WorldWideScience

Sample records for fuel oil storage

  1. Crude oil and finished fuel storage stability: An annotated review

    Energy Technology Data Exchange (ETDEWEB)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  2. Storage of Residual Fuel Oil in Underground Unlined Rock Caverns.

    Science.gov (United States)

    1980-12-01

    Francaise des Petroles BP, Elf Union, Shell Francaise, and Compagnie Francaise de Raffinage (Total). The company and its subsidiaries were formed with...DEC 80 D C BANKS UNCLASSIFIED WES/NP/S4.-8O-19 ti. LE VEL MISCELLANEOUS PAPER GL-80-19 31 STORAGE OF RESIDUAL FUEL OIL IN UNDERGROUND UNLINED ROCK...Ruimaia.~ indl a riiirI( le ol Air in1 wi r’ hve en coIit’Icted to enc1ouraige muiliriershnpl I[I the i 5kRM. 1) By Innf t-Ii .fi’ I ’I.]%- I "W

  3. Heat transfer in fuel oil storage tank at thermal power plants with local fuel heating

    Directory of Open Access Journals (Sweden)

    Kuznetsova Svetlana A.

    2015-01-01

    Full Text Available Results of mathematical modeling of the thermal control system in fuel oil storage, in the presence of heat source at the lower boundary of the region, in the framework of models of incompressible viscous fluid are presented. Solved the system of differential equations of non-stationary Navier-Stokes equations, the energy equation and the heat equation with appropriate initial and boundary conditions. Takes into account the processes of heat exchange region considered with the environment. A comparative analysis of the dependence of average temperatures of oil in the volume of the tank on the time calculated by the simplified (balanced method and obtained as a result of numerical simulation are performed.

  4. Seed storage oil mobilization.

    Science.gov (United States)

    Graham, Ian A

    2008-01-01

    Storage oil mobilization starts with the onset of seed germination. Oil bodies packed with triacylglycerol (TAG) exist in close proximity with glyoxysomes, the single membrane-bound organelles that house most of the biochemical machinery required to convert fatty acids derived from TAG to 4-carbon compounds. The 4-carbon compounds in turn are converted to soluble sugars that are used to fuel seedling growth. Biochemical analysis over the last 50 years has identified the main pathways involved in this process, including beta-oxidation, the glyoxylate cycle, and gluconeogenesis. In the last few years molecular genetic dissection of the overall process in the model oilseed species Arabidopsis has provided new insight into its complexity, particularly with respect to the specific role played by individual enzymatic steps and the subcellular compartmentalization of the glyoxylate cycle. Both abscisic acid (ABA) and sugars inhibit storage oil mobilization and a substantial degree of the control appears to operate at the transcriptional level.

  5. Fuel storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Donakowski, T.D.; Tison, R.R.

    1979-08-01

    Storage technologies are characterized for solid, liquid, and gaseous fuels. Emphasis is placed on storage methods applicable to Integrated Community Energy Systems based on coal. Items discussed here include standard practice, materials and energy losses, environmental effects, operating requirements, maintenance and reliability, and cost considerations. All storage systems were found to be well-developed and to represent mature technologies; an exception may exist for low-Btu gas storage, which could have materials incompatability.

  6. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  7. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  8. Spent fuel data for waste storage programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, E M

    1980-09-01

    Data on LWR spent fuel were compiled for dissemination to participants in DOE-sponsored waste storage programs. Included are mechanical descriptions of the existing major types of LWR fuel assemblies, spent LWR fuel fission product inventories and decay heat data, and inventories of LWR spent fuel currently in storage, with projections of future quantities.

  9. Compressed gas fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  10. Developments in spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, R.A. [USDOE Office of Civilian Radioactive Waste Management, Washington, DC (United States)

    1995-04-01

    The author gives a brief review of the his efforts to negotiate a site for monitored retrieval storage (MRS) of spent fuels in 1994. His efforts were centered on finding a voluntary host for the MRS site. He found politician were not opposed but did not want to make it a campaign issue during 1994. The author and his office came to the conclusion that to find a site voluntarily, the project would have to be an economic opportunity for the region.

  11. Fuel oil quality task force

    Energy Technology Data Exchange (ETDEWEB)

    Laisy, J.; Turk, V. [R.W. Beckett Corp., Elyria, OH (United States)

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  12. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  13. Flash pyrolysis fuel oil: bio-pok

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  14. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  15. Rock cavern storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Kyung Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kwon, Sang Ki [Inha University, Incheon (Korea, Republic of)

    2015-12-15

    The rock cavern storage for spent fuel has been assessed to apply in Korea with reviewing the state of the art of the technologies for surface storage and rock cavern storage of spent fuel. The technical feasibility and economic aspects of the rock cavern storage of spent fuel were also analyzed. A considerable area of flat land isolated from the exterior are needed to meet the requirement for the site of the surface storage facilities. It may, however, not be easy to secure such areas in the mountainous region of Korea. Instead, the spent fuel storage facilities constructed in the rock cavern moderate their demands for the suitable site. As a result, the rock cavern storage is a promising alternative for the storage of spent fuel in the aspect of natural and social environments. The rock cavern storage of spent fuel has several advantages compared with the surface storage, and there is no significant difference on the viewpoint of economy between the two alternatives. In addition, no great technical difficulties are present to apply the rock cavern storage technologies to the storage of domestic spent fuel.

  16. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    Science.gov (United States)

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  17. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  18. Oil Storage Facilities - Storage Tank Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  19. Macstor dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. E. [Atomic Energy of Canada Limited, Montreal (Canada)

    1996-04-15

    AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive.

  20. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  1. Spent fuel storage requirements 1993--2040

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  2. Fuel and fuel blending components from biomass derived pyrolysis oil

    Science.gov (United States)

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  3. 14 CFR 25.343 - Design fuel and oil loads.

    Science.gov (United States)

    2010-01-01

    ... Design fuel and oil loads. (a) The disposable load combinations must include each fuel and oil load in the range from zero fuel and oil to the selected maximum fuel and oil load. A structural reserve fuel... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Design fuel and oil loads. 25.343...

  4. Inspection of Used Fuel Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  5. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  6. Aviation fuel and future oil production scenarios

    OpenAIRE

    2009-01-01

    Most aviation fuels are jet fuels originating from crude oil. Crude oil must be refined to be useful and jet fuel is only one of many products that can be derived from crude oil. Jet fuel is extracted from the middle distillates fraction and competes, for example, with the production of diesel. Crude oil is a limited natural resource subject to depletion and several reports indicate that the world's crude oil production is close to the maximum level and that it will start to decrease after re...

  7. Fuel oil and kerosene sales 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  8. Storage studies on mustard oil blends.

    Science.gov (United States)

    Chugh, Bhawna; Dhawan, Kamal

    2014-04-01

    Mustard oil blends were investigated for fatty acid composition and oxidative stability during storage for 3 months at room temperature (15 °C to 35 °C). The blends were prepared using raw mustard oil with selected refined vegetable oils namely; palm, safflower, soybean, rice bran, sunflower and sesame oil (raw). The fatty acid compositions of all these blends were studied using GLC. The developed blends were found to obey the ideal fatty acid ratio as laid down by health agencies i.e. 1:2:1:: SFA:MUFA:PUFA. The oxidative stability of blends was studied by measuring peroxide value (PV), Kries and Thiobarbituric acid (TBA) test. Blends MPSu (mustard oil, palm oil and sunflower oil), MPT (mustard oil, palm oil and sesame oil) and MPGr (mustard oil, palm oil and groundnut oil) were more stable than other blends during storage. The presence of mustard oil in all blends might make them a healthier option for many consumers as it is a rich source of ω-3 fatty acids and has anti-carcinogenic properties.

  9. Palm oil and derivatives: fuels or potential fuels?

    OpenAIRE

    Pioch Daniel; Vaitilingom Gilles

    2005-01-01

    Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significant...

  10. Macstor system for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Pattantyus, P. (Atomic Energy of Canada Ltd., Montreal, PQ (Canada). Power Projects)

    1993-01-01

    In 1989, Transnuclear Inc. and AECL jointly developed the conceptual design for the Modular Aircooled Canister Storage System (Macstor) for LWR fuel. The development effort has proceeded to the completion of successful full-scale thermal testing. In 1990, AECL adapted the Macstor System approach for use with Candu fuel. The adapted design, called Canstor, has also successfully completed full-scale thermal testing, and the final system design has been completed. (author) 1 fig.

  11. Fuel oil and LPG; Fioul et GPL

    Energy Technology Data Exchange (ETDEWEB)

    Philippon, A. [UFIP, Union Francaise des Industries Petroliere, 75 - Paris (France)

    1997-12-31

    The impacts of new environmental regulations on the heavy fuel oil and refining French markets, are studied. Illustrated with numerous diagrams concerning oil price evolution, fuel price comparison, market shares, consumption data, etc., it is shown that a brutal elimination of high sulfur content oil fuels would cause an extremely negative impact for the refining industry and for the French economy. Sulfur content limits should be kept at their present levels and users should be free to select technical choices in order to keep within these limits, either through fume desulfurization either through fuel-natural gas mixed combustion

  12. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  13. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  14. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  15. Fuel Cells and Electrochemical Energy Storage.

    Science.gov (United States)

    Sammells, Anthony F.

    1983-01-01

    Discusses the nature of phosphoric acid, molten carbonate, and solid oxide fuel cells and major features and types of batteries used for electrical energy storage. Includes two tables presenting comparison of major battery features and summary of major material problems in the sodium-sulfur and lithium-alloy metal sulfide batteries. (JN)

  16. Storage Stability of Jet Fuel Not Containing Anti-Oxidant (AO)

    Science.gov (United States)

    2012-01-31

    tertiary alkyl groups are not as effective as one methyl and one tertiary butyl. 2. Sharma, B.K., Perez, J.M., Erhan, S.V., “Soybean Oil-Based... Kerosene Fuels,” Proceedings of 2nd International Conference on Long Term Storage Stability of Liquid Fuels, Stavinoha, L.L., Southwest Research Institute

  17. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  18. Report on interim storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  19. Fuel cell energy storage for Space Station enhancement

    Science.gov (United States)

    Stedman, J. K.

    1990-01-01

    Viewgraphs on fuel cell energy storage for space station enhancement are presented. Topics covered include: power profile; solar dynamic power system; photovoltaic battery; space station energy demands; orbiter fuel cell power plant; space station energy storage; fuel cell system modularity; energy storage system development; and survival power supply.

  20. Fuel oil and kerosene sales 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  1. Military jet fuel from shale oil

    Science.gov (United States)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  2. Fuel oil and kerosene sales 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  3. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  4. Existing Condition Analysis of Dry Spent Fuel Storage Technology

    Institute of Scientific and Technical Information of China (English)

    LI Ning; XU Lan; HAO Jian-sheng

    2016-01-01

    As in some domestic nuclear power plants, spent fuel pools near capacity, away-from-reactor type storage should be arranged to transfer spent fuel before the pool capacity is full and the plants can operate in safety. This study compares the features of wet and dry storage technology, analyzes the actualities of foreign dry storage facilities and then introduces structural characteristics of some foreign dry storage cask. Finally, a glance will be cast on the failure of away-from-reactor storage facilities of Pressurized Water Reactor(PWR)to meet the need of spent-fuel storage. Therefore, this study believes dry storage will be a feasible solution to the problem.

  5. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    Full Text Available Scientific and technical information including field trials about uses of palm oil as fuel has been available for more than half a century now. Several ways were investigated, from the simple mixture with petroleum Diesel fuel, to more sophisticated solutions. The quality of vegetable oils in natura as fuel is difficult to assess because of interferences between properties of the triacylglycerols – the main components – and those of the many minor components, their content varying significantly from sample to sample. A methodology set up at Cirad allowed to investigate separately natural triacylglycerols alone and the effect of minor components. In addition to these laboratory experiments, engine test at bench and field trials performed in palm oil producing countries, show that this oil is among the best oils as fuel; palm kernel oil whose chemical and physical properties are very close to those of the best of the series investigated, namely copra oil, should display also very interesting properties as Diesel biofuel. Both oils do require external adaptation of the engine when using an indirect injection type engine but even heavier adaptations for a direct injection model. Thus for use as Diesel fuel palm and palm kernel oils are suitable for captive fleets or for engine gensets, to balance the adaptation cost by a scale-up effect either on the number of identical engines or on the nominal vegetable oil consumption per set. Direct use of palm et palm kernel oils fits very well with technical and economical conditions encountered in remote areas. It is also possible to mix palm oil to Diesel fuel either as simple blend or as micro-emulsion. Out of the direct use, palm oil methyl or ethyl ester, often referred to as biodiesel, displays properties similar to those of petroleum Diesel fuel. This technical solution which is suitable to feed all kinds of standard compression ignited engines requires a chemical plant for carrying out the

  6. Role of dispersion in fuel oil bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Vanderhorst, J.R.; Gibson, C.I.; Moore, L.J.

    1976-01-01

    Three methods of oil-seawater contact were used to measure aqueous phase concentrations of No. 2 fuel oil and the resulting mortality of shrimp, PANDALUS DANAE. Oil--water entry methods included: (1) separate inflow below the water surface, (2) mixture inflow above the water surface, and (3) separate inflow above the water surface. The importance of standardizing the conditions under which oil and water are mixed prior to use in bioassay studies and the amount of dispersion that occurs during the exposure period was noted. Under the three sets of mixing conditions, identical volumes of oil and water resulted in significant differences in observed mortality and measured amounts of oil in the water column, as either total or soluble oil.

  7. Transportation and storage of foreign spent power reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-30

    This report describes the generic actions to be taken by the Department of Energy, in cooperation with other US government agencies, foreign governments, and international organizations, in support of the implementation of Administration policies with respect to the following international spent fuel management activities: bilateral cooperation related to expansion of foreign national storage capacities; multilateral and international cooperation related to development of multinational and international spent fuel storage regimes; fee-based transfer of foreign spent power reactor fuel to the US for storage; and emergency transfer of foreign spent power reactor fuel to the US for storage.

  8. Bunker C. fuel oil reduces mallard egg hatchability

    Science.gov (United States)

    Szaro, R.C.

    1979-01-01

    Assessment of the effect of Bunker C fuel oil on artificially-incubated mallard eggs. Eggshell applications of 5-50 ul of Bunker C fuel oil were made on day 8 of incubation; measured hatching success.

  9. 46 CFR 58.01-10 - Fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60...

  10. Energy storage in ultrathin solid oxide fuel cells.

    Science.gov (United States)

    Van Overmeere, Quentin; Kerman, Kian; Ramanathan, Shriram

    2012-07-11

    The power output of hydrogen fuel cells quickly decreases to zero if the fuel supply is interrupted. We demonstrate thin film solid oxide fuel cells with nanostructured vanadium oxide anodes that generate power for significantly longer time than reference porous platinum anode thin film solid oxide fuel cells when the fuel supply is interrupted. The charge storage mechanism was investigated quantitatively with likely identified contributions from the oxidation of the vanadium oxide anode, its hydrogen storage properties, and different oxygen concentration at the electrodes. Fuel cells capable of storing charge even for short periods of time could contribute to ultraminiaturization of power sources for mobile energy.

  11. 46 CFR 169.234 - Integral fuel oil tank examinations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel oil tank examinations. 169.234 Section 169... VESSELS Inspection and Certification Drydocking Or Hauling Out § 169.234 Integral fuel oil tank examinations. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within...

  12. Microbiology of spent nuclear fuel storage basins.

    Science.gov (United States)

    Santo Domingo, J W; Berry, C J; Summer, M; Fliermans, C B

    1998-12-01

    Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 10(4) to 10(7) cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biologtrade mark plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms.

  13. Permeation of Military Fuels Through Nitrile-Coated Fabrics Used for Collapsible Fuel Storage Containers

    Science.gov (United States)

    2014-03-01

    Permeation of Military Fuels Through Nitrile -Coated Fabrics Used for Collapsible Fuel Storage Containers by James M. Sloan ARL-TR-6881...March 2014 Permeation of Military Fuels Through Nitrile -Coated Fabrics Used for Collapsible Fuel Storage Containers James M. Sloan...Final 3. DATES COVERED (From - To) October 2012–October 2013 4. TITLE AND SUBTITLE Permeation of Military Fuels Through Nitrile -Coated Fabrics Used

  14. Response of meiofauna to petroleum hydrocarbon of three fuel oils

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Farshchi, P.; Badesab, S.

    Oil spills are recurrent problem in marine system. Effects of oil pollution are many. The present paper evaluates the effect of Petroleum Hydrocarbon of three fuel oils on metazoan meiofauna. The results suggest significant variations in the toxic...

  15. China's Fuel Oil Output Drops But Import Jumps

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Fuel oil is one of the varieties in the oil products highly marketed in China. The price of fuel oil has been entirely deregulated on the basis of marketing since China's Planning Commission released the new oil prizing methods on October 15, 2001, basically linking the domestic price to the international market.

  16. Conversion of fuel-oil in gases

    Energy Technology Data Exchange (ETDEWEB)

    Payamaras, Jahangir; Payamara, Aria [Shahed University, Physics Department (Iran, Islamic Republic of)], Email: jahangirpayamara@yahoo.com

    2011-07-01

    Refining heavy petroleum requires significant amounts of energy, up to 4800 MJ/t. This energy is traditionally provided by petroleum with up to 18% of it being burnt down for heat support, resulting in the emission of large amounts of greenhouse gases. Currently research is focused on developing other energy sources such as solar energy to power refineries. The aim of this paper is to study the pyrolysis and gasification processes of fuel-oil in a solar furnace. This study was carried out over a temperature range of 500 to 1000 degrees celsius and with the use of a concentrator for solar radiation. Results showed that 65% of fuel-oil is converted at pyrolysis and 84% at gasification and that the gaseous products are 20% hydrogen and 40% olefin; the processes reached 67% power efficiency. This study presented the use of solar energy to power heavy oil refineries.

  17. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1999-01-13

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  18. Treatment of defective fuel rods for interim storage

    Energy Technology Data Exchange (ETDEWEB)

    Muenchow, K.; Hummel, W. [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    In this paper we look exclusively at the treatment of defective fuel rods for long-term dry interim storage at the nuclear power plant, in order to avoid off-site transports. AREVA has developed a technique that allows verifiably adequate drying of the defective fuel rods and reconstructs the barrier for retaining radioactive materials. This is done by individually encapsulating the defective fuel rods and achieving gas-tightness by seal welding. This guarantees the retention of radioactive materials during the storage period of at least 40 years in a transport and storage flask in an interim storage facility at site. (orig.)

  19. Interim irradiated fuel storage facility for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lolich, Jose [INVAP SE, Bariloche (Argentina)

    2002-07-01

    In most research reactors irradiated fuel discharged from the reactor is initially stored underwater inside the reactor building for along period of time. This allows for heat dissipation and fission product decay. In most cases this initial storage is done in a irradiated fuel storage facility pool located closed to the reactor core. After a certain cooling time, the fuel discharged should be relocated for long-term interim storage in a Irradiated Fuel Storage (IFS) Facility. IFS facilities are required for the safe storage of irradiated nuclear fuel before it is reprocessed or conditioned for disposal as radioactive waste. The IFS Facility described in this report is not an integral part of an operating nuclear reactor. This facility many be either co-located with nuclear facilities (such as a nuclear reactor or reprocessing plant) or sited independently of other nuclear facilities. (author)

  20. Used fuel extended storage security and safeguards by design roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); England, Jeffrey [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Scherer, Carolynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Michael. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rauch, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  1. Agricultural waste derived fuel from oil meal and waste cooking oil.

    Science.gov (United States)

    Chang, Fang-Chih; Tsai, Ming-Jer; Ko, Chun-Han

    2017-05-27

    Oil meal is a by-product of the oil industry (peanut meal, sesame meal, and camellia meal). Oil is extracted from seeds, and the leftover meal is then pelletized, and this process generates a large amount of waste oil meal in Taiwan. In this study, peanut meal, sesame meal, and camellia meal derived fuels were prepared from the waste oil meal with waste cooking oil. The combustion behaviors of the oil meal derived fuels were also investigated. The characteristics of the derived fuel made from oil meal with waste cooking oil showed that the ash content is less than 10% and its calorific value reached 5000 kcal/kg. Additionally, the activation energy of the oil meal and waste cooking oil was analyzed by the Kissinger method. The results show that the fuel prepared in this work from the oil meal mixed with waste cooking oil is suitable for use as an alternative fuel and also avoids food safety issues.

  2. Corrosion assessment of dry fuel storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  3. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  4. CHANGXINDIAN OIL STORAGE TO BE LARGEST ONE IN BEIJING

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ On August 11, the revision and expansion engineering of Changxindian Oil Storage, run by Sinopec Beijing Oil Company, kicked off formally, marking that another Olympic infrastructure engineering started building.

  5. Inspection of state of spent fuel elements stored in RA reactor spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Bulkin, S.Yu.; Sokolov, A.V. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Matausek, M.V.; Vukadin, Z. [VINCA Institute of Nuclear Science, Belgrade (Yugoslavia)

    1999-07-01

    About five thousand spent fuel elements from RA reactor have been stored for over 30 years in sealed aluminum barrels in the spent fuel storage pool. This way of storage does not provide complete information about the state of spent fuel elements or the medium inside the barrels, like pressure or radioactivity. The technology has recently been developed and the equipment has been manufactured to inspect the state of the spent fuel and to reduce eventual internal pressure inside the aluminum barrels. Based on the results of this inspection, a procedure will be proposed for transferring spent fuel to a more reliable storage facility. (author)

  6. Microbial desulfurization of fuel oil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Culture conditions of desulfurization microbes were investigated with a bioreactor controlled by computer.Factors such as pH, choice of carbon source, optimal concentrations of carbon, nitrogen and sulfur sources were determined. The addition of carbon in a culture with a constant pH greatly improved the growth of Rhodococcus. Cells and cell debris from microbes rested using a sulfur- specific pathway were used to desulfurize diesel oil treated by hydrodesulfurization (acquired from the Research Institute of Fushun Petroleum with total sulfur level at 205 μg/mL).Strains 1awq, IG, X7B, ZT, ZCR, and a mixture of No. 5 and No. 6, were used in the biodesulfurization process. The reduction of total sulfur was between 10.6% and 90.3%.

  7. 32 CFR 855.18 - Aviation fuel and oil purchases.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Aviation fuel and oil purchases. 855.18 Section... AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits § 855.18 Aviation fuel and..., Air Force Stock Fund and DPSC Assigned Item Procedures, 5 purchase of Air Force fuel and oil may...

  8. Development of dry storage technology of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Maruoka, Kunio [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Nuclear Energy Systems Engineering Center; Murakami, Kazuo; Yokoyama, Takeshi; Natsume, Tomohiro; Irino, Mitsuhiro

    1998-07-01

    The increasing demand for storage of spent fuel assemblies generated by commercial nuclear power plants is the urgent subject to solve. The dry storage system is as economically more advantageous than the pool storage system, and so, Mitsubishi Heavy Industries, Ltd. has developed the metal storage cask suited to small and medium storage capacity under 2000MTU - 3000MTU. For large scale capacity, the new `Mitsubishi Vault Storage System` has been developed, and it provides a safe and economical solution. Technical study concerning cooling ability was performed. (author)

  9. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  10. Storage tank materials for biodiesel blends; the analysis of fuel property changes

    Directory of Open Access Journals (Sweden)

    Nurul Komariah Leily

    2017-01-01

    Full Text Available Fuel stability is one of major problem in biodiesel application. Some of the physical properties of biodiesel are commonly changed during storage. The change in physico-chemical properties is strongly correlated to the stability of the fuel. This study is objected to observe the potential materials for biodiesel storage. The test was conducted in three kinds of tank materials, such as glass, HDPE, and stainless steel. The fuel properties are monitored in 12 weeks, while the sample was analyzed every week. Biodiesel used is palm oil based. The storage tanks were placed in a confined indoor space with range of temperature 27–34 °C. The relative humidity and sunshine duration on the location was also evaluated. The observed properties of the fuel blends were density, viscosity and water content. During 12 weeks of storage, the average density of B20 was changed very slightly in all tanks, while the viscosity was tend to increase sharply, especially in polimerics tank. Water content of B20 was increased by the increase of storage time especially in HDPE tank. In short period of storage, the biodiesel blends is found more stable in glass tank due to its versatility to prohibit oxidation, degradation, and its chemical resistance.

  11. Extending dry storage of spent LWR fuel for 100 years.

    Energy Technology Data Exchange (ETDEWEB)

    Einziger, R. E.

    1998-12-16

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  12. 46 CFR 78.17-75 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating...

  13. 19 CFR 10.62 - Bunker fuel oil.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a...

  14. 46 CFR 97.15-55 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received...

  15. Dry spent fuel storage with the MACSTOR system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations

    1996-10-01

    Atomic Energy of Canada Limited (AECL), and Transnuclear Inc. (TNI) began in 1989 the development of the concrete spent fuel storage system, called MACSTOR (Modular Air-Cooled Canister STORage) for use with LWR spent fuel assemblies. It is a hybrid system which combines the operational economies of metal cask technology with the capital economies of concrete technology. The MACSTOR Module is a monolithic, shielded concrete vault structure that can accommodate up to 20 spent fuel canisters. Each canister typically holds up to 21 PWR or 44 BWR spent fuel assemblies with a nominal fuel burn up rate of 40,000 MWD/MTU and a 7 year minimum cooling period. The structure is passively cooled by natural convection through an array of inlet and outlet gratings and galleries serving a central plenum where the (vertically) stored canisters are located. The canisters are continuously monitored by means of a pressure monitoring system developed by TNI. Thus, the utility can be assured of both positive cooling of the fuel and verification of the integrity of the fuel confinement boundary. The structure is seismically designed and is capable of withstanding site design basis accident events. The MACSTOR system includes the storage module(s), an overhead gantry system for cask handling, a transfer cask for moving fuel from wet to dry storage and a cask transporter. The canister and transfer cask designs are based on Transnuclear transport cask designs and proven hot cell transfer cask technology, adapted to requirements for on-site spent fuel storage. The MACSTOR system can economically address a wide range of storage capacity requirements. The modular concept allows for flexibility in determining each module`s capacity. Starting with 8 canisters, the capacity can be increased by increments of 4 up to 20 canisters. The MACSTOR system is also flexible in accommodating the various spent fuel types from such reactors as VVER-440, VVER-1000 and RBMK 1500. (J.P.N.)

  16. Physical Properties of Biomass Fuel Briquette from Oil Palm Residues

    African Journals Online (AJOL)

    Physical Properties of Biomass Fuel Briquette from Oil Palm Residues. ... Journal of Applied Sciences and Environmental Management ... Keywords: Palm kernel shell; Mesocarp fibre; Briquette; Biomass solid fuel; proximate analysis.

  17. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  18. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  19. Additives for rapeseed oil fuel. Influence on the exhaust gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kastl, Johannes; Remmele, Edgar; Thuneke, Klaus [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-06-01

    In contrast to fossil diesel fuel, the use of additives is not common in rapeseed oil fuel. In a preceding research project the efficacy of several additives, that are commercially available for the use in fossil diesel or FAME, has been investigated for rapeseed oil fuel in the lab. Four additives could be identified, which have a significant influence on the ignition delay or the low temperature flow behaviour of rapeseed oil fuel. To investigate whether there are negative effects of the additives on other fuel-related properties in practical use, a test series on an agricultural tractor capable of running on vegetable oils has been conducted. Attention is focused on the operating parameters like power, torque or fuel consumption as well as on regulated emissions (CO, HC, particulate matter or NOx) and non-regulated emissions like polycyclic aromatic hydrocarbons. Additionally, the influence of the additives on the storage stability of rapeseed oil fuel is investigated in long term studies. No negative influence of the additives on the regulated emissions could be seen in the experiments, the data of the non-regulated emissions is still being analysed. This paper will focus on the emissions testing; results of the long term studies will be given in the presentation. (orig.)

  20. Studies on spent nuclear fuel evolution during storage

    Energy Technology Data Exchange (ETDEWEB)

    Rondinella, V.V.; Wiss, T.A.G.; Papaioannou, D.; Nasyrow, R. [European Commission Joint Research Centre, Karlsruhe (Germany). Inst. for Transuranium Elements

    2015-07-01

    Initially conceived to last only a few decades (40 years in Germany), extended storage periods have now to be considered for spent nuclear fuel due to the expanding timeline for the definition and implementation of the disposal in geologic repository. In some countries, extended storage may encompass a timeframe of the order of centuries. The safety assessment of extended storage requires predicting the behavior of the spent fuel assemblies and the package systems over a correspondingly long timescale, to ensure that the mechanical integrity and the required level of functionality of all components of the containment system are retained. Since no measurement of ''old'' fuel can cover the ageing time of interest, spent fuel characterization must be complemented by studies targeting specific mechanisms that may affect properties and behavior of spent fuel during extended storage. Tests conducted under accelerated ageing conditions and other relevant simulations are useful for this purpose. During storage, radioactive decay determines the overall conditions of spent fuel and generates heat that must be dissipated. Alpha-decay damage and helium accumulation are key processes affecting the evolution of properties and behavior of spent fuel. The radiation damage induced by a decay event during storage is significantly lower than that caused by a fission during in-pile operation: however, the duration of the storage is much longer and the temperature levels are different. Another factor potentially affecting the mechanical integrity of spent fuel rods during storage and handling / transportation is the behavior of hydrogen present in the cladding. At the Institute for Transuranium Elements, part of the Joint Research Centre of the European Commission, spent fuel alterations as a function of time and activity are monitored at different scales, from the microstructural level (defects and lattice parameter swelling) up to macroscopic properties such as

  1. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Berry, C.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  2. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  3. The economics of sulphur in heavy fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T. (Coopers and Lybrand Deloitte (GB))

    1991-01-01

    The sulphur premium, the price differential between high and low sulphur fuel oil, has trended upwards in recent years as Western governments have imposed increasingly tighter limits on both the quality of fuel oil supplied and emissions of polluting gases from the burning of fuel oil. This trend has had a significant impact on the relative prices of sweet and sour crudes and the economics of refining and power generation, in addition to the prices of natural gas index-linked partly to heavy fuel oil under long-term contracts. In this article, an analysis is made of the economics of sulphur content in heavy fuel oil, the outlook for the sulphur premium in Western Europe and the broader implications for the oil and gas industries. It is argued that, in spite of ever-tightening environmental controls, there is probably only relatively limited scope for a further rise in the sulphur premium over the coming years. (author).

  4. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  5. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  6. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  7. Safety aspects of dry spent fuel storage and spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Botsch, Wolfgang; Smalian, Silva; Hinterding, Peter [TUV NORD EnSys Hannover, GmbH and Co. KG, Hanover (Germany); Volzke, Holger; Wolff, Dietmar; Kasparek, Eva-Maria [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2013-07-01

    As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. TUV and BAM, who work as independent experts for the competent authorities, present the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All safety relevant issues like safe enclosure, shielding, removal of the decay heat or behavior of cask and building under accident conditions are checked and validated with state-of-the-art methods and computer codes before the license approval. It is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  8. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  9. Partial Substitution of Fuel Alcohol for Oil Consumption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ With the rapid development of the national economy in the 21st century, China has constantly increased its oil consumption and already depends on imported oil for close to 50% of its supply. Due to various factors, the price of oil keeps increasing. Various biological energy sources have therefore aroused people's interest. As fuel alcohol was developed ahead of the pack, and its technology has now matured worldwide, it has become a focus as a partial substitute in petroleum based fuels.

  10. Information handbook on independent spent fuel storage installations

    Energy Technology Data Exchange (ETDEWEB)

    Raddatz, M.G.; Waters, M.D.

    1996-12-01

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996.

  11. China Kicks off Fuel Oil Futures in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ China, the world's No. 2 oil consumer only after the United States, rolled out fuel oil futures for the first time in a decade on August 25, offering hedging tools to firms wincing at sky-high prices and paving the way for crude oil derivatives.

  12. The recuperation of the fuel oil of the Prestige; Recuperacion del fuel oil del Prestige

    Energy Technology Data Exchange (ETDEWEB)

    Remon, M. A.

    2003-07-01

    It is not lacking to remember the catastrophe of the PRESTIGE, because it has been object of the constant attention of communication media form the month of November of the year 2002. when it was produced the sinking. The purpose of this article is to deal with an aspect very concrete of this sinister, the recuperation of the fuel-oil that still remains in the sunken boat. (Author)

  13. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  14. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  15. Benchmarking criticality analysis of TRIGA fuel storage racks.

    Science.gov (United States)

    Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F

    2017-01-01

    A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel.

  16. Cryogenic crashworthiness of LNG fuel storage tanks

    NARCIS (Netherlands)

    Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    Shipping is gradually embracing natural gas as bunker fuel. The most viable way to store natural gas on board is in its liquid form. Gas needs to be cooled to cryogenic temperatures and in practice moderately pressurized. On board ships, solely double walled pressure tanks are used for this purpose.

  17. Fully Fueled TACOM Vehicle Storage Test Program.

    Science.gov (United States)

    1981-12-01

    AFLRL with a water bottom were tested as control samples. This fuel sample had been previously innoculated with a culture of Cladosporium resinae and was...turbid, light pink color * Containing active growth of Cladosporium resinae ** Sample was shaken and allowed to stand for 24 hours prior to obtaining

  18. Cryogenic crashworthiness of LNG fuel storage tanks

    NARCIS (Netherlands)

    Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    Shipping is gradually embracing natural gas as bunker fuel. The most viable way to store natural gas on board is in its liquid form. Gas needs to be cooled to cryogenic temperatures and in practice moderately pressurized. On board ships, solely double walled pressure tanks are used for this purpose.

  19. Rheological Properties of Vegetable Oil-Diesel Fuel Blends

    Science.gov (United States)

    Franco, Z.; Nguyen, Q. D.

    2008-07-01

    Straight vegetable oils provide cleaner burning and renewable alternatives to diesel fuels, but their inherently high viscosities compared to diesel are undesirable for diesel engines. Lowering the viscosity can be achieved by either increasing the temperature of the oil or by blending it with diesel fuel, or both. In this work the viscosity of diesel fuel and vegetable oil mixtures at differing compositions is measured as a function of temperature to determine a viscosity-temperature-composition relationship for use in design and optimization of heating and fuel injection systems. The oils used are olive, soybean, canola and peanut oils which are commercially available. All samples tested between 20°C and 80°C exhibit time-independent Newtonian behaviour. A modified Arrhenius relationship has been developed to predict the viscosity of the mixtures as functions of temperature and composition.

  20. Estimation of evaporative losses during storage of crude oil and petroleum products

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.

    2013-01-01

    Full Text Available Storage of crude oil and petroleum products inevitably leads to evaporative losses. Those losses are important for the industrial plants mass balances, as well as for the environmental protection. In this paper, estimation of evaporative losses was performed using software program TANKS 409d which was developed by the Agency for Environmental Protection of the United States - US EPA. Emissions were estimated for the following types of storage tanks: fixed conical roof tank, fixed dome roof tank, external floating roof tank, internal floating roof tank and domed external floating roof tank. Obtained results show quantities of evaporated losses per tone of stored liquid. Crude oil fixed roof storage tank losses are cca 0.5 kg per tone of crude oil. For floating roof, crude oil losses are 0.001 kg/t. Fuel oil (diesel fuel and heating oil have the smallest evaporation losses, which are in order of magnitude 10-3 kg/tone. Liquids with higher Reid Vapour Pressure have very high evaporative losses for tanks with fixed roof, up to 2.07 kg/tone. In case of external floating roof tank, losses are 0.32 kg/tone. The smallest losses are for internal floating roof tank and domed external floating roof tank: 0.072 and 0.044, respectively. Finally, it can be concluded that the liquid with low volatility of low BTEX amount can be stored in tanks with fixed roof. In this case, the prevailing economic aspect, because the total amount of evaporative loss does not significantly affect the environment. On the other hand, storage of volatile derivatives with high levels of BTEX is not justified from the economic point of view or from the standpoint of the environment protection.

  1. Simulation of Gravity Feed Oil for Areoplane Fuel Transfer System

    Science.gov (United States)

    Lv, Y. G.; Liu, Z. X.; Huang, S. Q.; Xu, T.

    Generally, it has two different ways for fuel transfer for areoplane, the simplest one is by gravity, and another is by pumps. But the simplest one mighte change to the vital method in some situation, such as electrical and mechanical accident. So the study of gravity feed oil is aslo important. Past calculations assumed that, under gravity feed, only one fuel tank in aircraft supplies the fuel needed for preventing extremely serious accident to happen. Actually, gravity feed oil is a transient process, all fuel tanks compete for supplying oil and there must have several fuel tanks offering oil simultaneously. The key problems to calculate gravity feed oil are the sumulation of the multiple-branch and transient process. Firstly, we presented mathematical models for oil flow through pipes, non-working pupms and check valves, ect. Secondly, On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Finally, we give a numerical example using the new method for a certain type of aircraft under gravity feed. achieved the variations of oil level and flow mass per second of each oil tanks which showed in Figures below. These variations show preliminarily that our proposed method of calculations is satisfactory.

  2. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.F.

    1993-10-01

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO{sub 2} pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams.

  3. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  4. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP). [For storage or transport

    Energy Technology Data Exchange (ETDEWEB)

    Townes, III, George A.

    1980-10-01

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than complete fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day.

  5. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    Energy Technology Data Exchange (ETDEWEB)

    CHASTAIN, S.A.

    2005-10-24

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The

  6. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells

    NARCIS (Netherlands)

    Deeke, A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive

  7. China's Fuel Oil Imports Continues to Hit Record High

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ China, the world's second-largest oil consumer, has managed to set a new full-year record for fuel oil imports in just 10 months, a clear sign of its appetite for refined oil products will continue unabated next year. According to data issued in late-November by China's General Administration of Customs, the country imported 2.1 million metric tons of fuel oil in October, up 26 percent from the same month last year, bringing total imports in the first 10 months to 24.76million tons.

  8. 46 CFR 31.10-24 - Integral fuel oil tank examinations-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Integral fuel oil tank examinations-T/ALL. 31.10-24... CERTIFICATION Inspections § 31.10-24 Integral fuel oil tank examinations—T/ALL. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within the hull (integral fuel oil tank) is...

  9. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each casks neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  10. Signatures of Extended Storage of Used Nuclear Fuel in Casks

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-28

    As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Control Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.

  11. Combustion and economics of coal slurry fuels: a look at coal-fuel oil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T.; Matsuoka, H.

    1984-01-01

    With the aim of reducing dependence on petroleum, research has been going ahead into the development of various alternative fuels. Of these, coal slurry fuels are regarded as being first in line for commercialization. The authors discuss the combustion of coal-oil fuels. The combustion of fuel oil, pulverized coal and coal-water slurry is also examined. In each case, combustion properties and associated problems are discussed. Finally, the economics of these fuels are examined and trends in research and development surveyed. 23 references.

  12. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Science.gov (United States)

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  13. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available The authors introduced waste plastic pyrolysis oil (WPPO as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%, and carbon residue of 0.5 (wt%, and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  14. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  15. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  16. Seismic analysis of spent nuclear fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B. [Framatome Cogema Fuels, Lynchburg, VA (United States); Harstead, G.A. [Harstead Engineering Associates, Inc., Old Tappan, NJ (United States); Marquet, F. [ATEA/FRAMATOME, Carquefou (France)

    1996-06-01

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. No structural benefit from the BSS is assumed. This paper describes the methods used to perform seismic analysis of high density spent fuel storage racks. The sensitivity of important parameters such as the effect of variation of coefficients of friction between the rack legs and the pool floor and fuel loading conditions (consolidated and unconsolidated) are also discussed in the paper. Results of this study are presented. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, and the type of the seismic event. This paper presents several of the mathematical models usually used. Friction cannot be precisely predicted, so a range of friction coefficients is assumed. The range assumed for the analysis is 0.2 to 0.8. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are normally analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies.

  17. Recommendations on Fuel Parameters for Standard Technical Specifications for Spent Fuel Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, S.M.

    2001-03-08

    The U.S. Nuclear Regulatory Commission (NRC) is currently reviewing the technical specifications for spent fuel storage casks in an effort to develop standard technical specifications (STS) that define the allowable spent nuclear fuel (SNF) contents. One of the objectives of the review is to minimize the level of detail in the STS that define the acceptable fuel types. To support this initiative, this study has been performed to identify potential fuel specification parameters needed for criticality safety and radiation shielding analysis and rank their importance relative to a potential compromise of the margin of safety.

  18. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  19. Spent nuclear fuel storage. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The bibliography contains citations concerning spent nuclear fuel storage technologies, facilities, sites, and assessment. References review wet and dry storage, spent fuel casks and pools, underground storage, monitored and retrievable storage systems, and aluminum-clad spent fuels. Environmental impact, siting criteria, regulations, and risk assessment are also discussed. Computer codes and models for storage safety are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. 77 FR 24585 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-04-25

    ... 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear... amends the NRC's spent fuel storage regulations by revising the Holtec International HI-STORM 100 System... International HI-STORM 100 System listing within the ``List of Approved Spent Fuel Storage Casks'' to...

  1. Hydrolytic Stability of Polyurethane-Coated Fabrics Used for Collapsible Fuel Storage Containers

    Science.gov (United States)

    2014-06-01

    Hydrolytic Stability of Polyurethane -Coated Fabrics Used for Collapsible Fuel Storage Containers by James M. Sloan ARL-TR-6949 June 2014...Hydrolytic Stability of Polyurethane -Coated Fabrics Used for Collapsible Fuel Storage Containers James M. Sloan Weapons and Materials...From - To) October 2012–February 2014 4. TITLE AND SUBTITLE Hydrolytic Stability of Polyurethane -Coated Fabrics Used for Collapsible Fuel Storage

  2. Health risks associated with the storage of wood fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jirjis, R. [Swedish Univ. of Agricultural Science, Dept. of Forest Products, Uppsala (Sweden)

    1996-12-31

    It has been known for many years now that the storage of wood fuel chips in large piles, without pretreatment or active ventilation, involves many problems. As is the case with the storage of any organic material in a pile, a series of biological, physical and chemical processes usually takes place resulting in a series of problems. The paper will primarily focus on the health risks involved in the handling of stored fuel chips of woody biomass. Soon after building a pile of wood fuel chips, the growth of fungi and bacteria usually take place. Their numbers and growth rates depend on many internal and external factors. The most frequent microorganisms associated with the storage of wood chips are moulds and actinomycetes. The inhalation of organic particles of bacteria, spores of actinomycete and moulds is associated with various forms of respiratory diseases: inhalation fever or Organic Dust Toxic Syndrome (ODTS), and the uncommon disease allergic alveolitis. These diseases vary in their symptoms, severity and their long term effect. During screening, loading, transporting and other handling processes of wood fuel chips varying numbers of microspores, hyphal and bacterial segments and other organic products become airborne (organic dust). Awareness of the risks of exposure to airborne spores is the first step in minimizing these risks. Working environment could be greatly improved by avoiding unnecesary exposure to infected environments, or by taking suitable protective measures if needed. (au)

  3. Fuel properties of bituminous coal and pyrolytic oil mixture

    Science.gov (United States)

    Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

    2014-10-01

    Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

  4. ACR fuel storage analysis: finite element heat transfer analysis of dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Khair, K.; Baset, S.; Millard, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2006-07-01

    Over the past decade Atomic Energy of Canada Limited (AECL) has designed and licensed air-cooled concrete structures used as above ground dry storage containers (MACSTOR) to store irradiated nuclear fuel from CANDU plants. A typical MACSTOR 200 module is designed to store 12,000 bundles in 20 storage cylinders. MACSTOR 200 modules are in operation at Gentilly-2 in Canada and at Cernavoda in Romania. The MACSTOR module is cooled passively by natural convection and by conduction through the concrete walls and roof. Currently AECL is designing the Advanced Candu Reactor (ACR) with CANFLEX slightly enriched uranium fuel to be used. AECL has initiated a study to explore the possibility of storing the irradiated nuclear fuel from ACR in MACSTOR modules. This included work to consider ways of minimizing footprint both in the spent fuel storage bay and in the dry storage area. The commercial finite element code ANSYS has been used in this study. The FE model is used to complete simulations with the higher heat source using the same concrete structural dimensions to assess the feasibility of using the MACSTOR design for storing the ACR irradiated fuel. This paper presents the results of the analysis. The results are used to confirm the possibility of using, with minimal changes to the design of the storage baskets and the structure, the proven design of the MACSTOR 200 containment to store the ACR fuel bundles with higher enrichment and burnup. This has thus allowed us to confirm conceptual feasibility and move on to investigation of optimization. (author)

  5. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  6. Dosimetry at an interim storage for spent nuclear fuel.

    Science.gov (United States)

    Králík, M; Kulich, V; Studeny, J; Pokorny, P

    2007-01-01

    The Czech nuclear power plant Dukovany started its operation in 1985. All fuel spent from 1985 up to the end of 2005 is stored at a dry interim storage, which was designed for 60 CASTOR-440/84 casks. Each of these casks can accommodate 84 fuel assemblies from VVER 440 reactors. Neutron-photon mixed fields around the casks were characterized in terms of ambient dose equivalent measured by standard area dosemeters. Except this, neutron spectra were measured by means of a Bonner sphere spectrometer, and the measured spectra were used to derive the corresponding ambient dose equivalent due to neutrons.

  7. Energy Storage: Batteries and Fuel Cells for Exploration

    Science.gov (United States)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  8. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  9. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  10. Verifying a Simplified Fuel Oil Field Measurement Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Doty, Chris [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States)

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  11. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  12. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  13. Fuels and Petroleum, Oil & Lubricants (POL) Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuels and Lubricants Technology Team operates and maintains the Fuels and POL Labs at TARDEC. Lab experts adhere to standardized American Society for Testing and...

  14. Coconut Oil Based Hybrid Fuels as Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Pranil Singh

    2010-01-01

    Full Text Available Problem statement: The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with diesel. Various techniques and methods are used to solve the problems resulting from high viscosity. Approach: One of the techniques is the preparation of a microemulsion fuel, called a hybrid fuel. In this study, hybrid fuels consisting of coconut oil, ethanol and octan-1-ol were prepared with an aim to test their suitability as a fuel for diesel engines. Density, viscosity and gross calorific values of these fuels were determined and the fuels were used to run a direct injection diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel and coconut oil. Results: The experimental results show that the engine efficiency of the hybrid fuels is comparable to that of diesel. As the percentage of ethanol and/or octan-1-ol increased, the viscosity of the hybrid fuels decreased and the engine efficiency increased. The exhaust emissions were lower than those for diesel, except carbon monoxide, which increased. Conclusion/Recommendations: Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly.

  15. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  16. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  17. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  18. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  19. Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Anastopoulos, G.; Zannikou, Y.; Stournas, S. [National Technical University of Athens, School of Chemical Engineering, Laboratory of Fuels Technology and Lubricants, Iroon Polytechniou 9, Athens 15780 (Greece); Kalligeros, S. [Hellenic Organization for Standardization, Technical Committee 66, 67 Prevezis Street, Athens, 10444 (Greece)

    2009-07-01

    The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 - 1.5%), the molar ratio of ethanol to oil (6:1 - 12:1), and the reaction temperature (35 - 90 {sup o}C) were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt), and 80 {sup o}C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt. In the second stage, the yield of ethyl esters was improved by 16% in relation with the one-stage transesterification, which was obtained under the following optimal conditions: catalyst concentration 0.75% and ethanol/oil molar ratio 6:1. The fuel properties of the esters were measured according to EN test methods. Based on the experimental results one can see that the ethyl esters do not differ significantly from methyl esters. Moreover, the results showed that the values of density, viscosity, and higher heating value of ethyl esters were similar to those of automotive and heavy duty engine diesel fuel. However, the CFPP values were higher, which may contribute to potential difficulties in cold starts. On the other hand, the flash points, which were higher than those of diesel fuel constituted a safety guarantee from the point of view of handling and storage. (author)

  20. Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters

    Directory of Open Access Journals (Sweden)

    Stamoulis Stournas

    2009-06-01

    Full Text Available The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 – 1.5%, the molar ratio of ethanol to oil (6:1 – 12:1, and the reaction temperature (35 – 90 °C were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt, and 80 °C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt. In the second stage, the yield of ethyl esters was improved by 16% in relation with the one-stage transesterification, which was obtained under the following optimal conditions: catalyst concentration 0.75% and ethanol/oil molar ratio 6:1. The fuel properties of the esters were measured according to EN test methods. Based on the experimental results one can see that the ethyl esters do not differ significantly from methyl esters. Moreover, the results showed that the values of density, viscosity, and higher heating value of ethyl esters were similar to those of automotive and heavy duty engine diesel fuel. However, the CFPP values were higher, which may contribute to potential difficulties in cold starts. On the other hand, the flash points, which were higher than those of diesel fuel constituted a safety guarantee from the point of view of handling and storage.

  1. Long-term storage of three unconventional oils

    Directory of Open Access Journals (Sweden)

    Hussein, Ismail H.

    2008-03-01

    Full Text Available Three samples, Sclerocarya birrea oil (SCO, Melon bug oil (Aspongubus viduatus (MBO, and Sorghum bug oil (Agonoscelis pubescens (SBO, were stored (autoxidized in the dark at 30±2 °C for 24 months. Oil aliquots were withdrawn every 2-4 month for analyses of changes in four quality indexes, namely fatty acid composition, tocopherol content, peroxide value and oxidative stability index by Rancimat. After 24 months of storage the fatty acid composition of the three oils showed no change while tocopherol contents were decreased. SCO and MBO showed only slight changes in their oxidative stability as indicated by the peroxide value and induction period during the 24 months of storage. Sorghum bug oil showed a periodical increase in the peroxide value and had less stability as measured by the Rancimat in comparison to other oils.Tres muestras de aceite, Sclerocarya birrea oil (SCO, Melon bug oil (Aspongubus viduatus (MBO, and Sorghum bug oil (Agonoscelis pubescens (SBO, fueron almacenadas en la oscuridad a 30±2 °C durante 24 meses. Cada 2- 4 meses se toman alícuotas para analizar los cambios de calidad. Se determinaron la composición en ácidos grasos, el contenido en tocoferol, el índice de peróxidos y la estabilidad oxidativa mediante el aparato Rancimat. Después de 24 meses de almacenamiento, la composición en ácidos grasos no experimentó variación mientras que el contenido en tocoferol disminuyó en los tres aceites. SCO y MBO mostraron cambios minoritarios como se comprobó por los indices de peroxides y estabilidad a los 24 meses. SBO fue el menos estable de los tres aceites.

  2. Waste cooking oil as source for renewable fuel in Romania

    Science.gov (United States)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  3. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  4. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground storage, lubricating oil and grease... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1104 Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease...

  5. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  6. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  7. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  8. Quality Improvement of an Acid Treated Fuel Oil

    Directory of Open Access Journals (Sweden)

    Elizabeth Jumoke ETERIGHO

    2008-06-01

    Full Text Available The work on the quality improvement of fuel oil using acid treatment was carried out. The improvement of the fuel oil was done using sulphuric acid to remove contaminants. Sulphuric acid at different concentrations were mixed with the oil and kept at 45°C for four hours in the agitator vessel to allow reaction to take place. Acidic sludge was then drained off from the agitator and the oil was neutralized with sodium hydroxide. Centrifugation operation was used to extract the sulphonate dispersed in the oil. The treated and untreated oils were characterized for various properties and the results showed that the viscosity, total sulphur of fuel oil decreased from 6.0 to before 5.0 cst after acid treatment and 2.57 to 1.2225% w/w respectively while the flash point increased from 248 to 264°F. The water and sediment content increased from trace before to 0.6 after treatment. In addition, the calorific value increased from initial value of 44,368 to 44,805 and 44,715 kJ/kg at 50% and 75% conc. H2SO4 while decreasing with 85% and 90% conc. H2SO4. However, both carbon residue and ash content decreases with an increase in acid concentration.

  9. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  10. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    KLEM, M.J.

    2000-10-18

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8

  11. Unraveling heavy oil desulfurization chemistry: targeting clean fuels.

    Science.gov (United States)

    Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron

    2008-03-15

    The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels.

  12. 75 FR 77017 - Nextera Energy Seabrook, LLC Seabrook Station Independent Spent Fuel Storage Installation; Exemption

    Science.gov (United States)

    2010-12-10

    ... COMMISSION Nextera Energy Seabrook, LLC Seabrook Station Independent Spent Fuel Storage Installation; Exemption 1.0 Background NextEra Energy Seabrook, LLC (NextEra, the licensee) is the holder of Facility..., subpart K, a general license is issued for the storage of spent fuel in an independent spent fuel...

  13. A fuel cell energy storage system for Space Station extravehicular activity

    Science.gov (United States)

    Rosso, Matthew J., Jr.; Adlhart, Otto J.; Marmolejo, Jose A.

    1988-01-01

    The development of a fuel cell energy storage system for the Space Station Extravehicular Mobility Unit (EMU) is discussed. The ion-exchange membrane fuel cell uses hydrogen stored as a metal hydride. Several features of the hydrogen-oxygen fuel cell are examined, including its construction, hydrogen storage, hydride recharge, water heat, water removal, and operational parameters.

  14. Design of Mooring System for Oil Storage Vessels

    Institute of Scientific and Technical Information of China (English)

    李文龙; 谭家华

    2003-01-01

    The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in China. Mooring is one of the key technologies to ensure the safety, reliability, and performance of the oil storage system. This paper describes the concept, analysis, design and reliability of the mooring system. For mooring system design of these oil vessels, analysis is essential of the behavior of the vessel in connection with mooring facilities of nonlinear resilience. A nonlinear mathematical model for analyzing a moored vessel is established and solved. Some results of numerical simulations are presented. Assessment of the safety regarding the mooring system in terms of failure probability is carried out. Another simulation model for calculating the failure probability of the mooring system is proposed. The design parameters that have an influence on the characteristics of the failure probability have been identified. The simulation results show that the mooring system has an annual reliability value of 0.999998. The proposed simulation method is proved to be effective in quantitative evaluation of the safety of the mooring system for floating oil storage vessels.

  15. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  16. The economics of carbon dioxide transport by pipeline and storage in saline aquifers and oil reservoirs

    Science.gov (United States)

    McCoy, Sean T.

    Large reductions in carbon dioxide (CO2) emissions are needed to mitigate the impacts of climate change. One method of achieving such reductions is CO2 capture and storage (CCS). CCS requires the capture of carbon dioxide (CO2) at a large industrial facility, such as a power plant, and its transport to a geological storage site where CO2 is sequestered, if implemented, CCS could allow fossil fuels to be used with little or no CO2 emissions until alternative energy sources are more widely deployed. Large volumes of CO2 are most efficiently transported by pipeline and stored either in deep saline aquifers or in oil reservoirs, where CO2 is used for enhanced oil recovery (EOR). This thesis describes a suite of models developed to estimate the project-specific cost of CO2 transport and storage. Engineering-economic models of pipeline CO2 transport, CO2flood EOR, and aquifer storage were developed for this purpose. The models incorporate a probabilistic analysis capability that is used to quantify the sensitivity of transport and storage cost to variability and uncertainty in the model input parameters. The cost of CO2 pipeline transport is shown to be sensitive to the region of construction, in addition to factors such as the length and design capacity of the pipeline. The cost of CO2 storage in saline aquifers is shown to be most sensitive to factors affecting site characterization cost. For EOR projects, CO2 storage has traditionally been a secondary effect of oil recovery; thus, a levelized cost of CO2 storage cannot be defined. Instead EOR projects were evaluated based on the breakeven price of CO2 (i.e., the price of CO2 at which the project net present value is zero). The breakeven CO2 price is shown to be most sensitive to oil prices, losses of CO2 outside the productive zone of the reservoir, and reservoir pressure. Future research should include collection and aggregation of more specific data characterizing possible sites for aquifer storage and applications

  17. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  18. Fuel oil-induced adrenal hypertrophy in ranch mink (Mustela vison): effects of sex, fuel oil weathering, and response to adrenocorticotropic hormone.

    Science.gov (United States)

    Mohr, F C; Lasley, B; Bursian, S

    2010-01-01

    Environmental contamination by petroleum hydrocarbons from anthropogenic sources can be a cause of stress for free-ranging wildlife. The response of wildlife to chemical contaminants requires that the hypothalamic-pituitary-adrenal (HPA) axis be precisely regulated to allow for proper glucocorticoid-mediated adaptive responses. Chronic oral exposure to low concentrations of bunker C fuel oil causes the development of adrenal hypertrophy in male ranch mink (Mustela vison) without increasing serum or fecal glucocorticoid concentrations. This hypertrophy is an adaptive response to fuel oil-induced adrenal insufficiency. To determine if the same phenomenon occurs in female mink or male mink exposed to artificially weathered fuel oil, female mink were fed 0 ppm (mineral oil) or 420 ppm fuel oil and male mink were exposed to 0 ppm, 420 ppm fuel oil, or 480 ppm artificially weathered fuel oil in the diet for 60-62 days. At the end of the exposure, serum glucocorticoid concentrations were assayed along with body and organ weight measurements. Fecal glucocorticoid concentrations were assayed at time points throughout the exposure. Male mink fed fuel oil or weathered fuel oil and female mink fed fuel oil had adrenal enlargement without any significant increases in the serum or fecal concentration of glucocorticoids, which is consistent with fuel oil-induced adrenal insufficiency. To address the physiological consequences of adrenal insufficiency, fuel oil-exposed male mink were administered an adrenocorticotropic hormone (ACTH) stimulation test. Fuel oil-exposed animals had a smaller incremental increase in serum glucocorticoid concentration after ACTH challenge compared to control animals. Our findings provide further evidence that the HPA axis of fuel oil-exposed animals is compromised and, therefore, not able to respond appropriately to the diverse stressors found in the environment.

  19. Evaluating potential benefits of burning lower quality fuel oils using the oil burn optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Babilonia, P.

    1995-09-01

    As a result of a 1987 New York State Public Service Commission Audit of Niagara Mohawk`s Fuel Supply operations, Niagara Mohawk (NMPC) became interested in analyzing the plant performance impacts of burning fuels of differing qualities at its various generating stations. Black & Veatch (B&V) had previously developed a computer model for EPRI that analyzed coal quality impacts (i.e., Coal Quality Impact Model). As a result of B&V`s work, NMPC contracted with B&V to first develop custom-designed software for its coal stations (Coal Burn Optimization Model (CBOM)). Subsequently, B&V was retained to develop a similar designed software for its oil stations, Oswego and Albany Steam Stations. The Oil Burn Optimization Model (OBOM) was, therefore, developed. OBOM was designed to be used to evaluate residual fuel oil supply options by predicting their fuel-related plant operating and maintenance costs. Fuel oil-related costs can also be compared to natural gas-related costs. Costs are estimated by predicting performance of various plant equipment. Predictions focus on combustion calculations, material flows, auxiliary power, boiler efficiency, precipitator and fan performance, fuel pumping and preheating requirements, and corrosion considerations. Total costs at the busbar attributed to fuel are calculated from these predictions. OBOM is a PC-based system operating under MS-DOS. The model produces hard copy results for quick comparison of fuels and their potential effects on plant operating and maintenance costs.

  20. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.

    2015-04-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  1. Thermally decomposed ricebran oil as a diesel fuel

    Directory of Open Access Journals (Sweden)

    Megahed, O. A.

    1998-04-01

    Full Text Available Ricebran oil; a non edible oil, was thermally decomposed using different loads of calcium oxide as catalyst. The fuel properties of the cracked product were evaluated as compared to those of diesel fuel. The considered properties included the calorific value, flash point, viscosity, pour point, distillation characteristics, cetane number in addition to some other fuel properties. The results had shown that the fuel properties of the decomposed oil were quite similar to those of standard diesel fuel. The calorific value was 80-90% that of diesel fuel and the viscosity was sligthy higher. The prepared fuel was advantageous over diesel fuel as the former was completely free from sulfur, which on fuel combustion produces corrosive gases of sulfur oxides.

    Aceite de germen de arroz, un aceite no comestible, fue descompuesto térmicamente usando diferentes cantidades de óxido cálcico como catalizador. Las propiedades combustibles del producto craqueado fueron evaluadas comparándolas con las del gasóleo. Las propiedades consideradas incluyeron el poder calorífico, punto de inflamación, viscosidad, temperatura de fluidez crítica, características de destilación, número de cetano y otras propiedades de los combustibles. Los resultados han mostrado que las propiedades combustibles del aceite descompuesto fueron bastantes similares a la de los gasóleos estándar. El poder calorífico fue del 80-90% de la del gasóleo y la viscosidad ligeramente mayor. El combustible preparado fue ventajoso sobre el gasóleo ya que el primero estaba completamente libre de sulfuro, el cual produce en la combustión del carburante gases corrosivos de óxido de azufre.

  2. Capacitive bioanodes enable renewable energy storage in microbial fuel cells.

    Science.gov (United States)

    Deeke, Alexandra; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2012-03-20

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity. The performance and storage capacity were investigated during polarization curves and charge-discharge experiments. During polarization curves the capacitive electrode reached a maximum current density of 1.02 ± 0.04 A/m(2), whereas the noncapacitive electrode reached a current density output of only 0.79 ± 0.03 A/m(2). During the charge-discharge experiment with 5 min of charging and 20 min of discharging, the capacitive electrode was able to store a total of 22,831 C/m(2), whereas the noncapacitive electrode was only able to store 12,195 C/m(2). Regarding the charge recovery of each electrode, the capacitive electrode was able to recover 52.9% more charge during each charge-discharge experiment compared with the noncapacitive electrode. The capacitive electrode outperformed the noncapacitive electrode throughout each charge-discharge experiment. With a capacitive electrode it is possible to use the MFC simultaneously for production and storage of renewable electricity.

  3. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  4. An Empirical Analysis of the Price Discovery Function of Shanghai Fuel Oil Futures Market

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Liu Zhenhai; Chen Chao

    2007-01-01

    This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response function and variance decomposition. The results showed that there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the futures price of Shanghai fuel oil futures market. In addition, the Shanghai fuel oil futures market exhibits a highly effective price discovery function.

  5. Phase equilibria of continuous fossil fuel process oils

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M.J.; Weil, S.A. (Institute of Gas Technology, Chicago, IL (US))

    1988-04-01

    Fossil fuel process oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the pseudocomponents technique, the level of accuracy can be maintained.

  6. Phase equilibria of continuous fossil fuel process oils

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M.J.; Weil, S.A.

    1987-01-01

    Fossil fuel process oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented here to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the pseudocomponents technique, the level of accuracy can be maintained. 22 refs., 10 figs., 4 tabs.

  7. Phase equilibria of continuous fossil fuel process oils

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M.J.

    1987-01-01

    Fossil fuel processes oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented here to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the psuedocomponents technique, the level of accuracy can be maintained.

  8. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  9. Evaluation of safety margins during dry storage of CANDU fuel in MACSTOR/KN-400 module

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, R.; Shill, R. [Atomic Energy Of Canada Limited, Montreal, Quebec (Canada); Lee, K.-H.; Chung, S.-H.; Yoon, J.-H.; Choi, B.-I.; Lee, H.-Y.; Song, M.-J. [KHNP, Nuclear Environment Technology Inst., Taejon (Korea, Republic of)

    2005-03-15

    This paper covers an evaluation of the available safety margin against fuel bundle degradation during dry storage of CANDU spent fuel bundles in a MACSTOR/KN-400 module, considering normal, off-normal and postulated accidental conditions. (author)

  10. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-08-18

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.

  11. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Hubschmid, W.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  12. 32 CFR 766.13 - Sale of aviation fuel, oil, services and supplies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Sale of aviation fuel, oil, services and... aviation fuel, oil, services and supplies. (a) General policy. In accordance with sections 1107 and 1108 of... Aviation fuel, oil, services, and supplies are not sold to civil aircraft in competition with...

  13. 46 CFR 167.15-40 - Integral fuel oil tank examinations-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel oil tank examinations-T/ALL. 167.15-40... PUBLIC NAUTICAL SCHOOL SHIPS Inspections § 167.15-40 Integral fuel oil tank examinations—T/ALL. (a) Each fuel oil tank with at least one side integral to the vessel's hull and located within the hull...

  14. Acceptance and storage of fresh cheese made with essential oils

    Directory of Open Access Journals (Sweden)

    Joelmir Grassi Presente

    2017-08-01

    Full Text Available The aim of this work was to evaluate the acceptance and conservation of Minas fresh cheese with essential oils added of oregano and ginger in its formulation. The quality of the milk used as raw material was evaluated for pH, acidity, alizarol, total solids, density, and total microbial load. The cheeses produced were characterized as pH, acidity, moisture, lipids, proteins and ashes. The cheeses were also evaluated by sensorial affective tests using hedonic and attitude scales, in order to determine the acceptance and purchase intention by judges. The count of total aerobic mesophilic microorganisms was used to estimate the shelf-life of cheeses. The milk used as raw material is presented within the quality standards required by legislation. The cheeses made with essential oils showed pH and acidity around 6.9 and 0.87%, respectively, 57.6% moisture, 31.3% lipids, 11.4% protein and 0.9% ash. The cheese added essential oil of oregano and the control cheese were those given by the judges the best values for acceptance (7.5 and 7.6, respectively and purchase intention (4.2 and 4.4 respectively. Regarding the estimated shelf-life, the cheeses added essential oil of oregano and ginger had lower overall microbial load values compared to the control (no oil and mixed (two oils addition, presented counts values with up 106 UFC/g only from the 28th day of storage.

  15. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    Science.gov (United States)

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  16. Catalytic Conversion of Bio-oil to Fuel for Transportation

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard

    The incitement for decreasing the modern society's dependency on fossil based fuel and energy is both environmentally and politically driven. Development of biofuels could be part of the future solution. The combination of ash pyrolysis and catalytic upgrading of the produced bio-oil has been ide...

  17. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Science.gov (United States)

    2011-08-10

    ... Federal Aviation Administration Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating... Federal Aviation Administration, Attn: Mark Rumizen, Aviation Fuels Specialist, Engine and Propeller... successful aviation fuel and lubricating oil certification projects conducted over many years....

  18. Transfer of Plutonium-Uranium Extraction Plant and N Reactor irradiated fuel for storage at the 105-KE and 105-KW fuel storage basins, Hanford Site, Richland Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The U.S. Department of Energy (DOE) needs to remove irradiated fuel from the Plutonium-Uranium Extraction (PUREX) Plant and N Reactor at the Hanford Site, Richland, Washington, to stabilize the facilities in preparation for decontamination and decommissioning (D&D) and to reduce the cost of maintaining the facilities prior to D&D. DOE is proposing to transfer approximately 3.9 metric tons (4.3 short tons) of unprocessed irradiated fuel, by rail, from the PUREX Plant in the 200 East Area and the 105 N Reactor (N Reactor) fuel storage basin in the 100 N Area, to the 105-KE and 105-KW fuel storage basins (K Basins) in the 100 K Area. The fuel would be placed in storage at the K Basins, along with fuel presently stored, and would be dispositioned in the same manner as the other existing irradiated fuel inventory stored in the K Basins. The fuel transfer to the K Basins would consolidate storage of fuels irradiated at N Reactor and the Single Pass Reactors. Approximately 2.9 metric tons (3.2 short tons) of single-pass production reactor, aluminum clad (AC) irradiated fuel in four fuel baskets have been placed into four overpack buckets and stored in the PUREX Plant canyon storage basin to await shipment. In addition, about 0.5 metric tons (0.6 short tons) of zircaloy clad (ZC) and a few AC irradiated fuel elements have been recovered from the PUREX dissolver cell floors, placed in wet fuel canisters, and stored on the canyon deck. A small quantity of ZC fuel, in the form of fuel fragments and chips, is suspected to be in the sludge at the bottom of N Reactor`s fuel storage basin. As part of the required stabilization activities at N Reactor, this sludge would be removed from the basin and any identifiable pieces of fuel elements would be recovered, placed in open canisters, and stored in lead lined casks in the storage basin to await shipment. A maximum of 0.5 metric tons (0.6 short tons) of fuel pieces is expected to be recovered.

  19. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  20. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  1. Transesterified sesame (Sesamum indicum L.) seed oil as a biodiesel fuel.

    Science.gov (United States)

    Saydut, Abdurrahman; Duz, M Zahir; Kaya, Canan; Kafadar, Aylin Beycar; Hamamci, Candan

    2008-09-01

    The sesame (Sesamum indicum L.) oil was extracted from the seeds of the sesame that grows in Diyarbakir, SE Anatolia of Turkey. Sesame seed oil was obtained in 58wt/wt%, by traditional solvent extraction. The methylester of sesame (Sesamum indicum L.) seed oil was prepared by transesterification of the crude oil. Transesterification shows improvement in fuel properties of sesame seed oil. This study supports the production of biodiesel from sesame seed oil as a viable alternative to the diesel fuel.

  2. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    Science.gov (United States)

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  3. BIODIESEL FUELS FROM PALM OIL, PALM OIL METHYLESTER ...

    African Journals Online (AJOL)

    a

    energy source is renewable, it could reduce the risk of unavailability of fossil diesel and could to a large extent reduce pollution effects resulting from their wastes. ... engine and decline in diesel supply, there is need to produce vegetable oils ...

  4. Catalytic Transformation of Tall Oil into Biocomponent of Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Jozef Mikulec

    2012-01-01

    Full Text Available One of the conventional kraft pulp mills produce crude tall oil which is a mixture of free fatty acids, resin acids, sterols, terpenoid compounds, and many others. This study is devoted to the issue of direct transformation of crude tall oil in a mixture with straight-run atmospheric gas oil to liquid fuels using three different commercial hydrotreating catalysts. Diesel fuel production is an alternative to incineration of these materials. High catalytic activity was achieved for all tested catalysts in temperature range 360–380°C, under 5.5 MPa hydrogen pressure and ratio H2/feedstock 500–1000 l/l. Crude tall oil can be converted to diesel oil component via simultaneous refining with straight-run atmospheric gas oil on NiMo/Al2O3 and NiW/Al2O3-zeolite catalysts. All tested catalysts had very good hydrodenitrogenation activity and high liquid yield were at tested conditions.

  5. Ultrasonic Guided Wave Technology for Noninvasive Assessment of Corrosion-induced Damage in Piping for Pollution Prevention in DOD Fuel Storage Facilities

    Science.gov (United States)

    2011-09-01

    1  1.4  IMPLEMENTATION ISSUES .............................................................................. 2  2.0  INTRODUCTION ...3 2.0 INTRODUCTION The Oil Pollution Act (OPA) of 1990 sets up operational and maintenance requirements for DoD and civilian fuel/oil storage and... magnetostrictive metal strips to the pipe surface by room-temperature cured epoxy. This was preceded by the removal of protective coating from the pipe

  6. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    Science.gov (United States)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  7. 40 CFR 279.45 - Used oil storage at transfer facilities.

    Science.gov (United States)

    2010-07-01

    ... requirements of this subpart. Used oil transporters are also subject to the Underground Storage Tank (40 CFR part 280) standards for used oil stored in underground tanks whether or not the used oil exhibits any... facilities including loading docks, parking areas, storage areas, and other areas where shipments of used...

  8. Development of operational criteria for the interim spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. H.; Kim, J. C.; Kim, D. K.; Cho, D. K.; Bae, K. M. [Kyunghee Univ., Seoul (Korea, Republic of)

    1997-03-15

    The final objective is to develop the technical criteria for the facility operation of the interim spent fuel storage facility. For this purpose, elementary technical issues are evaluated for the wet storage of spent fuels and status of operation in foreign counties are examined. Urgent objective of this study is to provide technical back data for the development of operational criteria. For the back data for the development of operational criteria, domestic technical data for the wet storages are collected as well as standards and criteria related to the spent fuel storage. Operational stutus of spent fuel storages in foreign countries CLAB in Sweden and MRS in the United States are studied. Dry storage concept is also studied in order to find the characteristics of wet storage concept. Also basic technical issues are defined and studied in order to build a draft of operational criteri00.

  9. Polycyclic aromatic hydrocarbon body residues and lysosomal membrane destabilization in mussels exposed to the Dubai Star bunker fuel oil (intermediate fuel oil 380) spill in San Francisco Bay.

    Science.gov (United States)

    Hwang, Hyun-Min; Stanton, Beckye; McBride, Toby; Anderson, Michael J

    2014-05-01

    Following the spill of bunker fuel oil (intermediate fuel oil 380, approximately 1500-3000 L) into San Francisco Bay in October 2009, polycyclic aromatic hydrocarbon (PAH) concentrations in mussels from moderately oiled areas increased up to 87 554 ng/g (dry wt) and, 3 mo later, decreased to concentrations found in mussels collected prior to oiling, with a biological half-life of approximately 16 d. Lysosomal membrane destabilization increased in mussels with higher PAH body burdens.

  10. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A. [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Divisao de Engenharia do Nucleo

    1997-12-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back to the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their {sup 137}Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the {sup 137}Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A {sup 137}Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment. (author).

  11. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A

    1998-03-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. Many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their {sup 137}Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the {sup 137}Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A {sup 137}Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment.

  12. Grapefruit gland oil composition is affected by wax application, storage temperature, and storage time.

    Science.gov (United States)

    Sun, D; Petracek, P D

    1999-05-01

    The effect of wax application, storage temperature (4 or 21 degrees C), and storage time (14 or 28 days after wax application) on grapefruit gland oil composition was examined by capillary gas chromatography. Wax application decreases nonanal and nootkatone levels. beta-Pinene, alpha-phellandrene, 3-carene, ocimene, octanol, trans-linalool oxide, and cis-p-mentha-2,8-dien-1-ol levels increase, but limonene levels decrease, with temperature. Levels of alpha-pinene, limonene, linalool, citronellal, alpha-terpineol, neral, dodecanal, and alpha-humulene decrease with time. Levels of alpha-phellandrene, 3-carene, ocimene, and trans-linalool oxide increase with time. No compound level was affected by the interactive action of temperature and wax application, suggesting that these two factors cause grapefruit oil gland collapse (postharvest pitting) through means other than changing gland oil composition. Compounds that are toxic to the Caribbean fruit fly (alpha-pinene, limonene, alpha-terpineol, and some aldehydes) decrease with time, thus suggesting grapefruit becomes increasingly susceptible to the fly during storage.

  13. Comparison of Diesel Engine Characteristic Using Pure Coconut Oil, Pure Palm Oil, and Pure Jatropha Oil as Fuel

    Directory of Open Access Journals (Sweden)

    Iman K. Reksowardojo

    2009-01-01

    Full Text Available Diesel engine can be operated on either pure plant oil (PPO oil or biodiesel. Biodiesel production process is expensive due to many stages of processes, while PPO has a lower cost of production, lower energy consumption, and simpler process. There are several potential biofuel resources in Indonesia such as coconut, palm, and jatropha. They are tropical plants with large amonts of their quantity. Experiment was conducted in 17 hours engine running test (endurance test with various operating cycle conditions. Test fuels are pure coconut oil (PCO, pure palm oil (PPaO, pure jatropha oil (PJO, and diesel fuel (DF as a datum. Each PPO blends with diesel fuel with composition 50%-volume. As a result, PCO has higher BSFC (10% before endurance test in comparison with diesel fuel, also PPaO (13% and PJO (27% show a similar condition. Surprisingly, all PPO have BSFC almost similar with DF after endurance test due to decreasing of engine components friction. On the other hand, PPO produces more uncompleted combustion than DF. Phosporus content has major responsibility of deposit growth. PCO, PPaO, and PJO result more engine deposits in comparison with DF, which accounts for 139,7%, 232,9%, and 288,9% respectively. Based on wear analysis, PCO has the best antiwear property among test fuels, whereas the worst is DF.

  14. Direct oxidation of waste vegetable oil in solid-oxide fuel cells

    Science.gov (United States)

    Zhou, Z. F.; Kumar, R.; Thakur, S. T.; Rudnick, L. R.; Schobert, H.; Lvov, S. N.

    Solid-oxide fuel cells with ceria, ceria-Cu, and ceria-Rh anode were demonstrated to generate stable electric power with waste vegetable oil through direct oxidation of the fuel. The only pre-treatment to the fuel was a filtration to remove particulates. The performance of the fuel cell was stable over 100 h for the waste vegetable oil without dilution. The generated power was up to 0.25 W cm -2 for ceria-Rh fuel cell. This compares favorably with previously studied hydrocarbon fuels including jet fuels and Pennsylvania crude oil.

  15. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  16. MACSTOR{trademark}: Dry spent fuel storage for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F.E.; Pattantyus, P. [AECL Candu, Montreal, Quebec (Canada); Hanson, A.S. [Transnuclear, Inc., Hawthorne, NY (United States)

    1993-12-31

    Safe storage of spent fuel has long been an area of critical concern for the nuclear power industry. As fuel pools fill up and re-racking possibilities become exhausted, power plant operators will find that they must ship spent fuel assemblies off-site or develop new on-site storage options. Many utility companies are turning to dry storage for their spent fuel assemblies. The MACSTOR (Modular Air-cooled Canister STORage) concept was developed with this in mind. Derived from AECL`s successful vertical loading, concrete silo program for storing CANDU nuclear spent fuel, MACSTOR was developed for light water reactor spent fuel and was subjected to full scale thermal testing. The MACSTOR Module is a monolithic, shielded concrete vault structure than can accommodate up to 24 spent fuel canisters. Each canister holds 12 PWR or 32 PWR previously cooled spent fuel assemblies with burn-up rates as high as 45,000 MWD/MTU. The structure is passively cooled by natural convection through an array of inlet and outlet gratings and galleries serving a central plenum where the (vertically) stored canisters are located. The canisters are continuously monitored by means of a pressure monitoring system developed by TNI. The MACSTOR system includes the storage module(s), an overhead gantry system for cask handling, a transfer cask for moving fuel from wet to dry storage and a cask transporter. The canister and transfer cask designs are based on Transnuclear transport cask designs and proven hot cell transfer cask technology, adapted to requirements for on-site spent fuel storage. This Modular Air Cooled System has a number of inherent advantages: efficient use of construction materials and site space; cooling is virtually impossible to impede; has the ability to monitor fuel confinement boundary integrity during storage; the fuel canisters may be used for both storage and transport and canisters utilize a flanged, ASME-III closure system that allows for easy inspection.

  17. 10 CFR 72.214 - List of approved spent fuel storage casks.

    Science.gov (United States)

    2010-01-01

    ... 72.214 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... Standardized NUHOMS® Horizontal Modular Storage System for Irradiated Nuclear Fuel. Docket Number:...

  18. 75 FR 25120 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-07

    ... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR- RELATED GREATER THAN CLASS C... Safety Analysis Report for the NUHOMS HD Horizontal Modular Storage System for Irradiated Nuclear Fuel...; #0; #0;#0;Federal Register / Vol. 75, No. 88 / Friday, May 7, 2010 / Proposed Rules#0;#0; ]...

  19. 77 FR 9515 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8 AGENCY: Nuclear... Commission) is amending its spent fuel storage regulations by revising the Holtec International HI-STORM 100... and safety will be adequately protected. This direct final rule revises the HI-STORM 100 listing in...

  20. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna International, Rochester Mills, MI (United States)

    2010-08-27

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  1. Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete

    OpenAIRE

    Muthusamy, K.; Z. Nur Azzimah

    2014-01-01

    In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA) which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS) lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing ...

  2. Oil Price Uncertainty, Transport Fuel Demand and Public Health

    Science.gov (United States)

    He, Ling-Yun; Yang, Sheng; Chang, Dongfeng

    2017-01-01

    Based on the panel data of 306 cities in China from 2002 to 2012, this paper investigates China’s road transport fuel (i.e., gasoline and diesel) demand system by using the Almost Ideal Demand System (AIDS) and the Quadratic AIDS (QUAIDS) models. The results indicate that own-price elasticities for different vehicle categories range from −1.215 to −0.459 (by AIDS) and from −1.399 to −0.369 (by QUAIDS). Then, this study estimates the air pollution emissions (CO, NOx and PM2.5) and public health damages from the road transport sector under different oil price shocks. Compared to the base year 2012, results show that a fuel price rise of 30% can avoid 1,147,270 tonnes of pollution emissions; besides, premature deaths and economic losses decrease by 16,149 cases and 13,817.953 million RMB yuan respectively; while based on the non-linear health effect model, the premature deaths and total economic losses decrease by 15,534 and 13,291.4 million RMB yuan respectively. Our study combines the fuel demand and health evaluation models and is the first attempt to address how oil price changes influence public health through the fuel demand system in China. Given its serious air pollution emission and substantial health damages, this paper provides important insights for policy makers in terms of persistent increasing in fuel consumption and the associated health and economic losses. PMID:28257076

  3. 46 CFR 30.10-48 - Oil fuel-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Oil fuel-TB/ALL. 30.10-48 Section 30.10-48 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-48 Oil fuel—TB/ALL. The term oil fuel means oil used as fuel for machinery in the vessel in which it is...

  4. Fossil-fuel process oils as continuous fluids

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian-Amin, M.J.

    1986-01-01

    The oils produced by fossil fuel conversion processes consist of such a large number of components that their only proper description is as continuous fluids (i.e., continuum of components). A methodology is presented here to describe the vapor liquid equilibrium processes involving continuous oils. It describes the oil in terms of one or more continuous distribution functions (fractional continuous oils) of some measurable quantity (i.e., characteristic variable) that, in the view of the equilibrium ratio relationship, maintain their functional form in equilibrium processes. Parameters of the distributions of the product streams in any equilibrium process (i.e., vapor and liquid) are determined in terms of the parameters of the feed stream and the operating condition (e.g., T,P). In general, the procedure can be applied to both ideal and non-ideal systems, but in view of the experimental results indicating ideality, only those systems were analyzed. An ambient pressure batch distillation system was constructed to collect vapor-liquid equilibrium data of continuous test oils. Two test oils, a shale oil and a coal oil were studied in this work. From measurement of the equilibrium ratios of the test oils it was determined that both oils behave ideally and the equilibrium ratio was independent of the liquid composition. A simple and definable function of the boiling point provided to be a suitable characteristic variable for the proposed methodology to the sequential operation has shown that if the functions are chosen properly, then the error incurred will not propagate at a significant rate and at the same level of accuracy can be maintained.

  5. Radiation induced corrosion of copper for spent nuclear fuel storage

    Science.gov (United States)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  6. Ultrasonic Guided Wave Technology for Non-invasive Assessment of Corrosion-induced Damage in Piping for Pollution Prevention in DOD Fuel Storage Facilities. Cost and Performance Report. Version 2

    Science.gov (United States)

    2011-09-01

    INTRODUCTION .........................................................................................................3 1.1 BACKGROUND... INTRODUCTION The Oil Pollution Act (OPA) of 1990 sets up operational and maintenance requirements for DOD and civilian fuel/oil storage and transport...5.2.3 Design and layout of technology The ultrasonic guided wave measurement system started with bonding magnetostrictive metal strips to the pipe

  7. Microfungi problem, health aspects. [Storage of wood fuel chips

    Energy Technology Data Exchange (ETDEWEB)

    Jirjis, Raida (Swedish Univ. of Agricultural Sciences, Uppsala (SE). Dept. of Forest Products)

    1988-11-01

    The storage of wood fuel chips, in general, leads to the establishment of microbial activity in the pile. Fungi are one of these microorganisms which can grow vigorously in stored forest products. Different types of fungi are commonly present on wood chip pile; rot fungi, blue stain fungi and moulds. Each fungis has its optimum temperature and humidity. Fungi also differ in their ability to utilize different components of the biofuel; moulds are unable to degrade lignin and only few species can degrade cellulose. Rot fungi on the other hand can attack all parts of the substrate and degrade it to varying degrees. Sporulation in fungi is their mechanisms for reproduction and survival. The spores are produced asexually in special spore carriers which are specific for each type of fungi. In stored wood chip pile the sporulation of moulds is the source of health hazard due to its ability to produce very large numbers of microspores in a short period. These microspores are usually airborne and they are almost always present in air but their numbers differ with time, weather and location. Most people can tolerate the presence of these microfungi at concentrations up to 10{sup 6} spore/m{sup 3} air, but a more intense exposure of 10{sup 10} spores/m{sup 3} air con provoke allergic reactions in certain individuals causing allergic alveolitis. The growth of different fungi on stored wood chips pile depends on the time and the system of storage that is used for that pile. In general, indoors storage, high moisture contents and excess of fine fractions are factors that could lead to intensive fungal activity. Handling of such material necessitate the use of protective helmet to avoid the risks of allergic reactions. (4 refs.) (au).

  8. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  9. ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)

    CERN Document Server

    Lewis, M E

    2000-01-01

    The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

  10. Permeability of Flexible Materials Used in Fuel Storage Tanks. Part 1. General Review

    Science.gov (United States)

    1983-08-01

    459 PERMEABILITY OF FLEXIBLE MATERIALS USED IN FUEL STORAGE TANKS: PART 1 - GENERAL REVIEW B.C. Ennis- THE UNITED STATES NATIONAL TECHNICAL INFMATION... GENERAL REVIEW Accession For NTIS T&i Ju £ , ,, L f T B.C. Ennis * .... . . ABSTRACT I A review of the transport of hydrocarbon fuels through composite...PERMEABILITY OF FLEXIBLE MATERIALS USED IN FUEL STORAGE TANKS% ’I PART 1 - GENERAL REVIEW MT40R(S) COF"ATE AUTHOR Materlals Research Laboratories• !ENNIS

  11. Production of rapeseed oil fuel in decentralized oil extraction plants. Handbook. 2. new rev. and enl. ed.; Herstellung von Rapsoelkraftstoff in dezentralen Oelgewinnungsanlagen. Handbuch

    Energy Technology Data Exchange (ETDEWEB)

    Remmele, Edgar [Technologie- und Foerderzentrum (TFZ) im Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany)

    2009-11-15

    Increasing oil prices, the dependence on petroleum imports and the desire to reduce the CO{sub 2} emissions, are arguments to accelerate the production and utilization of biofuels. In 2007, 3.3 million tons of biodiesel and 772,000 tons of vegetable oil were used as fuel. The technically and economically successful production of rapeseed oil fuel in decentralized oil mills requires a quality assurance. Specifically, the brochure under consideration reports on the following: (1) Oilseed processing; (2) Centralized oil production in Germany; (3) Design of a decentralized oil mill; (4) Production of rapeseed oil fuel in decentralized systems; (5) Quality assurance for rapeseed oil fuel in decentralized oil mills; (6) Properties of rapeseed oil fuel; (7) Quality of rapeseed oil fuel from decentralized oil mills; (8) Economic aspects of decentralized oil extraction; (9) Legal framework conditions.

  12. Technological Creation Fuels Oil Giant's Development

    Institute of Scientific and Technical Information of China (English)

    Mu Zongyan

    2006-01-01

    @@ Sinopec has focused itself on development, conversion and extension of core technologies and specialized technologies in the recent years to fuel its main business development. With the efforts for IPR protection, Sinopec has achieved a series of technological creation results,which lead to huge social and economic benefits. Sinopec has also seen a significant change in the total amount,structure and quality of its assets thanks to those creation results. The sales income of Sinopec, for the first time,topped 800 billion yuan in 2005 with the profits and taxes exceeding 100 billion yuan. With the core competitiveness boosted continually, Sinopec rose to No.31 in the ranking of Fortune Global Top 500.

  13. Cooling Performance Evaluation of the Hybrid Heat Pipe for Spent Nuclear Fuel Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Bang, In Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To evaluate the concept of the cooling device, 2-step CFD analysis was conducted for the cooling performance of hybrid heat pipe, which consists of single fuel assembly model and full scope dry cask model. As a passive cooling device of the metal cask for dry storage of spent nuclear fuel, hybrid heat pipe was applied to DPC developed in Korea. Hybrid heat pipe is the heat pipe containing neutron absorber can be used as a passive cooling in nuclear application with both decay heat removal and control the reactivity. In this study, 2-step CFD analysis was performed to find to evaluate the heat pipe-based passive cooling system for the application to the dry cask. Only spent fuel pool cannot satisfy the demands for high burnup fuel and large amount of spent fuel. Therefore, it is necessary to prepare supplement of the storage facilities. As one of the candidate of another type of storage, dry storage method have been preferred due to its good expansibility of storage capacity and easy long-term management. Dry storage uses the gas or air as coolant with passive cooling and neutron shielding materials was used instead of water in wet storage system. It is relatively safe and emits little radioactive waste for the storage. As short term actions for the limited storage capacity of spent fuel pool, it is considered to use dry interim/long term storage method to increase the capacity of spent nuclear fuel storage facilities. For 10-year cooled down spent fuel in the pool storage, fuel rod temperature inside metal cask is expected over 250 .deg. C in simulation. Although it satisfied the criteria that cladding temperature of the spent fuel should keep under 400 .deg. C during storage period, high temperature inside cask can accelerate the thermal degradation of the structural materials consisting metal cask and fuel assembly as well as limitation of the storage capacity of metal cask. In this paper, heat pipe-based cooling device for the dry storage cask was suggested for

  14. Japanese perspectives and research on packaging, transport and storage of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T.; Ito, C.; Yamakawa, H.; Shirai, K. [Central Research Inst. of Electric Power Industry (CRIEPI), Abiko (Japan)

    2004-07-01

    The Japanese policy on spent fuel is reprocessing. Until, reprocessed, spent fuel shall be stored properly. This paper overviews current status of transport and storage of spent fuel with related research in Japan. The research was partly carried out under a contract of Ministry of Economy, Trade and Industry of the Japanese government.

  15. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  16. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  17. Interim storage of wastes and refuse derived fuels; Zwischenlagerung von Abfaellen und Ersatzbrennstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, K.J.; Versteyl, A.; Beckmann, M. (eds.)

    2006-07-01

    Authors comment on interim storage of municipal wastes and refuse derived fuels. Topics of the 16 contributions are: Logistics and engineering, planning, estimation of storage time, cost and commitment, amend ment of the regulations, penal risks of interim storage, material flow management at waste incinerators, fire prevention, environmental risk, insurances. (uke)

  18. 77 FR 9591 - List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8

    Science.gov (United States)

    2012-02-17

    ... COMMISSION 10 CFR Part 72 RIN 3150-AJ05 List of Approved Spent Fuel Storage Casks: HI-STORM 100, Revision 8... the Holtec International HI-STORM 100 dry cask storage system listing within the ``List of Approved... other aspects of the HI-STORM 100 dry storage cask system. Because the NRC considers this...

  19. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  20. Environmental effects of soil contamination by shale fuel oils.

    Science.gov (United States)

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  1. 40 CFR 279.72 - On-specification used oil fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-specification used oil fuel. 279.72 Section 279.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72...

  2. 76 FR 33121 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-06-08

    ... 3150-AI90 List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition AGENCY: Nuclear... the NRC's spent fuel storage regulations to add the Holtec HI-STORM Flood/Wind cask system to the... Holtec HI- STORM Flood/Wind cask system to the ``List of Approved Spent Fuel Storage Casks''...

  3. Experimental plan for the fuel-oil study

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  4. Storage oil breakdown during embryo development of Brassica napus (L.).

    Science.gov (United States)

    Chia, Tansy Y P; Pike, Marilyn J; Rawsthorne, Stephen

    2005-05-01

    In this study it is shown that at least 10% of the major storage product of developing embryos of Brassica napus (L.), triacylglycerol, is lost during the desiccation phase of seed development. The metabolism of this lipid was studied by measurements of the fate of label from [1-(14)C]decanoate supplied to isolated embryos, and by measurements of the activities of enzymes of fatty acid catabolism. Measurements on desiccating embryos have been compared with those made on embryos during lipid accumulation and on germinating seedlings. Enzymes of beta-oxidation and the glyoxylate cycle, and phosphoenolpyruvate carboxykinase were present in embryos during oil accumulation, and increased in activity and abundance as the seeds matured and became desiccated. Although the activities were less than those measured during germination, they were at least comparable to the in vivo rate of fatty acid synthesis in the embryo during development. The pattern of labelling, following metabolism of decanoate by isolated embryos, indicated a much greater involvement of the glyoxylate cycle during desiccation than earlier in oil accumulation, and showed that much of the (14)C-label from decanoate was released as CO(2) at both stages. Sucrose was not a product of decanoate metabolism during embryo development, and therefore lipid degradation was not associated with net gluconeogenic activity. These observations are discussed in the context of seed development, oil yield, and the synthesis of novel fatty acids in plants.

  5. Oxidative stability of waste cooking oil and white diesel upon storage at room temperature.

    Science.gov (United States)

    Bezergianni, Stella; Chrysikou, Loukia P

    2012-12-01

    Renewable diesel fuels are alternative fuels produced from vegetable oils or animal fats. Catalytic hydrotreating of waste cooking oil (WCO) was carried out at pilot-plant scale and a paraffinic diesel, called "white" diesel was obtained. The white diesel and WCO samples were stored for one year at room temperature under normal atmospheric conditions, but not exposed to sunlight. Viscosity, total acid number (TAN), induction period (IP), carbonaceous deposits, density, cold flow properties, distillation and water content were monitored. TAN and density of the white diesel stored in conventional bottles changed from 0 to 0.221 mg KOH/g and from 787 to 838 kg/m(3), respectively. The remaining parameters did not vary significantly. Water content of WCO increased from 482 to 2491 mg/kg, TAN from 0.744 to 0.931 mg KOH/g, whereas viscosity, IP and carbon residues fluctuated mildly. The results are indicative of the white diesel's stability, rendering it suitable for prolonged storage.

  6. Design requirements of a consolidating dry storage module for CANDU spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ho; Yoon, Jeong Hyoun; Yang, Ke Hyung; Choi, Byung Il; Lee, Heung Young [KHNP/NETEC, Taejon (Korea, Republic of); Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2003-10-01

    This paper presents a technical description of design requirement document covers the requirements of the MACSTOR/KN-400 module, which is under development to densely accommodate CANDU spent fuels with more efficient way. The design requirement is for the module that will be constructed within a dry storage site after successfully licensed by the regulatory body. This temporary outdoor spent fuel dry storage facility provides for safe storage of spent nuclear fuel after it has been removed from the plant's storage pool after being allowed to decay for a period of at least 6 years. The MACSTOR/KN-400 module is being designed to the envelope of site environmental conditions encountered at the Wolsong station. The design requirements of MACSTOR/KN-400 module meets the requirements of the appropriate Codes and Standards for dry storage of spent fuel from nuclear power reactors such as lOCFR72, and Korea Atomic Energy Act and relevant technical standard.

  7. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Atomic Energy of Canada Limited, Montreal, PQ (Canada)

    1998-07-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  8. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States)

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time. The project was divided four distinct, yet synergistic, technical mission areas (TMAs), as summarized below. The key technical results and findings from each of the TMAs are summarized in Sections 2 through 5. Technical Mission Area 1: Low Temperature Creep This mission focused on the low temperature creep of UNF cladding that may be enabled by decay heat from fission products and stresses from internal pressures. The major objectives were (1) to obtain data using highly oxidized/hydrided tubing under relevant stresses and temperatures, (2) to characterize and translate that data to enable input to FRAPCON and other codes that may be modified to predict UNF behavior in dry storage, and (3) to formulate atomistic simulations to better understand long term creep behavior. Technical Mission Area 2: Hydrogen Behavior and Delayed Hydride Cracking This mission focused on the characterization and understanding of delayed hydride cracking (DHC) in spent Zircaloy cladding. The DHC mechanism is generally attributed to local hydride precipitation at stress risers present on the surface of the cladding. Samples with low and high hydrogen loadings were prepared and studiedusing various methods. Technical Mission Area 3: UNF Canister Corrosion This mission was focused on recognized gaps in understanding mechanisms relevant to the

  9. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    Energy Technology Data Exchange (ETDEWEB)

    Levins, W.P.; Ternes, M.P.

    1994-09-01

    The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

  10. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    Science.gov (United States)

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  11. AN AZERBAIDZHAN SSR. INSTITUTE OF ADDITIVE CHEMISTRY ADDITIVES TO LUBRICATING OILS. PROBLEMS OF SYNTHESIS, INVESTIGATION AND USE OF OIL ADDITIVES; FUELS AND POLYMER MATERIALS (SELECTED ARTICLES),

    Science.gov (United States)

    An Azerbaidzhan SSR. Institute of additive chemistry additives to lubricating oils . Problems of synthesis, investigation and use of oil additives; fuels and polymer materials (Selected articles)--Translation.

  12. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The

  13. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J. [INEEL (US); Brey, R.F. [ISU (US); Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  14. Performance of hybrid ball bearings in oil and jet fuel

    Science.gov (United States)

    Schrader, Stephen M.; Pfaffenberger, Eugene E.

    1992-07-01

    A 308-size hybrid ball bearing, with ceramic balls and steel rings, was tested using a diester oil and gas turbine fuel as lubricants at several speeds and loads. Heat generation data from this test work was then correlated with the heat generation model from a widely used computer code. The ability of this hybrid split inner ring bearing design to endure thrust reversals, which are expected in many turbine applications, was demonstrated. Finally, the bearing was successfully endurance tested in JP-10 fuel for 25 hours at 7560 N axial load and 36,000 rpm. This work has successfully demonstrated the technology necessary to use fuel-lubricated hybrid bearings in limited-life gas turbine engine applications such as missiles, drones, and other unmanned air vehicles (UAVs). In addition, it has provided guidance for use in designing such bearing systems. As a result, the benefits of removing the conventional oil lubricant system, i.e., design simplification and reduced maintenance, can be realized.

  15. Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)

    Energy Technology Data Exchange (ETDEWEB)

    Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

    1982-09-01

    From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

  16. Electrolyser-metal hydride-fuel cell system for seasonal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, J.P.; Lund, P.D.; Tolonen, J.S. [Helsinki Univ. of Technology, Engineering Physics and Mathematics Dept., Helsinki (Finland)

    1998-12-01

    A small-scale seasonal energy storage system, comprising an electrolyser, metal hydride hydrogen store and fuel cell, has been studied. According to the feasibility study, solid polymer electrolysers and fuel cells are the best options for the electrolyser-metal hydride-fuel cell energy storage systems. A round-trip efficiency of 30% has already been demonstrated, and the next target is to reach a round-trip efficiency close to 40%. The electyrolyser-metal hydride-fuel cell systems are suitable for small-scale self-sufficient applications in which high volumetric capacity is needed and safety aspects are appreciated. (Author)

  17. Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage

    Science.gov (United States)

    Sheibley, D. W.

    1984-01-01

    Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.

  18. Process of purification of motor oil and its use as an ecological fuel

    OpenAIRE

    Petkovska, Sofija; Despodov, Zoran; Gjorgjeska, Biljana; Zdravkovska, Milka

    2012-01-01

    Used motor oil can be cleaned with a suitable chemical treatment in order to obtain purified motor oil that can be re-used as motor oil for vehicles or ecological fuel. The need for recycling of waste made from the used motor oils initiated the idea for its cleaning.

  19. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1987-11-01

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  20. Preparation and research on properties of castor oil as a diesel fuel additive

    OpenAIRE

    Nurbakhit Imankulov

    2012-01-01

    The research shows an opportunity of preparing biodiesel fuel on the basis of local diesel fuel and the bioadditive - castor oil. Limiting optimum concentration of introduction of the bioadditive equal was established as 5% mass ratio. The castor oil released from seeds of Palma Christi grown on experimental field. All physical and chemical characteristics of the oil including IR-spectra were determined. Operating conditions of castor oil introduction (temperature, solubility, concentra-tion,...

  1. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  2. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel blends

    Directory of Open Access Journals (Sweden)

    C.M.A.O. Martins

    2003-06-01

    Full Text Available Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace metal composition in relation to corrosion. Also the bond structure/stability of the samples in relation to diesel were monitored with a Fourier transform infrared spectrometer. Results confirmed that most methylester blends with diesel fell within the grade 2D while the oil, methylester and 90:10 blend fell into 4D grade diesel fuels. From bond structure/stability comparison, all the samples were stable at 28 oC and had similarity in structure with diesel. All samples are commercializable. The trace metal composition of most samples was below that of the diesel with exception of Mn, Pb and Zn. The total acid numbers of all samples were below that of diesel and would not cause corrosion. It is recommended that processing of these samples should be done to conserve fossil fuel and as alternative diesel fuels in diesel engines.

  3. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  4. Physicochemical Properties and Fungitoxicity of the Essential Oil of Citrus medica L. against Groundnut Storage Fungi

    OpenAIRE

    2008-01-01

    The in vitro antifungal effect of the essential oil of Citrus medica L. on storage fungi of Arachis hypogea L. stored for 6 months was evaluated using the disc diffusion agar method. The oil exhibited a wide spectrum of fungitoxicity, inhibiting all 14 fungus species tested. Thus, the oil can be exploited as a fumigant against storage fungi for the preservation of stored legume seeds due to its wide range of activity, non-phytotoxicity, and long-term persistence of fungitoxicity.

  5. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region.

  6. Economics of fuel alternatives - oil, coal and bark boilers

    Energy Technology Data Exchange (ETDEWEB)

    Knight, W.E.; Jansen, B.M.; May, J.C.

    1984-07-01

    A method for comparing the relative economics of burning oil, bark or wastewood, and coal to generate steam is illustrated through several case plans. It was assumed that a 150,000-lb/h (68 ton/h) boiler will generate 600-psig (4134-kPa), 700 degrees F (371 degrees C) steam, that it will be added to an existing steam generating plant, and that it will be connected to the existing main steam header and to the boiler feedwater discharge header. The scope of new construction is therefore limited to the following equipment and their related structures: boiler, fuel handling, combustion controls, burner, safety system, draft fans, particulate collection, ash handling, stack, foundations. Plans involving bark, wastewood, and coal fuels are based on the assumptions that the plant has

  7. Evolution of the MACSTOR{trademark} dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F.E.; Joubert, W.M. [Atomic Energy of Canada Ltd., Montreal, Quebec (Canada)

    1995-12-31

    The MACSTOR{trademark} (Modular Air-Cooled Canister Storage) system was developed by Atomic Energy of Canada Limited (AECL) for the interim storage of spent fuel discharged by light water reactors. It is a hybrid system which combines the operational economies of metal cask technology with the capital economies of concrete technology. The system includes all the necessary equipment to transfer spent fuel from a storage pool to an independent interim dry spent fuel storage site. After presenting a description of the system and a brief history of its development, the paper addresses its thermal performance and modeling for various design configurations. Finally, a brief summary of the experience being gained during the implementation of a MACSTOR{trademark} system modified for CANDU spent fuel at the Gentilly-2 NPP in Quebec is presented. It includes progress made in licensing activities and in public hearings pertinent to the initiation of the project.

  8. 77 FR 48565 - Maine Yankee Atomic Power Company, Maine Yankee Independent Spent Fuel Storage Installation...

    Science.gov (United States)

    2012-08-14

    ... also holds a 10 CFR part 72 general license for storage of spent fuel and greater than Class C waste at... significant increase in either occupational radiation exposure or public radiation exposure because...

  9. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    Directory of Open Access Journals (Sweden)

    Sudipta De

    2014-12-01

    Full Text Available The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as well as the competitive role of those catalysts in hydrotreating and hydrocracking processes.

  10. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits.

    Science.gov (United States)

    Yang, Zhenle; Ji, Hongying; Liu, Dantong

    2016-12-01

    Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production.

  11. Symposium on Energy Storage Materials Energy and Fuel Division, 246th ACS National Meeting

    Science.gov (United States)

    2015-04-17

    Approved for Public Release; Distribution Unlimited Final Report: Symposium on Energy Storage Materials Energy and Fuel Division, 246th ACS National...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 ARO, symposium, batteries, energy, ACS REPORT DOCUMENTATION PAGE 11. SPONSOR...journals: Final Report: Symposium on Energy Storage Materials Energy and Fuel Division, 246th ACS National Meeting Report Title The symposium took place on

  12. Preparation and burning of water-fuel (water in oil type) emulsion in boilers of heat generating installations

    Energy Technology Data Exchange (ETDEWEB)

    Balabyshko, A.M.; Merzlyakov, V.D. [Skochinsky Inst. of Mining, Moscow (Russian Federation). National Scientific Center for Mining Industry; Poderni, R.Y. [Moscow State Mining Univ., Moscow (Russian Federation)

    2005-07-01

    This paper presented an effective technology used in Russia to increase the efficiency of burning petroleum and heavy oil emulsions while reducing the amount of harmful exhaust gases that are released to the atmosphere. A special fuel dispenser controls the the release of exhaust gases. The technology can be applied to heat generating installations working on liquid fuel. In addition to lowering annual fuel consumption by 5 to 10 per cent, the technology makes use of recycled waste water from fuel storage facilities when preparing the emulsion in a small, low-cost hydro-mechanical dispenser. Emissions of nitrogen oxides can be reduced by 15 to 25 per cent, and particulate matter and hydrocarbons, including carcinogens, are lowered 1.5 to 2 times. Other advantages of this technology include a small and more stable flame in the boiler and an intensified water-fuel emulsion burning process with less carbon formation on heat transfer surfaces. It also offers the ability to burn fuels of lower, non-standard quality, or to add pulverized limestone, chalk, dolomite and other admixtures to the dispenser during fuel preparation in order to neutralize acids in the exhaust gases, thereby reducing acid precipitation. The controlled addition of waste water from fuel storage facilities eliminates the risk of land and water contamination by petroleum products. Although the amount of industrial water added to the fuel is determined by the customer, it can be adjusted to between 0 and 20 per cent of the burned fuel. This paper listed the names of some Russian companies that have successfully applied this technology. 2 figs.

  13. Use of burnup credit in criticality evaluation for spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Je Keun; Kim, Jae Chun; Koh, Duck Joon; Kim Byung Tae [Nuclear Environment Technology Institute, Korea Electric Power Corporation, Taejon (Korea, Republic of)

    1999-07-01

    Boraflex is a polymer based material which is used as matrix to contain a neutron absorber material, boron carbide. In a typical spent fuel pool the irradiated Boraflex has been known as a significant source of silica. Since 1996, it was reported that elevated silica levels were measured in the Ulchin Unit 2 spent fuel pool water. Therefore, the Ulchin Unit 2 spent fuel storage racks were needed to be reanalyzed to allow storage of fuel assemblies with normal enrichments up to 5.0w/o U-235 in all storage cell locations using credit for burnup. The analysis does not take any credit for the presence of the spent fuel rack Boraflex neutron absorber panels. In region 2, the calculations were performed by assuming in an infinite radial array of storage cells. No credit is taken for axial or radial neutron leakage. The water in the spent fuel storage pool was assumed to be pure. In the evaluation of the Ulchin Unit 2 spent fuel storage pool, criticality analyses were performed with the CASMO-3 code. A reactivity uncertainty in the fuel depletion calculations was combined with other calculational uncertainty. The manufacturing tolerances were considered, as well. From the calculation, the acceptable burnup domain in region 2 of the spent fuel storage pool. where the curve identifies conditions of equal reactivity for various initial enrichments between 1.6w/o and 5.0w/o, was evaluated. In region 2, the maximum k{sub e}ff including all uncertainties, is 0.94648 for the enrichment-burnup combination from loading curve. (author)

  14. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Science.gov (United States)

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  15. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  16. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  17. Design of spent-fuel concrete pit dry storage and handling system

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, H.; Natsume, T.; Maruoka, K.; Yokoyama, T. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan)

    1998-07-01

    An advanced dry storage system design with highly improved storage efficiency of spent nuclear fuel has been developed. The new concept 'Concrete Pit Dry Storage System' realizes a safe and economical solution to an increasing demand of storing spent fuel assemblies (SFAs) generated from commercial nuclear power reactors. The system is basically composed of a large mass concrete module which has densely arranged pit boreholes, sealed canisters containing spent fuel assemblies and a canister handling system. The system is characterized by the following advantages compared with the existing concrete module type storage systems: higher storage efficiency can be achieved by the storage module filled with concrete which also gives a high shielding performance; simple handling technology is used for transfer and installation of the canisters at the storage facility as well as the transport cask of the canisters, surface contamination of the canister is prevented; lower radiation around the storage area is provided to reduce radiation exposure during handling and storage; high structural integrity of the facility is maintained by the concrete module with a simple construction ; the ventilation gallery introducing cooling air air to the bit borehole has an enough draft height to improve cooling performance of the system; a result of the design concept, the storage system can store higher burn-up SFAs with a short cooling period. (authors)

  18. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    Science.gov (United States)

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  19. 76 FR 2277 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2011-01-13

    ... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR- RELATED GREATER THAN CLASS C WASTE 1. The... the NUHOMS HD Horizontal Modular Storage System for Irradiated Nuclear Fuel. ] Docket Number: 72-1030... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  20. 75 FR 24786 - List of Approved Spent Fuel Storage Casks: NUHOMS® HD System Revision 1

    Science.gov (United States)

    2010-05-06

    ... include pressurized water reactor fuel assemblies with control components, reduce the minimum initial..., for the dry storage of spent nuclear fuel at civilian nuclear power reactor sites, with the objective... sites of civilian nuclear power reactors without, to the maximum extent practicable, the need...

  1. 78 FR 123 - Diablo Canyon, Independent Spent Fuel Storage Installation; License Amendment Request...

    Science.gov (United States)

    2013-01-02

    ... and transfer spent fuel, reactor-related Greater than Class C waste and other radioactive materials... Criteria,'' is revised to add reference to Table 2.1-9 as regionalized loading of high burn-up fuel. c. TS... cases to mail copies on electronic storage media. Participants may not submit paper copies of their...

  2. Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...

  3. 78 FR 61401 - Entergy Nuclear Operations, Inc.; Big Rock Point; Independent Spent Fuel Storage Installation

    Science.gov (United States)

    2013-10-03

    ... Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001..., and 10 CFR part 50, allows ENO to possess and store spent nuclear fuel at the permanently shutdown and... Director, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety...

  4. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  5. 10 CFR 72.236 - Specific requirements for spent fuel storage cask approval and fabrication.

    Science.gov (United States)

    2010-01-01

    ... REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... storage cask must be designed to provide adequate heat removal capacity without active cooling systems. (g... ascertain that there are no cracks, pinholes, uncontrolled voids, or other defects that could...

  6. 75 FR 81031 - Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After Cessation of...

    Science.gov (United States)

    2010-12-23

    ... Commission 10 CFR Part 51 Consideration of Environmental Impacts of Temporary Storage of Spent Fuel After... COMMISSION 10 CFR Part 51 RIN 3150-AI47 Consideration of Environmental Impacts of Temporary Storage of Spent... environmental considerations; it was based on finding that 30 years beyond the licensed life for operation...

  7. Modeling and Nonlinear Control of Fuel Cell / Supercapacitor Hybrid Energy Storage System for Electric Vehicles

    DEFF Research Database (Denmark)

    El Fadil, Hassan; Giri, Fouad; Guerrero, Josep M.

    2014-01-01

    This paper deals with the problem of controlling hybrid energy storage system (HESS) for electric vehicle. The storage system consists of a fuel cell (FC), serving as the main power source, and a supercapacitor (SC), serving as an auxiliary power source. It also contains a power block for energy...

  8. Catalytic transformation of waste polymers to fuel oil.

    Science.gov (United States)

    Keane, Mark A

    2009-01-01

    Waste not, want not: The increase in waste polymer generation, which continues to exceed recycle, represents a critical environmental burden. However, plastic waste may be viewed as a potential resource and, with the correct treatment, can serve as hydrocarbon raw material or as fuel oil, as described in this Minireview.Effective waste management must address waste reduction, reuse, recovery, and recycle. The consumption of plastics continues to grow, and, while plastic recycle has seen a significant increase since the early 1990s, consumption still far exceeds recycle. However, waste plastic can be viewed as a potential resource and can serve, with the correct treatment, as hydrocarbon raw material or as fuel oil. This Minireview considers the role of catalysis in waste polymer reprocessing and provides a critical overview of the existing waste plastic treatment technologies. Thermal pyrolysis results in a random scissioning of the polymer chains, generating products with varying molecular weights. Catalytic degradation provides control over the product composition/distribution and serves to lower significantly the degradation temperature. Incineration of waste PVC is very energy demanding and can result in the formation of toxic chloro emissions. The efficacy of a catalytic transformation of PVC is also discussed.

  9. The prestige oil spill. I. Biodegradation of a heavy fuel oil under simulated conditions.

    Science.gov (United States)

    Díez, Sergi; Sabatté, Jordi; Viñas, Marc; Bayona, Josep M; Solanas, Anna M; Albaigés, Joan

    2005-09-01

    In vitro biodegradation of the Prestige heavy fuel oil has been carried out using two microbial consortia obtained by enrichment in different substrates to simulate its environmental fate and potential utility for bioremediation. Different conditions, such as incubation time (i.e., 20 or 40 d), oil weathering, and addition of an oleophilic fertilizer (S200), were evaluated. Weathering slowed down the degradation of the fuel oil, probably because of the loss of lower and more labile components, but the addition of S200 enhanced significantly the extension of the biodegradation. n-Alkanes, alkylcyclohexanes, alkylbenzenes, and the two- to three-ring polycyclic aromatic hydrocarbons (PAHs) were degraded in 20 or 40 d of incubation of the original oil, whereas the biodegradation efficiency decreased for higher PAHs and with the increase of alkylation. Molecular markers were degraded according to the following sequence: Acyclic isoprenoids > diasteranes > C27-steranes > betabeta-steranes > homohopanes > monoaromatic steranes > triaromatic steranes. Isomeric selectivity was observed within the C1- and C2-phenanthrenes, dibenzothiophenes, pyrenes, and chrysenes, providing source and weathering indices for the characterization of the heavy oil spill. Acyclic isoprenoids, C27-steranes, C1- and C2-naphthalenes, phenanthrenes, and dibenzothiophenes were degraded completely when S200 was used. The ratios of the C2- and C3-alkyl homologues of fluoranthene/pyrene and chrysene/benzo[a]anthracene are proposed as source ratios in moderately degraded oils. The 4-methylpyrene and 3-methylchrysene were refractory enough to serve as conserved internal markers in assessing the degradation of the aromatic fraction in a manner similar to that of hopane, as used for the aliphatic fraction.

  10. Highlighting metabolic indicators of olive oil during storage by the AComDim method.

    Science.gov (United States)

    Korifi, R; Plard, J; Le Dréau, Y; Rébufa, C; Rutledge, D N; Dupuy, N

    2016-07-15

    Lipid oxidation during olive oil storage induces changes in the metabolite content of the oil, which can be measured using so-called quality indices. High values indicate poor quality oils that should be labeled accordingly or removed from the market. Based on quality indices measured over two years for two olive oils, the AComDim method was used to highlight the influence of five factors (olive oil type, oxygen, light, temperature and storage time) on oxidative stability during storage. To identify the significant factors, two full factorial experimental designs were built, each containing four of the five factors examined. The results showed that all five factors, as well as some two-factor interactions, were significant. Phenols and hydroperoxides were identified as being the most sensitive to these factors, and potential markers for the ageing of olive oil.

  11. Carbon dioxide enhanced oil recovery, offshore North Sea: carbon accounting, residual oil zones and CO2 storage security

    OpenAIRE

    Stewart, Robert Jamie

    2016-01-01

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields. Although this technology has been used successfully onshore in North America and Europe, projects have maximised oil recovery and not CO2 storage. While the majority of onshore CO2EOR projects to date have used CO2 from natural sources, CO2EOR is now more and more being considered as a storage option for captured anthropogenic CO2. In the N...

  12. Carbon dioxide enhanced oil recovery, offshore North Sea: carbon accounting, residual oil zones and CO2 storage security

    OpenAIRE

    Stewart, Robert Jamie

    2016-01-01

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields. Although this technology has been used successfully onshore in North America and Europe, projects have maximised oil recovery and not CO2 storage. While the majority of onshore CO2EOR projects to date have used CO2 from natural sources, CO2EOR is now more and more being considered as a storage option for captured anthropogenic CO2. In the N...

  13. 75 FR 38487 - Order Finding That the Fuel Oil-180 Singapore Swap Contract Traded on the...

    Science.gov (United States)

    2010-07-02

    ... participants keep abreast of fuel oil prices worldwide in order to take advantage of arbitrage opportunities... accounting for transportation costs. Market participants may find it profitable to ship fuel oil from one... Commission first examines trading activity as a general measurement of the contract's size and...

  14. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-15

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  15. 76 FR 47423 - Aviation Fuel and Oil Operating Limitations; Policy Memorandum

    Science.gov (United States)

    2011-08-05

    ... (ECO) when evaluating compliance with the standards for aviation fuel and oil operating limitations... Certification Office (ECO) when evaluating compliance with the standards for aviation fuel and oil operating... type certification, major design change, and supplemental type certification projects. The draft...

  16. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  17. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  18. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  19. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    OpenAIRE

    Norwazan Abdul Rahim; Mohammad Nazri Mohd Jaafar; Syazwan Sapee; Hazir Farouk Elraheem

    2016-01-01

    This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25) and coconut oil methyl ester blend 25 (COME B25) blended at 25% by volume in diesel fuel produced lower c...

  20. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  1. Algae oil: a sustainable renewable fuel of future.

    Science.gov (United States)

    Paul Abishek, Monford; Patel, Jay; Prem Rajan, Anand

    2014-01-01

    A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come.

  2. Algae Oil: A Sustainable Renewable Fuel of Future

    Directory of Open Access Journals (Sweden)

    Monford Paul Abishek

    2014-01-01

    Full Text Available A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come.

  3. Super-capacitors as an energy storage for fuel cell automotive hybrid electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, P.; Rael, St.; Davat, B. [Institut National Polytechnique, GREEN-INPL-CNRS (UMR 7037), 54 - Vandoeuvre les Nancy (France)

    2004-07-01

    The design, implementation and testing of a purely super-capacitors energy storage system for automotive system having a fuel cell as main source are presented. The system employs a super-capacitive storage device, composed of six components (3500 F, 2.5 V, 400 A) associated in series. This device is connected to automotive 42 V DC bus by a 2-quadrant DC-DC converter. The control structure of the system is realised by means of analogical and digital control. The experimental results show that super-capacitors are suitable as energy storage device for fuel cell automotive electrical system. (authors)

  4. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  5. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  6. Noncatalytic biodiesel fuel production from croton megalocarpus oil

    Energy Technology Data Exchange (ETDEWEB)

    Kafuku, G.; Mbarawa, M. [Department of Mechanical Engineering, Tshwane University of Technology, Pretoria (South Africa); Tan, K.T.; Lee, K.T. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal, Pulau Pinang (Malaysia)

    2011-11-15

    Biodiesel is currently considered as the most promising substitute for diesel fuel because of its similar properties to diesel. This study presents the use of the supercritical methanol method in the production of biodiesel from Croton megalocarpus oil. The reaction parameters such as methanol-to-oil ratio, reaction temperature and reaction time were varied to obtain the optimal reaction conditions by design of experiment, specifically, response surface methodology based on three-variable central composite design with {alpha}=2. It has been shown that it is possible to achieve methyl ester yields as high as 74.91 % with reaction conditions such as 50:1 methanol-to-oil molar ratio, 330 C reaction temperature and a reaction period of 20 min. However, Croton-based biodiesel did not sustain higher temperatures due to decomposition of polyunsaturated methyl linoleate, which is dominant in biodiesel. Lower yields were observed when higher temperatures were used during the optimization process. The supercritical methanol method showed competitive biodiesel yields when compared with catalytic methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  8. Use of Rapeseed Straight Vegetable Oil as Fuel Produced in Small-Scale Exploitations

    OpenAIRE

    2011-01-01

    This chapter presents a method to produce rapeseed and process it to obtain rapeseed oil and rapeseed cake meal from a small-scale point of view. It also shows how rapeseed oil can be used as fuel in diesel engines for agriculture self-consumption. A production, processing and use-as-fuel model for rapeseed oil is also presented, analysing environmentally and economically the use of rapeseed oil as fuel compared to other agricultural production alternatives. The results are evaluated for dry ...

  9. Evaluation of Fluorine-Trapping Agents for Use During Storage of the MSRE Fuel Salt

    Energy Technology Data Exchange (ETDEWEB)

    Brynestad, J.; Williams, D.F.

    1999-05-01

    A fundamental characteristic of the room temperature Molten Salt Reactor Experiment (MSRE) fuel is that the radiation from the retained fission products and actinides interacts with this fluoride salt to produce fluorine gas. The purpose of this investigation was to identify fluorine-trapping materials for the MSRE fuel salt that can meet both the requirement of interim storage in a sealed (gastight) container and the vented condition required for disposal at the Waste Isolation Pilot Plant (WIPP). Sealed containers will be needed for interim storage because of the large radon source that remains even in fuel salt stripped of its uranium content. An experimental program was undertaken to identify the most promising candidates for efficient trapping of the radiolytic fluorine generated by the MSRE fuel salt. Because of the desire to avoid pressurizing the closed storage containers, an agent that traps fluorine without the generation of gaseous products was sought.

  10. A model for release of fission products from a breached fuel plate under wet storage

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A.; Seerban, R.S.; Zeituni, C.A.; Silva, J.E.R. da; Silva, A.T. e; Castanheira, M.; Lucki, G.; Damy, M. de A.; Teodoro, C.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: laaterre@ipen.br

    2007-07-01

    MTR fuel elements burned-up inside the core of nuclear research reactors are stored worldwide mainly under the water of storage pools. When cladding breach is present in one or more fuel plates of such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion of nuclides of a radioactive fission product either through a postulated small cylindrical breach or directly from a large circular hole in the cladding. In each case, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a breached fuel plate. Regarding sipping tests already performed at the IEA-R1 research reactor on breached MTR fuel elements, the proposed model correlates successfully the specific activity of {sup 137}Cs, measured as a function of time, with the evaluated size of the cladding breach. (author)

  11. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    Science.gov (United States)

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  12. An FTIR method for the analysis of crude and heavy fuel oil asphaltenes to assist in oil fingerprinting.

    Science.gov (United States)

    Riley, Brenden J; Lennard, Chris; Fuller, Stephen; Spikmans, Val

    2016-09-01

    A proof-of-concept spectroscopic method for crude and heavy fuel oil asphaltenes was developed to complement existing methods for source determination of oil spills. Current methods rely on the analysis of the volatile fraction of oils by Gas Chromatography (GC), whilst the non-volatile fraction, including asphaltenes, is discarded. By discarding the non-volatile fraction, important oil fingerprinting information is potentially lost. Ten oil samples representing various geographical regions were used in this study. The asphaltene fraction was precipitated from the oils using excess n-pentane, and analysed by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Based on visual interpretation of FTIR spectra along with peak height ratio comparisons, all ten oil samples could be differentiated from one another. Furthermore, ATR-FTIR was not able to differentiate a weathered crude oil sample from its source sample, demonstrating significant potential for the application of asphaltenes in oil fingerprinting.

  13. Sensitivity Analysis of Depletion Parameters for Heat Load Evaluation of PWR Spent Fuel Storage Pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Young; Lee, Un Chul [Seoul National University, Seoul (Korea, Republic of)

    2011-12-15

    As necessity of safety re-evaluation for spent fuel storage facility has emphasized after the Fukushima accident, accuracy improvement of heat load evaluation has become more important to acquire reliable thermal-hydraulic evaluation results. As groundwork, parametric and sensitivity analyses of various storage conditions for Kori Unit 4 spent fuel storage pool and spent fuel depletion parameters such as axial burnup effect, operation history, and specific heat are conducted using ORIGEN2 code. According to heat load evaluation and parametric sensitivity analyses, decay heat of last discharged fuel comprises maximum 80.42% of total heat load of storage facility and there is a negative correlation between effect of depletion parameters and cooling period. It is determined that specific heat is most influential parameter and operation history is secondly influential parameter. And decay heat of just discharged fuel is varied from 0.34 to 1.66 times of average value and decay heat of 1 year cooled fuel is varied from 0.55 to 1.37 times of average value in accordance with change of specific power. Namely depletion parameters can cause large variation in decay heat calculation of short-term cooled fuel. Therefore application of real operation data instead of user selection value is needed to improve evaluation accuracy. It is expected that these results could be used to improve accuracy of heat load assessment and evaluate uncertainty of calculated heat load.

  14. Rod internal pressure of spent nuclear fuel and its effects on cladding degradation during dry storage

    Science.gov (United States)

    Kim, Ju-Seong; Hong, Jong-Dae; Yang, Yong-Sik; Kook, Dong-Hak

    2017-08-01

    Temperature and hoop stress limits have been used to prevent the gross rupture of spent nuclear fuel during dry storage. The stress due to rod internal pressure can induce cladding degradation such as creep, hydride reorientation, and delayed hydride cracking. Creep is a self-limiting phenomenon in a dry storage system; in contrast, hydride reorientation and delayed hydride cracking are potential degradation mechanisms activated at low temperatures when the cladding material is brittle. In this work, a conservative rod internal pressure and corresponding hoop stress were calculated using FRAPCON-4.0 fuel performance code. Based on the hoop stresses during storage, a study on the onset of hydride reorientation and delayed hydride cracking in spent nuclear fuel was conducted under the current storage guidelines. Hydride reorientation is hard to occur in most of the low burn-up fuel while some high burn-up fuel can experience hydride reorientation, but their effect may not be significant. On the other hand, delayed hydride cracking will not occur in spent nuclear fuel from pressurized water reactor; however, there is a lack of confirmatory data on threshold intensity factor for delayed hydride cracking and crack size distribution in the fuel.

  15. Release of tritium from fuel and collection for storage

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.; Trevorrow, L.E.

    1976-04-01

    Recent work is reviewed on the technology that has been suggested as applicable to collection and storage of tritium in anticipation of the necessity of that course of action. Collection technology and procedures must be adapted to the tritium-bearing effluent and to the facility from which it emerges. Therefore, this discussion of tritium collection technology includes some information on the processes from which release is expected to occur, the amounts, the nature of the effluent media, and the form in which tritium appears. Recent work on collection and storage concepts has explored, both by experimentation and by feasibility analyses, the operations generally aimed at producing recycle, collection, or storage of tritium from these streams. Storage concepts aimed specifically at tritium involve plans to store volumes ranging from that of the entire effluent stream to only that of a small volume of a concentrate. Decisions between storage of unconcentrated streams and storage of concentrates are expected to be made largely by weighing the cost of storage space against the cost of concentration. The storage of tritium concentrate requires the selection of a form of tritium possessing physical and chemical properties appropriate for the expected storage conditions. This selection of an appropriate storage form has occupied a major portion of recent work concerned with tritium storage concepts. In summary, within the context of present regulations and expected amounts of waste tritium; this waste can be disposed of by dilution and dispersal to the environment. In the future, however, more restrictive regulations might be introduced that could be satisfied only by some collection and storage operations. Technology for this practice is not now available, and the present discussion reviews recent activities devoted to its development.

  16. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    Science.gov (United States)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  17. Charcoal-Oil Mixture as an Alternative Fuel: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Roila Awang

    2009-01-01

    Full Text Available The fast depletion of fuel oil and continuous increase in the demand for power is a global issue. The world energy consumption is projected to grow at an average of 2.7-3.7% from 1996 to 2010. Therefore search for alternative fuel is highly prioritized. Thus this study presents the results on the characteristic of charcoal-oil mixture as an alternative fuel. The calorific value, ash content and stability of the mixture are determined.

  18. Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell

    OpenAIRE

    Qiao Yang; Zhenxing Wu; Lifen Liu; Fengxiang Zhang; Shengna Liang

    2016-01-01

    Conventional oil sewage treatment methods can achieve satisfactory removal efficiency, but energy consumption problems during the process of oil sewage treatment are worth attention. The integration of a constructed wetland reactor and a microbial fuel cell reactor (CW-MFC) to treat oil-contaminated wastewater, compared with a microbial fuel cell reactor (MFC) alone and a constructed wetland reactor (CW) alone, was explored in this research. Performances of the three reactors including chemic...

  19. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  20. Quantitative risk analysis of oil storage facilities in seismic areas.

    Science.gov (United States)

    Fabbrocino, Giovanni; Iervolino, Iunio; Orlando, Francesca; Salzano, Ernesto

    2005-08-31

    Quantitative risk analysis (QRA) of industrial facilities has to take into account multiple hazards threatening critical equipment. Nevertheless, engineering procedures able to evaluate quantitatively the effect of seismic action are not well established. Indeed, relevant industrial accidents may be triggered by loss of containment following ground shaking or other relevant natural hazards, either directly or through cascade effects ('domino effects'). The issue of integrating structural seismic risk into quantitative probabilistic seismic risk analysis (QpsRA) is addressed in this paper by a representative study case regarding an oil storage plant with a number of atmospheric steel tanks containing flammable substances. Empirical seismic fragility curves and probit functions, properly defined both for building-like and non building-like industrial components, have been crossed with outcomes of probabilistic seismic hazard analysis (PSHA) for a test site located in south Italy. Once the seismic failure probabilities have been quantified, consequence analysis has been performed for those events which may be triggered by the loss of containment following seismic action. Results are combined by means of a specific developed code in terms of local risk contour plots, i.e. the contour line for the probability of fatal injures at any point (x, y) in the analysed area. Finally, a comparison with QRA obtained by considering only process-related top events is reported for reference.

  1. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives. (JGB)

  2. Processing Methode Effect to Virgin Coconut Oil (VCO Quality After Storaging

    Directory of Open Access Journals (Sweden)

    Mimi Harni

    2014-01-01

    Full Text Available Virgin Coconut Oil (VCO is extracted from coconut milk cream by breaking up the coconut milk emulsion in some ways like heat using, centrifugation, fermentation, inducement and acid using.  The difference of oil extraction ways will influence produced oil quality and oil storage capacity then.  Low quality oil will be boosting earlier damage process while storage time.  Therefore, it had been done a research in Chemical Laboratory of Agricultural Polytechnic state of Payakumbuh. The design used in this research was Complete Random Design (CRD by 5 (five actions and 3 (Three repetitions. For the advance test would be done by Duncan’s New Multiple Rang Test (DNMRT at about 5 % real level.  The Observations that had been done in this research were free fat acid, peroxide number and saponification number in storaged dark glass bottle VCO. The result of research showed the VCO oil that had the best quality after storaging  was the oil made by centrifugation process with 0,68% free fat acid value, 5,49 % meq/Kg oil peroxide number and 205,05 mg KOH/g oil saponification number.

  3. PetroChina to Construct China's Largest Oil Storage Facility in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ PetroChina was planning to build China's largest commercial oil storage tanks, with the capacity for 1 million cubic meters (6.3 million barrels), according to the recent reports from China's news media.

  4. Impact of packaging material and storage time on olive oil quality ...

    African Journals Online (AJOL)

    Impact of packaging material and storage time on olive oil quality. ... appreciated for its characteristic flavor and its biological and nutritional value which are strongly related to the quality. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  5. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    Science.gov (United States)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  6. Structured Analysis and Supervision Applied on Heavy Fuel Oil Tanks

    Directory of Open Access Journals (Sweden)

    LAKHOUA Mohamed Najeh

    2016-05-01

    Full Text Available This paper introduces the need for structured analysis and real time (SA-RT method of controlcommand applications in a thermal power plant (TPP using a supervisory control and data acquisition system (SCADA. Then, the architecture of a SCADA system in a TPP is presented. A significant example of a control-command application is presented. It is about the heavy fuel oil tanks of a TPP. Then an application of a structured analysis method, generally used in industry, on the basis of the SA-RT formalism is presented. In fact, different modules are represented and described: Context Diagram, Data Flows Diagram, Control Flows Diagram, State Transition Diagram, Timing Specifications and Requirements Dictionary. Finally, this functional and operational analysis allows us to assist the different steps of the specification, the programming and the configuration of a new tabular in a SCADA system.

  7. Physicochemical characterizations of nano-palm oil fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah (Malaysia); Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Ismail, Mohammad [Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia)

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  8. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  9. Deployment of advanced MACSTOR dry spent fuel storage technology in Korea - A joint development program

    Energy Technology Data Exchange (ETDEWEB)

    Cobanoglu, M. M.; Pattantyus, P. [Atomic Energy Canada Limited, Ottawa (Canada); Song, M. J.; Lee, H. Y. [KHNP/NETEC, Daejeon (Korea, Republic of)

    2002-04-15

    KHNP/NETEC's (K/N) and Atomic Energy of Canada Limited (AECL) are undertaking to jointly develop a high capacity dry storage structure made of reinforced concrete that uses the MACSTOR storage module concept. This effort is based on AECL's experience and on the successful deployment of concrete canisters at Wolsong and on the deployment of air-cooled MACSTOR modules at the Gentilly 2 reactor in Canada. The proposed approach addresses the conditions specific to the Wolsong site: large yearly fuel throughput, space limitations and the need for an economical dry storage structure that can store lifetime spent fuel inventories expected from the four CANDU units. The selected configuration is a 4-row MACSTOR module with a capacity of 24,000 bundles stored in 400 baskets, each holding 60 spent fuel bundles. The module is thus termed MACSTOR/KN-400 and is expected to offer a repetitive storage density increase by a factor of approximately 3, compared to concrete canisters presently used. The four Wolsong units generate spent fuel bundles that, with the high capacity factors achieved, are in the order of 20,000 bundles or more per year. At all Korean nuclear facilities, space limitations dictate the need for storage structures having high storage density. Storage density increases have to be accomplished while maintaining safety parameters during the full term storage of nuclear fuel. During the early 1990's AECL has proceeded with the development of a 2-row MACSTOR storage module that offered a higher storage density and a more economical solution compared to the stand alone concrete canister used at Wolsong 1. These modules are in use at Gentilly since the mid 1990's and operate at a capacity of 200 baskets. The selection of a MACSTOR module with 4 rows of storage cylinders is the natural evolution of the already deployed configuration. It can be developed without additional thermal testing as the fuel is maintained within the existing licensing

  10. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  11. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  12. RESEARCH ON THE FLOATING OIL STORAGE SYSTEM FOR STRATEGIC PETROLEUM RESERVE

    Institute of Scientific and Technical Information of China (English)

    LI Wen-long

    2004-01-01

    The problem of petroleum safety is closely related to national politics and economics security and becomes one of key for discussion in China. The floating oil storage system has been proposed as a new facility for Strategic Petroleum Reserve (SPR) in our country. There are some differences in solving this problem. Although many of domestic research institutions are studying the project of SPR, the research is separate, and lack of comprehensive consideration, and fails to make a complete and scientific demonstration in many aspects, such as oil storage capacity, selection of storage sites, storage facilities, technologic and economic feasibility, risk assessment, etc. Therefore, no mature and systematic petroleum reserve theories have been formed up to now. Peoples argue the issue of objective of SPR, function, mode, cost, effect, etc. There are still many bifurcations, so, it is necessary to make more detailed demonstration, and provide some scientific decision-making strategy for the governments. In this paper, several significant problems are solved, for instance, the option of SPR facilities, the research on the principal characteristics of floating oil storage vessels, the analysis of mooring system for oil storage vessels, the design of breakwater and the calculation of failure probability, the risk assessment of floating oil storage system, etc.

  13. Influence of Storage Condition on Seed Oil Content of Maize, Soybean and Sunflower

    Directory of Open Access Journals (Sweden)

    Branimir Šimić

    2007-09-01

    Full Text Available The study was aimed to examine the changes in seed oil content in different genotypes of maize, soybean and sunflower from 2002 to 2006, in two types of storage conditions which differ in air temperature and humidity: 25°C/75% and 12°C/60%, respectively. Aff ected by storage longevity, in average, seed oil content decreased by 0.82% in maize, 2.19% in soybean and 8.53% in sunflower. Differences in oil content affected by storage longevity were significant among tested crops and genotypes within crops. Storage longevity was negatively associated with oil content. At storage conditions at 12°C/60%, decreasing of seed oil content was less by 0.55% (maize, 1.30% (soybean and 1.75% (sunflower than in storage conditions at 25°C/75%. In summary, the lowest seed quality losses were in maize, then in soybean and the highest losses were in sunflower. Decreasing of seed quality losses is possible with suitable storage conditions, particularly for soybean and sunflower.

  14. Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Alan Holser; Rogers Harry-O' Kurua [United States Department of Agriculture, Peoria, IL (United States). Agricultural Research Service, National Center for Utilization Research

    2006-10-15

    The methyl and ethyl esters of milkweed (Asclepias) seed oil were prepared and compared to soybean esters in laboratory tests to determine biodiesel fuel performance properties. The pour points of the methyl and ethyl milkweed esters measured -6{sup o}C and -10{sup o}C, respectively, which is consistent with the high levels of unsaturation characteristic of milkweed seed oil. The oxidative stabilities measured by OSI at 100{sup o}C were between 0.8 and 4.1 h for all samples tested. The kinematic viscosities determined at 40{sup o}C by ASTM D 445 averaged 4.9 mm{sup 2}/s for milkweed methyl esters and 4.2 mm{sup 2}/s for soybean methyl esters. Lubricity values determined by ASTM D 6079 at 60{sup o}C were comparable to the corresponding soybean esters with average ball wear scar values of 118 {mu}m for milkweed methyl esters and 200 {mu}m for milkweed ethyl esters.

  15. Comparative Study on Particles Formation in a Diesel Engine When Lubricating Oil Involved in Fuel Combustion

    Directory of Open Access Journals (Sweden)

    Lihui Dong

    2015-01-01

    Full Text Available The effect of lubricating oil on the morphology of particulate matter (PM was studied in a diesel engine fueled with pure diesel fuel and blended fuel containing 0.5% by weight of lubricating oil. Particulate matter emitted by diesel engines is formed primarily by soot agglomerates which are composed of primary particles. In this paper, particulate matter was collected with a thermophoretic sampling system, and a high-resolution transmission electron microscope (TEM was used to investigate the primary particles. A Fast Particulate Spectrometer, DMS 500, was used to determine the particle size distributions. The TEM results indicated that the mean diameters of the primary particles increased after the oil was added into the fuel. Particle size distributions results showed that lubricating oil in the fuel gave rise to a higher concentration in nucleation mode.

  16. Catalytic cracking of fatty oils and fatty acids. A novel route towards bio-jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Heil, Volker; Kraft, Axel; Menne, Andreas; Unger, Christoph A. [Fraunhofer-Institut fuer Umwelt-, Sicherheits- und Energietechnik UMSICHT, Oberhausen (Germany)

    2013-06-01

    Components for bio-jet fuel production can be achieved by catalytic cracking of fatty oils and fatty acids over activated carbon catalyst. At reaction temperatures of about 450 C, mainly C15- and C16-n-Alkanes that can be isomerized for jet fuel-usage are produced. They can be used for bio-kerosene after isomerization. Introducing high-oleic feedstock like HO-sunflower-oil and slightly raising the reaction temperature leads to high amounts of n-alkanes in the jet-fuel boiling range. The process proves to be very robust concerning feedstock compositions and impurities. Therefore, catalytic cracking over activated carbon is an ideal pathway to transform not only bio-based oils, but also their wastes and fatty acid-containing by-products from plant oil processing into high-quality fuel components. Using alternative catalysts leads to an enhanced production of alkylated benzenes which are indispensable for aviation jet fuel. (orig.)

  17. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  18. An Analysis of the Distribution and Economics of Oil Fields for Enhanced Oil Recovery-Carbon Capture and Storage

    Science.gov (United States)

    Hall, Kristyn Ann

    The rising carbon dioxide emissions contributing to climate change has lead to the examination of potential ways to mitigate the environmental impact. One such method is through the geological sequestration of carbon (CCS). Although there are several different forms of geological sequestration (i.e. Saline Aquifers, Oil and Gas Reservoirs, Unminable Coal Seams) the current projects are just initiating the large scale-testing phase. The lead entry point into CCS projects is to combine the sequestration with enhanced oil recovery (EOR) due to the improved economic model as a result of the oil recovery and the pre-existing knowledge of the geological structures. The potential scope of CCS-EOR projects throughout the continental United States in terms of a systematic examination of individual reservoir storage potential has not been examined. Instead the majority of the research completed has centered on either estimating the total United States storage potential or the potential of a single specific reservoir. The purpose of this paper is to examine the relationship between oil recovery, carbon dioxide storage and cost during CCS-EOR. The characteristics of the oil and gas reservoirs examined in this study from the Nehring Oil and Gas Database were used in the CCS-EOR model developed by Sean McCoy to estimate the lifting and storage costs of the different reservoirs throughout the continental United States. This allows for an examination of both technical and financial viability of CCS-EOR as an intermediate step for future CCS projects in other geological formations. One option for mitigating climate change is to store industrial CO2 emissions in geologic reservoirs as part of a process known as carbon capture and storage (CCS). There is general consensus that large-scale deployment of CCS would best be initiated by combining geologic sequestration with enhanced oil recovery (EOR), which can use CO2 to improve production from declining oil fields. Revenues from the

  19. MCO Pressurization analysis of spent nuclear fuel transporation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, D.M., Westinghouse Hanford

    1996-09-20

    A series of analysis were performed to evaluate the pressurization of the Multi-Canister Overpack (MCO) during the stages of transport, processing and storage for expected operational and off normal events. The study examined both MCO sealing and venting issues. Computer models were developed for the MCO and its transport and storage environments using the GOTH and COBRA-TF computer codes. These thermal- hydraulic models included chemical corrosion and ranged in complexity from simple scoping models to full three-dimensional models. Results of the evaluation indicate that overpressurization of the MCO can occur within hours given the bounding reaction surface area and 3.0 Kg of residual water during shipping or 2.5 Kg of residual water during storage. Overpressurization can be prevented during shipping if the MCO reaction surface area is shown to be less than 80,000 cm{sup 2}. During storage the overpressurization can be prevented by limiting the available water.

  20. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment.

    Science.gov (United States)

    Liu, Ji; Sui, Guoliang; He, Yongzhou; Liu, Dongjie; Yan, Jing; Liu, Shuxiang; Qin, Wen

    2014-04-01

    Wilt and rot occur readily during storage of baby ginger because of its tender skin and high moisture content (MC). A storage medium, which consisted of sand, 20% water, and 3.75% super absorbent polymers delayed weight loss and loss of firmness at 12 °C and 90% relative humidity. Microorganisms were isolated and purified from decayed rhizomes; among these, 3 fungi were identified as pathogens. The results of 18S rDNA sequence analysis showed that these fungi belonged to Penicillium, Fusarium, and Mortierella genera. The use of essential oil for controlling these pathogens was then investigated in vitro. Essential oils extracted from Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) completely inhibited the growth of all of the above pathogens at a concentration of 2000 ppm. Cinnamon oil showed higher antifungal activity in the drug sensitivity test with minimal fungicidal concentration (oil fumigation combined with medium storage at 12 °C as an integrated approach to baby ginger storage. © 2014 Institute of Food Technologists®

  1. Fuel quality of Norway spruce stumps - influence of harvesting technique and storage method

    Energy Technology Data Exchange (ETDEWEB)

    Anerud, Erik; Jirjis, Raida (Dept. of Energy and Technology, Swedish Univ. of Agricultural Science, Uppsala (Sweden))

    2011-04-15

    The interest in using stump biomass as a biofuel has recently increased in Sweden. The uneven consumption of wood fuel during the year creates a need for storage. This study examined the properties of stump biomass and how they vary at two sites in Sweden depending on harvesting technique, storage method and storage period. Norway spruce stumps, extracted using three different stump harvesting heads (Pallari, Rotary Cutter and Aalto), were stored in windrows or heaps. After 3 months, stumps stored in heaps were gathered into windrows. The fuel quality parameters moisture content (MC), ash content (AC) and calorific value (CV) were evaluated on five occasions in the period May 2008 - September 2009. After 16 months of storage, the MC in all treatments had decreased to <25% (wet basis). Average AC decreased from 3.8% to around 1% (dry basis), whereas CV marginally increased. Stumps split during harvesting dried better than those harvested in one piece. The influence of storage method was minimal, although initial storage in heaps allowed better drying in the stumps harvested in one piece. In general, fuel quality improved in all treatments after storage

  2. Commercial Approval Plan for Synthetic Jet Fuel from Hydrotreated Fats and Oils

    Science.gov (United States)

    2009-02-18

    qualification plan entitled "Commercial Approval Plan for Synthetic Jet Fuel from Hydrotreated Fats and Oils," produced by the subcontractor, Southwest...102 Enclosure 1 February 12, 2009 Fuel Qualification Plan; 3/27/07–4/24/09 Commercial Approval Plan for Synthetic Jet Fuel from Hydrotreated Fats and...Institute, Grand Forks, ND Southwest Research Institute, San Antonio, TX CLIN 0008 10 COMMERCIAL APPROVAL PLAN FOR SYNTHETIC JET FUEL FROM HYDROTREATED FATS

  3. Fuels Coming from Locals Vegetables Oils for Operating of Thermals Engines

    Science.gov (United States)

    Agboue, Akichi; Yobou, Bokra

    The energy crisis born from the oil problem determined a renewal of attention on the possible possibilities of production of substitute fuels for the operation of the machines and the thermal engines. The fuel`s production based on vegetable oils require a renewal attention about the research of replacement fuel for the opeating of machines and thermal engines. Actually, the scientific world takes an interest in the research of others liquids fuel obtained with renewables energy sources whose vegetables have a good place. So, for helping to solve the fuel problem and particularly in third world countries without petroleum resources but producing fruits and oils seed, this research was about search of fuel from vegetables oils. Extraction and physico-chemical analysis performed on various vegetables plants show an interesting energy aspect. Evaluation of actually energy parameters will permit to do a comparison with classics fuel like gas-oil and petrol. Finally, analysis of thermal engines show that fuels coming from biomass like jatropha, ricinodendron and pistacia can to use for operating of those thermal engines.

  4. Criticality safety of the ET-RR-1 new spent fuel storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, E.; Sallam, O.H.; Amin, E

    2001-03-01

    A new ET-RR-1 spent fuel storage pool is now under construction on the reactor site at Inshass. In addition, the pool is designed to accommodate spent fuel of MTR type as well. Criticality safety of this pool for the different fuel types has been evaluated as a function of U{sup 235} loading. The effect of fuel element separation (rows and columns) on the eigenvalue has been studied. As a conservative assumption, the pool is assumed to be filled with fresh fuel. The eigenvalue considering a realistic degree of fuel burn-up was determined in order to determine the safety margin. The calculations have been carried out using the code packages of the National Center for Nuclear Safety and Radiation Control.

  5. Proteomic analysis of the oil palm fruit mesocarp reveals elevated oxidative phosphorylation activity is critical for increased storage oil production.

    Science.gov (United States)

    Loei, Hendrick; Lim, Justin; Tan, Melvin; Lim, Teck Kwang; Lin, Qing Song; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Chung, Maxey C M

    2013-11-01

    Palm oil is a highly versatile commodity with wide applications in the food, cosmetics, and biofuel industries. Storage oil in the oil palm mesocarp can make up a remarkable 80% of its dry mass, making it the oil crop with the richest oil content in the world. As such, there has been an ongoing interest in understanding the mechanism of oil production in oil palm fruits. To identify the proteome changes during oil palm fruit maturation and factors affecting oil yield in oil palm fruits, we examined the proteomic profiles of oil palm mesocarps at four developing stages--12, 16, 18, and 22 weeks after pollination--by 8-plex iTRAQ labeling coupled to 2D-LC and MALDI-TOF/TOF MS. It was found that proteins from several important metabolic processes, including starch and sucrose metabolism, glycolysis, pentose phosphate shunt, fatty acid biosynthesis, and oxidative phosphorylation, were differentially expressed in a concerted manner. These increases led to an increase in carbon flux and a diversion of resources such as ATP and NADH that are required for lipid biosynthesis. The temporal proteome profiles between the high-oil-yielding (HY) and low-oil-yielding (LY) fruits also showed significant differences in the levels of proteins involved in the regulation of the TCA cycle and oxidative phosphorylation. In particular, the expression level of the β subunit of the ATP synthase complex (complex IV of the electron transport chain) was found to be increased during fruit maturation in HY but decreased in the LY during the fruit maturation. These results suggested that increased energy supply is necessary for augmented oil yield in the HY oil palm trees.

  6. Evolution of oxidation during storage of crisps and french fries prepared with sunflower oil and high oleic sunflower oil

    Directory of Open Access Journals (Sweden)

    Martín-Polvillo, M.

    1996-04-01

    Full Text Available Storage studies were carried out to define the behaviour of both conventional and high oleic sunflower oils in the industrial preparation of crisps and prefried french fries. Samples of crisps and prefried french fries were stored during 6 and 21 months, respectively, and evolution of oxidation was compared with that of the more saturated fats normally used for the preparation of both products, i.e., palm olein and hydrogenated rapeseed/palm oil mixture. Total oxidation compounds, α-tocopherol content, as well as monomeric and dimeric triglycerides, were quantitated in lipids from fried products after different time periods. Results obtained for crisps at room temperature indicated that only conventional sunflower oil underwent significant oxidation after 6 months. In the case of prefried french fries, maintained at freezer temperatures, no appreciable changes were found after 21 months storage, thus indicating that both sunflower oils can be good alternatives to saturated fats.

  7. Model for the calculation of pressure loss through heavy fuel oil transfer pipelines

    Directory of Open Access Journals (Sweden)

    Hector Luis Laurencio-Alfonso,

    2012-10-01

    Full Text Available Considering the limitations of methodologies and empirical correlations in the evaluation of simultaneous effects produced by viscous and mix strength during the transfer of fluids through pipelines, this article presents the functional relationships that describe the pressure variations for the non-Newtonian fuel oil flowrate. The experimental study was conducted based on a characterization of the rheological behavior of fuel oil and modeling for a pseudoplastic behavior. The resulting model describes temperature changes, viscous friction effects and the effects of blending flow layers; which is therefore the basis of calculation for the selection, evaluation and rationalization of transport of heavy fuel oil by pipelines.

  8. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  9. Experimental investigation of the effects of diesel-like fuel obtained from waste lubrication oil on engine performance and exhaust emission

    Energy Technology Data Exchange (ETDEWEB)

    Arpa, Orhan [Dicle University, Mechanical Engineering Department, Diyarbakir (Turkey); Yumrutas, Recep [University of Gaziantep, Mechanical Engineering Department, Gaziantep (Turkey); Argunhan, Zeki [University of Batman, Mechanical Engineering Department, Batman (Turkey)

    2010-10-15

    In this study, effects of diesel-like fuel (DLF) on engine performance and exhaust emission are investigated experimentally. The DLF is produced from waste engine lubrication oil purified from dust, heavy carbon soot, metal particles, gum-type materials and other impurities. A fuel production system mainly consisting of a waste oil storage tank, filters, a reactor, oil pump, a product storage tank, thermostats and control panel is designed and manufactured. The DLF is produced by using the system and applying pyrolitic distillation method. Characteristics, performance and exhaust emissions tests of the produced DLF are carried out at the end of the production. The characteristic tests such as density, viscosity, flash point, heating value, sulfur content and distillation of the DLF sample are performed utilizing test equipments presented in motor laboratory of Mechanical Engineering Department, University of Gaziantep, Turkey. Performance and exhaust emission tests for the DLF are performed using diesel test engine. It is observed from the test results that about 60 cc out of each 100 cc of the waste oil are converted into the DLF. Characteristics and distillation temperatures of the DLF are close to those values of a typical diesel fuel sample. It is observed that the produced DLF can be used in diesel engines without any problem in terms of engine performance. The DLF increases torque, brake mean effective pressure, brake thermal efficiency and decreases brake specific fuel consumption of the engine for full power of operation. (author)

  10. Reversible energy storage on a fuel cell-supercapacitor hybrid device

    Energy Technology Data Exchange (ETDEWEB)

    Zerpa Unda, Jesus Enrique

    2011-02-18

    A new concept of energy storage based on hydrogen which operates reversibly near ambient conditions and without important energy losses is investigated. This concept involves the hybridization between a proton exchange membrane fuel cell and a supercapacitor. The main idea consists in the electrochemical splitting of hydrogen at a PEM fuel cell-type electrode into protons and electrons and then in the storage of these two species separately in the electrical double layer of a supercapacitor-type electrode which is made of electrically conductive large-surface area carbon materials. The investigation of this concept was performed first using a two-electrode fuel cell-supercapacitor hybrid device. A three-electrode hybrid cell was used to explore the application of this concept as a hydrogen buffer integrated inside a PEM fuel cell to be used in case of peak power demand. (orig.)

  11. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, D

    2007-10-30

    The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

  12. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    Science.gov (United States)

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0(#) diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage.

    Science.gov (United States)

    Zullo, B A; Cioccia, G; Ciafardini, G

    2013-10-01

    The olive oil microbiota, mainly composed of yeasts, is associated with the suspended fraction of freshly produced olive oils. Some olive oil yeasts are considered useful as they are able to hydrolyse the bitter tasting secoiridoid compound of the oil, whereas others are considered harmful as they can damage the quality of the oil. Present research demonstrated the influence of some yeast strains belonging to Candida adriatica, Candida diddensiae and Candida wickerhamii species on the olive oil sensory characteristics during its storage. All the tested yeasts survived in the inoculated extra virgin olive oil and, after four months of storage, the suspended yeast cells recovered from the olive oil varied between 50% and 80% of the initial total yeasts, according to their sedimentation capacity. The mean of five analytical indices (free fatty acids, peroxide value, K232, K270 and ΔK) were quite similar and about 60% of the treated samples analysed after four months of storage, on the basis of these indices, were still classed as extra virgin. Completely different results were obtained from the analyses of volatile and non volatile carbonyl compounds according to the yeast used. In the samples of oil treated with C. adriatica and C. wickerhamii, instead of some strains of C. diddensiae, a lower concentration of C6 volatile carbonyl compounds and polyphenols, responsible for positive oil attributes, were found. The sensory attributes of the treated olive oils varied according to the composition of the volatile and non volatile carbonyl compounds produced with the treatments. "Muddy-sediment", "rancid" or both defects were found in olive oil samples treated with C. adriatica DAPES 1933, C. wickerhamii DAPES 1885 and C. diddensiae DAPES 1912 and 1913 strains, whereas olive oil samples treated with C. diddensiae DAPES 1918 and 1922 after four months of storage were defect-free, and still categorized as extra virgin, according to the requirements of both chemical

  14. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    OpenAIRE

    Wenyi Liu; Linzhi Liu; Gang Xu; Feifei Liang; Yongping Yang; Weide Zhang; Ying Wu

    2014-01-01

    Compressed air energy storage (CAES) is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG) as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-f...

  15. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    Directory of Open Access Journals (Sweden)

    A. Hajizadeh

    2013-12-01

    Full Text Available This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid power system is simulated in MATLAB/ SIMIULINK environment and different operating conditions have been considered to evaluate the response of power management strategy.

  16. Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1993-03-01

    The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

  17. Replacement of the spent fuel storage racks at the Ginna NPP in the U.S

    Energy Technology Data Exchange (ETDEWEB)

    Tatibouet, J. [ATEA/Framatome, 44 - Carquefou (France)

    1999-03-01

    In June 1996, ATEA and Framatome Technologies Inc. obtained a re-racking contract to replace part of the fuel storage racks of the Ginna nuclear power plant, near Rochester, NY (USA). The operations consisted in removing three old racks from the spent fuel pool and replacing them with even new compact storage racks. After a design and manufacturing phase, the final part of the project - the re-racking operation per se - was completed in mid-November, two weeks ahead of schedule

  18. Persistency of larvicidal effects of plant oil extracts under different storage conditions.

    Science.gov (United States)

    Amer, Abdelkrim; Mehlhorn, Heinz

    2006-09-01

    The persistency of larvicidal effects of 13 oils (camphor, thyme, amyris, lemon, cedarwood, frankincense, dill, myrtle, juniper, black pepper, verbena, helichrysum, and sandalwood) was examined by storage of 50-ppm solutions under different conditions (open, closed, in the light, and in the dark) for 1 month after the preparation of the solutions. The stored solutions were tested against Aedes aegypti larvae for four times during the storage period. Some oils under some conditions stayed effective until the last test, while some solutions had lost their toxicity during a short time after preparation. Thus, the mode of storage is absolutely important for the larvicidal effects. The fresh preparations were always the best.

  19. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  20. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  1. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  2. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  3. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    Energy Technology Data Exchange (ETDEWEB)

    Wittman, Richard S.

    2013-09-20

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  4. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    Science.gov (United States)

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  5. Durability testing modified compression ignition engines fueled with straight plant oil

    Energy Technology Data Exchange (ETDEWEB)

    Basinger, M.; Lackner, K.S. [Earth and Environmental Engineering, Columbia University, New York City 10027 (United States); Reding, T. [Mechanical Engineering, Manhattan College, New York City (United States); Rodriguez-Sanchez, F.S. [Mali Biocarburant, Bamako (Mali); Modi, V. [Mechanical Engineering, Columbia University, New York City 10027 (United States)

    2010-08-15

    Many short-run studies point to the potential for direct fueling of compression ignition engines with plant oil fuels. There is a much smaller body of work that examines the potential for these fuels in long-run tests that illuminate engine endurance and longevity issues. Generally, longevity studies involving direct fueling of engines with straight plant oils have shown significant impact to the life of the engine, though test results vary widely depending on the oil, engine type, test conditions, and measurement approach. This study utilizes a previously designed modification kit to investigate the longevity implications of directly fueling straight plant oil in an indirect injection (IDI) listeroid type, slow speed stationary engine common in agro-processing applications in developing countries. Specifically this study focuses on the lubrication oil by developing a model to characterize the engine wear and estimate lube oil change frequency. The model is extended to an analysis of the piston rings. Cylinder liner wear, emissions, engine performance, and a visual investigation of several critical engine components are also studied. The 500 hour test with waste vegetable oil fuel resulted in several important findings. The engine break-in period was identified as taking between 200 and 300 h. Emissions analysis supported the break-in definition as smoke opacity and carbon monoxide values fell from 9% and 600 ppm (respectively) during the first few hundred hours, to 5% and 400 ppm in the final 200 h. Lubrication oil viscosity was found to be the limiting degradation factor in the lube oil, requiring oil to be changed every 110 h. Piston ring mass loss was found to correlate very closely with chromium buildup in the lubrication oil and the mathematical model that was developed was used to estimate that piston ring inspection and replacement should occur after 1000 h. Cylinder ovalisation was found to be most sever at top dead center (TDC) at 53 microns of averaged

  6. Evaluation of safety margins during dry storage of CANDU fuel in MACSTOR/KN-400 module

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, R.; Shill, R. [Atomic Energy of Canada Limited, Montreal, Quebec (Canada); Lee, K.-H.; Chung, S.-H.; Yoon, J.-H.; Choi, B.-I.; Lee, H.-Y.; Song, M.-J. [KHNP, Nuclear Environment Technology Inst., Taejon (Korea, Republic of)

    2004-07-01

    This paper covers an evaluation of the available safety margin against fuel bundle degradation during dry storage of CANDU spent fuel bundles in a MACSTOR/KN-400 module, considering normal, off-normal and postulated accidental conditions. Korea Hydro and Nuclear Power (KHNP), in collaboration with Atomic Energy of Canada Limited (AECL), are developing a new module for the dry storage of spent fuel from the four CANDU 6 nuclear reactors at the Wolsong site in South Korea. The module provides the benefit of occupying significantly less area than the concrete canisters presently used. The modules are designed for a minimum service life of 50 years. During that period, the spent fuel bundles shall be safely stored. This imposes that failure of a fuel bundle element or unacceptable degradation of an existing defect (from reactor operation) does not occur during the dry storage period. The fuel bundles are stored in an air-filled fuel basket that releases 365 Watts on average and a maximum of 390 Watts when rare fuel loading conditions are postulated. In addition, specific accidental air flow cooling conditions are postulated that consist of 100% blockage of all air inlets on one side of the module. These conditions can generate a peak daily fuel temperature of up to 155{sup o}C during a reference hot summer day during the first year of operation. The fuel temperature decreases over the years and also fluctuates due to daily and seasonal temperature variations. At this temperature, fuel elements with intact Zircaloy sheathing will not experience damage. However, for the few fuel bundle elements that are non-leaktight (less than 1 per 37,000), some re-oxidation of UO{sub 2} into higher oxides such as U{sub 3}O{sub 7} / U{sub 4}O{sub 9} and U{sub 3}O{sub 8} will occur. This latter form of Uranium oxide is undesirable due to its lower density that results in a volumetric increase of the pellet that can overstress the fuel element sheathing. The level of fuel pellet

  7. Utilization of Palm Oil Fuel Ash as Binder in Lightweight Oil Palm Shell Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Michael Yong Jing Liu

    2014-01-01

    Full Text Available Traditionally fly ash (FA has been used to replace cement as binder in the geopolymer concrete. The utilization of palm oil industrial waste materials known as palm oil fuel ash (POFA and oil palm shell (OPS that are abundantly available in South East Asia as binder and coarse aggregate in geopolymer concrete would give an added advantage in both the environmental and economic aspects. The mechanical properties of the OPS geopolymer concrete (OPSGC through the use of POFA, FA, and OPS are investigated and reported. A total of ten OPSGC mixtures were prepared with varying percentages of POFA and FA such as 0, 10, 20, 40, and 100%. The specimens prepared with two alkaline solution to binder (AK/B ratios of 0.35 and 0.55 were oven cured at 65°C for 48 hours. The experimental results showed that the highest compressive strength of 30 MPa was obtained for the mix with 20% replacement of FA by POFA and AK/B ratio of 0.55, which underwent oven curing. Further, the mix of up to 20% POFA (with AK/B ratio of 0.55 can be categorized as structural lightweight concrete. An increase of the POFA content beyond 20% decreases the mechanical properties, and hence this mix is recommended to be used.

  8. Signatures of Extended Storage of Used Nuclear Fuel Comprehensive Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-21

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  9. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    Science.gov (United States)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  10. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  11. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  12. Behavior of spent fuel and cask components after extended periods of dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Kenneally, R. [U.S. Nuclear Regulatory Commission, Rockville, MD (United States); Kessler, J. [Electric Power Research Inst., Palo Alto, CA (United States)

    2001-07-01

    The U.S. Nuclear Regulatory Commission (NRC) promulgated 10 CFR Part 72, Title 10, for the independent storage of spent nuclear fuel and high-level radioactive waste outside reactor spent fuel pools. Part 72 currently limits the license term for an independent spent fuel storage installation to 20 years from the date of issuance. Licenses may be renewed by the Commission at or before the expiration of the license term. Applications for renewal of a license should be filed at least two years prior to the expiration of the existing license. In preparation for possible license renewal, the NRC Office of Nuclear Material and Safeguards, Spent Fuel Project Office, is developing the technical basis for renewals of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level radioactive waste at independent spent fuel storage installation sites. An analysis of past performance of selected components of these systems is required as part of that technical basis. In the years 1980 through the early 1990, the Department of Energy (DOE) procured four prototype dry storage casks for testing at the Idaho National Engineering and Environmental Laboratory (INEEL): Castor-V/21, MC-10, TN-24P, and VSC-17. The primary purpose of the testing was to benchmark thermal and radiological codes and to determine the thermal and radiological characteristics of the casks. A series of examinations in 1999 and early 2000 to investigate the integrity of the Castor V/21 cask were undertaken. There is no evidence of significant degradation of the Castor V/21 cask systems important to safety from the time of initial loading of the cask in 1985 up to the time of testing in 1999. (author)

  13. Conversion of crop seed oils to jet fuel and associated methods

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  14. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils.

    Science.gov (United States)

    Abigor, R D; Uadia, P O; Foglia, T A; Haas, M J; Jones, K C; Okpefa, E; Obibuzor, J U; Bafor, M E

    2000-12-01

    Fatty acids esters were produced from two Nigerian lauric oils, palm kernel oil and coconut oil, by transesterification of the oils with different alcohols using PS30 lipase as a catalyst. In the conversion of palm kernel oil to alkyl esters (biodiesel), ethanol gave the highest conversion of 72%, t-butanol 62%, 1-butanol 42%, n-propanol 42% and iso-propanol 24%, while only 15% methyl ester was observed with methanol. With coconut oil, 1-butanol and iso-butanol achieved 40% conversion, 1-propanol 16% and ethanol 35%, while only traces of methyl esters were observed using methanol. Studies on some fuel properties of palm kernel oil and its biodiesel showed that palm kernel oil had a viscosity of 32.40 mm2/s, a cloud point of 28 degrees C and a pour point of 22 degrees C, while its biodiesel fuel had a viscosity of 9.33 mm2/s, a cloud point of 12 degrees C and a pour point of 8 degrees C. Coconut oil had a viscosity of 28.58 mm(2)/s, a cloud point of 27 degrees C and a pour point of 20 degrees C, while its biodiesel fuel had a viscosity of 7.34 mm2/s, a cloud point of 5 degrees C and a pour point of -8 degrees C. Some of the fuel properties compared favourably with international biodiesel specifications.

  15. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fort, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  17. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-independent spent fuel storage...) Environmental Reports-Materials Licenses § 51.61 Environmental report—independent spent fuel storage... “Applicant's Environmental Report—ISFSI License” or “Applicant's Environmental Report—MRS License,”...

  18. A Novel Hybrid-Fuel Storage System of Compressed Air Energy for China

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-08-01

    Full Text Available Compressed air energy storage (CAES is a large-scale technology that provides long-duration energy storage. It is promising for balancing the large-scale penetration of intermittent and dispersed sources of power, such as wind and solar power, into electric grids. The existing CAES plants utilize natural gas (NG as fuel. However, China is rich in coal but is deficient in NG; therefore, a hybrid-fuel CAES is proposed and analyzed in this study. Based on the existing CAES plants, the hybrid-fuel CAES incorporates an external combustion heater into the power generation subsystem to heat the air from the recuperator and the air from the high-pressure air turbine. Coal is the fuel for the external combustion heater. The overall efficiency and exergy efficiency of the hybrid-fuel CAES are 61.18% and 59.84%, respectively. Given the same parameters, the cost of electricity (COE of the hybrid-fuel CAES, which requires less NG, is $5.48/MW∙h less than that of the gas-fuel CAES. Although the proposed CAES requires a relatively high investment in the current electricity system in North China, the proposed CAES will be likely to become competitive in the market, provided that the energy supplies are improved and the large scale grid-connection of wind power is realized.

  19. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.N.

    1990-06-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  20. Processing Of Neem And Jatropha Methyl Esters –Alternative Fuels From Vegetable Oil

    Science.gov (United States)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  1. Preparation and research on properties of castor oil as a diesel fuel additive

    Directory of Open Access Journals (Sweden)

    Nurbakhit Imankulov

    2012-06-01

    Full Text Available The research shows an opportunity of preparing biodiesel fuel on the basis of local diesel fuel and the bioadditive - castor oil. Limiting optimum concentration of introduction of the bioadditive equal was established as 5% mass ratio. The castor oil released from seeds of Palma Christi grown on experimental field. All physical and chemical characteristics of the oil including IR-spectra were determined. Operating conditions of castor oil introduction (temperature, solubility, concentra-tion, etc. were determined. The received biofuel was tested at oil refinery and its bench tests with a positive effect were also carried out. Technical requirements and technological regulation (temporary on manufacture of this biodiesel fuel were prepared.

  2. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  3. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  4. Movement of Fuel Ashore: Storage, Capacity, Throughput, and Distribution Analysis

    Science.gov (United States)

    2015-12-01

    planning and forecasting approach. It is the aim of this study to understand the connection between the GCE’s operational behavior and its fuel demand...of the seabased logistics network will depend on the use of a modern planning and forecasting approach. It is the aim of this study to understand the...capability and interoperability. These systems, while innovative , lack the capacity to efficiently resupply and sustain the forces ashore. Even with

  5. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    Science.gov (United States)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  6. Structural design of concrete storage pads for spent-fuel casks

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Y.R.; Nickell, R.E.; James, R.J. (ANATECH Research Corp., San Diego, CA (United States))

    1993-04-01

    The loading experienced by spent fuel dry storage casks and storage pads due to potential drop or tip-over accidents is evaluated using state-of-the-art concrete structural analysis methodology. The purpose of this analysis is to provide simple design charts and formulas so that design adequacy of storage pads and dry storage casks can be demonstrated. The analysis covers a wide range of slab-design parameters, e.g., reinforcement ratio, slab thickness, concrete compressive strength, and sub-base soil compaction, as well as variations in drop orientation and drop height. The results are presented in the form of curves, giving the force on the cask as a function of storage pad hardness for various drop heights. In addition, force-displacement curves, deformed shapes, crack patterns, stresses and strains are given for various slab-design conditions and drop events. The utility of the results in design are illustrated through examples.

  7. New Methods for Evaluation of Spent Fuel Condition during Long-Term Storage in Slovakia

    Directory of Open Access Journals (Sweden)

    M. Mikloš

    2009-01-01

    Full Text Available Experiences with an advanced spent nuclear fuel management in Slovakia are presented in this paper. The evaluation and monitoring procedures are based on practices at the Slovak wet interim spent fuel storage facility in NPP Jaslovské Bohunice. Since 1999, leak testing of WWER-440 fuel assemblies are provided by special leak tightness detection system “Sipping in pool” delivered by Framatomeanp with external heating for the precise defects determination. In 2006, a new inspection stand “SVYP-440” for monitoring of spent nuclear fuel condition was inserted. This stand has the possibility to open WWER-440 fuel assemblies and examine fuel elements. Optimal ways of spent fuel disposal and monitoring of nuclear fuel condition were designed. With appropriate approach of conservativeness, new factor for specifying spent fuel leak tightness is introduced in the paper. By using computer simulations (based on SCALE 4.4a code for fission products creation and measurements by system “Sipping in pool,” the limit values of leak tightness were established.

  8. Interim storage of power reactor spent nuclear fuel (SNF) and its potential application to SNF separations and closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Salomon, E-mail: slevy112@aol.com

    2009-10-15

    Interim, centralized, engineered (dry cask) storage facilities for USA light water power reactor spent nuclear fuel (SNF) should be implemented to complement and to offer much needed flexibility while the Nuclear Regulatory Commission is funded to complete its evaluation of the Yucca Mountain License and to subject it to public hearings. The interim sites should use the credo reproduced in Table 1 [Bunn, M., 2001. Interim Storage of Spent Nuclear Fuel. Harvard University and University of Tokyo] and involve both the industry and government. The sites will help settle the 50 pending lawsuits against the government and the $11 billion of potential additional liabilities for SNF delay damages if Yucca Mountain does not being operation in 2020 [DOE, 2008a. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Stations (December)]. Under the developing consensus to proceed with closed fuel cycles, it will be necessary to develop SNF separation facilities with stringent requirements upon separation processes and upon generation of only highly resistant waste forms. The location of such facilities at the interim storage sites would offer great benefits to those sites and assure their long term viability by returning them to their original status. The switch from once-through to closed fuel cycle will require extensive time and development work as illustrated in 'The Path to Sustainable Nuclear Energy' [DOE, 2005. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles. DOE (September)]. A carefully crafted long term program, funded for at least 5 years, managed by a strong joint government-industry team, and subjected to regular independent reviews should be considered to assure the program stability and success. The new uncertainty about Yucca Mountain role raises two key issues: (a) what to do with the weapons and other high level government

  9. 78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel

    Science.gov (United States)

    2013-11-07

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 51 RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear Regulatory Commission. ACTION: Proposed rule; extension of comment period. SUMMARY: On September 13, 2013, the U. S. Nuclear Regulatory Commission (NRC) published for public...

  10. 10 CFR 72.240 - Conditions for spent fuel storage cask reapproval.

    Science.gov (United States)

    2010-01-01

    ... Section 72.240 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... adversely affected structures, systems, and components important to safety....

  11. Neutron spectrometry at the interim storage facility for spent nuclear fuel

    CERN Document Server

    Králik, M; Studeny, J

    2002-01-01

    Dosimetric characteristics of neutron and photon components of mixed fields around casks for spent nuclear fuel have been determined at various places at the dry interim storage facility. The results obtained with metrological grade instruments were compared with data provided by usual survey meters for both neutrons and photons.

  12. A software tool integrated risk assessment of spent fuel transpotation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Christian, Robby [Dept. of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy (Korea, Republic of); Kim, Bo Gyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of)

    2017-06-15

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode.

  13. A software tool for integrated risk assessment of spent fuel transportation and storage

    Directory of Open Access Journals (Sweden)

    Mirae Yun

    2017-06-01

    Full Text Available When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this model.

  14. Data compliation report: K West Basin fuel storage canister liquid samples

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, D.J.

    1995-12-21

    Sample analysis data from the 222-S Laboratory are reported. The data are for liquid samples taken from spent fuel storage canisters in the 105 K West Basin during March 1995. An analysis and data report from the Special Analytical Studies group of Westinghouse Hanford Company regarding these samples is also included. Data analysis is not included herein.

  15. 78 FR 16601 - List of Approved Spent Fuel Storage Casks: MAGNASTOR® System

    Science.gov (United States)

    2013-03-18

    ... National Technology Transfer and Advancement Act of 1995 (Pub. L. 104-113) requires that Federal agencies... spent fuel storage regulations by revising the NAC International, Inc. (NAC) Modular Advanced Generation... explains why the rule would be inappropriate, including challenges to the rule's underlying premise...

  16. A study on safety analysis methodology in spent fuel dry storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Che, M. S.; Ryu, J. H.; Kang, K. M.; Cho, N. C.; Kim, M. S. [Hanyang Univ., Seoul (Korea, Republic of)

    2004-02-15

    Collection and review of the domestic and foreign technology related to spent fuel dry storage facility. Analysis of a reference system. Establishment of a framework for criticality safety analysis. Review of accident analysis methodology. Establishment of accident scenarios. Establishment of scenario analysis methodology.

  17. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  18. 75 FR 9452 - Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing...

    Science.gov (United States)

    2010-03-02

    ... COMMISSION Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing Conference AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Solicitation of Topics for Discussion at a... Commission (NRC) is soliciting input on topics for discussion at a proposed June 23-24, 2010, public meeting...

  19. Physicochemical Properties of Diacetylenic Light Fuel Oil from Congolese Oleaginous Plant Ongokea gore (Hua Pierre

    Directory of Open Access Journals (Sweden)

    J. K. Ntumba

    2017-01-01

    Full Text Available Vegetable oil-based fuels are promising alternative fuels for diesel and light fuel engines because of their environmental and economic strategic advantages. In this study, Ongokea gore oil (OGO and its fully hydrogenated oil were transesterified by means of ethanol in the presence of sodium ethoxide. Fatty acid ethyl esters (FAEE products were confirmed by 1H NMR and characterized by physical-chemical methods in accordance with the ASTM D 6751 and AFNOR M 15-009 specifications for biodiesels and light biofuels. These methods concern determination of color, density, viscosity, flash and pour points, ash, water and sulfur contents, and corrosion on copper. It was found that pure fatty acid ethyl esters of Ongokea gore oil (B100 and its hydrogenated oil (B100-H meet standard requirements for most of the biodiesel characteristics studied. Only the kinematic viscosity and density values were outside recommended biodiesel standard limits which makes them unsuitable for use in diesel engines. In accordance with the AFNOR M 15-009 specifications of light fuels, they can be used in light fuel engines. Physical-chemical properties of B20, a FAEE blend in petrodiesel, are within the limits prescribed for petrodiesel standards. In brief, Ongokea gore seeds, a nonedible and high-oil-producing feedstock, are suitable starting material for production of light biofuel. The latter blends in petrodiesel can be used as fuel in diesel engines.

  20. Physical Properties of Biomass Fuel Briquette from Oil Palm ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of fuel briquettes in this study in order to supplement the energy mix of the nation. ... the fuel briquettes from PKS and MF (especially 350 µm series) could serve as alternative ... Keywords: Palm kernel shell; Mesocarp fibre; Briquette; Biomass solid fuel; proximate ... physical properties of fuel briquettes produced from.

  1. Diversity and abundance of bacteria in an underground oil-storage cavity

    Directory of Open Access Journals (Sweden)

    Kodama Yumiko

    2002-08-01

    Full Text Available Abstract Background Microorganisms inhabiting subterranean oil fields have recently attracted much attention. Since intact groundwater can easily be obtained from the bottom of underground oil-storage cavities without contamination by surface water, studies on such oil-storage cavities are expected to provide valuable information to understand microbial ecology of subterranean oil fields. Results DNA was extracted from the groundwater obtained from an oil-storage cavity situated at Kuji in Iwate, Japan, and 16S rRNA gene (16S rDNA fragments were amplified by PCR using combinations of universal and Bacteria-specific primers. The sequence analysis of 154 clones produced 31 different bacterial sequence types (a unique clone or group of clones with sequence similarity of > 98. Major sequence types were related to Desulfotomaculum, Acetobacterium, Desulfovibrio, Desulfobacula, Zoogloea and Thiomicrospira denitrificans. The abundance in the groundwater of bacterial populations represented by these major sequence types was assessed by quantitative competitive PCR using specific primers, showing that five rDNA types except for that related to Desulfobacula shared significant proportions (more than 1% of the total bacterial rDNA. Conclusions Bacteria inhabiting the oil-storage cavity were unexpectedly diverse. A phylogenetic affiliation of cloned 16S rDNA sequences suggests that bacteria exhibiting different types of energy metabolism coexist in the cavity.

  2. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  3. Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

  4. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kucharski, TJ; Ferralis, N; Kolpak, AM; Zheng, JO; Nocera, DG; Grossman, JC

    2014-04-13

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  5. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  6. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  7. Used Fuel Logistics: Decades of Experience with transportation and Interim storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orban, G.; Shelton, C.

    2015-07-01

    Used fuel inventories are growing worldwide. While some countries have opted for a closed cycle with recycling, numerous countries must expand their interim storage solutions as implementation of permanent repositories is taking more time than foreseen. In both cases transportation capabilities will have to be developed. AREVA TN has an unparalleled expertise with transportation of used fuel. For more than 50 years AREVA TN has safely shipped more than 7,000 used fuel transport casks. The transportation model that was initially developed in the 1970s has been adapted and enhanced over the years to meet more restrictive regulatory requirements and evolving customer needs, and to address public concerns. The numerous “lessons learned” have offered data and guidance that have allowed for also efficient and consistent improvement over the decades. AREVA TN has also an extensive experience with interim dry storage solutions in many countries on-site but also is working with partners to developed consolidated interim storage facility. Both expertise with storage and transportation contribute to safe, secure and smooth continuity of the operations. This paper will describe decades of experience with a very successful transportation program as well as interim storage solutions. (Author)

  8. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    CERN Document Server

    Poulson, D; Guardincerri, E; Morris, C L; Bacon, J D; Plaud-Ramos, K; Morley, D; Hecht, A

    2016-01-01

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, the cask contents can be confirmed with high confidence in less than two days exposure. Similar results can be obtained by moving a smaller detector to view the cask from multiple angles.

  9. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    Science.gov (United States)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  10. Optimizing energy management of decentralized photovoltaic. Fuel cell - direct storage - power supply units

    Energy Technology Data Exchange (ETDEWEB)

    Bocklisch, Thilo; Schufft, Wolfgang; Bocklisch, Steffen [Chemnitz Univ. of Technology (TUC) (Germany)

    2010-07-01

    This paper presents a new optimizing energy management concept for decentralized power supply units. Main goal is the coordinated utilization of dynamically controllable combined-heat-and-power-plants (e.g. fuel cell cogeneration plants) and electrochemical direct storages (e.g. future electric car batteries) for the active balancing of fluctuating renewable energy generation (e.g. building integrated photovoltaics) and fluctuation electricity consumption. The self-utilization and partial storage of renewable energy helps to stabilize the grid in a ''bottom-up'' approach. The new energy mangement concept features a three-layer control structure, which aims for the optimization of the power flows, minimizing the fuel consumption and the dynamic stress imposed onto the fuel cell. (orig.)

  11. A Model of Carbon Capture and Storage with Demonstration of Global Warming Potential and Fossil Fuel Resource Use Efficiency

    Science.gov (United States)

    Suebsiri, Jitsopa

    Increasing greenhouse gas concentration in the atmosphere influences global climate change even though the level of impact is still unclear. Carbon dioxide capture and storage (CCS) is increasingly seen as an important component of broadly based greenhouse gas reduction measures. Although the other greenhouse gases are more potent, the sheer volume of CO 2 makes it dominant in term of its effect in the atmosphere. To understand the implications, CCS activities should be studied from a full life cycle perspective. This thesis outlines the successful achievement of the objectives of this study in conducting life cycle assessment (LCA), reviewing the carbon dioxide implications only, combining two energy systems, coal-fired electrical generations and CO2 used for enhanced oil recovery (EOR). LCA is the primary approach used in this study to create a tool for CCS environmental evaluation. The Boundary Dam Power Station (BDPS) and the Weyburn-Midale CO 2 EOR Project in Saskatchewan, Canada, are studied and adopted as case scenarios to find the potential for effective application of CCS in both energy systems. This study demonstrates two levels of retrofitting of the BDPS, retrofit of unit 3 or retrofit of all units, combined with three options for CO 2 geological storage: deep saline aquifer, CO2 EOR, and a combination of deep saline aquifer storage and CO2 EOR. Energy output is considered the product of combining these two energy resources (coal and oil). Gigajoules (GJ) are used as the fundamental unit of measurement in comparing the combined energy types. The application of this tool effectively demonstrates the results of application of a CCS system concerning global warming potential (GWP) and fossil fuel resource use efficiency. Other environmental impacts could be analyzed with this tool as well. In addition, the results demonstrate that the GWP reduction is directly related to resource use efficiency. This means the lower the GWP of CCS, the lower resource use

  12. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  13. The Oil Climax: Can Nigeria’s fuel subsidy reforms propel energy transitions?

    NARCIS (Netherlands)

    Osunmuyiwa, Olufolahan; Kalfagianni, Agni

    2017-01-01

    Abstract Recent studies in the field of political science and environmental resource governance suggest that oil-exporting economies have begun to implement fuel subsidy reforms. However, while most studies on this issue focus largely on the broader environmental and economic consequences of fuel su

  14. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    Science.gov (United States)

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  15. Coriander Seed Oil Methyl Esters as Biodiesel Fuel: Unique Fatty Acid Composition and Excellent Oxidative Stability

    Science.gov (United States)

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid (FA) hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt %) acid. Most of the remaining FA...

  16. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Science.gov (United States)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  17. The electrical storage systems in energy networks with fuel cells and photovoltaic systems for residential use

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Aki, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Fuel cell systems and photovoltaic systems are expected to penetrate Japan's residential sector as a distributed energy resource. However, in order to connect photovoltaic systems to the electricity grid in Japan, the power conditioner of the photovoltaic system should have a function to restrict output. The purpose of this study was to establish a cooperative operations method for fuel cells, photovoltaic cells and electrical storage devices. In the proposed networks of this study, electricity, hydrogen and hot water were interchanged and the equipment was shared for cooperative operation. The power generated by the photovoltaic system fluctuated widely. The power flow at the connecting point of the energy networks to the electric power distribution system was bidirectional and depended on the balance of the power produced by the photovoltaic system as well as the power consumption. The use of an electrical storage system for the proposed networks ensured the stability of the power system and enabled more flexible operation of fuel cell stacks. The cooperative operational method for fuel cell systems, photovoltaic systems and electrical storage systems involved the combination of an electrical double layer capacitor (EDLC) and a lithium-ion battery for residential dwellings. Simulation results showed that the use of an EDLC reduced the required capacity of electrical storage systems and the fluctuation of output power of fuel cell systems. The construction of an experimental facilities is being planned to evaluate the charge-discharge characteristics of the electric storage devices and auxiliary equipment, such as inverters. 1 ref., 1 tab., 5 figs.

  18. Microbial growth in Acrocomia aculeata pulp oil, Jatropha curcas oil, and their respective biodiesels under simulated storage conditions

    Directory of Open Access Journals (Sweden)

    Juciana Clarice Cazarolli

    2016-12-01

    Full Text Available With increasing demands for biodiesel in Brazil, diverse oil feedstocks have been investigated for their potentials for biodiesel production. Due to the high biodegradability of natural oils and their respective biodiesels, microbial growths and consequent deterioration of final product quality are generally observed during storage. This study was aimed at evaluating the susceptibility of Acrocomia aculeata pulp oil and Jatropha curcas oil as well as their respective biodiesels to biodeterioration during a simulated storage period. The experiment was conducted in microcosms containing oil/biodiesel and an aqueous phase over 30 d. The levels of microbial contamination included biodiesel and oil as received, inoculated with fungi, and sterile. Samples were collected every 7 d to measure pH, surface tension, acidity index, and microbial biomass. The initial and final ester contents of the biodiesels were also determined by gas chromatography. The major microbial biomass was detected in A. aculeata pulp and J. curcas biodiesels. Significant reductions in pH values were observed for treatments with A. aculeata pulp biodiesel as a carbon source (p

  19. Critical experiments supporting close proximity water storage of power reactor fuel. Technical progress report, October 1, 1977-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.N.; Hoovler, G.S.

    1978-03-01

    Experiments are being conducted on critical configurations of clusters of fuel rods, mocking up LWR-type fuel elements in close proximity water storage. Spacings between fuel clusters and the intervening material are being varied to provide a variety of benchmark loadings. (DLC)

  20. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-03-28

    ... Reactor (BWR) fuel with high initial enrichment (up to 4.8 weight percent uranium-235 planer average...) The ability to store and transport BWR fuel with high initial enrichment (up to 4.8 weight percent... part 72, entitled ``General License for Storage of Spent Fuel at Power Reactor Sites'' (55 FR...

  1. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  2. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  3. Cladding stress during extended storage of high burnup spent nuclear fuel

    Science.gov (United States)

    Raynaud, Patrick A. C.; Einziger, Robert E.

    2015-09-01

    In an effort to assess the potential for low temperature creep and delayed hydride cracking failures in high burnup spent fuel cladding during extended dry storage, the U.S. NRC analytical fuel performance tools were used to predict cladding stress during a 300 year dry storage period for UO2 fuel burned up to 65 GWd/MTU. Fuel swelling correlations were developed and used along with decay gas production and release fractions to produce circumferential average cladding stress predictions with the FRAPCON-3.5 fuel performance code. The resulting stresses did not result in cladding creep failures. The maximum creep strains accumulated were on the order of 0.54-1.04%, but creep failures are not expected below at least 2% strain. The potential for delayed hydride cracking was assessed by calculating the critical flaw size required to trigger this failure mechanism. The critical flaw size far exceeded any realistic flaw expected in spent fuel at end of reactor life.

  4. ACID VALUE OF VEGETABLE OILS AND POULTRY FEED AS AFECTED BY STORAGE PERIOD AND ANTIOXIDANTS

    Directory of Open Access Journals (Sweden)

    Sohail Hassan Khan, Bashir Mahmood Bhatti and Rozina Sardar

    2001-09-01

    Full Text Available A study to assess acid values in soyabean, cotton seed and sunflower oil commonly used in poultry ration was conducted. It was observed that mean acid value of oils ~ept in open were significantly high (7.67 than oil kept in sealed form (1.296. The mean acid value was higher in soyabean oil (P<0.01 than the values in cotton seed oil and sunflower oil. While determining the effect of Santaquin, BHT and Oxistat as antioxidant, in the ration stored at 40 °C for 2 months, it was observed that the acid values in untreated control ration was 18.20 while with the added antioxidants were 4.88, 4.85 and 4.83, respectively showing a significant increase with each week of the storage.

  5. Seismic and structural analysis of high density/consolidated spent fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.J.; Biddle, J.R.; Bennett, S.M.; Schechter, C.B. [B and W Fuel Co., Lynchburg, VA (United States); Harstead, G.A. [Harstead Engineering Associates, Inc., Old Tappan, NJ (United States); Kopecky, B. [ATEA/FRAMATOME, Carquefou (France)

    1995-12-31

    In many nuclear power plants, existing storage racks are being replaced with high-density racks to accommodate the increasing inventory of spent fuel. In the hypothetical design considered here, the high-density arrangement of fuel assemblies, or consolidated fuel canisters, is accomplished through the use of borated stainless steel (BSS) plates acting as neutron absorbers. The high-density fuel racks are simply supported by the pool floor with no structural connections to adjacent racks or to the pool walls or floor. Therefore, the racks are free standing and may slide and tip. Several time history, nonlinear, seismic analyses are required to account for variations in the coefficient of friction, rack loading configuration, ad the type of the seismic event. This paper presents several of the mathematical models usually used. The models include features to allow sliding and tipping of the racks and to represent the hydrodynamic coupling which can occur between fuel assemblies and rack cells, between adjacent racks, and between the racks and the reinforced concrete walls. A detailed model representing a single rack is used to evaluate the 3-D loading effects. This model is a controlling case for the stress analysis. A 2-D multi-rack model representing a row of racks between the spent fuel pool walls is used to evaluate the change in gaps between racks. The racks are analyzed for the fuel loading conditions of consolidated, full, empty, and half-loaded with fuel assemblies.

  6. Computing Q-D Relationships for Storage of Rocket Fuels

    Science.gov (United States)

    Jester, Keith

    2005-01-01

    The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.

  7. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive.

  8. Climate design of vegetable oil fuels for agricultural equipment; Klimadesign von Pflanzenoelkraftstoffen fuer landwirtschaftliche Maschinen

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Michael [B.A.U.M. Consult GmbH, Muenchen (Germany). International and Energy Projects; Pickel, Peter [John Deere European Technology Innovation Center, Kaiserslautern (Germany)

    2012-07-01

    The use of biofuels in agricultural machinery is an option for complying with climate protection requirements that are presently discussed to be placed on manufacturers of mobile off-road machinery by the European Commission. A mathematical model has been developed that allows calculating greenhouse gas emissions (GHGE) of biofuels for complex production paths in a straightforward, transparent manner and in pattern with the EU's Fuel Quality Directive (FQD). Therewith it has been shown that both rape seed and camelina sativa oil fuels can save more than 60 % GHGE. Key parameters have been identified and rules for a climate design of vegetable oil fuels have been formulated. (orig.)

  9. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  10. Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    Directory of Open Access Journals (Sweden)

    Oguntola J ALAMU

    2010-12-01

    Full Text Available Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0% ethanol (wt% coconut oil, 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4% was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  11. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels

    Science.gov (United States)

    Rofiqul, Islam M.; Haniu, Hiroyuki; Alam, Beg R.; Takai, Kazunori

    In the first phase of the present study, the pyrolysis oil derived from light automotive tire waste has been characterized including fuel properties, elemental analyses, FT-IR, 1H-NMR, GC-MS and distillation. The studies on the oil show that it can be used as liquid fuel with a gross calorific value (GCV) of 42.00 MJ/kg and empirical formula of CH1.27O0.025N0.006. In the second phase of the investigation, the performance of a diesel engine was studied blending the pyrolysis oil with diesel fuel in different ratios. The experimental results show that the bsfc of pyrolysis oil-diesel blended fuels slightly increases and hence the brake thermal efficiency decreases compared to those of neat diesel. The pyrolysis oil-diesel blends show lower carbon monoxide (CO) emission but higher oxides of nitrogen (NOx) emissions than those of neat diesel. However, NOx emissions with pyrolysis oil-diesel blended fuels reduced when EGR was applied.

  12. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  13. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    Energy Technology Data Exchange (ETDEWEB)

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  14. Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenwalter, J.J.; Bowman, S.M.; DeHart, M.D.; Hopper, C.M.

    1997-03-01

    This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide.

  15. NMR sensor for onboard ship detection of catalytic fines in marine fuel oils.

    Science.gov (United States)

    Sørensen, Morten K; Vinding, Mads S; Bakharev, Oleg N; Nesgaard, Tomas; Jensen, Ole; Nielsen, Niels Chr

    2014-08-01

    A mobile, low-field nuclear magnetic resonance (NMR) sensor for onboard, inline detection of catalytic fines in fuel oil in the shipping industry is presented as an alternative to onshore laboratory measurements. Catalytic fines (called cat fines) are aluminosilicate zeolite catalysts utilized in the oil cracking process at refineries. When present in fuel oil, cat fines cause abrasive wear of engine parts and may ultimately lead to engine breakdown with large economical consequences, thereby motivating methods for inline measurements. Here, we report on a robust, mobile, and low-cost (27)Al NMR sensor for continuous online measurement of the level of catalytic fines in fuel oil onboard ships. The sensor enables accurate measurements of aluminum (catalytic fines) in ppm concentrations in good agreement with commercial laboratory reference measurements.

  16. Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

    Directory of Open Access Journals (Sweden)

    G.DURGA DEVI

    2012-07-01

    Full Text Available Diesel engines are widely used as power sources in medium and heavy-duty applications because of their lower fuel consumption and lower emissions of carbon monoxide (CO and unburned hydrocarbons (HC compared with gasoline engines. Rudolf Diesel, the inventor ofthe diesel engine, ran an engine on groundnut oil at the Paris Exposition of 1900. Since then, vegetable oils have been used as fuels when petroleum supplies were expensive or difficult to obtain. With the increased availability of petroleum in the 1940s, research into vegetable oils decreased. Since the oil crisis of the 1970s research interest has expanded in the area of alternative fuels. The difficulties associated with using raw vegetable oils in diesel engines identified in the literature are injector coking, severe engine deposits, filter gumming problems, piston ring sticking, and injector coking and thickening of the lubricating oil. The highviscosity and low volatility of raw vegetable oils are generally considered to be the major drawbacks for their utilization as fuels in diesel engines. Castor methyl ester (CME blends showed performance characteristics close to diesel. Therefore castor methylester blends can be used in CI engines in rural area for meeting energy requirement in various agricultural operations such as irrigation, threshing, indistries etc.

  17. Thermal analysis of a storage cask for 24 spent PWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.C.; Bang, K.S.; Seo, K.S.; Kim, H.D. [Korea Atomic Energy Research Inst., Daejeon (Korea); Choi, B.I.; Lee, H.Y.; Song, M.J. [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea)

    2004-07-01

    The purpose of this paper is to perform a thermal analysis of a spent fuel storage cask in order to predict the maximum concrete and fuel cladding temperatures. Thermal analyses have been carried out for a storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 27 {open_square} under the normal condition. The off-normal condition has an environmental temperature of 40 {open_square}. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Four of the eight inlet ducts are assumed to be completely blocked. The storage cask is designed to store 24 PWR spent fuel assemblies with a burn-up of 55,000 MWD/MTU and a cooling time of 7 years. The decay heat load from the 24 PWR assemblies is 25.2 kW. Thermal analyses of ventilation system have been carried out for the determination of the optimum duct size and shape. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. In the results of the analysis, the maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal condition and off-normal conditions.

  18. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J. [ANATECH Research Corp., San Diego, CA (United States); Machiels, A. [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  19. Design of a new wet storage rack for spent fuels from IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Antonio C.I.; Madi Filho, Tufic; Siqueira, Paulo T.D.; Ricci Filho, Walter, E-mail: acirodri@ipen.br, E-mail: tmfilho@ipen.br, E-mail: ptsiquei@ipen.br, E-mail: wricci@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The IEA-R1 research reactor operates in a regimen of 64h weekly, at the power of 4.5 MW. In these conditions, the racks of the spent fuel elements have less than half of its initial capacity. Thus, maintaining these operating conditions, the storage will have capacity for about six years. Since the estimated useful life of the IEA-R1 is about another 20 years, it will be necessary to increase the storage capacity of spent fuel. Dr. Henrik Grahn, expert of the International Atomic Energy Agency on wet storage, visiting the IEA-R1 Reactor (September/2012) made some recommendations: among them, the design and installation of racks made with borated stainless steel and internally coated with an aluminum film, so that corrosion of the fuel elements would not occur. After an extensive literature review of material options given for this type of application we got to Boral® manufactured by 3M due to numerous advantages. This paper presents studies on the analysis of criticality using the computer code MCNP 5, demonstrating the possibility of doubling the storage capacity of current racks to attend the demand of the IEA-R1 reactor while attending the safety requirements the International Atomic Energy Agency. (author)

  20. Recent findings on the oxidation of UO{sub 2} fuel under nominally dry storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.; McEachern, R.J.; Sunder, S.; Wasywich, K.M.; Miller, N.H.; Wood, D.D

    1995-07-01

    This paper is an overview of fuel-storage demonstration experiments, supporting research on UO{sub 2} oxidation, and associated model development, in progress at AECL's Whiteshell Laboratories. The work is being performed to determine the time/temperature limits for safe storage of irradiated CANDU fuel in dry air. The most significant recent experimental finding has been the detection of small quantities of U{sub 3}O{sub 8}, formed over periods of one to several years in a variety of experiments at 150-170 deg C. Another important trading is the slight suppression of U{sub 3}O{sub 8} formation in SIMFUEL and other doped U0{sub 2} formulations. The development of a nucleation-and-growth model for U{sub 3}O{sub 8} formation is discussed, along with available activation energy data. These provide a basis for predicting U{sub 3}O{sub 8} formation rates under dry-storage conditions, and hence optimizing fuel storage strategies. (author)

  1. Sensory properties during storage of crisps and French fries prepared with sunflower oil and high oleic sunflower oil

    Directory of Open Access Journals (Sweden)

    van Gemert, L. J.

    1996-04-01

    Full Text Available A selected and trained descriptive sensory panel has assessed samples of crisps and French fries prepared on an industrial scale with either sunflower oil (SO or high oleic sunflower oil (HOBO. Furthermore, crisps have been fried in these oils with or without dimethyl polysiloxane (DMPS. Reference samples were prepared using palm olein (PO or hydrogenated rapeseed/palm oil mixture (RP. Crisps were stored at ambient temperature for six months and French fries at -20°C for 12 months. At regular intervals the samples were assessed. Crisps prepared in SO have a lower sensory quality than those prepared in PO. Frying in HOSO resulted in crips comparable with those fried in PO. The differences found in this study concerning the mouthfeel or texture were thought not to be caused by the application of different oils. The addition of DMPS did not have any positive effect on the storage quality of crisps fried in SO or HOSO. Frying of French fries in HOSO and especially in SO, in comparison with RP, resulted in a product with a typical sweet fruits odour and flavour. During storage these sensory attributes decreased in intensity. As this finding might be an artefact of this study, further research is needed.

  2. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  3. Impact of the seed storage time on the quality of cold-pressed sunflower oil

    Directory of Open Access Journals (Sweden)

    Premović Tamara Đ.

    2014-01-01

    Full Text Available The objective of this study was to investigate the impact of seed storage time on the quality of cold-pressed sunflower oil. The quality and oxidative stability of oil was determined in samples of domestic varieties of sunflower hybrid, linoleic type seeds, obtained from fresh seeds and from seeds stored in silo cell for 6 and 12 months at temperature below 30oC and in good ventilation conditions. It was found that the longer storage time of seeds had a negative impact on many quality aspects of the oil, such as flavor, odor and aroma, primarily on the sensory profile. Chemical characteristics and oxidative stability of oil were also influenced by the storage time, which was confirmed by increased values of the acid value (AV and peroxide value (PV of the oil samples. Fresh seed oil had an AV of 0.49±0.01 mgKOH/g, while oils that were obtained from one-year old seeds had an AV of 1.95±0.02 mgKOH/g. Content of the primary oxidation products in the oil obtained by cold-pressing of the fresh seeds was 1.73±0.02 mmol/kg (measured as PV, and 2.22±0.07 mmol/kg in that from the seeds stored for 12 months. The anisidine value for the oil obtained from the seeds stored for 12 months was 0.86±0.04 (100A1% 350nm.[ Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  4. Optimization Design of Ship's Fuel Oil Tank Heating System%船舶燃油舱加热系统优化设计

    Institute of Scientific and Technical Information of China (English)

    周志贤; 杨令康; 吴海荣

    2013-01-01

    Due to the traditional using steam coil to heat fuel oil storage tanks exists heat loss , repair damaged coil difficultly and coil surface carbon deposition and other shortcomings , a fuel transfer heating system was proposed .By transferring back hot oil to mix some cold oil in the heating tank , so as to achieve the purpose of heating fuel oil .The calculation results showed that using the fuel transfer heating system can reduce energy consumption and cost savings .%针对由于传统蒸汽盘管加热燃油舱存在散热损失大、盘管破损修复困难且表面易积炭等缺点,设计一种燃油转驳加热系统,即通过被驳回的热油来混合加热油舱中适量的冷油,从而达到加热燃油的目的。计算结果表明使用燃油转驳加热系统可以降低能源消耗和节约成本。

  5. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  6. A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, J.P.

    1999-01-27

    Understanding the fundamental chemical and physical aging mechanisms is necessary to learn how to produce a bio-oil that is more stable during shipping and storage. This review provides a basis for this understanding and identifies possible future research paths to produce bio-oils with better storage stability.

  7. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  8. Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship

    Directory of Open Access Journals (Sweden)

    Hai Lan

    2015-10-01

    Full Text Available This study optimizes the tilt angle of photovoltaic (PV panels on a large oil tanker ship system and considers the impact of partial shading to improve the performance of the PV system. This work presents a novel method that considers the difference between the expected and real outputs of PV modules to optimize the size of energy storage system (ESS. The method also takes into account the cost of wasted power, the capital cost of the system, fuel cost and the CO2 emissions. Unlike on land, power generation using a PV on a ship depends on the date, latitude and longitude of the navigation. Accordingly, this work considers a route from Dalian in China to Aden in Yemen, accounting for the seasonal and geographical variations of solar irradiation. This proposed method adopts five conditions associated with the navigation route to model the total shipload. Various cases are discussed in detail to demonstrate the effectiveness of the proposed algorithm.

  9. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  10. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... AGENCY Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS... Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA... comment on EPA's analyses of palm oil used as a feedstock to produce biodiesel and renewable diesel...

  11. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... types of biofuel shows that biodiesel and renewable diesel produced from palm oil have estimated... AGENCY Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS... Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil...

  12. An information management system for a spent nuclear fuel interim storage facility.

    Energy Technology Data Exchange (ETDEWEB)

    Finch, Robert J.; Chiu, Hsien-Lang (Taiwan Power Co., Taipei, 10016 Taiwan); Giles, Todd; Horak, Karl Emanuel; Jow, Hong-Nian (Jow International, Kirkland, WA)

    2010-12-01

    We describe an integrated information management system for an independent spent fuel dry-storage installation (ISFSI) that can provide for (1) secure and authenticated data collection, (2) data analysis, (3) dissemination of information to appropriate stakeholders via a secure network, and (4) increased public confidence and support of the facility licensing and operation through increased transparency. This information management system is part of a collaborative project between Sandia National Laboratories, Taiwan Power Co., and the Fuel Cycle Materials Administration of Taiwan's Atomic Energy Council, which is investigating how to implement this concept.

  13. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    Science.gov (United States)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  14. A fuel cell energy storage system concept for the Space Station Freedom Extravehicular Mobility Unit

    Science.gov (United States)

    Adlhart, Otto J.; Rosso, Matthew J., Jr.; Marmolejo, Jose

    1989-01-01

    An update is given on work to design and build a Fuel Cell Energy Storage System (FCESS) bench-tested unit for the Space Station Freedom Extravehicular Mobility Unit (EMU). Fueled by oxygen and hydride-stored hydrogen, the FCESS is being considered as an alternative to the EMU zinc-silver oxide battery. Superior cycle life and quick recharge are the main attributes of FCESS. The design and performance of a nonventing, 28 V, 34 Ahr system with 7 amp rating are discussed.

  15. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  16. 石油储罐机械清洗系统%Large Oil Storage Tanks Mechanical Cleaning System

    Institute of Scientific and Technical Information of China (English)

    黄崇林; 蔡业彬; 何宏鹰

    2013-01-01

    Oil storage tanks need to be cleaned regularly during using .T he oil storage tanks me-chanical cleaning techniques is introduced ,including the main components of the oil storage tanks mechanical cleaning system for vacuum suction module device ,heat exchanger cleaning module e-quipment ,washing machines ,etc .The mechanical cleaning process of oil storage tanks is elabo-rated and the effective of the mechanical cleaning system of oil storage tanks is analyzed .%  对石油储罐机械清洗系统的主要组成部分真空抽吸模块设备、换热清洗模块设备、清洗机等进行了介绍,并对石油储罐机械清洗系统效益进行了分析。

  17. Bio-oil from pyrolysis of cashew nut shell - a near fuel

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Ganesh, A. [Indian Inst. of technology, Mumbai (India). Energy Systems Engineering

    2003-07-01

    Cashew nut shell (CNS) has been studied for the product distribution in a packed bed vacuum pyrolysis unit. The effect of pyrolysis temperatures on the product yields is also studied. The oil-to-liquid ratio in the pyrolysis products was found to remain almost constant in the range between 400{sup o}C and 550{sup o}C. The properties of CNS oil has been found to be amazingly near to that of petroleum fuels with calorific value as high as 40 MJkg{sup -1}, the oil has a low ash content (0.01%) and water content is limited to 3-3.5 wt% of oil. (Author)

  18. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  19. The Biomarker Changes of a Heavy Fuel Oil After Different Weathering Times

    Institute of Scientific and Technical Information of China (English)

    MA Qimin; NI Zhanglin; YU Zhigang

    2009-01-01

    This paper presents the experimental results of composition changes of heavy fuel oil by simulating weathering in static seawater under natural environmental conditions. The results indicate: n-C10 to n-C15 were lost gradually in 24 weeks and the relative abundance of alkanes with long chains (n-C19) increased markedly. The aromatic compounds with less than two rings (except C4N) were completely lost in 24 weeks and CnP and CnD became the main aromatics in the heavy fuel oil after 24 weeks. The ratios of n-C17/Pristane (Pr) and n-C18/Phytane (Ph) were suitable for identifying lightly weathered (3 weeks) heavy fuel oil. The ratios of n-C17/n-C18 and Pr/Ph were suitable for identifying moderately weathered heavy fuel oil (12 weeks); the ratios of C2D/C2P and C3D/C3P did not change significantly in 24 weeks and were more suitable for identifying moderately weathered heavy fuel oil (24 weeks).

  20. Utilization of waste cooking oil as an alternative fuel for Turkey.

    Science.gov (United States)

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  1. China's Largest Oil Storage Tanks Put into Service

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Two 125,000-cubic-meter and 90-meter-diameter crude storage tanks, currently largest ones in China,have been constructed and put into service at Sinopec's Maoming Petrochemical Harbor Company in Southeast China's Guangdong Province in recent time.

  2. Microfluidic and micro-core methods for enhanced oil recovery and carbon storage applications

    Science.gov (United States)

    Nguyen, Phong

    Injection of CO2 into the subsurface, for both storage and oil recovery, is an emerging strategy to mitigate atmospheric CO2 emissions and associated climate change. In this thesis microfluidic and micro-core methods were developed to inform combined CO2-storage and oil recovery operations and determine relevant fluid properties. Pore scale studies of nanoparticle stabilized CO2-in-water foam and its application in oil recovery to show significant improvement in oil recovery rate with different oils from around the world (light, medium, and heavy). The CO2 nanoparticle-stabilized CO2 foams generate a three-fold increase in oil recovery (an additional 15% of initial oil in place) as compared to an otherwise similar CO2 gas flood. Nanoparticle-stabilized CO2 foam flooding also results in significantly smaller oil-in-water emulsion sizes. All three oils show substantial additional oil recovery and a positive reservoir homogenization effect. A supporting microfluidic approach is developed to quantify the minimum miscibility pressure (MMP) -- a critical parameter for combined CO 2 storage and enhanced oil recovery. The method leverages the inherent fluorescence of crude oils, is faster than conventional technologies, and provides quantitative, operator-independent measurements. In terms of speed, a pressure scan for a single minimum miscibility pressure measurement required less than 30 min, in stark contrast to days or weeks with existing rising bubble and slimtube methods. In practice, subsurface geology also interacts with injected CO 2. Commonly carbonate dissolution results in pore structure, porosity, and permeability changes. These changes are measured by x-ray microtomography (micro-CT), liquid permeability measurements, and chemical analysis. Chemical composition of the produced liquid analyzed by inductively coupled plasma-atomic emission spectrometer (ICP-AES) shows concentrations of magnesium and calcium. This work leverages established advantages of

  3. Storage stability of rapeseed oil%菜籽油储存稳定性研究

    Institute of Scientific and Technical Information of China (English)

    朱正友; 杨帆; 魏冰

    2009-01-01

    In the case of 4 types of rapeseed oil(low-temperature pressed crude rapeseed oil,high-temperature pressed crude rapeseed oil,1st grade solvent extraction rapeseed oil,1st grade pressed rapeseed oil),3 containers(colorless and transparent PET bottle,iron cans,pottery) and 3 types of lighting environment(dark,natural light,direct lighting),the storage stability of rapeseed oil was studied.The acid value and peroxide value of samples at room temperature(10-30 ℃) were detected at interval storage days(10-15 d).The results showed that lighting was a key factor to affect oil storage stability,opaque packaging material should be used as far as possible,and the oil should be stored in dark environment;iron cans could be used to store crude oil and refined oil,but the increase rate of peroxide value of the crude oil was lower than that of the refined oil;the opaque ceramic material for small package of refined oil was an ideal choice.%研究了4种不同品质的菜籽油(冷榨菜籽毛油、热榨菜籽毛油、浸出一级菜籽油、压榨一级菜籽油)、3种容器(无色透明聚酯瓶、铁罐和陶罐)及3种光照条件(避光、自然光、直射灯光)下菜籽油的储存稳定性情况.室温条件(10~30℃)下间隔一定储存天数(10~15 d)测定样品的酸值和过氧化值,结果显示,光照是影响油脂储存稳定性的关键因素,油脂包装及储存要尽量采用不透光材料或避光储存;铁罐可用于储存毛油及精炼油,储存毛油时过氧化值升高幅度较精炼油要小;对成品小包装油,采用性质稳定的不透光的陶瓷材料包装是理想的选择.

  4. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  5. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  6. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    Science.gov (United States)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  7. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  8. Experimental investigation on fuel properties of biodiesel prepared from cottonseed oil

    Science.gov (United States)

    Payl, Ashish Naha; Mashud, Mohammad

    2017-06-01

    In recent time's world's energy demands are satisfied by coal, natural gas as well as petroleum though the prices of these are escalating. If this continues, global recession is unavoidable and diminution of world reserve accelerates undoubtedly. Recently, Biodiesel is found to be more sustainable, non-toxic and energy efficient alternative which is also biodegradable. The use of biofuels in compression ignition engines is now a contemplation attention in place of petrochemicals. In view of this, cottonseed oil is quite a favorable candidate as an alternative fuel. The present study covers the various aspects of biodiesels fuel prepared from cottonseed oil. In this work Biodiesel was prepared from cottonseed oil through transesterification process with methanol, using sodium hydroxide as catalyst. The fuel properties of cottonseed oil methyl esters, kinematic viscosity, flash point, density, calorific value, boiling point etc. were evaluated and discussed in the light of Conventional Diesel Fuel. The properties of biodiesel produced from cotton seed oil are quite close to that of diesel except from flash point. And so the methyl esters of cottonseed oil can be used in existing diesel engines without any modifications.

  9. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  10. Hazard analysis for 300 Area N Reactor Fuel Fabrication and Storage Facilty

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Brehm, J.R.

    1994-01-25

    This hazard analysis (HA) has been prepared for the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility), in compliance with the requirements of Westinghouse Hanford Company (Westinghouse Hanford) controlled manual WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual, and to the direction of WHC-IP-0690, Safety Analysis and Regulation Desk Instructions, (WHC 1992). An HA identifies potentially hazardous conditions in a facility and the associated potential accident scenarios. Unlike the Facility hazard classification documented in WHC-SD-NR-HC-004, Hazard Classification for 300 Area N Reactor Fuel Fabrication and Storage Facility, (Huang 1993), which is based on unmitigated consequences, credit is taken in an HA for administrative controls or engineered safety features planned or in place. The HA is the foundation for the accident analysis. The significant event scenarios identified by this HA will be further evaluated in a subsequent accident analysis.

  11. Evaluation of maximum allowable temperature inside basket of dry storage module for CANDU spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ho; Yoon, Jeong Hyoun; Chae, Kyoung Myoung; Choi, Byung Il; Lee, Heung Young; Song, Myung Jae [Nuclear Environment Technology Institute, Taejon (Korea, Republic of); Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2002-10-01

    This study provides a maximum allowable fuel temperature through a preliminary evaluation of the UO{sub 2} weight gain that may occur on a failed (breached sheathing) element of a fuel bundle. Intact bundles would not be affected as the UO{sub 2} would not be in contact with the air for the fuel storage basket. The analysis is made for the MACSTOR/KN-400 to be operated in Wolsong ambient air temperature conditions. The design basis fuel is a 6-year cooled fuel bundle that, on average has reached a burnup of 7,800 MWd/MTU. The fuel bundle considered for analysis is assumed to have a high burnup of 12,000 MWd/MTU and be located in a hot basket. The MACSTOR/KN-400 has the same air circuit as the MACSTOR and the air circuit will require a slightly higher temperature difference to exit the increased heat load. The maximum temperature of a high burnup bundle stored in the new MACSTOR/KN-400 is expected to be about 9 .deg. C higher than the fuel temperature of the MACSTOR at an equivalent constant ambient temperature. This temperature increase will in turn increase the UO{sub 2} weight gain from 0.06% (MACSTOR for Wolsong conditions) to an estimated 0.13% weight gain for the MACSTOR/KN-400. Compared to an acceptable UO{sub 2} weight gain of 0.6%, we are thus expecting to maintain a very acceptable safety factor of 4 to 5 for the new module against unacceptable stresses in the fuel sheathing. For the UO{sub 2} weight gain, the maximum allowable fuel temperature was shown by 164 .deg. C.

  12. Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2016-05-01

    Full Text Available This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH. A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5 and 20% (B20 macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751 and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel–diesel fuel significantly improves the fuel properties including viscosity, density (D, heating value and oxidation stability (OS. Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP and increases brake-specific fuel consumption (BSFC while emission results indicated that it reduces the average carbon monoxide (CO, hydrocarbons (HC and particulate matter (PM emissions except nitrogen oxides (NOx than diesel fuel. Finally, it can be concluded that macadamia oil can be a possible source for biodiesel production and up to 20% macadamia biodiesel can be used as a fuel in diesel engines without modifications.

  13. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2009-08-15

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  14. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  15. Special equipment support the fuel storage; Equipos especiales para apoyos al almacenamiento de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Vega, M. E.

    2014-10-01

    In the current juncture one of the keys to any company that works in a market that is as demanding as the nuclear, is its ability to developed new technological products that they can adapt to the different special situations/needs of nuclear Power Plants during their operating life. As an example, below are some of the specialized equipment that ENSA has been developing for more than thirty years that has been doing work in the area of fuel storage. (Author)

  16. Evolution of minor polar compounds and antioxidant capacity during storage of bottled extra virgin olive oil.

    Science.gov (United States)

    Romani, Annalisa; Lapucci, Chiara; Cantini, Claudio; Ieri, Francesca; Mulinacci, Nadia; Visioli, Francesco

    2007-02-21

    We characterized "Olivastra Seggianese" extra virgin olive oil (EVOO) and evaluated its chemical and sensory characteristics and antioxidant and antiradical activities during storage under novel conditions. Two oils (A and B) were analyzed for the commodity characteristics at blending (t0) and after 9, 12, and 18 months; panel tests were performed and minor polar compounds (MPC) content was assessed at blending (t0) and after 6, 9, 12, and 18 months. Antioxidant and antiradical activities in vitro were evaluated at t0 and after 12 months, by human low density lipoprotein (LDL) and 1,1-diphenyl-2-picrylhydrazil radical (DPPH*) tests. Oil A, which had an initially higher MPC content, possessed "harder" organoleptic characteristics than oil B, which had a lower MPC content and was endowed with a "smoother" taste profile. Statistical analyses showed that secoiridoids, particularly deacetoxy-oleuropein aglycone, should be quantified to evaluate EVOO stability during storage. The antioxidant activity toward human LDL was linked to MPC content and to storage time. The tests on the stable free radical DPPH* confirmed the results on human LDL. We propose this as an additional parameter to evaluate olive oil quality and stability over time.

  17. Military Fuels Refined from Paraho-II Shale Oil.

    Science.gov (United States)

    1981-03-01

    Laboratories showed that growth of Cladosporium resinae was supported by the shale-derived JP-5 and DFM. 1t The performances of shale fuels in a turbine...27 11 Corrosion Tendencies of Shale Fuels ............................. 28 12 Growth Rating of Cladosporium Resinae in Tubes After Days of...screw cap test tubes and overlayed with 3 ml of the test fuel. Each tube was inoculated with one drop of a spore suspension of Cladosporium resinae , QM

  18. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions.

    Science.gov (United States)

    Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-09-06

    Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.

  19. 40 CFR 90.308 - Lubricating oil and test fuels.

    Science.gov (United States)

    2010-07-01

    ...) Alternative fuels, such as natural gas, propane, and methanol, used for exhaust emission testing and service...) Test fuels—service accumulation and aging. Unleaded gasoline representative of commercial...

  20. China Needs More Oil to Fuel Its Economic Development

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ The Chinese government has always insisted that development should be the theme of China's 10th Five-Year Plan (2001-2005) and the nation should take advantage of all opportunities to speed up development with economic construction as the focal point. However, economic researchers and energy experts were caught off guard by the surprisingly strong pace in oil imports despite their prediction of China's increasing need for crude oil. In addition, the doubledigit growth of oil-related industries such as automobile and transportation sectors has further resulted in rocketing demand for crude oil consumption and imports.

  1. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  2. Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    Stanger, Rohan; Wall, Terry [Chemical Engineering, University of Newcastle, Callaghan, NSW (Australia)

    2011-02-15

    The oxy-fuel process is one of three carbon capture technologies which supply CO{sub 2} ready for sequestration - the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO{sub 2} compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO{sub 3} conversion and limestone addition. (author)

  3. Storage of LWR (light-water-reactor) spent fuel in air

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

    1989-12-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

  4. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G.; Morrow, Charles.

    2013-01-01

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  5. Mass minimization of a discrete regenerative fuel cell (RFC) system for on-board energy storage

    Science.gov (United States)

    Li, Xiaojin; Xiao, Yu; Shao, Zhigang; Yi, Baolian

    RFC combined with solar photovoltaic (PV) array is the advanced technologic solution for on-board energy storage, e.g. land, sky, stratosphere and aerospace applications, due to its potential of achieving high specific energy. This paper focuses on mass modeling and calculation for a RFC system consisting of discrete electrochemical cell stacks (fuel cell and electrolyzer), together with fuel storage, a PV array, and a radiator. A nonlinear constrained optimization procedure is used to minimize the entire system mass, as well as to study the effect of operating conditions (e.g. current densities of fuel cell and electrolyzer) on the system mass. According to the state-of-the-art specific power of both electrochemical stacks, an energy storage system has been designed for the conditions of stratosphere applications and a rated power output of 12 kW. The calculation results show that the optimization of the current density of both stacks is of importance in designing the light weight on-board energy system.

  6. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. • degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds • changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components • changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  7. Progress on Fuel Receiving and Storage Decontamination Work at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, J. F.; Al-Daouk, A. M.; Moore, H. R.

    2003-02-25

    The West Valley Demonstration Project (WVDP) removed the last of its spent nuclear fuel assemblies from an on-site storage pool last year and is now decontaminating its Fuel Receiving and Storage (FRS) Facility. The decontamination project will reduce the long-lived curie inventory, associated radiological hazards, and the operational costs associated with the maintenance of this facility. Workers at the WVDP conducted the first phase of the FRS decontamination project in late 2001 by removing 149 canisters that previously contained spent fuel assemblies from the pool. Removal of the canisters from the pool paved the way for nuclear divers to begin removing canister storage racks and other miscellaneous material from the FRS pool in February 2002. This was only the third time in the history of the WVDP that nuclear divers were used to perform underwater work. After decontaminating the pool, it will be drained slowly until all of the water is removed. The water will be processed through an ion exchanger to remove radioactive contaminants as it is being drained, and a fixative will be applied to the walls above the water surface to secure residual contamination.

  8. Compared Ageing of Oil from Curcubitea Pepo in Two Different Storage Conditions

    Directory of Open Access Journals (Sweden)

    A.H.W. Nakavoua

    2011-04-01

    Full Text Available The aim of this study was to investigate the oil pumkin seeds of Curcubitea pepo from Congo- Brazzaville. The ageing of oil extracted from the seeds of the pumpkin Curcubitea pepo stored at two temperatures (6 and 30ºC was monitored during storage for 11 months by comparison of physical and chemical characteristics correlated with spectroscopic data. Medium infrared spectroscopy confirmed saponification index data. Ultraviolet absorption confirmed peroxide index data. Antioxidant behaviour was monitored by fluorescence and the effect of ageing on the two major fatty acid families was analysed by a study of chemical composition correlated with differential scanning calorimetry measurements. This study showed an overall lengthening of the fatty acid carbon chains and allowed preferential storage conditions to be specified for this oil.

  9. Seed storage oil catabolism: a story of give and take.

    Science.gov (United States)

    Theodoulou, Frederica L; Eastmond, Peter J

    2012-06-01

    The transition from seed to seedling is an important step in the life cycle of plants, which is fuelled primarily by the breakdown of triacylglycerol (TAG) in 'oilseed' species. TAG is stored within cytosolic oil bodies, while the pathway for fatty acid β-oxidation resides in the peroxisome. Although the enzymology of fatty acid β-oxidation has been relatively well characterised, the processes by which fatty acids are liberated from oil bodies and enter the peroxisome are less well understood and, together with metabolite, cofactor and co-substrate transporters, represent key targets for future research in order to understand co-ordination of peroxisomal metabolism with that of other subcellular compartments.

  10. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  11. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled

    Directory of Open Access Journals (Sweden)

    Hossein Safaei

    2017-07-01

    Full Text Available We present analyses of three families of compressed air energy storage (CAES systems: conventional CAES, in which the heat released during air compression is not stored and natural gas is combusted to provide heat during discharge; adiabatic CAES, in which the compression heat is stored; and CAES in which the compression heat is used to assist water electrolysis for hydrogen storage. The latter two methods involve no fossil fuel combustion. We modeled both a low-temperature and a high-temperature electrolysis process for hydrogen production. Adiabatic CAES (A-CAES with physical storage of heat is the most efficient option with an exergy efficiency of 69.5% for energy storage. The exergy efficiency of the conventional CAES system is estimated to be 54.3%. Both high-temperature and low-temperature electrolysis CAES systems result in similar exergy efficiencies (35.6% and 34.2%, partly due to low efficiency of the electrolyzer cell. CAES with high-temperature electrolysis has the highest energy storage density (7.9 kWh per m3 of air storage volume, followed by A-CAES (5.2 kWh/m3. Conventional CAES and CAES with low-temperature electrolysis have similar energy densities of 3.1 kWh/m3.

  12. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    Energy Technology Data Exchange (ETDEWEB)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  13. Study on the fire-protection-system for interim storage facilities of spent nuclear fuel and transportation ships

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. O; Choi, M. H.; Lee, S. C. and others [Dongbang Electron Industry Corporation, Seoul (Korea, Republic of)

    1993-12-15

    This study consists of : the fire risk and it's fire protection for the storage facilities and transportation equipments of dangerous goods, the fire risk and it's fire protection for the interim storage facilities of spent nuclear fuel, the fire risk and it's fire protection for the dangerous goods transportation ships, the necessary equipment for safety of ships and regulations of fire fighting equipment for ships, technical specification of spent nuclear fuel transportation ships which are operated in foreign countries, draft of fire protection guideline for interim storage facilities of spent nuclear fuel, inspection items of fire fighting equipment, scope of education and training. On the basis of the aforementioned, a draft of fire protection guideline for interim storage facilities of spent nuclear fuel is proposed and the regulations for ship engaged in the a carrage of dangerous goods that should be considered in design and operation stage are proposed.

  14. An Electrical Energy Storage System Based on Solid Oxide Fuel Cells

    Science.gov (United States)

    Luo, T.; Shao, L.; Qian, J. Q.; Wang, S. R.; Zhan, Z. L.

    2013-07-01

    This work studies a proof-of-concept integrated electrical energy storage system of solid oxide fuel cell (SOFC) by using Fe as original fuel and Ca(OH)2 as additive. The design and operation of this cell are based on a conventional anode-supported tubular SOFC, with Ni-SSZ, SSZ, and SSZ-LSM as anode, electrolyte and cathode, respectively. In this design, Fe reacts with H2O generated from the decomposition of Ca(OH)2 at high temperature, as a result, H2 is produced in situ as SOFC fuel. The charging process is realized by electrolysis of water in the SOEC mode along with the reduction of Fe3O4 by the generated H2. It is demonstrated that the open circuit voltage (OCV) for the Fe-Fe3O4 system is above 1.0V at 1073K. By using such fuel, the maximum power density of 124 mW cm-2 has been achieved. Two stable charge/discharge cycles have been tested. Combined with the advantages of environmental friendliness, sustainability promise and excellent performance, the novel SOFC system will be a new choice of grid-scale energy storage.

  15. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  16. SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    JAE-HUN KO

    2014-08-01

    The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a 2×10 cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the 2×10 cask array, dose rates at the center point of the array and at the center of the casks’ height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the 2×10 cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.

  17. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system.

    Science.gov (United States)

    Restrepo-Flórez, Juan-Manuel; Bassi, Amarjeet; Rehmann, Lars; Thompson, Michael R

    2013-11-01

    Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.

  18. Vegetable oil-based diesel fuels: Overview and current trends

    Science.gov (United States)

    Since the energy crises of the 1970's and early 1980's, feedstocks and fuels with the potential to reduce dependence on petroleum-based energy and fuels have found increasing interest. Materials with triacylglycerols (triglycerides; esters of glycerol with fatty acids) as major components, such as ...

  19. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  20. Impact of Refrigerated Storage on Quality of Oil from Freshwater Jarko (Wallago attu Fish.

    Directory of Open Access Journals (Sweden)

    Nusrat N. Memon

    2010-12-01

    Full Text Available The effect of refrigerated storage on the quality of freshwater fish oil Jarko (Wallago attu was evaluated by measuring fatty acid profile, free fatty acids (FFA, peroxide value (PV, acid value (AV, sponification value (SV, iodine value (IV and poylene index (PI up to the time period of 120 days. After 120 days storage, mono unsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA contents were decreased by 24.89% and 33.70%, respectively. While, saturated fatty acids (SFA content was found to be increased by 26.82%, against the actual value. The change in polyunsaturated fatty acids during refrigerated storage was measured by the PI value. The PI decreased during storage due to lipid oxidation, but remained nearly constant after 90th day of storage. The results of PV, AV and FFA demonstrates that Wallago attu fish oil remained acceptable for consumption for 60 days but eventually exceeded the recommended values after 60 days of refrigerated storage.

  1. Evaluation of strategies for end storage of high-level reactor fuel; Vurdering av strategier for sluttlagring av hoeyaktivt reaktorbrensel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report evaluates a national strategy for end-storage of used high-level reactor fuel from the research reactors at Kjeller and in Halden. This strategy presupposes that all the important phases in handling the high-level material, including temporary storage and deposition, are covered. The quantity of spent fuel from Norwegian reactors is quite small. In addition to the technological issues, ethical, environmental, safety and economical requirements are emphasized.

  2. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    Energy Technology Data Exchange (ETDEWEB)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  3. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  4. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.; Corlett, John; Murphy, Chris; Przesmitzki, Steve

    2016-04-01

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, and the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.

  5. Changes in chemical quality indices during long-term storage of palm-olein oil under heated storage and transport-type conditions

    CSIR Research Space (South Africa)

    Van der Merwe, GH

    2004-01-15

    Full Text Available -term storage trial of 52 weeks at 50degreesC of palm-olein, a monounsaturated oil. Three concentrations of copper (0.035, 0.17 and 0.69 mg kg (-1)) were added. FFA values for all the sample treatments increased slightly over the storage period but remained...

  6. Thermal analysis for a spent reactor fuel storage test in granite

    Energy Technology Data Exchange (ETDEWEB)

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

  7. Dry-fermented chicken sausage produced with inulin and corn oil: physicochemical, microbiological, and textural characteristics and acceptability during storage.

    Science.gov (United States)

    Menegas, Léia Zenaide; Pimentel, Tatiana Colombo; Garcia, Sandra; Prudencio, Sandra Helena

    2013-03-01

    This study aimed to evaluate the effect of oil content reduction and the addition of inulin as a partial oil substitute on the physicochemical, microbiological, and textural characteristics and acceptability during the storage (4 °C for 45 days) of dry-fermented chicken sausage produced with corn oil. Reducing the oil content did not influence the characteristics evaluated but tended to produce sausage with a dark reddish coloration. The addition of inulin did not change the physicochemical and microbiological parameters or the acceptability of the products, but resulted in an altered texture profile and a tendency toward lighter and less reddish coloration, similar to products with standard oil content. Fermented chicken sausages produced with standard amounts of corn oil, reduced amounts of corn oil, and inulin as a partial oil replacement remained stable without a significant loss of physical, chemical, microbiological, or sensory attributes during storage at 4 °C for 45 days.

  8. Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying.

    Science.gov (United States)

    Wu, Zhonghua; Zhang, Jing; Li, Zhanyong; Xie, Jian; Mujumdar, Arun S

    2012-12-01

    Sewage sludge and spent cooking oil are two main waste sources of modern Chinese cities. In this paper, the immersion frying method using spent cooking oil as the heating medium was applied to dry and convert wet sewage sludge into a solid fuel. The drying and oil uptake curves were plotted to demonstrate the fry-drying characteristics of the sewage sludge. Parametric studies were carried out to identify the governing parameters in the frying drying operation. It was found that at frying oil temperatures of 140-160°C, the wet sewage sludge could be dried completely in 6-9 min and converted into a solid fuel with a high calorific value of 21.55-24.08 MJ/kg. The fuel structure, chemical components, pyrolysis and combustion characteristics were investigated and the experimental results showed the solid fuel had a porous internal structure and a low ignition temperature of 250°C due to presence of oil. The frying drying mechanism was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    Energy Technology Data Exchange (ETDEWEB)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  10. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    Science.gov (United States)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  11. THE COMPARISION OF SOMA LIGNITE COAL AN FUEL-OIL WITH GEOTHERMAL ENERGY FOR HEATING BUILDINGS

    OpenAIRE

    GÜNTÜRKÜN, Rüstü

    2008-01-01

    In this study, a house that has four storeys and one hundred square meters flat was taken sample. Because this house can be heated with three different alternatives Soma lignite coal, fuel oil and geothermal, necessary first investment and annual heating costs were investigated. In addition, at heating building of geothermal energy whether became economic was researched. Economic analysis of used fuels at heating to a flat that is one hundred square meters been done. According to result of...

  12. Assessment of lubricating oil degradation in small motorcycle engine fueled with gasohol

    OpenAIRE

    Nakorn Tippayawong

    2010-01-01

    Assessment of the degradation of lubricating oil was performed on the lubricants which had been used in a small motorcycle engine fueled with gasohol in comparison with the lubricants from gasoline-run engine. The lubricant properties examined in the assessment were lubricating capacity, viscosity and stability to oxidation. Lubricating capacity was evaluated by accelerated wear test on the Timken tester. Lubricating oils from gasohol-run engine appeared to produce about 10% greater wear than...

  13. Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

    OpenAIRE

    B. Deepanraj; C. Dhanesh; Senthil, R.; M. Kannan; Santhoshkumar, A.; P. Lawrence

    2011-01-01

    Problem statement: The increasing awareness of the environmental hazards and the alarming levels of air pollution have led to more restrictive regulations on engines emission control in recent years. Approach: The dwindling resources and rising cost of crude oil have resulted in an intensified search for alternate fuels. In the present study biodiesel (palm oil methyl ester) blends with diesel was investigated in a direct injection stationary diesel engine. The stationary engine test bed used...

  14. Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

    2001-11-20

    The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

  15. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  16. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    Directory of Open Access Journals (Sweden)

    Norwazan Abdul Rahim

    2016-08-01

    Full Text Available This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25 and coconut oil methyl ester blend 25 (COME B25 blended at 25% by volume in diesel fuel produced lower carbon monoxide (CO and unburned hydrocarbon (UHC emissions due to more complete combustion. Overall, JOME B25 had the highest CO emission reduction, at about 42.25%, followed by COME B25 at 26.44% emission reduction relative to pure diesel fuel. By contrast, the palm oil methyl ester blend 25 (POME B25 showed a 48.44% increase in these emissions. The results showed that the nitrogen oxides (NOx emissions were slightly higher for all biodiesel blend fuels compared with pure diesel fuel combustion. In case of sulphur dioxide (SO2 and UHC emissions, all biodiesel blends fuels have significantly reduced emissions. In the case of SO2 emission, the POME B25, JOME B25 and COME B25 emissions were reduced 14.62%, 14.45% and 21.39%, respectively, relative to SO2 emission from combusting pure diesel fuel. UHC emissions of POME B25, JOME B25 and COME B25 showed 51%, 71% and 70% reductions, respectively, compared to diesel fuel. The conclusion from the results is that all the biodiesel blend fuels are suitable and can be recommended for use in liquid fuel burners in order to get better and ‘greener’ environmental outcomes.

  17. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    SCHULTZ, M.V.

    2000-08-22

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  18. Component Cost of Fuel Oil of Waste Transportation Cost

    Directory of Open Access Journals (Sweden)

    Burhamtoro

    2013-10-01

    Full Text Available The success of the transportation system can be measured based on four things, namely the efficiency of time, energy and fuel efficiency, environmental impact, and safety. Efficiency of energy and fuel is often stated as part of vehicle operating costs (VOC. So need to know the amount of the percentage of the fuel cost component of vehicle operating costs. The purpose of this study was to determine the percentage of the fuel cost component of the total cost of transportation. Research object is a dump truck or on the SCS transport system that serves the city of Malang. Stages of research begins with getting the data needed to analyze the cost of transporting waste. Furthermore, the analysis performed to determine the percentage of each component of transport costs. Results of the analysis showed that the greatest percentage of the cost of each component of the cost of transporting waste is a component of the fuel, while the smallest percentage of the cost of the mechanical components. For the percentage of fuel costs by 28.90% of the variable cost per kilometer, while the percentage of fuel costs by 27.45% of the total cost of transporting waste on his m3each.

  19. Efficacy and insecticidal properties of some essential oils against Caryedon serratus (Oliver)—a storage pest of groundnut

    OpenAIRE

    Harish, G.; Nataraja, M. V.; Holajjer, Prasanna; Thirumalaisamy, P. P; Jadon, K. S.; Savaliya, S. D.; Padavi, R. D.; Koradia, V. G.; Gedia, M. V.

    2012-01-01

    During storage groundnut is attacked by number of stored grain pest and management of these insect pests particularly bruchid beetle, Caryedon serratus (Oliver) is of prime importance as they directly damage the pod and kernels. Hence, some essential oils were tested for their insecticidal and fungicidal properties. Highest total bruchid mortality was recorded with the application of neem oil and pongamia oil at 10% (v/w) concentration and lowest in eucalyptus oil at 5% (v/w). Number of eggs ...

  20. Marine Lipids (Omega-3 Oil) - Stability of Oil and Enriched Products During Production and Storage

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall

    2015-01-01

    The awareness of health benefits of marine lipids with a high content of omega-3 poly unsaturated fatty acids from fish and algae oil has led to an increased intake as oil and in products. However, these lipids are highly susceptible to lipid oxidation, which results in the formation of undesirab...