WorldWideScience

Sample records for fuel property effects

  1. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  2. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  3. Effects of Fuel Oil on the Geotechnical Properties of Clay Soil

    Directory of Open Access Journals (Sweden)

    Mahdi Obaid Karkush

    2017-08-01

    Full Text Available The present study highlights the effects of medium fuel oil (MFO on the chemical, physical and mechanical properties of clay soil samples (disturbed and undisturbed obtained from the site of the electrical power plant in the campus of the University of Baghdad at Al-Jadriah district in Baghdad/Iraq. The soil sample was classified according to the unified soil classification system (USCS as CL and described as lean clay of low plasticity. The medium fuel oil is an industrial wastewater disposed as a byproduct from the fuel used in the electricity power plant. The soil samples are artificially contaminated with two percentages of medium fuel oil, 10 and 20 % related to the dry weight of soil. The soil samples were mixed with the contaminant (MFO by hand and then left for 4 days for homogeneity. A series of laboratory tests are conducted on both natural and artificially contaminated soil samples to measure the effects of medium fuel oil on the chemical, physical and mechanical properties of soil samples. The results of tests showed that the medium fuel oil has significant impacts on some properties of soil and slight effects on the others. Increasing the percentage of contaminant causes a slight decrease in the liquid limit and particle size distribution; on the other hand, it causes a considerable increase in the consolidation parameters and decrease in shear strength parameters. Also, there is a slight change in the chemical composition of soil samples.

  4. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  5. Effect of flexible fuels on mechanical properties of reinforced polyoxymethylenes (POM

    Directory of Open Access Journals (Sweden)

    M. Gómez-Mares

    2014-08-01

    Full Text Available The use of flexible fuels has been increased during the last years making essential to run compatibility tests with those materials exposed to them. In this work the effect of the flexible fuels M15A (Volume Mixture of 85% fuel C and 15 % Aggressive methanol and M30A (Volume mixture of 70% fuel C and 30 % Aggressive methanol on the mechanical properties of some polymers of the Polyoxymethylene (POM family is assessed. The polymers chosen had different levels of glass fiber filler (0, 10 and 25%. The samples were immersed on fuel and kept on a chamber at 80°C during 1008h. The results showed that the properties of polymers with filler are more affected than the ones of the polymers without it. Tensile stress at break and Tensile stress at yield diminished with the fuel exposure. The most aggressive fuel was found to be M30A, due to the higher methanol concentration.

  6. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  7. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  8. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  9. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  10. Analysis Of The Effect Of Fuel Enrichment Error On Neutronic Properties Of The RSG-GAS Core

    International Nuclear Information System (INIS)

    Saragih, Tukiran; Pinem, Surian

    2002-01-01

    The analysis of the fuel enrichment error effect on neutronic properties has been carried out. The fuel enrichment could be improperly done because of wrong fabrication. Therefore it is necessary to analyze the fuel enrichment error effect to determine how many percents the fuel enrichment maximum can be accepted in the core. The analysis was done by simulation method The RSG-GAS core was simulated with 5 standard fuels and 1 control element having wrong enrichment when inserted into the core. Fuel enrichment error was then simulated from 20%, 25% and 30% and the simulation was done using WIMSD/4 and Batan-2DIFF codes. The cross section of core material of the RSG-GAS was generated by WIMSD/4 code in 1-D, X-Y geometry and 10 energy neutron group. Two dimensions, diffusion calculation based on finite element method was done by using Batan-2DIFF code. Five fuel elements and one control element changed the enrichment was finally arranged as a new core of the RSG-Gas reactor. The neutronic properties can be seen from eigenvalues (k eff ) as well as from the kinetic properties based on moderator void reactivity coefficient. The calculated results showed that the error are still acceptable by k eff 1,097 even until 25% fuel enrichment but not more than 25,5%

  11. Effect of reference parameters and properties of materials for WWER-type fuel elements on their reliability

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu K; Malachenko, L L; Medvedev, A V; Solyany, V I; Sukhanov, G I; Tonkov, V Yu

    1987-05-01

    Present approach to requirements for reference parameters and properties of materials for WWER-1000 fuel elements is presented as well as evaluation of their effects on fuel reliability. Some results of investigations with the aim of improving fuel element reliability in operational NPP conditions are discussed. 4 references, 7 figures, 3 tables.

  12. Properties of zirconium carbide for nuclear fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai; Vasudevamurthy, Gokul, E-mail: gvasudev@vcu.edu; Nozawa, Takashi; Snead, Lance L.

    2013-10-15

    Zirconium carbide (ZrC) is a potential coating, oxygen-gettering, or inert matrix material for advanced high temperature reactor fuels. ZrC has demonstrated attractive properties for these fuel applications including excellent resistance against fission product corrosion and fission product retention capabilities. However, fabrication of ZrC results in a range of stable sub-stoichiometric and carbon-rich compositions with or without substantial microstructural inhomogeneity, textural anisotropy, and a phase separation, leading to variations in physical, chemical, thermal, and mechanical properties. The effects of neutron irradiation at elevated temperatures, currently only poorly understood, are believed to be substantially influenced by those compositional and microstructural features further adding complexity to understanding the key ZrC properties. This article provides a survey of properties data for ZrC, as required by the United States Department of Energy’s advanced fuel programs in support of the current efforts toward fuel performance modeling and providing guidance for future research on ZrC for fuel applications.

  13. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    Science.gov (United States)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  14. The effect of reference parameters and properties of materials for WWER-type fuel elements on their reliability

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Malachenko, L.L.; Medvedev, A.V.; Solyany, V.I.; Sukhanov, G.I.; Tonkov, V.Yu.

    1987-01-01

    Present approach to requirements for reference parameters and properties of materials for WWER-1000 fuel elements is presented as well as evaluation of their effects on fuel reliability. Some results of investigations with the aim of improving fuel element reliability in operational NPP conditions are discussed. (author)

  15. Effect of broadened-specification fuels on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  16. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    International Nuclear Information System (INIS)

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  17. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  18. Fuel property effects on Navy aircraft fuel systems

    Science.gov (United States)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  19. Property-process relationships in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Nuclear fuels are fabricated using many different techniques as they come in a large variety of shapes and compositions. The design and composition of nuclear fuels are predominantly dictated by the engineering requirements necessary for their function in reactors of various designs. Other engineering properties requirements originate from safety and security concerns, and the easy of handling, storing, transporting and disposing of the radioactive materials. In this chapter, the more common of these fuels will be briefly reviewed and the methods used to fabricate them will be presented. The fuels considered in this paper are oxide fuels used in LWRs and FRs, metal fuels in FRs and particulate fuels used in HTGRs. Fabrication of alternative fuel forms and use of standard fuels in alternative reactors will be discussed briefly. The primary motivation to advance fuel fabrication is to improve performance, reduce cost, reduce waste or enhance safety and security of the fuels. To achieve optimal performance, developing models to advance fuel fabrication has to be done in concert with developing fuel performance models. The specific properties and microstructures necessary for improved fuel performance must be identified using fuel performance models, while fuel fabrication models that can determine processing variables to give the desired microstructure and materials properties must be developed. (author)

  20. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  1. Construction of database server system for fuel thermo-physical properties

    International Nuclear Information System (INIS)

    Park, Chang Je; Kang, Kwon Ho; Song, Kee Chan

    2003-12-01

    To perform the evaluation of various fuels in the nuclear reactors, not only the mechanical properties but also thermo-physical properties are required as one of most important inputs for fuel performance code system. The main objective of this study is to make a database system for fuel thermo-physical properties and a PC-based hardware system has been constructed for ease use for the public with visualization such as web-based server system. This report deals with the hardware and software which are used in the database server system for nuclear fuel thermo-physical properties. It is expected to be highly useful to obtain nuclear fuel data without such a difficulty through opening the database of fuel properties to the public and is also helpful to research of development of various fuel of nuclear industry. Furthermore, the proposed models of nuclear fuel thermo-physical properties will be enough utilized to the fuel performance code system

  2. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    International Nuclear Information System (INIS)

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-01-01

    Understanding fuel foil mechanical properties, and fuel/cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel--cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel/cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results

  3. Assessment of microalgae biodiesel fuels using a fuel property estimation methodology

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, Jonas Colen Ladeia; Vargas, Jose Viriato Coelho; Mariano, Andre Bellin [Center for Research and Development of Sustainable Energy. Universidade Federal do Parana, Curitiba, PR (Brazil)

    2010-07-01

    Recently, depleting supplies of petroleum and the concerns about global warming are drawing attention to alternative sources of energy. In this context, advanced biofuels, derived from non edible superior plants and microorganisms, are presented as promising options for the transportation sector. Biodiesel, which is the most prominent alternative fuel for compression ignition engines, have a large number as potential feedstock, such as plants (e.g., soybean, canola, palm) and microorganism (i.e., microalgae, yeast, fungi and bacterium). In order to determine their potential, most studies focus on the economic viability, but few discuss the technical viability of producing high quality fuels from such feedstock. Since the fuel properties depend on the composition of the parent oil, and considering the variability of the fatty acid profile found in these organisms, it is clear that the fuels derived may present undesirable properties, e.g., high viscosity, low cetane number, low oxidative stability and poor cold flow properties. Therefore, it is very important to develop ways of analysing the fuel quality prior to production, specially considering the high cost of producing and testing several varieties of plants and microorganisms. In this aim, this work presents the use of fuel properties estimation methods on the assessment of the density, viscosity, cetane number and cold filter plugging point of several microalgae derived biofuels, comparing then to more conventional biodiesel fuels. The information gathered with these methods helps on the selection of species and cultivation parameters, which have a high impact on the derived fuel quality, and have been successfully employed on the Center for Research and Development of Sustainable Energy. The results demonstrate that some species of microalgae have the potential to produce high quality biodiesel if cultivated with optimised conditions, associated with the possibility of obtaining valuable long chain

  4. An overview of the effect of fuel properties on emissions from biomass fuels

    International Nuclear Information System (INIS)

    Graboski, M.S.

    1993-01-01

    Biofuels are considered to be environmentally benign since they are composed primarily of carbon, hydrogen and oxygen. The emissions resulting from biofuel use are dependent, however, on the system employed and how key fuel properties interact with the system. Two case studies are presented to demonstrate this fact. First, gasification and combustion of urban waste wood to produce electric power is investigated. Second, ethanol and ethanol derivatives are examined as reformulated gasoline additives

  5. Engine control techniques to account for fuel effects

    Science.gov (United States)

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  6. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  7. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  8. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  9. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  10. Mechanical properties of fuel debris for defueling toward decommissioning

    International Nuclear Information System (INIS)

    Hoshino, Takanori; Kitagaki, Toru; Yano, Kimihiko; Okamura, Nobuo; Koizumi, Kenji; Ohara, Hiroshi; Fukasawa, Tetsuo

    2015-01-01

    In the decommissioning of the Fukushima Daiichi Nuclear Power Plant (1F), safe and steady defueling work is required. Before defueling 1F, it is necessary to evaluate fuel debris for properties related to the defueling procedure and technology. While defueling after the Three Mile Island Nuclear Power Plant Unit 2 (TMI-2) accident, a core boring system played an important role. Considering the working principle of core boring, hardness, elastic modulus, and fracture toughness were found to be important fuel debris properties that had a profound effect on the performance of the boring machine. It is speculated that uranium and zirconium oxide solid solution ((U,Zr)O_2) is one of the major materials of fuel debris in 1F, according to the TMI-2 accident experience and the results of past severe accident studies. In addition, the Zr content of 1F fuel debris is expected to be higher than that of TMI-2 debris, because the 1F reactors were boiling-water reactor (BWR). In this report, the mechanical properties of (U,Zr)O_2 are evaluated in the ZrO_2 content range from 10% to 65%. The hardness, elastic modulus, and fracture toughness were measured by Vickers test, ultrasonic pulse echo method, and indentation fracture method, respectively. In the ZrO_2 content range under 50%, the Vickers hardness and fracture toughness of (U,Zr)O_2 increased, and the elastic modulus decreased slightly with ZrO_2 content. In the case of 55% and 65% ZrO_2, all of those measures increased slightly with ZrO_2 content. Summarizing those results, ZrO_2 content affects mechanical properties significantly in the case of low ZrO_2 content. Higher Zr content (exceeding 50%) has little effect on mechanical properties. In the future, nonradioactive surrogate debris will be necessary for small-scale functional and large-scale mockup tests of various defueling technologies. These results are useful to select the material for surrogate debris. (author)

  11. Effect of fabrication and operating parameters on electrochemical property of anode and cathode for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Zhou, Hongwei; Ding, Xianan; Li, Xinping; Zou, Dechun; Li, Xinyang; Wang, Xindong; Lee, Joong Kee

    2016-01-01

    Highlights: • A quick and simple method for optimizing assembly force of fuel cells. • Effect mechanisms of operating parameters on polarization of each electrode. • Working temperature is main factor to affect the optimal flow rates. • This paper is helpful to simulate the relation between operating parameters. - Abstract: A quick and simple method for optimizing assembly force of the direct methanol fuel cell has been introduced. Meanwhile, the effect mechanism of operating parameters on fuel cell performance and the properties of single anode and cathode have been intuitively investigated by a three-electrode system in this paper. The impedance curves indicate that internal resistance is the suitable intermediate to connect assembly torque and assembly force. The cathode polarization curve and limiting current density of methanol crossover are shown that the increasing methanol concentration markedly exacerbates the polarization in cathode due to serious methanol crossover phenomenon. Also, the higher cathode backpressure mainly improves cathode property, and lowers methanol crossover simultaneously. Finally, the summaries of peak power densities prove that the main factor that affected the optimal flow rates of methanol and oxygen is not the concentration or backpressure, but the working temperature.

  12. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  13. Discussion on effective utilization of nuclear fuel based on peculiar property of the fifth unstable nuclide series

    International Nuclear Information System (INIS)

    Zhang Jiahua

    2000-01-01

    Based on a peculiar property of the Fifth Unstable Nuclide Series (FUNS) in developing stage, namely the transformation rate of parent fuel- 238 U consumption to fission production being increased with the fuel's reactor core life, it was shown that the used fuel taken out from the reactor core of PWR could be used again as PWR fuel, and the post processing for the used fuel needed only to de-contaminate the fission products from the used fuel and then to rebuild it into its normal form. Scheme A discussed the condition of using such rebuilt used fuel in PWR. Another peculiar property of FUNS is characterized by the fact that the equilibrium saturate concentrations of the derived nuclides in FUNS are different for different types of reactor. It is well known that the saturate concentration of 239 Pu in PWR is much larger than that in HWR. Scheme B i.e. a method of using the rebuilt used fuel from PWR to replace the natural uranium fuel for HWR was discussed

  14. Tensile mechanical properties of U3Si2-Al fuel plate

    International Nuclear Information System (INIS)

    Xu Yong; Hu Huawei; Zhuang Hongquan; Wang Xishu

    2003-01-01

    The fuel plate made of fuel meat, with the U 3 Si 2 -Al dispersion fuel center, and 6061 Al alloy cladding, is a new kind of fuel used in research reactors. The mechanical property data of the fuel meat is the basic data in the design of fuel group, but the mechanical property of this fuel meat has not been studied all over the world till now. In this paper, the mechanical properties of U 3 Si 2 -Al fuel meats of different sizes used in research reactors are investigated and analyzed, and at the same time the carrying capacity of tensile in different directions are also compared. In order to get more knowledge about the mechanical properties of the fuel meat, the tensile experiment has been carried out repeatedly. Considering the lower ratio of elongation and the brittleness, the microscope has been used to examine the zone of fracture after tensile test. (authors)

  15. Low - temperature properties of rape seed oil biodiesel fuel and its blending with other diesel fuels

    International Nuclear Information System (INIS)

    Kampars, V.; Skujins, A.

    2004-01-01

    The properties of commercial bio diesel fuel depend upon the refining technique and the nature of the renewable lipids from which it is produced. The examined bio diesel fuel produced from rape seed oil by the Latvian SIA 'Delta Riga' has better low-temperature properties than many other bio diesels; but a considerably higher cloud point (-5,7 deg C), cold filter plugging point (-7 deg C) and pour point (-12 deg C) than the examined petrodiesel (grade C, LST EN 590:2000) from AB 'Mazeikiu nafta'. The low-temperature properties considerably improve if blending of these fuels is used. The blended fuels with bio diesel contents up to 90% have lower cold filter plugging points than petrodollar's. The estimated viscosity variations with temperature show that the blended fuels are Arrenius-type liquids, which lose this property near the cold filter plugging point. (authors)

  16. Thermodynamic properties of the DUPIC fuel and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Heon; Kim, Hee Moon [Kyung Hee Univ., Seoul (Korea, Republic of)

    1997-07-01

    This study describes thermodynamic properties of DUPIC fuel and performance. In initial state, DUPIC fuel which contains fissile materials is different from general nuclear fuel. So this study analyzed oxygen potential, thermal conductivity and specific heat of the DUPIC fuel.

  17. Properties of the high burnup structure in nuclear light water reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, Thierry; Rondinella, Vincenzo V.; Konings, Rudy J.M. [European Commission, Joint Research Centre, Karlsruhe (Germany). Directorate Nuclear Safety and Security; and others

    2017-07-01

    The formation of the high burnup structure (HBS) is possibly the most significant example of the restructuring processes affecting commercial nuclear fuel in-pile. The HBS forms at the relatively cold outer rim of the fuel pellet, where the local burnup is 2-3 times higher than the average pellet burnup, under the combined effects of irradiation and thermo-mechanical conditions determined by the power regime and the fuel rod configuration. The main features of the transformation are the subdivision of the original fuel grains into new sub-micron grains, the relocation of the fission gas into newly formed intergranular pores, and the absence of large concentrations of extended defects in the fuel matrix inside the subdivided grains. The characterization of the newly formed structure and its impact on thermo-physical or mechanical properties is a key requirement to ensure that high burnup fuel operates within the safety margins. This paper presents a synthesis of the main findings from extensive studies performed at JRC-Karlsruhe during the last 25 years to determine properties and behaviour of the HBS. In particular, microstructural features, thermal transport, fission gas behaviour, and thermo-mechanical properties of the HBS will be discussed. The main conclusion of the experimental studies is that the HBS does not compromise the safety of nuclear fuel during normal operations.

  18. Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells.

    Science.gov (United States)

    Jaramillo, Isabel C; Sturrock, Anne; Ghiassi, Hossein; Woller, Diana J; Deering-Rice, Cassandra E; Lighty, JoAnn S; Paine, Robert; Reilly, Christopher; Kelly, Kerry E

    2018-03-21

    The physicochemical properties of combustion particles that promote lung toxicity are not fully understood, hindered by the fact that combustion particles vary based on the fuel and combustion conditions. Real-world combustion-particle properties also continually change as new fuels are implemented, engines age, and engine technologies evolve. This work used laboratory-generated particles produced under controlled combustion conditions in an effort to understand the relationship between different particle properties and the activation of established toxicological outcomes in human lung cells (H441 and THP-1). Particles were generated from controlled combustion of two simple biofuel/diesel surrogates (methyl decanoate and dodecane/biofuel-blended diesel (BD), and butanol and dodecane/alcohol-blended diesel (AD)) and compared to a widely studied reference diesel (RD) particle (NIST SRM2975/RD). BD, AD, and RD particles exhibited differences in size, surface area, extractable chemical mass, and the content of individual polycyclic aromatic hydrocarbons (PAHs). Some of these differences were directly associated with different effects on biological responses. BD particles had the greatest surface area, amount of extractable material, and oxidizing potential. These particles and extracts induced cytochrome P450 1A1 and 1B1 enzyme mRNA in lung cells. AD particles and extracts had the greatest total PAH content and also caused CYP1A1 and 1B1 mRNA induction. The RD extract contained the highest relative concentration of 2-ring PAHs and stimulated the greatest level of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNFα) cytokine secretion. Finally, AD and RD were more potent activators of TRPA1 than BD, and while neither the TRPA1 antagonist HC-030031 nor the antioxidant N-acetylcysteine (NAC) affected CYP1A1 or 1B1 mRNA induction, both inhibitors reduced IL-8 secretion and mRNA induction. These results highlight that differences in fuel and combustion conditions

  19. The data-base of properties of actinides for metal fuels

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Kurata, Masateru

    1989-01-01

    It is developed the technology that transuranium elements (TRUs) to be recovered from high active wastes transmute into relatively short lived nuclides by burning them within metallic fuel alloys. In this paper, we collect published data of properties of TRUs and U-Pu(-Zr) alloys and make up the data base for the design study of alloys with TRUs. In addition, the data base possesses a function of statistic analysis in order to facilitate the comparison of data and can afford to estimate properties. This data base collects (1) properties affecting fuel temperature and microstructure, (2) mechanical properties and (3) fundamental properties such as hardness and density, and furthermore, (1) fission gas release, (2) swelling and (3) fuel-cladding interaction and eutectic property as irradiation behavior. (author)

  20. Effects of NOx-inhibitor agent on fuel properties of three-phase biodiesel emulsions

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Lin, Hsiu-An

    2008-01-01

    Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NO x formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NO x -inhibitor agent are considered to reduce levels of NO x emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NO x -inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia. (author)

  1. CERMET fuel behavior and properties in ADS reactors

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Staicu, D.; Somers, J.; Maschek, W.; Liu, P.; Chen, X.

    2008-01-01

    Within the EUROTRANS Integrated Project, Forschungszentrum Karlsruhe (FZK) and the Institute for Transuranium Elements (ITU) are joining their efforts to study the behavior of Mo-based CERMET non-uranium fuel for the ADS. Contributions include core safety calculations, and fuel property measurements and irradiation experiments. Safety studies for optimized EFIT core designs have concluded that, for the new low power cores of EFIT with a power class of ∼400 MWth and a fuel power density of ∼250 MW/m 3 , the CERMET-loaded cores behave favorably and the design limits of the fuels were not violated. Mo-based CERMET fuel pellets and pins loaded with Pu and Am were fabricated for irradiation programmes which will start by mid-2007 in PHENIX (France) and HFR-Petten (The Netherlands). The thermal diffusivity and specific heat of the CERMET fuels (loaded with Pu and Am) were the main properties measured, and the thermal conductivity was deduced. The results were used to prepare the safety report for the irradiation experiments

  2. Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis

    International Nuclear Information System (INIS)

    Islam, Muhammad Aminul; Brown, Richard J.; Brooks, P.R.; Jahirul, M.I.; Bockhorn, H.; Heimann, Kirsten

    2015-01-01

    Highlights: • Long chain mono-unsaturated fatty acids (C16:1, C18:1) have positive impact on CN. • Very long chain unsaturated fatty acids (C20:5, C22:5, C22:6) increase the fuel density and decrease the cetane number. • Calculated CN overestimated the impact of very long chain unsaturated fatty acids. - Abstract: The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE–GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane

  3. Properties of light water reactor spent fuel cladding. Interim report

    International Nuclear Information System (INIS)

    Farwick, D.G.; Moen, R.A.

    1979-08-01

    The Commercial Waste and Spent Fuel Packaging Program will provide containment packages for the safe storage or disposal of spent Light Water Reactor (LWR) fuel. Maintaining containment of radionuclides during transportation, handling, processing and storage is essential, so the best understanding of the properties of the materials to be stored is necessary. This report provides data collection, assessment and recommendations for spent LWR fuel cladding materials properties. Major emphasis is placed on mechanical properties of the zircaloys and austenitic stainless steels. Limited information on elastic constants, physical properties, and anticipated corrosion behavior is also provided. Work is in progress to revise these evaluations as the program proceeds

  4. Innovative nuclear fuels and applications. Part 1: limits of today's fuels and concepts for innovative fuels. Part 2: materials properties, irradiation performance and gaps in our knowledge

    International Nuclear Information System (INIS)

    Matzke, H.

    2000-01-01

    Part I of this contribution on innovative nuclear fuels gives a summary of current developments and problems of today's fuels, i.e. enriched UO 2 and UO 2 with a few % of PUO 2 (MOX fuel) or Gd 2 O 3 (as burnable neutron poison). The problems and property changes caused by high burnups (e.g. degradation of the thermal conductivity, polygonization or formation of the rim-structure) are discussed. Subsequently, the concepts for new fuels to burn excess Pu and to achieve an effective transmutation of the minor actinides Np, Am and Cm are treated. The criteria for the choice of suitable fuels and different fuel types (high Pu-content fuels, nitrides, U-free fuels, inert matrix supported fuels, cercers, cermets, etc.) are discussed. Part II of this contribution on innovative nuclear fuels deals with the properties of relevance of the different materials suggested to be used in innovative fuels which range from pure actinide fuel such as PuN and AmO 2 to spinel MgAl 2 O 4 and zircon ZrSiO 4 for inert matrix-based fuels, etc. The available knowledge on materials research aspects is summarized with emphasis on the physics of radiation damage. It is shown that significant gaps in the present knowledge exist, e.g. for the minor actinide compounds, and suggestions are made to fill these gaps in order to achieve a sufficient data base to design and operate suitable innovative fuels in a near future. (author)

  5. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  6. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Morihisa, H; Tamanouchi, M; Araki, H; Yamada, S [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  7. Advanced technique for computing fuel combustion properties in pulverized-fuel fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (Russian Federation))

    1992-03-01

    Reviews foreign technical reports on advanced techniques for computing fuel combustion properties in pulverized-fuel fired boilers and analyzes a technique developed by Combustion Engineering, Inc. (USA). Characteristics of 25 fuel types, including 19 grades of coal, are listed along with a diagram of an installation with a drop tube furnace. Characteristics include burn-out intensity curves obtained using thermogravimetric analysis for high-volatile bituminous, semi-bituminous and coking coal. The patented LFP-SKM mathematical model is used to model combustion of a particular fuel under given conditions. The model allows for fuel particle size, air surplus, load, flame height, and portion of air supplied as tertiary blast. Good agreement between computational and experimental data was observed. The method is employed in designing new boilers as well as converting operating boilers to alternative types of fuel. 3 refs.

  8. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The two books of Volume 1 comprise the first in a three-volume series of compilations on the radioactive decay propertis of CANDU fuel and deal with the natural uranium fuel cycle. Succeeding volumes will deal with fuel cycles based on plutonium recycle and thorium. In Volume 1 which is divided into three parts, the computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 3 contains the data relating to the plutonium product and the high level wastes produced during fuel reprocessing. (author)

  9. Cermet fuel behaviour and properties in ADS reactors

    International Nuclear Information System (INIS)

    Haas, D.; Fernandez, A.; Staicu, D.; Somers, J.; Maschek, W.; Chen, X.

    2007-01-01

    Within the EUROTRANS Integrated Project co- financed within the 6th Framework Programme of the European commission, the sub-critical Accelerator Driven System (ADS) is now being considered as a potential means to burn long-lived transuranium nuclides. Within the EUROTRANS Programme, the domain AFTRA is responsible to develop and provide the data basis for the fuels to be used in the European Facility for Industrial Transmutation (EFIT). The preferred fuel for such a fast neutron reactor is uranium-free, highly enriched with plutonium and minor actinides. Requirements for ADS transmuter fuels are strongly linked with the core design and safety parameters, the fuel properties and the ease of fabrication and reprocessing. This study concerns the behaviour and properties of fuels with molybdenum as inert matrix. The status of the development work was presented at the last ICENES conference [1]. Since then, the design of the European Facility for Industrial Transmutation (EFIT) was developed and the transmutation capability, the burn-up behaviour, the reactivity swing and power peaking factors, and the safety performance were determined for different cores with inert matrix fuels like MgO and Mo. For the EFIT, the CERMET with the Mo matrix is recommended as the reference fuel and CERCER with the MgO matrix as a back-up solution. The thermal diffusivity and specific heat of the CERMET fuels (loaded with Pu and Am) were measured, and the thermal conductivity was deduced. The thermal conductivity of the CERMET fuels was also predicted using a model proposed in [1], with a microstructure corresponding to a random distribution of spheres, with overlapping. This model microstructure takes into account the negative effects arising from the possible formation of small agglomerates of inclusions in the CERMET fuels. The agreement between the theoretical and calculated values is relatively good (the error is between 0 and 15% of the value of the thermal conductivity

  10. The effect of material properties on the performance of a new geometry PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, Iman [Islamic Azad University, Department of Mechanical Engineering, Torbat-e-jam Branch, Torbat-e-jam (Iran, Islamic Republic of); Ghazikhani, Mohsen [Ferdowsi University of Mashhad, Department of Mechanical Engineering, Faculty of Engineering, Mashhad (Iran, Islamic Republic of)

    2012-05-15

    In this paper a computational dynamics model for duct-shaped geometry proton exchange membrane (PEM) fuel cell was used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the 2-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by increasing the thermal conductivity of the GDL and membrane, the overall cell performance increases. (orig.)

  11. Effects of fuel properties, temperature, and pressure on fuel reactivity, formation and destruction of nitrogen oxides, and release of alkalis

    International Nuclear Information System (INIS)

    Aho, M.

    1998-01-01

    This study assists in the development of advanced combustion technologies (PFBC, IGCC) with high efficiency of electricity production from solid fuels (η = 47 - 50%) and in minimizing emissions of nitrogen oxides in atmospheric and pressurised FB combustion. In addition to the work done within the LIEKKI 2 programme, research work has been carried out inside the Joule 2 programme of EU. The research work may be divided into three parts: (1) Study of N x O y formation and destruction, (2) Study of fuel reactivity at elevated pressures, and (3) Study on alkali release from different coals. Experimental work was carried out utilizing a novel pressurized entrained flow reactor (PEFR) completed in VTT Energy in the autumn 1992. The device was unique in the world between 1992 and 1995. The effects of fuel properties on the formation of N 2 O and NO at conditions typical to FB combustion were studied for a large number of fuels including different coals, coal-derived char, peat, and bark. This work started before 1993 and was completed in 1995. FTIR technology was utilized for on-line gas analysis of N 2 O, NO, and NO 2 . The ratio fuel-O/fuel-N was found to be the most important fuel factor determining the formation of N 2 O and NO from volatile fuel-N. Only a small part of N 2 O is formed from char-N. The effect of pressure (0.2 - 2.0 MPa) on the formation of N 2 O, NO, and NO 2 , and destruction of NO with ammonia (Thermal DeNO x , experiments at 0.2, 0.5, and 1.5 MPa) and urea (NO x Out, experiments at 0.5 MPa) were studied in cooperation with Aabo Akademi University (AaAU). VTT performed the experimental work and AaAU the kinetic modelling. A part of these results are presented in the report by AaAU. Increase of pressure decreases NO formation and increases NO 2 formation. The behaviour of N 2 O is more complex. Both destruction processes for NO seem to operate well at elevated pressure, although clear effects of pressure on the temperature window of Thermal DeNO x

  12. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel

    International Nuclear Information System (INIS)

    Kuprianov, Vladimir I.; Kaewklum, Rachadaporn; Chakritthakul, Songpol

    2011-01-01

    This work reports an experimental study on firing 80 kg/h rice husk in a swirling fluidized-bed combustor (SFBC) using an annular air distributor as the swirl generator. Two NO x emission control techniques were investigated in this work: (1) air staging of the combustion process, and (2) firing rice husk as moisturized fuel. In the first test series for the air-staged combustion, CO, NO and C x H y emissions and combustion efficiency were determined for burning 'as-received' rice husk at fixed excess air of 40%, while secondary-to-primary air ratio (SA/PA) was ranged from 0.26 to 0.75. The effects of SA/PA on CO and NO emissions from the combustor were found to be quite weak, whereas C x H y emissions exhibited an apparent influence of air staging. In the second test series, rice husks with the fuel-moisture content of 8.4% to 35% were fired at excess air varied from 20% to 80%, while the flow rate of secondary air was fixed. Radial and axial temperature and gas concentration (O 2 , CO, NO) profiles in the reactor, as well as CO and NO emissions, are discussed for the selected operating conditions. The temperature and gas concentration profiles for variable fuel quality exhibited significant effects of both fuel-moisture and excess air. As revealed by experimental results, the emission of NO from this SFBC can be substantially reduced through moisturizing rice husk, while CO is effectively mitigated by injection of secondary air into the bed splash zone, resulting in a rather low emission of CO and high (over 99%) combustion efficiency of the combustor for the ranges of operating conditions and fuel properties.

  13. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  14. Development of an analytical model to assess fuel property effects on combustor performance

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  15. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  16. Effects of UO2 fuel microstructure and density on fuel in-reactor performance

    International Nuclear Information System (INIS)

    Hansson, L.

    1988-02-01

    The volume changes of UO 2 fuel pellets, produced by neutron irradiation, can be characterized by two processes: fission spike induced densification through pore skrinkage and later fission produced induced swelling of UO 2 matrix. In-pile densification is controlled by the initial density and microstructure of the fuel, particularly by the pore size distribution. The extent of swelling depends mainly on the amount of fission products produced, but the fission gas release as well as the swelling may be reduced by increasing the grain size of UO 2 . Fabrication of fuel pellets having certain in-reactor properties requires detailed knowledge of the effects of individual fabrication parameters. The irradiation experience of fuels fabricated by using different conversion and pelletizing methods is extensive. Based on this experience, some general characteristics of stable/well-performing fuel microstructures have been summarized

  17. Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2014-07-01

    Full Text Available Alternative fuels, like biodiesel, are being utilized as a renewable energy source and an effective substitute for the continuously depleting supply of mineral diesel as they have similar combustion characteristics. However, the use of pure biodiesel as a fuel for diesel engines is currently limited due to problems relating to fuel properties and its relatively poor cold flow characteristics. Therefore, the most acceptable option for improving the properties of biodiesel is the use of a fuel additive. In the present study, the properties of palm oil methyl esters with increasing additive content were investigated after addition of ethanol, butanol and diethyl ether. The results revealed varying improvement in acid value, density, viscosity, pour point and cloud point, accompanied by a slight decrease in energy content with an increasing additive ratio. The viscosity reductions at 5% additive were 12%, 7%, 16.5% for ethanol, butanol and diethyl ether, respectively, and the maximum reduction in pour point was 5 °C at 5% diethyl ether blend. Engine test results revealed a noticeable improvement in engine brake power and specific fuel consumption compared to palm oil biodiesel and the best performance was obtained with diethyl ether. All the biodiesel-additive blend samples meet the requirements of ASTM D6751 biodiesel fuel standards for the measured properties.

  18. Evaluation of Thermal Creep and Hydride Re-orientation Properties of High Burnup Spent Fuel Cladding under Long Term Dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, K [JNES (Japan)

    2012-07-01

    In Japan, spent fuels will be reprocessed as recyclable energy source at a reprocessing plant. The first commercial plant is under-constructing and will start operation in 2008. It is necessary that spent fuels should be stored in the independent interim storage facilities (ISF) until reprocessing. Utilities plan the operation of the first ISF in 2010. JNES has a mission to support the safety body by researching the data of technical standard and regulation. Investigating of spent fuel integrity during long term dry storage is one of them. The objectives are: 1) Evaluation of the effects of material design changes on creep properties of high burnup spent fuel cladding; 2) Evaluation of the effects of alloy elements and texture of irradiated Zircaloy on hydride re-orientation properties and the effects of radial hydrides on cladding mechanical properties; 3) Evaluation of the effects of temperature on irradiation hardening recovery.

  19. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.; Aakko, P. [TEC Trans Energy Consulting Ltd (Finland); Niemi, S.; Paanu, T. [Turku Polytechnic (Finland); Berg, R. [Befri Konsult (Sweden)

    2005-03-15

    Oxygenates blended into diesel fuel can serve at least two purposes. Components based on renewable feedstocks make it possible to introduce a renewable component into diesel fuel. Secondly, oxygenates blended into diesel fuel might help to reduce emissions. A number of different oxygenates have been considered as components for diesel fuel. These oxygenates include various alcohols, ethers, esters and carbonates. Of the oxygenates, ethanol is the most common and almost all practical experiences have been generated from the use of diesel/ethanol blends (E-diesel). Biodiesel was not included in this study. Adding ethanol to diesel will reduce cetane, and therefore, both cetane improver and lubricity additives might be needed. Diesel/ethanol emulsions obtained with emulsifiers or without additives are 'milky' mixtures. Micro-emulsions of ethanol and diesel can be obtained using additives containing surfactants or co-solvents. The microemulsions are chemically and thermodynamically stable, they are clear and bright blends, unlike the emulsions. Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Higher alcohols are more suitable for diesel blending than ethanol. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications. The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions

  20. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N; Aakko, P [TEC Trans Energy Consulting Ltd (Finland); Niemi, S; Paanu, T [Turku Polytechnic (Finland); Berg, R [Befri Konsult (Sweden)

    2005-03-15

    Oxygenates blended into diesel fuel can serve at least two purposes. Components based on renewable feedstocks make it possible to introduce a renewable component into diesel fuel. Secondly, oxygenates blended into diesel fuel might help to reduce emissions. A number of different oxygenates have been considered as components for diesel fuel. These oxygenates include various alcohols, ethers, esters and carbonates. Of the oxygenates, ethanol is the most common and almost all practical experiences have been generated from the use of diesel/ethanol blends (E-diesel). Biodiesel was not included in this study. Adding ethanol to diesel will reduce cetane, and therefore, both cetane improver and lubricity additives might be needed. Diesel/ethanol emulsions obtained with emulsifiers or without additives are 'milky' mixtures. Micro-emulsions of ethanol and diesel can be obtained using additives containing surfactants or co-solvents. The microemulsions are chemically and thermodynamically stable, they are clear and bright blends, unlike the emulsions. Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Higher alcohols are more suitable for diesel blending than ethanol. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications. The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also

  1. Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers

    Energy Technology Data Exchange (ETDEWEB)

    Loukusa, Henri, E-mail: henri.loukusa@vtt.fi; Ikonen, Timo; Valtavirta, Ville; Tulkki, Ville

    2016-12-01

    The elemental and chemical composition of nuclear fuel pellets are key factors influencing the material properties of the pellets. The oxidation state of the fuel is one of the most important chemical properties influencing the material properties of the fuel, and it can only be determined with the knowledge of the chemical composition. A measure of the oxidation state is the oxygen chemical potential of the fuel. It can be buffered by redox pairs, such as the well-known Mo/MoO{sub 2} pair. In this work, the elemental composition of the fuel is obtained from a burnup calculation and the temperature and pressure calculated with a fuel performance code. An estimate of the oxygen potential of fuel is calculated with Gibbs energy minimization. The results are compared against experimental data from the literature. The significance of the UMoO{sub 6} compound and its buffering effect on the oxygen potential is emphasized. - Highlights: • A Gibbs energy minimization routine has been developed for nuclear fuel modeling. • The initial stoichiometry affects the development of the oxygen potential of fuel. • UMoO{sub 6} is found to buffer the oxygen potential of nuclear fuel.

  2. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  3. Standard recommended practice for examination of fuel element cladding including the determination of the mechanical properties

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Guidelines are provided for the post-irradiation examination of fuel cladding and to achieve better correlation and interpretation of the data in the field of radiation effects. The recommended practice is applicable to metal cladding of all types of fuel elements. The tests cited are suitable for determining mechanical properties of the fuel elements cladding. Various ASTM standards and test methods are cited

  4. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  5. Study of fuel properties of rubber seed oil based biodiesel

    International Nuclear Information System (INIS)

    Ahmad, Junaid; Yusup, Suzana; Bokhari, Awais; Kamil, Ruzaimah Nik Mohammad

    2014-01-01

    Graphical abstract: - Highlights: • This article presents the comparative studies of the fuel properties of rubber seed oil based biodiesel. • The design expert has been adopted for the optimization of the process variables. • The FTIR, cold flow properties and oxidation stability are the findings of present study. • All the fuel properties met the standards such as ASTM D6751 and EN 14214. • Present study reveals that rubber seed oil as a non-edible source potentially contributes for esters production. - Abstract: The scarcity of the fossil fuel, environmental pollution and food crisis are the world’s major issues in current era. Biodiesel is an alternative to diesel fuel, environment friendly and biodegradable and is produced from either edible or non-edible oils. In this study, a non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content of 45% were used for the production of biodiesel. The process comprises of two steps. The first step is the acid esterification to reduce the FFA value and the second step is the base transesterification. The response surface methodology (RSM) was used for parametric optimization of the two stage processes i.e. acid esterification and base transesterification. The yield of biodiesel was analyzed using gas chromatography. The FTIR (Fourier Transform Infra-Red) spectrum was also determined to confirm the conversion of fatty acid to methyl esters. The fuel properties were analyzed according to the ASTM D6751 and EN14214 and were compared with the previous finding of researchers. All analyzed properties fulfilled the biodiesel standard criteria

  6. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho; Lee, Young-woo; Cho, Moon-sung

    2015-01-01

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  7. Improving the electrocatalytic properties of Pd-based catalyst for direct alcohol fuel cells: effect of solid solution.

    Science.gov (United States)

    Wen, Cuilian; Wei, Ying; Tang, Dian; Sa, Baisheng; Zhang, Teng; Chen, Changxin

    2017-07-07

    The tolerance of the electrode against the CO species absorbed upon the surface presents the biggest dilemma of the alcohol fuel cells. Here we report for the first time that the inclusion of (Zr, Ce)O 2 solid solution as the supporting material can significantly improve the anti-CO-poisoning as well as the activity of Pd/C catalyst for ethylene glycol electro-oxidation in KOH medium. In particular, the physical origin of the improved electrocatalytic properties has been unraveled by first principle calculations. The 3D stereoscopic Pd cluster on the surface of (Zr, Ce)O 2 solid solution leads to weaker Pd-C bonding and smaller CO desorption driving force. These results support that the Pd/ZrO 2 -CeO 2 /C composite catalyst could be used as a promising effective candidate for direct alcohol fuel cells application.

  8. The manufacture process and properties of (U, Gd)O2 burnable poisonous fuel pellets

    International Nuclear Information System (INIS)

    Yi Wei; Tang Yueming; Dai Shengping; Yang Youqing; Zuo Guoping; Wu Shihong; Gu Xiaofei; Gu Mingfei

    2006-03-01

    The main properties of important raw powder materials used in the (U, Gd)O 2 burnable poisonous fuel pellets production line of NPIC are presented. The powders included UO 2 , Gd 2 O 3 , (U, Gd) 3 O 8 and necessary additives, such as ammonium oxalate and zinc stearate. And the main properties of (U, Gd)O 2 burnable poisonous fuel pellets and the manufacture processes, such as ball-milling blending, granulation, pressing, sintering and grinding are also described. Moreover, the main effect of the process parameters controlled in the manufacture process have been discussed. (authors)

  9. Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2004-06-01

    Full Text Available This paper compares industrial clinker and cement produced using conventional and alternative fuels (animal meal, tyres or a mixture of the two. The results show no relevant differences in terms of mineralogical composition between the clinker manufactured with alternative fuels and the product obtained using conventional fuel. Clinker produced with alternative fuels at any one factory have a very similar or even lower content in heavy metals than the product manufactured with conventional fuel in the same plant (with the sole exception of Zn when the alternative fuel used is shredded tyres. Mineralogical and morphological analyses reveal no significant differences between the two types of products that can be attributed to the type of fuel used in their manufacture. All six types of cement studied are compliant with the existing legislation as regards both physical and chemical properties. Cement compressive strength is found to be to legal standards regardless of the type of fuel used. Finally, the rheological properties of the cement paste are observed to be unaffected by the type of fuel.

    Se han estudiado clínkeres y cementos obtenidos en procesos industriales que han utilizado combustibles convencionales y combustibles alternativos (harinas cárnicas, neumáticos usados y mezclas de ambos. Los resultados obtenidos han demostrado que los clínkeres fabricados con los combustibles alternativos no presentan diferencias significativas en la composición mineralógica respecto a los obtenidos con combustibles convencionales. Los contenidos de metales pesados en los clínkeres procedentes de la misma fábrica (a excepción de los contenidos en Zn en aquéllos que utilizan neumáticos son muy similares o incluso inferiores a los fabricados con combustibles convencionales. Los análisis mineralógico y morfológico de los clínkeres no evidencian diferencias asignables al tipo de combustible utilizado. Todos los cementos estudiados cumplen

  10. Expedient Prediction of the Fuel Properties of Carbonized Woody Biomass Based on Hue Angle

    Directory of Open Access Journals (Sweden)

    Yuta Saito

    2018-05-01

    Full Text Available Woody biomass co-firing-based power generation can reduce CO2 emissions from pulverized coal boilers. Carbonization of woody biomass increases its calorific value and grindability, thereby improving the co-firing ratio. Carbonized biomass fuel properties depend on moisture, size and shape of feedstock, and carbonization conditions. To produce carbonized biomass with stable fuel properties, the carbonization conditions should be set according to the desired fuel properties. Therefore, we examined color changes accompanying woody biomass carbonization and proposed using them for rapid evaluation of fuel properties. Three types of woody biomasses were carbonized at a test facility with a capacity of 4 tons/day, and the fuel properties of the obtained materials were correlated with their color defined by the L*a*b* model. When fixed carbon, an important fuel property for carbonization, was 25 wt % or less, we observed a strong negative correlation, regardless of the tree species, between the hue angle, hab, and fixed carbon. The hab and fixed carbon were correlated even when the fixed carbon exceeded 25 wt %; however, this correlation was specific to the tree species. These results indicate that carbonized biomass fuel properties such as fixed carbon can be estimated rapidly and easily by measuring hab.

  11. A study on properties-performances of coated particle fuel and on-line DB establishment

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Lee, Hyo Cheol; Jang, Jeong Nam; Kwon, Seok Hwan

    2007-03-01

    Recently national project for HTGR for hydrogen production has been kicked off. However, For the successful development of the high temperature gas cooled reactor high temperature and burn-up dependent properties of the reactor materials are essentially and crucially required. Therefore, it was proposed to build up the materials properties and fuel performance data base. In this study, a phase - 1 properties and performance DB for coated particle fuel was developed. This database report consists two sections: materials properties and fuel performance. The materials properties has three parts: kernel materials, carbide coating materials, and fuel elements and graphite matrix. UO2 and UCO belong to kernel materials while PyC, SiC, and ZrC comprises the coating materials section. Thermal, mechanical and physical properties data of these materials were collected, reviewed, and summarized. Additionally, the property change induced by manufacture process and irradiation were reviewed. Fuel performance data were also collected, reviewed, and analyzed based on the key phenomena and failure mechanism, These performance data are divided into two: normal and accident. All of these data will be accessible in the pc based stand-alone system. These results will be directly used for HTGR fuel design and fabrication and preliminary fuel performance analysis under irradiation

  12. Thermal properties of heterogeneous fuels

    International Nuclear Information System (INIS)

    Staicu, D.; Beauvy, M.

    1998-01-01

    Fresh or irradiated nuclear fuels are composites or solid solutions more or less heterogeneous, and their thermal conductivities are strongly dependent on the microstructure. The effective thermal conductivities of these heterogeneous solids must be determined for the modelling of the behaviour under irradiation. Different methods (analytical or numerical) published in the literature can be used for the calculation of this effective thermal conductivity. They are analysed and discussed, but finally only few of them are really useful because the assumptions selected are often not compatible with the complex microstructures observed in the fuels. Numerical calculations of the effective thermal conductivity of various fuels based on the microstructure information provided in our laboratory by optical microscopy or electron micro-probe analysis images, have been done for the validation of these methods. The conditions necessary for accurate results on effective thermal conductivity through these numerical calculations are discussed. (author)

  13. A study on coated particle fuel properties and performances and phase-I data base establishment

    International Nuclear Information System (INIS)

    Kim, Yong Soo; Lee, Hyo Cheol; Im, Byeong Ju; Yun, Sang Pil; Son, Seung Beom; Lee, Gyeong Hui; Jang, Jeong Nam

    2006-03-01

    For the successful development of the high temperature gas cooled reactor acquisition and generation of the high temperature properties of reactor materials, especially temperature and burn-up dependent properties of coated particle fuel and fuel element, are crucially essential. Recently national project for HTGR for hydrogen production has been kicked off. However, we have had little experience on this new challenges. Therefore, it became necessary to build up the materials properties and fuel performance data base. In this study, a primitive properties and performance DB for coated particle fuel was developed. This database report consists two sections: materials properties and fuel performance. The materials properties has three parts: kernel materials, carbide coating materials, and fuel elements and graphite matrix. UO 2 and UCO belong to kernel materials while PyC, SiC, and ZrC comprises the coating materials section. Thermal, mechanical and physical properties of these materials were collected, reviewed, and summarized. Additionally, the property change induced by manufacture process and irradiation were collected and summarized. Performance data were also collected, reviewed, and analyzed based on the key phenomena and failure mechanism. All of these data will be accessible in the on-line system. These results will be directly used for HTGR fuel design and fabrication and preliminary fuel performance analysis under irradiation

  14. Fuel properties of loofah (Luffa cylindrica L.) biofuel blended with ...

    African Journals Online (AJOL)

    ajl6

    Fuel properties of loofah oil and its ethyl ester blended with diesel were experimentally determined. ... The escalating prices of petroleum fuels, the .... equation developed by Bamgboye and Hansen (2008) was used to ..... Renewable Energy.

  15. Effects of alpha-decay on spent fuel corrosion behaviour

    International Nuclear Information System (INIS)

    Wiss, T.; Rondinella, V.V.; Cobos, J.; Wegen, D.H.; Amme, M.; Ronchi, C.

    2004-01-01

    An overview of results in the area of spent fuel characterization as nuclear waste is presented. These studies are focused on primary aspects of spent fuel corrosion, by considering different fuel compositions and burn ups, as well as a wide set of environmental conditions. The key parameter is the storage time of the fuel e.g. in view of spent fuel retrieval or in view of its final disposal. To extrapolate data obtainable from a laboratory-acceptable timescale to those expected after storage periods of interest have elapsed (amounting in the extreme case to geological ages) is a tough challenge. Emphasis is put on key aspects of fuel corrosion related to fuel properties at a given age and environmental conditions expected in the repository: e.g. the fuel activity (radiolysis effects), the effects of helium build-up and of groundwater composition. A wide range of techniques, from traditional leaching experiments to advanced electrochemistry, and of materials, including spent fuel with different compositions/burnups and analogues like the so-called alpha-doped UO 2 , are employed for these studies. The results confirm the safety of European underground repository concepts. (authors)

  16. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  17. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Mense, A.T.; Houlberg, W.A.; Attenberger, S.E.; Milora, S.L.

    1978-04-01

    A one-dimensional (1-D), multifluid transport model is used to investigate the effects of particle fueling profiles on plasma transport in an ignition-sized tokamak (TNS). Normal diffusive properties of plasmas will likely maintain the density at the center of the discharge even if no active fueling is provided there. This significantly relaxes the requirements for fuel penetration. Not only is lower fuel penetration easier to achieve, but it may have the advantage of reducing or eliminating density gradient-driven trapped particle microinstabilities. Simulation of discrete pellet fueling indicates that relatively low velocity (approximately 10 3 m/sec) pellets may be sufficient to fuel a TNS-sized device (approximately 1.25-m minor radius), to produce a relatively broad, cool edge region of plasma which should reduce the potential for sputtering, and also to reduce the likelihood of trapped particle mode dominated transport. Low penetrating pellets containing up to 10 to 20 percent of the total plasma ions can produce fluctuations in density and temperature at the plasma edge, but the pressure profile and fusion alpha production remain almost constant

  18. A review of the thermophysical properties of MOX and UO2 fuels

    International Nuclear Information System (INIS)

    Carbajo, Juan J.; Yoder, Gradyon L.; Popov, Sergey G.; Ivanov, Victor K.

    2001-01-01

    A critical review of the thermophysical properties of UO 2 and MOX fuels has been completed, and the best correlations for thermophysical properties have been selected. The properties reviewed are solidus and liquidus temperatures of the uranium/plutonium dioxide system (melting and solidification temperatures), thermal expansion and density, enthalpy and specific heat, enthalpy (or heat) of fusion, and thermal conductivity. Only fuel properties have been reviewed. The selected set of property correlations was compiled to be used in thermal-hydraulic codes to perform safety calculations

  19. Non-destructive methods of control of thermo-physical properties of fuel rods

    International Nuclear Information System (INIS)

    Kruglov, A B; Kruglov, V B; Kharitonov, V S; Struchalin, P G; Galkin, A G

    2017-01-01

    Information about the change of thermal properties of the fuel elements needed for a successful and safe operation of the nuclear power plant. At present, the existing amount of information on the fuel thermal conductivity change and “fuel-shell” thermal resistance is insufficient. Also, there is no technique that would allow for the measurement of these properties on the non-destructive way of irradiated fuel elements. We propose a method of measuring the thermal conductivity of the fuel in the fuel element and the contact thermal resistance between the fuel and the shell without damaging the integrity of the fuel element, which is based on laser flash method. The description of the experimental setup, implementing methodology, experiments scheme. The results of test experiments on mock-ups of the fuel elements and their comparison with reference data, as well as the results of numerical modeling of thermal processes that occur during the measurement. Displaying harmonization of numerical calculation with the experimental thermograms layout shell portions of the fuel cell, confirming the correctness of the calculation model. (paper)

  20. Measurement and evaluation of the radiative properties of a thin solid fuel

    Science.gov (United States)

    Pettegrew, Richard; Street, Kenneth; Pitch, Nancy; Tien, James; Morrison, Phillip

    2003-01-01

    Accurate modeling of combustion systems requires knowledge of the radiative properties of the system. Gas phase properties are well known, but detailed knowledge of surface properties is limited. Recent work has provided spectrally resolved data for some solid fuels, but only for the unburned material at room temperature, and for limited sets of previously burned and quenched samples. Due to lack of knowledge of the spectrally resolved properties at elevated temperatures, as well as processing limitations in the modeling effort, graybody values are typically used for the fuels surface radiative properties. However, the spectrally resolved properties for the fuels at room temperature can be used to give a first-order correction for temperature effects on the graybody values. Figure 1 shows a sample of the spectrally resolved emittance/absorptance for a thin solid fuel of the type commonly used in combustion studies, from approximately 2 to 20 microns. This plot clearly shows a strong spectral dependence across the entire range. By definition, the emittance is the ratio of the emitted energy to that of a blackbody at the same temperature. Therefore, to determine a graybody emittance for this material, the spectrally resolved data must be applied to a blackbody curve. The total area under the resulting curve is ratioed to the total area under the blackbody curve to yield the answer. Due to the asymmetry of the spectrally resolved emittance and the changing shape of the blackbody curve as the temperature increases, the relative importance of the emittance value at any given wavelength will change as a function of temperature. Therefore, the graybody emittance value for a given material will change as a function of temperature even if the spectral dependence of the radiative properties remains unchanged. This is demonstrated in Figures 2 and 3, which are plots of the spectrally resolved emittance for KimWipes (shown in Figure 1) multiplied by the blackbody curves for

  1. Impact of physical properties of mixture of diesel and biodiesel fuels on hydrodynamic characteristics of fuel injection system

    Directory of Open Access Journals (Sweden)

    Filipović Ivan M.

    2014-01-01

    Full Text Available One of the alternative fuels, originating from renewable sources, is biodiesel fuel, which is introduced in diesel engines without major construction modifications on the engine. Biodiesel fuel, by its physical and chemical properties, is different from diesel fuel. Therefore, it is expected that by the application of a biodiesel fuel, the characteristic parameters of the injection system will change. These parameters have a direct impact on the process of fuel dispersion into the engine cylinder, and mixing with the air, which results in an impact on the quality of the combustion process. Method of preparation of the air-fuel mixture and the quality of the combustion process directly affect the efficiency of the engine and the level of pollutant emissions in the exhaust gas, which today is the most important criterion for assessing the quality of the engine. The paper presents a detailed analysis of the influence of physical properties of a mixture of diesel and biodiesel fuels on the output characteristics of the fuel injection system. The following parameters are shown: injection pressure, injection rate, the beginning and duration of injection, transformation of potential into kinetic energy of fuel and increase of energy losses in fuel injection system of various mixtures of diesel and biodiesel fuels. For the analysis of the results a self-developed computer program was used to simulate the injection process in the system. Computational results are verified using the experiment, for a few mixtures of diesel and biodiesel fuels. This paper presents the verification results for diesel fuel and biodiesel fuel in particular.

  2. Thermal Properties of Green Fuel Briquettes from Residue Corncobs Materials Mixed Macadamia Shell Charcoal Powder

    Science.gov (United States)

    Teeta, Suminya; Nachaisin, Mali; Wanish, Suchana

    2017-09-01

    The objective of this research was to produce green fuel briquettes from corncobs by adding macadamia shell charcoal powder. The study was sectioned into 3 parts: 1) Quality improvement of green fuel briquettes by adding macadamia; 2) Fuel property analysis based on ASTM standards and thermal fuel efficiency; and 3) Economics appropriateness in producing green fuel briquettes. This research produced green fuel briquettes using the ratio of corncobs weight and macadamia shell charcoal powder in 100:0 90:10 80:20 70:30 60:40 and 50:50 and pressing in the cold briquette machine. Fuel property analysis showed that green fuel briquettes at the ratio 50:50 produced maximum heating values at 21.06 Megajoule per kilogram and briquette density of 725.18 kilograms per cubic meter, but the percent of moisture content, volatile matter, ash, and fixed carbon were 10.09, 83.02, 2.17 and 4.72 respectively. The thermal efficiency of green fuel briquettes averaged 20.22%. Economics appropriateness was most effective where the ratio of corncobs weight to macadamia shell charcoal powder was at 50:50 which accounted for the cost per kilogram at 5.75 Baht. The net present value was at 1,791.25 Baht. Internal rate of return was at 8.62 and durations for a payback period of investment was at 1.9 years which was suitable for investment.

  3. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  4. Property measurements and inner state estimation of simulated fuel debris

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, S.; Kato, M.; Morimoto, K.; Washiya, T. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2014-07-01

    Fuel debris properties and inner state such as temperature profile were evaluated by using analysis of simulated fuel debris manufactured from UO{sub 2} and oxidized zircaloy. The center of the fuel debris was expected to be molten state soon after the melt down accident of LWRs because power density was very high. On the other hand, the surface of the fuel debris was cooled in the water. This large temperature gradient may cause inner stress and consequent cracks were expected. (author)

  5. Thermophysical properties of fast reactor fuel

    International Nuclear Information System (INIS)

    Fink, J.K.

    1984-01-01

    This paper identifies the fuel properties for which more data are needed for fast-reactor safety analysis. In addition, a brief review is given of current research on the vapor pressure over liquid UO 2 and (U,PU)O/sub 2-x/, the solid-solid phase transition in actinide oxides, and the thermal conductivity of molten urania

  6. Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

    KAUST Repository

    Ahmed, Ahfaz

    2016-10-17

    Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings to attain MBT (maximum brake torque) settings. These experimental conditions are repeated across different load points to observe the effect of increasing temperature and pressure on combustion and emission parameters. The differences in various engine-out parameters are discussed and interpreted in terms of physical and thermodynamic properties of the fuels.

  7. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  8. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  9. Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties

    International Nuclear Information System (INIS)

    Wheeler, Kirk; Parra, Manuel; Peralta, Pedro

    2009-01-01

    The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production

  10. Diesel Surrogate Fuels for Engine Testing and Chemical-Kinetic Modeling: Compositions and Properties.

    Science.gov (United States)

    Mueller, Charles J; Cannella, William J; Bays, J Timothy; Bruno, Thomas J; DeFabio, Kathy; Dettman, Heather D; Gieleciak, Rafal M; Huber, Marcia L; Kweon, Chol-Bum; McConnell, Steven S; Pitz, William J; Ratcliff, Matthew A

    2016-02-18

    The primary objectives of this work were to formulate, blend, and characterize a set of four ultralow-sulfur diesel surrogate fuels in quantities sufficient to enable their study in single-cylinder-engine and combustion-vessel experiments. The surrogate fuels feature increasing levels of compositional accuracy (i.e., increasing exactness in matching hydrocarbon structural characteristics) relative to the single target diesel fuel upon which the surrogate fuels are based. This approach was taken to assist in determining the minimum level of surrogate-fuel compositional accuracy that is required to adequately emulate the performance characteristics of the target fuel under different combustion modes. For each of the four surrogate fuels, an approximately 30 L batch was blended, and a number of the physical and chemical properties were measured. This work documents the surrogate-fuel creation process and the results of the property measurements.

  11. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kolokol, Alexander S.; Shimkevich, Alexander L. [Russian Research Center ' Kurchatov Institute' , 1 Kurchatov Sq. Moscow 123182 (Russian Federation)

    2008-07-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO{sub 2}+Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  12. Molecular-Dynamic Simulation In Substation Of Advanced Fuel With Improved Properties

    International Nuclear Information System (INIS)

    Kolokol, Alexander S.; Shimkevich, Alexander L.

    2008-01-01

    A disadvantage of the uranium dioxide fuel is very low thermal conductivity than the one of nitride, carbide, metal fuel, and cermets as composites, UO 2 +Me, due to the portion in thermal conductivity of their electronic conductivity and high phonon mobility. An investigation of the microstructure and atomic dynamics of solid solutions as well as the physical and chemical processes in them will make it possible to adjust the properties of the solutions in steps according to prescribed indicators by using alloying additives. The concept for designing an oxide fuel may be promising for the development of a new generation of nuclear reactors. In developing the methods for designing reactor materials as to the nuclear fuel, microscopic structure improving its thermal and physical properties is formulated here. (authors)

  13. A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels

    Directory of Open Access Journals (Sweden)

    Jerome A. Ramirez

    2015-07-01

    Full Text Available Hydrothermal liquefaction (HTL presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.

  14. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  15. Modeling defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri University of Science and Technology; Grimes, Robin W. [Imperial College, London (United Kingdom)

    2017-04-27

    Uranium silicides, in particular U3Si2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.

  16. Modeling defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Noordhoek, Mark J. [Univ. of South Carolina, Columbia, SC (United States); Besmann, Theodore M. [Univ. of South Carolina, Columbia, SC (United States); Middleburgh, Simon C. [Westinghouse Electric Sweden, Vasteras (Sweden); Lahoda, E. J. [Westinghouse Electric Company LLC, Cranberry Woods, PA (United States); Chernatynskiy, Aleksandr [Missouri Univ. of Science and Technology, Rolla, MO (United States); Grimes, Robin W. [Imperial College, London (United Kingdom)

    2017-04-14

    Uranium silicides, in particular U3Si2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.

  17. Numerical investigation of injector geometry effects on fuel stratification in a GCI engine

    KAUST Repository

    Atef, Nour; Badra, Jihad; Jaasim, Mohammed; Im, Hong G.; Sarathy, Mani

    2017-01-01

    Injectors play an important role in direct injection (DI) gasoline compression ignition (GCI) engines by affecting the in-cylinder mixture formation and stratification, which in turn impacts combustion and emissions. In this work, the effects of two different injector geometries, a 7-hole solid-cone injector and an outwardly opening hollow-cone injector, on fuel mixture stratification in a GCI engine were investigated by computational simulations. Three fuels with similar autoignition kinetics, but with different physical properties, were studied to isolate the effect of the combustion chemistry on combustion phasing. In addition, start of injection (SOI) sweeps relevant to low-load engine operating conditions were performed. The results show that physical properties of the fuel do not have significant influence when using a hollow-cone injector. Richer mixtures were observed at all the studied SOI (−40 to −14 CAD aTDC) cases, which can be attributed to the nature of the hollow cone spray. At later SOIs (−18 and −14 CAD aTDC), the richer mixtures are accompanied by lower mean in-cylinder temperature due to the charge cooling effect, which surpasses the equivalence ratio effect. The effect of fuel physical properties on combustion phasing was evident in multi-hole injection cases, which can be attributed to the differences in mixture stratification and equivalence ratio distribution at the time of ignition.

  18. Numerical investigation of injector geometry effects on fuel stratification in a GCI engine

    KAUST Repository

    Atef, Nour

    2017-11-24

    Injectors play an important role in direct injection (DI) gasoline compression ignition (GCI) engines by affecting the in-cylinder mixture formation and stratification, which in turn impacts combustion and emissions. In this work, the effects of two different injector geometries, a 7-hole solid-cone injector and an outwardly opening hollow-cone injector, on fuel mixture stratification in a GCI engine were investigated by computational simulations. Three fuels with similar autoignition kinetics, but with different physical properties, were studied to isolate the effect of the combustion chemistry on combustion phasing. In addition, start of injection (SOI) sweeps relevant to low-load engine operating conditions were performed. The results show that physical properties of the fuel do not have significant influence when using a hollow-cone injector. Richer mixtures were observed at all the studied SOI (−40 to −14 CAD aTDC) cases, which can be attributed to the nature of the hollow cone spray. At later SOIs (−18 and −14 CAD aTDC), the richer mixtures are accompanied by lower mean in-cylinder temperature due to the charge cooling effect, which surpasses the equivalence ratio effect. The effect of fuel physical properties on combustion phasing was evident in multi-hole injection cases, which can be attributed to the differences in mixture stratification and equivalence ratio distribution at the time of ignition.

  19. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  20. Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI

    KAUST Repository

    Vallinayagam, R.

    2018-03-20

    The scope of this research study pertains to compare the combustion and emission behavior between naphtha and dieseline at different combustion modes. In this study, US dieseline (50% US diesel + 50% RON 91 gasoline) and EU dieseline (45% EU diesel + 55% RON 97 gasoline) with derived cetane number (DCN) of 36 are selected for experimentation in an optical engine. Besides naphtha and dieseline, PRF60 is also tested as a surrogate fuel for naphtha. For the reported fuel with same RON = 60, the effect of physical properties on combustion homogeneity when moving from homogenized charge compression ignition (HCCI) to compression ignition (CI) combustion is studied.The combustion phasing of naphtha at an intake air temperature of 95 °C is taken as the baseline data. The engine experimental results show that higher and lower intake air temperature is required for dieseline mixtures to have same combustion phasing as that of naphtha at HCCI and CI conditions due to the difference in the physical properties. Especially at HCCI mode, due to wider distillation range of dieseline, the evaporation of the fuel is affected so that the gas phase mixture becomes too lean to auto-ignite. However, at partially premixed combustion (PPC) conditions, all test fuels required almost same intake air temperature to match up with the combustion phasing of baseline naphtha. From the rate of heat release and combustion images, it was found that naphtha and PRF60 showed improved premixed combustion when compared dieseline mixtures. The stratification analysis shows that combustion is more stratified for dieseline whereas it is premixed for naphtha and PRF60. The level of stratification linked with soot emission showed that soot concentration is higher at stratified CI combustion whereas near zero soot emissions were noted at PPC mode.

  1. Modeling transit bus fuel consumption on the basis of cycle properties.

    Science.gov (United States)

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  2. Experimental verification of the thermodynamic properties for a jet-A fuel

    Science.gov (United States)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  3. Fundamental characterization of alternate fuel effects in continuous combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Blazowski, W.S.; Edelman, R.B.; Harsha, P.T.

    1978-09-11

    The overall objective of this contract is to assist in the development of fuel-flexible combustion systems for gas turbines as well as Rankine and Stirling cycle engines. The primary emphasis of the program is on liquid hydrocarbons produced from non-petroleum resouces. Fuel-flexible combustion systems will provide for more rapid transition of these alternate fuels into important future energy utilization centers (especially utility power generation with the combined cycle gas turbine). The specific technical objectives of the program are to develop an improved understanding of relationships between alternate fuel properties and continuous combustion system effects, and to provide analytical modeling/correlation capabilities to be used as design aids for development of fuel-tolerant combustion systems. Efforts this past year have been to evaluate experimental procedures for studying alternate fuel combustion effects and to determine current analytical capabilities for prediction of these effects. Jet Stirred Combustor studies during this period have produced new insights into soot formation in strongly backmixed systems and have provided much information for comparison with analytical predictions. The analytical effort included new applications of quasi-global modeling techniques as well as comparison of prediction with the experimental results generated.

  4. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    International Nuclear Information System (INIS)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs

  5. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    Science.gov (United States)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties

  6. Impact of future fuel properties on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.

  7. Spent nuclear fuel. A review of properties of possible relevance to corrosion processes

    International Nuclear Information System (INIS)

    Forsyth, R.

    1995-04-01

    The report reviews the properties of spent fuel which are considered to be of most importance in determining the corrosion behaviour in groundwaters. Pellet cracking and fragment size distribution are discussed, together with the available results of specific surface area measurements on spent fuel. With respect to the importance of fuel microstructure, emphasis is placed on recent work on the so called structural rim effect, which consists of the formation of a zone of high porosity, and the polygonization of fuel grains to form many sub-grains, at the pellet rim, and appears to be initiated when the average pellet burnup exceeds a threshold of about 40 MWd/kgU. Due to neutron spectrum effects, the pellet rim is also associated with the buildup of plutonium and other actinides, which results in an enhanced local burnup and specific activity of both beta-gamma and alpha radiation, thus representing a greater potential for radiolysis effects in ingressed groundwater. The report presents and discusses the results of quantitative determination of the radial profiles of burnup and alpha activity on spent fuel with average burnups from 21.2 to 49 MWd/kgU. In addition to the radial variation of fission product and actinide inventories due to the effects mentioned above, migration, redistribution and release of some fission products can occur during reactor irradiation and the report concludes with a short review of these processes

  8. Ignition Delay Properties of Alternative Fuels with Navy-Relevant Diesel Injectors

    Science.gov (United States)

    2014-06-01

    nozzle tip. 8 Figure 3 EMD injector cross-sectional view, after [15]. c. Sturman Injector A Sturman research diesel injector was used to validate...PROPERTIES OF ALTERNATIVE FUELS WITH NAVY-RELEVANT DIESEL INJECTORS by Andrew J. Rydalch June 2014 Thesis Advisor: Christopher M. Brophy...Navy’s Green Fleet Initiative, this thesis researched the ignition characteristics for diesel replacement fuels used with Navy-relevant fuel injectors

  9. Materials properties utilization in a cumulative mechanical damage function for LMFBR fuel pin failure analysis

    International Nuclear Information System (INIS)

    Jacobs, D.C.

    1977-01-01

    An overview is presented of one of the fuel-pin analysis techniques used in the CRBRP program, the cumulative mechanical damage function. This technique, as applied to LMFBR's, was developed along with the majority of models used to describe the mechanical properties and environmental behavior of the cladding (i.e., 20 percent cold-worked, 316 stainless steel). As it relates to fuel-pin analyses the Cumulative Mechanical Damage Function (CDF) continually monitors cladding integrity through steady state and transient operation; it is a time dependent function of temperature and stress which reflects the effects of both the prior mechanical history and the variations in mechanical properties caused by exposure to the reactor environment

  10. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  11. Basic properties of fuel determining its behavior under irradiation

    International Nuclear Information System (INIS)

    Konovalov, I.I.

    2000-01-01

    The theoretical model describing a swelling of nuclear fuel at low irradiation temperatures is considered. The critical physical parameters of substances determining behavior of point defects, gas fission atoms, dislocation density, nucleation and growth of gas-contained pores are determined. The correlation between meanings of critical parameters and physical properties of substance is offered. The accounts of swelling of various dense fuels with reference to work in conditions of research reactors are given. (author)

  12. Properties of U3Si2-Al dispersion fuel element and its application

    International Nuclear Information System (INIS)

    Yin Changgeng

    2001-01-01

    The properties of U 3 Si 2 fuel and U 3 Si 2 -Al dispersion fuel element are introduced, which include U-loading; the banding quality, U-homogeneity and 'dog-bone' phenomenon, the minimum thickness of cladding and the corrosion performances. The fabrication technique of fuel elements, NDT for fuel plates, assemble technique of fuel elements and the application of U 3 Si 2 -Al dispersion fuel elements in the world are introduced

  13. Investigation of the influence of physical and chemical properties of biodiesel in the fuel economy, energy and environmental performance of motor diesel

    Directory of Open Access Journals (Sweden)

    Korpach А.

    2016-08-01

    Full Text Available Due to exhaustion of world energy reserves and significant environmental pollution by harmful substances, current research aimed at determining the effectiveness of alternative fuels. In the article compare two samples of biodiesel and studied their physical and chemical properties accordance with International Standard. Effect of different samples of biodiesel in fuel economy, energy and environmental performance automotive diesel determined by the bench tests of 4CH11,0/12.5 (D-241 diesel. The difference between physical and chemical properties of two biodiesel samples influenced to the fuel efficiency and environmental performance of the diesel. Operation on biodiesel with higher density and kinematic viscosity provide increases of maximum power and torque and increase fuel consumption. It also increases the concentration of nitrogen oxides in exhaust gases and it opacity. The results allow evaluate how the deviation of physical and chemical properties of biodiesel could affect the operational performance of the engine.

  14. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  15. Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel ...

    African Journals Online (AJOL)

    Influence of Fatty Acid Methyl Esters on Fuel properties of Biodiesel Produced from the. Seeds Oil of Curcubita ... Gas chromatograph coupled with mass spectrophotometer (GC-MS). The results indicate ..... Chemical and physical properties of ...

  16. Tri-fuel (diesel-biodiesel-ethanol) emulsion characterization, stability and the corrosion effect

    Science.gov (United States)

    Low, M. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    This paper presents the result of experimenting emulsified tri-fuel in term of stability, physico-chemical properties and corrosion effect on three common metals. The results were interpreted in terms of the impact of five minutes emulsification approach. Tri-fuel emulsions were varied in proportion ratio consist of biodiesel; 0%, 5%, 10%, and ethanol; 5%, 10%, 15%. Fuel characterization includes density, calorific value, flash point, and kinematic viscosity. Flash point of tri-fuel emulsion came with range catalog. Calorific value of tri-fuel emulsion appeared in declining pattern as more ethanol and biodiesel were added. Biodiesel promoted flow resistance while ethanol with opposite effect. 15% ethanol content in tri-fuel emulsion separated faster than 10% ethanol content but ethanol content with 5% yield no phase separation at all. Close cap under static immersion with various ratio of tri-fuel emulsions for over a month, corrosiveness attack was detected via weight loss technique on aluminum, stainless steel and mild steel.

  17. Experimental investigation concerning the influence of fuel type and properties on the injection and atomization of liquid biofuels in an optical combustion chamber

    International Nuclear Information System (INIS)

    Galle, J.; Defruyt, S.; Van de Maele, C.; Rodriguez, R. Piloto; Denon, Q.; Verliefde, A.; Verhelst, S.

    2013-01-01

    Due to the scarcity of fossil fuels and the future stringent emission limits, there is an increasing interest for the use of renewable biofuels in compression ignition engines. However, these fuels have different physical, chemical and thermodynamic properties affecting atomization, spray development and combustion processes. The results reported in this paper have been obtained by experimentation with a constant volume combustion chamber. The influences of physical fuel properties on injections under non-evaporating conditions are studied, using a pump-line-nozzle system from a medium speed diesel engine with injection pressures up to 1200 bar, by changing the fuel type and temperature. Experiments were conducted for diesel, biodiesel, straight vegetable oils and animal fats. Injection pressure and needle lift measurements were analyzed. A high speed camera was used to visualize the spray, which enabled us to study the spray penetration and spray angle. Our results show that the fuel temperature is an important parameter to control because it significantly affects the fuel properties. Both the injection timing and injection duration are affected by the fuel properties. The influences of these properties on the spray development were less pronounced. At low temperatures, a strongly deteriorated atomization of oils and fats was observed. -- Highlights: • Spray measurements in an optical combustion chamber. • Influence on the injections system is compared for different bio-fuels. •Temperature effects the fuel properties, with strong influence on the injection system. • Viscosity has significant influence on atomization, especially for viscous fuels. • No difference for spray penetration and angle unlike the mass distribution

  18. Investigating the mechanical and barrier properties to oxygen and fuel of high density polyethylene–graphene nanoplatelet composites

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, K., E-mail: honakers@egr.msu.edu; Vautard, F.; Drzal, L.T.

    2017-02-15

    Highlights: • Melt mixing used to investigate high density polyethylene and graphene nanoplatelet composite. • Addition of graphene nanoplatelets resulted in a stiffer polymer matrix. • Presence of graphene nanoplatelets causes a decrease in oxygen and fuel permeation. - Abstract: Graphene nanoplatelets (GnP) of different sizes were investigated for their ability to modify high density polyethylene (HDPE) for potential fuel system applications, focusing on compounding via melt mixing in a twin-screw extruder. Mechanical properties, crystallinity of the polymer, and permeation to oxygen and fuel were assessed as a function of GnP concentration. The surface of GnP acted as a nucleation site for the generation of HDPE crystallites, increasing the crystallinity. The flexural properties were improved, clearly influenced by platelet size and quality of dispersion. A sharp, 46% decrease of the impact resistance was observed, even at low GnP concentration (0.2 wt.%). With a 15 wt.% GnP-M-15 (platelets with a 15 μm diameter), a 73% reduction in oxygen permeation was observed and a 74% reduction in fuel vapor transmission. This correlation was similar throughout the GnP concentration range. The smaller diameter platelets had a lesser effect on the properties.

  19. Analysis of blended fuel properties and cycle-to-cycle variation in a diesel engine with a diethyl ether additive

    International Nuclear Information System (INIS)

    Ali, Obed M.; Mamat, Rizalman; Masjuki, H.H.; Abdullah, Abdul Adam

    2016-01-01

    Highlights: • Viability of diethyl ether additive to improve palm biodiesel–diesel blend. • Numerical analysis of engine cyclic variation at different additive ratios. • Physicochemical properties of the blends improved with diethyl ether additive. • Blended fuel heating value is significantly affected. • Blended fuel with 4% diethyl ether shows comparable engine cyclic variation to diesel. - Abstract: In this study, the effect of adding small portions of a diethyl ether additive to biodiesel–diesel blended fuel (B30) was investigated. This study includes an evaluation of the fuel properties and a combustion analysis, specifically, an analysis of the cyclic variations in diesel engines. The amount of additive used with B30 is 2%, 4%, 6% and 8% (by volume). The experimental engine test was conducted at 2500 rpm which produce maximum torque, and the in-cylinder pressure data were collected over 200 consecutive engine cycles for each test. The indicated mean effective pressure time series is analyzed using the coefficient of variation and the wavelet analysis method. The test results for the properties show a slight improvement in density and acid value with a significant decrease in the viscosity, pour point and cloud point of the blended fuel with an 8% additive ratio by 26.5%, 4 °C and 3 °C, respectively, compared with blended fuel without additive. However, the heating value is reduced by approximately 4% with increasing the additive ratio to 8%. From the wavelet power spectrum, it is observed that the intermediate and long-term periodicities appear in diesel fuel, while the short-period oscillations become intermittently visible in pure blended fuel. The coefficient of variation for B30 was the lowest and increased as the additive ratios increased, which agrees with the wavelet analysis results. Furthermore, the spectral power increased with an increase in the additive ratio, indicating that the additive has a noticeable effect on increasing the

  20. Physical properties, evaporation and combustion characteristics of nanofluid-type fuels

    Science.gov (United States)

    Tanvir, Saad

    existing literature. Additionally, a droplet collision experiment was developed to understand the collision characteristics of nanofluids fuels, especially the effect of particle addition on collision regimes. It was found that as particle concentration increases, coalescence was seen over a wider the range of Webber numbers and collision parameters as compared to pure liquids. Enhancement in surface tension at room temperature conditions is hypothesized to be the main factor causing this shift. A primary goal of this study is to understand how particle addition impacts the combustion behavior of liquid fuels. A droplet stream flame was used to measure the burning rate of ethanol droplets with the addition of aluminum (80nm) and graphite nanoparticles (50nm and 100nm). Results indicate that as particle concentration is increased, the burning rate of the resulting nanofluid droplet also increases. The maximum enhancement of 140 % was observed with the addition of 3 wt.% 80nm aluminum nanoparticles. The burning rate enhancement is mainly attributed to the strong radiation absorption by the nanofluid fuels from the flame. Computational models were developed to determine the ratio of radiation retention by the entire depth of the fluid (volumetric absorptivity) using optical properties of both the particles and the fluid. Furthermore, the penetration of radiation within the nanofluid was quantified using the well-known Monte Carlo algorithm. Results indicate that radiation absorption by the hybrid droplet does play a role in the enhancement of burning rate. More importantly, the absorption is not uniform within the hybrid droplet. It is localized in the region near the droplet surface, promoting localized boiling. This mechanism is believed to be responsible for the observed increase in burning rate. An experimental as well as numerical investigation on the evaporation characteristics of nanofluid fuels was conducted. The present study aims to determine the contribution of

  1. Quantifying physical characteristics of wildland fuels using the fuel characteristic classification system.

    Science.gov (United States)

    Cynthia L. Riccardi; Susan J. Prichard; David V. Sandberg; Roger D. Ottmar

    2007-01-01

    Wildland fuel characteristics are used in many applications of operational fire predictions and to understand fire effects and behaviour. Even so, there is a shortage of information on basic fuel properties and the physical characteristics of wildland fuels. The Fuel Characteristic Classification System (FCCS) builds and catalogues fuelbed descriptions based on...

  2. Study of advanced fuel system concepts for commercial aircraft and engines

    Science.gov (United States)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  3. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  4. A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties

    KAUST Repository

    Ahmed, Ahfaz

    2015-03-01

    Gasoline is the most widely used fuel for light duty automobile transportation, but its molecular complexity makes it intractable to experimentally and computationally study the fundamental combustion properties. Therefore, surrogate fuels with a simpler molecular composition that represent real fuel behavior in one or more aspects are needed to enable repeatable experimental and computational combustion investigations. This study presents a novel computational methodology for formulating surrogates for FACE (fuels for advanced combustion engines) gasolines A and C by combining regression modeling with physical and chemical kinetics simulations. The computational methodology integrates simulation tools executed across different software platforms. Initially, the palette of surrogate species and carbon types for the target fuels were determined from a detailed hydrocarbon analysis (DHA). A regression algorithm implemented in MATLAB was linked to REFPROP for simulation of distillation curves and calculation of physical properties of surrogate compositions. The MATLAB code generates a surrogate composition at each iteration, which is then used to automatically generate CHEMKIN input files that are submitted to homogeneous batch reactor simulations for prediction of research octane number (RON). The regression algorithm determines the optimal surrogate composition to match the fuel properties of FACE A and C gasoline, specifically hydrogen/carbon (H/C) ratio, density, distillation characteristics, carbon types, and RON. The optimal surrogate fuel compositions obtained using the present computational approach was compared to the real fuel properties, as well as with surrogate compositions available in the literature. Experiments were conducted within a Cooperative Fuels Research (CFR) engine operating under controlled autoignition (CAI) mode to compare the formulated surrogates against the real fuels. Carbon monoxide measurements indicated that the proposed surrogates

  5. Effect of the Zr elements with thermal properties changes of U-7Mo-xZr/Al dispersion fuel

    International Nuclear Information System (INIS)

    Supardjo; Agoeng Kadarjono; Boybul; Aslina Br Ginting

    2016-01-01

    Thermal properties data of nuclear fuel is required as input data to predict material properties change phenomenon during the fabrication process and irradiated in a nuclear reactor. Study the influence of Zr element in the U-7Mo-xZr/Al (x = 1%, 2% and 3%) fuel dispersion to changes in the thermal properties at various temperatures have been stiffened. Thermal analysis includes determining the melting temperature, enthalpy, and phase changes made using Differential Thermal Analysis (DTA) in the temperature range between 30 °C up to 1400 °C, while the heat capacity of U-7Mo-xZr alloy and U-7Mo-xZr/Al dispersion fuel using Differential Scanning Calorimeter (DSC) at room temperature up to 450 °C. Thermal analyst data DTA shows that Zr levels of all three compositions showed a similar phenomenon. At temperatures between 565.60 °C - 584.98 °C change becomes α + δ to α + γ phase and at 649.22 °C – 650.13 °C happen smelting Al matrix Occur followed by a reaction between Al matrix with U-7Mo-xZr on 670.38 °C - 673.38 °C form U (Al, Mo)x Zr. Furthermore a phase change α + β becomes β + γ Occurs at temperatures 762.08 °C - 776.33 °C and diffusion between the matrix by U-7Mo-xZr/Al on 853.55 °C - 875.20 °C. Every phenomenon that Occurs, enthalpy posed a relative stable. Consolidation of uranium Occur in 1052.42 °C - 1104.99 °C and decomposition reaction of U (Al, Mo)x and U (Al, Zr)_x becomes (UAl_4, UAl_3, UAl_2), U-Mo, and UZr on 1328,34 °C - 1332,06 °C , The existence of Zr in U-Mo alloy increases the heat capacity of the U-7Mo-xZr/Al, dispersion fuel and the higher heat capacity of Zr levels increased due to interactions between the atoms of Zr with Al matrix so that the heat absorbed by the fuel increase. (author)

  6. The Effect of Wood Fuels on Power Plant Availability

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, Markku (Markku.Orjala@vtt.fi); Kaerki, Janne; Vainikka, Pasi [VTT Processes, Jyvaeskylae (Finland)

    2003-11-01

    There is a growing international interest in utilising renewable fuels, also in multifuel applications. Main reasons for this are the objective to reduce CO{sub 2} emissions and meet emission limits for NO{sub x} and SO{sub 2}. On one hand cofiring, defined as simultaneous combustion of different fuels in the same boiler, provides an alternative to achieve emission reductions. This is not only accomplished by replacing fossil fuel with biomass, but also as a result of the interaction of fuel reactants of different origin (e.g. biomass vs. coal). On the other hand, utilisation of solid biofuels and wastes sets new demands for process control and boiler design, as well as for combustion technologies, fuel blend control and fuel handling systems. In the case of wood-based fuels this is because of their high reactivity, high moisture content and combustion residues' high alkaline metal content. Combustion and cofiring properties of fuels have been studied both in VTT Processes' test facilities and in industrial-scale power plant boilers. The formation of alkaline and chlorine compounds in biomass combustion and their effect on boiler fouling and corrosion have been monitored by temperature controlled deposit formation and material monitoring probes. Deposit formation monitoring at full-scale boilers provides unique information on the rate of deposit formation, the effect of sootblowing and consequent changes in heat transfer. Additionally, the data from deposit formation monitoring has been shown to correlate with boiler performance, which gives basis for studying the interrelation of: fuel blend characteristics; deposit formation; boiler performance. If biomass fuels are blended with coal or peat, following implications may be expected: increased rate of deposit formation, shorter sootblowing interval, cleaning of heat transfer surfaces in revisions may be required, bed material agglomeration (in fluidised beds), increased risk of corrosion, higher in

  7. Micromechanical modelling of fuel viscoplastic behaviour

    International Nuclear Information System (INIS)

    Masson, R.; Blanc, V.; Gatt, J.M.; Julien, J.; Michel, B.; Largenton, R.

    2015-01-01

    To identify the effect of microstructural parameters on the viscoplastic behaviour of nuclear fuels, micromechanical (also called homogenisation) approaches are used. These approaches aim at deriving effective properties of heterogeneous material from the properties of their constituents. They stand on full-field computations of representative volume elements of microstructures as well as on mean-field semi-analytical models. For light water reactor fuels, these approaches have been applied to the modelling of the effect of two microstructural parameters: the porosity effects on the thermal creep of dioxide uranium fuels (transient conditions of irradiation) as well as the plutonium content effect on the viscoplastic behaviour (nominal conditions of irradiations) of mixed oxide fuels (MOX). (authors)

  8. Cost-Effective Fuel Treatment Planning

    Science.gov (United States)

    Kreitler, J.; Thompson, M.; Vaillant, N.

    2014-12-01

    The cost of fighting large wildland fires in the western United States has grown dramatically over the past decade. This trend will likely continue with growth of the WUI into fire prone ecosystems, dangerous fuel conditions from decades of fire suppression, and a potentially increasing effect from prolonged drought and climate change. Fuel treatments are often considered the primary pre-fire mechanism to reduce the exposure of values at risk to wildland fire, and a growing suite of fire models and tools are employed to prioritize where treatments could mitigate wildland fire damages. Assessments using the likelihood and consequence of fire are critical because funds are insufficient to reduce risk on all lands needing treatment, therefore prioritization is required to maximize the effectiveness of fuel treatment budgets. Cost-effectiveness, doing the most good per dollar, would seem to be an important fuel treatment metric, yet studies or plans that prioritize fuel treatments using costs or cost-effectiveness measures are absent from the literature. Therefore, to explore the effect of using costs in fuel treatment planning we test four prioritization algorithms designed to reduce risk in a case study examining fuel treatments on the Sisters Ranger District of central Oregon. For benefits we model sediment retention and standing biomass, and measure the effectiveness of each algorithm by comparing the differences among treatment and no treat alternative scenarios. Our objective is to maximize the averted loss of net benefits subject to a representative fuel treatment budget. We model costs across the study landscape using the My Fuel Treatment Planner software, tree list data, local mill prices, and GIS-measured site characteristics. We use fire simulations to generate burn probabilities, and estimate fire intensity as conditional flame length at each pixel. Two prioritization algorithms target treatments based on cost-effectiveness and show improvements over those

  9. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  10. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  11. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  12. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    Science.gov (United States)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  13. The fractalline properties of experimentally simulated PWR fuel crud

    Science.gov (United States)

    Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.

    2018-02-01

    The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.

  14. Experimental studies of the influence of fuel properties and operational conditions on stoking when combusting fuels in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Fabiana; Kolb, T.; Seifert, H.; Gehrmann, Hans-Joachim [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Technical Chemistry (ITC)

    2013-09-01

    Besides from knowledge about pollutant emission, knowledge of the combustion behavior of fuels plays a major role in the operation and optimization of combustion plants for waste and biomass. If the fuel is exchanged partly or completely in existing or newly designed grate-type combustion plants, adaptation of technical parameters is usually based on purely empirical studies. In the KLEAA fixed-bed reactor of KIT, Institute for Technical Chemistry (ITC), quantitative data on the combustion behavior can be determined from experimental investigations on the laboratory scale. Based on the characteristics obtained, the combustion behavior on a continuous grate can be estimated, This estimation is based on the assumption that no back mixing of the fuel occurs on the grate. Depending on the type of grate, however, stoking and back mixing play an important role. To improve the quality of the characteristics determined in KLEAA and enhance their transferability to the continuous process, it is necessary to determine the influence of fuel properties and operation conditions on stoking. Work is aimed at further developing the characteristics model taking into account a stoking factor describing the combustion behavior of a non-stoked fixed bed compared to a stoked fixed bed. The main task is to make a systematic study of the major parameters influencing stoking (e.g. stroke length, stroke frequency, geometry of the stoking unit, and fuel properties) in a fixed-bed reactor. The results shall be presented in the form of a semi-empirical equation. It is recommended to first study a model fuel, whose fuel properties are defined exactly and can be adjusted variably. Then, a stoking factor shall be derived from the studies. Possibly, a dimension analysis may be helpful. Finally, the results obtained are to be verified for residue-derived fuel. (orig.)

  15. Effect of titania addition on the thermal conductivity of UO2 fuel [Paper IIIB-C

    International Nuclear Information System (INIS)

    Sengupta, A.K.; Kumar, A.; Arora, K.B.S.; Pandey, V.D.; Nair, M.R.; Kamath, H.S.

    1986-01-01

    Pellet clad interaction in nuclear reactor fuel elements can be reduced by the use of higher grain size UO 2 fuel. This is achieved by the addition of dopant like titania, niobia etc. However, these dopants are considered as impurities which may affect the thermophysical and thermomechanical properties of the fuel. Thermal Conductivity which is one of the important properties controlling the inpile performance of the fuel has been measured for pure UO 2 and UO 2 containing 0.05wt per cent and 0.1wt per cent TiO 2 in the temperature range 900K to 1900K in vacuum. Thermal conductivity was obtained from thermal diffusivity data measured by laser flash method. The paper highlights the experimental results and discusses the effect of TiO 2 on the thermal conductivity of UO 2 fuel. (author)

  16. Effect of titania addition on the thermal conductivity of UO2 fuel (Paper IIIB-C)

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, A K; Kumar, A; Arora, K B.S.; Pandey, V D; Nair, M R; Kamath, H S

    1986-01-01

    Pellet clad interaction in nuclear reactor fuel elements can be reduced by the use of higher grain size UO2 fuel. This is achieved by the addition of dopant like titania, niobia etc. However, these dopants are considered as impurities which may affect the thermophysical and thermomechanical properties of the fuel. Thermal Conductivity which is one of the important properties controlling the inpile performance of the fuel has been measured for pure UO2 and UO2 containing 0.05wt per cent and 0.1wt per cent TiO2 in the temperature range 900K to 1900K in vacuum. Thermal conductivity was obtained from thermal diffusivity data measured by laser flash method. The paper highlights the experimental results and discusses the effect of TiO2 on the thermal conductivity of UO2 fuel. 5 figures.

  17. Improved correlations of hydrogen content versus combustion performance related properties of aviation turbine fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Sharma, R.L.; Sagu, M.L.; Tiwari, G.B. (Indian Institute of Petroleum, Dehradun (India))

    1994-01-01

    In recent years the hydrogen content of Aviation Fuels has generated considerable interest. Various investigators have suggested correlation of hydrogen content with combustion related properties of aviation turbine fuel (ATF). A suitable threshold value of hydrogen content 13.8 wt% is being considered as a waiver of specifications such as specific energy, aniline gravity product, smoke point, aromatic content, naphthalenes and luminometer number. In the present paper relationship between the hydrogen content and combustion related properties has been examined and improved correlations of hydrogen content with several combustion related properties have been developed by incorporating a characterization factor in the equations. The supporting threshold value of a hydrogen content of 13.8wt% is verified with 25 data points for waiving of combustion properties such as specific energy, aniline gravity product, smoke point and aromatic content from aviation turbine fuel. 6 refs., 12 figs., 2 tabs.

  18. Experimental investigation on fuel properties of biodiesel prepared from cottonseed oil

    Science.gov (United States)

    Payl, Ashish Naha; Mashud, Mohammad

    2017-06-01

    In recent time's world's energy demands are satisfied by coal, natural gas as well as petroleum though the prices of these are escalating. If this continues, global recession is unavoidable and diminution of world reserve accelerates undoubtedly. Recently, Biodiesel is found to be more sustainable, non-toxic and energy efficient alternative which is also biodegradable. The use of biofuels in compression ignition engines is now a contemplation attention in place of petrochemicals. In view of this, cottonseed oil is quite a favorable candidate as an alternative fuel. The present study covers the various aspects of biodiesels fuel prepared from cottonseed oil. In this work Biodiesel was prepared from cottonseed oil through transesterification process with methanol, using sodium hydroxide as catalyst. The fuel properties of cottonseed oil methyl esters, kinematic viscosity, flash point, density, calorific value, boiling point etc. were evaluated and discussed in the light of Conventional Diesel Fuel. The properties of biodiesel produced from cotton seed oil are quite close to that of diesel except from flash point. And so the methyl esters of cottonseed oil can be used in existing diesel engines without any modifications.

  19. Advanced fuel for fast breeder reactors: Fabrication and properties and their optimization

    International Nuclear Information System (INIS)

    1988-06-01

    The present design for FBR fuel rods includes usually MOX fuel pellets cladded into stainless steel tubes, together with UO 2 axial blanket and stainless steel hexagonal wrappers. Mixed carbide, nitride and metallic fuels have been tested as alternative fuels in test reactors. Among others, the objectives to develop these alternative fuels are to gain a high breeding ratio, short doubling time and high linear ratings. Fuel rod and assembly designers are now concentrating on finding the combination of optimized fuel, cladding and wrapper materials which could result in improvement of fuel operational reliability under high burnups and load-follow mode of operation. The purpose of the meeting was to review the experience of advanced FBR fuel fabrication technology, its properties before, under and after irradiation, peculiarities of the back-end of the nuclear fuel cycle, and to outline future trends. As a result of the panel discussion, the recommendations on future Agency activities in the area of advanced FBR fuels were developed. A separate abstract was prepared for each of the 10 presentations of this meeting. Refs, figs and tabs

  20. Fuel characteristics pertinent to the design of aircraft fuel systems

    Science.gov (United States)

    Barnett, Henry C; Hibbard, R R

    1953-01-01

    Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.

  1. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  2. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Science.gov (United States)

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  3. Evaluation of spent fuel properties from a conceptual PEACER core

    International Nuclear Information System (INIS)

    Lim, Jae Yong; Kim, Myung Hyun; Kim, Chang Hyo; Hwang, Il Soon

    2003-01-01

    In this paper, a new conceptual core design, PEACER was evaluated in aspect of core performance and spent fuel properties. The core shape is like a pancake to increase axial neutron leakage. Square lattice array was applied which was suitable to decrease the flow speed of Pb-Bi coolant. Although over 30% TRU produced by pyroprocessing was loaded in U-Zr metal fuel, the cycle length of 1 year was achieved and the relative assembly power peaking was less than 1.3. In order to confirm nuclear performance of PEACER core design, several performance indices were adopted and developed. Simple indices such as FIR and FG were used to evaluate fissile breeding. BCM, TG, SNS, and OR calculated by plutonium composition vectors were chosen to distinguish the competency of proliferation resistance. For the estimation of transmutation capability, D-value and extended effective fission half-life time(T EX ) were used. According to these indices, the PEACER core had the better performance compared with other conventional reactor cores although fissile breeding was not acquired

  4. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Haiwen Song

    2016-01-01

    Full Text Available Effects of oxygen content of fuels on combustion characteristics and emissions were investigated on both an optical single cylinder direct injection (DI diesel engine and a multi-cylinder engine. Three fuels were derived from conventional diesel fuel (Finnish City diesel summer grade by blending Rapeseed Methyl Ester (RME or Diglyme and Butyl-Diglyme of different quantities to make their oxygen content 3%, 3% and 9%, respectively. The experimental results with three tested fuels show that the fuel spray development was not affected apparently by the oxygenating. Compared with the base fuel, the ignition delay to pilot injection was shortened by 0%, 11% and 19% for three oxygenated fuels, respectively. The ignition delay to main injection was shortened by 10%, 19% and 38%, respectively. With regard to emissions, the smoke level was reduced by 24% to 90%, depending on fuel properties and engine running conditions. The penalties of increased NOx emissions and fuel consumption were up to 19% and 24%, respectively.

  5. Properties of U sub 3 O sub 8 -aluminum cermet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, H.B.

    1989-10-01

    Nuclear fuel elements containing U{sub 3}O{sub 8} dispersed in an aluminum matrix have been used in research and test reactors for about 30 years. These elements, sometimes called cermet fuel, are made by powder metallurgical methods (PM) and can accommodate up to approximately 50 wt % uranium in the core section of extruded tubes. Cermet fuel elements have been fabricated and irradiated at the Savannah River Site (SRS). Irradiation behavior is excellent. Extruded tubes with up to 50 wt % uranium have been successfully irradiated to fission densities of about 2 {times} 10{sup 21} fissions per cc of core. Physical, mechanical, and chemical properties of cermet fuels are assembled into a reference document. Results will be used by Argonne National Laboratory to design cermet fuel elements for possible use in the New Production Reactor at SRS. 57 refs., 33 figs., 12 tabs.

  6. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  7. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  8. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  9. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  10. Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels

    Directory of Open Access Journals (Sweden)

    Cherng-Yuan Lin

    2013-09-01

    Full Text Available Biodiesel produced from vegetable oils, animal fats and algae oil is a renewable, environmentally friendly and clean alternative fuel that reduces pollutants and greenhouse gas emissions in marine applications. This study investigates the influence of biodiesel blend on the characteristics of residual and distillate marine fuels. Adequate correlation equations are applied to calculate the fuel properties of the blended marine fuels with biodiesel. Residual marine fuel RMA has inferior fuel characteristics compared with distillate marine fuel DMA and biodiesel. The flash point of marine fuel RMA could be increased by 20% if blended with 20 vol% biodiesel. The sulfur content of residual marine fuel could meet the requirement of the 2008 MARPOL Annex VI Amendment by blending it with 23.0 vol% biodiesel. In addition, the kinematic viscosity of residual marine fuel could be reduced by 12.9% and the carbon residue by 23.6% if 20 vol% and 25 vol% biodiesel are used, respectively. Residual marine fuel blended with 20 vol% biodiesel decreases its lower heating value by 1.9%. Moreover, the fuel properties of residual marine fuel are found to improve more significantly with biodiesel blending than those of distillate marine fuel.

  11. Determining the optimum conditions for modified diesel fuel combustion considering its emission, properties and engine performance

    International Nuclear Information System (INIS)

    Fayyazbakhsh, Ahmad; Pirouzfar, Vahid

    2016-01-01

    Highlights: • Gas emissions, fuel properties and performance engine modeling. • Optimization of new modified fuel prepared from n-Butanol and Nano particles. • Model accuracy analysis. - Abstract: This essay scrutinizes an experimental study conducted to appraise the influence of using n-Butanol with diesel fuel in 5% and 10% (volume) n-Butanol, 1% nitro methane (NM), injection timing and two Nano-particles (alumina and a type of silica powder) on the engine performance (brake specific fuel consumption and engine power), fuel properties (Cetane number and flash point) and exhaust emissions (soot, NO_x and CO) of an engine with 4-cylinder (with a system of common rail fuel injection), intercooling, cooled exhaust gas recirculation (EGR), and turbocharged. The tests are conducted by varying the engine load (25 and 75 nm) and changing engine speed (1500 and 2200 rpm). Normal Butanol presents better brake specific fuel consumption (BSFC) but this blend doesn’t reflect better engine power. All the percentages of n-Butanol in the fuel make Cetane number decrease but adding 1% of nitro methane makes Cetane number increase. For all the n-Butanol, the percentage flash makes the fuel decrease in comparison to pure diesel fuel. The current experimental study demonstrates that adding the n-Butanol and nitro methane to diesel fuel direct into diminishing soot emission. In contrast, this blend raises NO_x and CO emissions. Furthermore, this research indicates that the increase of engine speed dwindle air pollutants and enhances BSFC. It also remarks that power gets increased at low engine speed. However, power gets reducedat high speed. This article represents that the increasing of engine load leads to increasing all of air pollutant, increasing of power and decreasing of brake specific fuel consumption. Both the Cetane number and flash point are independent from engine speed and engine load. The present paper shows that the effect of silica with high percentage of n

  12. Effect of nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Katakura, Jun-ichi

    1987-01-01

    In order to ensure the subcriticality of nuclear fuel, the method of controlling the mass, form or dimensions below the limit values and the method of confirming subcriticality by calculation are taken, but at this time, it is often assumed that the concentration of fuel is constant in a fuel region, or fuel rods are arranged at constant intervals. However, in the extraction process in fuel reprocessing or in fuel storage vessels, the concentration distribution may arise in fuel regions even though temporarily. Even if subcriticality is expected in a uniform system, when concentration distribution arises, and an uneven system results in, criticality may occur. Therefore, it is important to grasp the effect of uneven fuel distribution for ensuring the safety against criticality. In this paper, the effect of uneven fuel distribution is discussed, centering around the critical mass. The examples in literatures and the examples of calculation of uneven fuel distribution are shown. As the result of calculation in Japan Atomic Energy Research Institute, in a high enrichment U-235-water system, the critical mass decreased by about 7 % due to uneven distribution, which nearly agreed with the result of Clark of about 6 %. As for a low enrichment system, the conspicuous decrease of the critical mass was not observed. (Kako, I.)

  13. Effects of moisture release and radiation properties in pulverized fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    and impacts via a computational fluid dynamics (CFD) study of a 609 MWe pulverized coal-fired utility boiler. Overall speaking, it is suggested to add the free moisture in the fuel to the primary air stream while lump the bound moisture with volatiles in PF combustion modelling, although different methods.......g., oxy-fuel or air–fuel), account for the variations in CO2 and H2O concentrations in a flame, and include the impacts of other participating gases (e.g., CO and hydrocarbons) needs to be derived for combustion CFD community....

  14. The individual effects of cetane number, oxygen content or fuel properties on the ignition delay, combustion characteristics, and cyclic variation of a turbocharged CRDI diesel engine – Part 1

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys; Kanapkienė, Irena

    2017-01-01

    Highlights: • Diesel-HRD fuel blends involving ethanol (E) or biodiesel (B) were investigated in a turbocharged CRDI engine. • Improved cetane number of fuel blends ambiguously affected the ignition delay and maximum heat release rate. • Increased fuel-bound oxygen content enhanced combustion, heat release and in-cylinder pressure at 2500 rpm. • Fuel properties almost did not change premixed phase, but affected burn angle MBF 50 and the end of combustion. • Burn angles MBF 50 and MBF 90 were 1.0° and 5.7° CADs shorter when using oxygenated blend OE4 (3.6 wt%) at 2000 rpm. - Abstract: The study deals with the effects made by individual variation of cetane number, fuel-oxygen content, or widely differing properties of diesel-HRD fuel blends involving ethanol (E) or biodiesel (B) on the ignition delay, combustion phenomenon, maximum heat release rate, and the cyclic variation of a turbocharged CRDI diesel engine. The most important control factors one after another operated separately in this study to make a difference. Load characteristics were taken when running with a straight diesel and various (18) diesel-HRD fuel blends at maximum torque mode of 2000 rpm and speeds of 1500 and 2500 rpm to provide correct interpretation of the test results. Then, load (bmep) characteristics were plotted as a function of the relative air-fuel ratio (λ) and the analysis of combustion parameters was conducted for the ‘lambda’ values of λ = 1.30, 1.25 and 1.20, at the respective speeds of 1500, 2000 and 2500 rpm. Analysis of changes in the ignition delay, combustion characteristics, and the cyclic variation of parameters when using fuel blends of both origins was performed on comparative bases with the corresponding values measured with ‘base-line’ blends with CN = 51.2 or zero oxygen content and a straight diesel to reveal the potential developing trends. The enhanced cetane number of oxygenated fuels improved combustion and reduced cyclic variation when

  15. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Malik, M M; Kurchania, Rajnish; Kumar, G S

    2015-01-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon. (paper)

  16. In-field direct combustion fuel property changes of switchgrass harvested from summer to fall

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, C.A.; Ileleji, K.E. [Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN (United States); Johnson, K.D. [Department of Agronomy, Purdue University, West Lafayette, IN (United States); Wang, Q. [State Key Laboratory for Clean Energy Utilization, Zhejiang University, Hangzhou, 310027 (China)

    2010-03-15

    Switchgrass, a perennial warm-season grass and potential energy crop, is usually harvested during the time between full maturity in the fall to the following spring. During this wide harvest window, the changes in fuel properties that could occur are important for making appropriate decisions with respect to the optimum harvest time for maximum fuel quality. A field plot study was carried out to investigate the quantitative fuel properties (proximate, ultimate and mineral analyses) of switchgrass over a harvest period from crop maturity in July through November. Harvest moisture decreased from July to November and moisture was uniformly distributed in the switchgrass plant at all times in the harvest period. There were significant differences in ash, volatiles, fixed carbon and nitrogen among months of harvest. Nitrogen, ash and fixed carbon contents decreased while oxygen and volatiles increased through the harvest period. Also, there were significant differences in oxides of silicon, calcium, potassium, phosphorus and sulfur among harvest times. The concentration of oxides of potassium and sulfur decreased at the end of the harvesting period. Fouling and slagging indices decreased as harvest was delayed but remained low throughout harvest. However, the decreases are small and might not dramatically impact fouling and slagging. Overall, the results appear to favor a later harvest for switchgrass used for direct combustion. This study will benefit feedstock producers as well as biomass feedstock facility operators by providing a better understanding of how the properties of switchgrass vary over a typical harvest period and their potential effect on boiler equipment. (author)

  17. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  18. THE EFFECT OF SKULDUGGERY IN FUEL OF DIESEL ENGINES ON THE PERFORMANCE OF I. C. ENGINE

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The current research aimed to study the effect of fraud in the diesel fuel on environmental pollution,  the study included two samples of diesel fuel., first sample is used currently in all diesel engines vehicles, and it produced in colander of oil  of Baiji, the second sample is producer manually from mixing of the Lubricating oils and kerosene with ratio(1/40, were prepared and tested in research laboratories and quality control of the North Refineries Company /BAIJI by using standard engine (CFR. comparison between two models of fuel in terms of the properties of the mixing fuel and the properties of diesel fuel standard. The results proved that the process of mixing these ,  leading to the minimization of Cetane number and flash point. While the viscosity increase in  mixing fuel, comparison with fuel producer in the refinery, and which identical to the minimum standard specifications of diesel fuel.The tests had been carried out using the engine of (TQ four stroke type (TD115 with a single-cylinder and compression ratio (21:1 a complement to the hydraulic type Dynamo meter (TD115.

  19. Computational sensitivity study of spray dispersion and mixing on the fuel properties in a gas turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, Holger; Szász, Robert-Zoltán [Division of Fluid Mechanics, Lund University (Sweden); Cao, Le [Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing (China); Fuchs, Laszlo, E-mail: holger.grosshans@uclouvain.be [Department of Mechanics, KTH, Stockholm (Sweden)

    2017-04-15

    A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel–air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz–Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced. (paper)

  20. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  1. US Progress on Property Characterization to Support LEU U-10 Mo Monolithic Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Laboratory; Rabin, Barry H [Idaho National Laboratory; Smith, James Arthur [Idaho National Laboratory; Scott, Clark Landon [Idaho National Laboratory; Benefiel, Bradley Curtis [Idaho National Laboratory; Larsen, Eric David [Idaho National Laboratory; Lind, Robert Paul [Idaho National Laboratory; Sell, David Alan [Idaho National Laboratory

    2016-03-01

    The US High Performance Research Reactor program is pursuing development and qualification of a new high density monolithic LEU fuel to facilitate conversion of five higher power research reactors located in the US (ATR, HFIR, NBSR, MIT and MURR). In order to support fabrication development and fuel performance evaluations, new testing capabilities are being developed to evaluate the properties of fuel specimens. Residual stress and fuel-cladding bond strength are two characteristics related to fuel performance that are being investigated. In this overview, new measurement capabilities being developed to assess these characteristics in both fresh and irradiated fuel are described. Progress on fresh fuel testing is summarized and on-going hot-cell implementation efforts to support future PIE campaigns are detailed. It is anticipated that benchmarking of as-fabricated fuel characteristics will be critical to establishing technical bases for specifications that optimize fuel fabrication and ensure acceptable in-reactor fuel performance.

  2. Experimental investigation of spray characteristics of alternative aviation fuels

    International Nuclear Information System (INIS)

    Kannaiyan, Kumaran; Sadr, Reza

    2014-01-01

    Highlights: • Physical properties of GTL fuel are different from those of conventional jet fuels. • Spray characteristics of GTL and Jet A-1 fuels are experimentally investigated using phase Doppler anemometry. • Regions near the nozzle are influenced by differences in fuel physical properties. • Spray characteristics of GTL can be predicted by empirical relations developed for conventional jet fuels. - Abstract: Synthetic fuels derived from non-oil feedstock are gaining importance due to their cleaner combustion characteristics. This work investigates spray characteristics of two Gas-to-Liquid (GTL) synthetic jet fuels from a pilot-scale pressure swirl nozzle and compares them with those of the conventional Jet A-1 fuel. The microscopic spray parameters are measured at 0.3 and 0.9 MPa injection pressures at several points in the spray using phase Doppler anemometry. The results show that the effect of fuel physical properties on the spray characteristics is predominantly evident in the regions close to the nozzle exit at the higher injection pressure. The lower viscosity and surface tension of GTL fuel seems to lead to faster disintegration and dispersion of the droplets when compared to those of Jet A-1 fuel under atmospheric conditions. Although the global characteristics of the fuels are similar, the effects of fuel properties are evident on the local spray characteristics at the higher injection pressure

  3. Simulations of the Thermodynamic and Diffusion Properties of Actinide Oxide Fuel Materials

    International Nuclear Information System (INIS)

    Becker, Udo

    2013-01-01

    Spent nuclear fuel from commercial reactors is comprised of 95-99 percent UO 2 and 1-5 percent fission products and transuranic elements. Certain actinides and fission products are of particular interest in terms of fuel stability, which affects reprocessing and waste materials. The transuranics found in spent nuclear fuels are Np, Pu, Am, and Cm, some of which have long half- lives (e.g., 2.1 million years for 237 Np). These actinides can be separated and recycled into new fuel matrices, thereby reducing the nuclear waste inventory. Oxides of these actinides are isostructural with UO 2 , and are expected to form solid solutions. This project will use computational techniques to conduct a comprehensive study on thermodynamic properties of actinide-oxide solid solutions. The goals of this project are to: Determine the temperature-dependent mixing properties of actinide-oxide fuels; Validate computational methods by comparing results with experimental results; Expand research scope to complex (ternary and quaternary) mixed actinide oxide fuels. After deriving phase diagrams and the stability of solid solutions as a function of temperature and pressure, the project team will determine whether potential phase separations or ordered phases can actually occur by studying diffusion of cations and the kinetics of potential phase separations or ordered phases. In addition, the team will investigate the diffusion of fission product gases that can also have a significant influence on fuel stability. Once the system has been established for binary solid solutions of Th, U, Np, and Pu oxides, the methodology can be quickly applied to new compositions that apply to ternaries and quaternaries, higher actinides (Am, Cm), burnable poisons (B, Gd, Hf), and fission products (Cs, Sr, Tc) to improve reactivity

  4. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  5. Sensitivities of Internal Combustion Automotive Engines to Variations in Fuel Properties

    Science.gov (United States)

    1982-02-01

    An assessment of the sensitivity of the automotive gasoline and diesel engines to variations in fuel properties has been made. The variables studied include H/C ratio, distillation range, aromatic content, ignition quality as determined by the octane...

  6. Study of the Effect of Hydrocarbon Type Biodegradation on Fuel Specification Properties

    Science.gov (United States)

    2014-06-01

    diesel fuel (F10428) before and after 1 month exposure to Pseudomonas or a control. Figure 12. QCM profiles at 140°C of mass accumulation (solid...DLA-13) Figure 32. Calibration curve for analysis of BHT in jet fuel. Figure 33. Growth of yeast in 20 mg/L concentrations of A and B. Figure...bladder materials. Some costly problems associated with microbial growth include tank corrosion, fuel pump failures, filter plugging, injector

  7. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    Science.gov (United States)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  8. A simple numerical model to estimate the effect of coal selection on pulverized fuel burnout

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.K.; Hurt, R.H.; Niksa, S.; Muzio, L.; Mehta, A.; Stallings, J. [Brown University, Providence, RI (USA). Division Engineering

    2003-06-01

    The amount of unburned carbon in ash is an important performance characteristic in commercial boilers fired with pulverized coal. Unburned carbon levels are known to be sensitive to fuel selection, and there is great interest in methods of estimating the burnout propensity of coals based on proximate and ultimate analysis - the only fuel properties readily available to utility practitioners. A simple numerical model is described that is specifically designed to estimate the effects of coal selection on burnout in a way that is useful for commercial coal screening. The model is based on a highly idealized description of the combustion chamber but employs detailed descriptions of the fundamental fuel transformations. The model is validated against data from laboratory and pilot-scale combustors burning a range of international coals, and then against data obtained from full-scale units during periods of coal switching. The validated model form is then used in a series of sensitivity studies to explore the role of various individual fuel properties that influence burnout.

  9. Effect of increased fuel exploitation on the main characteristics of spent WWER 440 fuel

    International Nuclear Information System (INIS)

    Zib, A.

    2001-01-01

    The article deals with the effect of a higher fuel exploitation on the main characteristics (particularly radioactivity and decay heat power) of spent WWER 440 fuel. The main characteristics were calculated by using the Origen code. The study was implemented as a three-stage process. In the first stage, the radioactivity and residual thermal power time evolution values were calculated for the 'typical fuel', i. e. fuel assembly with initial enrichment of 3.6% U-235, 3 years in reactor, and burnup of 30 MWd/kg U. In the second stage, ceteris paribus radioactivity and thermal power analyses of sensitivity to changes in the fuel burnup, initial fuel enrichment, and time in reactor were carried out for the typical fuel assembly. In the third stage, the effect of changes in all three variables was investigated for fuel assemblies possessing parameters that approach those applied at the Dukovany NPP. The effect of a higher fuel exploitation on the interim fuel storage is also mentioned. (author)

  10. Effect of wood fuels on power plant operability

    International Nuclear Information System (INIS)

    Orjala, M.; Ingalsuo, R.

    2001-01-01

    The objective of the research is to determine the critical properties of wood fuels on the basis of power plant operability, to determine the optimal conditions for reduction of harmful detriments, and to study how the storage and processing of wood fuels effect on the operability. Both the CFB and BFB technologies are studied. The project started in December 2000 and it will be ended by the end of 2002. Experts of the Fuels and Combustion research field of VTT Energy carry out the main parts of the research. Experts of the research field of Mineral Processing of VTT Chemical Technology, located in Outokumpu, and Kemian tutkimuspalvelut Oy/Oulu University, located in Outokumpu, participate in the analytics, and the research field of Materials and Manufacturing Technology of VTT Manufacturing Technology in Otaniemi participates in the research on material effects. System Technology Laboratory of Oulu University carries out the power plant automation and boiler control technology research under supervision of Professor Urpo Kortela. Co-operation with the materials research unit of EU's JRC, located in Petten, which started in the research 'Combustion of Forest Chips', will be continues in this research. Co-operation will be made with Swedish Vaermeforsk in the field of information exchange on experiences in utilisation of wood fuels in Swedish power plants and possibilities to join in the projects of Vaermeforsk in this research field. Following companies participate in the project: Etelae-Savon Energia Oy, Foster Wheeler Energia Oy, Kvaerner Pulping Oy, Simpele pasteboard factory of M-Real Oyj and Vaermeforsk AB (Sweden). (orig.)

  11. Evaluation of thermal physical properties for fast reactor fuels. Melting point and thermal conductivities

    International Nuclear Information System (INIS)

    Kato, Masato; Morimoto, Kyoichi; Komeno, Akira; Nakamichi, Shinya; Kashimura, Motoaki; Abe, Tomoyuki; Uno, Hiroki; Ogasawara, Masahiro; Tamura, Tetsuya; Sugata, Hirotada; Sunaoshi, Takeo; Shibata, Kazuya

    2006-10-01

    Japan Atomic Energy Agency has developed a fast breeder reactor (FBR), and plutonium and uranium mixed oxide (MOX) having low density and 20-30%Pu content has used as a fuel of the FBR, Monju. In plutonium, Americium has been accumulated during long-term storage, and Am content will be increasing up to 2-3% in the MOX. It is essential to evaluate the influence of Am content on physical properties of MOX on the development of FBR in the future. In this study melting points and thermal conductivities which are important data on the fuel design were measured systematically in wide range of composition, and the effects of Am accumulated were evaluated. The solidus temperatures of MOX were measured as a function of Pu content, oxygen to metal ratio (O/M) and Am content using thermal arrest technique. The sample was sealed in a tungsten capsule in vacuum for measuring solidus temperature. In the measurements of MOX with Pu content of more than 30%, a rhenium inner capsule was used to prevent the reaction between MOX and tungsten. In the results, it was confirmed that the melting points of MOX decrease with as an increase of Pu content and increase slightly with a decrease of O/M ratio. The effect of Am content on the fuel design was negligible small in the range of Am content up to 3%. Thermal conductivities of MOX were evaluated from thermal diffusivity measured by laser flash method and heat capacity calculated by Neumann- Kopp's law. The thermal conductivity of MOX decreased slightly in the temperature of less than 1173K with increasing Am content. The effect of Am accumulated in long-term storage fuel was evaluated from melting points and thermal conductivities measured in this study. It is concluded that the increase of Am in the fuel barely affect the fuel design in the range of less than 3%Am content. (author)

  12. Mechanical Properties and Structures of Pyrolytic Carbon Coating Layer in HTR Coated Particle Fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Young Min; Kim, Woong Ki; Cho, Moon Sung

    2009-01-01

    The TRISO(tri-isotropic)-coated fuel particle for a HTR(High Temperature gas-cooled Reactor) has a diameter of about 1 mm, composed of a nuclear fuel kernel and four different outer coating layers, consisting of a buffer PyC (pyrolytic carbon) layer, inner PyC layer, SiC layer, and outer PyC layer with different coating thicknesses following a specific fuel design. While the fuel kernel is a source for a heat generation by a nuclear fission of fissile uranium, each of the four coating layers acts as a different role in view of retaining the generated fission products and the other interactions during an in-reactor service. Among these coating layers, PyC properties are scarcely in agreement among various investigators and the dependency of their changes upon the deposition condition is comparatively large due to their additional anisotropic properties. Although a recent review work has contributed to an establishment of relationship between the material properties and QC measurements, the data on the mechanical properties and structural parameters of PyC coating layers remain still unclearly evaluated. A review work on dimensional changes of PyC by neutron irradiation was one of re-evaluative works recently attempted by the authors. In this work, an attempt was made to analyze and re-evaluate the existing data of the experimental results of the mechanical properties, i.e., Young's modulus and fracture stress, in relation with the coating conditions, density and the BAF (Bacon Anisotropy Factor), an important structural parameter, of PyC coating layers obtained from various experiments performed in the early periods of the HTR coated particle development

  13. Fuel loads and fuel type mapping

    Science.gov (United States)

    Chuvieco, Emilio; Riaño, David; Van Wagtendonk, Jan W.; Morsdof, Felix; Chuvieco, Emilio

    2003-01-01

    Correct description of fuel properties is critical to improve fire danger assessment and fire behaviour modeling, since they guide both fire ignition and fire propagation. This chapter deals with properties of fuel that can be considered static in short periods of time: biomass loads, plant geometry, compactness, etc. Mapping these properties require a detail knowledge of vegetation vertical and horizontal structure. Several systems to classify the great diversity of vegetation characteristics in few fuel types are described, as well as methods for mapping them with special emphasis on those based on remote sensing images.

  14. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    Science.gov (United States)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  15. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels

    International Nuclear Information System (INIS)

    Lehmann, J.; Decours, J.

    1964-01-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the γ structure, - cooling rate at the transformation points, - whether or not the intermediate γ → β transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram α + γ; β + γ the effects of the morphology (in particular the two types of α pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the γ structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [fr

  16. Models for MOX fuel behaviour. A selective review

    International Nuclear Information System (INIS)

    Massih, Ali R.

    2006-01-01

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation

  17. Models for MOX fuel behaviour. A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2006-12-15

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.

  18. Development of a diesel substitute fuel

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Anton; Mair-Zelenka, Philipp [Graz Univ. of Technology (Austria). Inst. of Chemical Engineering and Environmental Technology; Zeymer, Marc [OMV Refining and Marketing GmbH, Vienna (Austria). MRDI-D Product Development and Innovation

    2013-06-01

    Substitute fuels composed of few real chemical compounds are an alternative characterisation approach for conventional fuels as opposed to the traditional pseudo-component method. With the algorithm proposed in this paper the generation of such substitutes will be facilitated and well-established thermodynamic methods can be applied for physical property-data prediction. Based on some quality criteria like true boiling-point curve, liquid density, C/H ratio, or cloud point of a target fuel a surrogate which meets these properties is determined by fitting its composition. The application and capabilities of the algorithm developed are demonstrated by means of an exemplary diesel substitute fuel. The substitute mixture obtained can be generated and used for evaluation of property-prediction methods. Furthermore this approach can help to understand the effects of mixing fossil fuels with biogenic compounds. (orig.)

  19. Effect of fuel fabrication parameters on performance- designer's point of view

    International Nuclear Information System (INIS)

    Prasad, P.N.; Ravi, M.; Soni, R.; Bajaj, S.S.; Bhardwaj, S.A.

    2004-01-01

    The fuel bundle performance in reactor depends upon the material properties, dimensions of the different components and their inter-compatibility. This paper brings out the fuel parameters required to be optimised to achieve better fuel reliability, operational flexibility, safety and economics from the designer point of view

  20. Properties of plasma flames sustained by microwaves and burning hydrocarbon fuels

    International Nuclear Information System (INIS)

    Hong, Yong Cheol; Uhm, Han Sup

    2006-01-01

    Plasma flames made of atmospheric microwave plasma and a fuel-burning flame were presented and their properties were investigated experimentally. The plasma flame generator consists of a fuel injector and a plasma flame exit connected in series to a microwave plasma torch. The plasma flames are sustained by injecting hydrocarbon fuels into a microwave plasma torch in air discharge. The microwave plasma torch in the plasma flame system can burn a hydrocarbon fuel by high-temperature plasma and high atomic oxygen density, decomposing the hydrogen and carbon containing fuel. We present the visual observations of the sustained plasma flames and measure the gas temperature using a thermocouple device in terms of the gas-fuel mixture and flow rate. The plasma flame volume of the hydrocarbon fuel burners was more than approximately 30-50 times that of the torch plasma. While the temperature of the torch plasma flame was only 868 K at a measurement point, that of the diesel microwave plasma flame with the addition of 0.019 lpm diesel and 30 lpm oxygen increased drastically to about 2280 K. Preliminary experiments for methane plasma flame were also carried out, measuring the temperature profiles of flames along the radial and axial directions. Finally, we investigated the influence of the microwave plasma on combustion flame by observing and comparing OH molecular spectra for the methane plasma flame and methane flame only

  1. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioroni, Gina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fatouraie, Mohammad [Robert Bosch LLC; Frommherz, Mario [Robert Bosch LLC; Mosburger, Michael [Robert Bosch LLC; Chapman, Elana [General Motors LLC; Li, Sharon [General Motors LLC

    2018-04-03

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.

  2. Airbreathing Propulsion Fuels and Energy Exploratory Research and Development (APFEERD) Sub Task: Review of Bulk Physical Properties of Synthesized Hydrocarbon:Kerosenes and Blends

    Science.gov (United States)

    2017-06-01

    Fuels and Energy Branch Turbine Engine Division Turbine Engine Division CHARLES W. STEVENS, Lead Engineer Turbine Engine Division Aerospace Systems...evaluation concludes, based on fundamental physical chemistry , that all hydrocarbon kerosenes that meet the minimum density requirement will have bulk...alternative jet fuels; renewable jet fuel; fuel physical properties; fuel chemistry ; fuel properties 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  3. Sensitivity study for accident tolerant fuels: Property comparisons and behavior simulations in a simplified PWR to enable ATF development and design

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Kristina Yancey, E-mail: kristina.yancey@gmail.com; Sudderth, Laura; Brito, Ryan A.; Evans, Jordan A.; Hart, Clifford S.; Hu, Anbang; Jati, Andi; Stern, Karyn; McDeavitt, Sean M., E-mail: mcdeavitt@tamu.edu

    2016-12-01

    Highlights: • This study compared four accident tolerant fuels against uranium dioxide. • Material property correlations were developed to evaluate fuel performance. • The fuels’ neutronic and thermal hydraulic behaviors were studied in the AP1000. • No fuel type performed better in all areas, but each has strengths and weaknesses. • More research is needed to build a complete model of the fuel performances. - Abstract: Since the events at the Fukushima-Daiichi nuclear power plant, there has been increased interest in developing fuels to better withstand accidents for current light water reactors. Four accident tolerant fuel candidates are uranium oxide with beryllium oxide additives, uranium oxide with silicon carbide matrix additives, uranium nitride, and uranium nitride with uranium silicide composite. The first two candidates represent near-term high performance uranium oxide with high thermal conductivity and neutron transparency, and the second two represent mid-term high-density fuels with highly beneficial thermal properties. This study seeks to understand the benefits and drawbacks of each option in place of uranium dioxide. To assess the material properties for each of the fuel types, an extensive literature review was performed for material property data. Correlations were then made to evaluate the properties during reactor operation. Neutronics and thermal hydraulics studies were also completed to determine the impact of the use of each candidate in an AP1000 reactor. In most cases, the candidate fuels performed more desirably than uranium dioxide, but no fuel type performed better in all aspects. Much more research needs to be performed to build a complete model of the fuel performances, primarily experimental data for uranium silicide. Each of the fuels studied has its own benefits and drawbacks, and the comparisons discussed in this report can be used to aid in determining the most appropriate fuel depending on the desired specifications.

  4. Fuel poverty increases risk of mould contamination, regardless of adult risk perception & ventilation in social housing properties.

    Science.gov (United States)

    Sharpe, Richard A; Thornton, Christopher R; Nikolaou, Vasilis; Osborne, Nicholas J

    2015-06-01

    . Increased risk perception and use of extractor fans did not modify the association between fuel poverty and mould contamination. This suggests that fuel poor populations may not benefit from energy efficiency interventions due to ineffective heating and ventilation practices of those occupants residing participating households. Our findings may be modified by a complex interaction between occupant behaviours and the built environment. We found that participant age, occupancy, SES, pets, drying washing indoors, geographic location, architectural design/age of the property, levels of insulation and type of heating regulated risk of mould contamination. Fuel poverty behaviours affected around a third of participating households and represent a risk factor for increased exposures to damp and mouldy conditions, regardless of adult risk perception, heating and ventilation practices. This requires multidisciplinary approach to assess the complex interaction between occupant behaviours, risk perception, the built environment and the effective use of heating and ventilation practices. Our findings have implications for housing policies and future housing interventions. Effective communication strategies focusing on awareness and perception of risk may help address indoor air quality issues. This must be supported by improved household energy efficiency with the provision of more effective heating and ventilation strategies, specifically to help alleviate those suffering from fuel poverty. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Simulation of the neutron-physical properties of the classical UO2 fuel and of MOX fuel during the burn-up by Transuranus

    International Nuclear Information System (INIS)

    Breza, J. jr.; Necas, V.; Daoeilek, P.

    2005-01-01

    The classical nuclear fuel UO 2 is well known for VVER reactors. Nevertheless, in the near future it will be possible to replace this fuel by novel, advanced kinds of fuel, for instance MOX, inert matrices fuel, etc., that will allow to increase the level of burn-up and minimize the amount of hazardous waste. The code Transuranus [2], designed at ITU Karlsruhe, is intended for thermal and mechanical analyses of fuel elements in nuclear reactors. We have utilized the code Transuranus to simulate the neutron-physical properties of the classical UO 2 fuel and of MOX fuel during the burn-up to a level of 40 MWd/kgHM. We compare obtained results of uranium and plutonium nuclides concentrations, their changes during burn-up, with results obtained by code HELIOS [3], which is well-validated code for this kind of applications. We performed calculations of fission gasses concentrations, namely xenon and krypton. (author)

  6. Characterizing Gaseous Fuels for Their Knock Resistance based on the Chemical and Physical Properties of the Fuel

    NARCIS (Netherlands)

    Levinsky, Howard; Gersen, Sander; van Essen, Martijn; van Dijk, Gerco

    2016-01-01

    A method is described to characterize the effects of changes in the composition of gaseous fuels on engine knock by computing the autoignition process during the compression and burn periods of the engine cycle. To account for the effects of fuel composition on the in-cylinder pressure and

  7. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  8. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  9. Matpro--version 10: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-02-01

    The materials properties correlations and computer subcodes (MATPRO--Version 10) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory are described. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures

  10. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Hagrman, D.L.; Reymann, G.A.

    1979-02-01

    This handbook describes the materials properties correlations and computer subcodes (MATPRO-Version 11) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures

  11. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Reymann, G.A. (comps.)

    1979-02-01

    This handbook describes the materials properties correlations and computer subcodes (MATPRO-Version 11) developed for use with various LWR fuel rod behavior analytical programs at the Idaho National Engineering Laboratory. Formulations of fuel rod material properties, which are generally semiempirical in nature, are presented for uranium dioxide and mixed uranium--plutonium dioxide fuel, zircaloy cladding, and fill gas mixtures.

  12. Reactivity effect of non-uniformly distributed fuel in fuel solution systems

    International Nuclear Information System (INIS)

    Hirano, Yasushi; Yamane, Yoshihiro; Nishina, Kojiro; Mitsuhashi, Ishi.

    1991-01-01

    A numerical method to determine the optimal fuel distribution for minimum critical mass, or maximum k-effective, is developed using the Maximum Principle in order to evaluate the maximum effect of non-uniformly distributed fuel on reactivity. This algorithm maximizes the Hamiltonian directly by an iterative method under a certain constraint-the maintenance of criticality or total fuel mass. It ultimately reaches the same optimal state of a flattened fuel importance distribution as another algorithm by Dam based on perturbation theory. This method was applied to two kinds of spherical cores with water reflector in the simulating reprocessing facility. In the slightly-enriched uranyl nitrate solution core, the minimum critical mass decreased by less than 1% at the optimal moderation state. In the plutonium nitrate solution core, the k-effective increment amounted up to 4.3% Δk within the range of present study. (author)

  13. Effect of additives in sintering UO2-7wt%Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Santos, L.R.; Riella, H.G.

    2009-01-01

    Gadolinium has been used as burnable poison for reactivity control in modern PWRs. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder enables longer fuel cycles and optimized fuel utilization. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The process for manufacturing UO 2 - Gd 2 O 3 generates scraps that should be reused. The main scraps are green and sintered pellets, which must be calcined to U 3 O 8 to return to the fabrication process. Also, the incorporation of Gd 2 O 3 in UO 2 requires the use of an additive to improve the sintering process, in order to achieve the physical properties specified for the mixed fuel, mainly density and microstructure. This paper describes the effect of the addition of fabrication scraps on the properties of the UO 2 -Gd 2 O 3 fuel. Aluminum hydroxide Al(OH) 3 was also incorporated to the fuel as a sintering aid. The results shown that the use of 2000 ppm of Al(OH) 3 as additive allow to fabricate good pellets with up to 10 wt% of recycled scraps. (author)

  14. PIE and separate effect test of high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, S.K.; Kim, D.H.

    2005-01-01

    To investigate the performance of a high burnup UO 2 fuel, the highest burnup fuel assembly in KOREA was transported to the PIE facility in KAERI. It was a 17·17 fuel assembly irradiated at the Ulchin Unit 2 PWR. The peak fuel rod average burnup was about 57MWd/kgU and locally 65MWd/kgU. The general PIE was performed to investigate the fuel rod irradiation performance. Fission gas release, burnup, oxide thickness, hydrogen pickup, CRUD, and density change were measured by destructive of non-destructive test. Microstructure change, bubble and pore size distributions were observed by optical microscopy, SEM and EPMA. All generated and available PIE results were used to verify high burnup fuel performance code INFRA. Several rods were cut for additional separate effect test. For the high burnup fission gas release behaviour analysis, annealing apparatus were developed and installed in hot cell and preliminary test was performed. In addition to current apparatus new induction furnace will be installed in hot cell to investigate the high temperature and transient fission gas release behaviour. Ring tensile test was performed to analyze the material property degradation which caused by the oxidation and hydride, and additional mechanical tests will be performed. (Author)

  15. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  16. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine

    International Nuclear Information System (INIS)

    Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Ashrafur Rahman, S.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Fuel additives significantly improve the quality of biodiesel and its blends. • Fuel additives used to enhance biodiesel properties. • Fuel saving from optimized vehicle performance and economy with the use of additives. • Emission reduction from fuel system cleanliness and combustion optimization. - Abstract: With growing concern over greenhouse gases there is increasing emphasis on reducing CO 2 emissions. Despite engine efficiency improvements plus increased dieselization of the fleet, increasing vehicle numbers results in increasing CO 2 emissions. To reserve this trend the fuel source must be changed to renewable fuels which are CO 2 neutral. As a renewable, sustainable and alternative fuel for compression ignition engines, biodiesel is widely accepted as comparable fuel to diesel in diesel engines. This is due to several factors like decreasing the dependence on imported petroleum, reducing global warming, increasing lubricity, and reducing substantially the exhaust emissions from diesel engine. However, there is a major disadvantage in the use of biodiesel as it has lower heating value, higher density and higher viscosity, higher fuel consumption and higher NO X emission, which limits its application. Here fuel additives become essential and indispensable tools not only to minimize these drawbacks but also generate specified products to meet the regional and international standards. Fuel additives can contribute towards fuel economy and emission reduction either directly or indirectly. Their use enable vehicle performance to be maintained at, or near, optimum over the lifetime of the vehicle. A variety of additives are used in automotive biodiesel fuel to meet specification limits and to enhance quality. For example, metal based additives, oxygenated additives, antioxidants, cetane number improvers, lubricity improvers and cold flow improvers are used to meet specifications and quality. This article is a literature review of the effect

  17. Correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1982-10-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and of compressive deformation at 1870 and 1970 0 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history

  18. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  19. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  20. Disentangling effects of key coarse woody debris fuel properties on its combustion, consumption and carbon gas emissions during experimental laboratory fire

    NARCIS (Netherlands)

    Zhao, Weiwei; van Logtestijn, Richard S.P.; van der Werf, Guido R.; van Hal, Jurgen R.; Cornelissen, Johannes H.C.

    2018-01-01

    Coarse woody debris is a key terrestrial carbon pool, and its turnover through fire plays a fundamental role in global carbon cycling. Coarse dead wood fuel properties, which vary between tree species and wood decay stages, might affect its combustion, consumption and carbon gas emissions during

  1. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review

    International Nuclear Information System (INIS)

    Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Imtenan, S.; Shahir, S.A.; Mobarak, H.M.

    2014-01-01

    Highlights: • Overview of current energy situation. • Overview of biology, distribution and chemistry of various non-edible oil resources. • Comparison of fuel properties of various biodiesels produced from various non-edible oils. • Comparison of engine performance and emission characteristics of reviewed biodiesels. - Abstract: Energy demand is increasing dramatically because of the fast industrial development, rising population, expanding urbanization, and economic growth in the world. To fulfill this energy demand, a large amount of fuel is widely used from different fossil resources. Burning of fossil fuels has caused serious detrimental environmental consequences. The application of biodiesel has shown a positive impact in resolving these issues. Edible vegetable oils are one of the potential feedstocks for biodiesel production. However, as the use of edible oils will jeopardize food supplies and biodiversity, non-edible vegetable oils, also known as second-generation feedstocks, are considered potential substitutes of edible food crops for biodiesel production. This paper introduces some species of non-edible vegetables whose oils are potential sources of biodiesel. These species are Pongamia pinnata (karanja), Calophyllum inophyllum (Polanga), Maduca indica (mahua), Hevea brasiliensis (rubber seed), Cotton seed, Simmondsia chinesnsis (Jojoba), Nicotianna tabacum (tobacco), Azadirachta indica (Neem), Linum usitatissimum (Linseed) and Jatropha curcas (Jatropha). Various aspects of non-edible feedstocks, such as biology, distribution, and chemistry, the biodiesel’s physicochemical properties, and its effect on engine performance and emission, are reviewed based on published articles. From the review, fuel properties are found to considerably vary depending on feedstocks. Analysis of the performance results revealed that most of the biodiesel generally give higher brake thermal efficiency and lower brake-specific fuel consumption. Emission results

  2. Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, Imdat; Benli, Merthan [Department of Mechanical Engineering, University of Sakarya, 54187 Adapazari (Turkey)

    2010-05-15

    The performance of the fuel cell is affected by many parameters. One of these parameters is assembly pressure that changes the mechanical properties and dimensions of the fuel cell components. Its first duty, however, is to prevent gas or liquid leakage from the cell and it is important for the contact behaviors of fuel cell components. Some leakage and contact problems can occur on the low assembly pressures whereas at high pressures, components of the fuel cell, such as bipolar plates (BPP), gas diffusion layers (GDL), catalyst layers, and membranes, can be damaged. A finite element analysis (FEA) model is developed to predict the deformation effect of assembly pressure on the single channel PEM fuel cell in this study. Deformed fuel cell single channel model is imported to three-dimensional, computational fluid dynamics (CFD) model which is developed for simulating proton exchange membrane (PEM) fuel cells. Using this model, the effect of assembly pressure on fuel cell performance can be calculated. It is found that, when the assembly pressure increases, contact resistance, porosity and thickness of the gas diffusion layer (GDL) decreases. Too much assembly pressure causes GDL to destroy; therefore, the optimal assembly pressure is significant to obtain the highest performance from fuel cell. By using the results of this study, optimum fuel cell design and operating condition parameters can be predicted accordingly. (author)

  3. Effect of different sizes of palm oil fuel ash (POFA) towards physical properties of modified bitumen

    Science.gov (United States)

    Raja Zulkefli, R. N. A.; Yaacob, H.; Putra Jaya, R.; Warid, M. N. M.; Hassan, N.; Hainin, M. R.; Idham, M. K.

    2018-04-01

    In the past decades, numerous numbers of studies have been carried out to find ways enhancing properties of bitumen. Other than using polymer, agricultural waste such as palm oil fuel ash (POFA) is one of the waste products that can be used to modify bitumen. In this study, the physical and rheological properties of POFA modified bitumen were examined based on different grinding hour and different percentage of POFA. The bitumen were mixed with different percentages of POFA (0, 5 and 7%) which passed through 0.075 mm sieve and grinded at different period (1 and 4 hour). The samples were then tested and compared to conventional bitumen. From TEM results, POFA grinded at 1 hour have sizes between 3-7 µm while POFA grinded for 4 hours have finer sizes between 500 nm to 3 µm. The results showed that fineness of POFA affect properties of bitumen significantly. Decreasing in penetration value and decreasing in softening temperature indicates that the modified bitumen becomes harder than conventional bitumen. Modified bitumen gives best results when added with 7% POFA sizes of 500 nm to 3 µm compared to 3 to 7 µm.

  4. Fuel Supply Defaults for Regional Fuels and Fuel Wizard Tool in MOVES201X

    Science.gov (United States)

    The fuel supply report documents the data and methodology used to derive the default gasoline, diesel and fuel-blend fuel properties, and their respective fuel market share in MOVES. The default market share of the individual fuels varies by calendar year, seasons, and several do...

  5. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia.

    Science.gov (United States)

    Price, Owen F; Bradstock, Ross A

    2012-12-30

    Treatment of fuel (e.g. prescribed fire, logging) in fire-prone ecosystems is done to reduce risks to people and their property but effects require quantification, particularly under severe weather conditions when the destructive potential of fires on human infrastructure is maximised. We analysed the relative effects of fuel age (i.e. indicative of the effectiveness of prescribed fire) and logging on remotely sensed (SPOT imagery) severity of fires which occurred in eucalypt forests in Victoria, Australia in 2009. These fires burned under the most severe weather conditions recorded in Australia and caused large losses of life and property. Statistical models of the probability of contrasting extremes of severity (crown fire versus fire confined to the understorey) were developed based on effects of fuel age, logging, weather, topography and forest type. Weather was the primary influence on severity, though it was reduced at low fuel ages in Moderate but not Catastrophic, Very High or Low fire-weather conditions. Probability of crown fires was higher in recently logged areas than in areas logged decades before, indicating likely ineffectiveness as a fuel treatment. The results suggest that recently burnt areas (up to 5-10 years) may reduce the intensity of the fire but not sufficiently to increase the chance of effective suppression under severe weather conditions. Since house loss was most likely under these conditions (67%), effects of prescribed burning across landscapes on house loss are likely to be small when weather conditions are severe. Fuel treatments need to be located close to houses in order to effectively mitigate risk of loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  7. Light-duty vehicle fuel economy improvements, 1979--1998: A consumer purchase model of corporate average fuel economy, fuel price, and income effects

    Science.gov (United States)

    Chien, David Michael

    2000-10-01

    The Energy Policy and Conservation Act of 1975, which created fuel economy standards for automobiles and light trucks, was passed by Congress in response to the rapid rise in world oil prices as a result of the 1973 oil crisis. The standards were first implemented in 1978 for automobiles and 1979 for light trucks, and began with initial standards of 18 MPG for automobiles and 17.2 MPG for light trucks. The current fuel economy standards for 1998 have been held constant at 27.5 MPG for automobiles and 20.5 MPG for light trucks since 1990--1991. While actual new automobile fuel economy has almost doubled from 14 MPG in 1974 to 27.2 MPG in 1994, it is reasonable to ask if the CAFE standards are still needed. Each year Congress attempts to pass another increase in the Corporate Average Fuel Economy (CAFE) standard and fails. Many have called for the abolition of CAFE standards citing the ineffectiveness of the standards in the past. In order to determine whether CAFE standards should be increased, held constant, or repealed, an evaluation of the effectiveness of the CAFE standards to date must be established. Because fuel prices were rising concurrently with the CAFE standards, many authors have attributed the rapid rise in new car fuel economy solely to fuel prices. The purpose of this dissertation is to re-examine the determinants of new car fuel economy via three effects: CAFE regulations, fuel price, and income effects. By measuring the marginal effects of the three fuel economy determinants upon consumers and manufacturers choices, for fuel economy, an estimate was made of the influence of each upon new fuel economy. The conclusions of this dissertation present some clear signals to policymakers: CAFE standards have been very effective in increasing fuel economy from 1979 to 1998. Furthermore, they have been the main cause of fuel economy improvement, with income being a much smaller component. Furthermore, this dissertation has suggested that fuel prices have

  8. The importance of fuel properties in the formation of nitrogen oxides and in combustion

    International Nuclear Information System (INIS)

    Huotari, J.; Aho, M.; Haemaelaeinen, J.; Huotari, J.; Saastamoinen, J.; Rantanen, J.

    1995-01-01

    The goal of this work is to find new information about the effects of pressure, temperature and fuel properties (Fuel-O/Fuel-N) on the formation of nitrogen oxides through the most important intermediates (NH 3 and HCN). In addition, a single particle model for the simultaneous pyrolysis and char combustion will be improved to be used for calculating combustion under pressure. Experimental work is done with an electrically heated pressurized entrained flow reactor (PEFR) which is equipped with modern analytics (as FT-IR for the analysis of N 2 O, NO and NO 2 and FT-IR pyrometry for the measurement of particle temperatures). The experimental work is carried out in several stages: (a) Study of the formation of HCN and NH 3 during pressurized pyrolysis (b) Oxidation of HCN and NH 3 to nitrogen oxides in pressurized combustion (c) Reduction of NO by NH 3 under pressure (thermax denox) Task a is performed with fuels of various O/N ratio. Task b is performed with pure HCN and NH 3 and with more complicated gas mixtures including HCN and NH 3 . A large part of these results are utilized in kinetic modelling in Aabo Akademi University, Finland in project LIEKKI 2-201. Two kinds of modelling work is performed in VTT in this project (a) Simultaneous modelling of the composition of solid and gaseous phases in the pyrolysis and combustion of a small fuel particle (multiphase modelling) (b) Modelling of pyrolysis and combustion of a single fuel particle under pressurized conditions (single particle modelling). The results can be used in planning of pressurized combustors and in minimizing the emissions of nitrogen oxides. (author)

  9. Thoria-based nuclear fuels thermophysical and thermodynamic properties, fabrication, reprocessing, and waste management

    CERN Document Server

    Bharadwaj, S R

    2013-01-01

    This book presents the state of the art on thermophysical and thermochemical properties, fabrication methodologies, irradiation behaviours, fuel reprocessing procedures, and aspects of waste management for oxide fuels in general and for thoria-based fuels in particular. The book covers all the essential features involved in the development of and working with nuclear technology. With the help of key databases, many of which were created by the authors, information is presented in the form of tables, figures, schematic diagrams and flow sheets, and photographs. This information will be useful for scientists and engineers working in the nuclear field, particularly for design and simulation, and for establishing the technology. One special feature is the inclusion of the latest information on thoria-based fuels, especially on the use of thorium in power generation, as it has less proliferation potential for nuclear weapons. Given its natural abundance, thorium offers a future alternative to uranium fuels in nuc...

  10. Effect of deposition conditions on the properties of pyrolytic silicon carbide coatings for high-temperature gas-cooled reactor fuel particles

    International Nuclear Information System (INIS)

    Stinton, D.P.; Lackey, W.J.

    1977-10-01

    Silicon carbide coatings on HTGR microsphere fuel act as the barrier to contain metallic fission products. Silicon carbide coatings were applied by the decomposition of CH 3 SiCl 3 in a 13-cm-diam (5-in.) fluidized-bed coating furnace. The effects of temperature, CH 3 SiCl 3 supply rate and the H 2 :CH 3 SiCl 3 ratio on coating properties were studied. Deposition temperature was found to control coating density, whole particle crushing strength, coating efficiency, and microstructure. Coating density and microstructure were also partially determined by the H 2 :CH 3 SiCl 3 ratio. From this work, it appears that the rate at which high quality SiC can be deposited can be increased from 0.2 to 0.5 μm/min

  11. The Fuel Performance Analysis of LWR Fuel containing High Thermal Conductivity Reinforcements

    International Nuclear Information System (INIS)

    Kim, Seung Su; Ryu, Ho Jin

    2015-01-01

    The thermal conductivity of fuel affects many performance parameters including the fuel centerline temperature, fission gas release and internal pressure. In addition, enhanced safety margin of fuel might be expected when the thermal conductivity of fuel is improved by the addition of high thermal conductivity reinforcements. Therefore, the effects of thermal conductivity enhancement on the fuel performance of reinforced UO2 fuel with high thermal conductivity compounds should be analyzed. In this study, we analyzed the fuel performance of modified UO2 fuel with high thermal conductivity reinforcements by using the FRAPCON-3.5 code. The fissile density and mechanical properties of the modified fuel are considered the same with the standard UO2 fuel. The fuel performance of modified UO2 with high thermal conductivity reinforcements were analyzed by using the FRAPCON-3.5 code. The thermal conductivity enhancement factors of the modified fuels were obtained from the Maxwell model considering the volume fraction of reinforcements

  12. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    Full Text Available Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significantly from sample to sample. A methodology set up at Cirad allowed to investigate separately natural triacylglycerols alone and the effect of minor components. In addition to these laboratory experiments, engine test at bench and field trials performed in palm oil producing countries, show that this oil is among the best oils as fuel; palm kernel oil whose chemical and physical properties are very close to those of the best of the series investigated, namely copra oil, should display also very interesting properties as Diesel biofuel. Both oils do require external adaptation of the engine when using an indirect injection type engine but even heavier adaptations for a direct injection model. Thus for use as Diesel fuel palm and palm kernel oils are suitable for captive fleets or for engine gensets, to balance the adaptation cost by a scale-up effect either on the number of identical engines or on the nominal vegetable oil consumption per set. Direct use of palm et palm kernel oils fits very well with technical and economical conditions encountered in remote areas. It is also possible to mix palm oil to Diesel fuel either as simple blend or as micro-emulsion. Out of the direct use, palm oil methyl or ethyl ester, often referred to as biodiesel, displays properties similar to those of petroleum Diesel fuel. This technical solution which is suitable to feed all kinds of standard compression ignited engines requires a chemical plant for carrying out the

  13. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  14. Investigation of Lubrication Properties of Petroleum Fuel and Biohydrocarbon Blends

    Directory of Open Access Journals (Sweden)

    Gawron Bartosz

    2016-07-01

    Full Text Available The paper covers issues regarding lubricity of petroleum fuels used in piston and turbine engines, containing hydrocarbon biocomponents. Basing on available literature it can be said that the most prospective fuel components are biohydrocarbons. The paper describes effect of biohydrocarbons included in aviation fuel and diesel fuel on lubricity of such blends. The analysis covers two processes for obtaining biohydrocarbons, the HVO and the Fischer-Tropsch process. Due to problems with actual products acquiring, biohydrocarbons models representing chemically the actual ones from specific process. Lubricity testing was carried out according to standard test methods.

  15. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    Science.gov (United States)

    2015-09-01

    to thousands of hydrocarbon (HC) species. Such a large number of species in high fidelity Computational Fluid Dynamics (CFD) with detailed chemistry...Violi University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI 48109 Corresponding author: Angela Violi (avioli@umich.edu...UNCLASSIFIED 1 Introduction Typical hydrocarbon fuels used in internal combustion engines, such as gasoline, diesel, or jet fuel, are composed of hundreds

  16. Multi-length scale tomography for the determination and optimization of the effective microstructural properties in novel hierarchical solid oxide fuel cell anodes

    Science.gov (United States)

    Lu, Xuekun; Taiwo, Oluwadamilola O.; Bertei, Antonio; Li, Tao; Li, Kang; Brett, Dan J. L.; Shearing, Paul R.

    2017-11-01

    Effective microstructural properties are critical in determining the electrochemical performance of solid oxide fuel cells (SOFCs), particularly when operating at high current densities. A novel tubular SOFC anode with a hierarchical microstructure, composed of self-organized micro-channels and sponge-like regions, has been fabricated by a phase inversion technique to mitigate concentration losses. However, since pore sizes span over two orders of magnitude, the determination of the effective transport parameters using image-based techniques remains challenging. Pioneering steps are made in this study to characterize and optimize the microstructure by coupling multi-length scale 3D tomography and modeling. The results conclusively show that embedding finger-like micro-channels into the tubular anode can improve the mass transport by 250% and the permeability by 2-3 orders of magnitude. Our parametric study shows that increasing the porosity in the spongy layer beyond 10% enhances the effective transport parameters of the spongy layer at an exponential rate, but linearly for the full anode. For the first time, local and global mass transport properties are correlated to the microstructure, which is of wide interest for rationalizing the design optimization of SOFC electrodes and more generally for hierarchical materials in batteries and membranes.

  17. Effects of Tempering Temperature and Path on the Microstructural and Mechanical Properties of ASTM Gr.92 Steel

    International Nuclear Information System (INIS)

    Han, C. H.; Baek, J. H.; Kim, S. H.; Lee, C. B.; Kim, Y. K.; Hong, S. I.

    2009-01-01

    SFR (Sodium-Cooled Fast Reactor) is one of the prospective nuclear reactor for the next generation (Gen-IV) systems. The fuel claddings in the SFR are subject to a high fast nuclear irradiation and a high temperature. Fuel technology is a key aspect of an SFR system, with implications for reactor safety, reactor operations, fuel reprocessing technology, and overall system economics. ASTM Gr.92 steel has been considered as the one of the main candidate fuel cladding materials in the design of SFR in that it has higher thermal conductivity as well as dimensional stability under irradiation when compared as austenitic stainless steel. The changes in microstructure and heat-treatment varying M 23 C 6 , MX, M 2 X, and precipitation by ASTM Gr.92 steels to improve high temperature mechanical properties is the attention. According to several researchers, it plays an important role in the mechanical properties of precipitates V, Nb, Cr, C, N as a form of MX and M 2 X precipitates. These fine precipitates formed in the sub- grain by preventing the movement of dislocations in high-temperature mechanical properties will contribute effectively. This study investigated the effects of tempering temperature and heat-treatment path on microstructure and mechanical properties of ASTM Gr.92 steels

  18. Production of Biodiesel from Thespesiapopulnea seed oil through rapid in situ transesterification - an optimization study and assay of fuel properties

    Science.gov (United States)

    Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.

    2018-03-01

    Biodiesel production was carried out from Thespesia populnea seed oil through rapid insitu transesterification. Influence of reaction parameters such as catalyst type and concentration, methanol to biomass ratio, co-solvent volume, temperature and agitation speed on conversion of oil into methyl esters was investigated. The effect of different co-solvents on conversion was evaluated. Optimum methyl ester conversion of 97.80% was achieved at 1.5wt% of KOH catalyst, 5.5:1 (v/w) methanol to biomass ratio, 25vol%tetrahydrofuranco-solvent, 60°C and 500 rpm within 120min of reaction time. Fuel properties of produced methyl esters were well fitted within the limits of ASTMD 6751 standards. Considering the properties of produced biodiesel, Thespesia populnea seed derived biodiesel can be used as potential alternate to fossil diesel fuel.

  19. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect II: Effects of variations of the fuel particle diameters

    International Nuclear Information System (INIS)

    Ding Shurong; Wang Qiming; Huo Yongzhong

    2010-01-01

    In order to predict the irradiation mechanical behaviors of plate-type dispersion nuclear fuel elements, the total burnup is divided into two stages: the initial stage and the increasing stage. At the initial stage, the thermal effects induced by the high temperature differences between the operation temperatures and the room temperature are mainly considered; and at the increasing stage, the intense mechanical interactions between the fuel particles and the matrix due to the irradiation swelling of fuel particles are focused on. The large-deformation thermo-elasto-plasticity finite element analysis is performed to evaluate the effects of particle diameters on the in-pile mechanical behaviors of fuel elements. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the fuel particle diameters; the effects of particle diameters on the maximum first principal stresses vary with burnup, and the considered case with the largest particle diameter holds the maximum values all along; (2) at the cladding near the interface between the fuel meat and the cladding, the Mises stresses and the first principal stresses undergo major changes with increasing burnup, and different variations exist for different particle diameter cases; (3) the maximum Mises stresses at the fuel particles rise with the particle diameters.

  20. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kun, E-mail: kunmo@anl.gov; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.

    2017-04-15

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO{sub 2} particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO{sub 2} particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO{sub 2} particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO{sub 2} particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.

  1. Advanced fuels for gas turbines: Fuel system corrosion, hot path deposit formation and emissions

    International Nuclear Information System (INIS)

    Seljak, Tine; Širok, Brane; Katrašnik, Tomaž

    2016-01-01

    Highlights: • Technical feasibility analysis of alternative fuels requires a holistic approach. • Fuel, combustion, corrosion and component functionality are strongly related. • Used approach defines design constraints for microturbines using alternative fuels. - Abstract: To further expand the knowledge base on the use of innovative fuels in the micro gas turbines, this paper provides insight into interrelation between specific fuel properties and their impact on combustion and emission formation phenomena in micro gas turbines for stationary power generation as well as their impact on material corrosion and deposit formation. The objective of this study is to identify potential issues that can be related to specific fuel properties and to propose counter measures for achieving stable, durable, efficient and low emission operation of the micro gas turbine while utilizing advanced/innovative fuels. This is done by coupling combustion and emission formation analyses to analyses of material degradation and degradation of component functionality while interpreting them through fuel-specific properties. To ensure sufficiently broad range of fuel properties to demonstrate the applicability of the method, two different fuels with significantly different properties are analysed, i.e. tire pyrolysis oil and liquefied wood. It is shown that extent of required micro gas turbine adaptations strongly correlates with deviations of the fuel properties from those of the baseline fuel. Through the study, these adaptations are supported by in-depth analyses of impacts of fuel properties on different components, parameters and subsystems and their quantification. This holistic approach is further used to propose methodologies and innovative approaches for constraining a design space of micro gas turbine to successfully utilize wide spectra of alternative/innovative fuels.

  2. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    fuel in NATO countries will have some amount of FAME present. There is some work being done on hydrocarbon alternatives but the regulatory structure ... synthesis or hydrotreatment – Requirements and test methods.” According to the specification, paraffinic diesel fuel does not meet the current requirements...or international specification for triglyceride based fuel oils (straight vegetable oil / raw vegetable oil). The same holds true for alcohol-based

  3. Effects of fuel properties on the natural downward smoldering of piled biomass powder: Experimental investigation

    International Nuclear Information System (INIS)

    He, Fang; Yi, Weiming; Li, Yongjun; Zha, Jianwen; Luo, Bin

    2014-01-01

    To validate the modeling of one-dimensional biomass smoldering and combustion, the effects of fuel type, moisture content and particle size on the natural downward smoldering of biomass powder have been investigated experimentally. A cylindrical reactor (inner size Φ26 cm × 22 cm) was constructed, and corn stalk, pine trunk, pyrolysis char and activated char from corn stalk were prepared as powders. The smoldering characteristics were examined for each of the four materials and for different moisture contents and particle sizes. The results revealed the following: 1) The maximum temperature in the fuel bed is only slightly affected by the fuel type and particle size. It increases gradually for original biomass and decreases slowly for chars with the development of the process. 2) The propagation velocity of the char oxidation front is significantly affected by the carbon density and ash content and nearly unaffected by moisture content and particle size. 3) The propagation velocity of the drying front is significantly affected by the moisture content, decreasing from over 10 times the propagation velocity of char oxidation front to about 3 times as the moisture content increased from 3 to 21%. - Highlights: • Natural downward smoldering of four materials, different moisture contents, and different particle sizes were investigated. • Propagation velocity of the char oxidation front differs significantly from that of the drying front. • Carbon density and ash content of fuel significantly affect propagation velocity of the char oxidation front

  4. Modelling the effects of transport policy levers on fuel efficiency and national fuel consumption

    International Nuclear Information System (INIS)

    Kirby, H.R.; Hutton, B.; McQuaid, R.W.; Napier Univ., Edinburgh; Raeside, R.; Napier Univ., Edinburgh; Zhang, Xiayoan; Napier Univ., Edinburgh

    2000-01-01

    The paper provides an overview of the main features of a Vehicle Market Model (VMM) which estimates changes to vehicle stock/kilometrage, fuel consumed and CO 2 emitted. It is disaggregated into four basic vehicle types. The model includes: the trends in fuel consumption of new cars, including the role of fuel price: a sub-model to estimate the fuel consumption of vehicles on roads characterised by user-defined driving cycle regimes; procedures that reflect distribution of traffic across different area/road types; and the ability to vary the speed (or driving cycle) from one year to another, or as a result of traffic growth. The most significant variable influencing fuel consumption of vehicles was consumption in the previous year, followed by dummy variables related to engine size. the time trend (a proxy for technological improvements), and then fuel price. Indeed the effect of fuel price on car fuel efficiency was observed to be insignificant (at the 95% level) in two of the three versions of the model, and the size of fuel price term was also the smallest. This suggests that the effectiveness of using fuel prices as a direct policy tool to reduce fuel consumption may he limited. Fuel prices may have significant indirect impacts (such as influencing people to purchase more fuel efficient cars and vehicle manufacturers to invest in developing fuel efficient technology) as may other factors such as the threat of legislation. (Author)

  5. Effects of low-temperature pretreatment on enhancing properties of refuse-derived fuel via microwave irradiation.

    Science.gov (United States)

    Liu, Zhen; Wang, Han-Qing; Zhou, Yue-Yun; Zhang, Xiao-Dong; Liu, Jian-Wen

    2017-07-01

    The present study focuses on pretreatment of enhancing the properties of refuse-derived fuel (RDF) via low-temperature microwave irradiation. These improved properties include lower chlorine content, a more porous surface structure and better combustion characteristics. In this study, low-temperature microwave irradiation was carried out in a modified microwave apparatus and the range of temperature was set to be 220-300℃. We found that the microwave absorbability of RDF was enhanced after being partly carbonized. Moreover, with the increasing of the final temperature, the organochlorine removal ratio was greatly increased to 80% and the content of chlorine was dramatically decreased to an extremely low level. It was also interesting to find that the chlorine of RDF was mainly released as HCl rather than organic chloride volatiles. The finding is just the same as the polyvinyl chloride pyrolysis process. In addition, pores and channels emerged during the modifying operation and the modified RDF has better combustibility and combustion stability than traditional RDF. This work revealed that low-temperature modification of RDF via microwave irradiation is significant for enhancing the quality of RDF and avoiding HCl erosion of equipment substantially.

  6. Physical properties, evaporation and combustion characteristics of nanofluid-type fuels

    OpenAIRE

    Tanvir, Saad

    2016-01-01

    Nanofluids are liquids with stable suspension of nanoparticles. Limited studies in the past have shown that both energetic and catalytic nanoparticles once mixed with traditional liquid fuels can be advantageous in combustion applications, e.g., increased energy density and shortened ignition delay. Contradictions in existing literature, scarcity of experimental data and lack of understanding on how the added nanoparticles affect the physical properties as well as combustion characteristics o...

  7. Effects of degumming on biodiesel properties of some non-conventional seedoils

    Directory of Open Access Journals (Sweden)

    Abolanle Saheed Adekunle

    2016-11-01

    Full Text Available This study examined the effect of degumming process on physicochemical and biodiesel properties of six non-conventional oils in Nigeria extracted from the seeds and flesh of Terminalia catappa (seed, Irvingia gabonesis (seed, Glycine max (seed, Persea americana(flesh, Tithonia diversifolia (seed, and Dacryodes edulis(flesh. The fruits and seeds were air-dried to constant weight and pulverized. Oil was extracted from the milled sample using Soxhlet extraction method. The oils were degummed using 300 μg/mL of NaCl solution to obtain the refined (degummed oil. Physicochemical properties of both degummed and crude oils were carried out using the AOAC (1990 methods. The fuel properties of the biodiesel obtained were carried out using ASTM methods. Results showed that degumming process lead to high biodiesel yield and reduced the acid value and iodine value compared with the crude oils. The study therefore concluded that degummed oils were a better substitute for biodiesel fuels production.

  8. Effect of fuel composition on poly aromatic hydrocarbons in particulate matter from DI diesel engine; Particulate chu no PAH ni oyobosu nenryo sosei no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Tatani, T; Yoshida, H; Takizawa, H; Miyoshi, K; Ikebe, H [COSMO Research Institute, Tokyo (Japan)

    1997-10-01

    The effect of fuel composition on poly aromatic hydrocarbons (PAH) in particulate matter from DI diesel engine was investigated by using deeply desulfurized fuel and model fuel which properties are not interrelated. It was found that the deeply desulfurized fuel have effect on reducing PAH emissions. Furthermore, it was suggested that poly aromatics in the fuel affect PAH emissions and the influence of tri-aromatics in the fuel was promoted by the coexistence of mono-aromatics or naphthene. PAH formation scheme from each fuel component was proposed by chemical thermodynamic data. 4 refs., 8 figs., 3 tabs.

  9. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  10. Effects of prescribed fires on soil properties: A review.

    Science.gov (United States)

    Alcañiz, M; Outeiro, L; Francos, M; Úbeda, X

    2018-02-01

    Soils constitute one of the most valuable resources on earth, especially because soil is renewable on human time scales. During the 20th century, a period marked by a widespread rural exodus and land abandonment, fire suppression policies were adopted facilitating the accumulation of fuel in forested areas, exacerbating the effects of wildfires, leading to severe degradation of soils. Prescribed fires emerged as an option for protecting forests and their soils from wildfires through the reduction of fuels levels. However such fires can serve other objectives, including stimulating the regeneration of a particular plant species, maintaining biological diversity or as a tool for recovering grasslands in encroached lands. This paper reviews studies examining the short- and long- term impacts of prescribed fires on the physical, chemical and biological soil properties; in so doing, it provides a summary of the benefits and drawbacks of this technique, to help determine if prescribed fires can be useful for managing the landscape. From the study conducted, we can affirm that prescribed fires affects soil properties but differ greatly depending on soil initial characteristics, vegetation or type of fire. Also, it is possible to see that soil's physical and biological properties are more strongly affected by prescribed fires than are its chemical properties. Finally, we conclude that prescribed fires clearly constitute a disturbance on the environment (positive, neutral or negative depending on the soil property studied), but most of the studies reviewed report a good recovery and their effects could be less pronounced than those of wildfires because of the limited soil heating and lower fire intensity and severity. Copyright © 2017. Published by Elsevier B.V.

  11. Effect of the fabrication process on fatigue performance of U3Si2 fuel plate with sandwich structure

    International Nuclear Information System (INIS)

    Wang Xishu; Li Shuangshou; Wang Qingyuan; Xu Yong

    2005-01-01

    U 3 Si 2 -Al fuel plate is one of the dispersion fuel structure materials recently developed and widely used in research reactors. The mechanical properties of this structural material, especially the fatigue performance, are strongly dependent on its fabrication process. To investigate the effects of these processing technologies, the fatigue tests for the different specimens were carried out. The S-N curves indicate that the fabrication processing technologies of U 3 Si 2 fuel plate, such as the addition of U 3 Si 2 particles into aluminum powder to form the fuel meat, holding and rolling the processes of meat and cladding of 6061-Al alloy, plays an important role in improving the mechanical properties and fatigue performance of this fuel plate. In addition, some factors that influence the crack initiation and propagation are summarized based on the fatigue images that are in situ observations with SEM. The critical criterion for fatigue damage is proposed based on the fatigue data of the structural material, which were obtained at the different conditions

  12. Effect of pilot fuel quantity on the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2000-04-01

    It is well known that the operation of dual fuel engines at lower loads suffers from lower thermal efficiency and higher unburned percentages of fuel. To rectify this problem, tests have been conducted on a special single cylinder compression ignition research engine (Ricardo E6) to investigate the effect of pilot fuel quantity on the performance of an indirect injection diesel engine fuelled with gaseous fuel. Diesel fuel was used as the pilot fuel and methane or propane was used as the main fuel which was inducted into the intake manifold to mix with the intake air. Through experimental investigations, it is shown that, the low efficiency and excess emissions at light loads can be improved significantly by increasing the amount of pilot fuel, while increasing the amount of pilot fuel at high loads led to early knocking. (author)

  13. An optimized BWR fuel lattice for improved fuel utilization

    International Nuclear Information System (INIS)

    Bernander, O.; Helmersson, S.; Schoen, C.G.

    1984-01-01

    Optimization of the BWR fuel lattice has evolved into the water cross concept, termed ''SVEA'', whereby the improved moderation within bundles augments reactivity and thus improves fuel cycle economy. The novel design introduces into the assembly a cruciform and double-walled partition containing nonboiling water, thus forming four subchannels, each of which holds a 4x4 fuel rod bundle. In Scandinavian BWRs - for which commercial SVEA reloads are now scheduled - the reactivity gain is well exploited without adverse impact in other respects. In effect, the water cross design improves both mechanical and thermal-hydraulic performance. Increased average burnup is also promoted through achieving flatter local power distributions. The fuel utilization savings are in the order of 10%, depending on the basis of comparison, e.g. choice of discharge burnup and lattice type. This paper reviews the design considerations and the fuel utilization benefits of the water cross fuel for non-Scandinavian BWRs which have somewhat different core design parameters relative to ASEA-ATOM reactors. For one design proposal, comparisons are made with current standard 8x8 fuel rod bundles as well as with 9x9 type fuel in reactors with symmetric or asymmetric inter-assembly water gaps. The effect on reactivity coefficients and shutdown margin are estimated and an assessment is made of thermal-hydraulic properties. Consideration is also given to a novel and advantageous way of including mixed-oxide fuel in BWR reloads. (author)

  14. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    International Nuclear Information System (INIS)

    Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L.

    2015-01-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE–SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors

  15. Effects of variations in fuel pellet composition and size on mixed-oxide fuel pin performance

    International Nuclear Information System (INIS)

    Makenas, B.J.; Jensen, B.W.; Baker, R.B.

    1980-10-01

    Experiments have been conducted which assess the effects on fuel pin performance of specific minor variations from nominal in both fuel pellet size and pellet composition. Such pellets are generally referred to in the literature as rogue pellets. The effect of these rogue pellets on fuel pin and reactor performance is shown to be minimal

  16. The effect of diesel properties on the emissions of particulate matter

    International Nuclear Information System (INIS)

    Bello, A; Torres, J; Herrera, J; Sarmiento, J

    2000-01-01

    An evaluation was carried out on the effect that modifying some properties of Colombian diesel fuel, such as final boiling point (FBP), density and sulfur content, has on the emissions of particulate matter (PM). Four diesel engines with different technologies and work capacity were used for the evaluation. Different alternatives to modify the properties of commercial diesel fuel, from the fuel treatment viewpoint, as well as that of the incorporation or segregation of some of the streams from the pool at the Barrancabermeja refinery were studied. The particulate matter was measured using a partial flow (AVL-SPC472) Constant volume sampler (CVS) with following the 13-step steady state European cycle and the ECE-R49 European guideline. The tests were performed at the Instituto Colombiano del Petroleo. (ICP) test cell in the city of Bucaramanga, Colombia. General tendencies show reductions of up to 25% in PM emissions when final boiling point and sulfur content are reduced. But levels of reduction vary from one engine to another depending on technology and working time. As a baseline, the emission levels of the commercial diesel fuel for each engine are used, and as a reference the results obtained are compared with the EURO I and II European standards defined for the emission levels of heavy duty engines

  17. Fundamental aspects of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO 2 , fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO 2 , radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies

  18. Effect of solid fission products forming dissolved oxide(Nd) and metallic precipitate(Ru) on the thermophysical properties of MOX fuel

    International Nuclear Information System (INIS)

    Kim, Dong Joo

    2006-02-01

    This study experimentally investigated the effect of solid fission products on the thermophysical properties of the mixed oxide fuel and evaluated them on the basis of the analytical theory. Neodymium and ruthenium were selected for the experiments to represent the physical states of the solid fission product as a 'dissolved oxide' and 'metallic precipitate', respectively. The state of the additives, crystal structures, lattice parameters, and theoretical densities were investigated with X-ray diffraction (XRD). Thermal diffusivities and thermal expansion rates were measured with laser flash method and dilatometry, respectively. The thermal expansion data were then fitted to obtain an correlation equation of the density variation as a function of the temperature. The specific heat capacity values were determined using the Neumann-Kopp's rule. The thermal expansion of the 'Nd.added' sample linearly increased with the concentration of the neodymium, which is primarily due to the fact that the melting point of Nd 2 O 3 is lower than that of UO 2 . On the other hand, the thermal expansion of the 'Ru.added' sample hardly changed with increasing ruthenium content. Thermal conductivities of the simulated MOX fuel were determined on the basis of the thermal diffusivities, density variation, and specific heat values measured in this study. The effect of additives on the thermal conductivity of the samples was quantified in the form of the thermal resistance equation, the reciprocal of the phonon conduction equation, which was determined from measured data. For 'dissolved oxide' sample in the UO 2 matrix, the effect is mainly attributed to the increase of lattice point defects caused by U 4+ , Ce 4+ , Nd 3+ and O 2- ions, which play the role of phonon scattering centers, that is, mean free path of phonon scattering decreases with the point defects, thus increase the thermal resistance. Also, the mass difference between the host (U) and the substituted atom (Ce and/or Nd) can

  19. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.

    Science.gov (United States)

    Danilov, Nikolay; Lyagaeva, Julia; Vdovin, Gennady; Medvedev, Dmitry; Demin, Anatoly; Tsiakaras, Panagiotis

    2017-08-16

    The design and development of highly conductive materials with wide electrolytic domain boundaries are among the most promising means of enabling solid oxide fuel cells (SOFCs) to demonstrate outstanding performance across low- and intermediate-temperature ranges. While reducing the thickness of the electrolyte is an extensively studied means for diminishing the total resistance of SOFCs, approaches involving an improvement in the transport behavior of the electrolyte membranes have been less-investigated. In the present work, a strategy for analyzing the electrolyte properties and their effect on SOFC output characteristics is proposed. To this purpose, a SOFC based on a recently developed BaCe 0.5 Zr 0.3 Dy 0.2 O 3-δ proton-conducting ceramic material was fabricated and tested. The basis of the strategy consists of the use of traditional SOFC testing techniques combined with the current interruption method and electromotive force measurements with a modified polarization-correction assessment. This allows one to determine simultaneously such important parameters as maximal power density; ohmic and polarization resistances; average ion transport numbers; and total, ionic, and electronic film conductivities and their activation energies. The proposed experimental procedure is expected to expand both fundamental and applied basics that could be further adopted to improve the technology of electrochemical devices based on proton-conducting electrolytes.

  20. Generation of consistent nuclear properties of DUPIC fuel by DRAGON with ENDF/B-VI nuclear data library

    International Nuclear Information System (INIS)

    Shen, W.; Rozon, D.

    1998-01-01

    DRAGON code with 89-groups ENDF/B-VI cross section library was used in this paper to generate consistent nuclear properties of DUPIC fuel. The reference feed material used for the DUPIC fuel cycle is a 17x17 French standard 900 MWe PWR spent fuel assembly with 3.2 w/o initial enrichment and 32500 MWD/7 discharge burnup. The PWR fuel assembly was modeled by JPMT/SYBILT transport method in DRAGON to generate nuclide fields of spent PWR fuel. The resultant nuclide fields constitute the initial fuel composition files for reference DUPIC fuel which can be accessed by DRAGON for CANDU 2D cluster geometry depletion calculation and 3D supercell calculation. Because of uneven spatial power distribution in PWR assemblies and full core, unexpected transition cycle, and various fuel management strategy, the spent PWR fuel composition is expected to be different from one assembly to the next. This heterogeneity was characterized also by modeling various spent PWR fuel assembly types in the paper. (author)

  1. Methods of modification and investigations of properties of fuel UO2

    International Nuclear Information System (INIS)

    Kurina, I.; Popov, V.; Rogov, S.; Dvoryashin, A.; Serebrennikova, O.

    2009-01-01

    In the SSC RF-IPPE the researches are carried out directed towards the uranium dioxide fuel pellets modification with the purpose of improvement of their performance parameters (increase of thermal conductivity, growth of grain for decrease gas release, decrease of interaction with coolant). The following technological methods of manufacturing of modified pellets UO 2 were used: 1) The water method including precipitation of Ammonium Polyuranate (APU) with manufacturing of simultaneously coarse and super dispersed particles, and also coprecipitation APU with additives (Cr, Ti, etc.), with the after calcination of powders, reduction to UO 2 pressing and sintering of pellets; 2) A method including addition of chemical reagent containing ammonia to the powder UO 2 manufactured under the dry or water technology; mechanical mixture; pressing and sintering of pellets. Application of the specified up methods makes manufacturing the UO 2 fuel pellets having the properties differing from pellets manufactured by industrial technology. Conclusions: 1) Properties of powders and the pellets manufactured by different technologies considerably differ; 2) Precipitate manufactured by water industrial technology, consists of phase NH 3 ·3UO 3 ·5H 2 O whereas the precipitate manufactured by nanotechnology contains in addition phase NH 3 ·2UO 3 ·3H 2 O; 3) Powders of U 3 O 8 manufactured by water nanotechnology have particles size 300-500 nm and ultra dispersive particles size ∼70-75 nm; 4) Powder UO 2 obtained by water nanotechnology differs by greater activity because all phase changes under oxidation result at lower temperatures; 5) Basic differences of properties of modified UO 2 pellets was established: decreasing of defects inside and on grains boundaries, minor porosity (pore size 0,05-0,5 μm), presence of pore of spherical form, presence of additional chemical bond U-U (presence of metal clusters), polyvalence of U; 6) Methods including addition of Cr and Ti under

  2. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    Science.gov (United States)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  3. Fungal production of single cell oil using untreated copra cake and evaluation of its fuel properties for biodiesel.

    Science.gov (United States)

    Khot, Mahesh; Gupta, Rohini; Barve, Kadambari; Zinjarde, Smita; Govindwar, Sanjay; Kumar, Ameeta Ravi

    2015-04-01

    This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

  4. IMPROVING PHYSICAL PROPERTIES OF RAPE BIOFUELS

    Directory of Open Access Journals (Sweden)

    Zbigniew Kiernicki

    2012-12-01

    Full Text Available The researches on the use of biodiesel and fuel derived from waste plastics are presented in the paper. Biodiesel and fuel obtained from waste plastics were both used as fuel components. FAME is a bio-admixture in the fuel. The catalytic cracking of polyolefin was the source of second fuel admixture. The physical properties of the analyzed components of fuel have been presented. The operational parameters of direct injection in diesel engines fuelled by tested fuel blends was set out. The preparation of the fuel mixture was also described. The concept of the diesel fuel which is made from the components of opposite physical properties could have a positive practical effect and could improve the use of biofuels.

  5. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  6. Effects of fueling profiles on plasma transport

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.; Milora, S.L.

    1977-01-01

    The effects of cold particle fueling profiles on particle and energy transport in an ignition sized tokamak plasma are investigated in this study with a one-dimensional, multifluid transport model. A density gradient driven trapped particle microinstability model for plasma transport is used to demonstrate potential effects of fueling profiles on ignition requirements. Important criteria for the development of improved transport models under the conditions of shallow particle fueling profiles are outlined. A discrete pellet fueling model indicates that large fluctuations in density and temperature may occur in the outer regions of the plasma with large, shallowly penetrating pellets, but fluctuations in the pressure profile are small. The hot central core of the plasma remains unaffected by the large fluctuations near the plasma edge

  7. Fuels characterization studies. [jet fuels

    Science.gov (United States)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  8. Burning of MOX fuels in LWRs; fuel history effects on thermal properties of hull and end piece wastes and the repository performance

    International Nuclear Information System (INIS)

    Hirano, Fumio; Sato, Seichi; Kozaki, Tamotsu

    2012-01-01

    The thermal impacts of hull and end piece wastes from the reprocessing of MOX spent fuels burned in LWRs on repository performance were investigated. The heat generation rates in MOX spent fuels and the resulting heat generation rates in hull and end piece wastes change depending on the history of MOX fuels. This history includes the burn-up of UO 2 spent fuels from which the Pu is obtained, the cooling period before reprocessing, the storage period of fresh MOX fuels before being loaded into an LWR, as well as the burn-up of the MOX fuels. The heat generation rates in hull and end piece wastes from the reprocessing of MOX spent fuels with any of those histories are significantly larger than those from UO 2 spent fuels with burn-ups of 45 GWd/THM. If a temperature below 80degC is specified for cement-based materials used in waste packages after disposal, the allowable number of canisters containing compacted hull and end pieces in a package for 45 and 70 GWd-MOX needs to be limited to a value of 0.4-1.6, which is significantly lower than 4.0 for 45 GWd-UO 2 . (author)

  9. Basic properties of a zirconia based fuel material for LWRs

    International Nuclear Information System (INIS)

    Degueldre, C.; Paratte, J.M.

    1997-01-01

    The properties of zirconia cubic solid solutions doped with yttria, erbia and ceria or thoria are investigated with emphasis on the potential use of this material as inert matrix fuel for plutonium incineration in a light water reactor (LWR). The material is selected on the basis of its neutronic properties. Zr and Y are not neutron absorbers. Among the rare earth elements, Er was identified as a suitable burnable poison. The high density cubic solid solution is stable for a rather large range of compositions and from room temperature up to about 3000 K. Samples irradiated under low and high energy Xe ion irradiation up to a fluence of 1.8.10 16 Xe.cm -2 were investigated by transmission electron microscopy. Low energy (60 keV) Xe ions did not produce amorphization. From the observed bubble formation, swelling values during irradiation at room temperature or at high temperature (925 K) were estimated to be 0.1-0.72% by volume. Furthermore, no amorphization was obtained by Xe irradiation under extreme conditions such as high energy (1.5 MeV) Xe ion irradiation and low temperature (20 K). This confirms the robustness of this material and argues in favour of the selection of a zirconia based material as an advanced nuclear fuel for plutonium incineration. (author) 5 figs., 1 tab., 17 refs

  10. Fundamental aspects of nuclear reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1976-01-01

    The book presented is designed to function both as a text for first-year graduate courses in nuclear materials and as a reference for workers involved in the materials design and performance aspects of nuclear power plants. The contents are arranged under the following chapter headings: statistical thermodynamics, thermal properties of solids, crystal structures, cohesive energy of solids, chemical equilibrium, point defects in solids, diffusion in solids, dislocations and grain boundaries, equation of state of UO/sub 2/, fuel element thermal performance, fuel chemistry, behavior of solid fission products in oxide fuel elements, swelling due to fission gases, pore migration and fuel restructuring kinetics, fission gas release, mechanical properties of UO/sub 2/, radiation damage, radiation effects in metals, interaction of sodium and stainless steel, modeling of the structural behavior of fuel elements and assemblies. (DG)

  11. Characteristics and properties of cladding tubes for VVER-1000 higher Uranium content fuel rods

    International Nuclear Information System (INIS)

    Peregud, M.; Markelov, A.; Novikov, V.; Gusev, A.; Konkov, V.; Pimenov, Y.; Agapitov, V.; Shtutsa, M.

    2009-01-01

    To improve the fuel cycle economics and to further increase the VVER fuel usability the work programme is under way to design novel improved fuel, fuel rods and fuel assemblies. Longer FA operation time that is needed to increase the fuel burnup and the related design developments of novel fuel assemblies resulted not only in changing types and sizes of Zirconium items and fuel assembly components but also altered the requirements placed on their technical characteristics. To use fuel rods having a larger charge of fuel, to improve their behaviour in LOCA, to reduce fuel rod damage ability during assembling the work was carried out to perfect the characteristics of both the cladding (reduced wall thickness and more rigid tolerances for geometry) and its material. To meet the more rigid requirements for the geometry dimensions of cladding tubes an improved process flow sheet has been designed and employed for their fabrication and also the finishing treatment of tube surfaces has been improved. The higher and stable properties of the cladding materials were managed through using the special purity in terms of Hafnium Zirconium (not higher than 100 ppm Hf) as a base of the E110 alloy and maintaining within the valid specifications for the alloy the optimized contents of Oxygen and Iron at the levels of (600 - 990) ppm and (250 - 700) ppm, respectively. The work was under way in 2004 - 2008 years; during this period the technology and materials science solutions were mastered that were phased-in introduced into the production of the cladding tubes for the fuels loaded into the of the Kalinin NPP Unit 1

  12. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  13. Fuel Class Higher Alcohols

    KAUST Repository

    Sarathy, Mani

    2016-08-17

    This chapter focuses on the production and combustion of alcohol fuels with four or more carbon atoms, which we classify as higher alcohols. It assesses the feasibility of utilizing various C4-C8 alcohols as fuels for internal combustion engines. Utilizing higher-molecular-weight alcohols as fuels requires careful analysis of their fuel properties. ASTM standards provide fuel property requirements for spark-ignition (SI) and compression-ignition (CI) engines such as the stability, lubricity, viscosity, and cold filter plugging point (CFPP) properties of blends of higher alcohols. Important combustion properties that are studied include laminar and turbulent flame speeds, flame blowout/extinction limits, ignition delay under various mixing conditions, and gas-phase and particulate emissions. The chapter focuses on the combustion of higher alcohols in reciprocating SI and CI engines and discusses higher alcohol performance in SI and CI engines. Finally, the chapter identifies the sources, production pathways, and technologies currently being pursued for production of some fuels, including n-butanol, iso-butanol, and n-octanol.

  14. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  15. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  16. Measurement of reactivity effect caused by nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Nishina, Kojiro; Shiroya, Seiji

    1991-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem in a reprocessing plant. To estimate this reactivity effect theoretically, the ''Goertzel's necessary condition, and th Fuel Importance'' theory have been proposed. In order to verify these theories, we have performed systematic measurements of reactivity effect due to the nonuniformity in the fuel distribution within the Kyoto University Critical Assembly. Neutron flux distribution and Fuel Importance distribution were also determined. A nonuniform assembly whose fuel concentration in the center region was 40% higher than the uniform one was found to have an excess reactivity of 0.3%Δk/k, with the same total uranium mass for which the uniform assembly was just critical. Moreover, its spatial distribution of thermal neutron flux and of Fuel Importance were more flat than those of the uniform assembly, as expected by the Goertzel's condition and the Fuel Importance theory. (Author)

  17. Direct Simulation of Transport Properties from Three-Dimensional (3D) Reconstructed Solid-Oxide Fuel-Cell (SOFC) Electrode Microstructures

    International Nuclear Information System (INIS)

    Gunda, Naga Siva Kumar; Mitra, Sushanta K

    2012-01-01

    A well-known approach to develop a high efficiency solid-oxide fuel-cell (SOFC) consists of extracting the microstructure and transport properties such as volume fractions, internal surface area, geometric connectivity, effective gas diffusivity, effective electronic conductivity and geometric tortuosities from three-dimensional (3D) microstructure of the SOFC electrodes; thereafter, performing the SOFC efficiency calculations using previously mentioned quantities. In the present work, dual-beam focused ion beam - scanning electron microscopy (FIB-SEM) is applied on one of the SOFC cathodes, a lanthanum strontium manganite (LSM) electrode, to estimate the aforementioned properties. A framework for calculating transport properties is presented in this work. 3D microstructures of LSM electrode are reconstructed from a series of two-dimensional (2D) cross-sectional FIB-SEM images. Volume percentages of connected, isolated and dead-ends networks of pore and LSM phases are estimated. Different networks of pore and LSM phases are discretized with tetrahedral elements. Finally, the finite element method (FEM) is applied to calculate effective gas diffusivity and electronic conductivity of pore and LSM phases, respectively. Geometric tortuosities are estimated from the porosity and effective transport properties. The results obtained using FEM are compared with the finite volume method (FVM) results obtained by Gunda et al. [J. Power Sources, 196(7), 35929(2011)] and other numerical results obtained on randomly generated porous medium. Effect of consideration of dead-ends and isolated-ends networks on calculation of effective transport properties is studied.

  18. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  19. Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; Itahara, Kuniyuki; Suzuki, Katsuo; Hamada, Koji

    1998-01-01

    According to the Long-term Program for Research, Development and Utilization of Nuclear Energy (June, 1994) in Japan, the Rokkasho Reprocessing Plant will be operated shortly after the year 2000, and the planning of the construction of the second commercial plant will be decided around 2010. Also, it is described that spent fuel storage has a positive meaning as an energy resource for the future utilization of Pu. Considering the balance between the increase of spent fuels and the domestic reprocessing capacity in Japan, it can be expected that the long-term storage of UO 2 spent fuels will be required. Then, we studied the effect of long-term storage of spent fuels on Pu-thermal fuel cycle. The burnup calculation were performed on the typical Japanese PWR fuel, and the burnup and criticality calculations were carried out on the Pu-thermal cores with MOX fuel. Based on the results, we evaluate the influence of extending the spent fuel storage term on the criticality safety, shielding design of the reprocessing plant and the core life time of the MOX core, etc. As the result of this work on long-term storage of LWR spent fuels, it becomes clear that there are few demerits regarding the lifetime of a MOX reactor core, and that there are many merits regarding the safety aspects of the fuel cycle facilities. Furthermore, long-term storage is meaningful as energy storage for effective utilization of Pu to be improved by technological innovation in future, and it will allow for sufficient time for the important policymaking of nuclear fuel cycle establishment in Japan. (author)

  20. Update on Fresh Fuel Characterization of U-Mo Alloys

    International Nuclear Information System (INIS)

    Burkes, D.E.; Wachs, D.M.; Keiser, D.D.; Okuniewski, M.A.; Jue, J.F.; Rice, F.J.; Prabhakaran, R.

    2009-01-01

    The need to provide more accurate property information on U-Mo fuel alloys to operators, modellers, researchers, fabricators, and government increases as success of the GTRI Reactor Convert program continues. This presentation provides an update on fresh fuel characterization activities that have occurred at the INL since the RERTR 2008 conference in Washington, D.C. The update is particularly focused on properties recently obtained and on the development progress of new measurement techniques. Furthermore, areas where useful and necessary information is still lacking is discussed. The update deals with mechanical, physical, and microstructural properties for both integrated and separate effects. Appropriate discussion of fabrication characteristics, impurities, thermodynamic response, and effects on the topic areas are provided, along with a background on the characterization techniques used and developed to obtain the information. Efforts to measure similar characteristics on irradiated fuel plates are discussed.

  1. Fuel modelling and its economical competitiveness

    International Nuclear Information System (INIS)

    Marino, A.C.; Savino, E.J.

    1996-01-01

    Due to reasons of economical competitiveness, there is at present a strong need in the nuclear industry to improve fuel performance under more demanding operating conditions, such as those resulting from an extended burnup. This requires a good understanding of the properties of fuel rod materials and their in-service performance. As it can be easily foreseen, thermal, mechanical and microstructural irradiation effects are strongly interrelated while the fuel is at reactor operating conditions. (author). 7 refs., 16 figs

  2. Properties of unirradiated fuel element graphites H-451 and SO818. [Bulk density, tensile properties, thermal expansion, thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B.; Johnson, W.R.

    1976-10-08

    Nuclear graphites H-451, lot 440 (Great Lakes Carbon Corporation (GLCC)), and SO818 (Airco Speer Division, Air Reduction Corporation (AS)) are described, and physical, mechanical, and chemical property data are presented for the graphites in the unirradiated state. A summary of the mean values of the property data and of data on TS-1240 and H-451, lot 426, is tabulated. A direct comparison of H-451, lot 426, chosen for Fort St. Vrain (FSV) fuel reload production, TS-1240, and SO818 may be made from the table. (auth)

  3. Improvement of interface property for membrane electrode assembly in fuel cell

    International Nuclear Information System (INIS)

    Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Mitani, N.; Muto, F.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    Membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFC) is consisted of proton exchange membrane (PEM), binder and Pt/C electrodes. In our previous work, partial-fluorinated sulfonic acid membranes were synthesized for PEMs using pre-EB grafting method. In the fuel cell (FC) operation, the dispersion of per-fluorinated sulfonic acid such as Nafion (DuPont de Nemours LTD.) was used for binder material. So, it is found that the trouble on conditions at three phase interface would occur at high temperature FC operation due to the differences of thermal properties. Thus, the control of interface property is important. In this study, in order to improve the interface properties, proton exchange membrane was synthesized from poly (tetrafluoroethylene-co-perfluoroalkylvinylether) (PFA), and then the obtained sulfonated PFA (s-PFA) was applied for binder material. PFA membranes were grafted in liquid styrene after EB irradiation under nitrogen atmosphere, and then sulfonated by chlorosulfonic acid solutions. The s-PFA membranes were milled to the powder in the mortar, and the average diameter was about 13 μm. S-PFA / Nafion blend dispersion was prepared by s-PFA mixed with Nafion dispersion with various ratios. MEAs were fabricated by using obtained binders, s-PFA membranes and Pt / C electrodes, followed by hot pressing at 110 degree C and at 8 MPa during 3 min. The properties of MEAs were measured by electrochemical analyses. In consequence, ion conductivities in MEA using obtained binders were about 1.3 times higher than those using Nafion dispersion. And, both power densities at 500 mA/cm 2 and maximum power densities were 1.1 times higher than those of Nafion dispersion. These are due to the improvement of the proton transfer at interface. (authors)

  4. Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program

    Energy Technology Data Exchange (ETDEWEB)

    Wasywich, K M

    1993-05-01

    Literature data on the characteristics of used CANDU power reactor fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook. Information about the quantities of used fuel generated, burnup, radionuclide inventories, fission gas release, void volume and surface area, fuel microstructure, fuel cladding properties, changes in fuel bundle properties due to immobilization processes, radiation fields, decay heat and future trends is presented for various CANDU fuel designs. (author). 199 refs., 39 tabs., 100 figs.

  5. Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Wasywich, K.M.

    1993-05-01

    Literature data on the characteristics of used CANDU power reactor fuel that are relevant to its performance as a waste form have been compiled in a convenient handbook. Information about the quantities of used fuel generated, burnup, radionuclide inventories, fission gas release, void volume and surface area, fuel microstructure, fuel cladding properties, changes in fuel bundle properties due to immobilization processes, radiation fields, decay heat and future trends is presented for various CANDU fuel designs. (author). 199 refs., 39 tabs., 100 figs

  6. Fuel composition effects on HYPER core characteristics

    International Nuclear Information System (INIS)

    Han, Chi Young; Kim, Yong Nam; Kim, Jong Kyung

    2001-01-01

    At KAERI(Korea Atomic Energy Research Institute), a subcritical transmutation reactor is under development, named HYPER(Hybrid Power Extraction Reactor). For the HYPER system, a pyrochemical process is being considered for fuel reprocessing. Separated from the separation process, the fuel contains not only TRU but also the considerable percentages of impurity such as uranium nuclides and lanthanides. The amount of these impurities depends on strongly the refining efficiency of the reprocessing and may change the core characteristics. This paper has analyzed fuel composition effects on th HYPER core characteristics. Assuming various recovery factors of uranium and lanthanides, some dynamic parameters have been evaluated which are the neutron spectrum, the neutron reaction balance, the reactivity coefficients, the effective delayed neutron fraction, and the effective neutron lifetime

  7. Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel

    International Nuclear Information System (INIS)

    Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.

    2004-01-01

    A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor

  8. Designing the microturbine engine for waste-derived fuels.

    Science.gov (United States)

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production. Copyright © 2015. Published by Elsevier Ltd.

  9. Development of a device to valuate the effect of ethanol on the vapor pressure and vaporization enthalpy of fuel gasolines

    OpenAIRE

    Cataluña, Renato; Silva, Rosângela

    2006-01-01

    The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating con...

  10. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ersoz, Atilla; Olgun, Hayati [TUBITAK Marmara Research Center, Institute of Energy, Gebze, 41470 Kocaeli (Turkey); Ozdogan, Sibel [Marmara University Faculty of Engineering, Goztepe, 81040 Istanbul (Turkey)

    2006-03-09

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies. (author)

  11. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Science.gov (United States)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  12. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  13. Particle and NO{sub x} Emissions from a HVO-Fueled Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Happonen, M.

    2012-10-15

    Concerns about oil price, the strengthening climate change and traffic related health effects are all reasons which have promoted the research of renewable fuels. One renewable fuel candidate is diesel consisting of hydrotreated vegetable oils (HVO). The fuel is essentially paraffinic, has high cetane number (>80) and contains practically no oxygen, aromatics or sulphur. Furthermore, HVO fuel can be produced from various feedstocks including palm, soybean and rapeseed oils as well as animal fats. HVO has also been observed to reduce all regulated engine exhaust emissions compared to conventional diesel fuel. In this thesis, the effect of HVO fuel on engine exhaust emissions has been studied further. The thesis is roughly divided into two parts. The first part explores the emission reductions associated with the fuel and studies techniques which could be applied to achieve further emission reductions. One of the studied techniques was adjusting engine settings to better suit HVO fuel. The settings chosen for adjustments were injection pressure, injection timing, the amount of EGR and the timing of inlet valve closing (with constant inlet air mass flow, i.e. Miller timing). The engine adjustments were also successfully targeted to reduce either NO{sub x} or particulate emissions or both. The other applied emission reduction technique was the addition of oxygenate to HVO fuel. The chosen oxygenate was di-n-pentyl ether (DNPE), and tested fuel blend included 20 wt-% DNPE and 80 wt-% HVO. Thus, the oxygen content of the resulting blend was 2 wt-%. Reductions of over 25 % were observed in particulate emissions with the blend compared to pure HVO while NOx emissions altered under 5 %. On the second part of this thesis, the effect of the studied fuels on chosen surface properties of exhaust particles were studied using tandem differential mobility analyzer (TDMA) techniques and transmission electron microscopy (TEM). The studied surface properties were oxidizability and

  14. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    Science.gov (United States)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  15. Performance and properties of anodes reinforced with metal oxide nanoparticles for molten carbonate fuel cells

    Science.gov (United States)

    Accardo, Grazia; Frattini, Domenico; Yoon, Sung Pil; Ham, Hyung Chul; Nam, Suk Woo

    2017-12-01

    Development of electrode materials for molten carbonate fuel cells is a fundamental issue as a balance between mechanical and electrochemical properties is required due to the particular operating environments of these cells. As concern the anode, a viable strategy is to use nano-reinforced particles during electrodes' fabrication. Candidate nanomaterials comprise, but are not limited to, ZrO2, CeO2, TiO2, Ti, Mg, Al, etc. This work deals with the characterization and test of two different types of hard oxide nanoparticles as reinforce for NiAl-based anodes in molten carbonate fuel cells. Nano ceria and nano zirconia are compared each other and single cell test performances are presented. Compared to literature, the use of hard metal oxide nanoparticles allows good performance and promising perspectives with respect to the use a third alloying metal. However, nano zirconia performed slightly better than nano ceria as polarization and power curves are higher even if nano ceria has the highest mechanical properties. This means that the choice of nanoparticles to obtain improved anodes performance and properties is not trivial and a trade-off between relevant properties plays a key role.

  16. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... to describe the high temperature inelastic deformational behaviors of Crofer 22 APU used for metallic interconnects in SOFC stacks.......Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... transients in operation including temporary shut downs. These stresses are highly affected by the transient creep behavior of metallic components in the SOFC stack. This study investigates whether a variation of the so-called Chaboche's unified power law together with isotropic hardening can represent...

  17. Reference Material Properties and Standard Problems to Verify the Fuel Performance Models Ver 1.0

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Jae Yong; Koo, Yang Hyun

    2010-12-01

    All fuel performance models must be validated by in-pile and out-pile tests. However, the model validation requires much efforts and times to confirm its exactness. In many fields, new performance models and codes are confirmed by code-to-code benchmarking process under simplified standard problem analysis. At present, the DUOS, which is the steady state fuel performance analysis code for dual cooled annular fuel, development project is progressing and new FEM module is developed to analyze the fuel performance during transient period. In addition, the verification process is planning to examine the new models and module's rightness by comparing with commercial finite element analysis such as a ADINA, ABAQUS and ANSYS. This reports contains the result of unification of material properties and establishment of standard problem to verify the newly developed models with commercial FEM code

  18. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  19. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    International Nuclear Information System (INIS)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J.

    2015-01-01

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  20. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Gug, JeongIn, E-mail: Jeongin_gug@student.uml.edu; Cacciola, David, E-mail: david_cacciola@student.uml.edu; Sobkowicz, Margaret J., E-mail: Margaret_sobkowiczkline@uml.edu

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in

  1. Effect of substrate and cathode parameters on the properties of suspension plasma sprayed solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D.; Tang, Z.; Burgess, A. [British Columbia Univ., Vancouver, BC (Canada); Kesler, O. [Toronto Univ., ON (Canada)

    2008-07-01

    An axial injection suspension plasma spray system has been used to produce layers of fully stabilized yttriastabilized zirconia (YSZ) that could be used as solid oxide fuel cell (SOFC) electrolytes. Suspension plasma spraying is a promising technique for the rapid production of coatings with fine microstructures and controlled porosity without requiring a post-deposition heat treatment. This new manufacturing technique to produce SOFC active layers requires the build up of a number of different plasma sprayed SOFC functional layers (cathode, electrolyte and anode) sequentially on top of each other. To understand the influence of the substrate and previouslydeposited coating layers on subsequent coating layer properties, YSZ layers were deposited on top of plasma sprayed composite lanthanum strontium manganite (LSM)/YSZ cathode layers that were first deposited on porous ferritic stainless steel substrates. Three layer half cells consisting of the porous steel substrate, composite cathode, and suspension plasma sprayed electrolyte layer were then characterized. A systematic study was performed in order to investigate the effect of parameters such as substrate and cathode layer roughness, substrate surface pore size, and cathode microstructure and thickness on electrolyte deposition efficiency, cathode and electrolyte permeability, and layer microstructure. (orig.)

  2. Thermophysical properties of the irradiated uranium-zirconium fuel

    International Nuclear Information System (INIS)

    Gajduchenko, A.B.

    2008-01-01

    The dependence of the thermophysical properties of metallic nuclear fuel, i.e. Zr alloy 40U, in a wide temperature range as a function of accumulated fission products amount is presented. Both non-irradiated and irradiated test pieces with different degrees of accumulation of fission products, i.e. 0.4, 0.6, and 0.9 g/cm 3 , are investigated. The specific heat is measured in the range of 50-1000 deg C, the thermal diffusivity is measured in the range 300-1000 deg C, and the variation of the dimensions and density of the samples on heating is also investigated. The thermal conductivity in the range of 50-1000 deg C is calculated on the basis of the experimental data [ru

  3. Development of Artificial Neural Network Model for Diesel Fuel Properties Prediction using Vibrational Spectroscopy.

    Science.gov (United States)

    Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko

    2012-06-01

    This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.

  4. A Raman-Based Portable Fuel Analyzer

    Science.gov (United States)

    Farquharson, Stuart

    2010-08-01

    Fuel is the single most import supply during war. Consider that the US Military is employing over 25,000 vehicles in Iraq and Afghanistan. Most fuel is obtained locally, and must be characterized to ensure proper operation of these vehicles. Fuel properties are currently determined using a deployed chemical laboratory. Unfortunately, each sample requires in excess of 6 hours to characterize. To overcome this limitation, we have developed a portable fuel analyzer capable of determine 7 fuel properties that allow determining fuel usage. The analyzer uses Raman spectroscopy to measure the fuel samples without preparation in 2 minutes. The challenge, however, is that as distilled fractions of crude oil, all fuels are composed of hundreds of hydrocarbon components that boil at similar temperatures, and performance properties can not be simply correlated to a single component, and certainly not to specific Raman peaks. To meet this challenge, we measured over 800 diesel and jet fuels from around the world and used chemometrics to correlate the Raman spectra to fuel properties. Critical to the success of this approach is laser excitation at 1064 nm to avoid fluorescence interference (many fuels fluoresce) and a rugged interferometer that provides 0.1 cm-1 wavenumber (x-axis) accuracy to guarantee accurate correlations. Here we describe the portable fuel analyzer, the chemometric models, and the successful determination of these 7 fuel properties for over 100 unknown samples provided by the US Marine Corps, US Navy, and US Army.

  5. Effects of sulfur and phosphorus application on the growth, biomass yield and fuel properties of leucaena (Leucaena leucocephala (Lam. de Wit. as bioenergy crop on sandy infertile soil

    Directory of Open Access Journals (Sweden)

    Songyos Chotchutima

    2016-01-01

    Full Text Available A field experiment was conducted to determine the effect of Sulfur (S and Phosphorus (P fertilizer on the growth, biomass production and wood quality of leucaena for use as a bioenergy crop at the Buriram Livestock Research and Testing Station, Pakham, Buriram province, Thailand during 2011–2013. The experiment was arranged in a split plot design with two rates of S fertilizer (0 and 187.5 kg/ha as a main plot and five rates of P (0, 93.75, 187.5, 375 and 750 kg/ha as a sub-plot, with four replications. The results showed that the plant height, stem diameter, total woody stem and biomass yield of leucaena were significantly increased by the application of S, while the leaf yield was not influenced by S addition. The total woody stem and biomass yield were also proportionately greatest with the maximum rate of P (750 kg/ha application. The addition of S did not result in any significant differences in fuel properties, while the maximum rate of P application also showed the best fuel properties among the several rates of P, especially with low Mg and ash contents compared with the control (0 kg/ha.

  6. Effects of cooling time on a closed LWR fuel cycle

    International Nuclear Information System (INIS)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-01-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  7. Effect of fuel burnup on the mechanical safety coefficients

    International Nuclear Information System (INIS)

    Plyashkevich, V.Ju.; Sidorenko, V.D.; Shishkov, L.K.

    2001-01-01

    )In the paper the results of studies of changes in the process of campaign 'disturbances' of local heat flux and local fuel burnup, resulting from the 'mechanical' deviations in the composition and geometrical characteristics of fuel rods from the nominal are given. As example, the WWER-440 fuel assembly with burnable poisons used in the five-year fuel cycle is considered. The effect of deviations in fuel enrichment, fuel content, gadolinium content and geometrical size was studied (Authors)

  8. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    Science.gov (United States)

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  9. Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2017-08-01

    Full Text Available On account of their high power, thermal efficiency, good reliability, safety, and durability, low-speed two-stroke marine diesel engines are used as the main drive devices for large fuel and cargo ships. Most marine engines use heavy fuel oil (HFO as the primary fuel, however, the physical and chemical characteristics of HFO are not clear because of its complex thermophysical properties. The present study was conducted to investigate the effects of fuel properties on the spray and combustion characteristics under two-stroke marine engine-like conditions via a sensitivity analysis. The sensitivity analysis of fuel properties for non-reacting and reacting simulations are conducted by comparing two fuels having different physical properties, such as fuel density, dynamic viscosity, critical temperature, and surface tension. The performances of the fuels are comprehensively studied under different ambient pressures, ambient temperatures, fuel temperatures, and swirl flow conditions. From the results of non-reacting simulations of HFO and diesel fuel properties in a constant volume combustion chamber, it can be found that the increase of the ambient pressure promotes fuel evaporation, resulting in a reduction in the steady liquid penetration of both diesel and HFO; however, the difference in the vapor penetrations of HFO and diesel reduces. Increasing the swirl flow significantly influences the atomization of both HFO and diesel, especially the liquid distribution of diesel. It is also found that the ambient temperature and fuel temperature have the negative effects on Sauter mean diameter (SMD distribution. For low-speed marine engines, the combustion performance of HFO is not sensitive to activation energy in a certain range of activation energy. At higher engine speed, the difference in the effects of different activation energies on the in-cylinder pressure increases. The swirl flow in the cylinder can significantly promote fuel evaporation and

  10. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion

    KAUST Repository

    Badra, Jihad

    2016-09-30

    Gasoline compression ignition (GCI) engines running on low octane gasoline fuels are considered an attractive alternative to traditional spark ignition engines. In this study, three fuels with different chemical and physical characteristics have been investigated in single cylinder engine running in GCI combustion mode at part-load conditions both experimentally and numerically. The studied fuels are: Saudi Aramco light naphtha (SALN) (Research octane number (RON) = 62 and final boiling point (FBP) = 91 °C), Haltermann straight run naphtha (HSRN) (RON = 60 and FBP = 140 °C) and a primary reference fuel (PRF65) (RON = 65 and FBP = 99 °C). Injection sweeps, where the start of injection (SOI) is changed between −60 and −11 CAD aTDC, have been performed for the three fuels. Full cycle computational fluid dynamics (CFD) simulations were executed using PRFs as chemical surrogates for the naphtha fuels. Physical surrogates based on the evaporation characteristics of the naphtha streams have been developed and their properties have been implemented in the engine simulations. It was found that the three fuels have similar combustion phasings and emissions at the conditions tested in this work with minor differences at SOI earlier than −30 CAD aTDC. These trends were successfully reproduced by the CFD calculations. The chemical and physical effects were further investigated numerically. It was found that the physical characteristics of the fuel significantly affect the combustion for injections earlier than −30 CAD aTDC because of the low evaporation rates of the fuel because of the higher boiling temperature of the fuel and the colder in-cylinder air during injection. © 2016 Elsevier Ltd

  11. On the correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1983-01-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and compressive deformation at 1870 and 1970 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history. However, for a meaningful interpretation of the data the presently available 'classical' methods of fracture mechanics are inadequate and, furthermore, sufficient additional (not yet available) information on the relations between mechanical properties and structural details are required. (author)

  12. Health effects attributable to coal and nuclear fuel cycle alternatives

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1977-09-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation in approximately the 1975-1985 period. It was concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel cycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public

  13. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  14. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  15. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  16. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  17. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  18. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  19. Physicochemical and FTIR Study of Diesel-Hydrogen Peroxide Fuel Blend

    Science.gov (United States)

    Saad Khan, Muhammad; Ahmed, Iqbal; Lal, Bhajan; Idris, Al-Amin; Albeirutty, Muhammad H.; Ayoub, Muhammad; Sufian, Suriati binti

    2018-04-01

    Physicochemical properties of combustion fuels play a key role in determining the qualitative and quantitative characteristics, reliability and health effects associated with emissions. This paper reports the preparation of polysaccharide (PS) based emulsifier for stable blending of petroleum diesel-hydrogen peroxide (H2O2) and investigated the influence of H2O2 as diesel fuel blends on the physicochemical properties and characteristics. The quantity of PS-emulsifier was kept at 5 volume % (vol. %) and the volume ratio of H2O2 were varied 5-15 vol. % to reference diesel (RD), respectively. The blended diesel/H2O2 fuel were prepared under inert oxygen (O2) gas closed heating system; afterthought, physiochemical properties of diesel/H2O2 blend were evaluated at standard ASTM D-975 testing method. The kinetic properties show the interaction of RD and H2O2 blend at presence of PS emulsifier which exhibit the phenomenon to diminish the interfacial tension among the two different phases to form a homogenized stable solution. Results revealed that H2O2 is capable of enhancing the diesel fuel properties and showed that the addition of H2O2 in a diesel fuel blend are lied within the ranges of standard ASTM D-975. Due to further oxygen atom present in H2O2, it can facilitate the combustion process which ultimately effect on exhaust emission.

  20. Effect of different fuel options on performance of high-temperature PEMFC (proton exchange membrane fuel cell) systems

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai

    2014-01-01

    High-temperature proton exchange membrane fuel cells (HT-PEMFCs) have received substantial attention due to their high CO (carbon monoxide) tolerance and simplified water management. The hydrogen and CO fractions affect the HT-PEMFC performance and different fuel sources for hydrogen production result in different product gas compositions. Therefore, the aim of this study is to investigate the theoretical performance of HT-PEMFCs fueled by the reformate gas derived from various fuel options (i.e., methane, methanol, ethanol, and glycerol). Effects of fuel types and CO poisoning on the HT-PEMFC performance are analyzed. Furthermore, the necessity of a water-gas shift (WGS) reactor as a CO removal unit for pretreating the reformate gas is investigated for each fuel type. The methane steam reforming shows the highest possibility of CO formation, whereas the methanol steam reforming produces the lowest quantity of CO in the reformate gas. The methane fuel processing gives the maximum fraction of hydrogen (≈0.79) when the WGS reactor is included. The most suitable fuel is the one with the lowest CO poisoning effect and the maximum fuel cell performance. It is found that the HT-PEMFC system fueled by methanol without the WGS reactor and methane with WGS reactor shows the highest system efficiency (≈50%). - Highlights: • Performance of HT-PEMFC run on different fuel options is theoretically investigated. • Glycerol, methanol, ethanol and methane are hydrogen sources for the HT-PEMFC system. • Effect of CO poisoning on the HT-PEMFC performance is taken into account. • The suitable fuel for HT-PEMFC system is identified regarding the system efficiency

  1. Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, Miriam; Zhao, Feng; Quaas, Marion; Wulff, Harm; Schroeder, Uwe; Scholz, Fritz [Universitaet Greifswald, Institut fuer Biochemie, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)

    2007-07-31

    In this communication we discuss the properties of tungsten carbide, WC, as anodic electrocatalyst for microbial fuel cell application. The electrocatalytic activity of tungsten carbide is evaluated in the light of its preparation procedure, its structural properties as well as the pH and the composition of the anolyte solution and the catalyst load. The activity of the noble-metal-free electrocatalyst towards the oxidation of several common microbial fermentation products (hydrogen, formate, lactate, ethanol) is studied for microbial fuel cell conditions (e.g., pH 5, room temperature and ambient pressure). Current densities of up to 8.8 mA cm{sup -2} are achieved for hydrogen (hydrogen saturated electrolyte solution), and up to 2 mA cm{sup -2} for formate and lactate, respectively. No activity was observed for ethanol electrooxidation. The electrocatalytic activity and chemical stability of tungsten carbide is excellent in acidic to pH neutral potassium chloride electrolyte solutions, whereas higher phosphate concentrations at neutral pH support an oxidative degradation. (author)

  2. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  3. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  4. Dry process fuel performance technology development

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K.

    2006-06-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  5. Dry process fuel performance technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K. (and others)

    2006-06-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  6. Mechanical properties of zircaloy-4 tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    The aim of the present work was giving support to the development of Zircaloy-4 fuel claddings for the CAREM 25 reactor through microstructural and mechanical properties studies along the manufacturing process. The manufacturing route was defined in 4 cold rolling stages and two thermal treatments, one at the middle and one after the last rolling stage. The first two rolling stages were performed in FAESA and the last two in PPFAE-CNEA using the rolling machine HPTR 8-15. The reference values for the evaluation were those indicated in the technical specification CAREM25 F ET-3-B0610. In this context, four tubes were received from FAESA. To these tubes mechanical properties determinations were performed to characterize the material in each step performed in PPFAE. The mechanical properties of the cladding tubes also achieve the standard values (σ 0.2 = 450 MPa, e = 15%), being σ 0.2 = 530 MPa and 18% the elongation (author)

  7. In-cylinder visualization and engine out emissions from CI to PPC for fuels with different properties

    KAUST Repository

    An, Yanzhao; Vallinayagam, R.; Vedharaj, S.; Masurier, Jean-Baptiste; Najafabadi, Mohammad Izadi; Somers, Bart; Johansson, Bengt

    2018-01-01

    This study investigated the transition from conventional Compression Ignition (CI) to Partially Premixed Combustion (PPC) in an optical engine for fuels with differing properties. Combustion stratification and emissions were measured with diesel

  8. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  10. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    Science.gov (United States)

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  11. Fuel behavior in advanced water reactors

    International Nuclear Information System (INIS)

    Bolme, A.B.

    1996-01-01

    Fuel rod behavior of advanced pressurized water reactors under steady state conditions has been investigated in this study. System-80+ and Westinghouse Vantage-5 fuels have been considered as advanced pressurized water reactor fuels to be analyzed. The purpose of this study is to analyze the sensitivity of ditferent models and the effect of selected design parameters on the overall fuel behavior. FRAPCON-II computer code has been used for the analyses. Different modelling options of FRAPCON-II have also been considered in these analyses. Analyses have been performed in two main parts. In the first part, effects of operating conditions on fuel behavior have been investigated. First, fuel rod response under normal operating conditions has been analyzed. Then, fuel rod response to different fuel ratings has been calculated. In the second part, in order to estimate the effect of design parameters on fuel behavior, parametric analyses have been performed. In this part, the effects of initial gap thickness, as fabricated fuel density, and initial fill gas pressure on fuel behavior have been analyzed. The computations showed that both of the fuel rods used in this study operate within the safety limits. However, FRAPCON-II modelling options have been resulted in different behavior due to their modelling characteristics. Hence, with the absence of experimental data, it is difficult to make assesment for the best fuel parameters. It is also difficult to estimate error associated with the results. To improve the performance of the code, it is necessary to develop better experimental correlations for material properties in order to analyze the eftect ot considerably different design parameters rather than nominal rod parameters

  12. Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Ryan; Park, Youngjoo; Mehta, Abhishek [Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826 (United States); Keiser, Dennis [Nuclear Fuels and Materials Division, Idaho National Laboratory, Idaho Falls, ID, 83402 (United States); Sohn, Yongho, E-mail: Yongho.Sohn@ucf.edu [Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32826 (United States)

    2017-04-15

    Nanomechanical properties, specifically the reduced modulus and hardness of several intermetallic and solid solution phases are reported to assist the development of the U-10 wt% Mo (U-10Mo) monolithic fuel system for research and test reactors. Findings from this study and reported values of mechanical properties provide data critical for understanding and predicting the structural behavior of the fuel system during fabrication and irradiation. The phases examined are products of interdiffusion and reaction between (1) the AA6061 cladding and the Zr diffusion barrier, namely (Al,Si){sub 3}Zr and Al{sub 3}Zr, (2) the U-10Mo fuel and the Zr diffusion barrier, namely UZr{sub 2}, Mo{sub 2}Zr, and α-U, and (3) the U (or U-10Mo) and Mo, namely a mixture gradient of α- and γ-phases. The UC inclusions observed within the fuel alloy were also examined. Only phases present in thick or continuous microstructure on cross-sectioned fuel plates and diffusion couples were investigated for reduced modulus and hardness. Concentration-dependence of room-temperature reduced modulus in U solid solution with 0–10 wt% Mo was semi-quantitatively modeled based on mixture of α- and γ-phases and solid solutioning within the γ-phase.

  13. Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels

    Science.gov (United States)

    Newell, Ryan; Park, Youngjoo; Mehta, Abhishek; Keiser, Dennis; Sohn, Yongho

    2017-04-01

    Nanomechanical properties, specifically the reduced modulus and hardness of several intermetallic and solid solution phases are reported to assist the development of the U-10 wt% Mo (U-10Mo) monolithic fuel system for research and test reactors. Findings from this study and reported values of mechanical properties provide data critical for understanding and predicting the structural behavior of the fuel system during fabrication and irradiation. The phases examined are products of interdiffusion and reaction between (1) the AA6061 cladding and the Zr diffusion barrier, namely (Al,Si)3Zr and Al3Zr, (2) the U-10Mo fuel and the Zr diffusion barrier, namely UZr2, Mo2Zr, and α-U, and (3) the U (or U-10Mo) and Mo, namely a mixture gradient of α- and γ-phases. The UC inclusions observed within the fuel alloy were also examined. Only phases present in thick or continuous microstructure on cross-sectioned fuel plates and diffusion couples were investigated for reduced modulus and hardness. Concentration-dependence of room-temperature reduced modulus in U solid solution with 0-10 wt% Mo was semi-quantitatively modeled based on mixture of α- and γ-phases and solid solutioning within the γ-phase.

  14. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  15. The effect of the composition of hydrocarbon streams on physical properties and HCCI combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Gieleciak, R. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    Advanced combustion engines have been developed in tandem with evolving fuels and combustion strategies. Advanced analytical methods such as NMR and two dimensional gas chromatography (2D-GC) are also becoming both more powerful and easier to use. Statistical analysis can be used to link the very complex fuel analysis data sets from these methods to fuel chemistry, fuel properties and engine performance. This poster highlighted a study that applied an advanced statistical analysis technique to 2D-GC data for 17 oil sands derived fuels and correlated results to measured fuel chemical/physical properties, and then to HCCI engine performance. In the HCCI mode, ignition occurs by compression of the homogeneous fuel/air mixture. Advanced combustion strategies must satisfy the need for high efficiency, low emissions, and drivability. The 2D-GC was shown to be an emerging analytical technique which separates compounds in fuels to enable the identification of individual compounds and group compounds by chemistry and boiling points. The Q(2d)RPR technique allows correlations to be developed between the 2D-GC data and fuel chemical / physical properties and engine performance data. tabs., figs.

  16. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R; Usui, K; Moriya, A; Sato, M; Nomura, T; Sue, H [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  17. Molten salt actinide recycler and transforming system without and with Th–U support: Fuel cycle flexibility and key material properties

    International Nuclear Information System (INIS)

    Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.; Subbotin, V.; Sannikov, I.; Toropov, A.; Afonichkin, V.; Bovet, A.; Khokhlov, V.; Shishkin, V.; Kormilitsyn, M.; Lizin, A.; Osipenko, A.

    2014-01-01

    Highlights: • We examine feasibility of MOSART system without and with U–Th support. • We experimentally studied key material properties to prove MOSART flowsheet. • MOSART potential as the system with flexible fuel cycle scenarios is emphasized. • MOSART can operate with different TRU loadings in transmuter or even breeder modes. - Abstract: A study is under progress to examine the feasibility of MOlten Salt Actinide Recycler and Transforming (MOSART) system without and with U–Th support fuelled with different compositions of transuranic elements (TRU) trifluorides from spent LWR fuel. New design options with homogeneous core and fuel salt with high enough solubility for transuranic elements trifluorides are being examined because of new goals. The paper has the main objective of presenting the fuel cycle flexibility of the MOSART system while accounting technical constrains and experimental data received in this study. A brief description is given of the experimental results on key physical and chemical properties of fuel salt and combined materials compatibility to satisfy MOSART system requirements

  18. Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Shenyang, E-mail: shenyang.hu@pnnl.gov; Setyawan, Wahyu; Joshi, Vineet V.; Lavender, Curt A.

    2017-07-15

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble superlattice formation are not well known. In this work, the molecular dynamics (MD) method is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the MD simulations, the embedded-atom method (EAM) potential of U10Mo-Xe [1] is employed. Initial gas bubbles with a low Xe concentration (underpressured) are generated in a body-centered cubic (bcc) U10Mo single crystal. Then Xe atoms are sequentially added into the bubbles one by one, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that an overpressured gas bubble emits partial dislocations with a Burgers vector along the <111> direction and a slip plane of (11-2). Meanwhile, dislocation loop punch out was not observed. The overpressured bubble also induces an anisotropic stress field. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in bcc U10Mo fuels.

  19. Atomistic simulations of thermodynamic properties of Xe gas bubbles in U10Mo fuels

    Science.gov (United States)

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.; Lavender, Curt A.

    2017-07-01

    Xe gas bubble superlattice formation is observed in irradiated uranium-10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble superlattice formation are not well known. In this work, the molecular dynamics (MD) method is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the MD simulations, the embedded-atom method (EAM) potential of U10Mo-Xe [1] is employed. Initial gas bubbles with a low Xe concentration (underpressured) are generated in a body-centered cubic (bcc) U10Mo single crystal. Then Xe atoms are sequentially added into the bubbles one by one, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that an overpressured gas bubble emits partial dislocations with a Burgers vector along the direction and a slip plane of (11-2). Meanwhile, dislocation loop punch out was not observed. The overpressured bubble also induces an anisotropic stress field. A tensile stress was found along directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in bcc U10Mo fuels.

  20. Effect of power variations across a fuel bundle and within a fuel element on fuel centerline temperature in PHWR bundles in uncrept and crept pressure tubes

    International Nuclear Information System (INIS)

    Onder, E.N.; Roubtsov, D.; Rao, Y.F.; Wilhelm, B.

    2017-01-01

    Highlights: • Pressure tube creep effect on fuel pin power and temperatures was investigated. • Noticeable effects were observed for 5.1% crept pressure tube. • Bundle eccentricity effect on power variations was insignificant for uncrept channels. • Difference of 112 °C was observed between top & bottom elements in 5.1% crept channel. • Not discernible fission gas release was expected with temperature difference of 112 °C. - Abstract: The neutron flux and fission power profiles through a fuel bundle and across a fuel element are important aspects of nuclear fuel analysis in multi-scale/multi-physics modelling of Pressurized Heavy Water Reactors (PHWRs) with advanced fuel bundles. Fuel channels in many existing PHWRs are horizontal. With ageing, pressure tubes creep and fuel bundles in these pressure tubes are eccentrically located, which results in an asymmetric coolant flow distribution between the top and bottom of the fuel bundles. The diametral change of the pressure tube due to creep is not constant along the fuel channel; it reaches a maximum in the vicinity of the maximum neutron flux location. The cross-sectional asymmetric positioning of fuel bundles in a crept pressure tube contributes to an asymmetric power distribution within a ring of fuel elements. Modern reactor physics lattice codes (such as WIMS-AECL) are capable of predicting the details of power distribution from basic principles. Thermalhydraulics subchannel codes (such as ASSERT-PV) use models to describe inhomogeneous power distribution within and across fuel elements (e.g., flux tilt model, different powers in different ring elements, or radial power profiles). In this work, physics and thermalhydraulics codes are applied to quantify the effect of eccentricity of a fuel bundle on power variations across it and within a fuel element, and ultimately on the fuel temperature distribution and fuel centerline temperature, which is one of the indicators of fuel performance under normal

  1. Limits on the experimental simulation of nuclear fuel rod response

    International Nuclear Information System (INIS)

    Hagar, R.C.

    1980-01-01

    The steady-state and transient effects of intrinxic geometric and material property differences between typical nuclear fuel pins and electric fuel pin simulators (FPSs) are identified. The effectiveness of varying the transient power supplied to the FPS in reducing the differences between the transient responses of nuclear fuel pins and FPSs is investigated. This effectiveness is shown to be limited by the heat capacity of the FPS, the allowed range of the power program, and different FPS power requirements at different positions on a full-length FPS

  2. Review of alternative fuels data bases

    Science.gov (United States)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  3. Ageing at 1203K of 20/25Nb stainless steel AGR fuel cladding material - microstructural development and its effect on creep properties

    International Nuclear Information System (INIS)

    Ecob, R.C.; Gilmour, T.C.

    1986-11-01

    The effects of ageing at 1203K for times up to 2.69Ms on the uniaxial constant stress creep properties of a 20/25Nb AGR fuel cladding alloy at 1073 and 1173K have been investigated and correlated with quantitative measurements of the microstructural developments which occur during exposure to both the ageing and creep testing temperatures. A single creep testing stress of 86.6MPa has been used. It is shown that the variation of minimum creep rate can only be explained in terms of the observed NbC particle coarsening at short ageing times (up to 7.44ks). After longer ageing treatments the minimum creep rate tends to decrease with ageing time, which is interpreted as being due to grain growth and, in particular, the onset of secondary recrystallisation. The minimum creep rates displayed by the material are reduced by factors of up to 20 in the presence of partial secondary recrystallisation. It is concluded that the effects of the development of the NbC particle distributions during 1203K ageing on the 1073 or 1173K uniaxial creep endurance of the material are relatively small. Consideration is given to the circumstances in which it might be of more importance, which include longer 1203K ageing treatments, more complex low strain stress/strain cycles. During the ageing treatments and creep tests investigated in the present work, the only significant influences on creep properties arise from grain growth and secondary recrystallisation. (UK)

  4. Comparison of control rod effectiveness for thorium and low-enriched fuel cycles in the GA-1, 160 MW(e) design

    Energy Technology Data Exchange (ETDEWEB)

    Neef, Hans Joachim

    1974-03-15

    In an investigation of the properties of the Thorium-Uranium (Th) and the Low-Enriched Uranium (LEU) fuel cycles it is also necessary to compare the effectiveness of the control rods in a reactor system operating with these sorts of fuel. Furthermore, it is under consideration to start a reactor with LEU fuel and switch-over to a Th cycle. It is also of interest to look at the switch-over phase in respect to the control rod effectiveness. The various fuel cycles have been studied for the same fuel element and control rod design, namely the one of GA's commercially available 1,160 MW(e) reference power station. This paper gives the first results on the control rod calculations and is presented mainly in two parts. Part 1 describes spectral effects which have been investigated by cell calculations with a discrete ordinates transport code. The main result is the higher effectiveness of a rod in a Th-cycle compared with a LEU-cycle. Part 2 reports on reactor calculations with a diffusion code and shows that this advantage can partially disappear in the reactor because of the spatial flux distribution. This effect has to be studied in further investigations for a full understanding.

  5. Use of Dendrimers during the Synthesis of Pt-Ru Electrocatalysts for PEM Fuel Cells: Effects on the Physical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    J. C. Calderón

    2011-01-01

    Full Text Available In this work, Pt-Ru catalysts were synthesized by a novel methodology which includes the use as encapsulating molecules of dendrimers of different generation: zero (DN-0, one (DN-1, two (DN-2, and three (DN-3. Synthesized catalysts were heat-treated at 350°C, and the effects of this treatment was established from the physical (X-ray dispersive energy (XDE and X-ray diffraction (XRD and electrochemical characterization (cyclic voltammetry and chronoamperometry. Results showed that the heat-treatment benefits the catalytic properties of synthesized materials in terms of CO and methanol electrochemical oxidation. The curves for CO stripping were more defined for heat-treated catalysts, and methanol oxidation current densities were higher for these materials. These changes are principally explained from the removal of organic residues remaining on the surface of the Pt-Ru nanoparticles after the synthesis procedure. After the activation of the catalysts by heating at 350°C, the real importance of the use of these encapsulating molecules and the effect of the generation of the dendrimer become visible. From these results, it can be concluded that synthesized catalysts are good catalytic anodes for direct methanol fuel cells (DMFCs.

  6. Effects of an oxidizing atmosphere in a spent fuel packaging facility

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1991-09-01

    Sufficient oxidation of spent fuel can cause a cladding breach to propagate, resulting in dispersion of fuel particulates and gaseous radionuclides. The literature for spent fuel oxidation in storage and disposal programs was reviewed to evaluate the effect of an oxidizing atmosphere in a preclosure packaging facility on (1) physical condition of the fuel and (2) operations in the facility. Effects such as cladding breach propagation, cladding oxidation, rod dilation, fuel dispersal, 14 C and 85 Kr release, and crud release were evaluated. The impact of these effects, due to oxidation, upon a spent fuel handling facility is generally predicted to be less than the impact of similar effects due to fuel rod breached during handling in an inert-atmosphere facility. Preliminary temperature limits of 240 degree C and 227 degree C for a 2-week or 4-week handling period and 175 degree C for 2-year lag storage would prevent breach propagation and fuel dispersal. Additional data that are needed to support the assumptions in this analysis or complete the database were identified

  7. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  8. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  9. Study of Irradiation Effect onto Uranium silicide Fuel

    International Nuclear Information System (INIS)

    Suparjo

    1998-01-01

    The irradiation effect onto the U 3 Si-Al and U 3 Si 2 -Al dispersion type of fuel element has been studied. The fuel material performs swelling during irradiation due to boehmite (Al 2 O 3 (H 2 O)) formation in which might occurs inside the meat and on the cladding surface, the interaction between the fuel and aluminium matrix that produce U(Al,Si) 3 phase, and the formation of fission gas bubble inside the fuel. At a constant fission density, the U 3 Si-Al fuel swelling is higher than that of U 3 Si 2 -Al fuel. The swellings of both fuels increase with the increasing of fission density. The difference of swelling behavior was caused by formation of large bubble gases generated from fission product of U 3 Si fuel and distributed non-uniformly over all of fuel zone. On the other hand, the U 3 Si 2 fission produced small bubble gases, and those were uniformly distributed. The growth rate of fission gas bubble in the U 3 Si fuel has shown high diffusivity, transformation into amorph material and thus decrease its mechanical strength

  10. Proceedings of DUPIC fuel workshop 97

    International Nuclear Information System (INIS)

    1997-07-01

    The researchers discuss the technical aspects of DUPIC fuel fabrication in the workshop as follows; 1) The DUPIC fuel development program in KAERI 2) AECL's progress in developing the DUPIC fuel fabrication process 3) Mechanical decladding 4) Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept 5) Assessment of DUPIC fuel compatibility with CANDU-6 6) The development of combination software for spent PWR fuel to fabricate the homogeneous DUPIC fuel 7) Thermodynamic properties of the DUPIC fuel and its performance 8) Captural properties of cesium and ruthenium 9) A secondary fuel removal process : Plasma processing 10) Technology development for DUPIC process safeguards

  11. Proceedings of DUPIC fuel workshop 97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The researchers discuss the technical aspects of DUPIC fuel fabrication in the workshop as follows; (1) The DUPIC fuel development program in KAERI (2) AECL`s progress in developing the DUPIC fuel fabrication process (3) Mechanical decladding (4) Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept (5) Assessment of DUPIC fuel compatibility with CANDU-6 (6) The development of combination software for spent PWR fuel to fabricate the homogeneous DUPIC fuel (7) Thermodynamic properties of the DUPIC fuel and its performance (8) Captural properties of cesium and ruthenium (9) A secondary fuel removal process : Plasma processing (10) Technology development for DUPIC process safeguards.

  12. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.

    Science.gov (United States)

    Khot, Mahesh; Ghosh, Debashish

    2017-04-01

    This study analyzes the single cell oil (SCO), fatty acid profile, and biodiesel fuel properties of the yeast Rhodotorula mucilaginosa IIPL32 grown on the pentose fraction of acid pre-treated sugarcane bagasse as a carbon source. The yeast biomass from nitrogen limiting culture conditions (15.3 g L -1 ) was able to give the SCO yield of 0.17 g g -1 of xylose consumed. Acid digestion, cryo-pulverization, direct in situ transesterification, and microwave assisted techniques were evaluated in comparison to the Soxhlet extraction for the total intracellular yeast lipid recovery. The significant differences were observed among the SCO yield of different methods and the in situ transesterification stood out most for effective yeast lipid recovery generating 97.23 mg lipid as FAME per gram dry biomass. The method was fast and consumed lesser solvent with greater FAME yield while accessing most cellular fatty acids present. The yeast lipids showed the major presence of monounsaturated fatty esters (35-55%; 18:1, 16:1) suitable for better ignition quality, oxidative stability, and cold-flow properties of the biodiesel. Analyzed fuel properties (density, kinematic viscosity, cetane number) of the yeast oil were in good agreement with international biodiesel standards. The sugarcane bagasse-derived xylose and the consolidated comparative assessment of lab scale SCO recovery methods highlight the necessity for careful substrate choice and validation of analytical method in yeast oil research. The use of less toxic co-solvents together with solvent recovery and recycling would help improve process economics for sustainable production of biodiesel from the hemicellulosic fraction of cheap renewable sources. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of fuel particle size distributions on neutron transport in stochastic media

    International Nuclear Information System (INIS)

    Liang, Chao; Pavlou, Andrew T.; Ji, Wei

    2014-01-01

    Highlights: • Effects of fuel particle size distributions on neutron transport are evaluated. • Neutron channeling is identified as the fundamental reason for the effects. • The effects are noticeable at low packing and low optical thickness systems. • Unit cells of realistic reactor designs are studied for different size particles. • Fuel particle size distribution effects are not negligible in realistic designs. - Abstract: This paper presents a study of the fuel particle size distribution effects on neutron transport in three-dimensional stochastic media. Particle fuel is used in gas-cooled nuclear reactor designs and innovative light water reactor designs loaded with accident tolerant fuel. Due to the design requirements and fuel fabrication limits, the size of fuel particles may not be perfectly constant but instead follows a certain distribution. This brings a fundamental question to the radiation transport computation community: how does the fuel particle size distribution affect the neutron transport in particle fuel systems? To answer this question, size distribution effects and their physical interpretations are investigated by performing a series of neutron transport simulations at different fuel particle size distributions. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. A total of 15 parametric cases are constructed by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k eff ) and the spatial distribution of fission power density along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution shows a noticeable effect on neutron

  14. Effects of Fuel Type and Fuel Delivery System on Pollutant Emissions of Pride and Samand Vehicles

    Directory of Open Access Journals (Sweden)

    Akbar Sarhadi

    2017-04-01

    Full Text Available This research was aimed to study the effect of the type of fuel delivery system (petrol, dedicated or bifuel, the type of consumed fuel (petrol or gas, the portion of consumed fuel and also the duration of dual-fuelling in producing carbon monoxide, carbon dioxide and unburned hydrocarbons from Pride and Samand. According to research objectives, data gathering from 2000 vehicles has been done by visiting Hafiz Vehicle Inspection Center every day for 2 months. The results of this survey indicated that although there is no significant difference between various fuel delivery systems in terms of producing the carbon monoxide, carbon dioxide and unburned hydrocarbons by Samand, considering the emission amount of carbon dioxide, the engine performance of Pride in bifuel and dedicated state in GTXI and 132 types is more unsatisfactory than that of petrol state by 0.3 and 0.4%, respectively. On the other hand, consuming natural gas increases the amount of carbon monoxide emission in dual- fuel Pride by 0.18% and decreases that in dual-fuel Samand by 1.2%, which signifies the better design of Samand in terms of fuel pumps, used kit type and other engine parts to use this alternative fuel compared to Pride. Since the portion of consumed fuel and also duration of dual-fuelling does not have a significant effect on the amount of output pollutants from the studied vehicles, it can be claimed that the output substances from the vehicle exhaust are more related to the vehicle’s condition than the fuel type.

  15. Micro-Reactor Physics of MOX-Fueled Core

    International Nuclear Information System (INIS)

    Takeda, T.

    2001-01-01

    Recently, fuel assemblies of light water reactors have become complicated because of the extension of fuel burnup and the use of high-enriched Gd and mixed-oxide (MOX) fuel, etc. In conventional assembly calculations, the detailed flux distribution, spectrum distribution, and space dependence of self-shielding within a fuel pellet are not directly taken into account. The experimental and theoretical study of investigating these microscopic properties is named micro-reactor physics. The purpose of this work is to show the importance of micro-reactor physics in the analysis of MOX fuel assemblies. Several authors have done related studies; however, their studies are limited to fuel pin cells, and they are never mentioned with regard to burnup effect, which is important for actual core design

  16. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  17. Are Effective Properties Effective?

    International Nuclear Information System (INIS)

    Han, Ru; Ingber, Marc S.; Hsiao, S.-C.

    2008-01-01

    The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of dispersed-phase-reinforced composite materials are determined at the mesoscopic level using three-dimensional parallel boundary element simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach have been examined

  18. New fuel review and assessment

    International Nuclear Information System (INIS)

    Miasnikov, A.

    2001-01-01

    This paper elaborated the complexity of the licensing process, concerning fuel core design and fuel management. All activities of the Czech Regulatory Body including activities, which shall require the State Office for Nuclear Safety (SUJB) license or authorization are based on legal framework. The licensing process consists of three major stages during which demonstration of safety is to be submitted by the applicants and reviewed and assessed by the regulatory body. The regulatory review and assessment leads to a series of regulatory decisions, which result in granting of an authorization (or the refusal) for site, construction and operation permits. To receive each of these permissions, the licensee has to submit to the SUJB Safety Analysis Reports (preliminary or final); technical specifications for safe operation; programs for non-active and active test (fuel loading, physical start-up, power start-up, trial operation); programs for quality assurance and quality control. Special attention is given to the design reliability and safety related influences of any design changes and usage of new fuel system design. The design compatibility should be reviewed especially from the standpoint of: 1) hermal hydraulic properties (vibration, hydraulic resistance, CHF correlation, fuel rod bowing, effect of spacing grids, pressure losses); 2) technical properties (rigidity, cycling fatigue, wear, cladding abrasion, deformation by external forces, kinetics of control assemblies drop); 3) chemical properties (corrosion, hydriding); 4) neutronic-physical properties (peaking factors, influence of different enrichments, water-uranium ration, shutdown reactivity margin, stability, maximum speed of the reactivity insertion, both calculated and experimental. The licensee is encouraged not only to show the fulfillment of the regulatory requirements but also to provide sufficient arguments with evidence that the safety of the total NPP is maintained

  19. Effect of oxygenated fuel on premixed lean diesel combustion; Kihaku yokongo diesel nensho ni oyobosu gansanso nenryo kongo keiyu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; Miyamoto, T.; Harada, A.; Akagawa, H.; Tsujimura, K. [New ACE Institute Co. Ltd., Tokyo (Japan)

    1998-05-01

    Because injection timing in diesel engines is early in a premixed lean diesel combustion system using early fuel injection, ignition timing is determined by ignitability of the fuel used. The conventional diesel fuel, which has good ignitability, causes excessively early ignition, thus aggravating fuel consumption. In order to reduce cylinder temperature with an aim of delaying ignition timing to improve the fuel consumption, attempts are being made on using low cetane fuels to reduce CO2 gas supply or compression ratio, and to vary ignitability of the fuels. The present study investigated ignition timing control and properties of exhausts by mixing different types of oxygenated fuels into light oil. Mixing the oxygenated fuels into light oil proved that the ignition timing can be controlled, and mixing such low cetane fuels as ethanol and MTBE achieved improvement in fuel consumption. Trial use of the oxygenated fuels aggravated CO concentration, which is caused because the cylinder temperature was reduced. Numerical calculations suggest that use of fuels with faster evaporation speed and lower cetane number is effective in improving the fuel consumption and the exhausts. 12 refs., 9 figs., 2 tabs.

  20. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels

    International Nuclear Information System (INIS)

    Zabihian, Farshid; Fung, Alan S.

    2013-01-01

    Highlights: • Variation of the stream properties in the syngas-fueled hybrid SOFC–GT cycle. • Detailed analysis of the operation of the methane-fueled SOFC–GT cycle. • Investigate effects of inlet fuel type and composition on performance of cycle. • Comparison of system operation when operated with and without anode recirculation. - Abstract: In this paper, the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) model was applied to investigate the effects of the inlet fuel type and composition on the performance of the cycle. This type of analysis is vital for the real world utilization of manufactured fuels in the hybrid SOFC–GT system due to the fact that these fuel compositions depends on the type of material that is processed, the fuel production process, and process control parameters. In the first part of this paper, it is shown that the results of a limited number of studies on the utilization of non-conventional fuels have been published in the open literature. However, further studies are required in this area to investigate all aspects of the issue for different configurations and assumptions. Then, the results of the simulation of the syngas-fueled hybrid SOFC–GT cycle are employed to explain the variation of the stream properties throughout the cycle. This analysis can be very helpful in understanding cycle internal working and can provide some interesting insights to the system operation. Then, the detailed information of the operation of the methane-fueled SOFC–GT cycle is presented. For both syngas- and methane-fueled cycles, the operating conditions of the equipment are presented and compared. Moreover, the comparison of the characteristics of the system when it is operated with two different schemes to provide the required steam for the cycle, with anode recirculation and with an external source of water, provides some interesting insights to the system operation. For instance, it was shown that although the physical

  1. Fuel fragmentation data review and separate effects testing

    International Nuclear Information System (INIS)

    Yueh, Ken. H.; Snis, N.; Mitchell, D.; Munoz-Reja, C.

    2014-01-01

    A simple alternative test has been developed to study the fuel fragmentation process at loss of coolant accident (LOCA) temperatures. The new test heats a short section of fuel, approximately two pellets worth of material, in a tube furnace open to air. An axial slit is cut in the test sample cladding to reduce radial restraint and to simulate ballooned condition. The tube furnace allows the fuel fragmentation process be observed during the experiment. The test was developed as a simple alternative so large number of tests could be conducted quickly and efficiently to identify key variables that influence fuel fragmentation and to zeroing on the fuel fragmentation burn-up threshold. Several tests were conducted, using fuel materials from fuel rods that were used in earlier integral tests to benchmark and validate the test technique. High burn-up fuel materials known to be above the fragmentation threshold was used to evaluate the fragmentation process as a function of temperature. Even with an axial slit and both ends open, no significant fuel detachment/release was detected until above 750°C. Additional tests were conducted with fuel materials at burn-ups closer to the fuel fragmentation burn-up threshold. Results from these tests indicate a minor power history effect on the fuel fragmentation burn-up threshold. An evaluation of available literature and data generated from this work suggest a fuel fragmentation burn-up threshold between 70 and 75 GWd/MTU. (author)

  2. Evaluation of the effect of probe design parameters on ECT signal and development of eddy current probe for irradiated fuel rods

    International Nuclear Information System (INIS)

    Kwank, S. W.; Han, Y. K.; Woo, S. K.; Kim, T. W.; Park, J. Y.; Kim, B. J.; Park, J. Y.

    1999-01-01

    Eddy current test(ECT) is used to inspect not only the failed fuel rods but also peripheral rods during repairing of the failed fuel rods, to detect internal defects in irradiated fuel rods which could not be detected by ultrasonic test and visual test, and to obtain the data for determining the root cause of fuel rod failure. This study evaluates the effect of properties of test article, irradiated fuel rods, on the impedance diagram in order to reduce the difficulty of ECT signal analysis. The optimum eddy current probe design conditions for inspecting the irradiated fuel rods, is estimate by using experimental equations and the probe is manufactured based on the estimated conditions. The performance of developed eddy current probe and the optimum conditions is proved through characteristic comparison experiment with the probe purchased from the foreign vendor

  3. Effect of secondary fuels and combustor temperature on mercury speciation in pulverized fuel co-combustion: part 1

    Energy Technology Data Exchange (ETDEWEB)

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff [Delft University Technology, Delft (Netherlands). Section Energy Technology, Department of Process and Energy

    2007-08-15

    The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surface properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.

  4. Effect of biodiesel fuels on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Armas, Octavio; Rodriguez-Fernandez, Jose [Escuela Tecnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Avda. Camilo Jose Cela, s/n. 13071 Ciudad Real (Spain)

    2008-04-15

    The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions. (author)

  5. Tailoring the key fuel properties using different alcohols (C2–C6) and their evaluation in gasoline engine

    International Nuclear Information System (INIS)

    Masum, B.M.; Masjuki, H.H.; Kalam, M.A.; Palash, S.M.; Wakil, M.A.; Imtenan, S.

    2014-01-01

    Highlights: • Optimized C 2 –C 6 alcohols–gasoline blends achieved better properties than E15. • Optimum blends improved torque and reduced BSFC than that of E15 fuel. • Higher peak in-cylinder pressure obtained for alcohol gasoline blends. • Compared to E15, optimum blends reduced BSCO, BSHC and BSNOx emission. - Abstract: The use of ethanol as a fuel for internal combustion engines has been given much attention mostly because of its possible environmental and long-term economical advantages over fossil fuel. Higher carbon number alcohols, such as propanol, butanol, pentanol and hexanol also have the potential to use as alternatives as they have higher energy content, octane number and can displace more petroleum gasoline than that of ethanol. Therefore, this study focuses on improvement of different physicochemical properties using multiple alcohols at different ratios compared to that of the ethanol–gasoline blend (E10/E15). To optimize the properties of multiple alcohol–gasoline blends, properties of each fuel were measured. An optimization tool of Microsoft Excel “Solver” was used to find out the optimum blend. Three optimum blends with maximum heating value (MaxH), maximum research octane number (MaxR) and maximum petroleum displacement (MaxD) are selected for testing in a four cylinder gasoline engine. Tests were conducted under the wide open throttle condition with varying speeds and compared results with that of E15 (Ethanol 15% with gasoline 85%) as well as gasoline. Optimized blends have shown higher brake torque than gasoline. In the terms of BSFC (Brake specific fuel consumption), optimized blends performed better than that of E15. In-cylinder pressure started to rise earlier for all alcohol–gasoline blends than gasoline. The peak in-cylinder pressure and peak heat release rate obtained higher for alcohol gasoline blend than that of gasoline. On the other hand, the use of optimized blends reduces BSCO (Brake specific carbon

  6. Study of effective transport properties of fresh and aged gas diffusion layers

    Science.gov (United States)

    Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz

    2015-07-01

    Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.

  7. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  8. A short note on physical properties to irradiated nuclear fuel by means of X-ray diffraction and neutron scattering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Husain, Hishamuddin; Hak, Cik Rohaida Che; Alias, Nor Hayati; Yusof, Mohd Reusmaazran; Kasim, Norasiah Ab; Zali, Nurazila Mat [Malaysian Nuclear Agency, Bangi, Kajang 43000, Selangor (Malaysia); Mohamed, Abdul Aziz [College of Engineering, Universiti Tenaga National, Jalan Ikram-Uniten, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    For nuclear reactor applications, understanding the evolution of the fuel materials microstructure during irradiation are of great importance. This paper reviews the physical properties of irradiated nuclear fuel analysis which are considered to be of most importance in determining the performance behavior of fuel. X-rays diffraction was recognize as important tool to investigate the phase identification while neutron scattering analyses the interaction between uranium and other materials and also investigation of the defect structure.

  9. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Science.gov (United States)

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  10. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  11. Establishment of THERPRO Database and Estimation of the Effect of Fuel Burn-up on the Thermal Conductivity of Uranium Dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Seon

    2005-02-01

    Materials property data are an essential part of major disciplines in many engineering fields. To nuclear engineering, fundamental understanding of thermo-physical chemical mechanical properties of nuclear materials is very important. THERPRO data base that is re-designed and re-constructed through this study is a web-based on-line nuclear materials properties data base. For the future upgrade of the data base contemporary information technologies have been incorporated during the construction. Basically THERPRO data base has a hierarchical structure consisting of several levels: home page, element, compound, property, author, report, and bibliography level. All of data sets in each level are interconnected using network structure and thus every data can be easily retrieved including the bibliographical information by an appropriate query action. As a part of THERPRO DB utilization, the effect of fuel burn-up on the thermal conductivity of irradiated uranium dioxide is analyzed with the data contained in the data base as well as recent data published in the relevant journals. Their data are comparatively studied and the effect is estimated using FRAPCON-3 code with two in-pile data sets, BR-3 111i5 and Oconee rod 15309. The results show that the fuel center line temperature can differ 200 .deg. C∼400 .deg. C from thermal conductivity models depending on burn-up, which can significantly influence high burn-up fuel performance. In conclusion, it is demonstrated through this study that THERPRO data base can be a great utility for nuclear engineers and researchers, if appropriately utilized

  12. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra

    International Nuclear Information System (INIS)

    Ong, H.C.; Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Chong, W.T.; Boosroh, M.H.

    2013-01-01

    Highlights: • Biodiesel is an effective way to overcome environmental issue by diesel fuel. • Two stage acid (H 2 SO 4 ) and base (NaOH) catalyst transesterification process ware carried out to produce methyl ester. • Properties of produced jatropha, sterculia and ceiba methyl ester are within the ASTM D6751 standard. • The methyl ester content was 96.75%, 97.50% and 97.72% for JCME, SFME and CPME respectively. - Abstract: Biodiesel production from non-edible vegetable oil is one of the effective ways to overcome the problems associated with energy crisis and environmental issues. The non-edible oils represent potential sources for future energy supply. In this study, the physical and chemical properties of crude Jatropha curcas oil (CJCO), crude Sterculia foetida oil (CSFO) and crude Ceiba pentandra oil (CCPO) and its methyl ester have been studied. The acid values of three oils were found to be 12.78 mg KOH per g, 5.11 mg KOH per g and 11.99 mg KOH per g which required acid-esterification and alkali-transesterification process. Acid value was decreased by esterification process using sulfuric acid anhydrous (H 2 SO 4 ) as a catalyst and alkaline (NaOH) catalyst transesterification was carried out for the conversion of crude oil to methyl esters. The optimal conditions of FAME yield achieved for those three biodiesel were 96.75%, 97.50% and 97.72% respectively. Furthermore, the fuel properties of J. curcas methyl ester (JCME), S. foetida methyl ester (SFME) and C. pentandra methyl ester (CPME) were determined and evaluated. As a result, those produced biodiesel matched and fulfilled ASTM 6751 and EN 14214 biodiesel standards. Based on the results, JCME, SFME and CPME are potential non-edible feedstock for biodiesel production

  13. Air quality effects of alternative fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  14. Water confinement effects on fuel assembly motion and damping

    International Nuclear Information System (INIS)

    Brenneman, B.; Shah, S.J.; Williams, G.T.; Strumpell, J.H.

    2003-01-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect - the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to always reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an absolute or inertial reference frame, and thus it becomes a flow-induced coupling between the fuel

  15. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin–Shtrikman model due to the theoretical model’s inability to consider the thermal resistance at interfaces between the meat constituents.

  16. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    Science.gov (United States)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  17. A Study on Rack Thickness Effect for Spent Fuel Pool Storage

    International Nuclear Information System (INIS)

    Kim, Mi Jin; Lee, Hee-Jae; Sohn, Dong-Seong

    2015-01-01

    For the effective storage of used fuel, the development of high performance neutron absorbing materials is needed. One of the major concern for the used fuel storage is the assurance to keep subcriticality of the storage rack and the high performance neutron absorbing material is the vital part to assure this requirement. According to NRC guide line, the k-effective of the spent fuel storage racks must not exceed 0.95. To ensure its safety, subcriticality analysis is required. Subcriticality analysis of the used storage in spent fuel pool have been performed by different authors. Criticality calculations for light water reactor spent fuel storage rack were carried out by Jae et al. They used AMPX-KENO IV code and considered the effect of rack pitch and rack thickness for consolidated fuel. The criticality analysis has performed at Gd 0.2 and 1 wt% according to thickness change. As thickness increases, the volume of the spent fuel pool rack increases. Therefore, absorbing material also increases according to thickness

  18. A Study on Rack Thickness Effect for Spent Fuel Pool Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Jin; Lee, Hee-Jae; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    For the effective storage of used fuel, the development of high performance neutron absorbing materials is needed. One of the major concern for the used fuel storage is the assurance to keep subcriticality of the storage rack and the high performance neutron absorbing material is the vital part to assure this requirement. According to NRC guide line, the k-effective of the spent fuel storage racks must not exceed 0.95. To ensure its safety, subcriticality analysis is required. Subcriticality analysis of the used storage in spent fuel pool have been performed by different authors. Criticality calculations for light water reactor spent fuel storage rack were carried out by Jae et al. They used AMPX-KENO IV code and considered the effect of rack pitch and rack thickness for consolidated fuel. The criticality analysis has performed at Gd 0.2 and 1 wt% according to thickness change. As thickness increases, the volume of the spent fuel pool rack increases. Therefore, absorbing material also increases according to thickness.

  19. Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Wang, Qing-Ming [Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15261 (United States)

    2005-01-10

    Fuel cells are being considered as an important technology that can be used for various power applications. For portable electronic devices such as laptops, digital cameras, cell phone, etc., the direct methanol fuel cell (DMFC) is a very promising candidate as a power source. Compared with conventional batteries, DMFC can provide a higher power density with a long-lasting life and recharging which is almost instant. However, many issues related to the design, fabrication and operation of miniaturized DMFC power systems still remain unsolved. Fuel delivery is one of the key issues that will determine the performance of the DMFC. To maintain a desired performance, an efficient fuel delivery system is required to provide an adequate amount of fuel for consumption and remove carbon dioxide generated from fuel cell devices at the same time. In this paper, a novel fuel delivery system combined with a miniaturized DMFC is presented. The core component of this system is a piezoelectric valveless micropump that can convert the reciprocating movement of a diaphragm activated by a piezoelectric actuator into a pumping effect. Nozzle/diffuser elements are used to direct the flow from inlet to outlet. As for DMFC devices, the micropump system needs to meet some specific requirements: low energy consumption but a sufficient fuel flow rate. Based on theoretical analysis, the effect of piezoelectric materials properties, driving voltage, driving frequency, nozzle/diffuser dimension, and other factors on the performance of the whole fuel cell system will be discussed. As a result, a viable design of a micropump system for fuel delivery can be achieved and some simulation results will be presented as well. (author)

  20. Curing temperature effect on mechanical strength of smokeless fuel briquettes prepared with humates

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Blesa; J.L. Miranda; M.T. Izquierdo; R. Moliner; A. Arenillas; F. Rubiera [Instituto de Carboquimica (CSIC), Zaragoza (Spain)

    2003-04-01

    The effect of curing temperature on smokeless fuel briquettes has been studied by Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS), and temperature programmed decomposition (TPD). These techniques help to predict the final properties of these briquettes which were prepared with a low-rank coal, sawdust, and olive stone as biomasses and humates as binder. The best mechanical properties are reached with both the mildest thermal curing at 95{sup o}C and the cocarbonized at 600{sup o}C of Maria coal (M2) and sawdust (S) due to the fibrous texture of sawdust. The temperature of curing causes the release of a certain amount of oxygenate structures and the decrease of the mechanical resistance. 15 refs., 7 figs., 3 tabs.

  1. Radioactive decay properties of CANDU fuel. Volume 1: the natural uranium fuel cycle

    International Nuclear Information System (INIS)

    Clegg, L.J.; Coady, J.R.

    1977-01-01

    The computer code CANIGEN was used to obtain the mass, activity, decay heat and toxicity of CANDU fuel and its component isotopes. Data are also presented on gamma spectra and neutron emissions. Part 1 presents these data for unirradiated fuel, uranium ore and uranium mill tailings. In Part 2 they have been computed for fuel irradiated to levels of burnup ranging from 140 GJ/kg U to 1150 GJ/kg U. (author)

  2. Composition heterogeneity analysis for DUPIC fuel(I) - Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-08-01

    The fuel composition heterogeneity effect on reactor performance parameters was assessed by refueling simulations for three DUPIC fuel options of fuel composition heterogeneity control: the fissile content adjustment, the reactivity control by slightly enriched and depleted uranium, and the reactivity control by natural uranium. For each DUPIC fuel option, the simulations were performed using 30 heterogeneous fuel types which were determined by the agglomerative hierarchical clustering method. The heterogeneity effect was considered during the refueling simulation by randomly selecting fuel types for the refueling operation. The refueling simulations of the heterogeneous core have shown that the key performance parameters such as the maximum channel power (MCP), maximum bundle power (MBP), and channel power peaking factor (CPPF) are close to those of the core that has single fuel type. For the three DUPIC fuel options, the uncertainties of MCP, MBP, and CPPF due to the fuel composition heterogeneity are less than 0.6, 1.5 and 0.8%, respectively, including the uncertainty of the group-average fuel property. This study has shown that the three DUPIC fuel options reduces the composition heterogeneity effectively and the zone power control system has a sufficient margin to adjust the perturbations cased by the fuel composition heterogeneity. 15 refs., 28 figs.,10 tabs. (Author)

  3. Radiation effects in fuel materials for fission reactors

    International Nuclear Information System (INIS)

    Matzke, H.

    1983-01-01

    Physical and chemical changes that occur in fuel materials during fission are described. Emphasis is placed on the fuels used today, or those foreseen for the future, hence oxides and carbides of uranium and plutonium. Examples are given to illustrate the most interesting neutron effects. (author)

  4. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  5. A sensitivity study on neutronic properties of DUPIC fuel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A sensitivity study has been done to determine the composition of DUPIC fuel from the viewpoint of neutronics fuel design. The spent PWR fuel compositions were generated and fissile contents adjusted by blending fresh uranium after mixing two spent PWR fuel assemblies. The {sup 239}Pu and {sup 235}U enrichments of DUPIC fuel were adjusted by controlling the amount of fresh uranium feed and the ratio of slightly enriched and depleted uranium in the feed uranium. Based on the material balance calculation, it is recommended that DUPIC fuel composition be such that spent PWR fuel utilization is more than 90%. A sensitivity study on the temperature reactivity coefficient of DUPIC fuel and shown that it is desirable to increase the {sup 239}Pu and {sup 235}U contents to reduce both the fuel and coolant temperature coefficients. On the other hand, refueling simulations of the DUPIC core have shown that the channel power peaking factor, which is a measure of the reactor trip margin, increases with the total fissile content. Considering these neutronic characteristics of the DUPIC fuel, it is recommended to have enrichments of 0.45 and 1.00 wt% for {sup 239}Pu and {sup 235}U, respectively. 3 refs., 2 tabs. (Author)

  6. Experimental study of fuel sootiness effects on flashover

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Kuang-Chung, E-mail: tsaikc@ccms.nkfust.edu.tw [Dept. of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2 Juoyue Road, Nantzu, Kaohsiung 811, Taiwan (China); Chen, Hung-Hsiang [Dept. of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2 Juoyue Road, Nantzu, Kaohsiung 811, Taiwan (China)

    2010-06-15

    Previous fire safety studies have demonstrated that flashover can result in severe injure and death and heat radiating back to a fuel is an important mechanism. Fuel sootiness dominates in radiative heat transfer. However, empirical correlations from previous investigations did not consider the fuel sootiness but nevertheless generated reasonably good predictions of flashover. In this study, a series of experiments was employed to examine fuel sootiness effects on flashover. The fuels used, in the order of their sootiness, were gasoline, n-hexane, iso-propanol and methanol. These fuels were filled in circular pans 100-320 mm in diameter to generate fires with different heat release rates and levels of sootiness. The pans were in 1/3 the size of the ISO 9705 test chamber. After ignition, the heat release rate (HRR), temperature inside the chamber, as well as heat flux on the floor and time to flashover (t{sub fo}) were determined. Experimental data show that HRR at flashover and t{sub fo} were strongly corrected and their relationship was independent of the fuel burned. Although heat feedback to the floor increased as fuel sootiness increased, consequently enhancing the burning of sooty fuels, flashover occurs only when the HRR at flashover criterion is reached.

  7. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani; Farooq, Aamir; Kalghatgi, Gautam T.

    2017-01-01

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  8. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani

    2017-12-06

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  9. Effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Beom Seok; Sohn, Joon Yong; Nho, Young Chang; Shin, Jun Hwa [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Jong Il [Chonbuk National University, Jeonju (Korea, Republic of)

    2010-06-15

    To observe the effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes, fuel cell membranes with various thickness were prepared by simultaneous radiation grafting of styrene into polyethylene-co-tetrafluoroethylene (ETFE) with various thicknesses (25, 50 and 100 {mu}m) and subsequent sulfonation. The physico-chemical properties of the prepared membranes such as ion exchange capacity, water uptake, distribution of sulfonic acid group were evaluated in the correlation with the thickness of ETFE film. In additions, proton conductivity and methanol permeability of the prepared membranes were also evaluated. The results revealed that the proton conductivity and methanol permeability of the prepared membranes were largely affected by the thickness of ETFE film utilized as a base film.

  10. Effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes

    International Nuclear Information System (INIS)

    Ko, Beom Seok; Sohn, Joon Yong; Nho, Young Chang; Shin, Jun Hwa; Kim, Jong Il

    2010-01-01

    To observe the effect of the thickness of a fluoropolymer film on the radiotically prepared fuel cell membranes, fuel cell membranes with various thickness were prepared by simultaneous radiation grafting of styrene into polyethylene-co-tetrafluoroethylene (ETFE) with various thicknesses (25, 50 and 100 μm) and subsequent sulfonation. The physico-chemical properties of the prepared membranes such as ion exchange capacity, water uptake, distribution of sulfonic acid group were evaluated in the correlation with the thickness of ETFE film. In additions, proton conductivity and methanol permeability of the prepared membranes were also evaluated. The results revealed that the proton conductivity and methanol permeability of the prepared membranes were largely affected by the thickness of ETFE film utilized as a base film

  11. FUEL CONSUMPTION EFFECT OF COMMERCIAL TURBOFANS ON GLOBAL WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Onder Turan; T. Hikmet Karakoc [School of Civil Aviation, Anadolu University, Eskisehir (Turkey)

    2008-09-30

    The main objective pursued in this study is to parametrically investigate the fuel consumption effect of commercial turbofans on global warming. In this regard, Of the important parameters, specific fuel consumption of a commercial turbofans is taken into consideration. In order to minimize the effect of fuel consumption on global warming, the values of engine design parameters are optimized for maintaining minimum specific fuel consumption of high bypass turbofan engine under different flight conditions and design criteria. The backbones of optimization approach consisted of elitism-based genetic algorithm coupled with real parametric cycle analysis of a turbofan engine. For solving optimization problem a new software program is developed in MATLAB, while objective function is determined for minimizing the specific fuel consumption by considering the following parameters such as the fan pressure ratio ({pi}{sub f}), bypass ratio ({alpha}) and the fuel heating value [h{sub PR}-(kJ/kg)]. Accordingly, it may be concluded that the software program developed can successfully solve optimization problems at 1.2{le}{pi}{sub f}{le}2, 2{le}{alpha}{le}10 and 23000{le}h{sub PR}{le}120000 with aircraft flight Mach number {le}0.8. Fuel types used in preliminary engine cycle analysis were JP-4, JP-5, JP-8 and hydrogen in this paper.

  12. The effect of channel flow pattern on internal properties distribution of a proton exchange membrane fuel cell for cathode starvation conditions

    International Nuclear Information System (INIS)

    Ko, Dong Soo; Kang, Young Min; Yang, Jang Sik; Jeong, Ji Hwan; Choi, Gyung Min; Kim, Duck Jool

    2010-01-01

    The effect of channel flow pattern on the internal properties distribution of a proton exchange membrane fuel cell (PEMFC) for cathode starvation conditions in a unit cell was investigated through numerical studies and experiments. The polarization curves of a lab-scale mixed serpentine PEMFC were measured with increasing current loads for different cell temperatures (40, 50, and 60 .deg. C) at a relative humidity of 100%. To study the local temperature on the membrane, the water content in the MEA, and the gas velocity in terms of the channel type of the PEMFC with operating characteristics, numerical studies using the es-pemfc module of STAR-CD, which have been matched to the experimental data, were conducted in detail. The water content and velocity at the cathode channel bend of the mixed serpentine channel were relatively higher than those at the single and double channels. Conversely, the local temperature and mean temperature on the membrane of a single serpentine channel were the highest among all channels. These results can be used to design the PEMFC system, the channel flow field, and the cooling device

  13. Biocidal properties of anti-icing additives for aircraft fuels.

    Science.gov (United States)

    Neihof, R A; Bailey, C A

    1978-04-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol.

  14. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  15. Nuclear fuel waste management program geotechnical studies of Eye-Dashwa Lakes research area rock properties

    International Nuclear Information System (INIS)

    Chernis, P.J.; Robertson, P.B.

    1992-05-01

    The Eye-Dashwa Lakes pluton near Atikokan Ontario has been used as a study area for the Canadian nuclear fuel waste management research program. The pluton consists predominately of granite. Fractures formed during cooling of the pluton were filled with a succession of different materials at different times. Measurements of a series of geophysical and geotechnical properties of rock samples are published here in this report, including especially microcrack and pore structures. An indication has been found that a larger proportion of the porosity of Whiteshell and Atikokan samples is contained in connecting pores, compared to other rocks. This may seem surprising in view of the finding that approximately 70% of the effective porosity of Atikokan samples is contained in pockets

  16. Learning FuelPHP for effective PHP development

    CERN Document Server

    Tweedie, Ross

    2013-01-01

    The book follows a standard tutorial approach, which will enable readers to use the FuelPHP framework efficiently while developing PHP applications.If you are a PHP developer who is looking to learn more about using the FuelPHP framework for effective PHP development, this book is ideal for you. If you are interested in this book, you should already have a basic understanding of general PHP development.

  17. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis.

    Science.gov (United States)

    Kehimkar, Benjamin; Hoggard, Jamin C; Marney, Luke C; Billingsley, Matthew C; Fraga, Carlos G; Bruno, Thomas J; Synovec, Robert E

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene-based rocket propulsion fuels such as RP-1. In particular, it is critical to make better quantitative connections among the following three attributes: fuel performance (thermal stability, sooting propensity, engine specific impulse, etc.), fuel properties (such as flash point, density, kinematic viscosity, net heat of combustion, and hydrogen content), and the chemical composition of a given fuel, i.e., amounts of specific chemical compounds and compound classes present in a fuel as a result of feedstock blending and/or processing. Recent efforts in predicting fuel chemical and physical behavior through modeling put greater emphasis on attaining detailed and accurate fuel properties and fuel composition information. Often, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is employed to provide chemical composition information. Building on approaches that used GC-MS, but to glean substantially more chemical information from these complex fuels, we recently studied the use of comprehensive two dimensional (2D) gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS) using a "reversed column" format: RTX-wax column for the first dimension, and a RTX-1 column for the second dimension. In this report, by applying chemometric data analysis, specifically partial least-squares (PLS) regression analysis, we are able to readily model (and correlate) the chemical compositional information provided by use of GC×GC-TOFMS to RP-1 fuel property information such as density, kinematic viscosity, net heat of combustion, and so on. Furthermore, we readily identified compounds that contribute significantly to measured differences in fuel properties based on results from the PLS models. We anticipate this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an

  18. Use of the fuel obtained from waste plastics as a mixture with diesel and biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Kiernicki, Z.; Zelazo, P. [Lublin Univ. of Technology (Poland)

    2013-06-01

    The researches concerning the use of fuel derived from waste plastics and biodiesel have been presented in the paper. The biodiesel and the fuel obtained from waste plastics were both used as fuel components. The bio-admixture in the fuel was FAME, STING and rape oil. The catalytic cracking of polyolefin's was the source of second fuel admixture. The physical properties of analyzed components of the fuel have been presented. The operational parameters of direct injection diesel engine fuelled with tested fuel blends have been set out. The principles of fuel mixture preparation has been also described. The concept of the diesel fuel which is made from the components of opposite physical properties could have a positive practical effect and could improve the use of biofuels. (orig.)

  19. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  20. Upgrading fuel properties of biomass by torrefaction

    Energy Technology Data Exchange (ETDEWEB)

    Lei Shang

    2012-12-15

    Torrefaction is a mild thermal (200 - 300 UC) treatment in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the influence of torrefaction on the chemical and mechanical properties (grindability and hygroscopicity) of wood chips, wood pellets and wheat straw was investigated and compared. The mass loss during torrefaction was found to be a useful indicator for determining the degree of torrefaction. For all three biomass, higher torrefaction temperature or longer residence time resulted in higher mass loss, higher heating value, better grindability, and less moisture absorption. However, severe torrefaction conditions were found not necessary in order to save energy during grinding, since strain energy and grinding energy decreased tremendously in the first 5 - 25% anhydrous weight loss. By correlating the heating value and mass loss, it was found that wheat straw contained less heating value on mass basis than the other two fuels, but the fraction of energy retained in the torrefied sample as a function of mass loss was very similar for all three biomass. Gas products formed during torrefaction of three biomass were detected in situ by coupling mass spectrometer with a thermogravimetric analyzer (TGA). The main components were water, carbon monoxide, formic acid, formaldehyde, methanol, acetic acid, carbon dioxide, and methyl chloride. The cumulative releases of gas products from three biomass fuels at 300 UC for 1 h were compared, and water was found to be the dominant product during torrefaction. The degradation kinetics of wheat straw was studied in TGA by applying a two-step reaction in series model and taking the mass loss during the initial heating period into account. The model and parameters were proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor with different heating rates well. It means the mass yield of solids

  1. Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2010-07-01

    The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel

  2. Effect of engine parameters and gaseous fuel type on the cyclic variability of dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Y.E. Selim [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Department, Faculty of Engineering

    2005-05-01

    This paper presents an analysis of the cycle-to-cycle combustion variation as reflected in the combustion pressure data of a single cylinder, naturally aspirated, four stroke, Ricardo E6 engine converted to run as dual fuel engine on diesel and gaseous fuel of LPG or methane. A measuring set-up consisting of a piezo-electric pressure transducer with charge amplifier and fast data acquisition card installed on an IBM microcomputer was used to gather the data of up to 1200 consecutive combustion cycles of the cylinder under various combination of engine operating and design parameters. These parameters included type of gaseous fuel, engine load, compression ratio, pilot fuel injection timing, pilot fuel mass, and engine speed. The data for each operating conditions were analyzed for the maximum pressure, the maximum rate of pressure rise representing the combustion noise, and indicated mean effective pressure. The cycle-to-cycle variation is expressed as the mean value, standard deviation, and coefficient of variation of these three parameters. It was found that the type of gaseous fuel and engine operating and design parameters affected the combustion noise and its cyclic variation and these effects have been presented. 21 refs., 6 figs., 1 tab.

  3. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  4. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  5. The influence of the mechanical properties on fuel rod support characteristics – A case study of dual cooled fuel

    International Nuclear Information System (INIS)

    Kim, Jae Yong; Kim, Hyung Kyu; Ko, Sung Ho

    2014-01-01

    Highlights: • Spring characterization test and analysis were performed to obtain characteristic curves of modified H-type spring. • Using an actual mechanical property is needed to correctly predict the spring characteristics. • The characteristics during unloading should be used for a spacer grid support design. - Abstract: This paper concerns a finite element analysis for a spacer grid support (spring and dimple) design. An accurate prediction of the support characteristics (contact force vs. deflection) is the most crucial in the design by analysis. It is found that the mechanical properties are the key parameter to simulate the characteristics as close as the experimental results after using three different sets of mechanical property data including the actual tensile test results of the present material for a spacer grid of a dual cooled fuel. Besides, the validity of using the characteristics during unloading process is also discussed incorporating a possible overshoot of the support. The coincidence between the present finite element prediction and experimental results is quite good: less than 3.09% at most

  6. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  7. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  8. Fabrication of uranium-americium mixed oxide fuels: thermodynamical modeling and materials properties

    International Nuclear Information System (INIS)

    Prieur, D.

    2011-01-01

    Fuel irradiation in pressurized water reactors lead to the formation of fission products and minor actinides (Np, Am, Cm) which can be transmuted in fast neutrons reactors. In this context, the aim of this work was to study the fabrication conditions of the U 1-y Am y O 2+x fuels which exhibit particular thermodynamical properties requiring an accurate monitoring of the oxygen potential during the sintering step. For this reason, a thermodynamical model was developed to assess the optimum sintering conditions for these materials. From these calculations, U 1-y Am y O 2+x (y=0.10; 0.15; 0.20; 0.30) were sintered in two range of atmosphere. In hyper-stoichiometric conditions at low temperature, porous and multiphasic compounds are obtained whereas in reducing conditions at high temperature materials are dense and monophasic. XAFS analyses were performed in order to obtain additional experimental data for the thermodynamical modeling refinement. These characterizations also showed the reduction of Am(+IV) to Am(+III) and the partial oxidation of U(+IV) to U(+V) due to a charge compensation mechanism occurring during the sintering. Finally, taking into account the high - activity of Am, self-irradiation effects were studied for two types of microstructures and two Am contents (10 and 15%). For each composition, a lattice parameter increase was observed without structural change coupled with a macroscopic swelling of the pellet diameter up to 1.2% for the dense compounds and 0.6% for the tailored porosity materials. (author) [fr

  9. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  10. Research on CDA for advanced fuel FBR

    International Nuclear Information System (INIS)

    Hirano, Go; Hirakawa, Naohiro; Kawada, Ken-ichi; Niwa, Hazime.

    1997-03-01

    For the purpose of evaluating possibility of the re-criticality of a metallic fueled reactor, Tohoku university and Power Reactor and Nuclear Fuel Development Corporation have made a joint research entitled 'Research on CDA for advanced fuel FBR'. The results of this year are the following. The accident initiator considered is a loss-of-flow accident with ATWS. The LOF analysis was performed for the metallic fueled 600 MWe homogeneous two region reactors, both for a metallic fuel only and for a metallic fuel core with ZrH pin. The SAS3D CDA initiation phase analysis code was used to investigate the re-criticality potential at the severe accident. The change mainly in the constants was necessary to apply the code for the analysis of a metallic fueled reactor. These changes were made by assuming appropriate models. LOF with flow decay half time of t 1/2 =0.5(s) (all blackout case) and 5.5(s) (ordinary LOF case) were analyzed. Independent of the conditions of the analysis, the results show all the cases could avoid to become prompt-critical. Depending on the analysis condition, it becomes necessary to transfer to the transient phase, it is also shown there is a possibility to avoid re-criticality due to the motion of molten fuel both for the metallic fuel and for the metallic fuel with ZrH moderator. However, because of the constants used for the material property the results might overestimate the fuel motion. It is shown that the moderator is effective to terminate the accident at an early stage. The behavior of metallic fueled reactors at CDA was analyzed with SAS3D code by modifying the constants of material properties to be applied to the reactor. It is shown that a metallic fueled reactor has a possibility to avoid re-criticality at CDA. (J.P.N.)

  11. Alternative Aviation Fuel Experiment (AAFEX)

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Hudgins, C. H.; Plant, J. V.; Thornhill, K. L.; Winstead, E. L.; Ziemba, L. D.; Howard, R.; Corporan, E.; Miake-Lye, R. C.; hide

    2011-01-01

    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plumes

  12. Sanitary effects of fossil fuels

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2006-01-01

    In this compilation are studied the sanitary effects of fossil fuels, behavioral and environmental sanitary risks. The risks in connection with the production, the transport and the distribution(casting) are also approached for the oil(petroleum), the gas and the coal. Accidents in the home are evoked. The risks due to the atmospheric pollution are seen through the components of the atmospheric pollution as well as the sanitary effects of this pollution. (N.C.)

  13. Boiling transition phenomenon in BWR fuel assemblies effect of fuel spacer shape on critical power

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Morooka, Shin-ichi; Mitsutake, Toru; Yokobori, Seiichi; Kimura, Jiro.

    1996-01-01

    A thorough understanding of the thermal-hydraulic phenomena near fuel spacer is necessary for the accurate prediction of the critical power of BWR fuel assemblies, and is thus essential for effective developments of a new BWR fuel assembly. The main purpose of this study is to develop an accurate method for predicting the effect of spacer shapes on critical power. Tests have been conducted under actual BWR operating conditions, using an annulus flow channel consisting of a heated rod and circular-tube channel, and BWR simulated 4x4 rod bundles with heater rods unheated just upsteam of spacer. The effect of spacer shapes on critical power was predicted analytically based on the droplet deposition rate estimation. The droplet deposition rate for different spacer shapes was calculated using a single-phase flow model. The prediction results were compared with the test results for the annulus flow channel using ring-type spacers. Analytical results of critical power agreed with measured critical power from point of the effects of changes in the rod-spacer clearance and the spacer thickness on critical power. (author)

  14. Bayesian modelling of household solid fuel use: insights towards designing effective interventions to promote fuel switching in Africa.

    Science.gov (United States)

    Rehfuess, Eva A; Briggs, David J; Joffe, Mike; Best, Nicky

    2010-10-01

    Indoor air pollution from solid fuel use is a significant risk factor for acute lower respiratory infections among children in sub-Saharan Africa. Interventions that promote a switch to modern fuels hold a large health promise, but their effective design and implementation require an understanding of the web of upstream and proximal determinants of household fuel use. Using Demographic and Health Survey data for Benin, Kenya and Ethiopia together with Bayesian hierarchical and spatial modelling, this paper quantifies the impact of household-level factors on cooking fuel choice, assesses variation between communities and districts and discusses the likely nature of contextual effects. Household- and area-level characteristics appear to interact as determinants of cooking fuel choice. In all three countries, wealth and the educational attainment of women and men emerge as important; the nature of area-level factors varies between countries. In Benin, a two-level model with spatial community random effects best explains the data, pointing to an environmental explanation. In Ethiopia and Kenya, a three-level model with unstructured community and district random effects is selected, implying relatively autonomous economic and social areas. Area-level heterogeneity, indicated by large median odds ratios, appears to be responsible for a greater share of variation in the data than household-level factors. This may be an indication that fuel choice is to a considerable extent supply-driven rather than demand-driven. Consequently, interventions to promote fuel switching will carefully need to assess supply-side limitations and devise appropriate policy and programmatic approaches to overcome them. To our knowledge, this paper represents the first attempt to model the determinants of solid fuel use, highlighting socio-economic differences between households and, notably, the dramatic influence of contextual effects. It illustrates the potential that multilevel and spatial

  15. On Cherenkov light production by irradiated nuclear fuel rods

    International Nuclear Information System (INIS)

    Branger, E.; Grape, S.; Svärd, S. Jacobsson; Jansson, P.; Sundén, E. Andersson

    2017-01-01

    Safeguards verification of irradiated nuclear fuel assemblies in wet storage is frequently done by measuring the Cherenkov light in the surrounding water produced due to radioactive decays of fission products in the fuel. This paper accounts for the physical processes behind the Cherenkov light production caused by a single fuel rod in wet storage, and simulations are presented that investigate to what extent various properties of the rod affect the Cherenkov light production. The results show that the fuel properties have a noticeable effect on the Cherenkov light production, and thus that the prediction models for Cherenkov light production which are used in the safeguards verifications could potentially be improved by considering these properties. It is concluded that the dominating source of the Cherenkov light is gamma-ray interactions with electrons in the surrounding water. Electrons created from beta decay may also exit the fuel and produce Cherenkov light, and e.g. Y-90 was identified as a possible contributor to significant levels of the measurable Cherenkov light in long-cooled fuel. The results also show that the cylindrical, elongated fuel rod geometry results in a non-isotropic Cherenkov light production, and the light component parallel to the rod's axis exhibits a dependence on gamma-ray energy that differs from the total intensity, which is of importance since the typical safeguards measurement situation observes the vertical light component. It is also concluded that the radial distributions of the radiation sources in a fuel rod will affect the Cherenkov light production.

  16. Effective equivalencies of industrial fuels; Equivalencias efetivas de combustiveis industriais

    Energy Technology Data Exchange (ETDEWEB)

    Fehr, Manfred [Uberlandia Univ., MG (Brazil). Dept. de Engenharia Quimica

    1986-01-01

    This work perform comparison criteria between various solid, liquid and gaseous fuels, under several burn conditions. The objective of this comparison is to choose the most cost-effective fuel for heat generation, including the variables of fuel price, consumption, waste generation and safety conditions 16 refs., 1 fig., 8 tabs.

  17. A comparative study of fission gas behaviour in UO2 and MOX fuels using the meteor fuel performance code

    International Nuclear Information System (INIS)

    Struzik, C.; Garcia, Ph.; Noirot, L.

    2002-01-01

    The paper reviews some of the fission-gas-related differences observed between MOX MIMAS AUC fuels and homogeneous UO 2 fuels. Under steady-state conditions, the apparently higher fractional release in MOX fuels is interpreted with the METEOR fuel performance code as a consequence of their lower thermal conductivity and the higher linear heat rates to which MOX fuel rods are subjected. Although more fundamental diffusion properties are needed, the apparently greater swelling of MOX fuel rods at higher linear heat rates can be ascribed to enhanced diffusion properties. (authors)

  18. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  19. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  20. The importance of fuel properties in the formation of nitrogen oxides and in combustion

    International Nuclear Information System (INIS)

    Aho, M.; Haemaelaeinen, J.; Rantanen, J.; Saastamoinen, J.

    1996-01-01

    Reactions of fuel nitrogen during pyrolysis and combustion of pulverized hvb coal, two peats and fir bark, thermal DeNOx-process and formation of N 2 0 from char were studied experimentally in a pressurized entrained flow reactor. Mass loss of fuel, release of C,N,H and 0, and formation of NH 3 and HCN were measured during pyrolysis (in N 2 containing O 2 vol ). Mass loss, and formation of NO, N 2 O and NO 2 through HCN and NH 3 were measured during combustion at 5-4 vol% O 2 . Thermal DeNOx process was studied at 2 and 15 bar at T= 700-950 deg C. Formation of N 2 O from peat and its char was studied in a modified thermobalance. The rate of pyrolysis of high-volatile fuels (fir bark and peat) increased with pressure. A reverse trend was found with Polish hvb coal. The HCN/NH 3 ratio in the flame was dependent on the fuel-O/fuel-N ratio and independent of pressure. Pressure did, however, increase the N 2 O/NO ratio, because the concentrations of the key radicals in NO formation are decreased by pressure. With peats, the formation of N 2 O increased slightly with pressure. The emissions of N 2 O, however, doubled with wood bark when the pressure increased from 0.2 MPa to 0.8 MPa. Formation of NO 2 increased clearly with pressure, and was fuel-dependent. One peat sample produced three times as much NO 2 as the other under identical conditions. Pressure seemed to effect on Thermal DeNOx-process by lowering the effective temperature. Experiments with entrained flow of fuel and its char in project Liekki2-301, and experiments with single char and fuel particles in this project suggested that volatile nitrogen forms much more N 2 O than char-N. Bed effects can change this situation in a real fluidized bed combustion process. (author)

  1. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  2. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  3. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  4. Controlled beta-quench treatment of fuel channels

    International Nuclear Information System (INIS)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk; Perkins, Richard A.

    2007-01-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. Beta-quenching of fuel channels has been applied by the nuclear industry to improve the dimensional stability of this component. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure in order to improve the dimensional behavior of fuel channels by randomizing the crystallographic texture, while maintaining the excellent corrosion behavior of the fuel channels by providing intermetallic phase particles of optimum average size. The first fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels will follow in 2007 to broaden in-pile experience and to receive irradiation feedback from two other nuclear power plants. (authors)

  5. First results on the effect of fuel-cladding eccentricity

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2009-01-01

    In the traditional fuel-behaviour or hot channel calculations it is assumed that the fuel pellet is centered within the clad. However, in the real life the pellet could be positioned asymmetrically within the clad, which leads to asymmetric gap conductance and therefore it is worthwhile to investigate the magnitude of the effect on maximal fuel temperature and surface heat flux. In this paper our first experiences are presented on this topic. (Authors)

  6. Urea-nitrate combustion synthesis of MgO/MgAl2O4 nanocatalyst used in biodiesel production from sunflower oil: Influence of fuel ratio on catalytic properties and performance

    International Nuclear Information System (INIS)

    Rahmani Vahid, Behgam; Haghighi, Mohammad

    2016-01-01

    Graphical abstract: As a base catalyst for biodiesel production, MgAl 2 O 4 spinel was successfully synthesized by combustion method with MgO, as the active phase, dispersed on the catalyst surface. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. Analyzing the effect of fuel ratio on the combustion synthesized MgAl 2 O 4 , it was revealed that the synthesized base catalyst with a fuel ratio of 1.5 was of the best specifications for biodiesel production process. Future researches may investigate the catalyst reusability and mild reaction conditions, so as to achieve more economical production of biodiesel. - Highlights: • Efficient synthesis of MgAl 2 O 4 spinel by solution combustion method. • Improvement of catalytic activity and stability by optimum ratio fuel. • Enhanced dispersion of MgO over MgAl 2 O 4 spinel. • Production of biodiesel over MgO/MgAl 2 O 4 at relatively mild reaction conditions. - Abstract: MgO/MgAl 2 O 4 nanocatalyst was synthesized by a simple, cost-effective and rapid method and used in biodiesel production from sunflower oil. MgAl 2 O 4 was synthesized by combustion method at different fuel ratios and then active phase of MgO was dispersed on the samples by impregnation method. The nanocatalysts were characterized by XRD, FESEM, EDX, BET-BJH, TGA and FTIR analyses, so as to optimize the concentration of urea (as fuel) in the combustion synthesis. The physicochemical properties of the nanocatalyst confirmed the sample synthesized with fuel ratio of 1.5 has high surface area, effective morphology and texture properties. Finally, in order to evaluate catalytic activity of the samples in biodiesel production, the transesterification reaction was performed. The results indicated the catalyst prepared by combustion synthesis with a fuel ratio of 1.5 was optimum specifications for biodiesel production. Using this

  7. Thermal-hydraulic effects of transition to improved System 80TM fuel

    International Nuclear Information System (INIS)

    Rodack, T.; Joffre, P.F.; Kapoor, R.K.

    2004-01-01

    ABB CE's improved System 80 TM PWR fuel design includes GUARDIAN debris-resistant features and laser-welded Zircaloy grids. The GUARDIAN features include an Inconel grid with debris-filtering features located just above the Lower End Fitting, and a solid fuel rod bottom end cap that extends above the filtering features. Tests and analyses were done to establish the impact of these design improvements on fuel assembly hydraulic performance. Further analysis was done to determine the mixed core thermal-hydraulic performance as the transition is made over two fuel cycles to a full core of the improved System 80 TM fuel. Results confirm that the Thermal-Hydraulic (T-H) effects of the reduction in hydraulic resistance between the improved and resident fuel due to the laser-welded Zircaloy grids offsets the effects of the increased resistance GUARDIAN grid. Therefore, the mechanically improved System 80 TM fuel can be implemented with no net impact on Departure from Nucleate Boiling (DNB) margin in transition cores. (author)

  8. Advanced breeder cycle uses metallic fuel

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1991-01-01

    Scientists from Argonne National Laboratory have been developing a concept called the Integral fast Reactor (IFR). This fast breeder reactor could effectively increase Uranium resources a hundred fold making nuclear power essentially an inexhaustible energy source. The IFR is outlined. In the IFR, the inherent properties of liquid metal cooling are combined with a new metallic fuel which is allowed to swell and gives an improved burnup level and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics and waste management. (author)

  9. Metal-deactivating additives for liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Boneva, M.I. [Institute of Organic Chemistry, Sofia (Bulgaria); Ivanov, S.K.; Kalitchin, Z.D. [SciBulCom, Ltd., Sofia (Bulgaria); Tanielyan, S.K. [Seton Hall Univ., South Orange, NJ (United States); Terebenina, A.; Todorova, O.I. [Institute of Inorganic Chemistry, Sofia (Bulgaria)

    1995-05-01

    The metal-deactivating and the antioxidant properties of 1-phenyl-3-methylpyrazolone-5 derivatives have been investigated both in the model reaction of low temperature oxidation of ethylbenzene and in gasoline oxidation. The study of the ability of these derivatives to reduce the catalytic effect of copper naphthenate demonstrates that they are promising as metal deactivating additives for light fuels. Some of the pyrazolone compounds appear to be of special interest for the long-term storage of liquid fuels due to their action as multifunctional inhibitors.

  10. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  11. In-cylinder visualization and engine out emissions from CI to PPC for fuels with different properties

    KAUST Repository

    An, Yanzhao

    2018-02-27

    This study investigated the transition from conventional Compression Ignition (CI) to Partially Premixed Combustion (PPC) in an optical engine for fuels with differing properties. Combustion stratification and emissions were measured with diesel, naphtha and their corresponding surrogate fuels, N-heptane and PRF50. The aim of the study is to link the combustion images with engine out emissions and mixture homogeneity. Single injection strategy with the change of start of injection (SOI) from late to early injections was employed. Results show that combustion phasing trend is similar for diesel/N-heptane as well as for naphtha/PRF50 as the SOI moved from late injection timing to early injection timing. However, there is a significant difference in combustion phasing behavior for gasoline like fuels (naphtha and PRF50) and diesel fuels (diesel and N-heptane). CO emissions show an inverted V-shaped trend with one single peak in the transition zone. A “W” shape trend, with two bottoms at various dilution rates is observed for the UHC emissions. NOX emissions are high in the transition zone and decreased to lower levels in CI and PPC zones. NOX emissions are significantly reduced by reducing the intake O2 concentration with nitrogen. Except for diesel, the other three fuels show lower soot emissions. When compared to diesel like fuels, the natural luminosity of the images are lower for gasoline like fuels, indicating better premixed combustion. As the SOI is changed from CI to PPC mode, the combustion stratification increases towards a peak value in the transition zone and then decreases to a low level in PPC zone. A competition exists between the intake temperature and the dilution rate for the combustion stratification. The level of stratification is higher for real fuels (diesel and naphtha) when compared to surrogate fuel (N-heptane and PRF50).

  12. Effect of Biodiesel Fuel Injection Timing and Venture for Gaseous Fuel Induction on the Performance, Emissions and Combustion Characteristics of Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2018-02-01

    Full Text Available Advancing or retarding pilot fuel injection timing in a diesel engine provided with either conventional mechanical fuel injection (CMFIS or high pressure injection as in common rail fuel injection (CRDI systems can significantly affect its performance and tail pipe emissions. Performance of diesel engine when fueled with various biofuels as well as gaseous fuels tends to vary with subsequent changes in pilot fuel injection timings. Biodiesel derived from rubber seed oil called Rubber Seed Oil Methyl Ester (RuOME and hydrogen (H2 and hydrogen enriched compressed natural gas called (HCNG both being renewable fuels when used in diesel engines modified to operate in dual fuel mode can provide complete replacement for fossil diesel. In the present study, effect of injection timings and venture design for gas mixing on the performance, combustion and emission characteristics of dual fuel engine fitted with both CMFIS and CRDI injection systems and operated on RuOME and HCNG/hydrogen has been investigated. Results showed that high pressure CRDI assisted injection of RuOME with optimized mixing chamber (carburetor for hydrogen induction in dual fuel engine performed improved compared to that with CMFIS. In addition, for the same fuel combinations, CRDI resulted in lower biodiesel consumption, lower carbon monoxide (BSCO and hydrocarbon (BSHC emissions and increased NOx emissions than CMFIS operation.

  13. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  14. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  15. Impact of the 37M fuel design on reactor physics characteristics

    International Nuclear Information System (INIS)

    Perez, R.; Ta, P.

    2013-01-01

    For CANDU nuclear reactors, aging of the Heat Transport System (HTS) leads to, among other effects, a reduction on the Critical Heat Flux (CHF) and dryout margin. In an effort to mitigate the impact of aging of the HTS on safety margins, Bruce Power is introducing a design change to the standard 37-element fuel bundle known as the modified 37-element fuel bundle, or 37M for short. As part of the overall design change process it was necessary to assess the impact of the modified fuel bundle design on key reactor physics parameters. Quantification of this impact on lattice cell properties, core reactivity properties, etc., was reached through a series of calculations using state-of-the-art lattice and core physics models, and comparisons against results for the standard fuel bundle. (author)

  16. Modeling fuels and fire effects in 3D: Model description and applications

    Science.gov (United States)

    Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn

    2016-01-01

    Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...

  17. Strength analysis of fast gas cooled reactor fuel element in conditions of fuel-cladding interraction and non-uniform azimuthal heating

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.

    1984-01-01

    The technique and the PRORT mathematical program in FORTRAN language for determining mechanical properties of a fuel element with motionless fuel-cladding interaction taking into account circular temperature non-uniformity in gas-cooled fast reactor conditions are proposed. The calculation results of the fuel element of dissociating gas cooled fast reactor are presented for seven cross-sections over the height of the core. The obtained data testify to appreciable swelling of Cr16Ni15Mo3Nb steel fuel cladding in the conditions of dissociating gas cooled fast reactor through the allowance for the effect of stresses on this essential parameter shows, that its value is lower in comparison with swelling, wherein stresses are not taken into account

  18. Development of the fabrication technology of the simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Yang, M. S.; Bae, K. K. and others

    2000-06-01

    It is important to get basic data to analysis physical properties, behavior in reactor and performance of the DUPIC fuel because physical properties of the DUPIC fuel is different from the commercial UO 2 fuel. But what directly measures physical properties et al. of DUPIC fuel being resinterred simulated spent fuel through OREOX process is very difficult in laboratory owing to its high level radiation. Then fabrication of simulated DUPIC fuel is needed to measure its properties. In this study, processes on powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using simulated spent fuel are discribed. To fabricate simulated DUPIC fuel, the powder from 3 times OREOX and 5 times attrition milling simulated spent fuel is compacted with 1.3 ton/cm 2 . Pellets are sintered in 100% H 2 atmosphere over 10 h at 1800 deg C. Sintered densities of pellets are 10.2-10.5 g/cm 3

  19. Effect of reduced enrichment on the fuel cycle for research reactors

    International Nuclear Information System (INIS)

    Travelli, A.

    1982-01-01

    The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel

  20. Effects of degree of approval and message on utility of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2007-01-01

    It is said that the effectiveness of nuclear power generation is the greatest factor contributing to whether or not people support the nuclear power policy. The major objectives of this research are twofold: from among opinions regarding the effectiveness of the nuclear fuel cycle, to clarify what kinds of opinions people support and what kinds of opinions have influenced judgments about the pros and cons of the nuclear fuel cycle; and to measure the extent to which people's awareness of the nuclear fuel cycle is influenced by numerical information that has been added to a nuclear-fuel-cycle-related message that has been created on the basis of results of the survey conducted for the first objective mentioned above. As for the first objective, the survey results revealed that the opinion 'the establishment of a nuclear fuel cycle leads to the effective use of energy resources' did not garner much support from the public. However, it was indicated that people being for or against that opinion may have relatively great effect on their judgment regarding the pros and ons of nuclear fuel cycle establishment. For the second objective, we showed people the messages the nuclear fuel cycle enables effective use of natural uranium' and 'the nuclear fuel cycle enables tens times more effective use of natural uranium' to the latter of which numerical information was added. As a result, we found no difference in people's attitude toward the nuclear fuel cycle even if numerical information was added to a nuclear-fuel-cycle-related message. (author)

  1. Evaluating missile fuels

    Energy Technology Data Exchange (ETDEWEB)

    Osmont, Antoine; Goekalp, Iskender [Laboratoire de Combustion et Systemes Reactifs (LCSR), CNRS, 1C, Orleans (France); Catoire, Laurent [University of Orleans, BP6749, 45067 Orleans (France); Laboratoire de Combustion et Systemes Reactifs (LCSR), CNRS, 1C, Orleans (France)

    2006-10-15

    This paper presents simple and relatively efficient methods to estimate some physical and chemical properties of polycyclic alkanes. These properties are melting point, normal boiling point, standard enthalpy of vaporization at 298 K, standard enthalpy of formation at 298 K, standard enthalpy of combustion at 298 K, density (specific gravity) and flash point. These methods are validated, despite the scarcity of experimental data, with several tens of polycyclic alkanes. Then the methods are used to estimate properties of some polycyclic alkanes, which are currently in use as missile fuels: JP-10, RJ-4 and RJ-5. Estimates and experimental data are found in good agreement for these fuels. This methodology is then used to evaluate missile fuel candidates to be used pure or as additive to JP-10 or to blends such as RJ-6. Several compounds are probably of interest for this task and their advantages and drawbacks are discussed. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  3. Rheology of Colombian coal-water slurry fuels: Effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J E; Rojas, C P; Acero, G [Universidad Industrial de Santander, Bucaramanga (Colombia)

    1996-12-31

    Coal-water slurry fuels (CWSF`s) have been prepared and characterized in a research project in Colombia, sponsored by Colciencias and Ecocarbon, in order to evaluate the effects of the different composition variables on the behavior during preparation and pipe line transportation. The authors have previously presented details describing the characteristics of the slurry fuels prepared with five types of Colombian thermal coals and the influence of their chemical composition on the optimum particle-size distribution (PSD) required to prepare highly loaded and workable CWSF`s. The formulation and design of flow systems of suspensions with high solids content, such as the CWSF`s, require a detailed rheological knowledge of the suspension in terms of the governing parameters related to PSD, coal content, surface chemistry of the particles and dispersants used to stabilize the slurries. Important studies on these aspects have been reviewed and carried out experimentally by other authors specially devoted to the correlations between apparent viscosity, solids content and average coal particle-size. One of the targets to obtain an optimum control on the viscosity and flow properties of the CWSF`s must be based in correlating the Theological constants for the prevailing model of viscosity law to the characteristic parameters of the particle-size distribution and to the coal content in the slurry. In spite of the effect of PSD on the rheology of highly-loaded coal slurries have been long recognized as significant, the specific influence of the various PSD`s on the parameters of the Theological model continues to receive attention to further understanding in order to improve the slurry formulations for a specified purpose on preparation and hydraulic handling. This paper reports the results of an experimental technique of examining the various PSD`s on coal slurry fuel rheology, taking special attention for the effect on the parameters of the rheological model.

  4. Oxygen Chemical Diffusion Coefficients of (Pu,Am)O2 Fuels

    International Nuclear Information System (INIS)

    Watanabe, M.; Kato, M.; Matsumoto, T.

    2015-01-01

    Minor actinide (MA)-bearing MOX fuels have been developed as candidate fuels which are used in fast neutron spectrum cores such as sodium-cooled fast reactor (SFR) cores and experimental accelerator driven system (ADS) cores. Americium (Am) which is one of the MA elements significantly affects basic properties. It is known that Am content causes oxygen potential to increase and that influences irradiation behaviour such as fuel-cladding chemical interaction (FCCI) and chemical state of fission products. However, the effects of Am content on changes of basic properties are not clear. In this work, the oxygen chemical diffusion coefficients were calculated from measured data and the relationship between oxygen diffusion and oxygen potential of (Pu,Am)O 2-x was discussed. (authors)

  5. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.

    Science.gov (United States)

    Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T

    2018-03-01

    Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect

  6. Non-destructive analysis of spent nuclear fuel

    International Nuclear Information System (INIS)

    Popovic, D.

    1961-12-01

    Nondestructive analysis of fuel elements dealt with determining the isotope contents which provide information about the burnup level, quantities of fission products and neutron-multiplication properties of the irradiated fuel. Methods for determination of the isotope ratio of the spent fuel are both numerical and experimental. This report deals with the experimental method. This means development of the experimental methods for direct measurement of the isotope content. A number of procedures are described: measurements of α, β and γ activities of the isotopes; measurement of secondary effects of nuclear reactions with thermal neutrons and fast neutrons; measurement of cross sections; detection of prompt and delayed neutrons

  7. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  8. Effect of Alternative Fuels on SCR Chemistry

    OpenAIRE

    Faramarzi, Simin

    2012-01-01

    In the time line of world industrial age, the most important era begins in the late 18th century when the use of fossil fuels was growing intensively. This approach has continued and developed up to the 20th century. Besides, this trend has had side effects like polluting environment. Air pollution is one of the critical issues nowadays that stems from using hydrocarbon fuels. One type of the problematic compounds in polluting air is nitrogen oxides that can be produced in combustion process ...

  9. Modelling of phenomena associated with high burnup fuel behaviour during overpower transients

    International Nuclear Information System (INIS)

    Sills, H.E.; Langman, V.J.; Iglesias, F.C.

    1995-01-01

    Phenomena of importance to the behaviour of high burnup fuel subjected to conditions of rapid overpower (i.e., LWR RIAs) include the change in cladding material properties due to irradiation, pellet-clad interaction (PCI) and 'rim' effects associated with the periphery of high burnup fuel. 'Rim' effects are postulated to be caused by changes in fuel morphology at high burnup. Typical discharge burnups for CANDU fuel are low compared to LWRs. Maximum linear ratings for CANDU fuel are higher than those for LWRs. However, under normal operating conditions, the Zircaloy-4 clad of the CANDU fuel is collapsed onto the fuel stack. Thus, the CANDU fuel performance codes model the transient behaviour of the fuel-to-clad interface and are capable of assessing the potential for pellet-clad mechanical interaction (PCMI) failures for a wide range of overpower conditions. This report provides a discussion of the modelling of the phenomena of importance to high burnup fuel behaviour during rapid overpower transients. (author)

  10. Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2015-12-01

    Full Text Available In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE based on RSM.

  11. Effects of spent nuclear fuel aging on disposal requirements

    International Nuclear Information System (INIS)

    McKee, R.W.; Johnson, K.I.; Huber, H.D.; Bierschbach, M.C.

    1991-10-01

    This paper describes results of a study to analyze the waste management systems effects of extended spent fuel aging on spent fuel disposal requirements. The analysis considers additional spent fuel aging up to a maximum of 50 years relative to the currently planned 2010 repository startup in the United States. As part of the analysis, an equal energy disposition (EED) methodology was developed for determining allowable waste emplacement densities and waste container loading in a geologic repository. Results of this analysis indicate that substantial benefits of spent fuel aging will already have been achieved by a repository startup in 2010 (spent fuel average age will be 28 years). Even so, further significant aging benefits, in terms of reduced emplacement areas and mining requirements and reduced number of waste containers, will continue to accrue for at least another 50 years when the average spent fuel age would be 78 years, if the repository startup is further delayed

  12. RIA tests in CABRI with MOX fuel

    International Nuclear Information System (INIS)

    Schmitz, F.; Papin, J.; Gonnier, C.

    2000-01-01

    Three MOX-fuel tests have been successfully performed within the framework of the CABRI REP-Na test program. From the experimental findings which are presently available, no evidence for thermal effects resulting from the heterogeneous nature of the fuel can be given. There are very clear hints however that fission gas effects are enhanced with regard to the behaviour of UO 2 . The clad rupture observed in REP-Na 7 is of different nature than the failures observed in Cabri tests with UO 2 fuel. Failures of UO 2 fuel rods only occurred when the clad mechanical properties were severely affected by the presence of hydride blisters, while in REP-Na 7 a clear indication is made that the loading potential of the MOX fuel pellets was high enough to break a sound cladding. Concerning the transient fuel behaviour after reaching the critical heat-flux under reactor typical conditions (pressure, temperature and flow), no data base could be provided by the tests in the present sodium test loop (as for the UO 2 fuel behaviour). The IPSN project to implement into the Cabri reactor a pressurised water loop which will allow to simulate the complete RIA accident sequence under PWR reactor typical conditions, aims at providing this missing data base. (author)

  13. Predicting specific gravity and viscosity of biodiesel fuels

    OpenAIRE

    Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew

    2009-01-01

    Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...

  14. The Light-Water-Reactor Version of the URANUS Integral fuel-rod code

    Energy Technology Data Exchange (ETDEWEB)

    Labmann, K; Moreno, A

    1977-07-01

    The LWR version of the URANUS code, a digital computer programme for the thermal and mechanical analysis of fuel rods, is presented. Material properties are discussed and their effect on integral fuel rod behaviour elaborated via URANUS results for some carefully selected reference experiments. The numerical results do not represent post-irradiation analyses of in-pile experiments, they illustrate rather typical and diverse URANUS capabilities. The performance test shows that URANUS is reliable and efficient, thus the code is a most valuable tool in fuel rod analysis work. K. LaBmann developed the LWR version of the URANUS code, material properties were reviewed and supplied by A. Moreno. (Author) 41 refs.

  15. The light-water-reactor version of the Uranus integral fuel-rod code

    International Nuclear Information System (INIS)

    Moreno, A.; Lassmann, K.

    1977-01-01

    The LWR of the Uranus code, a digital computer programme for the thermal and mechanical analysis of fuel rods, is presented. Material properties are discussed and their effect on integral fuel rod behaviour elaborated via Uranus results for some carefully selected reference experiments. The numerical results do not represent post-irradiation analysis of in-pile experiments, they illustrate rather typical and diverse Uranus capabilities. The performance test shows that Uranus is reliable and efficient, thus the code is a most valuable tool in fuel fod analysis work. K. Lassmann developed the LWR version of the Uranus code, material properties were reviewed and supplied by A. Moreno. (author)

  16. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  17. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad; Bakor, Radwan; AlRamadan, Abdullah; Almansour, Mohammed; Sim, Jaeheon; Ahmed, Ahfaz; Viollet, Yoann; Chang, Junseok

    2018-01-01

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  18. Standardized Gasoline Compression Ignition Fuels Matrix

    KAUST Repository

    Badra, Jihad

    2018-04-03

    Direct injection compression ignition engines running on gasoline-like fuels have been considered an attractive alternative to traditional spark ignition and diesel engines. The compression and lean combustion mode eliminates throttle losses yielding higher thermodynamic efficiencies and the better mixing of fuel/air due to the longer ignition delay times of the gasoline-like fuels allows better emission performance such as nitric oxides (NOx) and particulate matter (PM). These gasoline-like fuels which usually have lower octane compared to market gasoline have been identified as a viable option for the gasoline compression ignition (GCI) engine applications due to its lower reactivity and lighter evaporation compared to diesel. The properties, specifications and sources of these GCI fuels are not fully understood yet because this technology is relatively new. In this work, a GCI fuel matrix is being developed based on the significance of certain physical and chemical properties in GCI engine operation. Those properties were chosen to be density, temperature at 90 volume % evaporation (T90) or final boiling point (FBP) and research octane number (RON) and the ranges of these properties were determined from the data reported in literature. These proposed fuels were theoretically formulated, while applying realistic constraints, using species present in real refinery streams. Finally, three-dimensional (3D) engine computational fluid dynamics (CFD) simulations were performed using the proposed GCI fuels and the similarities and differences were highlighted.

  19. Effect of fuels on conductivity, dielectric and humidity sensing properties of ZrO2 nanocrystals prepared by low temperature solution combustion method

    Directory of Open Access Journals (Sweden)

    H.C. Madhusudhana

    2016-09-01

    Full Text Available ZrO2 nanopowders were synthesized by low temperature solution combustion method using two different fuels namely glycine and oxalyldihydrazide (ODH. The phase confirmation was done by powder X-ray diffraction (PXRD and Raman spectral analysis. Use of glycine resulted in ZrO2 with mixture of tetragonal and monoclinic phase with average crystallite size of ∼30 nm. However, ODH as fuel aids in the formation of ZrO2 with mixture of tetragonal and cubic phase with average crystallite size ∼20 nm. Further, in present work we present novel way to tune conductivity property of the nano ZrO2. We show that merely changing the fuel from glycine to ODH, we obtain better DC conductivity and dielectric constant. On the other hand use of glycine leads to the formation of ZrO2 with better AC conductivity and humidity sensing behavior. The dielectric constants calculated for samples prepared with glycine and ODH were found to be 45 and 26 respectively at 10 MHz. The AC and DC conductivity values of the samples prepared with glycine was found to be 9.5 × 10−4 S cm−1, 1.1 × 10−3 S cm−1 and that of ODH was 7.6 × 10−4 S cm−1, 3.6 × 10−3 S cm−1 respectively.

  20. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  1. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  2. Burnup effect on nuclear fuel cycle cost using an equilibrium model

    International Nuclear Information System (INIS)

    Youn, S. R.; Kim, S. K.; Ko, W. I.

    2014-01-01

    The degree of fuel burnup is an important technical parameter to the nuclear fuel cycle, being sensitive and progressive to reduce the total volume of process flow materials and eventually cut the nuclear fuel cycle costs. This paper performed the sensitivity analysis of the total nuclear fuel cycle costs to changes in the technical parameter by varying the degree of burnups in each of the three nuclear fuel cycles using an equilibrium model. Important as burnup does, burnup effect was used among the cost drivers of fuel cycle, as the technical parameter. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once Through Cycle(PWR-OT), PWR-MOX Recycle, Pyro-SFR Recycle. These fuel cycles are most likely to be adopted in the foreseeable future. As a result of the sensitivity analysis on burnup effect of each three different nuclear fuel cycle costs, PWR-MOX turned out to be the most influenced by burnup changes. Next to PWR-MOX cycle, in the order of Pyro-SFR and PWR-OT cycle turned out to be influenced by the degree of burnup. In conclusion, the degree of burnup in the three nuclear fuel cycles can act as the controlling driver of nuclear fuel cycle costs due to a reduction in the volume of spent fuel leading better availability and capacity factors. However, the equilibrium model used in this paper has a limit that time-dependent material flow and cost calculation is impossible. Hence, comparative analysis of the results calculated by dynamic model hereafter and the calculation results using an equilibrium model should be proceed. Moving forward to the foreseeable future with increasing burnups, further studies regarding alternative material of high corrosion resistance fuel cladding for the overall

  3. Pulse Detonation Assessment for Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Muhammad Hanafi Azami

    2017-03-01

    Full Text Available The higher thermodynamic efficiency inherent in a detonation combustion based engine has already led to considerable interest in the development of wave rotor, pulse detonation, and rotating detonation engine configurations as alternative technologies offering improved performance for the next generation of aerospace propulsion systems, but it is now important to consider their emissions also. To assess both performance and emissions, this paper focuses on the feasibility of using alternative fuels in detonation combustion. Thus, the standard aviation fuels Jet-A, Acetylene, Jatropha Bio-synthetic Paraffinic Kerosene, Camelina Bio-synthetic Paraffinic Kerosene, Algal Biofuel, and Microalgae Biofuel are all asessed under detonation combustion conditions. An analytical model accounting for the Rankine-Hugoniot Equation, Rayleigh Line Equation, and Zel’dovich–von Neumann–Doering model, and taking into account single step chemistry and thermophysical properties for a stoichiometric mixture, is applied to a simple detonation tube test case configuration. The computed pressure rise and detonation velocity are shown to be in good agreement with published literature. Additional computations examine the effects of initial pressure, temperature, and mass flux on the physical properties of the flow. The results indicate that alternative fuels require higher initial mass flux and temperature to detonate. The benefits of alternative fuels appear significant.

  4. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  5. Small Volume Fuel Testers Report

    Energy Technology Data Exchange (ETDEWEB)

    Schoegl, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-31

    Micro-liter fuel ignition testing (μ-FIT) is based on the premise that characteristics FREI (Flames with Repetitive Extinction and Ignition, i.e. cyclically occurring combustion events within heated capillaries), are linked to fuel properties. In early FY16, proof-of-concept measurements with primary reference fuel (PRF) mixtures, i.e. blends of n-heptane and iso-octane, yielded clear evidence for the feasibility of the approach. Our experiments showed that it is critical to accurately link observed flame positions to local temperatures, which provides information on ignition, extinction and flame propagation, all of which are known to be impacted by fuel properties. In FY16, one major hurdle was uncertainty of temperature calibration, which required significant efforts for corrective action that were not included in the original scope of work. Temperature calibrations are obtained by translating a thermocouple within the capillary in absence of a flame. While measurements have good repeatability when accounting for transient and insertion effects, results from nominally identical thermocouples reveal unacceptable uncertainty (up to ±50K), which is attributed to variations in thermocouple placement and manufacturing tolerances. This issue is currently being resolved by switching to non-intrusive optical temperature measurements. Updates are expected to yield uncertainties of less than ±10K, while also eliminating transient and insertion effects. The experimental work was complemented by computational efforts where it was shown that a simplified Lagrangian zero-D model with detailed kinetics yields fuelspecific differentiation of ignition temperatures for simple fuels that are consistent with experiments. Further, a 2D transient model was implemented in OpenFOAM to investigate combustion behavior of simple fuels at elevated pressure. In an upcoming visit to LLNL, more advanced simulations using LLNL’s computational tools (e.g. zero-RK) are planned, which will

  6. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  7. Risk analysis methodology for spent fuel repositories in bedded salt: methodlogy summary and differences between spent fuel and high level wastes

    International Nuclear Information System (INIS)

    Pepping, R.E.; Chu, M.S.

    1981-06-01

    In the absence of spent fuel reprocessing plans, unreprocessed spent fuel has become a candidate waste form for geologic disposal. In order to understand the public health risks from such disposal and to gain insights into the factors that influence them, a methodology is needed to combine the effects of site geology and hydrology, physical and chemical properties of the waste form, and the details of the engineering design. This report outlines such a methodology which the authors currently are applying to the analysis of unreprocessed spent fuel disposal. The methodology is the same methodology as was developed to describe the risks from geologic disposal of wastes from reprocessed spent fuel. The difference between spent fuel wastes and wastes from reprocessing that may affect the applicability of the methodology are highlighted

  8. Behaviour of conductivity improvers in jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dacre, B.; Hetherington, J.I. [Cranfield Univ., Wiltshire (United Kingdom)

    1995-05-01

    Dangerous accumulation of electrostatic charge can occur due to high speed pumping and microfiltration of fuel. This can be avoided by increasing the electrical conductivity of the fuel using conductivity improver additives. However, marked variations occur in the conductivity response of different fuels when doped to the same level with conductivity improver. This has been attributed to interactions of the conductivity improver with other fuel additives or fuel contaminants. The present work concentrates on the effects of fuel contaminants, in particular polar compounds, on the performance of the conductivity improver. Conductivity is the fuel property of prime interest. The conductivity response of model systems of the conductivity improver STADIS 450 in dodecane has been measured and the effect on this conductivity of additions of model polar contaminants sodium naphthenate, sodium dodecyl benzene sulphonate, and sodium phenate have been measured. The sodium salts have been found to have a complex effect on the performance of STADIS 450, reducing the conductivity at low concentrations to a minimum value and then increasing the conductivity at high concentrations of sodium salts. This work has focused on characterising this minimum in the conductivity values and on understanding the reason for its occurrence. The effects on the minimum conductivity value of the following parameters are investigated: (a) time, (b) STADIS 450 concentration, (c) sodium salt concentration, (d) mixed sodium salts, (e) experimental method, (f) a phenol, (g) individual components of STADIS 450. The complex conductivity response of the STADIS 450 to sodium salt impurities is discussed in terms of possible inter-molecular interactions.

  9. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  10. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  11. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Molter

    2012-08-18

    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  12. Effect of fission fragment on thermal conductivity via electrons with an energy about 0.5 MeV in fuel rod gap

    Directory of Open Access Journals (Sweden)

    F Golian

    2017-02-01

    Full Text Available The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons

  13. Effect of advanced fuel cycles on waste management policies

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Haapalehto, T.

    2005-01-01

    The study aims at analysing a range of future fuel cycle options from the perspective of their impact on waste repository demand and specification. The study would focus on: Assessment of the characteristics of radioactive wastes arising from advanced nuclear fuel cycle options, repository performance analysis studies using source terms for waste arising from such advanced nuclear fuel cycles, identification of new options for waste management and disposal. Three families of fuel cycles having increasing recycling capabilities are assessed. Each cycle is composed of waste generating and management processes. Examples of waste generating processes are fuel factories (7 types) and reprocessing plants (7 types). Packaging and conditioning plants (7) and disposal facilities are examples of waste management processes. The characteristic of all these processes have been described and then total waste flows are summarised. In order to simplify the situation, three waste categories have been defined based on the IAEA definitions in order to emphasize the major effects of different types of waste. These categories are: short-life waste for surface or sub-surface disposal, long-life low heat producing waste for geological disposal, high-level waste for geological disposal. The feasibilities of the fuel cycles are compared in terms of economics, primary resource consumption and amount of waste generated. The effect of high-level waste composition for the repository performance is one of the tools in these comparisons. The results of this will be published as an NEA publication before the end of 2005. (authors)

  14. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2017-07-03

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  15. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  16. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  17. Fuel thermal conductivity (FTHCON). Status report

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1979-02-01

    An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced

  18. Agro-fuels, a cartography of stakes

    International Nuclear Information System (INIS)

    2008-09-01

    This document proposes a dashboard of the main issues regarding agro-fuels. Nine sheets propose basic information and data on these issues: 1- agro-fuel production and consumption in the world (ethanol, vegetable oils, perspective for demand in the transport sector), 2- energy efficiency and greenhouse gas emissions (energy assessments and greenhouse effect of agro-fuels, discrepancies of results between first-generation European agro-fuels, case of agro-fuels produced in Southern countries), 3- needed surfaces in Europe (land use and cultivable areas for agro-fuel production in Europe and in France, competition between food and energy crops), 4- deforestation in the South (relationship between agriculture, deforestation and agro-fuels, between deforestation and greenhouse gas emissions), 5- impacts on biodiversity (use of pesticides and fertilizers, large scale cultivations and single-crop farming, cultivation of fallow land and permanent meadows, deforestation in the South, relationship between agro-fuels and GMOs), 6- impacts on water, soil and air (water quality and availability, soil erosion, compaction and fertility loss, air quality), 7- food-related and social stakes (issue of food security, social impacts of agro-fuel production with pressure on family agriculture and issues of land property), 8- public supports and economic efficiency (public promotion of agro-fuels, agro-fuel and oil prices, assessment of the 'avoided' CO 2 ton), and 9- perspectives for second-generation agro-fuels (definitions and processes, benefits with respect to first-generation fuels, possible impacts on the environment, barriers to their development)

  19. Investigations of Trace Oxygenates in Middle Distillate Fuels using Gas Chromatography

    OpenAIRE

    RENEE LOUISE WEBSTER

    2017-01-01

    There can be up to one million different compounds in aviation or diesel fuels, making the analysis of trace components within the complex matrix highly challenging. Many trace oxygenated compounds may be present in fuels and can have dramatic effects on the fuel’s properties. Advanced analytical chemistry techniques have been used to contribute a critical understanding of the role of trace oxygenates on the chemistry of both emerging alternate and fossil fuels. Knowledge of these molecular s...

  20. An Analysis of Fuel Region to Region Dancoff Factor with the Random Mixture Effects of Moderator and Fuel Pebbles

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Kim, Hong Chul; Kim, Jong Kyung; Noh, Jae Man

    2009-01-01

    Dancoff factor is an entering probability of the neutron escaped from specific fuel kernel to another one without the interaction with moderators. In order to analytically evaluate Dancoff factor considering double-heterogeneous effect, inter-pebble and intra-pebble Dancoff factors should be calculated, respectively. Intra-pebble Dancoff factor related with the fuel kernels in one pebble was analyzed in the past study. The fuel and moderator pebbles are randomly located in the pebble-type reactor. For the evaluation of inter-pebble Dancoff factor, a repetition of simple pebble structure is commonly assumed to simulate the complex geometry of pebble-type reactor. The evaluation using these structures can be underestimated because of the shadowing effects generated from the repetition of simple pebble structure. Fuel region to region Dancoff factor (FRDF) was defined as an entering probability of the neutron escaped from a specific fuel region to another one without any collision with moderator for a preliminary evaluation of inter-pebble Dancoff factor. To solve the underestimation problem of FRDF from the shadow effect, the specific pebble was assumed and FRDF was evaluated with the approximation method proposed in this study

  1. Hydrothermal treatment of grape marc for solid fuel applications

    International Nuclear Information System (INIS)

    Mäkelä, Mikko; Kwong, Chi Wai; Broström, Markus; Yoshikawa, Kunio

    2017-01-01

    Highlights: • The effects of treatment temperature and liquid pH on char and liquid properties. • Liquid pH had a statistically significant effect only on liquid carbon yield. • Higher treatment temperature increased char volatiles that can enhance ignitability. • Char showed promising fuel properties if elevated ash phosphorus can be tolerated. - Abstract: The treatment and disposal of grape marc, a residue from grape processing, represents a significant economic and environmental challenge for the winemaking industry. Hydrothermal treatment of grape marc could be an efficient way for producing solid fuels on-site at the wineries. In this work the effects of treatment temperature and liquid pH on grape marc char and liquid properties were determined based on laboratory experiments and the combustion characteristics of char were assessed through thermogravimetric analysis and fuel ash classification. The results showed that hydrothermal treatment increased the energy and carbon contents and decreased the ash content of grape marc. The effect of liquid pH was statistically significant (p < 0.05) only for the determined carbon yield of liquid samples. The energy yield from grape marc was maximized at lower treatment temperatures, which also decreased the content of less thermally stable compounds in the attained char. Higher treatment temperatures decreased grape marc solid, carbon and energy yields and led to an increase in thermally labile compounds compared to lower temperatures likely due to the condensation of liquid compounds or volatiles trapped in the pores of char particles. The alkali metal contents of char ash were reduced coupled with an increase in respective phosphorus. Overall the results support the use of hydrothermally treated grape marc in solid fuel applications, if elevated levels of ash phosphorus can be tolerated.

  2. Fuel saving performances of marine diesel engine oils on board

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasunori; Henmi, Takashi; Minamitani, Hiromu; Akizawa, Hayao; Hamada, Minoru; Ashida, Jiro

    1988-05-01

    After the second oil crisis, the percentage of the fuel cost against the operational cost of a ship has been showing the rising tendency, engine manufacturers have placed the top priority on the improvement of fuel consumption, operators have been conducting various energy saving measures and refiners have been paying efforts to improve lubricating oil. This article reports the study on the lubricating oil characteristics affecting the fuel consumption per power output, particularly the viscosity and the adding effect of friction modifier additives by using dynamo-generator diesel engines on board the ships already in commission. The investigation was conducted by comparing the cases of using several sample oils with the cases of using the reference oils. According to the results, the viscous property of engine oil was most effective on fuel consumption and the lower the viscosity of oil, the more the fuel consumption effect was. However, the addition of friction modifier additives did hardly show any improvement of the above effect. (5 figs, 4 tabs, 3 refs)

  3. The effect of stimulated fission products on the structure and the mechanical properties of zircaloy

    International Nuclear Information System (INIS)

    Holub, F.

    1982-01-01

    The objective of investigation was to study the long-term effects of individual simulated fission products on the mechanical properties and the structure of Zircaloy. Tensile Test specimens of Zircaloy were annealed with important simulated fission products at 350 0 C up to 10,000 hours and at higher temperatures (500, 700 0 C) up to 2,000 hours. The principal methods of investigation on annealed Zircaloy specimens were tension tests at room temperature and at 400 0 C, scanning electron microscopy and microprobe technique, X-ray diffraction, X-ray fluorescence, optical metallography. The action of fission products at normal temperatures of reactor operation will give rise to a small enhancement of strength and a small drop of ductility of the fuel cladding material only. At high fuel pin temperatures which may be realized under abnormal operation conditions, some of the fission products potentially will produce detrimental consequences on the integrity of fuel pins. The most effective fission products will be: lanthanum oxide, followed by the earth alkaline oxides and the other rare earth oxides, molybdenum, iodine and cadmium

  4. Engine fuel trends in the 90ies. Kraftstoff-Trends in den 90er Jahren

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.

    1990-06-01

    The operating behaviour of internal combustion engines is greatly dependent from the properties and compositions of the fuels. Increasing demands made on engine technology for improved cost-effectiveness, service life and pollutivity will result in greater demands on the vehicle fuel quality. A number of papers whose contents are briefly reported by the author, deal with today's requirements of the automative industry on vehicle fuels (table: characteristics, requirements, limits, comments) and with the prospects of alternative fuels. Another paper discussed the influence of the fuel on particulate emission by diesel engines. Another paper presented the calculation of physical fuel data from the carburettor substance analysis and its significance, the environmentally relevant effects of fuel additives in enginer, and optimized additive systems to meet greater quality demands on otto-engine fuels. (HWJ).

  5. the effect of advanced fuel designs on fuel utilization

    International Nuclear Information System (INIS)

    Sarikaya, B.; Colak, U.; Tombakoglu, M.; Yilmazbayhan, A.

    1997-01-01

    Fuel management is one of the key topic in nuclear engineering. It is possible to increase fuel burnup and reactor lifetime by using advanced fuel management strategies. In order to increase the cycle lifetime, required amount of excess reactivity must be added to system. Burnable poisons can be used to compensate this excess reactivity. Usually gadolinium (Gd) is used as burnable poison. But the use of Gd presents some difficulties that have not been encountered with the use of boron

  6. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  7. Effect of Mo content on thermal and mechanical properties of Mo–Ru–Rh–Pd alloys

    International Nuclear Information System (INIS)

    Masahira, Yusuke; Ohishi, Yuji; Kurosaki, Ken; Muta, Hiroaki; Yamanaka, Shinsuke; Komamine, Satoshi; Fukui, Toshiki; Ochi, Eiji

    2015-01-01

    Metallic inclusions are precipitated in irradiated oxide fuels. The composition of the phases varies with the burnup and the conditions such as temperature gradients and oxygen potential of the fuel. In the present work, Mo x/(0.7+x) (Ru 0.5 Rh 0.1 Pd 0.1 ) (0.7)/(0.7+x) (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) alloys were prepared by arc melting, followed by annealing in a high vacuum. The thermal and mechanical properties of the alloys such as elastic moduli, Debye temperature, micro-Vickers hardness, electrical resistivity, and thermal conductivity have been evaluated to elucidate the effect of Mo content on these physical properties of the alloys. The alloys with lower Mo contents show higher thermal conductivity. The thermal conductivity of the alloy with x = 0 is almost twice of that of the alloy with x = 0.25. The thermal conductivities of the alloys are dominated by electronic contribution, which has been evaluated using the Wiedemann–Franz–Lorenz relation from the electrical resistivity data. It is confirmed that the variation of the Mo contents of the alloys considerably affects the mechanical and thermal properties of the alloys

  8. Possibility of implementation of 6-year fuel cycle at NPP with VVER-440 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heraltova, L., E-mail: lenka.heraltova@fjfi.cvut.cz [UJV Rez a.s., Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2015-12-15

    Highlights: • Possibility of extension of fuel cycle. • Increase of enrichment above 5% {sup 235}U. • Core properties calculated by diffusion code ANDREA. • Back end fuel cycle characteristic. - Abstract: This paper discusses possibility of an extension of a fuel cycle at a VVER-440 reactor for up to 6 years. The prolongation of a fuel cycle was realized by optimization of a fuel design and increasing of a fuel enrichment. The modified design of the fuel assembly covers change of pellet geometry, decreasing of parasitic absorption in construction materials, improved moderation of fuel pins and also increase of enrichment. Fuel assemblies with enrichment up to 7% {sup 235}U are considered for prolonged fuel batches. Three different batch lengths were considered for evaluation of core properties – 12, 18 and 24 months, and two types of burnable absorbers were included – Gd{sub 2}O{sub 3} and Er{sub 2}O{sub 3}. Comparison of proposed fuel assemblies was realized by length of a batch, average burnup, maximal power of fuel assembly or fuel pin, control fuel assembly worth, reactivity coefficients, and effective delayed neutrons fraction. Comparison of characteristics of a burned fuel discharged from a reactor core is discussed in the last part of the paper.

  9. Fuel cycle and waste newsletter, Vol. 4, No. 2, September 2008

    International Nuclear Information System (INIS)

    2008-09-01

    The lead article in this issue of the Fuel Cycle and Waste Newsletter deals with the future of uranium resources. Furthermore this issue presents information about the IAEA's new publications series called the Nuclear Energy Series (NES) and discusses coordinated research projects of the Nuclear Fuel Cycle and Materials Section including 'Fuel Performance Modelling under Extended Burn-up (FUMEX)', 'Fuel Structural Materials and Water Chemistry Management in Nuclear Power Plants (FUWACC)', 'Hydrogen and Hydride Degeneration of Mechanical and Physical Properties of Zr-Alloys - Delayed Hydride Cracking (DHC) of Zirconium Alloy Fuel Cladding', 'Accelerator Simulation and Theoretical Modelling of Radiation Effects (SMoRE)', 'Spent Fuel Performance and Research (SPAR)' and 'Process-losses in Separation Processes in Partitioning and Transmutation (P and T) Systems in View of Minimizing Long-term Environmental Impacts'. This issue also covers information about the estimation of plutonium and minor actinides using NFCSS (Nuclear Fuel Cycle Simulation System), fabrication, properties and irradiation behaviour of stainless steel cladding and fuel assembly materials for liquid metal-cooled fast reactors, fabrication, processing, properties and the creation of a bibliographic database related to minor actinide fuel target, status and development of the IAEA PIE database, the international low level waste disposal network (DISPONET), retrievability in geological disposal and the review of Slovenian national repository for low- and intermediate level radioactive waste programme. A new tool for the reporting of national radioactive waste and spent fuel inventories is presented as well as the Eurobarometer survey on radioactive waste 2008, the radioactive waste assesment methodology and economics of radioactive waste management, recent activities of the International Decommissioning Network (IDN), and D and D Fuel Pools: a huge legacy worldwide. The issue closes with a list of

  10. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  11. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  12. A review of the properties of plutonium, its biological effects, and its place in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Harte, G.A.

    1978-03-01

    After a brief description of the sources of plutonium and its physical, chemical and radioactive characteristics, an attempt is made to describe quantitatively the biological effects of plutonium intake as they are currently understood by the organisations concerned with radiological protection. The conceptual basis of protection standards as put forward by ICRP has recently undergone a change; the idea of limiting dose to a critical organ has been superseded by that of limiting the overall risk of carcinogenic and genetic effects. Limits on plutonium intake are discussed in the light of both concepts. Finally the role of plutonium in the nuclear fuel cycle is described. (author)

  13. Fuel Effects on Emissions From Non-Road Engines

    Energy Technology Data Exchange (ETDEWEB)

    Murtonen, T.; Nylund, N.

    2003-10-15

    The objective of this project was to study how fuel quality affects the exhaust emissions from different kinds of non-road engines. The project was divided into two parts: emissions from small gasoline engines and emissions from diesel engines. The measured small engines were a 2-stroke chainsaw engine, and a 4-stroke OHV engine, which could be used in different applications. Measurements were done with three different fuels, with and without catalyst. Also a comparison between biodegradable vs. conventional lubrication oil was done with the 2-stroke engine. Measurements were done according to ISO8178 standard. The results clearly demonstrate that using a good quality fuel (e.g. low sulphur, low aromatics) and a catalyst gives the best outcome in overall emission levels from these small engines. In the second part two different diesel engines were tested with five different fuels. Two of the fuels were biodiesel blends. The engines were chosen to represent old and new engine technology. The old engine (MY 1985) was produced before EU emission regulations were in place, and the new engine fulfilled the current EU Stage 2 emission limits. These measurements were also done according to the ISO8178 standard. With the new engine comparison with and without oxidation catalyst was done using two fuels. The results in general are similar compared to the results from the small gasoline engines: fuel quality has an effect on the emissions and when combining a good quality fuel (e.g. low sulphur, low aromatics) and an oxidation catalyst the emission levels are significantly reduced. Also some unregulated emission measurements were done but those results are not included to this report.

  14. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  15. 1982 Annual Status Report Plutonium Fuels and Actinide Programme

    International Nuclear Information System (INIS)

    Lindner, R.

    1983-01-01

    The programme of the Transuranium Institute has long included work on advanced fuels for fast breeder reactors. Study of the swelling of carbide and nitride fuels is now nearing completion, the retention of fission gases in bubbles of different sizes in the fuel having been quantified as function of burn-up and temperature. An important step forward has been achieved in the studies of the Equation of State of Nuclear Fuels up to 5000 K. Formation of some of the less abundant isotopes in PWR fuel has been determined experimentally. Aerosol formation during the fabrication of plutonium containing fuels, part of the activity Safe Handling of Plutonium Fuel has been studied. Head-End Processing of carbide fuels has continued experiments with high burn up mixed carbides. In the field of actinide research the preparation and characterisation of pure specimens is carried out. Effect of actinides on the properties of waste glasses is investigated

  16. Physico-chemical characteristics of eight different biomass fuels and comparison of combustion and emission results in a small scale multi-fuel boiler

    International Nuclear Information System (INIS)

    Forbes, E.G.A.; Easson, D.L.; Lyons, G.A.; McRoberts, W.C.

    2014-01-01

    Highlights: • Physical parameters of the eight biomass fuels examined were all different. • Significant differences were found in Proximate, Ultimate and TGA results. • Energy outputs were not proportionate to dry matter energy content. • Highest flue ash production from fuels with highest fines content. • Flue gas emissions varied significantly, NOx levels correlated with fuel N content. - Abstract: This study describes the results from the investigation of 7 different biomass fuel types produced on a farm, and a commercial grade wood pellet, for their physical, chemical, thermo-gravimetric and combustion properties. Three types of short rotation coppice (SRC) willow, two species of conifers, forest residues (brash), commercially produced wood-pellets and a chop harvested energy grass crop Miscanthus giganteus spp., (elephant grass) were investigated. Significant differences (p < 0.05) were found in most of the raw fuel parameters examined using particle distribution, Thermogravimetric, Ultimate and Proximate analysis. Combustion tests in a 120 kW multi-fuel boiler revealed differences, some significant, in the maximum output, energy conversion efficiency, gaseous emission profiles and ash residues produced from the fuels. It was concluded that some of the combustion results could be directly correlated with the inherent properties of the different fuels. Ash production and gaseous emissions were the aspects of performance that were clearly and significantly different though effects on energy outputs were more varied and less consistent. The standard wood pellet fuel returned the best overall performance and miscanthus produced the largest amount of total ash and clinker after combustion in the boiler

  17. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  18. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  19. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  20. Novel approaches to the creation of alternative motor fuels from renewable raw materials

    Directory of Open Access Journals (Sweden)

    Ольга Олександрівна Гайдай

    2016-06-01

    Full Text Available The paper considers the method of obtaining aliphatic alcohols as components of alternative fuels by catalytic processing of synthesis gas under the conditions of mechanochemical activation of the catalyst without using high pressure.It is established that the introduction of hydrocarbon spherical clusters (onions in the alternative fuel changes physical, chemical and chemmotological characteristics of fuel due to the effect of structure formation. The results of comparative studies of the performance properties of hydrocarbon and alternative fuels are displayed

  1. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  2. Fuel-steel mixing and radial mesh effects in power excursion simulations

    International Nuclear Information System (INIS)

    Chen, X.-N.; Rineiski, A.; Gabrielli, F.; Andriolo, L.; Vezzoni, B.; Li, R.; Maschek, W.; Kiefhaber, E.

    2016-01-01

    Highlights: • Fuel-steel mixing and radial mesh effects are significant on power excursion. • The earliest power peak is reduced and retarded by these two effects. • Unprotected loss of coolant transients in ESFR core are calculated. - Abstract: This paper deals with SIMMER-III once-through simulations of the earliest power excursion initiated by an unprotected loss of flow (ULOF) in the Working Horse design of the European Sodium Cooled Fast Reactor (ESFR). Since the sodium void effect is strictly positive in this core and dominant in the transient, a power excursion is initiated by sodium boiling in the ULOF case. Two major effects, namely (1) reactivity effects due to fuel-steel mixing after melting and (2) the radial mesh size, which were not considered originally in SIMMER simulations for ESFR, are studied. The first effect concerns the reactivity difference between the heterogeneous fuel/clad/wrapper configuration and the homogeneous mixture of steel and fuel. The full core homogenization (due to melting) effect is −2 $, though a smaller effect takes place in case of partial core melting. The second effect is due to the SIMMER sub-assembly (SA) coarse mesh treatment, where a simultaneous sodium boiling onset in all SAs belonging to one ring leads to an overestimated reactivity ramp. For investigating the influence of fuel/steel mixing effects, a lumped “homogenization” reactivity feedback has been introduced, being proportional to the molten steel mass. For improving the coarse mesh treatment, we employ finer radial meshes to take the subchannel effects into account, where the side and interior channels have different coolant velocities and temperatures. The simulation results show that these two effects have significant impacts on the earliest power excursion after the sodium boiling.

  3. Nuclear materials thermo-physical property database and property analysis using the database

    International Nuclear Information System (INIS)

    Jeong, Yeong Seok

    2002-02-01

    It is necessary that thermo-physical properties and understand of nuclear materials for evaluation and analysis to steady and accident states of commercial and research reactor. In this study, development of nuclear materials thermo-properties database and home page. In application of this database, it is analyzed of thermal conductivity, heat capacity, enthalpy, and linear thermal expansion of fuel and cladding material and compared thermo-properties model in nuclear fuel performance evaluation codes with experimental data in database. Results of compare thermo-property model of UO 2 fuel and cladding major performance evaluation code, both are similar

  4. Ignition behavior of aviation fuels and some hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Koerber, F.

    1975-01-01

    Air relighting of jet engines is an important contribution to the operation safety of aircraft engines. Reignition is influenced by fuel properties in addition to the engine design. A survey is presented on the problems, considering the specific fuel properties. Investigations were made on the ignition behavior of aviation fuels and hydrocarbons in a simplified model combustion chamber. Air inlet conditions were 200 to 800 mbar and 300 to 500 K. Correlation between physical and chemical properties and ignitability is discussed.

  5. The effect of fuel chemistry on UO{sub 2} dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Casella, Amanda, E-mail: amanda.casella@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-25, Richland, WA 99352 (United States); Hanson, Brady, E-mail: brady.hanson@pnnl.gov [Pacific Northwest National Laboratory, PO Box 999, MSIN P7-27, Richland, WA 99352 (United States); Miller, William [University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2016-08-01

    The dissolution rate of both unirradiated UO{sub 2} and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO{sub 2} under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO{sub 2} and UO{sub 2} doped with varying concentrations of Gd{sub 2}O{sub 3}, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO{sub 2} and had a larger effect on pure UO{sub 2} than on those doped with Gd{sub 2}O{sub 3}. Oxygen dependence was observed in the UO{sub 2} samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO{sub 2} matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O{sub 2} concentrations in the leachate where the rates would typically be elevated. - Highlights: • UO{sub 2} dissolution rates were measured for a matrix of repository relevant conditions. • Dopants in the UO{sub 2} matrix lowered the dissolution rate. • Reduction in rates by dopants were increased at elevated temperature and O{sub 2} levels. • UO{sub 2} may be overly

  6. Analysis of impurity effect on Silicide fuels of the RSG-GAS core

    International Nuclear Information System (INIS)

    Tukiran-Surbakti

    2003-01-01

    Simulation of impurity effect on silicide fuel of the RSG-GAS core has been done. The aim of this research is to know impurity effect of the U-234 and U-236 isotopes in the silicide fuels on the core criticality. The silicide fuels of 250 g U loading and 19.75 of enrichment is used in this simulation. Cross section constant of fuels and non-structure material of core are generated by WIMSD/4 computer code, meanwhile impurity concentration was arranged from 0.01% to 2%. From the result of analysis can be concluded that the isotopes impurity in the fuels could make trouble in the core and the core can not be operated at critical after a half of its cycle length (350 MW D)

  7. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    International Nuclear Information System (INIS)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R.

    2014-01-01

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  8. Characterization-Based Molecular Design of Bio-Fuel Additives Using Chemometric and Property Clustering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Subin; Solvason, Charles C.; Eden, Mario R., E-mail: edenmar@auburn.edu [Department of Chemical Engineering, Auburn University, Auburn, AL (United States)

    2014-06-10

    In this work, multivariate characterization data such as infrared spectroscopy was used as a source of descriptor data involving information on molecular architecture for designing structured molecules with tailored properties. Application of multivariate statistical techniques such as principal component analysis allowed capturing important features of the molecular architecture from enormous amount of complex data to build appropriate latent variable models. Combining the property clustering techniques and group contribution methods based on characterization (cGCM) data in a reverse problem formulation enabled identifying candidate components by combining or mixing molecular fragments until the resulting properties match the targets. The developed methodology is demonstrated using molecular design of biodiesel additive, which when mixed with off-spec biodiesel produces biodiesel that meets the desired fuel specifications. The contribution of this work is that the complex structures and orientations of the molecule can be included in the design, thereby allowing enumeration of all feasible candidate molecules that matched the identified target but were not part of original training set of molecules.

  9. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    Science.gov (United States)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  10. Thermophysical properties of reactor fuels

    International Nuclear Information System (INIS)

    Leibowitz, L.

    1981-01-01

    A review is presented of the literature on the enthalpy of uranium, thorium, and plutonium oxide and an approach is described for calculating the vapor pressure and gaseous composition of reactor fuel. In these calculations, thermodynamic functions of gas phase molecular species (obtained from matrix-isolation spectroscopy) are employed in conjunction with condensed phase therodynamics. A summary is presented of the status of this work

  11. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  12. Responding effectively to fuel spills at airports

    International Nuclear Information System (INIS)

    Williams, L.E.

    1991-01-01

    Fuel spills are among the most frequent causes of emergency calls faced by airport firefighters. Most fuel spills are a result of human error and careless procedures. They always constitute an emergency and require fast, efficient action to prevent disaster. A fuel spill is an accidental release of fuel, in this case, from an aircraft fuel system, refueling vehicle or refueling system. A normal release of a few drops of fuel associated with a disconnection or other regular fueling operations should not be classified as a fuel spill. However, anytime fuel must be cleaned up and removed from an area, a fuel spill has occurred. Volatile fuels pose significant threats to people, equipment, facilities and cargo when they are released. Anyone near a spill, including ramp workers, fueling personnel and aircraft occupants, are in danger if the fuel ignites. Buildings and equipment in a spill area, such as terminals, hangars, aircraft, fuel trucks and service equipment also are at risk. An often neglected point is that aircraft cargo also is threatened by fuel spills

  13. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.

    2015-01-01

    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  14. Thermal properties and burning efficiency of crude oils and refined fuel oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Alva, Wilson Ulises Rojas; Mindykowski, Pierrick Anthony

    2017-01-01

    The thermal properties and burning efficiencies of fresh and weathered crude oils and a refined fuel oil were studied in order to improve the available input data for field ignition systems for the in-situ burning of crude oil on water. The time to ignition, surface temperature upon ignition, heat......-cooled holder for a cone calorimeter under incident heat fluxes of 0, 5, 10, 20, 30, 40 and 50 kW/m2. The results clearly showed that the weathered oils were the hardest to ignite, with increased ignition times and critical heat fluxes of 5-10 kW/m2. Evaporation and emulsification were shown...

  15. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Dhar, Atul; Gupta, Jai Gopal; Kim, Woong Il; Choi, Kibong; Lee, Chang Sik; Park, Sungwook

    2015-01-01

    Highlights: • Effect of FIP on microscopic spray characteristics. • Effect of FIP and SOI timing on CRDI engine performance, emissions and combustion. • Fuel injection duration shortened, peak injection rate increased with increasing FIP. • SMD (D 32 ) and AMD (D 10 ) of fuel droplets decreased for lower biodiesel blends. • Increase in biodiesel blend ratio and FIP, fuel injection duration decreased. - Abstract: In this investigation, effect of 10%, 20% and 50% Karanja biodiesel blends on injection rate, atomization, engine performance, emissions and combustion characteristics of common rail direct injection (CRDI) type fuel injection system were evaluated in a single cylinder research engine at 300, 500, 750 and 1000 bar fuel injection pressures at different start of injection timings and constant engine speed of 1500 rpm. The duration of fuel injection slightly decreased with increasing blend ratio of biodiesel (Karanja Oil Methyl Ester: KOME) and significantly decreased with increasing fuel injection pressure. The injection rate profile and Sauter mean diameter (D 32 ) of the fuel droplets are influenced by the injection pressure. Increasing fuel injection pressure generally improves the thermal efficiency of the test fuels. Sauter mean diameter (D 32 ) and arithmetic mean diameter (D 10 ) decreased with decreasing Karanja biodiesel content in the blend and significantly increased for higher blends due to relatively higher fuel density and viscosity. Maximum thermal efficiency was observed at the same injection timing for biodiesel blends and mineral diesel. Lower Karanja biodiesel blends (up to 20%) showed lower brake specific hydrocarbon (BSHC) and carbon monoxide (BSCO) emissions in comparison to mineral diesel. For lower Karanja biodiesel blends, combustion duration was shorter than mineral diesel however at higher fuel injection pressures, combustion duration of 50% blend was longer than mineral diesel. Up to 10% Karanja biodiesel blends in a CRDI

  16. Transportation fuels of the future?

    International Nuclear Information System (INIS)

    Piel, W.J.

    2001-01-01

    Society is putting more emphasis on the mobile transportation sector to achieve future goals of sustainability and a cleaner environment. To achieve these goals, does society need to jump to a new combination of fuel and vehicle technology or can we just continue to improve on the current fuels and drive train technology that has powered us the past 70 or more years? Do we need to move to more exotic energy conversion technology (fuel cell vehicles?), or can improving fuel properties further allow us to continue using combustion engines to power our vehicles? What fuel properties can still be improved in gasoline and diesel? Besides removing sulfur, should there be less aromatics in fuels? Should aromatics be eliminated? Is there a role for oxygenates in gasoline and diesel? Do blending oxygenates in fuels help or hinder in achieving the environmental goals? Can we and should we reduce our dependency on crude oil for transportation energy? Why have not the previous government-sponsored Alternative Fuel programs displaced crude oil? The marketplace will determine which fuel and vehicle technology combination will eventually be used in the future. Does the information we know today give us insight to this future? This paper will attempt to address some of the key issues and questions on the role fuels may play in that marketplace decision

  17. Reduced Gravity Studies of Soret Transport Effects in Liquid Fuel Combustion

    Science.gov (United States)

    Shaw, Benjamin D.

    2004-01-01

    Soret transport, which is mass transport driven by thermal gradients, can be important in practical flames as well as laboratory flames by influencing transport of low molecular weight species (e.g., monatomic and diatomic hydrogen). In addition, gas-phase Soret transport of high molecular weight fuel species that are present in practical liquid fuels (e.g., octane or methanol) can be significant in practical flames (Rosner et al., 2000; Dakhlia et al., 2002) and in high pressure droplet evaporation (Curtis and Farrell, 1992), and it has also been shown that Soret transport effects can be important in determining oxygen diffusion rates in certain classes of microgravity droplet combustion experiments (Aharon and Shaw, 1998). It is thus useful to obtain information on flames under conditions where Soret effects can be clearly observed. This research is concerned with investigating effects of Soret transport on combustion of liquid fuels, in particular liquid fuel droplets. Reduced-gravity is employed to provide an ideal (spherically-symmetrical) experimental model with which to investigate effects of Soret transport on combustion. The research will involve performing reduced-gravity experiments on combustion of liquid fuel droplets in environments where Soret effects significantly influence transport of fuel and oxygen to flame zones. Experiments will also be performed where Soret effects are not expected to be important. Droplets initially in the 0.5 to 1 mm size range will be burned. Data will be obtained on influences of Soret transport on combustion characteristics (e.g., droplet burning rates, droplet lifetimes, gas-phase extinction, and transient flame behaviors) under simplified geometrical conditions that are most amenable to theoretical modeling (i.e., spherical symmetry). The experiments will be compared with existing theoretical models as well as new models that will be developed. Normal gravity experiments will also be performed.

  18. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  19. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  20. Thermal stress analysis of HTGR fuel and control rod fuel blocks in the HTGR in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new approach that utilizes the equivalent solid plate method has been applied to the thermal stress analysis of HTGR fuel and control rod fuel blocks. Cases were considered where these blocks, loaded with reprocessed HTGR fuel pellets, were being cured at temperatures up to 1800 0 C. A two-dimensional segment of a fuel block cross section including fuel, coolant holes, and graphite matrix was analyzed using the ORNL HEATING3 heat transfer code to determine the temperature-dependent effective thermal conductivity for the perforated region of the block. Using this equivalent conductivity to calculate the temperature distributions through different cross sections of the blocks, two-dimensional thermal-stress analyses were performed through application of the equivalent solid plate method. In this approach, the perforated material is replaced by solid homogeneous material of the same external dimensions but whose material properties have been modified to account for the perforations