years, nuclear energy has proven its potential as an economically and commercially viable alternative to conventional energy. More over it is a clean source of energy with minimum green house effect. Recent data on climate changes have stressed the need for more caution on atmospheric discharges, hence a revival of interest in nuclear energy is in the offing. The entire world is committed to protect the atmosphere from polluting agents. Even nuclear power plants and the fuel cycle facilities are looking forward to reduce the already low gaseous emissions further and also to develop ways and means of controlling the impact of the small but significant radiotoxicity of the wastes generated in the nuclear fuel cycle. Spent fuel reprocessing and associated waste management, an integral part of the nuclear fuel cycle, employs chemical processes for the recovery of fuel value and for the conditioning of the reprocessed waste. In this respect they can be classified as a chemical plant dealing with radioactive materials. Hence it is essential to keep the gaseous, liquid and solid discharges at the lowest possible levels to comply with the regulations of discharges stipulated by the regulatory authorities. Elaborate cleaning and detection systems are needed for effective control of these discharges from both radioactive and chemical contamination point of view. Even though radiation detectors, which are non specific to the analytes, are the major tools for these controls, analyte specific chemical sensors can play a vital role in controlling the chemical vapours/gases generated during processing. The presentation will cover the major areas where chemical sensors play a significant role in this industry. (author)

  12. Abnormal reactions in a evaporator in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu

    2003-01-01

    In order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions, a development of a calculation code is under way. Mock-up tests were performed to investigate the fluid dynamic behavior of the organic solvent in the evaporator. Based on these results, the model of the calculation code was constructed. This report describes the results of mock-up tests and the model of the calculation code. (author)

  13. Safeguarding a future industrial reprocessing plant

    International Nuclear Information System (INIS)

    1978-11-01

    This paper is submitted to Working Group 5, Sub-Group B for information. It is being submitted to Working Group 4 for discussion at their meeting in January 1979 and shows that by a combination of accountancy, surveillance and containment a reliable safeguards system can be designed for the reprocessing of fuels of the BWR and PWR type. Its arguments can, in general terms, be applied to plants for reprocessing LMFBR fuels, with due allowance for future advances which should improve our overall knowledge of the reliability of safeguards systems. In the reprocessing of fast reactor (LMFBR) fuels, as compared with LWR fuels, the main differences are the higher plutonium concentration and lower heavy metal throughput in the early stages of the reprocessing operations. At later stages in the process (after plutonium/uranium separation) the plants could be similar and have similar safeguarding problems. Plants for reprocessing LMFBR on a commercial scale will not be in operation for a number of years. In these plants greater attention may have to be paid to safeguards at the early stages, especially to waste/raffinate streams, than in the PWR/BWR reprocessing plant. The actual balance between containment, surveillance and accountancy adopted will depend on the status of the technology of safeguards and reprocessing. It can be anticipated that improvements to measurement systems will be made which may allow greater reliance on actual measurement. Treatment and recycle of solid wastes will advance and could therefore lead to improvements in accountancy in, for example, the ''head-end''

  14. Why reprocess

    International Nuclear Information System (INIS)

    Hagen, M.

    1977-01-01

    The problem of whether to reprocess spent nuclear fuel elements has been studied already in the early days of the commercial utilization of nuclear power and has been answered positively. This also, and in particular, applies to the United States. Under the new American nuclear policy reprocessing is rejected only for reasons of non-proliferation. Although these are valid reasons, the effectiveness of a ban on reprocessing, as fas as the non-profileration of nuclear weapons is concerned, is not accepted worldwide because the necessary knowledge either already exists in many countries or can be obtained. Only if there had been a realistic chance to prevent the proliferation of nuclear weapons, also the other industrialized countries would have seconded the policy of the United States. A country like the Federal Republic of Germany, with a substantial long-term nuclear power program based initially on light water reactors, subsequently on advanced reactor systems, cannot do without a complete nuclear fuel cycle. This reasoning is outlined in the light of economic and radioecological aspects. Extensive experience on a technical scale is available in the reprocessing sector. The technical problems associated with this activity have been solved in principle and have largely been demonstrated to function in practice. (orig.) [de

  15. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  16. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    International Nuclear Information System (INIS)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program

  17. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    International Nuclear Information System (INIS)

    1995-01-01

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO's engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs

  18. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO`s engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs.

  19. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R.; Harrison, R. [UKAEA, Nuclear Materials Control Dep., Dounreay (United Kingdom)

    1997-07-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  20. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    International Nuclear Information System (INIS)

    Barrett, T.R.; Harrison, R.

    1997-01-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  1. ERDA activities related to reprocessing and plutonium recycle

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    1977-01-01

    ERDA has redirected its program in support of the LWR fuel cycle from one emphasizing the commercialization of existing fuel cycle technology to a broader based assessment of alternative fuel cycle concepts with the emphasis on safeguardability and avoidance of proliferation risks. As part of this program, ERDA will evaluate a number of possible technical and institutional options to reduce proliferation risks. ERDA will continue its current program of LWR fuel reprocessing R and D with added emphasis on improved safeguards capability as well as the applicability of conventional reprocessing technology to large multinational plants. These activities and supporting design studies will provide the basis for a decision regarding the design of an optimized system for the management of spent LWR fuel. Such a system would provide a model for the development of future domestic and foreign facilities and programs. A recently completed ERDA study of the benefits of LWR reprocessing and recycle would also be expected to be factored into such a decision. The study concluded that based on currently available data, recycle of uranium and plutonium in LWR's is attractive from the standpoint of economics and resource utilization relative to the discarding of spent fuel. The LWR reprocessing/recycle picture today is clouded by several unresolved policy issues. These include the need for adequate spent fuel storage capacity for both domestic and foreign reactors; the possibility of foreign reprocessing of U.S. produced fuel; the possibility of the disposal of foreign fuel in the U.S.; the possible need to dispose of wastes generated by multinational reprocessing plants; and finally, determination of the optimum balance between recycling recovered plutonium and saving it for the breeder

  2. Evaluation of nuclear fuel reprocessing strategies. 2. LWR fuel storage, recycle economics and plutonium logistics

    International Nuclear Information System (INIS)

    Prince, B.E.; Hadley, S.W.

    1983-01-01

    This is the second of a two-part report intended as a critical review of certain issues involved with closing the Light Water Reactor (LWR) fuel cycle and establishing the basis for future transition to commercial breeder applications. The report is divided into four main sections consisting of (1) a review of the status of the LWR spent fuel management and storage problem; (2) an analysis of the economic incentives for instituting reprocessing and recycle in LWRs; (3) an analysis of the time-dependent aspects of plutonium economic value particularly as related to the LWR-breeder transition; and (4) an analysis of the time-dependent aspects of plutonium requirements and supply relative to this transition

  3. Pilot studies of an extraction process for reprocessing of spent fuel from fast reactors: Hardware and process details of extractor selection

    International Nuclear Information System (INIS)

    Anisimov, V.I.; Pavlovich, V.B.; Smetanin, E.Ya.; Glazunov, N.V.; Shklyar, L.I.; Dubrovskii, V.G.; Serov, A.V.; Zakharkin, B.S.; Konorchenko, V.D.; Korotkov, I.A.; Neumoev, N.V.; Renard, E.V.

    1992-01-01

    While acknowledging the bold and persistent efforts of U.S. and Russian specialists to develop the concept of pyrochemical reprocessing of spent nuclear fuel from fast reactors on remote-controlled equipment for removal of actinides from the fission products one should recognize that the tasks of reprocessing such fuel can be handled only by using water-extraction technology, especially since the known Purex process continues to be improved to the point that a single-cycle scheme may be developed. This article presents results of pilot studies conducted in hot cells using multistage extractors in continuous counterflow operation; data on various extractor types used in reprocessing spent mixed oxide nuclear fuel; advantages and disadvantages of centrifugal and pulsed column extractor; comparison of column-type and centrifugal extractors; and extraction process

  4. On-line control of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Parus, I.; Kierzek, J.; Zoltowski, T.

    1977-01-01

    The development trends in the field of chemical processes control and the present state of the development of continuous composition analysers has been described. On this background the peculiarities of on-line control methods for spent nuclear fuel reprocessing have been discussed. The measuring methods for direct and indirect determination of chemical composition and nuclear safety are reviewed in detail. The review comprises such methods as: measurement of α, γ and neutron radiation emitted both by nuclides present in technological solutions and using external sources of different radiation, X-ray fluorescence, measurements of physicochemical parameters connected with the composition (pH, density, electrical conductivity), polarography and spectrophotometry. At the end of this review some new trends in process control based on dynamic process models have been presented. (author)

  5. Plant for retention of 14C in reprocessing plants for LWR fuel elements

    International Nuclear Information System (INIS)

    Braun, H.; Gutowski, H.; Bonka, H.; Gruendler, D.

    1983-01-01

    The 14 C produced from nuclear power plants is actually totally emitted from nuclear power plants and reprocessing plants. Using the radiation protection principles proposed in ICRP 26, 14 C should be retained at heavy water moderated reactors and reprocessing plants due to a cost-benefit analysis. In the frame of a research work to cost-benefit analysis, which was sponsored by the Federal Minister of the Interior, an industrial plant for 14 C retention at reprocessing plants for LWR fuel elements has been planned according to the double alkali process. The double alkali process has been chosen because of the sufficient operation experience in the conventional chemical technique. In order to verify some operational parameters and to gain experiences, a cold test plant was constructed. The experiment results showed that the double alkali process is a technically suitable method with high operation security. Solidifying CaCO 3 with cement gives a product fit for final disposal

  6. Italian experience with pilot reprocessing plants

    International Nuclear Information System (INIS)

    Cao, S.; Dworschak, H.; Rolandi, G.; Simonetta, R.

    1977-01-01

    Problems and difficulties recently experienced in the reprocessing technology of high burnup power reactor fuel elements have shown the importance of pilot plant experiments to optimize the separation processes and to test advanced equipment on a representative scale. The CNEN Eurex plant, in Saluggia (Vercelli), with a 50 kg/d thruput, in operation since '71, has completed several reprocessing campaigns on MTR type fuel elements. Two different chemical flowsheets based respectively on TBP and tertiary amines were thoroughly tested and compared: a concise comparative evaluation of the results obtained with the two schemes is given. Extensive modifications have then been introduced (namely a new headend cell equipped with a shear) to make the plant suitable to reprocess power reactor fuels. The experimental program of the plant includes a joint CNEN-AECL reprocessing experiment on CANDU (Pickering) type fuel elements to demonstrate a two cycle, amine based recovery of the plutonium. Later, a stock of high burnup fuel elements from the PWR Trino power station will be reprocessed to recover Pu and U with a Purex type flowsheet. ITREC, the second CNEN experimental reprocessing plant located at Trisaia Nuclear Center (Matera), started active operation two years ago. In the first campaign Th-U mixed oxide fuel elements irradiated in the Elk River reactor were processed. Results of this experiment are reported. ITREC special design features confer a high degree of versability to the plant allowing for substantial equipment modification under remote control conditions. For this reason the plant will be principally devoted in the near future to advanced equipment testing. Along this line high speed centrifugal contactor of a new type developed in Poland will be tested in the plant in the frame of a joint experiment between CNEN and the Polish AEC. Later on the plant program will include experimental campaign on fast reactor fuels; a detailed study on this program is in

  7. Reprocessing of nuclear fuels - status report

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The paper gives a survey on reprocessing plants at present under construction, in operation, and planned, as well as on the most important process steps such as receipt, storage, conversion, the extraction process, purification of the end products, gaseous waste treatment and waste treatment, and repair and maintenance of reprocessing plants. An outline on operational experience with WAK follows. (HR/LN) [de

  8. Review of experience with plutonium exposure assessment methodologies at the nuclear fuel reprocessing site of British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Strong, R.

    1988-01-01

    British Nuclear Fuels plc and its predecessors have provided a complete range of nuclear fuel services to utilities in the UK and elsewhere for more than 30 years. Over 30,000 ton of Magnox and Oxide fuel have been reprocessed at Sellafield. During this time substantial experience has accumulated of methodologies for the assessment of exposure to actinides, mainly isotopes of plutonium. For most of the period monitoring of personnel included assessment of systemic uptake deduced from plutonium-in-urine results. The purpose of the paper is to present some conclusions of contemporary work in this area

  9. Pyrolytic electrochemical process for the reprocessing of irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1980-01-01

    The reprocessing is aimed at synthetic UO 2 -PuO 2 mixed oxides, UC-PuC mixed carbides and at oxides and carbides of U, Pu and Th from fast nuclear reactors. The nuclear fuel is dissolved in a salt melting bath. The conversion of the Pu(SO 4 ) 2 is done thermally and that of UO 2 is done electrolytically. The molten salts are returned to the input of the process and the fission products and the molten salts are conditioned. (DG) [de

  10. Development of remote fuel pushing system in Reprocessing Plant, Tarapur

    International Nuclear Information System (INIS)

    Chandra, Munish; Coelho, G.; Kodilkar, S.S.; Mishra, A.K.; Bajpai, D.D.; Nair, M.K.T.

    1990-01-01

    Power Reactor Fuel Reprocessing Plant (PREFRE), Tarapur has been processing spent fuel arising from Pressurized Heavy Water Reactors for quite some time. The process adopted in the plant is purex process with chopleach head end treatment. The head end treatment involves loading of ten spent fuel bundles in the charging cask at a time in the fuel bay and aligning the cask with the transfer port and subsequently pushing all the ten bundles together into the fuel magazine. At present the fuel is pushed into the magazine manually. Since the ten bundles weigh approximately 200 Kg. and involves pushing of 9.4 meters length, the operation is carried out using stainless steel screwed pipes, in steps of five lengths. The entire operation requires a large number of trained skilled workers and is found to be tedious. To solve this problem a hydraulic cum pneumatic fuel pushing system has been designed, fabricated, tested and is in the process of installation in the fuel handling area. This paper describes various requirements, constraints and dimensional details arising in the incorporation of such a system to be back fitted in an existing plant, though many of these constraints can be avoided in future plants. Further, complete sequence of operations, technical specifications regarding the telescopic hydraulic power pack and associated controls incorporated in the system are highlighted. (author). 2 figs

  11. Dissolution of nuclear fuels

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-01-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO 2 , PuO 2 and PuO 2 -UO 2 pellets in boiling nitric acid alone and with additives. The uranium metal and UO 2 dissolved readily in nitric acid alone; PuO 2 dissolved slowly even with the addition of fluoride; PuO 2 -UO 2 pellets containing as much as 35% PuO 2 in UO 2 gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO 2 -UO 2 pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs

  12. Reprocessing considerations for a developing country

    International Nuclear Information System (INIS)

    This paper describes some of the alternatives for dealing with spent fuel that face a developing country. It then discusses the considerations that affect decisions on the size and siting of reprocessing plants, and shows how small plants may be suitable in countries without the means to transport spent fuel easily. The paper also outlines the reasons for reprocessing in India, and describes the development of India's reprocessing capability. It shows how the economic conditions in India, such as low skilled labour costs, make reprocessing plants of 100 to 200 tonnes U/yr capacity economic, and includes a table giving technical data on a 100 t U/yr national plant for inclusion in the reference cases used by INFCE Working Group 4

  13. World-wide redistribution of 129Iodine from nuclear fuel reprocessing facilities: Results from meteoric, river, and seawater tracer studies

    International Nuclear Information System (INIS)

    Moran, J.E.; Oktay, S.; Santschi, P.H.; Schink, D.R.; Fehn, U.; Snyder, G.

    1999-01-01

    Releases of the long-lived radioisotope of iodine, 129 I, from commercial nuclear fuel reprocessing facilities in England and France have surpassed natural, and even bomb test inventories. 129 I/ 127 I ratios measured in a variety of environmental matrices from Europe, North America and the southern hemisphere show the influence of fuel reprocessing-derived 129 I, which is transported globally via the atmosphere. Transport and cycling of I and 129 I in the hydrosphere and in soils are described based on a spatial survey of 129 I in freshwater. (author)

  14. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for such matters as designation of reprocessing undertaking, permission of construction of reprocessing facilities, permission and approval of alteration (of plan for reprocessing facilities), etc. The regulations also cover application for prior inspection, execution of prior inspection, technical standards concerning performance of reprocessing facilities, certificate of prior inspection, reprocessing facilities subject to welding inspection, application for welding inspection, execution of welding inspection, facilities not subject to welding inspection, approval of welding method, welding inspection for imported equipment, certificate of welding inspection, reprocessing facilities subject to regular inspection, application for regular inspection, technical standards for regular inspection, operation plan, application for approval of joint management, record keeping, restriction on access to areas under management, measures concerning exposure to radioactive rays, patrol and checking in reprocessing facilities, operation of reprocessing facilities, self-imposed regular inspection of reprocessing facilities, transportation within plant or operation premises, storage, waste disposal within plant or operation premises, safety rules, notice of disassembly, measures for emergency, notice of abolition of business, notice of disorganization, measures concerning cancellation of designation, submission of report, etc. (Nogami, K.)

  15. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  16. Technological study of electrochemical uranium fuel reprocessing in fused chloride bath

    International Nuclear Information System (INIS)

    Fernandes, Damaris

    2002-01-01

    This study is applied to metallic fuels recycling, concerning advanced reactor concept, which was proposed and tested in LMR type reactors. Conditions for electrochemical non-irradiated uranium fuel reprocessing in fused chloride bath in laboratory scale were established. Experimental procedures and parameters for dehydration treatment of LiCl-KCl eutectic mixture and for electrochemical study of U 3+ /U system in LiCl-KCl were developed and optimized. In the voltammetric studies many working electrodes were tested. As auxiliary electrodes, graphite and stainless steels crucibles were verified, with no significant impurities inclusions in the system. Ag/AgCl in Al 2 O 3 with 1 w% in AgCl were used as reference electrode. The experimental set up developed for electrolyte treatment as well as for the study of the system U 3+ /U in LiCl-KCl showed to be adequate and efficient. Thermogravimetric Techniques, Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry and cyclic voltametry showed an efficient dehydration method by using HCl gas and than argon flux for 12 h. Scanning Electron Microscopy, with Energy Dispersive X-Ray Spectrometry and Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry detected the presence of uranium in the cadmium phase. X-ray Diffraction and also Inductively Coupled Plasma Emission Spectrometry and DC Arc Emission Spectrometry were used for uranium detection in the salt phase. The obtained results for the system U 3+ /U in LiCl-KCl showed the viability of the electrochemical reprocessing process based on the IFR advanced fuel cycle. (author)

  17. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    International Nuclear Information System (INIS)

    Park, Jee Won; Jeong, C. J.; Yang, M. S.

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs

  18. Reprocessing of fast reactor fuels in the UP2 plant at La Hague

    International Nuclear Information System (INIS)

    Chenevier, F.; Grellard, J.; Wauquier, J.M.

    The installations of the UP2 plant and particularly the geometry of the HAO shop equipment were defined for reprocessing fuels from the ordinary water system. The high fissile substance level of fuels from the fast neutron system necessitated certain modifications to the installations and some operating restrictions so that they could be treated in the existing installation. After reviewing the characteristics of the reference fuel and describing the particular restrictions to be respected for safety-criticality, the choices made with respect to installation modifications and operating restrictions are presented. The observations made during a first treatment campaign confirm the validity of the options chosen [fr

  19. Current liquid metal cooled fast reactor concepts: use of the dry reprocess fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee Won; Jeong, C. J.; Yang, M. S

    2003-03-01

    Recent Liquid metal cooled Fast Reactor (LFR) concepts are reviewed for investigating the potential usability of the Dry Reprocess Fuel (DRF). The LFRs have been categorized into two different types: the sodium cooled and the lead cooled systems. In each category, overall design and engineering concepts are collected which includes those of S-PRISM, AFR300, STAR, ENHS and more. Specially, the nuclear fuel types which can be used in these LFRs, have been summarized and their thermal, physical and neutronic characteristics are tabulated. This study does not suggest the best-matching LFR for the DRF, but shows good possibility that the DRF fuel can be used in future LFRs.

  20. Electrocoagulation of solvent residues in the reprocessing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gidarakos, E.; Gramatte, W.; Koehling, A.; Schmitt, R.E.

    1989-03-01

    The aim of this project was to find out the potential of the method for the electrocoagulation (EC) of colloidally dispersed particles for an improved fine feed purification in the reprocessing of high burnup nuclear fuels with the help of real fuel solutions on a laboratory scale. In EC, the particles colloidally dispersed in the solution are fed with electric charges at the electrodes; this leads to a coagulation of the particles, with separation taking place at the electrodes. The methods of analysis chosen for the EC were nephelometry for inactive experiments with RuO 2 suspensions, and gamma spectroscopy for experiments with radioactive fuel solutions, with the nuclide pair Ru/Rh-106 acting as a colloidal tracer nuclide. On the whole, the present experimental data permit the conclusion that under the experimental conditions and with the apparatus applied, EC gives rise to the separation of colloidally dispersed noble metal particles in an active fuel solution. (orig./RB) [de

  1. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Nair, M.K.T.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Rao, M.K.; Mathur, J.N.; Murali, M.S.; Iyer, R.H.; Badheka, L.P.; Banerji, A.

    1994-01-01

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs

  2. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Deshingkar, D S; Chitnis, R R; Wattal, P K; Theyyunni, T K; Nair, M K.T. [Bhabha Atomic Research Centre, Bombay (India). Process Engineering and Systems Development Div.; Ramanujam, A; Dhami, P S; Gopalakrishnan, V; Rao, M K [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Group; Mathur, J N; Murali, M S; Iyer, R H [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.; Badheka, L P; Banerji, A [Bhabha Atomic Research Centre, Bombay (India). Bio-organic Div.

    1994-12-31

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs.

  3. Remote technology in the spent fuel route in the UK

    International Nuclear Information System (INIS)

    Webster, A.W.

    1999-01-01

    Remote technologies employed in front end (commercial) reprocessing operations of metallic and oxide fuel at Sellafield in the UK are described. An overview of the transportation, fuel receiving and preparation facilities are given together with the remote technology developments employed to improve operations. It is concluded that the facilities and remote technology used within them are mature and based upon simple and robust principles. Remote operations and maintenance in these facilities is often easier than in many facilities downstream of the dissolution stage. Fuel design considerations for shearing and handling are described and it is concluded that advanced and higher burnup fuel can be accommodated by existing reprocessing and interim storage routes with current remote technologies. Two different storage systems are available from UK companies which use existing spent fuel handling technology/equipment. The pace of remote technology development is currently being set by the demands of other nuclear process areas such as decommissioning and plant clean out; these will spin-off into front end processes. (author)

  4. Radioactive waste management: a series of bibliographies. Nuclear fuel cycle: reprocessing. Supplement 1

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on spent fuel reprocessing included in the Department of Energy's Energy Data Base from December 1982 through December 1983. The 555 citations in this bibliography are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  5. Nondestructive measurement of spent fuel assemblies at the Tokai Reprocessing and Storage Facility

    International Nuclear Information System (INIS)

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Lee, D.M.

    1979-12-01

    Nondestructive verification of irradiated fuel assemblies is an integral part of any safeguards system for a reprocessing facility. Available techniques are discussed with respect to the level of verification provided by each. A combination of high-resolution gamma spectrometry, neutron detectors, and gross gamma activity profile monitors provide a maximum amount of information in a minimum amount of time

  6. Fuel reprocessing plant: No qualitative differences as compared to other sensitive process plants

    International Nuclear Information System (INIS)

    Schweinoch, J.

    1986-01-01

    Nuclear power plants like the fuel reprocessing plant belong to the highly sensitive installations in respect of safety, but involve the same risks qualitatively as liquid-gas plants or chemical plants. Therefore no consequences for basic rights are discernible. The police can take adequate preventive measures. The regulations governing police action provide proper and sufficient warrants. (DG) [de

  7. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  8. Status and prospects for reprocessing

    International Nuclear Information System (INIS)

    Rossney, G.K.

    1977-01-01

    Following the formation of United Reprocessors (U.R.G.) in 1976 by British Nuclear Fuels Limited (B.N.F.L.) in the United Kingdom, the Commissariat a l'Energie Atomique (C.E.A.) in France and K.E.W.A. Kernbrennstoff-Wiederaufarbeitungs-Gesellschaft MBH (K.E.W.A.) in Germany, collaboration is now well established for the marketing of their reprocessing services for irradiated oxide fuel from thermal reactors. In addition collaboration in the continued evolution of the technology has progressed and an extensive research and development programme has been established, the results of which are exchanged between the shareholders. During 1976 the U.K. Government has given approval to B.N.F.L. to sign further contracts with foreign customers, subject to certain conditions. In France, the fuel cycle activities of the C.E.A. have been vested in a new company (Compagnie Generale Des Matieres Nucleaires (C.O.G.E.M.A.)) and their La Hague plant has commenced reprocessing operations on irradiated oxide fuel. In Germany, an agreement has been signed between K.E.W.A. and P.W.K. for the pre-project study for the proposed German plant. Against this background this paper reviews the present status of reprocessing by the shareholders of U.R.G. and the prospects for reprocessing

  9. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  10. Economic evaluation of reprocessing

    International Nuclear Information System (INIS)

    This paper, which also appears as an Appendix to the Final Working Group 4 report, considers the economics of the four basic options available in nuclear programmes namely: the once-through cycle; reprocessing with uranium recycle and plutonium storage; reprocessing with both uranium and plutonium recycle; and the fast reactor. These options are represented by four separate areas on a ''phase diagram'' showing the relationship between relative generating costs and uranium ore price. The basic algebra defining each component of electricity cost is given for each option. The diagram can take different forms depending upon the relative magnitudes of the costs of reprocessing and MOX fuel fabrication and whether the once-through fuel cycle is acceptable or not on grounds other than strictly economic, i.e. environmental grounds. The shortcomings of this form of presentation are also identified

  11. The search for advanced remote technology in fast reactor reprocessing

    International Nuclear Information System (INIS)

    Burch, W.D.; Herndon, J.N.; Stradley, J.G.

    1990-01-01

    Research and development in fast reactor reprocessing has been under way about 20 years in several countries throughout the world. During the past decade in France and the United Kingdom, active development programs have been carried out in breeder reprocessing. Actual fuels from their demonstration reactors have been reprocessed in small-scale facilities. Early US work in breeder reprocessing was carried out at the EBR-II facilities with the early metal fuels, and interest has renewed recently in metal fuels. A major, comprehensive program, focused on oxide fuels, has been carried out in the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) since 1974. Germany and Japan have also carried out development programs in breeder reprocessing, and Japan appears committed to major demonstration of breeder reactors and their fuel cycles. While much of the effort in all of these programs addressed process chemistry and process hardware, a significant element of many of these programs, particularly the CFRP, has been on advancements in facility concepts and remote maintenance features. This paper will focus principally on the search for improved facility concepts and better maintenance systems in the CFRP and, in turn, on how developments at ORNL have influenced the technology elsewhere

  12. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  13. Behavior of Nb fission product during nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Gue, J.P.

    1977-02-01

    Investigations on niobium fission product behavior in nitric acid and tributyl phosphate media have been carried out in order to explain the difficulties encountered in separating this element from fissile materials during spent nuclear fuel reprocessing. The studies have shown that in nitric acid solution, pentavalent niobium has a colloidal hydroxide form. The so-obtained sols were characterized by light scattering, electronic microscopy, electrophoresis and ultracentrifugation methods. In heterogeneous extracting media containing tributyl phosphate and dibutyl phosphoric acid the niobium hydroxide sols could be flocculated by low dibutyl phosphoric acid concentration or extracted into the organic phase containing an excess of dibutyl phosphoric acid [fr

  14. Discharges from a fast reactor reprocessing plant

    International Nuclear Information System (INIS)

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  15. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  16. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    International Nuclear Information System (INIS)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO 2 fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed

  17. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO[sub 2] fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  18. Evaluation of methods for decladding LWR fuel for a pyroprocessing-based reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Mailen, J.C.; Michaels, G.E.

    1992-10-01

    The first step in reprocessing disassembled light-water reactor (LWR) spent fuel is to separate the zirconium-based cladding from the UO{sub 2} fuel. A survey of decladding technologies has been performed to identify candidate decladding processes suitable for LWR fuel and compatible with downstream pyropr for separation of actinides and fission products. Technologies for the primary separation of Zircaloy cladding from oxide fuel and for secondary separations (in most cases, a further decontamination of the cladding) were reviewed. Because cutting of the fuel cladding is a necessary step in all flowsheet options, metal cutting technologies were also briefly evaluated. The assessment of decladding processes resulted in the identification of the three or four potentially attractive options that may warrant additional near-term evaluation. These options are summarized, and major strengths and issues of each option are discussed.

  19. Performance of an accountability measurement system at an operating fuel reprocessing facility

    International Nuclear Information System (INIS)

    Wade, M.A.; Spraktes, F.W.; Hand, R.L.; Baldwin, J.M.; Filby, E.E.; Lewis, L.C.

    1978-01-01

    The ICPP has been engaged for 25 years in the recovery of uranium from spent reactor fuels. In concert with the reprocessing activity, an accountability measurements system has been operated throughout the history of the ICPP. The structure and functions of the accountability measurements system are presented. Its performance is evaluated in order to illustrate the relation of analytical methodology to the overall measurements system. 6 figures, 5 tables

  20. Monitoring of releases from an irradiated fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    At its UP 2 plant, the La Hague facility reprocesses irradiated fuel by the PUREX process. The fuel stems from graphite/gas, natural-uranium reactors and pressurized or boiling water enriched-uranium reactors. The gaseous effluents are collected and purified by high-efficiency washing and filtration. After purification the gas stream is discharged into the atmosphere by a single stack, 100m high and 6m in diameter, located at a high point on the site (184m). The radionuclides released into the air are: krypton-85, iodine-129 and -131, and tritium. The liquid effluents are collected by drainage systems, which transfer them to the effluent treatment station in the case of active or suspect solutions. Active solutions undergo treatment by chemical and physical processes. After purification the waste water is released into the sea by an underwater drainage system 5km long, which brings the outlet point into the middle of a tidal current 2km offshore. The radionuclides contained in the purified waste water are fission products originating from irradiated fuels in only slightly variable proportions, in which ruthenium-rhodium-106 predominates. Traces of the transuranium elements are also found in these solutions

  1. BNFL Sellafield assessment of public radiation exposure due to liquid effluents from fuel reprocessing

    International Nuclear Information System (INIS)

    Hunt, G.J.

    1982-01-01

    Individual (critical group) doses resulting from liquid discharges from the British Nuclear Fuels Limited (BNFL) Sellafield Works have been derived in a form normalised to unit radionuclide discharge rates. This has been done for the purpose of providing a basis for predicting doses in the event of nuclear fuel from a future Sizewell 'B' power station being reprocessed. These doses would have to be reviewed in the light of prevailing circumstances at the time when the actual discharges are known. (author)

  2. Examples of CEA managements of spent fuels from a prototype power reactor (PHENIX) and from commercial power reactors after post irradiation examinations

    International Nuclear Information System (INIS)

    Guay, P.

    1988-01-01

    CEA gained a good experience in the management of spent fuels from its research or power prototype reactors and of the fuel samples for post irradiation examinations. The solution for these products is the reprocessing. The delay to apply that solution is bound to the disponibility of the reprocessing facilities, and in several cases induce a delayed reprocessing. Only particular and limited fuels are planned to be sent in a definitive storage. The definitive storage is choosen only for a few fuels essentially requiring important modifications of the dissolution process. The treatments and operations on the spent fuels must be carried out following the French safety rules. Long and detailed flowsheet studies are therefore necessary before the setting up of the operations. Generally the cost of the management of limited quantities of fuels, as it is the case here, is high. The flowsheets are established in taking into account, as far as possible, the use of existing facilities, procedures, transport casks

  3. Overview of reductants utilized in nuclear fuel reprocessing/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; Catherine Riddle; Keri Campbell; Edward Mausolf

    2013-10-01

    Most of the aqueous processes developed, or under consideration worldwide for the recycling of used nuclear fuel (UNF) utilize the oxido-reduction properties of actinides to separate them from other radionuclides. Generally, after acid dissolution of the UNF, (essentially in nitric acid solution), actinides are separated from the raffinate by liquid-liquid extraction using specific solvents, associated along the process, with a particular reductant that will allow the separation to occur. For example, the industrial PUREX process utilizes hydroxylamine as a plutonium reductant. Hydroxylamine has numerous advantages: not only does it have the proper attributes to reduce Pu(IV) to Pu(III), but it is also a non-metallic chemical that is readily decomposed to innocuous products by heating. However, it has been observed that the presence of high nitric acid concentrations or impurities (such as metal ions) in hydroxylamine solutions increase the likelihood of the initiation of an autocatalytic reaction. Recently there has been some interest in the application of simple hydrophilic hydroxamic ligands such as acetohydroxamic acid (AHA) for the stripping of tetravalent actinides in the UREX process flowsheet. This approach is based on the high coordinating ability of hydroxamic acids with tetravalent actinides (Np and Pu) compared with hexavalent uranium. Thus, the use of AHA offers a route for controlling neptunium and plutonium in the UREX process by complexant based stripping of Np(IV) and Pu(IV) from the TBP solvent phase, while U(VI) ions are not affected by AHA and remain solvated in the TBP phase. In the European GANEX process, AHA is also used to form hydrophilic complexes with actinides and strip them from the organic phase into nitric acid. However, AHA does not decompose completely when treated with nitric acid and hampers nitric acid recycling. In lieu of using AHA in the UREX + process, formohydroxamic acid (FHA), although not commercially available, hold

  4. Work on fuel reprocessing at the Boris Kidric Institute of Nuclear Sciences at Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Pavasovic, V.

    1969-01-01

    Activity in the region of fuel reprocessing since 1959 up to now has been reported. During that period all necessary conditions were created to enable successful work in that domain (hot laboratory with all necessary devices was constructed, the corresponding staff was trained, also the connections with other research centers were established dealing with these problems). Among the procedures Purex procedure was selected and laboratory plant was constructed to investigate different variants of this procedure. A pre-project has been made in cooperation with the Norway experts covering semi-industrial reprocessing plant. A device for countercurrent extraction is also under development (author) [sr

  5. Environmental evaluation of reprocessing

    International Nuclear Information System (INIS)

    1979-01-01

    This paper addresses two specific points. (a) The means by which it is established that reprocessing is carried out within the basic standards for radiological protection set by the ICRP. (b) A summary of the products, wastes and effluents of reprocessing together with the energy and water resources required. It is concluded that reprocessing of spent thermal reactor fuel can be undertaken whilst conforming to the basic standards set by ICRP. For domestic reasons of public acceptability some countries adopt very strict limits. Any attempt at comparisons between limits set by individual countries could lead to misunderstandings if account is not taken of these additional factors which may in turn influence the cost of reprocessing

  6. Oxidative dissolution of ruthenium deposits onto stainless steel by permanganate ions in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Floquet, S.; Eysseric, C.; Maurel, D. [Commissariat a l' Energie Atomique (CEA/Valrho), Bagnols-sur-Ceze (France)

    2008-07-01

    During spent nuclear fuel reprocessing ruthenium is liable to form black ruthenium deposits on the stainless steel walls of process equipments. These deposits promote corrosion and can eventually obstruct the off-gas lines. The results of decontamination of 304L stainless steel test specimens covered with RuO(OH){sub 2} . xH{sub 2}O deposits by permanganate ions in alkaline medium are described. The ruthenium deposits were dissolved by oxidation of RuO(OH){sub 2} to RuO{sub 4}{sup 2-} ions, while the permanganate ions were reduced to MnO{sub 4}{sup 2-} ions and then to manganese dioxide MnO{sub 2}. The parameters affecting the kinetics of oxidative dissolution of these deposits were examined. The results indicate that the oxidative dissolution kinetics depends on the instantaneous surface area of the deposit, and that the dissolution rate increases with the concentrations of MnO{sub 4}{sup -} and OH{sup -} ions. (orig.)

  7. Development, experience and innovation in reprocessing

    International Nuclear Information System (INIS)

    Delange, M.

    1985-01-01

    The author describes landmarks in the development of the reprocessing industry in France and then presents objectives for the future (extension of reprocessing of fuel from breeder reactors) together with the technological resources deployed to attain them [fr

  8. Head-end iodine removal from a reprocessing plant with a solid sorbent

    International Nuclear Information System (INIS)

    Wilhelm, J.G.; Furrer, J.; Schultes, E.

    1976-01-01

    In the first large-scale reprocessing plant planned in the Federal Republic of Germany a total amount of 580 kg of iodine per annum will be released in the fuel dissolution process for a maximum heavy metal throughput of 1800 tons per year and 40,000 MWd/t of burnup. The main portion of the iodine is formed by the 129 I (T/sub 1/2/ = 1.6 x 10 7 a) isotope of which 82 Ci at the maximum are released every year. With the scheduled fuel element storage time of greater than or equal to 220 d the simultaneous release of 131 I is less than or equal to 12.5 Ci the mass of which does not play any part. According to the computer model presently imposed in the Federal Republic of Germany for treatment of the environmental impact by radioiodine, a total decontamination factor of 340 must be attained. This implies a long-term diffusion factor of 1 x 10 -7 s/m 3 for releases via the stack of the reprocessing plant and a limit value of 50 mrem/a at the maximum for the thyroid dose to the critical group of the population via the ingestion path. The flowsheet for dissolver off-gas cleaning in a reprocessing plant employing solid iodine sorption material and the arrangement of filter components are discussed. The principle of an iodine sorption filter is described which allows exhaustive loading of the iodine sorption material. The removal reactions of different organic iodine compounds and the loading capacity and removal efficiency of the iodine sorption material in the original dissolver off-gases of reprocessing plants are indicated. Studies on the influence of filter poisons are reported.Operating experience gathered with a first iodine sorption filter in operation is discussed; this filter has been used to remove practically all iodine produced in the dissolver off-gas of the Karlsruhe Reprocessing Pilot Plant (WAK). Direct measurement of 129 I in samples of filter material using a low energy photon spectrometer is briefly reported

  9. Fast reactor system factors affecting reprocessing plant design

    International Nuclear Information System (INIS)

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  10. Reference thorium fuel cycle

    International Nuclear Information System (INIS)

    Driggers, F.E.

    1978-08-01

    In the reference fuel cycle for the TFCT program, fissile U will be denatured by mixing with 238 U; the plants will be located in secure areas, with Pu being recycled within these secure areas; Th will be recycled with recovered U and Pu; the head end will handle a variety of core and blanket fuel assembly designs for LWRs and HWRs; the fuel may be a homogeneous mixture either of U and Th oxide pellets or sol-gel microspheres; the cladding will be Zircaloy; and MgO may be added to the fuel to improve Th dissolution. Th is being considered as the fertile component of fuel in order to increase proliferation resistance. Spent U recovered from Th-based fuels must be re-enriched before recycle to prevent very rapid buildup of 238 U. Stainless steel will be considered as a backup to Zircaloy cladding in case Zr is incompatible with commercial aqueous dissolution. Storage of recovered irradiated Th will be considered as a backup to its use in the recycle of recovered Pu and U. Estimates are made of the time for introducing the Th fuel cycle into the LWR power industry. Since U fuel exposures in LWRs are likely to increase from 30,000 to 50,000 MWD/MT, the Th reprocessing plant should also be designed for Th fuel with 50,000 MWD/MT exposure

  11. Reprocessing fuel from the Southwest Experimental Fast Oxide Reactor at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.; Campbell, T.G.

    1985-11-01

    The irradiated fuel, reject fuel tubes, and fuel fabrication scrap from the Southwest Experimental Fast Oxide Reactor (SEFOR) were transferred to the Savannah River Plant (SRP) for uranium and plutonium recovery. The unirradiated material was declad and dissolved at SRP; dissolution was accomplished in concentrated nitric acid without the addition of fluoride. The irradiated fuel was declad at Atomics International and repacked in aluminum. The fuel and aluminum cans were dissolved at SRP using nitric acid catalyzed by mercuric nitrate. As this fuel was dissolved in nongeometrically favorable tanks, boron was used as a soluble neutron poison

  12. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Wagner, E.P.

    1999-01-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines

  13. Internal dose evaluation from actinide intakes during nuclear power reactor spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pawar, S.K.; Kumar, Ranjeet; Gamre, Rupali; Purohit, R.G.

    2011-01-01

    Full text: Indian PHWR reactors are using natural uranium as fuel. After use they are discharged from the core and send for fuel reprocessing to extract the unused uranium and plutonium. Plutonium and other actinides are formed by activation of 238 U with neutrons and subsequent decay. During reprocessing of the spent fuel, major long lived actinides (Pu, Am and U) may become radiological safety hazard. Actinides intakes are more probable during declading and chopping of spent fuel. During routine plant operation in reprocessing, exposure to Pu is a major concern along with Am and U in working environment due to its higher radiological hazard and occupational workers are likely to get exposed to plutonium, Americium and Uranium mostly through inhalation. Internally deposited Pu-isotopes, Am-isotope and U-isotopes are estimated using techniques such as lung counting (in-vivo) and urine and faecal bioassay (in-vitro). Evaluation of internal dose of actinides is dependent upon urinary excreted activity. To estimate the internally deposited Pu, U and Am at an intake level of about one ALI (ICRP-78, 1997) of occupational workers, urine bioassay is the preferred technique due to high detection sensitivity, ease of sample handling and economical method. A small and measurable fraction of internally deposited Pu, Am and U are excreted through urine whose content is dependent on time of inhalation, quantity and type of chemical form of inhaled material (S and M class). A standardized radiochemical analysis method for separation and estimation of Pu, Am and U is used to evaluate the urinary excreted activity and internal dose. Several measurements techniques are employed for the estimation of plutonium, Americium and Uranium for example, Alpha Spectrometry, Gamma Spectrometry, Neutron Activation Analysis, Mass Spectrometry and Fission Track Analysis. The radiochemical separation followed by alpha counting and/or spectrometry is chosen due to its ease of handling and

  14. Japanese national reference reprocessing plant

    International Nuclear Information System (INIS)

    1978-08-01

    This paper gives a general description of the proposed Japanese national reprocessing plant and of the design philosophy. The plant is in most respects similar to the base case reprocessing plant, with an annual throughput of 100-1500 tU. The plant would be co-located with a fuel fabrication facility

  15. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  16. Savannah River Laboratory data banks for risk assessment of fuel reprocessing plants

    International Nuclear Information System (INIS)

    Durant, W.S.

    1981-10-01

    The Savannah River Laboratory maintains a series of computerized data banks primarily as an aid in probabilistic risk assessment studies in the fuel reprocessing facilities. These include component failure rates, generic incidents, and reports of specific deviations from normal operating conditions. In addition to providing data for probability studies, these banks, have served as a valuable aid in trend analysis, equipment histories, process hazards analysis, consequence assessments, incident audit, process problem solving, and training

  17. A numerical simulation of 129I in the atmosphere emitted from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A global chemical transport model, MOZART-4, is applied to investigate the behavior of 129 I emitted from nuclear fuel reprocessing plants in Europe (Sellafield in the UK and La Hague in France). The result of numerical simulation for more than fifty-year period from the 1950s is validated by comparison with measurements of 129 I around the world and analyzed to clarify the characteristic of the distributions of concentration and deposition of 129 I. The modeled concentrations of 129 I in precipitation in Europe and the United States and inventories in the seawater around Japan and the Gulf of Mexico are in the same order as measurements. the emitted 129 I to the atmosphere is distributed all over the Northern Hemisphere due mainly to the prevailing westerlies and can be an important source of supply of artificial 129 I for the seawater remote from the point source such as a nuclear fuel reprocessing plant. (author)

  18. Reprocessing plants safety

    International Nuclear Information System (INIS)

    Davies, A.G.; Leighton, C.; Millington, D.

    1989-01-01

    The reprocessing of irradiated nuclear fuel at British Nuclear Fuels (BNFL) Sellafield site consists of a number of relatively self-contained activities carried out in separate plants across the site. The physical conditions and time scales applied in reprocessing and storage make it relatively benign. The potential for minor releases of radioactivity under fault conditioning is minimised by plant design definition of control procedures, training and supervision. The risks to both the general public and workforce are shown to be low with all the safety criteria being met. Normal operating conditions also have the potential for some occupational radiation exposure and the plant and workers are monitored continuously. Exposure levels have been reduced steadily and will continue to fall with plant improvements. (U.K.)

  19. Outline of center for research and development in Rokkasho reprocessing plant site

    International Nuclear Information System (INIS)

    Araya, S.; Kanatsugu, K.; Shakutsui, M.

    1998-01-01

    Japan Nuclear Fuel Ltd.(JNFL) is now constructing a commercial nuclear fuel reprocessing plant at Rokkasho Mura, introducing French Technology on the main processes of it. In October 1995 prior to the reprocessing plant operation, JNFL established the CENTER FOR RESEARCH and DEVELOPMENT (Center for R and D) inside the plant site to perform various tests which are intended to improve the safety, availability and reliability of the reprocessing plant. The test facility of the center was constructed from 1991 to 1995, and now many tests have been being performed in the center. A full-scale mock-up of the Head end process components based on French Technology, which consist of a tilting crane, shearing machine, dissolver, hull rinser, end piece rinser and maintenance equipment, was moved into a new building from the Head End Demonstration Test facility in Kobe (reported in RECOD '91). Functional tests and system performance tests are carried out under cold conditions (non radioactive). As equipment and piping layout in the cell and working area layout outside of the cell are simulated to the reprocessing plant design, it is possible to test remote maintainability and repairability under the same condition as the reprocessing plant except radioactive condition. A full-scale mock-up of the Centrifugal clarifier based on French Technology, which can clarify the dissolution solution is operated to confirm clarification performance under various cold conditions and is tested for the maintainability and the repairability. A sampling bench imported from France is the same one planed to be operated in the reprocessing plant which samples for various analysis from each process. The sampling bench is tested to confirm operability, maintainability and reliability. Also the sampling piping and pneumatic piping are going to be install to the sampling bench for a system test of sampling system. Two types of MERC (Mobile Equipment Replacement Cask), which replace worn parts remotely

  20. Report of short term research group on environment safety in nuclear fuel cycle, 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The research group on environment safety in nuclear fuel cycle was organized in fiscal 1979 as the research group in the range of the common utilization of Yayoi, and this is the third year since it developed into the short term research group in the Nuclear Engineering Research Laboratory. The results obtained so far were summarized in three reports, UTNL-R110, 134 and 147. In this fiscal year, ''The chemistry of reprocessing'' is the subtheme, and this short term research is to be carried out. The meeting is held on March 23 and 24, 1984, in this Laboratory, and the following reports are presented. The conference on institutional stability and the disposal of nuclear and chemically toxic wastes held at MIT, the social scientific analysis of nuclear power development, the present status of reprocessing research in foreign countries, the problems based on the operation experience of actual plants, the chemistry of fuel dissolution, the chemistry of solvent extraction, reprocessing offgas treatment and problems, the chemistry of fixing Kr and I in zeolite, waste treatment in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp., the chemistry of actinoids, denitration process and the chemistry of MOX production, and future reprocessing research. (Kako, I.)

  1. Economic evaluation of reprocessing - Indicative Canadian position

    International Nuclear Information System (INIS)

    1979-05-01

    This paper, which also appears as an Appendix to the final Working Group 4 report, forms part of the overall economic evaluation of reprocessing. The indicative national position and illustrative ''phase diagram'' for Canada is presented. Three fuel cycles are considered. (1) CANDU operating on the natural uranium, once-through fuel cycle. (2) CANDU operating with low enrichment (1.2%) once-through fuel cycle. (3) CANDU operating with recycle of plutonium and depleted uranium which has been extracted from spent CANDU natural uranium fuel. The diagrams show that reprocessing and recycle of fuel can be used to reduce further the sensitivity of CANDU fuelling costs to increasing uranium ore price

  2. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  3. Studies on application on airlift in fuel reprocessing engineering

    International Nuclear Information System (INIS)

    Prasad, A.N.; Balasubramanian, G.R.; Ranganathan, K.

    1977-01-01

    The experiments have been conducted to study the possibility of using airlift for: (1) metering the radioactive fluids by metering the prime air used and (2) transport of these fluids. It is found that airlift can be used for metering directly or a part of a metering system. It can transport radioactive fluids e.g. concentrated plutonium solutions. It can be adopted to transfer completely solutions between tanks at the same level. The problem of entrainment of liquid by air can be sufficiently reduced by introducing suitable de-entrainers. The major advantage is the absence of any moving parts and its wider flow rate ranges. It is, thus, a valuable tool for a fuel reprocessing engineer. (M.G.B.)

  4. LMFBR fuel cycle studies progress report, August 1972, No. 42

    International Nuclear Information System (INIS)

    Unger, W.E.; Blanco, R.E.; Crouse, D.J.; Irvine, A.R.; Watson, C.D.

    1972-10-01

    This report continues a series outlining progress in the development of methods for reprocessing of LMFBR fuels. Development work is reported on problems of irradiated fuel transport to the processing facility, the dissolution of the fuel and the chemical recovery of PuO 2 --UO 2 values, the containment of volatile fission products, product purification, conversion of fuel processing plant product nitrate solutions to solids suitable for shipping and for subsequent fuel fabrication. Pertinent experimental results are presented for the information of those immediately concerned with the field. Detailed description of experimental work and data are included in the topical reports and in the Chemical Technology Division Annual Reports

  5. A global-scale dispersion analysis of iodine-129 from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A three-dimensional global chemical transport model, MOZART-2, is applied to investigate the global-sale dispersion of Iodine-129 from nuclear fuel reprocessing plants. The concentration and deposition of 129 I obtained by MOZART-2 are dispersed all over the Northern Hemisphere. The emission of 129 I to the atmosphere is thus important in considering the transport of 129 I to remote sites. (author)

  6. Polyvalent fuel treatment facility (TCP): shearing and dissolution of used fuel at La Hague facility

    Energy Technology Data Exchange (ETDEWEB)

    Brueziere, J.; Tribout-Maurizi, A.; Durand, L.; Bertrand, N. [Recycling Business Unit, AREVA, 1 place de la coupole, 92084 Paris La defense Cedex (France)

    2013-07-01

    Although many used nuclear fuel types have already been recycled, recycling plants are generally optimized for Light Water Reactor (LWR) UO{sub x} fuel. Benefits of used fuel recycling are consequently restricted to those fuels, with only limited capacity for the others like LWR MOX, Fast Reactor (FR) MOX or Research and Test Reactor (RTR) fuel. In order to recycle diverse fuel types, an innovative and polyvalent shearing and dissolving cell is planned to be put in operation in about 10 years at AREVA's La Hague recycling plant. This installation, called TCP (French acronym for polyvalent fuel treatment) will benefit from AREVA's industrial feedback, while taking part in the next steps towards a fast reactor fuel cycle development using innovative treatment solutions. Feasibility studies and R/Development trials on dissolution and shearing are currently ongoing. This new installation will allow AREVA to propose new services to its customers, in particular in term of MOX fuel, Research Test Reactors fuel and Fast Reactor fuel treatment. (authors)

  7. Thorium utilization program progress report for January 1, 1974--June 30, 1975. [Reprocessing; refabrication; recycle fuel irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Kasten, P.R.

    1976-05-01

    Work was carried out on the following: HTGR reprocessing development and pilot plant, refabrication development and pilot plant, recycle fuel irradiations, engineering and economic studies, and conceptual design of a commercial recycle plant. (DLC)

  8. Flow sheet development for the dissolution of unirradiated Mark 42 fuel tubes in F-Canyon, Part II

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    Two dissolution flow sheets were tested for the desorption of unirradiated Mark 42 fuel tubes. Both the aluminum (from the can, cladding, and fuel core) and the plutonium oxide (PuO 2 ) are dissolved simultaneously, i.e., a co-dissolution flow sheet. In the first series of tests, 0.15 and 0.20 molar (M) potassium fluoride (KF) solutions were used and the dissolution extended over several days. In the other series of tests, solutions with higher concentrations of fluoride (0.25 to 0.30 M) were used. Calcium fluoride (CaF 2 ) was used in those tests as the fluoride source

  9. Reprocessing of spent nuclear fuels. Status and trends; Upparbetning av anvaent kaernbraensle. Laege och trender

    Energy Technology Data Exchange (ETDEWEB)

    Hultgren, Aa

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs.

  10. Characteristics of plutonium, curium and uranium in hulls of FUGEN MOX spent fuel by destructive analysis

    International Nuclear Information System (INIS)

    Iijima, Shizuka; Goto, Yuichi; Samoto, Hirotaka; Shichi, Ryo; Shimizu, Takenori

    2011-01-01

    We have been developing a non-destructive assay system called hulls monitor for nuclear fuel materials retained in hulls at the Tokai Reprocessing Plant (TRP). The hulls monitor is based on a passive neutron measurement method, so its applicability should be evaluated by a destructive analysis of hulls that are recovered from the reprocessing process. In this study, hulls came from the Advanced Thermal Reactor (ATR) FUGEN were taken from the dissolution process of TRP and destructively analyzed. Two kinds of hulls from ATR-MOX spent fuel assemblies and from ATR-UO 2 spent fuel assemblies were taken and soaked with nitric acid then fused with ammonium hydrogen sulfate, followed by Pu, 244 Cm, U mass determination by alpha spectrometry and ICP-AES. The characteristics of hulls came from MOX spent fuel assemblies were revealed by comparison of ATR-MOX spent fuel with ATR-UO 2 spent fuel. (author)

  11. Mechanism of 232U production in MTR fuel evolution of activity in reprocessed uranium

    International Nuclear Information System (INIS)

    Harbonnier, G.; Lelievre, B.; Fanjas, Y.; Naccache, S.J.P.

    1993-01-01

    The use of reprocessed uranium for research reactor fuel fabrication implies to keep operators safe from the hard gamma rays emitted by 232 U daughter products. CERCA has carried out, with the help of French CEA and COGEMA, a detailed study to determine the evolution of the radiation dose rate associated with the use of this material. (author)

  12. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  13. Remote maintenance lessons learned on prototypical reprocessing equipment

    International Nuclear Information System (INIS)

    Kring, C.T.; Schrock, S.L.

    1990-01-01

    A major objective of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is to develop and demonstrate the technology required to reprocess spent nuclear fuel. The Fuel Recycle Division, over the past 16 years, has undertaken this objective by designing and testing prototypical hardware representing essentially every major equipment item currently included in most fuel reprocessing plant conceptual designs. These designs are based on total remote maintenance to increase plant availability and reduce radiation exposure to plant operators. The designs include modular equipment to facilitate maintainability and the remote manipulation necessary to accomplish maintenance tasks. Prototypic equipment has been installed and tested in a cold mock-up of a reprocessing hot cell, called the remote operations and maintenance demonstration facility. The applied maintenance concept utilizes the dexterity and mobility of bridge-mounted, force-reflecting servomanipulators. Prototypic processing equipment includes a remote disassembly system, a remote shear system, a rotary dissolver, a remote automated sampler system, removable equipment racks to support chemical process equipment items, and the advanced servomanipulators. Each of these systems and a brief description of functions are discussed

  14. Initial results for electrochemical dissolution of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Initial results are reported for the anode behavior of spent metallic nuclear fuel in an electrorefining process. The anode behavior has been characterized in terms of the initial spent fuel composition and the final composition of the residual cladding hulls. A variety of results have been obtained depending on the experimental conditions. Some of the process variables considered are average and maximum cell voltage, average and maximum anode voltage, amount of electrical charge passed (coulombs or amp-hours) during the experiment, and cell resistance. The main goal of the experiments has been the nearly complete dissolution of uranium with the retention of zirconium and noble metal fission products in the cladding hulls. Analysis has shown that the most indicative parameters for determining an endpoint to the process, recognizing the stated goal, are the maximum anode voltage and the amount of electrical charge passed. For the initial experiments reported here, the best result obtained is greater than 98% uranium dissolution with approximately 50% zirconium retention. Noble metal fission product retention appears to be correlated with zirconium retention

  15. Demonstration and development of safeguards techniques in the PNC reprocessing plant. Part of a coordinated programme on the use of installed instrumentation in fuel reprocessing facilities for safeguards purposes

    International Nuclear Information System (INIS)

    Kurihara, H.

    1979-04-01

    A hull-monitoring system in the Head-End facility and systems for surveillance and containment in the spent fuel receiving and storage facility at Tokai Reprocessing Plant are described. Operating experience on them is analyzed

  16. Future of the reprocessing business at the RT-1 plant

    International Nuclear Information System (INIS)

    Bukharin, O.

    1995-01-01

    Economic viability of reprocessing operations at the RT-1 plant is provided by the contracts with nuclear utilities from Finland and Hungary. Finland will stop sending fuel to Mayak for reprocessing after 1996. Hungary will be capable to resolve the problem of spent fuel domestically some time in the future. This increases vulnerability of the reprocessing business at Mayak to future political uncertainties. (author)

  17. Study of assessing aqueous reprocessing process for the pipeless reprocessing plant

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Morioka, Nobuo; Fumoto, Hiromichi; Nishimura, Kenji; Chikazawa, Takahiro

    2000-02-01

    The purpose of this study is to investigate the possibility of new reprocessing process for the purpose of introducing pipeless plant concept, where aqueous separation methods other than solvent extraction method are adopted in order to develop more economical FBR fuel (MOX fuel) reprocessing process. At it's first stage, literature survey on precipitation method, crystallization method and ion-exchange method was performed. Based on the results, following processes were candidated for pipeless reprocessing plant. (1) The process adopting crystallization method and peroxide precipitation method (2) The process adopting oxalate precipitation method (3) The process under mild aqueous conditions (crystallization method and precipitation method) (4) The process adopting crystallization method and ion-exchange method (5) The process adopting crystallization method and solvent extraction method. The processes (1)-(5) were compared with each others in terms of competitiveness to the conventional reference process, and merits and demerits were evaluated from the viewpoint of applicability to pipeless reprocessing plant, safety, economy, Efficiencies in consumption of Resources, non-proliferation, and, Operation and Maintenance. As a result, (1) The process adopting crystallization method and peroxide precipitation method was selected as the most reasonable process to pipeless plant. Preliminary criticality safety analyses, main process chemical flowsheet, main equipment list and layout of mobile vessels and stations were reported for the (1) process. (author)

  18. Basic research on separation control of long life nuclides in fuel reprocessing processes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki; Usami, Go [Tokyo Univ. (Japan). Faculty of Engineering; Maeda, Mitsuru; Fujine, Sachio; Uchiyama, Gunzo; Kihara, Takehiro; Asakura, Toshihide; Hotoku, Shinobu

    1996-01-01

    The behavior of technetium (Tc) in nuclear fuel reprocessing processes has become the subject to be elucidated in the transition to distribution process by coextraction and the catalytic action in distribution process. In order to forecast or control the behavior of Tc in reprocessing processes, it is necessary to understand that at which valence Tc exists stably in respective processes. Tc is stable at 7 valence in nitric acid solution expected in reprocessing. In this research, the reaction speed of the oxidation and reduction reactions of rhenium (Re) which simulates Tc was measured by laser Raman spectroscopy which can do high speed analysis of valence. The experimental method is explained. The Raman spectra of Re in the experimental system of this research were measured in perchloric acid solution and nitric acid solution, and compared with the values in literatures. As the result, the validity of this research was assured. It was confirmed that Re(7) was not reduced by sulfamic acid and ascorbic acid. Re(7) was reduced by thiocyanic acid once, but was oxidized again by the reaction of thiocyanic acid and nitric acid. (K.I.)

  19. Processes for the control of 14CO2 during reprocessing

    International Nuclear Information System (INIS)

    Notz, K.J.; Holladay, D.W.; Forsberg, C.W.; Haag, G.L.

    1980-01-01

    The fixation of 14 CO 2 may be required at some future time because of the significant fractional contribution of 14 C, via the ingestion pathway, to the total population dose from the nuclear fuel cycle, even though the actual quantity of this dose is very small when compared to natural background. The work described here was done in support of fuel reprocessing development, of both graphite fuel (HTGRs) and metal-clad fuel (LWRs and LMFBRs), and was directed to the control of 14 CO 2 released during reprocessing operations. However, portions of this work are also applicable to the control of 14 CO 2 released during reactor operation. The work described falls in three major areas: (1) The application of liquid-slurry fixation with Ca(OH) 2 , which converts the CO 2 to CaCO 3 , carried out after treatment of the CO 2 -containing stream to remove other gaseous radioactive components, mainly 85 Kr. This approach is primarily for application to HTGR fuel reprocessing. (2) The above process for CO 2 fixation, but used ahead of Kr removal, and followed by a molecular sieve process to take out the 85 Kr. This approach was developed for use with HTGR reprocessing, but certain aspects also have application to metal-clad fuel reprocessing and to reactor operation. (3) The use of solid Ba(OH) 2 hydrate reacting directly with the gaseous phase. This process is generally applicable to both reprocessing and to reactor operation

  20. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...