WorldWideScience

Sample records for fuel oil energy

  1. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  2. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  3. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    Energy Technology Data Exchange (ETDEWEB)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  4. Project development laboratories energy fuels and oils based on NRU “MPEI”

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Khomenkov, A. M.; Paramonova, A. O.; Khtoo Naing, Aung

    2017-11-01

    In the process of improving the efficiency of power plants a hot topic is the use of high-quality fuels and lubricants. In the process of transportation, preparation for use, storage and maintenance of the properties of fuels and lubricants may deteriorate, which entails a reduction in the efficiency of power plants. One of the ways to prevent the deterioration of the properties is a timely analysis of the relevant laboratories. In this day, the existence of laboratories of energy fuels and energy laboratory oil at thermal power stations is satisfactory character. However, the training of qualified personnel to work in these laboratories is a serious problem, as the lack of opportunities in these laboratories a complete list of required tests. The solution to this problem is to explore the possibility of application of methods of analysis of the properties of fuels and lubricants in the stage of training and re-training of qualified personnel. In this regard, on the basis of MPEI developed laboratory projects of solid, liquid and gaseous fuels, power and energy oils and lubricants. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties. Assess the financial component of the implementation of the developed projects based on the use of modern equipment used for tests. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties.

  5. Fuel specification, energy consumption and CO2 emission in oil refineries

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2007-01-01

    The more stringent environmental quality specifications for oil products worldwide are tending to step up energy use and, consequently, CO 2 emissions at refineries. In Brazil, for example, the stipulated reduction in the sulfur content of diesel and gasoline between 2002 and 2009 should increase the energy use of Brazil's refining industry by around 30%, with effects on its CO 2 emissions. Thus, the world refining industry must deal with trade-offs between emissions of pollutants with local impacts (due to fuel specifications) and emissions of pollutants with global impacts (due to the increased energy use at refineries to remove contaminants from oil products). Two promising technology options for refineries could ease this clash in the near-to-mid term: the reduction per se of the energy use at the refinery; and the development of treatment processes using non-hydrogen consuming techniques. For instance, in Brazilian refineries, the expanded energy use resulting from severe hydrotreatment to comply with the more stringent specifications of oil products may be almost completely offset by energy saving options and alternative desulfurization techniques, if barriers to invest in technological innovations are overcome. (author)

  6. Seed production for fuel oils

    International Nuclear Information System (INIS)

    Mosca, G.

    1992-01-01

    With the aim of assessing commercialization prospects for vegetable oils to be used as diesel fuel alternatives, this paper provides maps indicating regional production quantities for soybean, rape and sunflower seeds in Italy. It then tables and discusses the results of energy input-output analyses carried out for rape and soybean oil production

  7. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    Science.gov (United States)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  8. Proceedings: 1993 fuel oil utilization workshop

    International Nuclear Information System (INIS)

    1994-08-01

    The primary objective of the Workshop was to utilize the experiences of utility personnel and continue the interchange of information related to fuel oil issues. Participants also identified technical problem areas in which EPRI might best direct its efforts in research and development of fuel oil utilization and to improve oil-fired steam generating systems' performance. Speakers presented specific fuel projects conducted at their particular utilities, important issues in the utilization of fuel oil, studies conducted or currently in the process of being completed, and information on current and future regulations for fuel utilization. Among the major topics addressed at the 1993 Fuel Oil Utilization Workshop were burner and ESP improvements for the reduction of particulate and NO x emissions, practical experience in utilization of low API gravity residual fuel oils, the use of models to predict the spread of oil spills on land, implementing OPA 90 preparedness and response strategies planning, a report on the annual Utility Oil Buyers Conference, ASTM D-396 specification for No. 6 fuel oil, the utilization of Orimulsion reg-sign in utility boilers, recent progress on research addressing unburned carbon and opacity from oil-fired utility boilers, EPRI's hazardous air pollutant monitoring and implications for residual fuel oil, and the feasibility of toxic metals removal from residual fuel oils. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  10. Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-01-01

    Full Text Available The sustainable energy consumption in northeast Asia has a huge impact on regional stability and economic growth, which gives price volatility research in the energy market both theoretical value and practical application. We select China’s fuel oil futures market as a research subject and use recurrence interval analysis to investigate the price volatility pattern in different thresholds. We utilize the stretched exponential function to fit the pattern of the recurrence intervals of price fluctuations and find that the probability density functions of the recurrence intervals in different thresholds do not show the scaling behavior. Then the conditional probability density function and detrended fluctuation analysis prove that there is short-term and long-term correlation. Last, we use a hazard function to introduce the recurrence intervals into the (value at risk VaR calculation and establish a functional relationship between the mean recurrence interval and the threshold. Following this result, we also shed light on policy discussion for hedgers and government.

  11. Fuel options for oil sands

    International Nuclear Information System (INIS)

    Wise, T.

    2005-01-01

    This presentation examined fuel options in relation to oil sands production. Options include steam and hydrogen (H 2 ) for upgrading; natural gas by pipeline; bitumen; petroleum coke; and coal. Various cost drivers were also considered for each of the fuel options. It was noted that natural gas has high energy value but the capital cost is low, and that coke's energy value is very low but the capital cost is high. A chart forecasting energy prices was presented. The disposition of Western Canada's northern gas situation was presented. Issues concerning rail transportation for coal were considered. Environmental concerns were also examined. A chart of typical gas requirements for 75,000 B/D oil sands projects was presented. Issues concerning steam generation with gas and mining cogeneration with gas fuel and steam turbines were discussed, as well as cogeneration and H 2 with gas fuels and steam turbines. Various technology and fuel utility options were examined, along with details of equipment and processes. Boiler technologies were reviewed by type as well as fuel and steam quality and pressure. Charts of cogeneration with gas turbine and circulation fluid bed boilers were presented. Gasification processes were reviewed and a supply cost basis was examined. Cost drivers were ranked according to energy, operating considerations and capital investment. Results indicated that fuel costs were significant for gas and coal. Capital costs and capital recovery charge was most significant with coal and gasification technology. Without capital recovery, cash costs favour the use of bitumen and coke. Gasification would need lower capital and lower capital recovery to compete with direct burning. It was concluded that direct burning of bitumen can compete with natural gas. With price volatility anticipated, dual fuel capability for bitumen and gas has merit. Petroleum coke can be produced or retrieved from stockpiles. Utility supply costs of direct burning of coke is

  12. Assessment of energy return on energy investment (EROEI) of oil bearing crops for renewable fuel production

    OpenAIRE

    A. Restuccia; S. Failla; D. Longo; L. Caruso; I. Mallia; G. Schillaci

    2013-01-01

    As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested) has been used. At this aim, an...

  13. Straight Vegetable Oil as a Diesel Fuel?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  14. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  15. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  16. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1997-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  17. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  18. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  19. Palm oil and derivatives: fuels or potential fuels?

    Directory of Open Access Journals (Sweden)

    Pioch Daniel

    2005-03-01

    alcoholysis reaction and processing of the crude glycerin by-product. Economical outputs depend also on market price of this last commodity. The last technique opening a way for using palm oil as fuel involves catalytic cracking, then allowing to feed any kind of engine –either spark or compression ignited- although a few results are available only from laboratory or small pilot scale experiments. If the economic viability would be favored by scale-up effect for large national or international markets assuming palm oil producing cost would become and remain competitive is spite of lack of harvest mechanization, and oils would remain available for large non food markets, as this is presently the case, there is a lack of technical and economical data. This is especially the case regarding the minimum size required for applying these more sophisticated chemical transformations –alcoholysis and cracking- for supplying energy under most critical conditions found in remote areas where millions of people are facing difficult access to both electric power and transportation fuels. Today large scale production and marketing of palm oil methyl or ethyl ester is under development in oil palm cropping countries like Malaysia, Thailand or Brazil. The follow-up depends on many parameters on environment, social and economic sides.

  20. Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt

    International Nuclear Information System (INIS)

    Boukelia, T.E.; Mecibah, M.S.; Kumar, B.N.; Reddy, K.S.

    2015-01-01

    Thermodynamic, economic and environmental analyses of concentrating solar power plants assist in identifying an effective and viable configuration. In this paper, a 4E (energy-exergy-environmental-economic) comparative study of 8 different configurations of parabolic trough solar thermal power plants with two different working fluids (Therminol VP-1 -oil and molten solar salt), with and without integrated thermal energy storage or/and backup fuel system is presented. The results of the comparative study indicate relevant differences among the 8 configurations. The molten solar salt configuration with integrated thermal energy storage and fossil fuel backup system exhibits the highest overall energy efficiency (18.48%) compared to other configurations. Whereas, the highest overall exergy efficiency (21.77%), capacity factor (38.20%) and annual energy generation (114 GWh) are found for the oil based configuration with integrated thermal energy storage and fossil fuel backup system. The results indicate that the configurations based on molten salt are better in terms of environmental and economical parameters. The configurations with integrated thermal energy storage and fossil fuel backup system are found to be techno-economical, but on the other hand are less environment friendly. A detailed comparison of these plants after optimization must be performed before drawing a final conclusion about the best configuration to be adopted in parabolic trough solar thermal power plant. - Highlights: • 4E comparative study of 8 configurations of PTSTPP with two different fluids. • Comparison of the configurations with and without integrated TES (thermal energy storage) and FBS (fuel backup system). • The overall energy efficiency of the salt plant with TES and FBS is the highest. • The overall exergy efficiency of the oil plant with TES and FBS is the highest. • The salt plants are the best configurations in terms of environ–eco parameters

  1. Results of industrial tests of carbonate additive to fuel oil

    Science.gov (United States)

    Zvereva, E. R.; Dmitriev, A. V.; Shageev, M. F.; Akhmetvalieva, G. R.

    2017-08-01

    Fuel oil plays an important role in the energy balance of our country. The quality of fuel oil significantly affects the conditions of its transport, storage, and combustion; release of contaminants to atmosphere; and the operation of main and auxiliary facilities of HPPs. According to the Energy Strategy of Russia for the Period until 2030, the oil-refining ratio gradually increases; as a result, the fraction of straight-run fuel oil in heavy fuel oils consistently decreases, which leads to the worsening of performance characteristics of fuel oil. Consequently, the problem of the increase in the quality of residual fuel oil is quite topical. In this paper, it is suggested to treat fuel oil by additives during its combustion, which would provide the improvement of ecological and economic indicators of oil-fired HPPs. Advantages of this method include simplicity of implementation, low energy and capital expenses, and the possibility to use production waste as additives. In the paper, the results are presented of industrial tests of the combustion of fuel oil with the additive of dewatered carbonate sludge, which is formed during coagulation and lime treatment of environmental waters on HPPs. The design of a volume delivery device is developed for the steady additive input to the boiler air duct. The values are given for the main parameters of the condition of a TGM-84B boiler plant. The mechanism of action of dewatered carbonate sludge on sulfur oxides, which are formed during fuel oil combustion, is considered. Results of industrial tests indicate the decrease in the mass fraction of discharged sulfur oxides by 36.5%. Evaluation of the prevented damage from sulfur oxide discharged into atmospheric air shows that the combustion of the fuel oil of 100 brand using carbonate sludge as an additive (0.1 wt %) saves nearly 6 million rubles a year during environmental actions at the consumption of fuel oil of 138240 t/year.

  2. Vegetable oils as diesel fuel

    International Nuclear Information System (INIS)

    Fedeli, E.; Girelli, A.

    2001-01-01

    During the seventies, one of the recurring fuels crisis gave rise to research on alternative sources and among them to the idea of utilizing vegetable oils. The research work made clear that the oils cannot be utilized as such but they must be transformed in simple esters, eliminating the problems arising from the presence of the glycerine. The Experiment Stations of the Industry, Commerce and Handicraft Department of the Italian Government, by request of the last one, in the '70/'80 has done a successful experimentation that is presented in the paper [it

  3. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  4. Fuel oil and kerosene sales 1997

    International Nuclear Information System (INIS)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs

  5. Fuel oil and kerosene sales 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  6. Aviation fuel and future oil production scenarios

    International Nuclear Information System (INIS)

    Nygren, Emma; Aleklett, Kjell; Hoeoek, Mikael

    2009-01-01

    Most aviation fuels are jet fuels originating from crude oil. Crude oil must be refined to be useful and jet fuel is only one of many products that can be derived from crude oil. Jet fuel is extracted from the middle distillates fraction and competes, for example, with the production of diesel. Crude oil is a limited natural resource subject to depletion and several reports indicate that the world's crude oil production is close to the maximum level and that it will start to decrease after reaching this maximum. A post-Kyoto political agenda to reduce oil consumption will have the same effect on aviation fuel production as a natural decline in the crude oil production. On the other hand, it is predicted by the aviation industry that aviation traffic will keep on increasing. The industry has put ambitious goals on increases in fuel efficiency for the aviation fleet. Traffic is predicted to grow by 5% per year to 2026, fuel demand by about 3% per year. At the same time, aviation fuel production is predicted to decrease by several percent each year after the crude oil production peak is reached resulting in a substantial shortage of jet fuel by 2026. The aviation industry will have a hard time replacing this with fuel from other sources, even if air traffic remains at current levels.

  7. Vegetable oils as fuels and lubrificants: Commercialization problematics

    International Nuclear Information System (INIS)

    Bartolelli, V.

    1992-01-01

    The aim of this paper is to assess the commercialization feasibility of vegetable oils as industrial fuels and lubricants. The paper also discusses what should be the suitable mix of Italian Government agricultural, environmental and fiscal strategies to support and encourage the production and use of industrial vegetable fuel oils and lubricants. It points out the main advantages of bio-fuel oils - they are much less polluting than conventional fossil fuel oils and can be produced domestically, thus reducing national dependency on foreign energy imports and increasing employment opportunities. The major obstacle to their development is identified as being the creation of suitable pricing and fiscal policies in harmony with traditional energy markets

  8. Clean Fuel, Clean Energy Conversion Technology: Experimental and Numerical Investigation of Palm Oil Mill Effluent Biogas Flameless Combustion

    Directory of Open Access Journals (Sweden)

    Seyed Ehsan Hosseini

    2015-08-01

    Full Text Available The combustion of effluent biogas from a palm oil mill is not feasible on a large scale because of its low calorific value (LCV. Therefore, the captured biogas is usually flared because of a lack of appropriate combustion technology. However, such biogas could be an excellent source of energy for combined heat and power (CHP generation in palm oil mills. In this paper, the feasibility of using biogas from palm oil mills in flameless combustion systems is investigated. In computational fluid dynamic (CFD modeling, a two-step reaction scheme is employed to simulate the eddy dissipation method (EDM. In such biogas flameless combustion, the temperature inside the chamber is uniform and hot spots are eliminated. The peak of the non-luminous flame volume and the maximum temperature uniformity occur under stoichiometric conditions when the concentration of oxygen in the oxidizer is 7%. In these conditions, as the concentration of oxygen in the oxidizer increases, the efficiency of palm oil mill effluent biogas flameless combustion increases. The maximum efficiency (around 61% in the experiment is achieved when the percentage of oxygen in the oxidizer is 7%.

  9. Fuel oil and LPG; Fioul et GPL

    Energy Technology Data Exchange (ETDEWEB)

    Philippon, A. [UFIP, Union Francaise des Industries Petroliere, 75 - Paris (France)

    1997-12-31

    The impacts of new environmental regulations on the heavy fuel oil and refining French markets, are studied. Illustrated with numerous diagrams concerning oil price evolution, fuel price comparison, market shares, consumption data, etc., it is shown that a brutal elimination of high sulfur content oil fuels would cause an extremely negative impact for the refining industry and for the French economy. Sulfur content limits should be kept at their present levels and users should be free to select technical choices in order to keep within these limits, either through fume desulfurization either through fuel-natural gas mixed combustion

  10. The refining industry and the future of the fuel oils

    International Nuclear Information System (INIS)

    Soleille, S.

    2004-01-01

    The fuel oils consumption decrease in France since 1970, because of the two petroleum crisis, the nuclear energy competition and the air pollution. The fuel oils industry is then looking other export possibilities. This report aims to offer a first approach of the problem and presents the main challenges. The first part is devoted to the technical context (definition, production and outlet. The second part presents the environmental context and the fuel oils market. In the third part the market is studied at the world scale, in the fourth at the french scale and in the fifth at the scale of other countries as United States, Japan and european Union. A synthesis tables is given in the last part to compare and propose some hypothesis concerning the future of fuel oils and the french refining industry. (A.L.B.)

  11. Shale-oil-derived additives for fuel oils

    International Nuclear Information System (INIS)

    Raidma, E.; Leetsman, L.; Muoni, R.; Soone, Y.; Zhiryakov, Y.

    2002-01-01

    Studies have shown that the oxidation, wearing, and anticorrosive properties of shale oil as an additive to liquid fuels and oils enable to improve the conditions of their use. Studies conducted by Institute of Oil Shale have shown that it is possible, on the basis of shale oil produced by Viru Keemia Grupp AS (Viru Chemistry Group Ltd.) and, particularly, on the basis of its fractions 230-320 and 320-360 deg C to produce efficient and stable additives for liquid fuels to improve their combustion and storage properties. In the production of additives from shale oil the prerequisite taken into account is its complexity of composition and high concentration of neutral and phenolic oxygen compounds. Additives produced from shale oil have multifunctional properties which enable to improve operational data of liquid fuels and to increase the power of diesel engines and boilers. (author)

  12. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  13. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1996-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  14. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  15. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S [Neste Oy, Porvoo (Finland)

    1996-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  16. Flash pyrolysis fuel oil: BIO-POK

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S. [Neste Oy, Porvoo (Finland)

    1995-12-31

    Flash pyrolysis oil from Ensyn Tech., Canada and Union Fenosa, Spain was combusted with simple pressure atomisation equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system changes but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: acid resistant progressive cavity pump, higher oil preheat temperature and higher oil pressure than for light fuel oils, refractory section between burner and boiler warmed up to at least 800 deg C. In addition, it was necessary to store pyrolysis oil samples under inert conditions to prevent oxidation and to rinse nozzles with alcohol after shutdown to prevent coking. The complexity and cost of these system modifications are considered to be too great for current grades of flash pyrolysis oil to be sold as a light fuel oil replacement. Improvements to fuel quality will be necessary. The main improvements are lowering of viscosity and improving of stability

  17. Hydrogen fuel - Universal energy

    Science.gov (United States)

    Prince, A. G.; Burg, J. A.

    The technology for the production, storage, transmission, and consumption of hydrogen as a fuel is surveyed, with the physical and chemical properties of hydrogen examined as they affect its use as a fuel. Sources of hydrogen production are described including synthesis from coal or natural gas, biomass conversion, thermochemical decomposition of water, and electrolysis of water, of these only electrolysis is considered economicially and technologically feasible in the near future. Methods of production of the large quantities of electricity required for the electrolysis of sea water are explored: fossil fuels, hydroelectric plants, nuclear fission, solar energy, wind power, geothermal energy, tidal power, wave motion, electrochemical concentration cells, and finally ocean thermal energy conversion (OTEC). The wind power and OTEC are considered in detail as the most feasible approaches. Techniques for transmission (by railcar or pipeline), storage (as liquid in underwater or underground tanks, as granular metal hydride, or as cryogenic liquid), and consumption (in fuel cells in conventional power plants, for home usage, for industrial furnaces, and for cars and aircraft) are analyzed. The safety problems of hydrogen as a universal fuel are discussed, noting that they are no greater than those for conventional fuels.

  18. Peak oil demand: the role of fuel efficiency and alternative fuels in a global oil production decline.

    Science.gov (United States)

    Brandt, Adam R; Millard-Ball, Adam; Ganser, Matthew; Gorelick, Steven M

    2013-07-16

    Some argue that peak conventional oil production is imminent due to physical resource scarcity. We examine the alternative possibility of reduced oil use due to improved efficiency and oil substitution. Our model uses historical relationships to project future demand for (a) transport services, (b) all liquid fuels, and (c) substitution with alternative energy carriers, including electricity. Results show great increases in passenger and freight transport activity, but less reliance on oil. Demand for liquids inputs to refineries declines significantly after 2070. By 2100 transport energy demand rises >1000% in Asia, while flattening in North America (+23%) and Europe (-20%). Conventional oil demand declines after 2035, and cumulative oil production is 1900 Gbbl from 2010 to 2100 (close to the U.S. Geological Survey median estimate of remaining oil, which only includes projected discoveries through 2025). These results suggest that effort is better spent to determine and influence the trajectory of oil substitution and efficiency improvement rather than to focus on oil resource scarcity. The results also imply that policy makers should not rely on liquid fossil fuel scarcity to constrain damage from climate change. However, there is an unpredictable range of emissions impacts depending on which mix of substitutes for conventional oil gains dominance-oil sands, electricity, coal-to-liquids, or others.

  19. Fuel oil and kerosene sales 1995

    International Nuclear Information System (INIS)

    1996-09-01

    This publication contains the 1995 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs

  20. Fuel oil and kerosene sales 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  1. Developing a green lending model for renewable energy project (case study electricity from biogas fuel at Palm Oil Industry)

    Science.gov (United States)

    Sukirman, Y. A.

    2018-03-01

    In the last two decades, development initiatives solely aimed to generate economic growth has been placed under scrutiny, particularly amidst the rampant discussion on the quality decline of the environment, growing social divide and climate change along with its implications thereof. Considerations of the negative impacts brought about by the economic development process prompted the move to adopt the sustainable financing model that gives precedence to economic, environmental and social aspects. We introduced Green Lending Model for Renewable Energy Project (Case Study Electricity From Biogas at Palm Oil Industry) based on sustainability financing, which is used as variable to implementing financial institutions’ lending policies. There are two major trends in the literature relating to sustainability and the banking industry: external and internal practices. The external practices strand analyzes the relevance of sustainability to the bank’s communication with shareholders and other stakeholders, and how investors use it as a measure to help achieve optimal portfolio allocation. The internal practices literature, more relevant to the present work, studies how sustainability criteria are integrated into risk management models and lending practices. Its first implementation is in the Palm Oil industry at South Sumatera. The results explained that sustainability is not related to profit either from a short- or long-term perspective. The Sustainable Green Lending Model is related to the Equator Principles and its application is driven to project financing. It also related with short- and long-term risks and opportunities, instead of short-term sustainability impacts.

  2. Fuel saving performances of marine diesel engine oils on board

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasunori; Henmi, Takashi; Minamitani, Hiromu; Akizawa, Hayao; Hamada, Minoru; Ashida, Jiro

    1988-05-01

    After the second oil crisis, the percentage of the fuel cost against the operational cost of a ship has been showing the rising tendency, engine manufacturers have placed the top priority on the improvement of fuel consumption, operators have been conducting various energy saving measures and refiners have been paying efforts to improve lubricating oil. This article reports the study on the lubricating oil characteristics affecting the fuel consumption per power output, particularly the viscosity and the adding effect of friction modifier additives by using dynamo-generator diesel engines on board the ships already in commission. The investigation was conducted by comparing the cases of using several sample oils with the cases of using the reference oils. According to the results, the viscous property of engine oil was most effective on fuel consumption and the lower the viscosity of oil, the more the fuel consumption effect was. However, the addition of friction modifier additives did hardly show any improvement of the above effect. (5 figs, 4 tabs, 3 refs)

  3. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  4. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  5. Energy balance of the lavender oil production

    Directory of Open Access Journals (Sweden)

    Osman GÖKDOĞAN

    2016-06-01

    Full Text Available This research was carried out to determine the energy input-output analysis of lavender oil production. Data from agricultural farms in Isparta province was used. Energy input was calculated as 1993.89 MJ and energy output was calculated as 2925.51 MJ. Wood energy, fresh stalked lavender flower energy, equipment energy, human labour energy, electricity energy, and water energy inputs were 54.22 %, 41.86 %, 3.40 %, 0.23 %, 0.18 %, and 0.10 % of energy inputs, respectively. In this production, it is noteworthy that wood was used as fuel in the lavender oil production distillation process as the highest input. In the energy outputs, an average of 3.10 kg lavender oil and 130 kg lavender water were extracted by processing 234 kg fresh stalked lavender flower. Energy use efficiency, specific energy, energy productivity, and net energy for lavender oil production were calculated as 1.47, 643.19 MJ kg-1, 0.002 kg MJ-1 and 931.62 MJ, respectively.

  6. Fuel oil and kerosene sales 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This publication contains the 1992 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ''Annual Fuel Oil and Kerosene Sales Report'' survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA)

  7. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  8. Novel Methods for Desulfurization of Fuel Oils

    OpenAIRE

    H. Hosseini

    2012-01-01

    Because of the requirement for low sulfur content of fuel oils, it is necessary to develop alternative methods for desulfurization of heavy fuel oil. Due to the disadvantages of HDS technologies such as costs, safety and green environment, new methods have been developed. Among these methods is ultrasoundassisted oxidative desulfurization. Using ultrasound-assisted oxidative desulfurization, compounds such as benzothiophene and dibenzothiophene can be oxidized. As an alterna...

  9. Fuel cells for commercial energy

    Science.gov (United States)

    Huppmann, Gerhard; Weisse, Eckart; Bischoff, Manfred

    1990-04-01

    The development of various types of fuel cells is described. Advantges and drawbacks are considered for alkaline fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. It is shown that their modular construction is particularly adapted to power heat systems. A comparison which is largely in favor of fuel cells, is made between coal, oil, natural gas power stations, and fuel cells. Safety risks in operation are also compared with those of conventional power stations. Fuel cells are particularly suited for dwellings, shopping centers, swimming pools, other sporting installations, and research facilities, whose high current and heat requirements can be covered by power heat coupling.

  10. Fuel oil and kerosene sales 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This publication contains the 1994 survey results of the ''Annual Fuel Oil and Kerosene Sales Report'' (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ''Annual Fuel Oil and Kerosene Sales Report'' survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994

  11. Liquid Bio fuels: Vegetable Oils and Bi oethanol

    International Nuclear Information System (INIS)

    Ballesteros, M.; Ballesteros, I.; Oliva, J. M.; Navarro, A. A.

    1998-01-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Bio fuels (vegetable oils and bio ethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for bio fuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use bio fuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs

  12. The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010

    International Nuclear Information System (INIS)

    Brandt, Adam R.; Englander, Jacob; Bharadwaj, Sharad

    2013-01-01

    It has been argued that the oil sands industry is not energy efficient: comparatively large energy inputs are required per unit of energy output from oil sands operations. Unfortunately, quantitative work to date in this area has suffered from poor data availability and uncertain methods. We apply a new methodology and new dataset to compute ERRs (energy return ratios) for the oil sands industry. We collected monthly oil sands energy consumption and output data from 1970 to 2010. Current oil sands operations have mine mouth NERs (net energy returns) of about 6 GJ output per GJ of energy consumed and point of use energy returns of about 3 GJ/GJ. Long-term trends show oil sands operations becoming significantly more efficient: point of use NER increased from about 1 GJ/GJ in 1970 to 3 GJ/GJ in 2010. These energy returns are lower than those observed in historical conventional oil operations, but low energy returns are not likely to hinder development of oil sands operations due to the large resource in place and the ability for largely self-fueled pathways to return significant amounts of energy to society for every unit of external energy supplied. - Highlights: • Oil sands operations have become significantly more energy efficient over the history of the industry. • Oil sands production is largely fueled with energy from the bitumen resource itself, making external energy returns high. • Oil sands production is still significantly less efficient than conventional oil production

  13. The european domestic fuel oil champions its assets

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The meeting of Eurofuel Group european club members has taken place in Paris on June 8-9, 1995. The aim of this meeting was to exchange opinions and concert action to encourage the use of domestic fuel oil heating in housing. A comparative sectoral analysis of heating energies in different european countries is given. (J.S). 1 tab., 1 photo

  14. Waste cooking oil as source for renewable fuel in Romania

    Science.gov (United States)

    Allah, F. Um Min; Alexandru, G.

    2016-08-01

    Biodiesel is non-toxic renewable fuel which has the potential to replace diesel fuel with little or no modifications in diesel engine. Waste cooking oil can be used as source to produce biodiesel. It has environmental and economic advantages over other alternative fuels. Biodiesel production from transesterification is affected by water content, type f alcohol, catalyst type and concentration, alcohol to oil ratio, temperature, reaction rate, pH, free fatty acid (FFA) and stirrer speed. These parameters and their effect on transesterification are discussed in this paper. Properties of biodiesel obtained from waste cooking oil are measured according to local standards by distributor and their comparison with European biodiesel standard is also given in this paper. Comparison has shown that these properties lie within the limits of the EN 14214 standard. Furthermore emission performance of diesel engine for biodiesel-diesel blends has resulted in reduction of greenhouse gas emissions. Romanian fuel market can ensure energy security by mixing fuel share with biodiesel produced from waste cooking oil. Life cycle assessment of biodiesel produced from waste cooking oil has shown its viability economically and environmentally.

  15. Panorama 2011: Water in fuel production Oil production and refining

    International Nuclear Information System (INIS)

    Nabzar, L.

    2011-01-01

    Water plays a vital role in the production of fuels. Against a background of extremely high pressure to do with the need to protect the environment, better manage energy use and operate in a socially responsible manner - as well as the need to protect water as a resource and reduce greenhouse gas emissions, water management has become a major issue for the oil industry. These issues have all more or less been factored into the integrated water management programmes which have been introduced both in oil production and oil refining. These programmes have been designed to keep waste and emissions to a minimum, and to reduce the quantities of water required. (author)

  16. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  17. Oil crops: requirements and possibilities for their utilization as an energy source

    International Nuclear Information System (INIS)

    Boerner, G.; Schoenefeldt, J.; Mehring, I.

    1995-01-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author)

  18. Energy dependence, the greenhouse effect and agricultural surpluses: the internalisation of external effects of fossil fuel sources by the marketing of vegetable oil as a motor-fuel

    International Nuclear Information System (INIS)

    Gruber, G.

    1992-01-01

    The limits of growth of the economy lie not only in the availability of petroleum but in the problems of disposing of it (e.g. oil spills) and of its waste products. Vegetable oils are the natural alternative, and the author reports on an engine designed by his company which fits into natural ecological cycles. (author)

  19. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  20. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    Science.gov (United States)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  1. Energy consumption and energy R and D in OECD: Perspectives from oil prices and economic growth

    International Nuclear Information System (INIS)

    Leng Wong, Siang; Chia, Wai-Mun; Chang, Youngho

    2013-01-01

    We estimate the short-run and long-run elasticities of various types of energy consumption and energy R and D to changes in oil prices and income of the 20 OECD countries over the period of 1980–2010 using the Nerlove partial adjustment model (NPAM). We find negative income elasticity for coal consumption but positive income elasticity for oil and gas consumption suggesting the importance of economic growth in encouraging the usage of cleaner energy from coal to oil and gas. By introducing time dummies into the regressions, we show that climatic mitigation policies are able to promote the usage of cleaner energies. Through the dynamic linkages between energy consumption and energy R and D, we find that fossil fuel consumption promotes fossil fuel R and D and fossil fuel R and D in turn drives its own consumption. Renewable energy R and D which is more responsive to economic growth reduces fossil fuel consumption and hence fossil fuel R and D. - Highlights: • Economic growth encourages the use of cleaner forms of energy. • Economic growth promotes renewable energy R and D. • Subsidies for renewable energy R and D promote renewable energy consumption. • Fossil fuel R and D promotes fossil fuel consumption in countries with oil reserves. • Oil consumption reduces significantly with higher oil prices

  2. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  3. Water for energy and fuel production

    CERN Document Server

    Shah, Yatish T

    2014-01-01

    Water, in all its forms, may be the key to an environmentally friendly energy economy. Water is free, there is plenty of it, plus it carries what is generally believed to be the best long-term source of green energy-hydrogen. Water for Energy and Fuel Production explores the many roles of water in the energy and fuel industry. The text not only discusses water's use as a direct source of energy and fuel-such as hydrogen from water dissociation, methane from water-based clathrate molecules, hydroelectric dams, and hydrokinetic energy from tidal waves, off-shore undercurrents, and inland waterways-but also: Describes water's benign application in the production of oil, gas, coal, uranium, biomass, and other raw fuels, and as an energy carrier in the form of hot water and steam Examines water's role as a reactant, reaction medium, and catalyst-as well as steam's role as a reactant-for the conversion of raw fuels to synthetic fuels Explains how supercritical water can be used to convert fossil- and bio-based feed...

  4. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  5. 46 CFR 58.01-10 - Fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Fuel oil. 58.01-10 Section 58.01-10 Shipping COAST GUARD... SYSTEMS General Requirements § 58.01-10 Fuel oil. (a) The following limits apply to the use of oil as fuel: (1) Except as otherwise permitted by this section, no fuel oil with a flashpoint of less than 60 °C...

  6. Fuel oil and kerosene sales, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs

  7. Fuel oil and kerosene sales, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  8. Optimisation of fuel stocks under liberalisation of energy market

    International Nuclear Information System (INIS)

    Shipkovs, P.; Sitenko, L.; Kashkarova, G.

    2001-01-01

    The paper discusses the influence of regional fuel stocks on the reliability of the energy sector's activities in a given region. The authors give classification of stocks by their purpose and describe their role in avoiding energy shortage situations. The fuel deficiency at a regional fuel market is shown in connection with the resulting loss for the national economy. The authors employ imitative modelling for investigation of fuel supply schemes acting in Latvia. They estimate possible expenses on the maintenance of fuels - such as gas, residual oil, and coal - for different variants of fuel delivery. (author)

  9. Flash pyrolysis fuel oil: bio-pok

    Energy Technology Data Exchange (ETDEWEB)

    Gust, S [Neste Oy, Porvoo (Finland)

    1997-12-01

    Samples of flash pyrolysis liquid produced by Union Fenosa, Spain from pine and straw and samples produced by Ensyn of Canada from mixed hardwoods were combusted with simple pressure atomization equipment commonly used with light fuel oils in intermediate size (0.1-1 MW) boilers. With a number of modifications to the combustion system, carbon monoxide (CO) and nitrous oxide (NO{sub x}) could be reduced to acceptable levels: CO < 30 ppm and NO{sub x} < 140 ppm. Particulate emissions which were initially very high (Bacharach 4-5) were reduced (Bach. 2-3) by system improvements but are still higher than from light fuel oil (Bach. <1). The modifications to the combustion system were: refractory section between burner and boiler, acid resistant progressive cavity pump, higher liquid preheat temperature and higher pressure than for light fuel oils. The main problems with pyrolysis liquids concerns their instability or reactivity. At temperatures above 100 deg C they begin to coke, their viscosity increases during storage and oxygen from air causes skin formation. This requires that special handling procedures are developed for fuel storage, delivery and combustion systems. (orig.)

  10. Oil and the world energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Almost half of the needs for primary in the world are covered by oil. The rapid growth in oil prices because of the 1973 oil crisis caused a growth in prices for other source of energy as well, primarily coal and natural gas. The sale price of 1 m/sup 3/ of oil in 1973 equalled--$18.87, and later $31.45. In recent years, the cost of 1 m/sup 3/ of oil reached $188.69, and by the end of the century, according to forecasts, should reach $628.98. The cost of extracting 1 m/sup 3/ of oil in the Near East equals $1.57, and in the North Sea $44.03-75.48. The cost of producing 1 m/sup 3/ of synthetic oil from bitumenous sands equals $94.35-157.25, and from fuel shales $94.35-122.14. The explored oil reserves at the end of 1979 were, in million T: in the OPEC countries 58, 265, including 22, 261 in Saudi Arabia, and 25, 539 in the rest of the world. Oil extraction in 1979 was, in million T: in the OPEC countries 1574 (100%), including 510 (32.4%) in Saudi Arabia, 175 ((11.1%) in Iraq, 145 (9.2%) in Iran, 130 (8.2%) in Kuwait, 125 (7.9%) in Venezuela, 114 (7.2%) in Nigeria, 101 (6.4%) in Libya, 88 (5.6%) in the United Arab Emirates, other OPEC countries 186 (11.8%), in the other countries of the world 1550 (100%), including the United States 479 (30.9%), 108 (7.0%) in The Chinese People's Republic, 86 (5.5%) in Canada, 80 (5.2%) in Mexico, 79 (5.1%) in Great Britain, 28 (1.8%) in Arab Republic of Egypt, 18 (1.2%) in Norway, and 86 (5.5%) in other countries.

  11. Utilizing Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel for industrial steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Archie B. Maglaya [De La Salle University, Manila (Philippines). Department of Mechanical Engineering

    2005-01-01

    The fast depletion of fuel oil and the continuous increase in the demand for power is a global issue. In the Philippines, the demand for diesel oil is expected to increase significantly in a 20-year period as projected by the Department of Energy. In line with the Philippine Government's thrust to lessen the dependence on imported energy, the agenda for the search for alternative fuel is highly prioritized. Thus, this paper presents the results of the study on performance analysis and efficiency test of a diesel oil fired industrial steam generator using Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel. A computer program was developed in HyperText Markup Language (HTML{copyright}) and JavaScript{copyright} to aid the computation of the adiabatic flame temperature from the governing system of equations based on the heat interaction between CDOM fuel, combustion air and products of combustion to determine the most desirable alternative fuel. Actual experimentation for the determination of CDOM fuel properties was also conducted to verify the alternative fuel selected through theoretical calculations. Results showed that the CDOM fuel with a particle size passing 75 {mu}m (-200 mesh) sieve having a proportion of 5% pulverized coal-95% diesel oil and 10% pulverized coal-90% diesel oil could be handled throughout the test with no degradation of the industrial steam generator. The steam generator efficiency using diesel oil is close to the steam generator efficiency using both CDOM fuels. 20 refs., 5 figs., 4 tabs.

  12. Conversion of hydrocarbon oils into motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-09

    The abstract describes a process for producing lower boiling hydrocarbon motor fuels with a starting material of wide boiling range composed primarily of hydrocarbon oils boiling substantially above the boiling range of the desired product. Separate catalytic and pyrolytic conversion zones are simultaneously maintained in an interdependent relationship. Higher boiling constituents are separated from residual constituents by fractionation while desirable reaction conditions are maintained. All or at least a portion of the products from the catalytic and pyrolytic conversion zones are blended to yield the desired lower boiling hydrocarbons or motor fuels.

  13. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  14. Nuclear energy and the fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Folinsbee, R E

    1970-01-01

    The energy phenomenon of the first half of this century has been the increase in the use of petroleum and natural gas as fuels. World demand for petroleum energy has been increasing at the rate of 11% per yr. This demand is unsustainable, for the supply, as with any exhaustible resource, is limited. The continental energy policy is essentially one of integrating the North American supply and demand picture for the fossil fuels, using oil and gas from the interior of the continent to supply demand from the interior and using overseas supplies, up the limit of national security, for energy users farthest removed from these sources. The economics of expensive pipeline transportation as against cheap supertankers dictates this policy. Beyond any shadow of a doubt, the fuel of the future will be nuclear, and for this century almost entirely the energy of fission rather than of fusion. Recent estimates suggest that as much as 50% of the energy for the U.S. will be nuclear by the year 2,000, and for Canada the more modest National Energy Board estimate holds that in 1990, 35% of Canadian electric generation will be by nuclear power reactors concentrated in the fuel-starved province of Ontario. (17 refs.)

  15. FOSSIL FUEL ENERGY RESOURCES OF ETHIOPIA Wolela Ahmed ...

    African Journals Online (AJOL)

    a

    KEY WORDS: Coal, Energy, Ethiopia, Fossil fuel, Oil shale, Oil and gas. INTRODUCTION .... The marginal faults favoured the accumulation of alluvial fan sandy ... sediments towards the western marginal areas of the basin. ...... subsiding East African continental margin initiated to deposit fluvio-lacustrine sediments. A.

  16. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor

    2011-11-01

    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  17. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  18. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  19. Fossil fuels, uranium, and the energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Playford, P E

    1977-01-01

    Relevant data on the world energy picture are presented to indicate present energy sources and resources, especially fossil fuels and the role of uranium in energy production, with some predictions for the future. World energy is presently being derived from petroleum (some 62%), coal (31%), hydropower (6%), and nuclear (1%). The fundamental cause of the present world energy crisis is attributed to the increase in consumption of petroleum over the past 20 yr, compared with the relatively small size and unequal distribution of the world's remaining reserves. The reserves/production ratio for petroleum has fallen steadily from a general level of 60 to 80 yr from 1920 to 1955, to about 31 yr today. New oil is becoming harder and more expensive to find and produce, the size of discoveries is declining. There is no reason to believe that this trend will be substantially altered, and production is expected to begin to decline between 1985 and 1990. Gas resources also are expected to fall short after the mid-1980s. Coal reserves are enormous, but their full utilization is doubtful because of economic and environmental problems. Tar sands and oil shale resources are potentially major sources of oil, and they are expected to become more competitive with petroleum as higher oil prices occur.

  20. The price of fuel oil for power generation

    International Nuclear Information System (INIS)

    Hsu, G.J.Y.; Liaw, Y.Y.C.

    1987-01-01

    This study establishes a break-even analysis model for fuel oil generation. The authors calculate the break-even points of the international fuel oil prices for the existing coal-fired power plants, the nuclear power plants and the newly-built coal/oil-fired power plants

  1. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  2. Biodiesel from Mustard oil: a Sustainable Engine Fuel Substitute for Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M. Alam

    2013-10-01

    Full Text Available Various attractive features of mustard oil based biodiesel as a potential substitute for engine fuel are investigated in this paper for use in Bangladesh. Although the use of mustard oil as edible oil has been reduced, Bangladesh still produces 0.22 million metric tons of mustard oil per year. This surplus mustard oil would satisfactorily be used as an alternative to diesel fuel, and thus could contribute in reducing the expenses for importing fuel from foreign countries. Moreover, the rural people of Bangladesh are capable of producing mustard oil themselves using indigenous machines. Fuel properties of biodiesel obtained from mustard oil were determined in the laboratory using standard procedure and an experimental setup was constructed to study the performance of a small diesel engine. It is observed that with biodiesel, the engine is capable of running without difficulty. Initially different lower blends of biodiesel (e.g., B20, B30 etc. have been used to avoid complicated modification of the engine and the fuel supply system. It is also found in some condition that mustard oil based biodiesel have better properties than those made from other vegetable oils. These properties of mustard oil based biodiesel were evaluated to validate its sustainability in Bangladesh. Keywords: biodiesel, indigenous machines, mustard oil, renewable energy policy, sustainability

  3. Refining fuels of the heavy gas--oil type

    Energy Technology Data Exchange (ETDEWEB)

    Bruzac, J F.A.

    1930-01-28

    This invention has for its object the production of a new type of gas-oil fuel, obtained from crude petroleum, shale oil, and peat oil, according to the method of treatment mentioned, by means of which is obtained from gas oil, shale oil, lignite oil, and peat oil (deprived of asphaltic, and bituminous, resinous, and sulfur compounds), a fuel suitable for running Diesel, Junkers, and Clerget motors and all others of the same kind, by diminishing considerably the fouling and attack on the metal.

  4. Oil from biomass corncob tar as a fuel

    International Nuclear Information System (INIS)

    Zhang, Hongmei; Wang, Jun

    2007-01-01

    In this study, biomass corncob tar oil (B-oil I and B-oil II) was extracted and its characteristics were measured. The characterization data show some similarities and differences among B-oil I, B-oil II and the Diesel: flash point. The densities and viscosities are higher than that of Diesel fuel. The solidifying point for B-oil I and B-oil II were lower than that of Diesel. The heating value of B-oil I and B-oil II were about 85.6% and 87.3% of that ordinary Diesel fuel (OD). The distillation temperatures of B-oil I and B-oil II were lower than that of Diesel fuel, with the 50% evaporation point being as much as 10 o C and 4 o C lower and the 90% evaporation point being 10 o C and 2 o C lower, respectively. These evaporation characteristics implied better cold starting and warm up properties of B-oil I and B-oil II than that of Diesel fuel. B-oil I and B-oil II were blended with Diesel in 10% and 20% by volume. Engine tests have been conducted with the aim of obtaining comparative measures of torque, thermal efficiency, specific fuel consumption and emissions such as CO, smoke density and NO to evaluate and compute the behavior of the Diesel engine running on the above mentioned fuels. The reduction in exhaust emissions, together with the increases in torque and thermal efficiency and the reduction in specific fuel consumption made the blends of B-oil I and B-oil II a suitable alternative fuel for Diesel and could help in controlling air pollution

  5. Radioactivity concentration and heavy metal content in fuel oil and oil-ashes in Venezuela

    International Nuclear Information System (INIS)

    Barros, H.; Sajo-Bohus, L.; Abril, J.M.; Greaves, E.D.

    2004-01-01

    During the last years an intensive national program was developed to determine the environmental radioactivity levels in Venezuela. Gamma dose and the radon concentrations indoors, in drinking water, in caves and in artificial cavities including the effect of radon transported to the surface with the earth gas have been studied. To continue this project the oil and other natural energy resource should be considered. It is expected that the environmental radiation level is modified in regions where the oil industrial activity is more aggressive such as in the Zulia State and the Faja Petrolifera del Orinoco, (Central Region). In these regions Venezuela is producing 1.750 thousand barrels of oil from the near-to-the- surface or deep oil drilling. Petroleum constitutes an important source of energy and as the majority of natural source contains radionuclides and their disintegration products, being U, Ra, Pb, Bi, Po and K the most often encountered. The combustion of petroleum concentrate in the ashes those radioelements, and later enter the environment by different ways producing adverse effects on the quality of man life. The concentration of radioelements varies greatly between oil fields, then we still requiring local survey studies in this area. Moreover due to the recent national interest in recycling processes, it becomes important to take precaution in the selection of materials that may contain by-products of industrial origin, including oil. In fact the oil ashes, oil slurry and other mining by-products are thought to be employable in the building industry. The concentration of radioactivity in the ash from thermoelectric power plants that use petroleum as a primary energy source was determined. The analysis include the two major thermoelectric power plants in Venezuela, Ricardo Zuluaga on the northern sea side of Caracas and Planta Centro on the littoral of Carabobo State. The study cover different samples: fuel oil No 6, ashes, heavy and medium petroleum

  6. 46 CFR 97.15-55 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Requirements for fuel oil. 97.15-55 Section 97.15-55... OPERATIONS Tests, Drills, and Inspections § 97.15-55 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log to be made of each supply of fuel oil received on...

  7. 46 CFR 78.17-75 - Requirements for fuel oil.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Requirements for fuel oil. 78.17-75 Section 78.17-75..., Drills, and Inspections § 78.17-75 Requirements for fuel oil. (a) It shall be the duty of the chief engineer to cause an entry in the log be made of each supply of fuel oil received on board, stating the...

  8. 19 CFR 10.62 - Bunker fuel oil.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Bunker fuel oil. 10.62 Section 10.62 Customs... Equipment for Vessels § 10.62 Bunker fuel oil. (a) Withdrawal under section 309, Tariff Act of 1930, as... section 309, Tariff Act of 1930, as amended (19 U.S.C. 1309), when all the bunker fuel oil in a Customs...

  9. US oil dependency and energy security

    International Nuclear Information System (INIS)

    Noel, P.

    2002-01-01

    The three papers of this document were written in the framework of a seminar organized the 30 may 2002 by the IFRI in the framework of its program Energy and Climatic Change. The first presentation deals with the american oil policy since 1980 (relation between the oil dependence and the energy security, the Reagan oil policy, the new oil policy facing the increase of the dependence). The second one deals with the US energy security (oil security, domestic energy security, policy implications). The last presentation is devoted to the US oil dependence in a global context and the problems and policies of international energy security. (A.L.B.)

  10. Net energy yield from production of conventional oil

    International Nuclear Information System (INIS)

    Dale, Michael; Krumdieck, Susan; Bodger, Pat

    2011-01-01

    Historic profitability of bringing oil to market was profound, but most easy oil has been developed. Higher cost resources, such as tar sands and deep off-shore, are considered the best prospects for the future. Economic modelling is currently used to explore future price scenarios commensurate with delivering fuel to market. Energy policy requires modelling scenarios capturing the complexity of resource and extraction aspects as well as the economic profitability of different resources. Energy-return-on-investment (EROI) expresses the profitability of bringing energy products to the market. Net energy yield (NEY) is related to the EROI. NEY is the amount of energy less expenditures necessary to deliver a fuel to the market. This paper proposes a pattern for EROI of oil production, based on historic oil development trends. Methodology and data for EROI is not agreed upon. The proposed EROI function is explored in relation to the available data and used to attenuate the International Energy Agency (IEA) world oil production scenarios to understand the implications of future declining EROI on net energy yield. The results suggest that strategies for management and mitigation of deleterious effects of a peak in oil production are more urgent than might be suggested by analyses focussing only on gross production. - Highlights: → Brief introduction to methodological issues concerning net energy analysis. → Description of EROI function over the whole production cycle of an energy resource. → Calibration of this function to EROI data from historic oil production. → Application to determine the net energy yield from current global oil production. → Calculation of net energy yield from IEA projections of future oil production.

  11. Energy Return on Investment - Fuel Recycle

    International Nuclear Information System (INIS)

    Halsey, W.; Simon, A.J.; Fratoni, M.; Smith, C.; Schwab, P.; Murray, P.

    2012-01-01

    This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

  12. Vanadium in fuel oil - a new solution

    Energy Technology Data Exchange (ETDEWEB)

    Czech, N. [Siemens, Muelheim (Germany); Finckh, H. [Siemens, Erlangen (Germany)

    1998-11-01

    Hot corrosion of the hot-gas-path components due to vanadium contamination is one of the hazards associated with heavy residual oil combustion in heavy-duty gas turbines. This economically attractive oil combustion process has benefited from the recently developed vanadium inhibition technique, which is currently being tested at the Valladolid 220 MWe combined cycle plant in Mexico. The method uses atomization of a dilute aqueous solution of Epsom salt (MgSO{sub 7},7H{sub 2}O) into very small droplets which are then injected onto the flame where intensive mixing takes place. The successful use of this new technique promises extended operating periods between cleanup operations, and cost reductions from the use of inexpensive materials, as well as the ability to operate advanced gas turbines on difficult fuels, not previously feasible. (UK)

  13. Determination of Calorific Ability of Fuel Briquettes on the Basis of Oil and Oil Slimes

    Science.gov (United States)

    Fedyaeva, O. A.; Poshelyuzhnaya, E. G.; Rakhmatulina, E. M.; Zakharov, V. A.; Fisenko, T. E.

    2018-01-01

    Utilization and neutralization of oil slimes is one of important environmental problems of the oil-extracting, oil-processing and petrochemical industry. The easiest and economic way of utilization of oil slimes is their use as a part of the bricketed boiler fuel. In this work the highest calorific ability of crude oil, the oil slimes and fuel briquettes made on their basis is defined. A research problem was carrying out the technical analysis of oil fuels on the content in them analytical moisture, the cindery rest and volatiles. It is established that in comparison with oil slimes crude oil possesses bigger highest calorific ability, has smaller humidity and an ash-content. The highest calorific abilities of the boiler briquettes made of samples of crude oil, oil slimes and peat made 14 - 26 MJ/kg.

  14. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  15. Bioremediation of soils contaminated with fuel oils

    International Nuclear Information System (INIS)

    Baker, K.H.; Herson, D.S.; Vercellon-Smith, P.; Cronce, R.C.

    1991-01-01

    A utility company discovered soils in their plant contaminated with diesel fuel and related fuel oils (300-450 ppm). The soils were excavated and removed to a concrete pad for treatment. The authors conducted laboratory studies to determine if biostimulation or bioaugmentation would be appropriate for treating the soils. Microbial numbers and soil respiration were monitored in microcosms supplemented with: (1) organic nutrients, (2) inorganic nutrients, and (3) inorganic nutrients plus additional adapted microorganisms. Their studies indicated that biostimulation via the addition of inorganic nutrients would be appropriate at this site. Treatment cells for the contaminated soils were constructed. Initial data indicates that a 35% reduction in the concentration of contaminants has occurred within the first month of operation

  16. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  17. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  18. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    Science.gov (United States)

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d. Copyright © 2010 SETAC.

  19. Energy return on (energy) invested (EROI), oil prices, and energy transitions

    International Nuclear Information System (INIS)

    Heun, Matthew Kuperus; de Wit, Martin

    2012-01-01

    Very little work has been done so far to model, test, and understand the relationship between oil prices and EROI over time. This paper investigates whether a declining EROI is associated with an increasing oil price and speculates on the implications of these results on oil policy. A model of the relationship between EROI and oil market prices was developed using basic economic and physical assumptions and non-linear least-squares regression models to correlate oil production price with EROI using available data from 1954–1996. The model accurately reflects historical oil prices (1954–1996), and it correlates well with historical oil prices (1997–2010) if a linear extrapolation of EROI decline is assumed. As EROI declines below 10, highly non-linear oil price movements are observed. Increasing physical oil scarcity is already providing market signals that would stimulate a transition away from oil toward alternative energy sources. But, price signals of physical oil scarcity are not sufficient to guarantee smooth transitions to alternative fuel sources, especially when there is insufficient oil extraction technology development, a declining mark-up ratio, a non-linear EROI–cost of production relationship, and a non-linear EROI–price relationship. - Highlights: ► A model of the relationship between EROI and oil prices has been developed. ► As EROI declines below 10, highly non-linear oil price movements are expected. ► Physical oil scarcity provides market signals for a transition to alternatives. ► Scarcity price signals are insufficient for smooth transitions to alternatives.

  20. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  1. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  2. Ethanol pilot project: an energy alternative project for a total or partial substitution of fuel oil in thermoelectric generation plants; Projeto piloto do etanol - PPE: alternativa energetica para substituicao parcial ou total do oleo combustivel em plantas de geracao termoeletrica

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Joao Simoes

    2004-07-01

    The actual stage of technological development is strongly dependent on wide use of petroleum combustibles, in which its trade market defines the rules of socio economical and geopolitics interdependencies. The economic growth has been driven by the 'readily available - cheap energy' stimulus, limiting studies on natural sources of energy (geothermal, solar) and development of renewable ones (bio combustibles). However, economical, financial crisis may change this scenario, and new opportunities for a change in the technological matrix and in technological structure might occur. In Brazil, the 'Agenda 21', especially the PPA - Applied Research Program in the Energetic Area, intend to develop case studies and implement 'pilots projects' to research conventional and renewable sources of energy, bringing to present the value of this project, developed between 1979 and 1980, to evaluate the technical feasibility of ethylic alcohol utilization as a complementary combustible or in a total substitute for the fuel oil in boilers of conventional thermoelectric generation plants. This work presents the performance of one of the Piratininga thermal power plant's boiler, as well as the main data acquired from direct experimentation and the characteristics of this plant, from the use of ethylic alcohol as a substitute of fuel oil. (author)

  3. Ethanol pilot project: an energy alternative project for a total or partial substitution of fuel oil in thermoelectric generation plants; Projeto piloto do etanol - PPE: alternativa energetica para substituicao parcial ou total do oleo combustivel em plantas de geracao termoeletrica

    Energy Technology Data Exchange (ETDEWEB)

    Pessoa, Joao Simoes

    2004-07-01

    The actual stage of technological development is strongly dependent on wide use of petroleum combustibles, in which its trade market defines the rules of socio economical and geopolitics interdependencies. The economic growth has been driven by the 'readily available - cheap energy' stimulus, limiting studies on natural sources of energy (geothermal, solar) and development of renewable ones (bio combustibles). However, economical, financial crisis may change this scenario, and new opportunities for a change in the technological matrix and in technological structure might occur. In Brazil, the 'Agenda 21', especially the PPA - Applied Research Program in the Energetic Area, intend to develop case studies and implement 'pilots projects' to research conventional and renewable sources of energy, bringing to present the value of this project, developed between 1979 and 1980, to evaluate the technical feasibility of ethylic alcohol utilization as a complementary combustible or in a total substitute for the fuel oil in boilers of conventional thermoelectric generation plants. This work presents the performance of one of the Piratininga thermal power plant's boiler, as well as the main data acquired from direct experimentation and the characteristics of this plant, from the use of ethylic alcohol as a substitute of fuel oil. (author)

  4. Utility residual fuel oil market conditions: An update

    International Nuclear Information System (INIS)

    Mueller, H.A. Jr.

    1992-01-01

    Planning for residual fuel oil usage and management remains an important part of the generation fuel planning and management function for many utilities. EPRI's Utility Planning Methods Center has maintained its analytical overview of the fuel oil markets as part of its overall fuel planning and management research program. This overview provides an update of recent fuel oil market directions. Several key events of the past year have had important implications for residual fuel oil markets. The key events have been the changes brought about by the Persian Gulf War and its aftermath, as well as continuing environmental policy developments. The Persian Gulf conflict has created renewed interest in reducing fuel oil use by utilities as part of an overall reduction in oil imports. The policy analysis performed to date has generally failed to properly evaluate utility industry capability. The Persian Gulf conflict has also resulted in an important change in the structure of international oil markets. The result of this policy-based change is likely to be a shift in oil pricing strategy. Finally, continued change in environmental requirements is continuing to shift utility residual oil requirements, but is also changing the nature of the US resid market itself

  5. 77 FR 39745 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2012-07-05

    ... fuel oil systems for safety-related emergency diesel generators and oil-fueled gas turbine generators... Commission, Washington, DC 20555-0001. Fax comments to: RADB at 301-492-3446. For additional direction on... New Reactors, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, telephone: 301-415-8503...

  6. Renewable Energy: Solar Fuels GRC and GRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2010-02-26

    This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable

  7. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    Science.gov (United States)

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition

    International Nuclear Information System (INIS)

    Szklo, Alexandre; Schaeffer, Roberto

    2006-01-01

    In this viewpoint, we discuss the importance of consorting alternative energy sources with oil, and not of opposing them. That is why we introduce the concept of alternative energy systems, which we feel is broader-ranging and more effective than alternative energy sources, as this deals with the actual transformation process of the global energy system. Alternative energy systems integrate oil with other energy sources and pave the way for new systems, which will benefit from what we call the 'virtues of oil'. They produce energy carriers for multi-fuel and multi-product strategies, where flexibility is a key target, allied to other co-benefits, especially those related to the increased use of renewable energy sources. The concept of alternative energy systems can bring a new light to the oil transition era discussion and might also influence energy policies for promoting renewables

  9. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  10. The recuperation of the fuel oil of the Prestige; Recuperacion del fuel oil del Prestige

    Energy Technology Data Exchange (ETDEWEB)

    Remon, M. A.

    2003-07-01

    It is not lacking to remember the catastrophe of the PRESTIGE, because it has been object of the constant attention of communication media form the month of November of the year 2002. when it was produced the sinking. The purpose of this article is to deal with an aspect very concrete of this sinister, the recuperation of the fuel-oil that still remains in the sunken boat. (Author)

  11. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years

  12. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  13. Tamanu oil. An alternative fuel for variable compression ratio engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Mohan T. [SASTRA Univ., Thanjavur, Tamilnadu (India). Dept. of Mechanical Engineering; Kandasamy, Murugumohan Kumar K. [Pavendar Bharathidasan College of Engineering and Technology, Trichy, Tamilnadu (India). Dept. of Mechanical Engineering

    2012-11-01

    Biodiesel can be produced from vegetable oils and also from waste fats. Biodiesel is a monoalkyl- ester of long chain fatty acids derived from renewable feedstock such as vegetable oils by transesterification process. The esterified cotton seed oil, pungam oil, rice bran oil, and tamanu oil are chosen as the alternative fuels. Among these oils, tamanu oil is considered for the first time as an alternative fuel. An experiment is conducted to obtain the operating characteristics of the variable compression ratio (VCR) engine run by chosen esterified oils, and the results are compared with esterified tamanu oil. From the comparison of results, it is inferred that the engine performance is improved with significant reduction in emissions for the chosen oils without any engine modification. The effective compression ratio can be fixed based on the experimental results obtained in the engine since the findings of the present research work infer that the biodiesel obtained from tamanu oil is a promising alternative fuel for direct-injection four-stroke VCR engine. (orig.)

  14. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  15. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  16. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    International Nuclear Information System (INIS)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians

  17. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    To accurately represent how conservation and efficiency policies affect energy demand, both direct and indirect impacts need to be included in the accounting. The indirect impacts are defined here as the resource savings that accrue over the fuel production chain, which when added to the energy consumed at the point of use, constitute the full-fuel- cycle (FFC) energy. This paper uses the accounting framework developed in (Coughlin 2012) to calculate FFC energy metrics as time series for the period 2010-2040. The approach is extended to define FFC metrics for the emissions of greenhouse gases (GHGs) and other air-borne pollutants. The primary focus is the types of energy used in buildings and industrial processes, mainly natural gas and electricity. The analysis includes a discussion of the fuel production chain for coal, which is used extensively for electric power generation, and for diesel and fuel oil, which are used in mining, oil and gas operations, and fuel distribution. Estimates of the energy intensity parameters make use of data and projections from the Energy Information Agency’s National Energy Modeling System, with calculations based on information from the Annual Energy Outlook 2012.

  18. A valuation study of fuel supply stability of nuclear energy

    International Nuclear Information System (INIS)

    Nagano, Koji; Nagata, Yutaka; Hitomi, Kazumi; Hamagata, Sumio; Asaoka, Yoshiyuki

    2008-01-01

    In order to assess potential benefits of nuclear power with regard to its characteristics of fuel supply stability, the following three aspects are valuated under the Japanese energy and electricity mix: a) economic stability; i.e. nuclear power's contribution to the whole energy and electricity mix in terms of resistance to fluctuation and/or fuel price hikes, b) procurement stability; i.e. natural uranium, the raw fuel material for nuclear power generation, is being imported from more reliable sources through adequately diverse markets than in the cases of oil and natural gas, and, c) passive reserve effect; i.e. fuel materials as running stocks at power stations and fuel service facilities could maintain nuclear power generation running for a certain duration under unexpected disruption of fuel supply. (author)

  19. Diesel fuel from vegetable oil via transesterification and soap pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.

    2002-09-15

    Transesterifications of 6 vegetable oil samples in supercritical methanol (SC MeOH) were studied without using any catalyst. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The variables affecting the methyl ester yielded during the transesterification reaction, such as the molar ratio of alcohol to vegetable oil and reaction temperature, were investigated. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, while methyl esters of vegetable oils are the slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. (author)

  20. EXPERIMENTAL STUDY OF PALM OIL MILL EFFLUENT AND OIL PALM FROND WASTE MIXTURE AS AN ALTERNATIVE BIOMASS FUEL

    Directory of Open Access Journals (Sweden)

    S. HASSAN, L. S. KEE

    2013-12-01

    Full Text Available Palm oil mill effluent (POME sludge generated from palm oil mill industry and oil palm frond (OPF from oil palm plantation are considered biomass wastes that can be fully utilized as a renewable energy sources. In this study, an attempt has been made to convert these residues into solid biomass fuel. The study was conducted by developing experimental testing on the POME and OPF mixture. The performance of each sample with different weight percentage was investigated using standard tests. The biomass mixture was converted into compressed form of briquette through a simple process. The properties of the briquettes were observed and compared at different weight percentage following standard testing methods included ultimate and proximate analyses, burning characteristics, dimensional stability and crack analysis. Experimental results showed that POME sludge and OPF mixture is feasible as an alternative biomass fuel, with briquette of 90:10 POME sludge to OPF ratio has a good combination of properties as an overall.

  1. Resolution 127/012. It approve the fuel quality 50-S Oil Gas characteristics within the framework of Technical Quality Specifications Rules for liquid fuel

    International Nuclear Information System (INIS)

    2012-01-01

    This resolution approves the initiative of Ancap fuel quality 50-S Oil Gas characteristics within the framework of Technical Quality Specifications Rules for liquid fuel. This resolution is according to the opinion of the National Energy Regulatory Unit and the Energy and Water Services in relation with the requirements of the current rule.

  2. Development and evaluation of analytical techniques for total chlorine in used oils and oil fuels

    International Nuclear Information System (INIS)

    Gaskill, A. Jr.; Estes, E.D.; Hardison, D.L.; Friedman, P.H.

    1990-01-01

    A current EPA regulation prohibits the sale for burning in nonindustrial boilers of used oils and oil fuels. This paper discusses how analytical techniques for determining total chlorine were evaluated to provide regulatory agencies and the regulated community with appropriate chlorine test methods. The techniques evaluated included oxygen bomb combustion followed by chemical titration or ion chromatography, instrumental microcoulometry, field test kits, and instrumental furnace/specific ion electrode determinator, a device based on the Beilstein reaction, and x-ray fluorescence spectrometry. These techniques were subjected to interlaboratory testing to estimate their precision, accuracy, and sensitivity. Virgin and used crankcase oils, hydraulic and metalworking oils, oil fuels and oil fuel blends with used oils were tested. The bomb techniques, one of the test kits, microcoulometry and all but one x-ray analyzer were found to be suitable for this application. The chlorine furnace and the Beilstein device were found to be inapplicable at the levels of interest

  3. Fuel oil systems for standby diesel-generators

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard provides the design requirements for fuel oil system for diesel-generators that provide standby power for a nuclear power generating station. The system includes all essential equipment from and including fuel oil storage tanks up to the terminal connection on the diesel-engine. It does not include that portion of the fuel oil system supplied by the diesel-generator manufacturer which is in accordance with Trial-Use Criteria for Diesel-Generator Units Applied as Standby Power Supplies for Nuclear Power Generating Stations, IEEE-387-1972. This definition of scope is intended to exclude only those factory-assembled, engine-mounted appurtances supplied with a diesel-generator unit. Integral tanks are, however, within the scope of this Standard. It also excludes motors, motor control centers, switchgear, cables, and other electrical equipment which is used in operation of the fuel oil system, except to define interface requirements

  4. Pyrolysis bio-oil upgrading to renewable fuels.

    Science.gov (United States)

    2014-01-01

    This study aims to upgrade woody biomass pyrolysis bio-oil into transportation fuels by catalytic hydrodeoxygenation : (HDO) using nanospring (NS) supported catalyst via the following research objectives: (1) develop nanospring-based : catalysts (nan...

  5. Oil crops: requirements and possibilities for their utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, G; Schoenefeldt, J; Mehring, I [OeHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1995-12-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author) 5 refs, 4 figs, 4 tabs

  6. Automobile industry and new bio-fuel oils: International panorama

    International Nuclear Information System (INIS)

    Hampel, G.

    1992-01-01

    In assessing the technical/economic feasibility of the direct combustion of vegetable oils in diesel type engines, this paper first points out the good results obtained in performance tests on these fuels in Elsberg engines, and their low sulfur and nitrogen oxides and carbon dioxide emission characteristics. It then assesses the improvements that are necessary in the development of marketable bio-fuel oils that conform to European Communities air pollution standards for automobiles. Further efforts must be made to reduce bio-fuel oil smoke emission levels, to compensate for their lower calorific value as compared with conventional diesel fuels, and to make them compatible with automobile finishing materials - paints and plastics. The paper suggests a set of suitable fiscal policies designed to favour the marketing of bio-diesel fuels based on their favourable pollution abating qualities - low greenhouse gas emissions and biodegradability

  7. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  8. Application of game theory in decision making strategy: Does gas fuel industry need to kill oil based fuel industry?

    Science.gov (United States)

    Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami

    2017-03-01

    Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.

  9. Non-OPEC Oil Supply: Economics and Energy Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Mourik, Maarten van [Paris (France); Shepherd, Richard K. [Perpignan (France)

    2003-07-01

    shift in investment strategy than the lure of better profits. However strong the evidence of an imminent peaking of offshore and perhaps total non-OPEC oil supply, the reality is that governments will not readily recognise a 'bad news' scenario that will inevitably tarnish their own political image. It follows that a global and permanent threat to their economies and energy security from a shortfall in oil supply outside the Persian Gulf and central Asia will only become a policy assumption if viable and attractive energy policy options are available. If there is single focus to any energy supply threat, then it is the market for transportation fuels, the strongest growing segment of the energy market and the only segment of the energy market where there are no significant alternatives already on offer. The second half of this paper suggests that there are industrial or financial obstacles to the large-scale introduction of fuels other than current specification gasoline and diesel. Almost all the current initiatives to explore and encourage alternative fuels address a long-term future in which fuel cells or hydrogen or 'California-clean' liquids replace the current fuels at the pump. Further, most research concentrates on the environmental aspects of the alternatives rather than their large-scale industrial availability. Yet the hard reality is that any solution to the global oil supply dilemma must be large scale (at least 10% of the total market for transportation fuels) and soon, which means within a decade. The technical facts are that fuels such as ethanol and methanol can be produced in very large volumes and delivered to the consumer without any significant change to the huge infrastructure constituted by the global internal combustion engine manufacturing industry and by the existing fuel distribution networks. This large, immediate and obvious opportunity has not been grasped so far for the excellent reason that the status quo is profitable

  10. Melon oil methyl ester: an environmentally friendly fuel

    Directory of Open Access Journals (Sweden)

    S.K. Fasogbon

    2015-06-01

    Full Text Available Demand for energy is growing across the globe due to the direct relationship between the well-being and prosperity of people and energy usage. However, meeting this growing energy demand in a safe and environmentally friendly manner is a key challenge. To this end, methyl esters (biodiesels have been and are being widely investigated as alternatives to fossil fuels in compression ignition engines. In this study, melon (Colocynthis Citrullus Lanatus oil was used to synthesize biodiesel (methyl ester using the transesterification method in the presence of a sodium hydroxide promoter. The emissions profile of the biodiesel was investigated by setting up a single-cylinder four-stroke air-cooled CI engine connected to a TD115-hydraulic dynamometer and an Eclipse Flue Gas Analyzer (FGA with model number EGA4 flue gas analyzer. The engine was run at engine speeds of 675, 1200 and 1900rpm for biodiesel/diesel blends at 21°C on a volume basis of 0/100(B0, 10/90(B10, 20/80(B20, 30/70(B30, 40/60(B40 and 50/50(B50. The test showed a downward trend in the emissions profile of the biodiesel, with remarkable reductions of about 55% in the dangerous-carbon monoxide exhaust gas pollutant and 33.3% in the unfriendly SOX from 100% diesel to B30-biodiesel concentration. Increasing the speed from 675 to 1200 and then to 1900 rpm also afforded further reductions in CO and SOX exhaust emissions. NOX however increased marginally by 2.1% from the same 100% diesel to the B30-biodiesel composition. Based on the remarkable reduction in CO and SOX and the marginal increase in NOX as the concentration of the biodiesel increased in the blends, the study concludes that melon oil methyl ester is an environmentally friendly fuel.

  11. Experimental investigation on fuel properties of biodiesel prepared from cottonseed oil

    Science.gov (United States)

    Payl, Ashish Naha; Mashud, Mohammad

    2017-06-01

    In recent time's world's energy demands are satisfied by coal, natural gas as well as petroleum though the prices of these are escalating. If this continues, global recession is unavoidable and diminution of world reserve accelerates undoubtedly. Recently, Biodiesel is found to be more sustainable, non-toxic and energy efficient alternative which is also biodegradable. The use of biofuels in compression ignition engines is now a contemplation attention in place of petrochemicals. In view of this, cottonseed oil is quite a favorable candidate as an alternative fuel. The present study covers the various aspects of biodiesels fuel prepared from cottonseed oil. In this work Biodiesel was prepared from cottonseed oil through transesterification process with methanol, using sodium hydroxide as catalyst. The fuel properties of cottonseed oil methyl esters, kinematic viscosity, flash point, density, calorific value, boiling point etc. were evaluated and discussed in the light of Conventional Diesel Fuel. The properties of biodiesel produced from cotton seed oil are quite close to that of diesel except from flash point. And so the methyl esters of cottonseed oil can be used in existing diesel engines without any modifications.

  12. Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands

    International Nuclear Information System (INIS)

    Nasiri, Masoud; Ramazani Khorshid-Doust, Reza; Bagheri Moghaddam, Nasser

    2013-01-01

    Countries face many problems for the development of renewable energy technologies. However these problems are not the same for different countries. This paper provides insight into the development of Hydrogen and Fuel Cell Technology (HFCT) in Iran (1993–2010), as an alternative for increasing sustainability of energy system in long-term. This is done by applying the Technological Innovation System (TIS) approach and studying the structure and dynamics of seven key processes that affect the formation of HFCT TIS. Thereafter, the pattern of HFCT development in Iran is compared with the Netherlands, using a multi-level perspective. Then, it is shown that under-development and oil-dependency, which are two macro-economic factors at landscape level, can explain the main differences between these countries at regime and niche levels. This means that macro-economic factors cause Iran and the Netherlands to experience different ways for the development of HFCT. - Highlights: • Hydrogen and fuel cell technology development is modeled, using innovation systems. • This technology development in Iran and Netherlands are compared. • The causes of underdevelopment of this technology in Iran are explained

  13. Energy conservation and oil substitution at a dairy company

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    Energy consumption data at the Bay of Islands Co-Operative Dairy Company for the 1980-1981 season were collected and analyzed according to energy demand and supply. Although oil consumption had been significantly reduced in the last few years, it was still a disproportionately large item in the energy budget. Given the existing coal handling facilities it seemed feasible to completely eliminate the need for oil except as a standby fuel. The study examined various options and three measures were proposed to achieve this goal. These were: (1) addition of two effects to the main evaporator, (2) replacement of the oil-fired spray drying air heater with steam coils, and (3) installation of coal-fired low pressure hot water boilers and associated pipework.

  14. The potential of the Malaysian oil palm biomass as a renewable energy source

    International Nuclear Information System (INIS)

    Loh, Soh Kheang

    2017-01-01

    Highlights: • An energy resource data for oil palm biomass is generated. • The data encompasses crucial fuel and physicochemical characteristics. • These characteristics guide on biomass behaviors and technology selection. • Oil palm biomass is advantageous in today’s energy competitive markets. • Overall, it is a green alternative for biorefinery establishment. - Abstract: The scarcity of conventional energy such as fossil fuels (which will lead to eventual depletion) and the ever-increasing demand for new energy sources have resulted in the world moving into an era of renewable energy (RE) and energy efficiency. The Malaysian oil palm industry has been one of the largest contributor of lignocellulosic biomass, with more than 90% of the country’s total biomass deriving from 5.4 million ha of oil palms. Recent concerns on accelerating replanting activity, improving oil extraction rate, expanding mill capacity, etc. are expected to further increase the total oil palm biomass availability in Malaysia. This situation has presented a huge opportunity for the utilization of oil palm biomass in various applications including RE. This paper characterizes the various forms of oil palm biomass for their important fuel and other physicochemical properties, and assesses this resource data in totality – concerning energy potential, the related biomass conversion technologies and possible combustion-related problems. Overall, oil palm biomass possesses huge potential as one of the largest alternative energy sources for commercial exploitation.

  15. US oil policy and energy security

    International Nuclear Information System (INIS)

    Noel, P.

    2002-05-01

    Although the energy dependence reached its historical maximum and will continue to increase for the next 20 years, the USA keep their oil policy. For the economist this policy is reasonable because of the poor room for the US imports reduction costs. To explain these conclusions the author discusses on the following topics: the links between the oil dependence and the energy security, the oil policy after Reagan, the oil policy evolution - or no evolution - facing the increasing dependency and the Cheney report. (A.L.B.)

  16. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  17. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    Science.gov (United States)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  18. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Directory of Open Access Journals (Sweden)

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  19. Nuclear energy in the oils sands

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2014-01-01

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  20. Nuclear energy in the oils sands

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2014-09-15

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  1. Alcohol fuels in New Zealand's energy future

    Energy Technology Data Exchange (ETDEWEB)

    Titchener, A.L. (Liquid Fuels Trust Board, Wellington, New Zealand); Walker, B.V.

    1980-01-01

    This paper reviews the structure of energy planning, research, and development in New Zealand, and the resource bases on which future energy supplies may be expected to depend. It addresses the problem of imported liquid fuels and the means of substituting for them. Recent decisions taken by the government are outlined. New Zealand is economically and strategically vulnerable to the supply of oil. A problem of increasing importance will be the supply of middle distillate fuels, especially diesel. In the longer term, and in the absence of discovery of indigenous oil or additional gas, the resource bases for synthetic liquid fuels in New Zealand will be coal or biomass or both. Prima facie the most obvious synthetic liquid fuels are liquid hydrocarbons. However, the alcohols have a number of advantages over synthetic hydrocarbon liquids, the most important of which are higher conversion efficiency (especially when used in spark-ignition engines) and known and relatively simple conversion technology. The present programme aimed at investigating means of substituting for imported liquid fuels is planned to embrace all reasonable options. Consequently it includes a significant body of research into the alcohols as engine fuels. The present paper has reviewed this research programme. Decisions on whether to move towards alcohol fuels must be ragarded as some way in the future. (DMC)

  2. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    International Nuclear Information System (INIS)

    Dablow, J.; Hicks, R.; Cacciatore, D.

    1995-01-01

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  3. Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel)

    International Nuclear Information System (INIS)

    Banar, Müfide; Akyıldız, Vildan; Özkan, Aysun; Çokaygil, Zerrin; Onay, Özlem

    2012-01-01

    Highlights: ► We pyrolyzed Tire Derived Fuel (TDF) at different heating rates and temperatures. ► We determine convenient pyrolysis temperature for pyrolytic oil. ► The product can be used as fuel for combustion system in industry. ► TDF pyrolysis is advisable recycling system because of low hazardous constituents. - Abstract: In recent years, waste utilization before disposing to the land is the most important point about waste management. Due to the increasing emphasis on recycling, related to the two European Commission Directives (EC End of Life Vehicle Directive, EC Waste Landfill Directive) affecting the management of waste tires, there is interest in the development of alternative technologies for recycling waste tires. One of them is pyrolysis. For this purpose, a fixed bed reactor was used to pyrolysis of Tire Derived Fuel (TDF) at the temperatures of 350, 400, 450, 500, 550 and 600 °C with the heating rates of 5 and 35 °C/min. The maximum pyrolytic oil yield (38.8 wt.%) was obtained at 400 °C with 5 °C/min heating rate. The yield of pyrolytic oil decreased with increasing pyrolysis temperatures whereas the yield of gases increased. The fuel properties of the pyrolytic oil including higher heating value (HHV), elemental composition, flash point, viscosity, distillation and density were determined. Pyrolytic oil was characterized by fourier transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance spectroscopy ( 1 H NMR) and gas chromatography–mass spectroscopy (GC–MS) techniques and also, the amount of polychlorinated dibenzodioxins/polychlorinated dibenzofurans (PCDDs/PCDFs) and congener distribution characteristics were studied for determination of environmental effects. It was seen that the pyrolytic oils have similar fuel properties with the diesel. It was also found that pyrolytic oil contained 0.00118 I-TEQs/g at very low level. Finally, the pyrolytic oil can be evaluated for energy recovery according to Regulation

  4. Palm oil based biofuel using blended crude palm oil/medium fuel oil: physical and thermal properties studies. Paper no. IGEC-1-015

    International Nuclear Information System (INIS)

    Chuah, T.G.; Zakiah, M.; Wan Hasamuddin, W.H.; Hj. Ahmad, H.; Fakhru'l-Razi, A.; Robiah, Y.; Choong, T.S.Y.; Yip, Y.F.

    2005-01-01

    Crude Palm Oil (CPO) is renewable bio-based resource. It is an attractive alternative fuel which provides the potential to reduce emission problems. CPO is an example of biofuels that can be blended with petroleum distillates as a fuel in mobile engines and industrial processes to help offset the increasing energy demand. This paper highlights the results of blended Crude Palm Oil (CPO)/Medium Fuel Oil (MFO) as an alternative environmentally friendly boiler's fuel. Heating values of the blend fuels have been measured using an oxygen bomb calorimeter. Combustion performance of a blend containing 50% CPO in MFO fuel was examined using a commercial boiler. The blend burned satisfactorily without major modification to the appliance and fuel delivery system. SO 2 emissions were 51.67% lower than MFO, H 2 S decreased about 55.61% while NO x were 18.67% reduced. Results indicate potential reductions of SO 2 , H 2 S and NO x , and greenhouse gas emissions for the petroleum distillates can be replaced with this blend. (author)

  5. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    OpenAIRE

    Kurevija, Tomislav; Kukulj, Nenad; Rajković, Damir

    2007-01-01

    Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned...

  6. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    Science.gov (United States)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  7. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  8. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J; Mannila, P; Laukkanen, J [Oulu Univ. (Finland)

    1997-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  9. BIODIESEL FUELS FROM PALM OIL, PALM OIL METHYLESTER ...

    African Journals Online (AJOL)

    a

    determined by methods outlined by A.O.C.S. (American Oil Chemist Society) [12], Usoro et al. [15], Clark [2], and ... diesel have shown that novel vegetable diesels could be obtained from palm oil. .... C-H stretch for alkenes and aromatics.

  10. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    Energy Technology Data Exchange (ETDEWEB)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  11. Oil pipeline energy consumption and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1981-01-01

    This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movements over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.

  12. Fuels and Petroleum, Oil & Lubricants (POL) Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuels and Lubricants Technology Team operates and maintains the Fuels and POL Labs at TARDEC. Lab experts adhere to standardized American Society for Testing and...

  13. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  14. Oil, gas and other energies, a primer

    International Nuclear Information System (INIS)

    Legault, A.

    2007-09-01

    At a time when the topic of energy is front and centre, this book examines the basic concepts that are essential to grasping the energy issues of the 21 st century. Ail the main questions that people have about energy, especially oil and gas, are addressed, providing students, academics, journalists, representatives of government and other institutions and interested readers in general with the information they need to understand the complex, multifaceted energy sector. Abundantly illustrated, this book represents five years of exhaustive research on a fascinating and highly controversial topic. If discusses all the processes related to fossil forms of energy, from the formation of hydrocarbons (crude oil and natural gas) to the delivery of oil and gas to consumers. It also examines renewable energy options and climate change issues in addressing the major geopolitical challenges facing the energy sector. Content: 1 - The Extraordinary History of the Earth; 2 - The Formation of Oil and Gas; 3 - Energy, Past and Present; 4 - Renewable Energies; 5 - The Essence of Oil and Gas; 6 - Geography of Oil and Gas; 7 - The Outlook for Petroleum Prices and Demand Until 2030; 8 - Global Warming; 9 - Liquefied Natural Gas;10 - The Big Three: Russia, China and the United States

  15. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  16. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  17. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  18. The military and energy: Moving the United States beyond oil

    International Nuclear Information System (INIS)

    Closson, Stacy

    2013-01-01

    Energized by service members wounded and killed protecting fuel convoys in Iraq in the mid-2000s and stunned by the oil price spike in 2008, the Department of Defense (DOD) had already started to seriously address energy challenges when the Obama Administration took steps to accelerate these actions. Real-world events, a growing military realization of threats and opportunities, and an Administration intent on fostering American leadership in clean-energy innovation have coalesced to promote change across the military services in the energy domain. This has been particularly evident in the Department's efforts to lessen its oil consumption. However, the ability to turn policy into practice has met numerous challenges from within and without the defense establishment. The question remains whether the DOD will be able to move beyond oil in a significant way. By examining a series of US government policy documents and programs, this article seeks to analyze the motivations behind the drive by the DOD to reduce oil consumption, to identify the challenges in meeting this objective, and to analyze efforts underway by the Department. Given that replacing oil for the largest transport fleet in the world will take several decades, it will require a sustained leadership from senior military officials. - Highlights: • The drive for less oil is about cost, combat maneuverability, and climate change. • Culture of oil, lagging research and development, and lack of leadership pose challenges. • Ultimately, the US Congress questioning the necessity to replace oil could derail the effort. • Lessening operational oil use could take several decades of sustained leadership

  19. Consuming the world's energy: Update series. Energy efficiency trends in oil countries

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This issue of Energy Detente addresses energy efficiency in selected oil producing countries over time and compare the varying effects of important crude oil price changes. As economies around the world heighten their benefits from conservation and efficient use of energy, oil producers will be crucial examples not only for their own sakes, but for consuming countries dependent upon their exports. In this sense, their potential for leadership and vision seems greater than ever. Specifically, 6 oil-exporting countries are featured: Australia, Kuwait, Indonesia, Nigeria, the United Kingdom, and Venezuela. This issue also presents the following: (1) the ED Refining Netback Data Series for the US Gulf and West Coasts, Rotterdam, and Singapore as of February 21, 1992; and (2) the ED Fuel Price/Tax Series for countries of the Eastern Hemisphere, February, 1992 edition

  20. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  1. From oil sands to transportation fuels, to electricity, to hydrogen

    International Nuclear Information System (INIS)

    Yildirim, E.

    1993-01-01

    The Alberta Chamber of Resources programs and initiatives on oil sands and heavy oil, and strategies for revitalizing oilsands development in Alberta are described. The regional upgrader and satellite production facilities concept, and technology requirements for mineable oil sands by the year 2010 are discussed. Strategic alliances in furtherence of oil sands research and development and the National Task Force on Oil Sands Strategies are described. Changes in requirements for transportation fuels due to stricter regulations and environmental initiatives will cause a trend to lighter fuels with more hydrogen content, less aromatics, nitrogen, sulfur and metals. A preferred refinery configuration will be able to process heavier crudes and synthetic crudes, have no heavy fuel oil product, low sulfur products, low aromatics with high octane, and low operating cost. A regional or central facility that combines the processing capabilities of a bitumen upgrader with the process units of a refinery is preferred. Advantages of this concept are: value addition to the feedstock is maximized; dependence on refineries is eliminated; restriction on synthetic crude oil volumes due to capacity limitations at refineries is eliminated; directly marketable finished products are produced; more stringent quality specifications are satisfied; and the synergies between upgrading and refining improve overall economics of processing. It is recommended that the concept of regional upgraders be adopted for Alberta, strategic alliances be encouraged, incentives for bitumen production be provided, and a bitumen pipeline network be developed. 12 refs

  2. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  3. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    Science.gov (United States)

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers.

  4. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  5. Physicochemical characterizations of nano-palm oil fuel ash

    Science.gov (United States)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  6. Physicochemical characterizations of nano-palm oil fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah (Malaysia); Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia); Ismail, Mohammad [Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru (Malaysia)

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  7. Research on weathering and biomarkers in heavy fuel oil

    International Nuclear Information System (INIS)

    Ma, Q.; Li, Z.; Yu, Z.

    2008-01-01

    The fate of oil spilled in the ocean depends on several physicochemical and biological factors such as evaporation, dissolution, microbial degradation and photo-oxidation. These weathering processes decrease the low molecules in spilled oils which reduces the harmful effects of spilled oil to the ocean and biota near the spill. In addition to changing the composition of the oil, some weathering processes are key to identifying the spilled oil. As such, the relationship between the weathering processes and the changes in oil composition must be well understood. This paper used gas chromatography and mass spectrometry (GC/MS) to analyze changes of chemical components in heavy fuel oil by weathering in static seawater. The major alkanes of heavy fuel oil include C8 to C33, while the major aromatics include benzene, naphthalene, phenanthrene and dibenzothiophene. After 24 weeks of weathering in seawater, the alkanes from n-C8 to n-C15 evaporated in order of increasing carbon number. The susceptibility of n-alkanes was correlated with carbon numbers. The aromatics evaporated in order of increasing carbon and ring number as weathering time increased. 8 refs., 3 tabs., 5 figs

  8. Biodiesel fuels from palm oil, palm oil methylester and ester-diesel ...

    African Journals Online (AJOL)

    Because of increasing cost and environmental pollution effects of fossil fuels, palm oil, its methylester and ester-diesel blends were analyzed comparatively with diesel for their fuel properties that will make them serve as alternatives to diesel in diesel engines. Equally, the samples were comparatively analyzed for their trace ...

  9. Oil Prices and the Renewable Energy Sector

    OpenAIRE

    Kyritsis, Evangelos; Serletis, Apostolos

    2017-01-01

    Energy security, climate change, and growing energy demand issues are moving up on the global political agenda, and contribute to the rapid growth of the renewable energy sector. In this paper we investigate the effects of oil price shocks, and also of uncertainty about oil prices, on the stock returns of clean energy and technology companies. In doing so, we use monthly data that span the period from May 1983 to December 2016, and a bivariate structural VAR model that is modified to accommod...

  10. Oil sand synfuel production using nuclear energy

    International Nuclear Information System (INIS)

    Barnert, H.

    1984-10-01

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  11. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  12. Thermal Effects by Firing Oil Shale Fuel in CFB Boilers

    Science.gov (United States)

    Neshumayev, D.; Ots, A.; Parve, T.; Pihu, T.; Plamus, K.; Prikk, A.

    It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mineral matter. These thermal effects are calcite and dolomite decomposing, marcasite FeS2 oxidising, CaO sulphation and formation of the new minerals. The given paper deals with the experimental study of the influence of these thermal effects of oil shale fuel having different heating value on total amount of heat released during combustion in calorimetric bomb, circulating fluidized bed (CFB) and pulverized-firing boiler (PFB). The large-scale (250 MWth) experiments were performed in the K11-1 CFB boiler of the Balti Power Plant. During experiments low heating value of a fuel varied within the range 8.5-11 MJ/kg. At the end some conclusions were drawn.

  13. Crude oil and finished fuel storage stability: An annotated review

    Energy Technology Data Exchange (ETDEWEB)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  14. IEA Energy Technology Essentials: Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-04-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Fuel cells is the topic covered in this edition.

  15. Thermal properties and burning efficiency of crude oils and refined fuel oil

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Alva, Wilson Ulises Rojas; Mindykowski, Pierrick Anthony

    2017-01-01

    The thermal properties and burning efficiencies of fresh and weathered crude oils and a refined fuel oil were studied in order to improve the available input data for field ignition systems for the in-situ burning of crude oil on water. The time to ignition, surface temperature upon ignition, heat......-cooled holder for a cone calorimeter under incident heat fluxes of 0, 5, 10, 20, 30, 40 and 50 kW/m2. The results clearly showed that the weathered oils were the hardest to ignite, with increased ignition times and critical heat fluxes of 5-10 kW/m2. Evaporation and emulsification were shown...

  16. Energy deposition in NSRR test fuels

    International Nuclear Information System (INIS)

    Ohnishi, Nobuaki; Tanzawa, Sadamitsu; Tanzawa, Tomio; Kitano, Teruaki; Okazaki, Shuji

    1978-02-01

    Interpretation of fuel performance data collected during inpile testing in the NSRR requires a knowledge of the energy deposition or enthalpy increase in each sample tested. The report describes the results of absolute measurement of fission products and contents of uranium in irradiated test fuels which were performed to determine the energy deposition. (auth.)

  17. Energy security externalities and fuel cycle comparisons

    International Nuclear Information System (INIS)

    Bohi, D.; Toman, M.

    1994-01-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons

  18. Energy security externalities and fuel cycle comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Bohi, D; Toman, M

    1994-07-01

    Externalities related to 'energy security' may be one way in which the full social costs of energy use diverge from the market prices of energy commodities. Such divergences need to be included in reckoning the full costs of different fuel cycles. In this paper we critically examine potential externalities related to energy security and issues related to the measurement of 2 these externalities, in the context of fuel cycle comparisons.

  19. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China

    International Nuclear Information System (INIS)

    Dai Du; Hu Zhiyuan; Pu Gengqiang; Li He; Wang Chengtao

    2006-01-01

    The Guangxi Zhuang autonomous region has plentiful cassava resources, which is an ideal feedstock for fuel ethanol production. The Guangxi government intends to promote cassava fuel ethanol as a substitute for gasoline. The purpose of this study was to quantify the energy efficiency and potentials of a cassava fuel ethanol project in the Guangxi region based on a 100 thousand ton fuel ethanol demonstration plant at Qinzhou of Guangxi. The net energy value (NEV) and net renewable energy value (NREV) are presented to assess the energy and renewable energy efficiency of the cassava fuel ethanol system during its life cycle. The cassava fuel ethanol system was divided into five subsystems including the cassava plantation/treatment, ethanol conversion, denaturing, refueling and transportation. All the energy and energy related materials inputs to each subsystem were estimated at the primary energy level. The total energy inputs were allocated between the fuel ethanol and its coproducts with market value and replacement value methods. Available lands for a cassava plantation were investigated and estimated. The results showed that the cassava fuel ethanol system was energy and renewable energy efficient as indicated by positive NEV and NREV values that were 7.475 MJ/L and 7.881 MJ/L, respectively. Cassava fuel ethanol production helps to convert the non-liquid fuel into fuel ethanol that can be used for transportation. Through fuel ethanol production, one Joule of petroleum fuel, plus other forms of energy inputs such as coal, can produce 9.8 J of fuel ethanol. Cassava fuel ethanol can substitute for gasoline and reduce oil imports. With the cassava output in 2003, it can substitute for 166.107 million liters of gasoline. With the cassava output potential, it can substitute for 618.162 million liters of gasoline. Cassava fuel ethanol is more energy efficient than gasoline, diesel fuel and corn fuel ethanol but less efficient than biodiesel

  20. The oil companies' move toward energy

    International Nuclear Information System (INIS)

    Burucoa, X.

    1999-01-01

    The oil companies have taken advantage of the deregulation of the energy market to extend their core business. By choice or by necessity, they are becoming multi-energy suppliers. Their level of investment in the renewable energy sector goes to show that the trend is a lasting one. The other energy sector companies, whether they are partners or competitors, cannot remain indifferent to this development

  1. Thermally decomposed ricebran oil as a diesel fuel

    Directory of Open Access Journals (Sweden)

    Megahed, O. A.

    1998-04-01

    Full Text Available Ricebran oil; a non edible oil, was thermally decomposed using different loads of calcium oxide as catalyst. The fuel properties of the cracked product were evaluated as compared to those of diesel fuel. The considered properties included the calorific value, flash point, viscosity, pour point, distillation characteristics, cetane number in addition to some other fuel properties. The results had shown that the fuel properties of the decomposed oil were quite similar to those of standard diesel fuel. The calorific value was 80-90% that of diesel fuel and the viscosity was sligthy higher. The prepared fuel was advantageous over diesel fuel as the former was completely free from sulfur, which on fuel combustion produces corrosive gases of sulfur oxides.

    Aceite de germen de arroz, un aceite no comestible, fue descompuesto térmicamente usando diferentes cantidades de óxido cálcico como catalizador. Las propiedades combustibles del producto craqueado fueron evaluadas comparándolas con las del gasóleo. Las propiedades consideradas incluyeron el poder calorífico, punto de inflamación, viscosidad, temperatura de fluidez crítica, características de destilación, número de cetano y otras propiedades de los combustibles. Los resultados han mostrado que las propiedades combustibles del aceite descompuesto fueron bastantes similares a la de los gasóleos estándar. El poder calorífico fue del 80-90% de la del gasóleo y la viscosidad ligeramente mayor. El combustible preparado fue ventajoso sobre el gasóleo ya que el primero estaba completamente libre de sulfuro, el cual produce en la combustión del carburante gases corrosivos de óxido de azufre.

  2. An Empirical Analysis of the Price Discovery Function of Shanghai Fuel Oil Futures Market

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Liu Zhenhai; Chen Chao

    2007-01-01

    This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such as unit root test, co-integration test, error correction model, Granger causality test, impulse-response function and variance decomposition. The results showed that there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the futures price of Shanghai fuel oil futures market. In addition, the Shanghai fuel oil futures market exhibits a highly effective price discovery function.

  3. Post Oil America and a Renewable Energy Policy Leads to the Abrogation of the Middle East to China

    Science.gov (United States)

    2009-04-01

    Pollack, “Securing the Gulf,” Foreign Affairs 82, no. 4 (Jul/Aug 2003): 2. 7 Ian Rutledge, Addicted to Oil: America’s Relentless Drive for Energy... whale oil and other animal fats to fuel lamps, until 1886 23 “The Story of Oil in...February 11, 2009). Rutledge, Ian. Addicted to Oil: America’s Relentless Drive for Energy Security. London: I.B. Tauris, 2005. Safran, Nadav. Saudi

  4. Crude palm oil as fuel extender for diesel engines

    International Nuclear Information System (INIS)

    Mohamed M El-Awad; Fuad Abas; Mak Kian Sin

    2000-01-01

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  5. 78 FR 36278 - Fuel Oil Systems for Emergency Power Supplies

    Science.gov (United States)

    2013-06-17

    ... Emergency Diesel Generators,'' (reaffirmed in October 2007) with the exceptions and clarification stated in... with NRC regulations for assuring the quality of fuel oil for emergency diesel generators used in..., Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001...

  6. Characterization of a Treated Palm Oil Fuel Ash | Hassan | Science ...

    African Journals Online (AJOL)

    Palm oil fuel ash (POFA) has been known to possess a pozzolanic property. ... for 1.5 hours in a ball mill to reduce the particle size and to improve reactivity. ... that POFA is a good candidate for various applications by ceramic industries.

  7. Sludge derived fuel technique of sewage sludge by oil vacuum evaporation drying

    International Nuclear Information System (INIS)

    Kim, Seokhwan; Lim, Byungran; Lee, Sookoo

    2010-01-01

    Sewage sludge contains high content of organic materials and its water content is also very high about 80% even after filtration process. Landfill as a sludge treatment methods can cause odor problem and leachate production which can derive the secondary contamination of soil and groundwater. The ocean dumping will be prohibited according to the London Convention and domestic stringent environmental regulation. Based on domestic agenda on organic sewage sludge treatment, the ocean disposal will be prohibited from 2012, thus alternative methods are demanded. Sludge derived fuel (SDF) technology can alleviate the emission of greenhouse gas and recover energy from sludge. For proper treatment and SDF production from sludge, the vacuum evaporation and immersion frying technology was adopted in this research. This technology dries moisture in sludge after mixing with oil such as Bunker C oil, waste oil or waste food oil etc. Mixing sludge and oil secures liquidity of organic sludge to facilitate handling throughout the drying process. The boiling temperature could be maintained low through vacuum condition in whole evaporation process. This study was performed to find the optimum operating temperature and pressure, the mixing ratio of sludge and oil. Finally, we could obtained SDF which moisture content was less than 5%, its heating value was over 4,500 kcal/ kg sludge. This heating value could satisfy the Korean Fuel Standard for the Recycle Products. Assessed from the perspective of energy balance and economic evaluation, this sludge drying system could be widely used for the effective sludge treatment and the production of SDF. (author)

  8. Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

    Directory of Open Access Journals (Sweden)

    Awodumi Olabanji Benjamin

    2016-05-01

    Full Text Available This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

  9. Laser induced fluorescence measurements of the mixing of fuel oil with air

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Hubschmid, W; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    We report on measurements of the mixing of fuel oil with air at atmospheric pressure in an industrial premixed gas turbine burner. The concentration of the vaporized fuel oil was measured with laser induced fluorescence. We reason that the fuel oil concentration can be considered with good accuracy as proportional to the fluorescence intensity. (author) 6 fig., 3 refs.

  10. Sustitución de fuel oil por gas natural en ANDERCOL Medellín

    OpenAIRE

    Peña Puerto, José Miguel; Ayala Mendoza, Miguel Eduardo

    2008-01-01

    Introduction. This article shows the evaluation of the demand and the tendencies of fuel in the plant of ANDERCOL-Medellín, the current and future trends of the prices for the fuels available (fuel oil and natural gas) and also the operation costs, the investments required for their substitution and the limitations and benefits of substituting fuel oil with natural gas. Objective. To evaluate the impact of substituting fuel oil with natural gas in the ANDERCOL´s plant in Medell...

  11. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  12. Energy Security Analysis: The case of constrained oil supply for Ireland

    International Nuclear Information System (INIS)

    Glynn, James; Chiodi, Alessandro; Gargiulo, Maurizio; Deane, J.P.; Bazilian, Morgan; Gallachóir, Brian Ó

    2014-01-01

    Ireland imports 88% of its energy requirements. Oil makes up 59% of total final energy consumption (TFC). Import dependency, low fuel diversity and volatile prices leave Ireland vulnerable in terms of energy security. This work models energy security scenarios for Ireland using long term macroeconomic forecasts to 2050, with oil production and price scenarios from the International Monetary Fund, within the Irish TIMES energy systems model. The analysis focuses on developing a least cost optimum energy system for Ireland under scenarios of constrained oil supply (0.8% annual import growth, and –2% annual import decline) and subsequent sustained long term price shocks to oil and gas imports. The results point to gas becoming the dominant fuel source for Ireland, at 54% total final energy consumption in 2020, supplanting oil from reference projections of 57% to 10.8% TFC. In 2012, the cost of net oil imports stood at €3.6 billion (2.26% GDP). The modelled high oil and gas price scenarios show an additional annual cost in comparison to a reference of between €2.9bn and €7.5bn by 2020 (1.9–4.9% of GDP) to choose to develop a least cost energy system. Investment and ramifications for energy security are discussed. - Highlights: • We investigate energy security within a techno-economic model of Ireland to 2050. • We impose scenarios constraints of volume and price derived from IMF forecasting. • Continued high oil prices lead to natural gas supplanting oil at 54% TFC by 2020. • Declining oil production induces additional energy system costs of 7.9% GDP by 2020. • High oil and gas prices are likely to strain existing Irish gas import infrastructure

  13. New lube oil for stationary heavy fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

  14. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  15. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Connatser, Raynella M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Lewis, Samuel Arthur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Gaston, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center

    2017-12-05

    We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  16. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  17. Energy Systems in the Era of Energy Vectors A Key to Define, Analyze and Design Energy Systems Beyond Fossil Fuels

    CERN Document Server

    Orecchini, Fabio

    2012-01-01

    What lies beyond the era of fossil fuels? While most answers focus on different primary energy resources, Energy Systems in the Era of Energy Vectors provides a completely new approach. Instead of providing a traditional consumption analysis of classical primary energy resources such as oil, coal, nuclear power and gas, Energy Systems in the Era of Energy Vectors describes and assesses energy technologies, markets and future strategies, focusing on their capacity to produce, exchange, and use energy vectors. Special attention is given to the renewable energy resources available in different areas of the world and made exploitable by the integration of energy vectors in the global energy system. Clear definitions of energy vectors and energy systems are used as the basis for a complete explanation and assessment of up-to-date, available technologies for energy resources, transport and storage systems, conversion and use. The energy vectors scheme allows the potential realisation of a worldwide sustainable ener...

  18. Say no to fossil fuels and yes to nuclear energy

    International Nuclear Information System (INIS)

    Raghava Chari, S.

    2011-01-01

    Mistaken notion and wrongful fear of nuclear energy based on the horrors of the second world war bombing of Nagasaki and Hiroshima and accidents at Chernobyl and Three mile island and lately the Fukushima nuclear plant meltdown to earthquake and and tsunami have developed antagonism to nuclear energy (NE) and clouded its usefulness as a practical, clean, environment friendly and affordable alternate source of energy. Such antagonism has slowed down research on NE and its adoption on a much wider scale, the crying need of the day. There is a motivated disinformation campaign against nuclear energy in India as witnessed from the ongoing agitation at Kudankulam in Tamil Nadu and Jaitapur in Maharashtra. In fact nuclear energy is the only practical alternative energy source to meet the ever increasing energy needs of the world particularly the developing nations, and to save the world from the greenhouse ill effects of massive carbon dioxide and other emissions from burning fossil fuels like coal, oil and natural gas. Emissions from fossil fuel burning including radioactive emissions are hundreds of times more in weight and volume and far more hazardous than from an equal capacity nuclear plant. In fact there are no greenhouse gases (CO 2 ), acid rain gases (SO 2 ) or carcinogen emissions (NO x ) from nuclear plants. The accident rates and severity of accidents owing to nuclear plants is much lower as compared to fossil fuel power generation. Last but not the least NE offers economic freedom from the clutches of the few monopolistic oil producing countries, which charge exorbitant oil prices and cripple the finances of developing nations. (author)

  19. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Lehto, Jani; Oasmaa, Anja; Solantausta, Yrjö; Kytö, Matti; Chiaramonti, David

    2014-01-01

    Highlights: • Review of state-of-the-art fast pyrolysis oil combustion in burner applications. • Fast pyrolysis oil has been found to be suitable for industrial scale utilization. • Curves for NO x -emissions for air-assisted atomization burners are presented. • Quality control, combined with standards and specifications is recommended. - Abstract: Fast pyrolysis bio-oils are completely different from petroleum fuels and other bio-fuels available in the market, as regards both to their physical properties and chemical composition. When the unusual properties of these bio-oils are carefully taken into account in system and burner design, their combustion without a pilot flame or support fuel is possible on an industrial scale. The aim of the paper is to review the work done on combustion of fast pyrolysis bio-oils and highlight the latest and most important findings of its combustion from laboratory fundamentals to industrial scale. The main focus of the paper is on the bio-oil burner applications. In recent industrial scale bio-oil combustion tests, bio-oil has been found to be technically suitable for replacing heavy fuel oil in district heating. In addition, it has also been found out that limited possibilities for further lowering particulate emissions exist, since the majority of the particulates are typically incombustible matter. Curves for NO x -emissions of fast pyrolysis bio-oil combustion for air-assisted atomization burners are presented in the paper. Current burner designs are quite sensitive to the changes in the quality of the bio-oil, which may cause problems in ignition, flame detection and flame stabilization. Therefore, in order to be able to create reliable bio-oil combustion systems that operate at high efficiency, bio-oil grades should be standardized for combustion applications. Careful quality control, combined with standards and specifications, all the way from feedstock harvesting through production to end-use is recommended in

  20. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  1. Oil Dependence, Climate Change and Energy Security: Will Constraints on Oil Shape our Climate Future or Vice Versa?

    Science.gov (United States)

    Mignone, B. K.

    2008-12-01

    Threats to US and global energy security take several forms. First, the overwhelming dependence on oil in the transport sector leaves the US economy (and others) vulnerable to supply shocks and price volatility. Secondly, the global dependence on oil inflates prices and enhances the transfer of wealth to authoritarian regimes. Finally, the global reliance on fossil fuels more generally jeopardizes the stability of the climate system. These three threats - economic, strategic and environmental - can only be mitigated through a gradual substitution away from fossil fuels (both coal and oil) on a global scale. Such large-scale substitution could occur in response to potential resource constraints or in response to coordinated government policies in which these externalities are explicitly internalized. Here, I make use of a well-known integrated assessment model (MERGE) to examine both possibilities. When resource limits are considered alone, global fuel use tends to shift toward even more carbon-intensive resources, like oil shale or liquids derived from coal. On the other hand, when explicit carbon constraints are imposed, the fuel sector response is more complex. Generally, less stringent climate targets can be satisfied entirely through reductions in global coal consumption, while more stringent targets require simultaneous reductions in both coal and oil consumption. Taken together, these model results suggest that resource constraints alone will only exacerbate the climate problem, while a subset of policy-driven carbon constraints may yield tangible security benefits (in the form of reduced global oil consumption) in addition to the intended environmental outcome.

  2. Influence of Chemical Blends on Palm Oil Methyl Esters’ Cold Flow Properties and Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2014-07-01

    Full Text Available Alternative fuels, like biodiesel, are being utilized as a renewable energy source and an effective substitute for the continuously depleting supply of mineral diesel as they have similar combustion characteristics. However, the use of pure biodiesel as a fuel for diesel engines is currently limited due to problems relating to fuel properties and its relatively poor cold flow characteristics. Therefore, the most acceptable option for improving the properties of biodiesel is the use of a fuel additive. In the present study, the properties of palm oil methyl esters with increasing additive content were investigated after addition of ethanol, butanol and diethyl ether. The results revealed varying improvement in acid value, density, viscosity, pour point and cloud point, accompanied by a slight decrease in energy content with an increasing additive ratio. The viscosity reductions at 5% additive were 12%, 7%, 16.5% for ethanol, butanol and diethyl ether, respectively, and the maximum reduction in pour point was 5 °C at 5% diethyl ether blend. Engine test results revealed a noticeable improvement in engine brake power and specific fuel consumption compared to palm oil biodiesel and the best performance was obtained with diethyl ether. All the biodiesel-additive blend samples meet the requirements of ASTM D6751 biodiesel fuel standards for the measured properties.

  3. Fuels, energy, and the environment

    CERN Document Server

    Karim, Ghazi A

    2012-01-01

    All complicated materials of combustion science are presented in a very clear and precise manner … This is the book, in my opinion, that every combustion, fire safety, and fuel engineer should have. … equally useful to newcomers … [and] experienced professionals and researchers in the area.-S.O. Bade Shrestha, Western Michigan University The book covers all aspects of fuels, not just … chemistry or combustion. Of particular importance and actuality are those issues related to safety and environmental impact. Furthermore, the variety of fuels and processes discussed is very wide.-Giuseppe Spazz

  4. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  5. Studies on dual fuel operation of rubber seed oil and its bio-diesel with hydrogen as the inducted fuel

    Energy Technology Data Exchange (ETDEWEB)

    Edwin Geo, V.; Nagalingam, B. [Department of Mechanical Engineering, KCG College of Technology, Chennai, Tamil Nadu 600097 (India); Nagarajan, G. [Department of Mechanical Engineering, IC Engineering Division, Anna University, Chennai, Tamil Nadu 600025 (India)

    2008-11-15

    The main problems with the use of neat vegetable oils in diesel engines are higher smoke levels and lower thermal efficiency as compared to diesel. The problem can be tackled by inducting a gaseous fuel in the intake manifold along with air. In this investigation, hydrogen is used as the inducted fuel and rubber seed oil (RSO), rubber seed oil methyl ester (RSOME) and diesel are used as main fuels in a dual fuel engine. A single cylinder diesel engine with rated output of 4.4 kW at 1500 rpm was converted to operate in the dual fuel mode. Dual fuel operation of varying hydrogen quantity with RSO and RSOME results in higher brake thermal efficiency and significant reduction in smoke levels at high outputs. The maximum brake thermal efficiency is 28.12%, 29.26% and 31.62% with RSO, RSOME and diesel at hydrogen energy share of 8.39%, 8.73% and 10.1%, respectively. Smoke is reduced from 5.5 to 3.5 BSU with RSOME and for RSO it is from 6.1 to 3.8 BSU at the maximum efficiency point. The peak pressure and maximum rate of pressure rise increase with hydrogen induction. Heat release rate indicates an increase in the combustion rate with hydrogen induction. On the whole it is concluded that hydrogen can be inducted along with air in order to reduce smoke levels and improve thermal efficiency of RSO and its bio-diesel fuelled diesel engines. (author)

  6. PM From the Combustion of heavy fuel oils

    KAUST Repository

    Elbaz, Ayman M.

    2018-03-30

    This work presents an experimental study investigating the formation and oxidation of particulate matter from the combustion of heavy fuel oil, HFO, droplets. The study includes results from both a falling droplet in a drop tube furnace and a suspended droplet in a heated convective flow. The falling droplets in a heated coflow air with variable temperature path and velocity were combusted and the resulting particles, cenospheres, were collected. To characterize the microstructure of these particles, scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analysis were used. The particles were found to have either a porous or a skeleton/membrane morphology. The percentage of particles of either type appears to be related to the thermal history, which was controlled by the heated co-flow velocity. In the suspended droplet experiments, by suspending the droplet on a thermocouple, the temperature inside the droplet was measured while simultaneously imaging the various burning phases. A number of specific phases were identified, from liquid to solid phase combustion are presented and discussed. The droplet ignition temperature was seen to be independent of the droplet size. However, the liquid phase ignition delay time and the droplet lifetime were directly proportional to the initial droplet diameter.

  7. Effect of energy taxation on fuel choice and emissions

    International Nuclear Information System (INIS)

    Leino, P.; Kosunen, P.; Rauhamaeki, J.

    1997-01-01

    The aim of the project was to study how various tax models for power plant fuels affect the fuel consumption and emissions of particles, sulphur dioxide (SO 2 ), nitrogen oxide (NO x ) and carbon dioxide (CO 2 ). First, the development of Finnish energy taxation is discussed, followed by a survey of the energy production structure for 1994. For this purpose, it was necessary to prepare a large boiler database, which covers about 95 % of the fuel consumption of Finnish energy production. The boiler database was used to calculate the emissions of particles, SO 2 , NO x and CO 2 in 1994. The year 2010 selected under review is the year by which the Ministry of Trade and Industry has prepared their primary energy consumption estimates. Four different alternatives were studied as future tax models. In the first alternative taxation would be as it in years 1995-1996 and in the second alternative taxation would be as in January 1997. In the third alternative the Finnish application of EU taxes would be in force in full, i.e., the tax on heavy fuel oil would be 10 US dollars a barrel. In the fourth alternative there would be no taxes on fuels. The boiler database was used to find out how the consumption distribution of the fuels used in 2010 would change in the various tax models. The tax models affect most the position of fuel peat and natural gas in Finland. If the EU alternative, which is favourable for fuel peat and natural gas, comes true, the consumption of fuel peat will grow by two thirds and the consumption of natural gas will more than double from the present level. If the taxation is as 1 January 1997, the consumption of peat will remain the same as today and the consumption of natural gas will grow by about 50 %. However, if there are no taxes on fuels, the consumption of fuel peat will fall by almost a third and the consumption of natural gas will remain the same as expected at the existing and planned plants. The effect of the various tax models on emissions

  8. Study of fuel properties of rubber seed oil based biodiesel

    International Nuclear Information System (INIS)

    Ahmad, Junaid; Yusup, Suzana; Bokhari, Awais; Kamil, Ruzaimah Nik Mohammad

    2014-01-01

    Graphical abstract: - Highlights: • This article presents the comparative studies of the fuel properties of rubber seed oil based biodiesel. • The design expert has been adopted for the optimization of the process variables. • The FTIR, cold flow properties and oxidation stability are the findings of present study. • All the fuel properties met the standards such as ASTM D6751 and EN 14214. • Present study reveals that rubber seed oil as a non-edible source potentially contributes for esters production. - Abstract: The scarcity of the fossil fuel, environmental pollution and food crisis are the world’s major issues in current era. Biodiesel is an alternative to diesel fuel, environment friendly and biodegradable and is produced from either edible or non-edible oils. In this study, a non-edible rubber seed oil (RSO) with high free fatty acid (FFA) content of 45% were used for the production of biodiesel. The process comprises of two steps. The first step is the acid esterification to reduce the FFA value and the second step is the base transesterification. The response surface methodology (RSM) was used for parametric optimization of the two stage processes i.e. acid esterification and base transesterification. The yield of biodiesel was analyzed using gas chromatography. The FTIR (Fourier Transform Infra-Red) spectrum was also determined to confirm the conversion of fatty acid to methyl esters. The fuel properties were analyzed according to the ASTM D6751 and EN14214 and were compared with the previous finding of researchers. All analyzed properties fulfilled the biodiesel standard criteria

  9. Fueling diesel engines with methyl-ester soybean oil

    International Nuclear Information System (INIS)

    Schumacher, L.G.; Hires, W.G.; Borgelt, S.C.

    1993-01-01

    Two 5.9 liter Cummins engines were fueled for a combined total of more than 80,467 km (50,000 miles). One truck, a 1991 Dodge, has been driven approximately 48,280 km (30,000 miles). The other, a 1992 Dodge, has been driven approximately 32,187 km (20,000 miles). Fueling these engines with soydiesel increase engine power by 3 percent (1991 engine) and reduced power by 6 percent (1992 engine). The pickups averaged more than 7.1 km/L (16.7 mpg). Analysis of used engine oil samples indicated that the engines were wearing at normal rate. The black exhaust smoke normally observed when a diesel engine accelerates was reduced as much as 86 percent when the diesel engine was fueled with 100% soydiesel. Increased EPA exhaust emissions requirements for diesel engines have created much interest in the use of soydiesel as fuel for diesel engines

  10. Economic Analysis of Diesel-Fuel Replacement by Crude Palm Oil in Indonesian Power Plants

    Directory of Open Access Journals (Sweden)

    Petr Procházka

    2018-02-01

    Full Text Available Indonesia needs to find an alternative fuel to substitute diesel in their power plants in order to reduce the use of nonrenewable energy sources. The Indonesian government has a target to reduce oil fuel consumption while improving the efficiency of energy utilization. Crude palm oil is proposed to be used for this substitution. In this paper, the authors conduct an economic analysis of the replacement of diesel by crude palm oil. To predict future prices, a time series analysis is conducted using AutoRegressive Integrated Moving-Average method. A financial analysis of a specific project (0.75-MW power plant is conducted using static financial indicators (payback period, return on investment. Results show that replacing diesel with crude palm oil may be profitable. This is especially true for the proposed prospects of diesel price evolution. Analysis shows that the price of crude oil, which is the main factor in the pricing of diesel, may go up. Also, recently Indonesian currency depreciated against the US dollar, which also implies a higher cost of diesel.

  11. Production of rapeseed oil fuel in decentralized oil extraction plants. Handbook. 2. new rev. and enl. ed.; Herstellung von Rapsoelkraftstoff in dezentralen Oelgewinnungsanlagen. Handbuch

    Energy Technology Data Exchange (ETDEWEB)

    Remmele, Edgar [Technologie- und Foerderzentrum (TFZ) im Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany)

    2009-11-15

    Increasing oil prices, the dependence on petroleum imports and the desire to reduce the CO{sub 2} emissions, are arguments to accelerate the production and utilization of biofuels. In 2007, 3.3 million tons of biodiesel and 772,000 tons of vegetable oil were used as fuel. The technically and economically successful production of rapeseed oil fuel in decentralized oil mills requires a quality assurance. Specifically, the brochure under consideration reports on the following: (1) Oilseed processing; (2) Centralized oil production in Germany; (3) Design of a decentralized oil mill; (4) Production of rapeseed oil fuel in decentralized systems; (5) Quality assurance for rapeseed oil fuel in decentralized oil mills; (6) Properties of rapeseed oil fuel; (7) Quality of rapeseed oil fuel from decentralized oil mills; (8) Economic aspects of decentralized oil extraction; (9) Legal framework conditions.

  12. Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig

    International Nuclear Information System (INIS)

    Xu, Yufu; Wang, Qiongjie; Hu, Xianguo; Li, Chuan; Zhu, Xifeng

    2010-01-01

    The diesel fuel was mixed with the rice husk bio-oil using some emulsifiers based on the theory of Hydrophile-Lipophile Balance (HLB). The lubricity of the bio-oil/diesel fuel blend was studied on a High Frequency Reciprocating Test Rig (HFRR) according to ASTM D 6079-2004. The microscopic topography and chemical composition on the worn surface were analyzed respectively using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The profile and surface roughness of the rubbed trace were measured using a profilometer. The chemical group and composition were studied by a Fourier transform infrared spectrometry (FTIR). The results showed that the lubrication ability of the present fuel blend was better than that of the Chinese conventional diesel fuel (number zero). However, the anti-corrosion and anti-wear properties of the fuel blend were not satisfactory in comparison with those of conventional diesel fuel.

  13. Physical Properties of Biomass Fuel Briquette from Oil Palm ...

    African Journals Online (AJOL)

    ADOWIE PERE

    of fuel briquettes in this study in order to supplement the energy mix of the nation. PKS was pulverized ... fossil fuel in the world market is impacting negatively ... useful products that can be applied in many sectors ... at 350 µm, 250 µm and 150 µm with Octagon digital ... formula is one of the models developed to accurately.

  14. Rise of oil prices and energy policy

    International Nuclear Information System (INIS)

    2005-01-01

    This document reprints the talk of the press conference given by D. de Villepin, French prime minister, on August 16, 2005 about the alarming rise of oil prices. In his talk, the prime minister explains the reasons of the crisis (increase of worldwide consumption, political tensions in the Middle East..) and presents the strategy and main trends of the French energy policy: re-launching of energy investments in petroleum refining capacities and in the nuclear domain (new generation of power plants), development of renewable energy sources and in particular biofuels, re-launching of the energy saving policy thanks to financial incentives and to the development of clean vehicles and mass transportation systems. In a second part, the prime minister presents his policy of retro-cession of petroleum tax profits to low income workers, and of charge abatement to professionals having an occupation strongly penalized by the rise of oil prices (truckers, farmers, fishermen, taxi drivers). (J.S.)

  15. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  16. Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2017-10-01

    Full Text Available Mandarin (Citrus reticulata is one of the most popular fruits in tropical and sub-tropical countries around the world. It contains about 22–34 seeds per fruit. This study investigated the potential of non-edible mandarin seed oil as an alternative fuel in Australia. The seeds were prepared after drying in the oven for 20 h to attain an optimum moisture content of around 13.22%. The crude oil was extracted from the crushed seed using 98% n-hexane solution. The biodiesel conversion reaction (transesterification was designed according to the acid value (mg KOH/g of the crude oil. The study also critically examined the effect of various reaction parameters (such as effect of methanol: oil molar ratio, % of catalyst concentration, etc. on the biodiesel conversion yield. After successful conversion of the bio-oil into biodiesel, the physio-chemical fuel properties of the virgin biodiesel were measured according to relevant ASTM standards and compared with ultra-low sulphur diesel (ULSD and standard biodiesel ASTM D6751. The fatty acid methyl esters (FAMEs were analysed by gas chromatography (GC using the EN 14103 standard. The behaviour of the biodiesel (variation of density and kinematic viscosity at various temperatures (10–40 °C was obtained and compared with that of diesel fuel. Finally, mass and energy balances were conducted for both the oil extraction and biodiesel conversion processes to analyse the total process losses of the system. The study found 49.23 wt % oil yield from mandarin seed and 96.82% conversion efficiency for converting oil to biodiesel using the designated transesterification reaction. The GC test identified eleven FAMEs. The biodiesel mainly contains palmitic acid (C16:0 26.80 vol %, stearic acid (C18:0 4.93 vol %, oleic acid (C18:1 21.43 vol % (including cis. and trans., linoleic acid (C18:2 4.07 vol %, and less than one percent each of other fatty acids. It is an important source of energy because it has a higher

  17. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  18. Solar energy for electricity and fuels.

    Science.gov (United States)

    Inganäs, Olle; Sundström, Villy

    2016-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorganic, or hybrid materials for light collection and catalysis. We also briefly discuss challenges and needs for large-scale implementation of direct solar fuel technologies.

  19. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  20. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  1. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  2. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  3. Application of jatropha oil and biogas in a dual fuel engine for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, E.

    2008-06-15

    In this thesis, the technical feasibility of using jatropha oil and biogas for dual fuel generators is investigated. This technology could be used for electricity generation in rural areas in developing countries. The use of jatropha oil and biogas is considered a sustainable energy supply, when both fuels are produced locally. The local production of fuel and generation of electricity could result in economic development and poverty reduction. In order to investigate the technical feasibility, a parameter study is performed, an experimental set-up is constructed and experiments are carried out. Three performance parameters are investigated: thermal efficiency, because it is a direct measure for fuel efficiency; volumetric efficiency, because it is a measure for power output; and air-excess ratio, because it influences particulate emissions and HC emissions. The parameter study is conducted, to predict the effect of dual fuel operation, by deriving expressions for the performance parameters. The experiments are carried out to assess the effect of dual fuel operation on performance and to find the operation limits (smoke limit and knock limit). Experiments are carried out on a 12 kW diesel generator set. The jatropha oil that is used is pure oil. Biogas mainly consists of methane and carbon dioxide. Simulated, bottled, biogas of different quality is used (i.e. CH4/CO2 ratios). Pure methane is also tested as gaseous fuel. Gas is added to the inlet air with a venturi. The design of the venturi limited the gas flow; consequently the maximum heat release fraction of methane was 80% for pure methane and approximately 70% for biogas. Tests were performed at 6, 8 and 10 kW load. The engine showed a thermal efficiency characteristic for pure jatropha oil operation, which is expected for a diesel generator. The characteristic for jatropha oil did not deviate from that of diesel. At full load, thermal efficiency is approximately 32%. Under dual fuel operation, with biogas, at

  4. The energy future and the chemical fuels

    International Nuclear Information System (INIS)

    Bockris, J.O'M.

    1976-01-01

    An account is first given of the origin of present chemical fuels, with particular reference to the lastingness of coal. Methods of estimation of these fuels are discussed and the greenhouse effect arising from the burning of coal is described. Consideration is then given to methods available for extending the uses of chemical fuels, including interfacing them with new inexhaustible, clean energy sources. Finally, accounts are given of the Hydrogen Economy and of the production of chemical fuels from wind energy in massive wind belts. The paper includes references to the part that nuclear power was expected to play in future energy policy. Problems of breeder reactor development and the safety and management of plutonium and radioactive wastes are discussed. (author)

  5. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    OpenAIRE

    Sudipta De; Rafael Luque

    2014-01-01

    The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as wel...

  6. Solar energy for electricity and fuels

    OpenAIRE

    Ingan?s, Olle; Sundstr?m, Villy

    2015-01-01

    Solar energy conversion into electricity by photovoltaic modules is now a mature technology. We discuss the need for materials and device developments using conventional silicon and other materials, pointing to the need to use scalable materials and to reduce the energy payback time. Storage of solar energy can be achieved using the energy of light to produce a fuel. We discuss how this can be achieved in a direct process mimicking the photosynthetic processes, using synthetic organic, inorga...

  7. Nutrient demand in bioventing of fuel oil pollution

    International Nuclear Information System (INIS)

    Breedveld, G.D.; Hauge, A.; Olstad, G.

    1995-01-01

    The effect of nutrient addition on bioventing of fuel oil pollution in an artificially polluted sandy soil has been studied at different experimental scales to assess the predictive value of laboratory treatability studies. The results of batch studies, laboratory column studies, and pilot-scale field tests (10 tons of soil) were compared. The qualitative response to nutrient addition was comparable in all experiments. Without nutrient addition, a minimal respiration rate was observed. With nutrient addition, respiration rates increased almost instantaneously. The highest rates were observed in the batch studies. The column study and pilot-scale field test indicated similar respiration rates, at approximately one sixth the respiration rates in the batch study. Respiration rates in the pilot-scale field study decreased during the winter season. Analysis of the residual oil composition in soil samples showed a relation between the degree of weathering, measured as the n-C 17 /pristane and n-C 18 /phytane ratio, and nutrient addition. Lower n-C 17 /pristane ratios were observed at higher total nitrogen content. After 1 year of bioventing with nutrient addition, a 66% reduction in TPH content was observed. Without nutrient addition, the residual oil still closely resembled the original fuel oil product, with only minor removal of the light-end compounds

  8. Energy infrastructure modeling for the oil sands industry: Current situation

    International Nuclear Information System (INIS)

    Lazzaroni, Edoardo Filippo; Elsholkami, Mohamed; Arbiv, Itai; Martelli, Emanuele; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • A simulation-based modelling of energy demands of oil sands operations is proposed. • Aspen simulations used to simulate delayed coking-based upgrading of bitumen. • The energy infrastructure is simulated using Aspen Plus achieving self-sufficiency. • Various scenarios affecting energy demand intensities are investigated. • Energy and CO_2 emission intensities of integrated SAGD/upgrading are estimated. - Abstract: In this study, the total energy requirements associated with the production of bitumen from oil sands and its upgrading to synthetic crude oil (SCO) are modeled and quantified. The production scheme considered is based on the commercially applied steam assisted gravity drainage (SAGD) for bitumen extraction and delayed coking for bitumen upgrading. In addition, the model quantifies the greenhouse gas (GHG) emissions associated with the production of energy required for these operations from technologies utilized in the currently existing oil sands energy infrastructure. The model is based on fundamental engineering principles, and Aspen HYSYS and Aspen Plus simulations. The energy demand results are expressed in terms of heat, power, hydrogen, and process fuel consumption rates for SAGD extraction and bitumen upgrading. Based on the model’s output, a range of overall energy and emission intensity factors are estimated for a bitumen production rate of 112,500 BPD (or 93,272 BPD of SCO), which were determined to be 262.5–368.5 MJ/GJ_S_C_O and 14.17–19.84 gCO_2/MJ_S_C_O, respectively. The results of the model indicate that the majority of GHG emissions are generated during SAGD extraction (up to 60% of total emissions) due to the combustion of natural gas for steam production, and the steam-to-oil ratio is a major parameter affecting total GHG emissions. The developed model can be utilized as a tool to predict the energy demand requirements for integrated SAGD/upgrading projects under different operating conditions, and

  9. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel

  10. Fuel vegetable oils under some economic considerations; Oleos vegetais combustiveis sob algumas consideracoes economicas

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Anna Lucia [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia]|[Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)). Centro de Tecnologia de Embalagem]. E-mail: anna@ital.sp.gov.br

    2006-07-01

    The introduction of bio diesel in the Brazilian energy matrix has been mainly motivated by the governmental actions, which foresees social and economical development to the country in a program that allows the use of different oil seed crops as raw materials for bio fuel production. Cost estimates considering the average price received by the farmer and the oil content of each vegetable shows that the minimum cost of bio fuel was about 1.1(castor bean); 1.8(peanut); 2.0(soy beans); 3.3(corn) higher than the average cost of fossil diesel from 1975 to 2004. Among the evaluated raw materials, only the palm oil had inferior cost compared to the petroleum diesel (0.6%). The oleaginous plants that have a higher oil content and smaller agricultural production cost to produce bio fuels are economically most feasible and they should be prioritized in the Government Program so that it may become economically sustainable along the years, as well as generate adequate profit to the farmers of each culture. (author)

  11. Oil and gas products and energy equipment

    International Nuclear Information System (INIS)

    1996-01-01

    The planned activities of the Canadian oil and gas products and energy equipment industry for 1996-1997, were presented. The sector is made up of approximately 1500 small and medium sized enterprises. The Canadian oil field manufacturing and servicing industry holds only a small 2.5% share of the world export market, but it is recognized internationally as one of the leading suppliers of advanced petroleum equipment. Their exports include specialized equipment for extracting oil sands, gathering and treatment facilities for sour gas, underbalanced drilling technologies, equipment for wells experiencing declining production rates, top motor drives, winter drilling rigs, and horizontal drilling technologies. They also offer petroleum industry software products. Most exploration and production equipment sold abroad by Canadian firms is manufactured in Canada, but there is an increasing trend toward manufacturing in the country of operation. 2 tabs

  12. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Low - temperature properties of rape seed oil biodiesel fuel and its blending with other diesel fuels

    International Nuclear Information System (INIS)

    Kampars, V.; Skujins, A.

    2004-01-01

    The properties of commercial bio diesel fuel depend upon the refining technique and the nature of the renewable lipids from which it is produced. The examined bio diesel fuel produced from rape seed oil by the Latvian SIA 'Delta Riga' has better low-temperature properties than many other bio diesels; but a considerably higher cloud point (-5,7 deg C), cold filter plugging point (-7 deg C) and pour point (-12 deg C) than the examined petrodiesel (grade C, LST EN 590:2000) from AB 'Mazeikiu nafta'. The low-temperature properties considerably improve if blending of these fuels is used. The blended fuels with bio diesel contents up to 90% have lower cold filter plugging points than petrodollar's. The estimated viscosity variations with temperature show that the blended fuels are Arrenius-type liquids, which lose this property near the cold filter plugging point. (authors)

  14. Nuclear fuel and energy policy

    International Nuclear Information System (INIS)

    Ahmed, S.B.

    1979-01-01

    This book examines the uranium resource situation in relation to the future needs of the nuclear economy. Currently the United States is the world's leading producer and consumer of nuclear fuels. In the future US nuclear choices will be highly interdependent with the rest of the world as other countries begin to develop their own nuclear programs. Therefore the world's uranium resource availability has also been examined in relation to the expected growth in the world nuclear industry. Based on resource evaluation, the study develops an economic framework for analyzing and describing the behavior of the US uranium mining and milling industry. An econometric model designed to reflect the underlying structure of the physical processes of the uranium mining and milling industry has been developed. The purpose of this model is to forecast uranium prices and outputs for the period 1977 to 2000. Because uncertainty has sometimes surrounded the economic future of the uranium markets, the results of the econometric modeling should be interpreted with great care and restrictive assumptions. Another aspect of this study is to provide much needed information on the operations of government-owned enrichment plants and the practices used by the government in the determination of fuel enrichment costs. This study discusses possible future developments in enrichment supply and technologies and their implications for future enrichment costs. A review of the operations involving the uranium concentrate conversion to uranium hexafluoride and fuel fabrication is also provided. An economic analysis of these costs provides a comprehensive view of the front-end costs of the nuclear fuel cycle

  15. Upgrading of raw tall oil soap into fuel oils and lubricants; Raakasuovan jalostus poltto- ja voiteluoeljyksi

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A; Arpiainen, V; McKeough, P; Tapola, E; Haekkinen, R; Kuoppala, E; Koskela, K [VTT Energy, Jyvaeskylae (Finland). Energy Production Technologies

    1997-12-01

    Thermochemical processing of tall oil soap originating from various mixtures of birch and pine has been experimentally investigated. The organic matter of tall oil soap, which is a by- product of Kraft pulping, originates mainly from wood extractives. Conventional processing of tall oil soap involves acidulation with sulphuric acid to yield crude tall oil and subsequent distillation of the oil at centralised refineries. Because tall oil originating from birch wood is far less valuable than that from pine, there is an economic incentive in the Nordic countries to develop alternative conversion processes for the tall oil soap produced at pulp mills where birch is widely used as feedstock. Furthermore, thermochemical processing of tall oil soap does not introduce sulphur into the chemical recovery cycle. This would be a significant advantage in future mills employing closure of water circuits and/or sulphur-free pulping. In small-scale experiments tall oil soaps from wood mixtures with high birch content have been processed using both liquid-phase thermal treatment and pyrolysis. The liquid-phase thermal treatment at 450 deg C under a nitrogen atmosphere yielded a good-quality oil product at high yield (about 50 % of the energy content of the tall oil soap). In the atmospheric pyrolysis of birch tall oil soap a separation of inorganic and organic constituents was obtained. The energy value of the product gases was high. Both processes are promising, but the pyrolysis alternative has the greater economic potential, providing that the promising preliminary experimental results have given a true picture of the performance of the full-scale pyrolysis process. (orig.)

  16. Uppgrading of raw tall oil soap into fuel oils and lubricants; Raakasuovan jalostus poltto- ja voiteluoeljyksi

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Arpiainen, V.; McKeough, P.; Tapola, E. [VTT Energy, Espoo (Finland)

    1998-12-31

    Thermochemical processing of tall oil soap originating from various mixtures of birch and pine has been experimentally investigated. The organic matter of tall oil soap, which is a by-product of kraft pulping, originates mainly from wood extractives. Conventional processing of tall oil soap involves acidulation with sulphuric acid to yield crude tall oil and subsequent distillation of the oil at centralised refineries. Because tall oil originating from birch wood is far less valuable than that from pine, there is an economic incentive in the Nordic countries to develop alternative conversion processes for the tall oil soap produced at pulp mills where birch is widely used as feedstock. Furthermore, thermochemical processing of tall oil soap does not introduce sulphur into the chemical recovery cycle. This would be a significant advantage in future mills employing closure of water circuits and/or sulphur-free pulping. In small-scale experiments tall oil soaps from wood mixtures with high birch content have been processed using both liquid-phase thermal treatment and pyrolysis. The liquid-phase thermal treatment at 450 deg C under a nitrogen atmosphere yielded a good-quality oil product at high yield (about 50% of the energy content of the tall oil soap). In the atmospheric pyrolysis of birch tall oil soap a separation of inorganic and organic constituents was obtained. The energy value of the product gases was high. Both processes are promising, but the pyrolysis alternative has the greater economic potential, providing that the promising preliminary experimental results have given a true picture of the performance of the full-scale pyrolysis process. (orig.)

  17. Fuel cells as renewable energy sources

    International Nuclear Information System (INIS)

    Cacciola, G.; Passalacqua, E.

    2001-01-01

    The technology level achieved in fuel cell (FC) systems in the last years has significantly increased the interest of various manufacturing industries engaged in energy production and distribution even under the perspectives that this technology could provide. Today, the fuel cells (FCs) can supply both electrical and thermal energy without using moving parts and with a high level of affordability with respect to the conventional systems. FCs can utilise every kind of fuel such as hydrocarbons, hydrogen available from the water through renewable sources (wind, solar energy), alcohol etc. Thus, they may find application in many field ranging from energy production in large or small plants to the cogeneration systems for specific needs such as for residential applications, hospitals, industries, electric vehicles and portable power sources. Low temperature polymer electrolyte fuel cells (PEFC, DMFC) are preferred for application in the field of transportation and portable systems. The CNR-ITAE research activity in this field concerns the development of technologies, materials and components for the entire system: electrocatalysts, conducting supports, electrolytes, manufacturing technologies for the electrodes-electrolyte assemblies and the attainment of fuel cells with high power densities. Furthermore, some activities have been devoted to the design and realisation of PEFC fuel cell prototypes with rated power lower than I kW for stationary and mobile applications [it

  18. Short-term outlook for Canadian crude oil to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-09-01

    The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This report is intended to expand the effectiveness of the Board's monitoring activities by providing an assessment of the current state of the petroleum industry and the potential for growth. It provides an 18-month outlook on international and domestic crude oil prices; drilling and exploration activity; supply projections for Canadian crude oil and petroleum products; Canada's crude oil trade balance and markets for Canadian crude; existing export pipeline networks and project expansion plans; and, the Canadian petroleum products industry and the impact of higher prices. It also identifies the major issues and challenges associated with the development of Canada's crude oil. The 2 major oil producing areas in Canada are the Western Canada Sedimentary Basin (WCSB) including the oil sands, and offshore eastern Canada. While conventional production in the WCSB is declining, development focus has shifted to Alberta's oil sands as well as Hibernia, Terra Nova and White Rose, the 3 major oil fields offshore Newfoundland and Labrador. High energy prices have resulted in record profits for the Canadian oil and gas industry, and has stimulated billions of dollars in investment, with Alberta's oil sands being the main beneficiary. The 19 refineries in Canada have been operating at about 90 per cent capacity for the last several years due to strong demand for transportation fuels. 10 tabs., 37 figs., 2 appendices

  19. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  20. Clean fuel technologies and clean and reliable energy: a summary

    International Nuclear Information System (INIS)

    Bulatov, Igor; Klemes, Jiri Jaromir

    2011-01-01

    There are two major areas covered by this current Special Issue: Cleaner Fuel Technologies and Waste Processing. In addition, the Special Issue, also includes some recent developments in various fields of energy efficiency research. The first group of contributions considers in detail, hydrogen production from biomass and hydrogen production by the sorption-enhanced steam methane reforming process (SE-SMR). Biomass-related technologies are also discussed for a design of an integrated biorefinery, production of clean diesel fuel by co-hydrogenation of vegetable oil with gas oil and utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Waste Processing aspects are considered in the second group of papers. This section includes integrated waste-to-energy plants, utilisation of municipal solid waste in the cement industry and urban supply and disposal systems. The third topic is intentionally made rather loose: it includes different research topics on various aspects of energy efficiency, e.g. resource-saving network design, new research on divided wall columns, vehicle logistics as process-network synthesis for energy consumption and CO 2 reduction.

  1. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  2. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    Energy Technology Data Exchange (ETDEWEB)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  3. Review of palm oil fuel ash and ceramic waste in the production of concrete

    Science.gov (United States)

    Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar

    2017-11-01

    High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.

  4. Quality evaluation of rapeseed oils used as engine fuels

    Directory of Open Access Journals (Sweden)

    Marek Světlík

    2012-01-01

    Full Text Available Samples from six reference decentralised facilities and one industrial production unit of rapeseed oils were taken for the evaluation of the influence of production processes to the properties specified in the technical standard; in the laboratories, the properties limited by the standard for rapeseed oils were determined. In addition, long-term monitoring of changes in the oxidation stability in the storage test of rapeseed oils additived in the quantities of 200, 400 and 600 mg.kg−1 of the Baynox antioxidant was started. The results confirmed that the critical points in the rapeseed oil production process consist in the contamination with ash-forming elements, such as phosphorus, magnesium, calcium and overall impurities. Not only in the case of hot pressing, but also in two-step cold pressing of rapeseed it is necessary to reduce the content of ash-forming elements using additional processes, such as degumming, neutralisation and whitening. The safety step consisting of filtration down to maximum particle size of 1 μm must be always in place before the oil distribution. A positive effect of the Baynox antioxidant was clearly proved. As 200 mg.kg−1 of Baynox was added, the oxidation stability value increased from 8 to 9.05 hrs immediately after the pressing with a consequent decrease to 6 hrs after 270 days. With using of addition 400 ppm Baynox decreased oxidation stability under 6 hours not until after 390 days of storage. With addition 600 ppm Baynox the oxidation stability of rapeseed oil even after 510 days of storage makes 6.5 hours. The quality monitoring brought about necessary findings and knowledge for the optimisation of the rapeseed oil production and distribution as engine fuels. In addition, it serves as an initial supporting document for the creation of the necessary quality control system.

  5. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  6. Determination of Vaporization Properties and Volatile Hazardous Components Relevant to Kukersite Oil Shale Derived Fuel Oil Handling

    Directory of Open Access Journals (Sweden)

    Ada TRAUMANN

    2014-09-01

    Full Text Available The aim of this study was to investigate vaporization properties of shale fuel oil in relation to inhalation exposure. The shale fuel oil was obtained from kukersite oil shale. The shale oil and its light fraction (5 % of the total fuel oil were characterized by vapor pressure curve, molecular weight distribution, elemental composition and functional groups based on FTIR spectra. The rate of vaporization from the total fuel oil at different temperatures was monitored as a function of time using thermogravimetric analysis (TGA. It is shown that despite its relatively low vapor pressure at room temperature a remarkable amount of oil vaporizes influencing air quality significantly. From the TGA data the changes in the vapor pressure during vaporization process were estimated. Although the shale fuel oil has a strong, unpleasant smell, the main hazards to workplace air quality depend on the vaporization rate of different toxic compounds, such as benzene, toluene, xylene or phenolic compounds. The presence of these hazardous substances in the vapor phase of shale fuel oil was monitored using headspace analysis coupled with selective ion monitoring (SIM and confirmed by the NIST Mass Spectral library and retention times of standards. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4549

  7. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil to Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Wara Dyah Pita Rengga

    2015-03-01

    Full Text Available Reaction kinetics of catalytic cracking of rubber seed oil to liquid fuels has been investigated. The reac-tion was performed with sulfuric acid as catalyst at temperatures of 350-450 oC and the ratio of oil-catalyst of 0-2 wt.% for 30-90 minutes. Kinetics was studied using the model of 6-lump parameters. The parameters were rubber seed oil, gasoline, kerosene, diesel, gas, and coke. Analysis of experimen-tal data using regression models to obtain reaction rate constants. Activation energies and pre-exponential factors were then calculated based on the Arrhenius equation. The simulation result illus-trated that the six-lump kinetic model can well predict the product yields of rubber seed oil catalytic cracking. The product has high selectivity for gasoline fraction as liquid fuel and the smallest amount of coke. The constant indicates that secondary reactions occurred in diesel products compared to gaso-line and kerosene. The predicted results indicate that catalytic cracking of rubber seed oil had better be conducted at 450 oC for 90 minutes using 0.5 wt.% catalyst. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd December 2013; Revised: 5th December 2014; Accepted: 7th December 2014How to Cite: Rengga, W.D.P., Handayani, P.A., Kadarwati, S., Feinnudin, A.(2015. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil  to Liquid Fuels. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 50-60. (doi:10.9767/bcrec.10.1.5852.50-60Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.5852.50-60

  8. The future of oil: unconventional fossil fuels.

    Science.gov (United States)

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  9. Full chain energy analysis of biodiesel production from palm oil in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Pleanjai, Somporn; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Road, Bangmod, Tungkru, Bangkok 10140 (Thailand)

    2009-11-15

    Biodiesel from palm oil has been considered for partial substitution of diesel fuel for transportation in Thailand. The Thai government recently has set up a production target of 8.5 million liters per day of palm oil-based biodiesel by 2011. The aim of this study is to investigate the energy consumption of palm methyl ester (PME) production in Thailand using a life cycle approach compared to other possible oil crops for biodiesel production including jatropha and coconut. The main contributors to the energy use are cultivation, oil production, transesterification and transportation. Taking into account only fossil fuel or petroleum inputs in the production cycle, the energy analysis provides results in favour of PME in Thailand. The net energy balance (NEB) and net energy ratio (NER) of PME and co-products are 100.84 GJ/ha and 3.58, respectively. The NER of PME without co-products is 2.42, which is still higher than one indicating a favourable result. The results are important in selecting an appropriate feedstock for biodiesel production and this study will support policy makers in the energy sector to make informed decisions vis-a-vis promotion of oil palm plantation for biodiesel. This will also support the Thai government in its policy to promote the use of indigenous and renewable sources for transportation fuels. (author)

  10. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    International Nuclear Information System (INIS)

    Zhiwei Zhou

    2006-01-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  11. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis

  12. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  13. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  14. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Đặng Van Uy

    2018-03-01

    Full Text Available The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixed fuel supplying to diesel engines inline. In order to ensure a quality of the mixed fuel created by continuous mixer, a homogeneous testing was introduced with believable results. Then, the continuous mixer has been installed into fuel supply system of diesel engine 6LU32 at a lab of Vietnam Maritime University in terms of checking a real operation of the fuel continuous mixer with diesel engine.

  15. Fuel alternatives for oil sands development - the nuclear option

    Energy Technology Data Exchange (ETDEWEB)

    Bock, D [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Donnelly, J K

    1996-12-31

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs.

  16. Fuel alternatives for oil sands development - the nuclear option

    International Nuclear Information System (INIS)

    Bock, D.; Donnelly, J.K.

    1995-01-01

    Currently natural gas is the fuel of choice in all oil sand developments. Alberta sources of hydrocarbon based fuels are large but limited. Canadian nuclear technology was studied as a possible alternative for providing steam for the deep commercial in situ oil sand projects which were initiated over ten years ago. Because the in situ technology of that time required steam at pressures in excess of 10 MPa, the nuclear option required the development of new reactor technology, or the use of steam compressors, which was not economical. The current SAGD (steam assisted gravity drainage) technology requires steam at pressures of less than 5 MPa, which is in the reach of existing Canadian nuclear technology. The cost of supplying steam for a SAGD in situ project using a CANDU 3 nuclear reactor was developed. The study indicates that for gas prices in excess of $2.50 per gigajoule, replacing natural gas fuel with a nuclear reactor is economically feasible for in situ projects in excess of 123 thousand barrels per day. (author). 9 refs., 3 tabs., 12 figs

  17. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  18. Preparation and research on properties of castor oil as a diesel fuel additive

    OpenAIRE

    Nurbakhit Imankulov

    2012-01-01

    The research shows an opportunity of preparing biodiesel fuel on the basis of local diesel fuel and the bioadditive - castor oil. Limiting optimum concentration of introduction of the bioadditive equal was established as 5% mass ratio. The castor oil released from seeds of Palma Christi grown on experimental field. All physical and chemical characteristics of the oil including IR-spectra were determined. Operating conditions of castor oil introduction (temperature, solubility, concentra-tion,...

  19. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  20. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    OpenAIRE

    Đặng Van Uy; Tran The Nam

    2018-01-01

    The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixe...

  1. Synthesis and characterization of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating

    Science.gov (United States)

    Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur

    2016-11-01

    The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.

  2. Chronic fuel oil toxicity in American mink (Mustela vison): systemic and hematological effects of ingestion of a low-concentration of bunker C fuel oil

    International Nuclear Information System (INIS)

    Schwartz, Julie A.; Aldridge, Brian M.; Lasley, Bill L.; Snyder, Paul W.; Stott, Jeff L.; Mohr, F. Charles

    2004-01-01

    Petroleum oil enters the coastal marine environment through various sources; marine mammals such as sea otters that inhabit this environment may be exposed to low concentrations of petroleum hydrocarbons through ingestion of contaminated prey. The inability to perform controlled studies in free-ranging animals hinders investigations of the effects of chronic petroleum oil exposure on sea otter morbidity and mortality, necessitating the development of a reliable laboratory model. We examined the effects of oral exposure to 500 ppm bunker C fuel oil over 113-118 days on American mink, a species phylogenetically related to the sea otter. Hematological parameters and organs were examined for fuel oil-associated changes. Hepatic cytochrome P4501A1 mRNA expression and fecal cortisol concentrations were also measured. Ingestion of fuel oil was associated with a decrease in erythrocyte count, hemoglobin concentration (Hgb), hematocrit (HCT), and an increase in mean corpuscular volume (MCV). Total leukocytes were elevated in the fuel oil group from increases in neutrophils, lymphocytes, and monocytes. Significant interactions between fuel oil and antigen challenge were found for erythrocyte parameters, monocyte and lymphocyte counts. Liver and adrenal weights were increased although mesenteric lymph node weights were decreased in the fuel oil group. Hepatic cytochrome P4501A1 mRNA was elevated in the fuel oil group. Fecal cortisol concentration did not vary between the two groups. Our findings show that fuel oil exposure alters circulating leukocyte numbers, erythrocyte homeostasis, hepatic metabolism and adrenal physiology and establish a framework to use mink as a model for sea otters in studying the systemic effects of marine contaminants

  3. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing; Elbaz, Ayman M.; Roberts, William L.; Im, Hong G.

    2016-01-01

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing

  4. Preliminary study of used cooking oil methyl ester as an alternative fuel for diesel engine

    International Nuclear Information System (INIS)

    Roseli, A.; El-Awad, M.M.; Yusoff, M.Z.

    2006-01-01

    An experimental work has been carried out to compare the power performance and exhaust emissions of UCOME with OD on unmodified direct injection, four stroke single cylinder and stationary Robin diesel engine. Used cooking oil was transesterified by using methanol that yields immiscible fraction of glycerol and methyl ester (biodiesel). UCOME was separated by gravity before conducting further testing on its physical, chemical and thermal properties in the laboratory. For fuel power performance analysis, fuel consumption, gross energy input, torque, brake power, BMEP and SFC of the engine were measured and calculated. The analysis showed that at high engine speeds, the engine performances with UCOME are comparable to that of OD. However, UCOME increases specific fuel consumption due to its high specific density. In term of exhaust emissions UCOME showed a net reduction in exhaust emissions of NO x as compared with those of OD. This study has given optimistic information to pave the direction for further research on diesel engine

  5. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    Directory of Open Access Journals (Sweden)

    Sudipta De

    2014-12-01

    Full Text Available The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as well as the competitive role of those catalysts in hydrotreating and hydrocracking processes.

  6. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    International Nuclear Information System (INIS)

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-01-01

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''

  7. Fusion: an energy source for synthetic fuels

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J; Steinberg, M.

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  8. Potential to reduce emissions of sulphur dioxide through reducing sulphur levels in heavy and light fuel oils - a discussion paper

    International Nuclear Information System (INIS)

    Tushingham, M.; Bellamy, J.

    2001-01-01

    Background information on the sulphur levels in light fuel oil (used in residential heating) and heavy fuel oil (used as industrial fuel oil) is provided. In addition to the description of sulphur levels in light and heavy fuel oils, the report also provides a summary of regulatory limits in Canada and elsewhere, and a description of the emission benefits of decreasing sulphur in fuels. 4 refs., 10 tabs., 12 figs

  9. Army Energy Strategy for the End of Cheap Oil

    National Research Council Canada - National Science Library

    Nygren, Kip P; Massie, Darrell D; Kern, Paul J

    2006-01-01

    ... from other critical mission elements and programs. The National Commission on Energy Policy conducted a simulation of oil supply disruptions in June 2005 and concluded that oil cost is highly sensitive to supply, U.S., foreign...

  10. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.

    Science.gov (United States)

    Brown, Kathryn E; King, Catherine K; Kotzakoulakis, Konstantinos; George, Simon C; Harrison, Peter L

    2016-09-15

    As part of risk assessment of fuel oil spills in Antarctic and subantarctic waters, this study describes partitioning of hydrocarbons from three fuels (Special Antarctic Blend diesel, SAB; marine gas oil, MGO; and intermediate grade fuel oil, IFO 180) into seawater at 0 and 5°C and subsequent depletion over 7days. Initial total hydrocarbon content (THC) of water accommodated fraction (WAF) in seawater was highest for SAB. Rates of THC loss and proportions in equivalent carbon number fractions differed between fuels and over time. THC was most persistent in IFO 180 WAFs and most rapidly depleted in MGO WAF, with depletion for SAB WAF strongly affected by temperature. Concentration and composition remained proportionate in dilution series over time. This study significantly enhances our understanding of fuel behaviour in Antarctic and subantarctic waters, enabling improved predictions for estimates of sensitivities of marine organisms to toxic contaminants from fuels in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    S Abbasi

    2018-03-01

    Full Text Available Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel about combustion, performance and emission parameters of engines. One of the parameters that have been less discussed is energy balance. In providing alternative fuels, biodiesel from waste cooking oil due to its low cost compared with biodiesel from plant oils, is the promising option. The properties of biodiesel and diesel fuels, in general, show many similarities, and therefore, biodiesel is rated as a realistic fuel as an alternative to diesel. The conversion of waste cooking oil into methyl esters through the transesterification process approximately reduces the molecular weight to one-third, reduces the viscosity by about one-seventh, reduces the flash point slightly and increases the volatility marginally, and reduces pour point considerably (Demirbas, 2009. In this study, effect of different percentages of biodiesel from waste cooking oil were investigated. Energy distribution study identify the energy losses ways in order to find the reduction solutions of them. Materials and Methods Renewable fuel used in this study consists of biodiesel produced from waste cooking oil by transesterification process (Table 1. Five diesel-biodiesel fuel blends with values of 0, 12, 22, 32 and 42 percent of biodiesel that are signs for B0, B12, B22, B32 and B42, respectively. The test engine was a diesel engine, single-cylinder, four-stroke, compression ignition and air¬cooled, series 3LD510 in the laboratory of renewable energies of agricultural faculty, Tarbiat Modarres

  12. Effects of SO2 emission regulations and fuel prices on levellized energy costs for industrial steam generation options

    International Nuclear Information System (INIS)

    Ozdogan, Sibel; Arikol, Mahir

    1992-01-01

    We discuss the impacts of SO 2 emission regulations and fuel prices on levellized energy costs of industrial steam generation options. A computer model called INDUSTEAM has been utilized. The steam-supply options comprise conventional grate-firing, bubbling and circulating fluidized beds, fuel-oil, and natural-gas-fired systems. Fuels of different SO 2 pollution potential have been evaluated assuming six environmental scenarios and varying fuel prices. A capacity range of 10-90 MW th is covered. (author)

  13. Louisiana fuels your energy needs

    Science.gov (United States)

    Coleman, B.

    2017-12-01

    We compared energy obtained from three different biomass resources: Rice hulls, Sugarcane, and Pine bark. Using a bomb calorimeter, we combusted 0.5 g of oven-dried samples in triplicate. We calculated moisture content and determined the average calories for rice hulls, sugarcane, and pine bark to be 3.69 ± 0.09, 4.00 ± 0.08, and 4.71 ± 0.21 kcal/g, respectively. Properly combusted, pine bark can be one of the most successful and profitable renewable bioenergy resources available.

  14. Emissions of Jatropha oil-derived biodiesel blend fuels during combustion in a swirl burner

    Science.gov (United States)

    Norwazan, A. R.; Mohd. Jaafar, M. N.; Sapee, S.; Farouk, Hazir

    2018-03-01

    Experimental works on combustion of jatropha oil biodiesel blends of fuel with high swirling flow in swirl burner have been studied in various blends percentage. Jatropha oil biodiesel was produced using a two-step of esterification-transesterification process. The paper focuses on the emissions of biodiesel blends fuel using jatropha oil in lean through to rich air/fuel mixture combustion in swirl burner. The emissions performances were evaluated by using axial swirler amongst jatropha oil blends fuel including diesel fuel as baseline. The results show that the B25 has good emissions even though it has a higher emission of NOx than diesel fuel, while it emits as low as 42% of CO, 33% of SO2 and 50% of UHC emissions with high swirl number. These are due to the higher oxygen content in jatropha oil biodiesel.

  15. Motor fuel taxation, energy conservation, and economic development: A regional approach

    International Nuclear Information System (INIS)

    England, Richard W.

    2007-01-01

    Combustion of motor fuels has a variety of environmental impacts on local, regional and global scales. Taxing motor fuels more heavily would mitigate those environmental impacts. However, many governments are reluctant to increase motor fuel taxes because they fear that the tax incidence will be regressive and that economic development will be impeded. Using data for the New England region of the United States, this paper argues that an oil-importing region can conserve energy, avoid regressive impacts and encourage economic development by taxing motor fuels more heavily and rebating the incremental revenues to owners of motor vehicles. (author)

  16. US oil dependency and energy security

    International Nuclear Information System (INIS)

    Noel, P.

    2002-12-01

    As an introduction to the seminar of the 30 May 2002 on the US oil dependency and energy security, the author analyzes the different factors which characterize the american petroleum market situation today. A special interest is thus done to the price increase of 1999-2000 due to the legislation evolution, the gas market tensions, the impact and the power of the OPEC on the international markets, the 11 September 2001 attempts and their political and military consequences. The author also discusses about three papers written after the seminar. (A.L.B.)

  17. Energy security and climate change: How oil endowment influences alternative vehicle innovation

    International Nuclear Information System (INIS)

    Kim, Jung Eun

    2014-01-01

    Fast growing global energy needs raise concerns on energy supply security and climate change. Although policies addressing the two issues sometimes benefit one at the expense of the other, technology innovation, especially in alternative energy, provides a win–win solution to tackle both issues. This paper examines the effect of oil endowment on the patterns of technology innovation in the transportation sector, attempting to identify drivers of technology innovation in alternative energy. The analysis employs panel data constructed from patent data on five different types of automobile-related technologies from 1990 to 2002: oil extraction, petroleum refining, fuel cells, electric and hybrid vehicles (EHV) and vehicle energy efficiency. I find that countries with larger oil endowments perform less innovation on refining and alternative technologies. Conversely, higher gasoline prices positively impact the patent counts of alternative technologies and energy efficiency technology. The findings highlight the challenges and importance of policy designs in international climate change agreements. - Highlights: • I examine the effect of oil endowment on technology innovation in the transportation sector. • An empirical model was developed for a cross-country analysis of oil endowments. • A country's oil endowment is a negative driver of alternative technologies. • Energy price is a positive driver of alternative technologies and energy efficiency technology. • Implications for domestic and international climate policy are discussed

  18. The flexfuel tractor. Invesigations on the combustion behaviour of vegetable oil fuels and on the discernability of fossil and biogenic fuels; Der Flexfuel Traktor. Untersuchungen zum Verbrennungsverhalten von Pflanzenoelkraftstoffen und zur Unterscheidbarkeit fossiler und biogener Kraftstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Dieringer, Stefanie

    2012-07-01

    Increasing energy prices, especially for fossil fuels, as well as the necessity to reduce CO{sub 2} emissions are emphasizing the advantages of self-produced vegetable oil fuels in agriculture. Monetary advantages are depending on basic conditions like farm size or tax legislation, which can be changing locally as well as temporarily. Due to the differing properties of diesel and vegetable oil fuel, engines have to be adapted to each fuel to fulfil performance requirements as well as emission limits and reliability. Knowing that there are advantages of vegetable oil compared to diesel fuel, though not always and everywhere present, it becomes obvious that the well known flexible fuel concept of passenger cars should be adapted for diesel engines of agricultural machines. So called flexfuel engines imply the detection of the fuel type and an automated adjustment of the engine control parameters without any manual action of an operator. Therefore, the first step consists of the evaluation of the combustion properties of rapeseed, sunflower, jatropha and false flax oil compared to diesel fuel. The tested vegetable oils showed very similar behaviour in the tested common rail diesel engine. Especially the limited emissions were met with the same engine control software with all vegetable oils. In consequence it is possible to realize a flexfuel engine using the two engine control maps available at the moment, one for diesel and the other one for vegetable oil fuels. For further investigations one oil type, namely rapeseed oil was selected to test the combustion behaviour of fuel blends made of diesel and vegetable oil. The goal was to determine the blend ratio of vegetable oil and diesel fuel at which the engine control software has to be changed from the diesel to the vegetable oil map automatically. If the fuel consists of 40% or more vegetable oil, the vegetable oil engine control map has to be selected in order to fulfil legal emission limits. Finally the

  19. No. 6 fuel oil bioremediation in fractured bedrock

    International Nuclear Information System (INIS)

    Kovacs, A.L.; Landsman, M.C.

    1995-01-01

    No. 6 fuel oil was released from underground storage vessels that were installed in 1968 at a prominent university in Washington, DC. Initial remedial efforts consisted of excavating contaminated soil and saprolite to bedrock. Bioremediation and free-product recovery were chosen as the most feasible alternatives to the remediation of residual impacts. A biolechate field consisting of a gravel bed covered by plastic sheeting with oxygen and nutrient distribution piping was constructed in the excavated pit. The leachate field was reconstructed following installation of anew tank field to serve as a permanent structure. The long-term in situ microbial degradation portion of the project was developed to reduce total petroleum hydrocarbon (TPH) levels in both the groundwater and the impact zone. A biotreatability bench study has shown a viable microbial population in the subsurface that may be adapted to degrade No. 6 fuel oil. A 1-month-long pilot study, consisting of full-scale nutrient augmentation and air sparging, was implemented. Results from air and water monitoring indicate that stimulation of microbial activity in the vadose and saturated zones is occurring. The bench-scale and field pilot studies indicate a reasonable chance for project success

  20. Green energy. Biomass fuels and the environment

    International Nuclear Information System (INIS)

    1991-01-01

    The United Nations Environment Programme has been concerned with energy/environment issues since it was first set up after the United Nations Conference on the Human Environment held in Stockholm in 1972. In the late 1970s, UNEP compiled three comprehensive reports on the the environmental impacts of the production and use of fossil fuels, nuclear energy and renewable energy sources. In 1987 it was decided to update the volume on renewable energy since knowledge of biofuels and their effects on the environment had greatly improved. Among many innovations, Brazil's decision to embark on a major, and now successful, programme to produce ethanol from sugarcane as a substitute vehicle fuel is one of the most significant. At the same time, energy tree crops, agroforestry systems and the use of plantations for environmental improvement have become issues of key importance to sustainable development in developing countries. Biomass fuels, of course, have always been important in terms of the numbers of people who use them; the significant change during the 1980s was that the potential advantages of these fuels took on a new significance in the light of environmental degradation and related issues such as greenhouse warming. The biomass fuels began to be considered as attractive energy sources in their own right - not simply as 'last resort' fuels for developing countries with only limited energy options. While this development may solve some environmental problems, it certainly raises others - the improper utilization of biomass fuels in the past has been responsible for deforestation, desertification and the ill health of many millions of the women in developing countries who use biomass fuels in unventilated huts. These issues currently affect about half of the world population. The new UNEP study was intended to provide an up-to-date evaluation of the environmental issues raised by the use of biomass fuels, and hence to reduce or eliminate their adverse impacts while

  1. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  2. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  3. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  4. An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources

    International Nuclear Information System (INIS)

    Sulaiman, F.; Abdullah, N.; Gerhauser, H.; Shariff, A.

    2011-01-01

    Malaysia has an abundance of energy resources, both renewable and non-renewable. The largest non-renewable energy resource found in Malaysia is oil, and second, is natural gas, primarily liquefied natural gas. The production and consumption of oil, gas and coal in Malaysia are given in this paper. The energy demand and supply by source are also shown in relation to the country's fuel diversification policy. In order to reduce the overall dependence on a single source of energy, efforts were undertaken to encourage the utilization of renewable resources. Forest residue and oil palm biomass are found to be potentially of highest energy value and considered as the main renewable energy option for Malaysia. Palm oil and related products represent the second largest export of Malaysia. The total oil palm planted area in Malaysia has increased significantly in recent years. This paper gives a detailed representation of oil palm planted and produced together with its yield from the year 1976 onwards. The large amounts of available forest and palm oil residues resulting from the harvest can be utilized for energy generation and other by-products in a manner that also addresses environmental concerns related to current waste disposal methods. -- Highlights: →Palm oil and related products represent the second largest export of Malaysia. →Malaysia has an abundance of energy resources, both renewable and non-renewable. →Forest and oil palm residues are the main renewable energy option for Malaysia. →Efforts were undertaken to encourage the utilization of renewable resources.

  5. US energy product supply elasticities. A survey and application to the US oil market

    International Nuclear Information System (INIS)

    Dahl, Carol; Duggan, Thomas E.

    1996-01-01

    We survey studies of simple energy supply models to find the most promising technique for developing supply elasticities in the U.S. crude oil market. The two dozen studies located include direct estimates of energy supply elasticities or cost studies from which supply or reserve elasticities can be inferred. We include all available studies for all forms of energy both primary and secondary. We find direct estimates of oil supply to obtain weak results unless depletion and price expectations are included. Oil product supply elasticities vary widely across studies but appear to be elastic. Studies that estimate reserve price elasticities by computing reserve costs appear to be the most promising for estimating reserve elasticities for fossil fuel supply. Hence we apply this technique to US oil reserves and find a reserve elasticity of 1.27

  6. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  7. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  8. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  9. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olarte, M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, T. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-07-21

    Beginning in 2010, UOP, along with the Department of Energy and other project partners, designed a pathway for an integrated biorefinery to process solid biomass into transportation fuel blendstocks. The integrated biorefinery (IBR) would convert second generation feedstocks into pyrolysis oil which would then be upgraded into fuel blendstocks without the limitations of traditional biofuels.

  10. Enhancing instruction in Fuels and Combustion Laboratory via a developed computer-assisted program for establishing efficient coal-diesel oil mixture (CDOM) fuel proportions

    Energy Technology Data Exchange (ETDEWEB)

    Maglaya, A.B. [La Salle University, Manila (Philippines). Dept. of Mechanical Engineering

    2004-07-01

    This paper discusses the relevance of digital computation in Fuels and Combustion Laboratory experiments used by the senior students of the Department of Mechanical Engineering, De La Salle University-Manila, Philippines. One of the students' experiments involved the determination of the most efficient CDOM fuel proportion as alternative fuel to diesel oil for steam generators and other industrial applications. Theoretical calculations show that it requires tedious and repetitive computations. A computer-assisted program was developed to lessen the time-consuming activities. The formulation of algorithms were based on the system of equations of the heat interaction between the CDOM fuel, combustion air and products of combustion and by applying the principles of mass and energy equations (or the First Law of Thermodynamics) for reacting systems were utilized. The developed computer-assisted program output verified alternative fuel selected through actual experimentation.

  11. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    Science.gov (United States)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  12. Method for production of fuel oils and diesel motor oils free of sediments and with unlimited miscibility

    Energy Technology Data Exchange (ETDEWEB)

    1942-01-13

    A method is described for the production of fuel and diesel oils free of sediments and with unlimited miscibility by their recovery from substances poor in hydrogen, such as tars of fossil carbon, from lignite, from peat, from schist oils, from wood, or tar oils of corresponding extracts, poorly hydrogenated carbohydrates and the like, characterized by the fact that these substances are being subjected without mixing with selective solvents to a chemical purification and then immediately subjected to a redistillation and the obtained distillates being cut with hydrogen-rich oils to obtain normal diesel oils.

  13. Energy management in fuel cell power trains

    International Nuclear Information System (INIS)

    Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O.

    2006-01-01

    In this paper, experimental results obtained on a small size fuel cell power train (1.8 kW) based on a 500 W proton exchange membrane (PEM) stack are reported and discussed with specific regard to energy management issues to be faced for attainment of the maximum propulsion system efficiency. The fuel cell system (FCS) was realized and characterized via investigating the effects of the main operative variables on efficiency. This resulted in an efficiency higher than 30% in a wide power range with a maximum of 38% at medium load. The efficiency of the overall fuel cell power train measured during both steady state and dynamic conditions (European R40 driving cycle) was about 30%. A discussion about the control strategy to direct the power flows is reported with reference to two different test procedures used in dynamic experiments, i.e., load levelled and load following

  14. Oil prices and the stock prices of alternative energy companies

    International Nuclear Information System (INIS)

    Henriques, Irene; Sadorsky, Perry

    2008-01-01

    Energy security issues coupled with increased concern over the natural environment are driving factors behind oil price movements. While it is widely accepted that rising oil prices are good for the financial performance of alternative energy companies, there has been relatively little statistical work done to measure just how sensitive the financial performance of alternative energy companies are to changes in oil prices. In this paper, a four variable vector autoregression model is developed and estimated in order to investigate the empirical relationship between alternative energy stock prices, technology stock prices, oil prices, and interest rates. Our results show technology stock prices and oil prices each individually Granger cause the stock prices of alternative energy companies. Simulation results show that a shock to technology stock prices has a larger impact on alternative energy stock prices than does a shock to oil prices. These results should be of use to investors, managers and policy makers. (author)

  15. Regeneration of used lubricating oil as a source of energy

    Directory of Open Access Journals (Sweden)

    A. T. Abdulrahim

    2001-10-01

    Full Text Available Conservation of natural resources by refining used lubricating oil was attempted in this work. Used lubricating oil was purified and distilled. The distillates obtained were divided into two temperature ranges of 60 - 210°C and 210 - 310°C. Analyses of the physicochemical properties of the two samples revealed that they have similar properties with gasoline and diesel fuels respectively. This result shows that used lubricating oils, which are usually regarded as waste, can be regenerated to obtain useful hydrocarbons that can be used as fuels to power internal combustion engines

  16. Fuel-oil boilers are improving; Les chaudieres a fioul progressent

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-08-01

    The share of domestic fuel oil consumption in France is progressively growing up in space heating applications. In order to perennialize this growth, the 'Chauffage Fioul' association has developed an advertising strategy for the promotion of fuel-oil boilers in accommodations. Short paper. (J.S.)

  17. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-15

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  18. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  19. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    International Nuclear Information System (INIS)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-01

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  20. Diesel fuel oil for increasing mountain pine beetle mortality in felled logs

    Science.gov (United States)

    S. A. Mata; J. M. Schmid; D. A. Leatherman

    2002-01-01

    Diesel fuel oil was applied to mountain pine beetle (Dendroctonus ponderosae Hopkins) infested bolts of ponderosa pine (Pinus ponderosa Lawson) in early June. Just prior to the fuel oil application and 6 weeks later, 0.5 ft2 bark samples were removed from each bolt and the numbers of live beetles counted....

  1. Access to energy and fuel poverty

    International Nuclear Information System (INIS)

    Mayer, Nathalie

    2013-01-01

    A first part addresses the issue of access to a modern and sustainable energy in developing countries, notably in rural areas of Africa and Asia. Some experiments are evoked like, for example, the financing and support of an Indonesian NGO for the construction of hydroelectric micro power plants. In this respect, decentralized solutions seem to be the most promising, but also the use of new technologies for lighting equipment using 3 energy sources (electric grid, solar energy, rechargeable battery). The Lighting Africa program is evoked. The second part addresses the issue of fuel poverty, notably in France but also in other European countries (data are provided which indicate the numbers of households unable to pay for a proper heating, or with bad quality housing). The authors outline that fuel poverty is a complex problem which requires both emergency measures and prevention programs on a medium and long term: improvement of energy efficiency in the housing sector in order to reduce consumption, implementation of new and innovating technologies (housing rehabilitation with local and green materials, R and D efforts, and development of smart meters). The economic and social dimensions of this problem of fuel poverty are outlined by members of associations

  2. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  3. Volatility spillovers in China’s crude oil, corn and fuel ethanol markets

    International Nuclear Information System (INIS)

    Haixia, Wu; Shiping, Li

    2013-01-01

    Price volatility spillovers among China’s crude oil, corn and fuel ethanol markets are analyzed based on weekly price data from September 5, 2003 to August 31, 2012, employing the univariate EGARCH model and the BEKK-MVGARCH model, respectively. The empirical results indicate a higher interaction among crude oil, corn and fuel ethanol markets after September, 2008. In the overall sample period, the results simultaneously provide strong evidence that there exist unidirectional spillover effects from the crude oil market to the corn and fuel ethanol markets, and double-directional spillovers between the corn market and the fuel ethanol market. However, the spillover effects from the corn and fuel ethanol markets to the crude oil market are not significant. -- Highlights: •Employing univariate EGARCH model and BEKK-MVGARCH model, respectively. Unidirectional spillover effects from crude oil market to corn and fuel ethanol markets. •Double-directional spillovers between corn market and fuel ethanol market. •The spillover effects from corn and fuel ethanol markets to crude oil market are not significant. •The empirical results indicate a higher interaction among crude oil, corn and fuel ethanol markets after September, 2008

  4. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Yasar, Abdulkadir; Guerue, Metin; Altiparmak, Duran

    2010-01-01

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO x emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO 2 emissions did not vary with the blend fuels significantly.

  5. Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali; Yasar, Abdulkadir [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2010-12-15

    In the experimental study, tall oil fatty and resinic acids were investigated as alternative diesel fuels. The fatty acids, obtained by distilling the crude tall oil, were esterified with methanol in order to obtain tall oil methyl ester (biodiesel). Blends of the methyl ester, resinic acids and diesel fuel were prepared for test fuels. Performance and emission tests of the test fuels were carried out in an unmodified direct injection diesel engine on full load conditions. The results showed that the specific fuel consumption (SFC) with the blend fuels did not show a significant change. CO emission and smoke level decreased up to 23.91% and 19.40%, respectively. In general, NO{sub x} emissions showed on trend of increasing with the blend fuels (up to 25.42%). CO{sub 2} emissions did not vary with the blend fuels significantly. (author)

  6. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  7. 76 FR 38117 - Notice of Intent To Prepare an Environmental Assessment Regarding DLA Energy's Mobility Fuel...

    Science.gov (United States)

    2011-06-29

    ... refined petroleum products are fungible, it is anticipated that these petroleum products produced from... ground products such as heating oil, diesel and gasoline. Although DLA Energy is the largest federal... military specification fuel is produced in the same refineries by the same methods as other commercial...

  8. Baseline energy forecasts and analysis of alternative strategies for airline fuel conservation

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The objectives of this study were to identify measures to reduce airline fuel consumption and to evaluate the impact of these alternatives on fuel consumption through 1990. To evaluate the impact of fuel conservation strategies, baseline forecasts of airline activity and energy consumption to 1990 were developed. Alternative policy options to reduce fuel consumption were identified and analyzed for three baseline levels of aviation activity within the framework of an aviation activity/energy consumption model. By combining the identified policy options, a strategy was developed to provide incentives for airline fuel conservation. Strategies and policy options were evaluated in terms of their impact on airline fuel conservation and the functioning of the airline industry as well as the associated social, environmental, and economic costs. The need for strategies to conserve airline fuel is based on air transportation's dependence upon petroleum; the current lack of alternative energy sources; the potential for disruption of air service due to crises in fuel availability such as experienced during the OPEC oil embargo; and the overall national goal of energy independence through energy conservation in all consuming sectors. The transition from the current situation to that described by strategies and policy options may require difficult adjustments by the airline industry in the short term. In the long term, however, conservation strategies can enhance the health of the airline industry as well as its fuel efficiency.

  9. Future strategies for oil shale development as a new indigenous energy resource in Jordan

    International Nuclear Information System (INIS)

    Jaber, J.O.; Tarawneh, T.

    2011-01-01

    Indigenous oil shale deposits could satisfy Jordan's demand for liquid and gaseous fuels as well as electricity for many centuries. Markets also exist for raw and retorted oil shale, spent shale, and for sulfur recovered during the upgrading and refining of crude shale oil. Although the potential benefits of oil shale development are substantial, complex and expensive facilities would be required, and these have serious economic, environmental, and social implications for the Kingdom and its people. In January 2006, the United States Trade and Development Agency (USTDA) awarded a grant to the Jordanian Ministry of Planning and International Cooperation to support the analysis of current oil shale processing technologies and the application of international expertise to the development of a oil shale industry in Jordan. The goal of the technical assistance project was to help the Government of Jordan (GoJ) establish short and long-term strategies for oil shale development and to facilitate the commercial production of shale oil in the country. This paper discusses the results of the project. The Kingdom's current energy situation and its previous work on oil shale are summarized, and the incentives and restraints on oil shale commercialization are described. Impediments to development are identified, and possible governmental responses are assessed. (author)

  10. The energy efficiency of crude oil refining in Brazil: A Brazilian refinery plant case

    International Nuclear Information System (INIS)

    Lima, Romulo S. de; Schaeffer, Roberto

    2011-01-01

    This article evaluates energy efficiency in Brazilian crude oil refining in comparison with the crude oil refining in the United States between 1930 and 2008. It aims to show that increased refinery complexity reduces the energy consumption of products of high value added. Moreover, the article shows that improvements in energy efficiency result in higher quality products and increased processing of oil. A Brazilian refinery with a capacity of 157,000 barrels per day (kbpd) was modernized in 2008 at a cost of US $1.3 billion. As a result, its capacity increased by 17%, from 157 to 189 kbpd. Its complexity index also rose from 3.2 to 6.8, allowing an improvement in the EII (energy intensity index) from 110% to 93%. In relation to the crude oil processed before being modernized, energy consumption fell from 0.75 to 0.52 MBtu (million British thermal units) per barrel processed. These proceedings show that increases in complexity reduce the energy consumed in the production of final products with high value added, such as gasoline, diesel and jet fuel. -- Highlights: → Increased refinery complexity reduces the energy consumption of products of high value added. → Improvements in refinery energy efficiency result in higher quality products and increased processing of oil. → Brazilian refineries were not affected significantly in the 2008 crisis, such as the US refineries, due to many factors. → The EII of Brazilian refining presents real opportunities for gains through changes in the profile of energy consumed.

  11. Behavior of households equipped with fuel oil heating facing the petroleum price sudden increase in 2000; Le comportement des menages equipes de chauffage au fioul face a la brutale augmentation du prix du petrole en 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This paper analyses the public attitudes facing the sudden increase of the fuel oil increase during the year 2000. This increase has got a great impact on the households equipped with fuel oil heating. The households adapted their strategy to obtain the best prices, to defer the deliveries or to reduce energy consumption by a improve of the heating performances. (A.L.B.)

  12. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    Science.gov (United States)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  13. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    Science.gov (United States)

    1980-12-01

    Variation of the Flame Length of Drop with Time (Pure No. 4 Oil) ...... ..................... .... 154 15. Variation of the Flame Length of Drop with Time...No. 4 Oil-Water Emulsion, W = 0.08) ............. .... 155 16. Variation of the Flame Length of Drop with Time (No. 4 Oil-Water Emulsion, W = 0.15...detailed study of the effects of preheating the fuel, atomizing air-flow rate, and fuel flow 10 rate on flame properties such as flame length , radiation

  14. Production of brown coal fuel dust as a high value and effective energy carrier for substituting heating oil, natural gas and black coal in the cement and metallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Kubasch, A.

    1985-01-01

    Poduction and industrial use of brown coal dust in the German Democratic Republic are reviewed. Dust production in 14 brown coal briquetting plants increased from 818.4 kt in 1980 to 2064 kt in 1984 and will exceed 4000 kt in 1990. Quality parameters of dusts according to the TGL 15380 industrial standard are listed. The railroad car loading and shipping technology is explained with the example of modern facilities of the Schwarze Pumpe briquetting plant: dust bunkers of 200 t storage capacity, pneumatic feeding and telescope discharge systems with nitrogen gas inertization, fire prevention, and railroad car cleaning equipment, rail track heating for improved winter loading conditions, etc. Since 1979 the Deuna, Karsdorf and Bernburg cement plants have been converted to brown coal dust combustion after installation of new fuel dust shipping, storage and combustion equipment. Substitution of heating oil and gas in metallurgical blast furnaces by brown coal dust is further described. Techogical advantages of the pneumatic KOSTE fuel feeding method are enumerated.

  15. Fuel choice, nuclear energy, climate and carbon

    International Nuclear Information System (INIS)

    Shpyth, A.

    2012-01-01

    For the second time since the start of commercial nuclear electricity generation, an accident has the world wondering if uranium will be among the future fuel choices in electricity production. Unfortunate when one considers the low-carbon footprint of this energy option. An accident involving a nuclear power plant, or more appropriately the perceived risks associated with an accident at a nuclear power plant, is but one of the issues that makes the impact assessment process related to nuclear energy projects challenging. Other aspects, including the time scales associated with their siting, licensing, operation and decommissioning, also contribute to the challenge. Strategic environmental assessments for future fuel choices in electricity generation, particularly ones that consider the use of life cycle assessment information, would allow for the effective evaluation of the issues identified above. But more importantly from an impact assessment perspective, provide for a comparative assertion for public disclosure on the environmental impacts of fuel choice. This would provide the public and government decision makers with a more complete view of the role nuclear energy may be able to play in mitigating the climate and carbon impacts of increased electricity production, and place issues of cost, complexity and scale in a more understandable context.

  16. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    International Nuclear Information System (INIS)

    Bhargava, A.; Timilsina, G.

    2004-01-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs

  17. Energy consumption and GHG emissions from the upstream oil and gas sector in Canada: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, A.; Timilsina, G. [Canadian Energy Research Inst., Calgary, AB (Canada)

    2004-07-01

    After electricity generation, the oil and gas sector is the most emission intensive industry in Canada. This paper presents statistical data and research by the Canadian Energy Research Institute (CERI). The aim of the research was to provide a comparative evaluation between Alberta's energy consumption and Canada-wide consumption. Data revealed that energy consumption and greenhouse gas (GHG) emissions have increased faster in Alberta in comparison to the rest of Canada, but have slowed since 1997, while emissions in the rest of Canada still continued to increase. Aggregate emission intensities were presented. It was noted that there were no significant changes in fuel mix in either Alberta or the country as a whole. Key factors contributing to rapid increase in energy consumption and GHG emissions after 1996 were: increased energy intensive production and increased use of natural gas. Charts of oil and gas use were presented in energy consumption, economic output and GHG emissions, also indicating that Canadian trends followed Alberta trends. A list of reduction measures in the oil and gas sector were provided, with figures of total reductions and cost. Future actions were outlined and included: ratification of the Kyoto Accord, the negotiation of sectoral agreements, important elements such as cost cap and percentages of reduction; the limited ability to reduce emissions at lower cost per tonne within the oil and gas sector; technology breakthroughs; and adoption of new practices such as the use of alternate fuels in energy intensive processes. tabs, figs.

  18. Life cycle energy efficiency and potentials of biodiesel production from palm oil in Thailand

    International Nuclear Information System (INIS)

    Papong, Seksan; Chom-In, Tassaneewan; Noksa-nga, Soottiwan

    2010-01-01

    Biodiesel production from palm oil has been considered one of the most promising renewable resources for transportation fuel in Thailand. The objective of this study was to analyze the energy performance and potential of the palm oil methyl ester (PME) production in Thailand. The PME system was divided into four stages: the oil palm plantation, transportation, crude palm oil (CPO) production, and transesterification into biodiesel. The results showed that the highest fossil-based energy consumption was in the transesterification process, followed by the plantation, transportation, and CPO production. A net energy value and net energy ratio (NER) of 24.0 MJ/FU and 2.5, respectively, revealed that the PME system was quite energy efficient. In addition, if all the by-products from the CPO production (such as empty fruit branches, palm kernel shells, and biogas) were considered in terms of energy sources, the NER would be more than 3.0. The PME can be a viable substitute for diesel and can decrease the need for oil imports. Based on B100 demand in 2008, PME can be substituted for 478 million liters of diesel. Moreover, with palm oil output potential and B5 implementation, it can be substituted for 1134 million liters of diesel. (author)

  19. In situ oil burning in the marshland environment : soil temperatures resulting from crude oil and diesel fuel burns

    International Nuclear Information System (INIS)

    Bryner, N.P.; Walton, W.D.; Twilley, W.H.; Roadarmel, G.; Mendelssohn, I.A.; Lin, Q.; Mullin, J.V.

    2001-01-01

    The unique challenge associated with oil spill cleanups in sensitive marsh environments was discussed. Mechanical recovery of crude or refined hydrocarbons in wetlands may cause more damage to the marsh than the oil itself. This study evaluated whether in situ burning of oiled marshlands would provide a less damaging alternative than mechanical recovery. This was done through a series of 6 crude oil and 5 diesel fuel burns conducted in a test tank to examine the impact of intentional burning of oil spilled in a wetlands environment. There are several factors which may influence how well such an environment would recover from an in situ oil burn, such as plant species, fuel type and load, water level, soil type, and burn duration. This paper focused on soil, air and water temperatures, as well as total heat fluxes that resulted when 3 plant species were exposed to full-scale in situ burns that were created by burning diesel fuel and crude oil. The soil temperatures were monitored during the test burn at three different soil/water elevations for 700 second burn exposures. A total of 184 plant sods were harvested from marshlands in southern Louisiana and were subjected to the burning fuel. They were instrumental in characterizing the thermal and chemical stress that occur during an in-situ burn. The plants were inserted into the test tanks at various water and soil depths. The results indicated that diesel fuel and crude oil burns produced similar soil temperature profiles at each of three plant sod elevations. Although in-situ burning did not appear to remediate oil that had penetrated into the soil, it did effectively remove floating oil from the water surface, thereby preventing it from potentially contaminating adjacent habitats and penetrating the soil when the water recedes. The regrowth and recovery of the plants will be described in a separate report. 25 refs., 7 tabs., 15 figs

  20. The refining industry and the future of the fuel oils; L'industrie du raffinage et le devenir des fiouls lourds

    Energy Technology Data Exchange (ETDEWEB)

    Soleille, S

    2004-01-15

    The fuel oils consumption decrease in France since 1970, because of the two petroleum crisis, the nuclear energy competition and the air pollution. The fuel oils industry is then looking other export possibilities. This report aims to offer a first approach of the problem and presents the main challenges. The first part is devoted to the technical context (definition, production and outlet. The second part presents the environmental context and the fuel oils market. In the third part the market is studied at the world scale, in the fourth at the french scale and in the fifth at the scale of other countries as United States, Japan and european Union. A synthesis tables is given in the last part to compare and propose some hypothesis concerning the future of fuel oils and the french refining industry. (A.L.B.)

  1. Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2017-08-01

    Full Text Available On account of their high power, thermal efficiency, good reliability, safety, and durability, low-speed two-stroke marine diesel engines are used as the main drive devices for large fuel and cargo ships. Most marine engines use heavy fuel oil (HFO as the primary fuel, however, the physical and chemical characteristics of HFO are not clear because of its complex thermophysical properties. The present study was conducted to investigate the effects of fuel properties on the spray and combustion characteristics under two-stroke marine engine-like conditions via a sensitivity analysis. The sensitivity analysis of fuel properties for non-reacting and reacting simulations are conducted by comparing two fuels having different physical properties, such as fuel density, dynamic viscosity, critical temperature, and surface tension. The performances of the fuels are comprehensively studied under different ambient pressures, ambient temperatures, fuel temperatures, and swirl flow conditions. From the results of non-reacting simulations of HFO and diesel fuel properties in a constant volume combustion chamber, it can be found that the increase of the ambient pressure promotes fuel evaporation, resulting in a reduction in the steady liquid penetration of both diesel and HFO; however, the difference in the vapor penetrations of HFO and diesel reduces. Increasing the swirl flow significantly influences the atomization of both HFO and diesel, especially the liquid distribution of diesel. It is also found that the ambient temperature and fuel temperature have the negative effects on Sauter mean diameter (SMD distribution. For low-speed marine engines, the combustion performance of HFO is not sensitive to activation energy in a certain range of activation energy. At higher engine speed, the difference in the effects of different activation energies on the in-cylinder pressure increases. The swirl flow in the cylinder can significantly promote fuel evaporation and

  2. Powering the future. How we will (eventually) solve the energy crisis and fuel the civilization of tomorrow; Der Letzte macht das Licht aus. Die Zukunft der Energie

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, Robert B. [Stanford Univ., CA (United States)

    2012-07-01

    When it gets dark, we turn on the light. When it gets cold, we heat. When we need energy for the global industry and technology, we make use of the energy. Every time. But soon the earth fuels such as coal, gas, oil and uranium are irrevocably depleted. And then? The Nobel laureate Robert B. Laughlin reports on the future of our energy supply.

  3. Synthesis of biodiesel fuel from safflower oil using various reaction parameters.

    Science.gov (United States)

    Meka, Pavan Kumar; Tripathi, Vinay; Singh, R P

    2006-01-01

    Biodiesel fuel is gaining more and more importance because of the depletion and uncontrollable prices of fossil fuel resources. The use of vegetable oil and their derivatives as alternatives for diesel fuel is the best answer and as old as Diesel Engine. Chemically biodiesel fuel is the mono alkyl esters of fatty acids derived from renewable feed stocks like vegetable oils and animal fats. Safflower oil contains 75-80% of linoleic acid; the presence of this unsaturated fatty acid is useful in alleviating low temperature properties like pour point, cloud point and cold filter plugging point. In this paper we studied the effect of various parameters such as temperature, molar ratio (oil to alcohol), and concentration of catalyst on synthesis of biodiesel fuel from safflower oil. The better suitable conditions of 1:6 molar ratio (oil to alcohol), 60 degrees C temperature and catalyst concentration of 2% (by wt. of oil) were determined. The finally obtained biodiesel fuel was analyzed for fatty acid composition by GLC and some other properties such as flash point, specific gravity and acid value were also determined. From the results it was clear that the produced biodiesel fuel was with in the recommended standards of biodiesel fuel with 96.8% yield.

  4. The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles

    International Nuclear Information System (INIS)

    Raugei, Marco; Fullana-i-Palmer, Pere; Fthenakis, Vasilis

    2012-01-01

    A high energy return on energy investment (EROI) of an energy production process is crucial to its long-term viability. The EROI of conventional thermal electricity from fossil fuels has been viewed as being much higher than those of renewable energy life-cycles, and specifically of photovoltaics (PVs). We show that this is largely a misconception fostered by the use of outdated data and, often, a lack of consistency among calculation methods. We hereby present a thorough review of the methodology, discuss methodological variations and present updated EROI values for a range of modern PV systems, in comparison to conventional fossil-fuel based electricity life-cycles. - Highlights: ► We perform a review of the EROI methodology. ► We provide new calculations for PV compared to oil- and coal-based energy systems. ► If compared consistently, PV sits squarely in the same range of EROI as conventional fossil fuel life cycles.

  5. UKRAINIAN FUEL AND ENERGY SECTOR: DISTINCTIVE FEATURES

    Directory of Open Access Journals (Sweden)

    Olesia Azarenkova

    2015-07-01

    Full Text Available The paper is devoted to the analysis of Ukrainian fuel and energy sector (FES. The number of risks that threaten the stable supply of energy sources is growing. A high proportion of the energy intensity of developing economies in conjunction with their growing GDP leads to increased competition on world primary energy markets and causes significant fluctuations in energy prices, which negatively affect the global economy. There is also an important issue for world energy - limited use of non-renewable energy resources. Considering the prospects of development of Ukrainian FES, it is important to pay attention to patterns and trends of the global and national power. We have studied the basic trends of Ukrainian FES. It is the most important sector of the economy, and therefore its reform for market economy creation, price liberalization is a very important process. The current task of the energy sector of Ukraine is to be able to consistently produce and use energy to promote economic growth and improve quality of life.

  6. Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances

    International Nuclear Information System (INIS)

    Patthanaissaranukool, Withida; Polprasert, Chongchin; Englande, Andrew J.

    2013-01-01

    Highlights: ► We evaluate energy and carbon equivalence from CPO production based on a CBM. ► Energy spent and produced via carbon movement from palm oil mill was determined. ► Scenarios were formulated to evaluate the potential reduction of carbon emission. ► Utilization of biomass from palm oil mill shows the high potential of C-reduction. -- Abstract: This study aimed to evaluate energy and carbon equivalences (CE) associated with palm oil milling and to evaluate sustainability alternatives for energy consumption. Appropriate ways to reduce carbon emissions were also evaluated. A field survey was carried out to quantify the input and output of energy and materials following the conceptual framework of a carbon-balanced model (CBM), which exclude other non-CO 2 greenhouse gases. Survey results indicate that the electrical energy consumption for daily mill start-up averaged 18.7 ± 5.4 kWh/ton Fresh Fruit Bunches (FFBs). This energy is equivalent to 114.4 ± 33.2 kWh/ton Crude Palm Oil (CPO) which was found to be offset by that generated in the mills using palm fiber as a solid fuel. Currently, organic residues contained in the wastewater are anaerobically converted to methane. The methane is used as fuel to generate electricity and sold to an outside grid network at a generation rate of 8.1 ± 2.1 kWh/ton FFB. Based on the CBM approach, carbon emissions observed from the use of fossil energy in palm oil milling were very small; however, total carbon emission from oil palm plantation and palm oil milling were found to be 12.3 kg CE/ton FFB, resulting in the net carbon reduction in CPO production of 2.8 kg CE/ton FFB or 53.7 kg CE/ha-y. Overall, the sum of C-reduction was found 1.2 times greater than that of C-emission. This figure can be increased up to 5.5, if all biomass by-products are used as fuel to generate electricity only. The full potential for carbon reduction from palm oil milling is estimated at 0.94 kW of electric power for every hectare of

  7. Possibilities of increasing coal charge density by adding fuel oil

    Directory of Open Access Journals (Sweden)

    M. Fröhlichová

    2010-01-01

    Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.

  8. Physical Properties of Biomass Fuel Briquette from Oil Palm Residues

    African Journals Online (AJOL)

    Palm Kernel Shell (PKS) and Mesocarp Fibre (MF) were used for the production of fuel briquettes in this study in order to supplement the energy mix of the nation. PKS was pulverized and then sieved into different grain particles of 350 μm, 250 μm and 150 μm, before mixing with MF in the ratios: 90:10, 80:20 and 70:30 ...

  9. Fueling Wisconsin's economy with renewable energy

    International Nuclear Information System (INIS)

    Clemmer, S.

    1995-01-01

    A dynamic macroeconomic model of the Wisconsin economy is used to estimate the economic impacts of displacing a portion of future investment in fossil fuel power plants (coal and natural gas) with renewable energy resources (biomass, wind, solar and hydro). The results show that renewable energy investments produce over three times more jobs, income and economic activity than the same amount of electricity generated from coal and natural gas power plants. Between 1995 and 2020, a 75% increase in renewable energy use generates approximately 65,000 more job-years of employment, $1.6 billion in higher disposable income and a $3.1 billion increase in gross regional product than conventional power plant investments. This includes the effects of a 0.3% average annual increase in electricity prices from renewable energy investments

  10. Oil and the political economy of energy

    Energy Technology Data Exchange (ETDEWEB)

    Matutinovic, Igor [GfK-Center for Market Research, Zagreb (Croatia)

    2009-11-15

    The key issues concerning oil exploitation are still open for discussion: there is no agreement about where we presently stand in the world oil extraction curve, what is its exact shape, and how far can oil price grow before it changes irreversibly the world economy and consumer behavior. The paper proposes an alternative scenario to the Hubbert's bell-shaped model of oil exploitation, based on more realistic assumptions regarding political agendas in oil-exporting countries and consumer behavior dynamics in oil-importing countries. Under this scenario, the joint impact of markets and public policy in oil importing countries together with 'resource pragmatism' policy in oil-exporting countries allows for a less steep oil supply curve with a much fatter tail compared to the Hubbert's model. (author)

  11. Oil and the political economy of energy

    International Nuclear Information System (INIS)

    Matutinovic, Igor

    2009-01-01

    The key issues concerning oil exploitation are still open for discussion: there is no agreement about where we presently stand in the world oil extraction curve, what is its exact shape, and how far can oil price grow before it changes irreversibly the world economy and consumer behavior. The paper proposes an alternative scenario to the Hubbert's bell-shaped model of oil exploitation, based on more realistic assumptions regarding political agendas in oil-exporting countries and consumer behavior dynamics in oil-importing countries. Under this scenario, the joint impact of markets and public policy in oil importing countries together with 'resource pragmatism' policy in oil-exporting countries allows for a less steep oil supply curve with a much fatter tail compared to the Hubbert's model.

  12. A role for nuclear energy in the recovery of oil from the tar sands of Alberta

    International Nuclear Information System (INIS)

    Puttagunta, V.R.; Sochaski, R.O.; Robertson, R.F.S.

    1976-12-01

    Techniques of oil recovery from the tar sands and the energy requirements of this operation are described. Fossil fuels, and CANDU reactors are examined as competitive sources of energy for the tar sands plants. The CANDU-OCR reactor appears to have the necessary flexibility to fit into many of the possible methods of recovering oil from the tar sands. Cost comparisons of fossil and nuclear sources show that, for the supply of process steam, the nuclear source is competitive under the criteria of debt financing or low discount rates on capital, continued escalation, and long plant capital write-off period. (author)

  13. From fossil fuels to energies-of-light

    Energy Technology Data Exchange (ETDEWEB)

    Winter, C.J. [Stuttgart Univ. (Germany); Energon - Winter (C.J.) GmbH, Leonberg (Germany)

    2000-07-01

    Energies-of-light are the final result on the ongoing decarbonisation of carbonaceous fuels, their hydrogenation and, thus, dematerialization (coal -> petroleum -> natural gas -> hydrogen). Energies-of-light utilise all sorts of renewable energies and the chemical secondary energy carrier hydrogen for energy storage and transport, as well as a transportation fuel.

  14. Fate of dispersed marine fuel oil in sediment under pre-spill application strategy

    International Nuclear Information System (INIS)

    Jian Hua

    2004-01-01

    A comparison of the movement of dispersed oil in marine sediment under two dispersant application scenarios, applied prior to and after oil being spilled overboard, was examined. The pre-spill application scenario caused much less oil to be retained in the top sediment than post-spill scenario. The difference in oil retention in the top sediment between pre- and post-spill application scenario increased with increase in fuel oil temperature. For fuel oil above 40 o C, the difference in the effect of pre-spill application strategy under various water temperatures was negligible. When soap water was used as replacement for chemical dispersant, almost one-half as much oil was retained in the top sediment as that when using chemical dispersant. The adsorption of dispersed oil to the top sediment was almost proportionally decreased with doubling of soap dosage. (Author)

  15. Fuel Cells for Balancing Fluctuation Renewable Energy Sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    2007-01-01

    In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage of...... with hydrogen production or electric cars, and on the other hand using biomass and bio fuels [11]. Fuel cells can have an important role in these future energy systems.......In the perspective of using fuel cells for integration of fluctuating renewable energy the SOFCs are the most promising. These cells have the advantage of significantly higher electricity efficiency than competing technologies and fuel flexibility. Fuel cells in general also have the advantage...... flexibility, such as SOFCs, heat pumps and heat storage technologies are more important than storing electricity as hydrogen via electrolysis in energy systems with high amounts of wind [12]. Unnecessary energy conversions should be avoided. However in future energy systems with wind providing more than 50...

  16. Lemon peel oil – A novel renewable alternative energy source for diesel engine

    International Nuclear Information System (INIS)

    Ashok, B.; Thundil Karuppa Raj, R.; Nanthagopal, K.; Krishnan, Rahul; Subbarao, Rayapati

    2017-01-01

    Highlights: • Novel biofuel is extracted from lemon peels through steam distillation process. • Lemon peel oil is found to be a potential, renewable alternate eco-friendly fuel. • Significant vibration is observed with 100% lemon peel oil. • Reduction of CO, HC and smoke emission are observed with lemon peel oil blends. • Lemon peel oil blends are showed higher brake thermal efficiency than diesel fuel. - Abstract: The present research work has embarked on to exploit the novel renewable and biodegradable source of energy from lemon fruit rinds. A systematic approach has been made in this study to find the suitability of lemon peel oil for internal combustion engines and gensets applications. Extracted lemon peel oil is found to exhibit comparatively very low viscosity, flash point and boiling point than that of conventional diesel. Various blends of lemon peel oil have been prepared with conventional diesel with volumetric concentration of 20%, 40%, 50% and 100% and their physical and chemical properties are evaluated for its suitability in direct injection diesel engine. Lower cetane index of lemon peel oil significantly influences the ignition delay period and peak heat release rate that lead to the penalty in NOx emissions. Interestingly, the diesel engine performance characteristics have been improved to a remarkable level with higher proportions of lemon peel oil in the blends. In addition, the reduction of BSCO, BSHC and smoke emission is proportional to the lemon oil concentration in the blends. Overall diesel engine characteristics indicated that lemon peel oil can partially or completely replace the petroleum diesel usage to a great extent in developing countries like India.

  17. Transesterified milkweed (Asclepias) seed oil as a biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Alan Holser; Rogers Harry-O' Kurua [United States Department of Agriculture, Peoria, IL (United States). Agricultural Research Service, National Center for Utilization Research

    2006-10-15

    The methyl and ethyl esters of milkweed (Asclepias) seed oil were prepared and compared to soybean esters in laboratory tests to determine biodiesel fuel performance properties. The pour points of the methyl and ethyl milkweed esters measured -6{sup o}C and -10{sup o}C, respectively, which is consistent with the high levels of unsaturation characteristic of milkweed seed oil. The oxidative stabilities measured by OSI at 100{sup o}C were between 0.8 and 4.1 h for all samples tested. The kinematic viscosities determined at 40{sup o}C by ASTM D 445 averaged 4.9 mm{sup 2}/s for milkweed methyl esters and 4.2 mm{sup 2}/s for soybean methyl esters. Lubricity values determined by ASTM D 6079 at 60{sup o}C were comparable to the corresponding soybean esters with average ball wear scar values of 118 {mu}m for milkweed methyl esters and 200 {mu}m for milkweed ethyl esters.

  18. Bio fuels. Environment and Energy Aspects and Future Prospects

    International Nuclear Information System (INIS)

    Chiaramonti, D.; Grassi, G.; Tondi, G.; Martelli, F.

    2000-01-01

    The present work aims at describing some of the most important bio fuels (bio diesel, bio methanol, bi oethanol, bio-crude-oil). Environmental effects are also presented, as well as some cost data. Europe and USA are compared, when appropriate. The motivations for a justified and beneficial market penetration of bio fuels in urban areas are reported [it

  19. Siemens fuel gasification technology for the Canadian oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Siemens Energy Inc., Orlando, FL (United States). IGCC and Gasification Sales and Marketing

    2010-07-01

    The Siemens fuel gasification (SFG) technology can be used to gasify a range of feedstocks, including petcoke, hard coal, lignite, and low-ranking fuels such as biomass and refinery residuals. The technology has recently been applied to a number of projects over the last 3 years. This paper discussed some of the issues related to the technology and it's use at a start-up facility in China. Five entrained-flow gasifiers with a thermal capacity of 500 MW are being installed at a coal gasification plant in northwestern China. The technology's use in hydrogen, steam and power production applications for the oil sands industry was also discussed. Issues related to feedstock quality, process characteristics, and equipment requirements for commercial gasifier systems were reviewed. The paper concluded by observing that improvements in gasification technology will make coal and petcoke gasification feasible options for power generation. IGCC is the most advanced and cost-effective technology for reducing emissions from coal-fired power plants. Gasification-based plants are also able to capture carbon dioxide (CO{sub 2}) for storage and sequestration. Details of the Siemens gasification test center in Germany were also included. 1 tab., 4 figs.

  20. Hybrid fuel cell/diesel generation total energy system, part 2

    Science.gov (United States)

    Blazek, C. F.

    1982-11-01

    Meeting the Goldstone Deep Space Communications Complex (DGSCC) electrical and thermal requirements with the existing system was compared with using fuel cells. Fuel cell technology selection was based on a 1985 time frame for installation. The most cost-effective fuel feedstock for fuel cell application was identified. Fuels considered included diesel oil, natural gas, methanol and coal. These fuel feedstocks were considered not only on the cost and efficiency of the fuel conversion process, but also on complexity and integration of the fuel processor on system operation and thermal energy availability. After a review of fuel processor technology, catalytic steam reformer technology was selected based on the ease of integration and the economics of hydrogen production. The phosphoric acid fuel cell was selected for application at the GDSCC due to its commercial readiness for near term application. Fuel cell systems were analyzed for both natural gas and methanol feedstock. The subsequent economic analysis indicated that a natural gas fueled system was the most cost effective of the cases analyzed.

  1. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  2. Renewable Energy and Proven Oil Reserves Relation: Evidence from OPEC Members

    Directory of Open Access Journals (Sweden)

    Mehmet Arcan TUZCU

    2014-12-01

    Full Text Available The well documented literature on the relation between energy consumption and climate change has been extended by the addition of renewable energy consumption. Several studies show its impact on technical efficiency, per capita income or carbon dioxide (CO2 emission levels for developed and developing countries. However, to the extent of our knowledge, very few of them state the importance of renewable energy for the countries where the main type of fossil fuels, oil, is exported. This study aims to explore the association between renewable energy, real gross domestic product (GDP, CO2 emission level, real oil prices as well as the proven oil reserves for seven members of Organization of the Petroleum Exporting Countries (OPEC. The analyses are conducted using panel data techniques, namely fixed effect – random effect tests. Our results show a positive and significant relation between renewable energy consumption, and real GDP and CO2 emission level. A statistically not significant coefficient is found for the relation between renewable energy and the proven oil reserves. The relation between energy and real oil prices is also insignificant.

  3. Self-sustained cabinet based on fuel cell technology and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Rafael Augusto de Oliveira; Valentim, Rafael Bertier; Glir, Joao Raphael Zanlorensi; Stall, Alexandre; Sommer, Elise Meister; Sanches, Luciana Schimidilin; Dias, Fernando Gallego; Korndorfer, Heitor Medeiros de Albuquerque; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], Email: rafaelcorrea123@hotmail.com; Ordonez, Juan Carlos [Florida State University, Tallahasse, Florida (United States). Dept. of Mechanical Engineering. Center for Advanced Power Systems

    2010-07-01

    Along the past few years, there has been intensive research on clean and renewable energy production. Two main reasons have been pointed out: pollution caused by oil based fuels consumption and their availability diminution, which increases their production costs. Fuel Cells have shown to be a clean and renewable energy source, which reveals them as a promising solution, although their technology needs further development. Fuel Cells produce electricity, water and heat consuming hydrogen and oxygen, this provided pure or from a natural air source. Present research has combined different equipment to compose a self-sustaining fuel cells technology based cabinet for energy production, which is a Regenerative Fuel Cell System (RFC). This system contains: fuel cells stack, electrolyzer, photovoltaic panel, batteries, current inverter and a charge controller. Photovoltaic panel charges the batteries, while charge controller controls the batteries loading. Batteries are connected to an inverter which converts direct current into alternating current. Inverter is connected to an electrolyzer (Hogen GC 600) which splits the water molecule into hydrogen and oxygen molecules. Produced hydrogen supplies the fuel cell stack and the oxygen is released directly to the atmosphere. Fuel cell stacks power production is transformed into mechanical energy by a fan. Electrical power generated by Ballard stack is 5.124 W, with a voltage of 36.6 V and current of 0.14 A. The system proved to have a great efficiency and to be capable to assemble two renewable energy sources (solar and fuel cell technology) in a self-sustainable cabinet. It has also been shown that equipment such as Electrolyzer, Fuel Cell Stack and Photovoltaic panel can be fit together in the order to produce energy. Therefore, research on Fuel Cells Regenerative System reveals great importance for developing a new, clean, renewable and regenerative energy production system. (author)

  4. Effect of subsidies to fossil fuel companies on United States crude oil production

    Science.gov (United States)

    Erickson, Peter; Down, Adrian; Lazarus, Michael; Koplow, Doug

    2017-11-01

    Countries in the G20 have committed to phase out `inefficient' fossil fuel subsidies. However, there remains a limited understanding of how subsidy removal would affect fossil fuel investment returns and production, particularly for subsidies to producers. Here, we assess the impact of major federal and state subsidies on US crude oil producers. We find that, at recent oil prices of US50 per barrel, tax preferences and other subsidies push nearly half of new, yet-to-be-developed oil investments into profitability, potentially increasing US oil production by 17 billion barrels over the next few decades. This oil, equivalent to 6 billion tonnes of CO2, could make up as much as 20% of US oil production through 2050 under a carbon budget aimed at limiting warming to 2 °C. Our findings show that removal of tax incentives and other fossil fuel support policies could both fulfil G20 commitments and yield climate benefits.

  5. Future role of Gulf oil in world energy demand

    International Nuclear Information System (INIS)

    Eltony, M.N.

    1998-01-01

    The view that there will be a growing dependence on oil from the Gulf countries is shared by a great number of oil market analysts. This view is based on the fact that Gulf countries dominate the global oil reserves. Energy analyst argue that as the world demand for oil continues to grow driven largely by the growth in developing countries' consumption coupled with constrained non-OPEC supply, the end result will be that the call on Gulf oil will grow substantially. In summary, this paper has challenged the view of growing dependence on oil from the Gulf using available information in conjunction with reasonable and fairly plausible arguments. The aim was to point out to the GCC member counties the danger of relying on these views in shaping their economic policies and in setting their oil market strategies. They may run the ultimate risk of being left with huge oil reserves that no one wants. (orig.)

  6. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    Science.gov (United States)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  7. Life cycle assessment (LCA) of an energy recovery plant in the olive oil industries

    Energy Technology Data Exchange (ETDEWEB)

    Intini, Francesca; Kuhtz, Silvana [Dep. Engineering and Environmental Physics, Faculty of Engineering, University of Basilicata (Italy); Gianluca Rospi, [Dep. Engineering and Environmental Physics, Faculty of Architecture, University of Basilicata (Italy)

    2012-07-01

    To reduce the GHG emissions in the UE and to increase the produced energy it is important to spread out decentralized technologies for renewable energy production. In this paper a power plant fed with biomass is studied, in particular the biomass considered is the waste of the olive oil industries. This study focuses on the possibility of using the de-oiled pomace and waste wood as fuel. A life cycle assessment (LCA) of a biomass power plant located in the South of Italy was performed. The global warming potential has been calculated and compared with that of a plant for energy production that uses refuse derived fuel (RDF) and that of one that uses coal. The LCA shows the important environmental advantages of biomass utilization in terms of greenhouse gas emissions reduction. An improved impact assessment methodology may better underline the advantages due to the biomass utilization.

  8. Gasification of tall oil soap for lime kiln fuel. Suovan kaasutus meesauunin polttoaineeksi

    Energy Technology Data Exchange (ETDEWEB)

    Saviharju, K.; McKeough, P.; Pyykkoenen, M.; Oasmaa, A. (Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology)

    1993-01-01

    The energy delivered to a modern pulp mill in the form of material unsuitable for fibre production exceeds the energy demand of the mill by about 30 %. Purchased lime kiln fuel further increases the surplus by 5-10 %. On the other hand, acidulation of tall oil soap adds about 1-3 kg SO[sub 2] for t of pulp onto the difficult-to-manage sulphur balance of the mill. Pyrolysis or gasification of tall oil soap could alleviate both these problems. In this study, gasification of tall oil soap was investigated in laboratory experiments as well as on a 200 kW test gasifier. In the laboratory experiments tall oil soap was pyrolyzed both on a heated-grid unit and on a thermobalance at heating rates of 600 K/s and 10 K/min, respectively. The maximum temperature was 675 deg C. The amount of volatiles formed was high, about 77 %, the amount of coke and inorganic salts being 7 % and 16 %, respectively. In the 200 kW gasifier, tests were carried out with mixed soap (pine and birch) such that the gas outlet temperature was 680-690 deg C. Because of the low gasification temperature complete gasification of the char was not achieved. The heat content of the product gas, including the sensible heat, was about 5.8 MJ/m[sup 3]n, which was estimated to be sufficient for lime calcination. Typical of the product gas were high tar content (20 g/m[sup 3]n), high acetylene content, and the absence of hydrogen sulphide. Overall, the results of this study indicated that the most significant subjects for future research are the atomization properties of tall oil soap, the effects of different amounts of input sodium on the operability of the lime kiln, and the economics of the proposed gasification process

  9. Production of high-calorie energy briquettes from bark waste, plastic and oil

    Science.gov (United States)

    Suwinarti, W.; Amirta, R.; Yuliansyah

    2018-04-01

    Bark is the waste generated from the utilization of plantation timber, while plastics and oil waste are produced from daily human activity. These waste has the potential to be used as energy briquettes raw materials, especially for fuel in power plants. It would be worth very strategic for the environment and the welfare of society, considering that at this time we are not yet fully capable of well managing all three waste types. On the other hands most of the power plants that operate today still use diesel and coal as fuel. Therefore, the best composition of mixing bark, plastic and oil will be studied as well as its influence on the physical and chemical quality of the briquettes produced. The results show that the addition of the oil waste (70%) and used plastic (30%) as additive give effect to the performance of the briquette formation with the highest calorific value of 33.56 MJ/kg.

  10. Energy and fuels from electrochemical interfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; Markovic, Nenad M.

    2017-01-01

    Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

  11. Capital-energy substitution in manufacturing for seven OECD countries: Learning about potential effects of climate policy and peak oil

    NARCIS (Netherlands)

    Fiorito, G.; van den Bergh, J.C.J.M.

    2016-01-01

    The simultaneous influence of increasing oil scarcity, greenhouse gas control and renewable energy targets will result in a future of sustained energy prices. Whether modern economies can find a smooth path away from fossil fuels is a fundamental socio-economic and political question, which

  12. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  13. Energy use and environmental impact of new alternative fuel mix in electricity generation in Malaysia

    International Nuclear Information System (INIS)

    Al-Amin, A.Q.; Siwar, C.; Jaafar, A.H.

    2009-01-01

    The Government of Malaysia introduced a five-fuel diversification strategy in 1999 to ensure security of energy supply. This strategy will continue until 2020 to reduce Malaysia's dependence on fossil fuels for generating electricity. This paper empirically explored the economic impact of electricity generation and scenario analysis that separately identifies impact on the environment of coal, fuel and hydro generating electricity technologies. It also evaluated emissions of carbon dioxide, sulphur dioxide and nitrogen oxide for the year 1991 and 2000 based on business as usual techniques and projection of those emissions based on business as usual and fuel mix strategy as specified in the fuel diversification strategy. The strategy in the electricity sector aims for a gradual change in fuel use from 74.9 per cent natural gas, 9.7 per cent coal, 10.4 per cent hydro, and 5 per cent petroleum in the year 2000 to 40 per cent natural gas, 30 per cent hydro, 29 per cent coal, and only 1 per cent petroleum by the year 2020. This paper presented the underlying model which is based on input-output techniques. The pollution emission levels from the fossil fuels were estimated. The study revealed that the fuel mix envisioned by the Fuel Diversification Strategy, designed to reduce Malaysia's dependence on fuel oil and increase its energy security would result in an increase in undesired emissions. 16 refs., 5 tabs., 3 figs

  14. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  15. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major contributions to

  16. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major

  17. Energy Fuels Nuclear, Inc. Arizona Strip Operations

    International Nuclear Information System (INIS)

    Pool, T.C.

    1993-01-01

    Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U 3 O 8 over the period 1980 through 1991, maintained the company's status as a leading US uranium producer

  18. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production

    Science.gov (United States)

    Brandt, Adam R.; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  19. Energy Return on Investment (EROI for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    Directory of Open Access Journals (Sweden)

    Adam R Brandt

    Full Text Available Studies of the energy return on investment (EROI for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs, nor does it include other indirect energy uses such as labor or services.

  20. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed. Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3. Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  1. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2003-01-01

    Vegetable oil fuels have not been acceptable because they were more expensive than petroleum fuels. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for Diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, but some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative Diesel engine fuel. Methyl and ethyl esters of vegetable oils have several outstanding advantages among other new renewable and clean engine fuel alternatives. The main factors affecting transesterification are the molar ratio of glycerides to alcohol, catalyst, reaction temperature and pressure, reaction time and the contents of free fatty acids and water in oils. The commonly accepted molar ratios of alcohol to glycerides are 6:1-30:1

  2. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency......Efficient fuel cells and electrolysers are still at the development stage. In this dissertation, future developed fuel cells and electrolysers are analysed in future renewable energy sys‐ tems. Today, most electricity, heat and transport demands are met by combustion tech‐ nologies. Compared...

  3. Demonstration study on direct use of waste vegetable oil as car fuel

    International Nuclear Information System (INIS)

    Remoto, Yasuyuki; Zeeren, Nyamgerel; Ushiyama, Izumi

    2009-01-01

    Full text: Various kinds of vegetable oil and waste cooking oil are in fact used as car fuel all over the world. In general, 'bio-diesel' i.e. fatty acid methyl ester extracted from such oil is utilized as fuel for vehicles. However bio-diesel has some problems such as byproduct and waste materials created during transesterification. An alternative method is the direct use of vegetable oil as car fuel through installation of a heater unit in the car to decrease vegetable oil viscosity. However little data has been reported concerning this method. The authors of this study carried out performance tests on the direct use of waste cooking oil using a car with a heater unit and found its high potential. Moreover, the authors compared the environmental load of direct use with biodiesel and light oil by carrying out life cycle inventory to clarify the superiority of direct use. First, the authors made a car to test waste cooking oil as fuel by equipping a heater unit, filter and sub tank for light oil to a used Toyota Estima Diesel KD-CXR10G. The car can be driven on road using only waste cooking oil, although a little light oil is necessary for starting the engine. The authors, then, carried out chassis dynamo tests and on-road tests using the car. The car showed similar performance and could be driven on road for over half a year without any problems in both cases using either waste cooking oil or light oil as fuel. Next, authors carried out life cycle inventory and compared the environmental loads of direct use of waste cooking oil with biodiesel from waste cooking oil and light oil. The data for life cycle inventory were obtained from tests on direct use, from a factory in Japan for bio-diesel and from the Life Cycle Assessment Society of Japan database for light oil, respectively. The CO 2 emission rates were 73.9, 12.7 and 7.06 [kg-CO 2 / GJ] for light oil, bio-diesel from waste cooking oil and the direct use of waste cooking oil, respectively. The superiority of

  4. Production and Characterisation of Microfine Sized Palm Oil Fuel Ash (POFA Originated from Bau, Lundu Palm Oil Mill

    Directory of Open Access Journals (Sweden)

    Ahmadi R.

    2017-01-01

    Full Text Available This paper investigates an effective and economical way for laboratory scale production of micro fine sized palm oil fuel ash (POFA using an electric powder grinder. The raw POFA obtained from the palm oil mill is initially grinded by using Los Angeles abrasion machine, and then sieved using 150 μm sieve before it is burned in a furnace at 500°C. The burned POFA is then grinded using electric powder grinder to obtain the targeted micro fine sized. The physical, morphological and chemical properties of the micro fine sized POFA produced are analysed in the form of cement paste using Particle Size Analyzer (PSA, nitrogen sorption by using BET method, Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM with Energy Dispersive Spectroscopy (EDS. The results show that 96% micro fine sized POFA is produced when using the optimum grinding process. The microstructural analyses of cement paste with 20% micro fine sized POFA replacement give the optimum results that contribute to higher compressive strength. The overall results of this research show that the optimum grinding process by using electric powder grinder is relevant and can be used as pioneering work in the concrete production industry.

  5. Limited emission reductions from fuel subsidy removal except in energy-exporting regions

    Science.gov (United States)

    Jewell, Jessica; McCollum, David; Emmerling, Johannes; Bertram, Christoph; Gernaat, David E. H. J.; Krey, Volker; Paroussos, Leonidas; Berger, Loïc; Fragkiadakis, Kostas; Keppo, Ilkka; Saadi, Nawfal; Tavoni, Massimo; van Vuuren, Detlef; Vinichenko, Vadim; Riahi, Keywan

    2018-02-01

    Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders’ Summit) to phase out fossil fuel subsidies and many national governments are using today’s low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.

  6. Limited emission reductions from fuel subsidy removal except in energy-exporting regions.

    Science.gov (United States)

    Jewell, Jessica; McCollum, David; Emmerling, Johannes; Bertram, Christoph; Gernaat, David E H J; Krey, Volker; Paroussos, Leonidas; Berger, Loïc; Fragkiadakis, Kostas; Keppo, Ilkka; Saadi, Nawfal; Tavoni, Massimo; van Vuuren, Detlef; Vinichenko, Vadim; Riahi, Keywan

    2018-02-07

    Hopes are high that removing fossil fuel subsidies could help to mitigate climate change by discouraging inefficient energy consumption and levelling the playing field for renewable energy. In September 2016, the G20 countries re-affirmed their 2009 commitment (at the G20 Leaders' Summit) to phase out fossil fuel subsidies and many national governments are using today's low oil prices as an opportunity to do so. In practical terms, this means abandoning policies that decrease the price of fossil fuels and electricity generated from fossil fuels to below normal market prices. However, whether the removal of subsidies, even if implemented worldwide, would have a large impact on climate change mitigation has not been systematically explored. Here we show that removing fossil fuel subsidies would have an unexpectedly small impact on global energy demand and carbon dioxide emissions and would not increase renewable energy use by 2030. Subsidy removal would reduce the carbon price necessary to stabilize greenhouse gas concentration at 550 parts per million by only 2-12 per cent under low oil prices. Removing subsidies in most regions would deliver smaller emission reductions than the Paris Agreement (2015) climate pledges and in some regions global subsidy removal may actually lead to an increase in emissions, owing to either coal replacing subsidized oil and natural gas or natural-gas use shifting from subsidizing, energy-exporting regions to non-subsidizing, importing regions. Our results show that subsidy removal would result in the largest CO 2 emission reductions in high-income oil- and gas-exporting regions, where the reductions would exceed the climate pledges of these regions and where subsidy removal would affect fewer people living below the poverty line than in lower-income regions.

  7. The outlook for crude oil supply and demand in Australia and its energy policy implications

    International Nuclear Information System (INIS)

    1991-08-01

    Australia's oil reserves and production have contributed significantly to national economic prosperity and growth since the first large scale discoveries in Bass Strait in the 1960s. As a finite, non-renewable resource, the reserves ultimately must decline. In 1988 the forecast was that Australia's oil production would begin to decline in the mid 1990s and then rapidly tail off by the late 1990s. With this in mind, AMEC Ministers agreed in 1988 that a Working Group should review the energy policy implications of the forecast decline in the production of petroleum. The Working Group's findings are presented in this booklet. Chapter 2 examines the outlook for demand for petroleum products in Australia until 2005. This Chapter is based on current Australian Bureau of Agricultural and Resource Economics (ABARE) forecasts as well as savings in fuel demand that are potentially available from fuel efficiency and fuel switching measures. Chapter 3, which includes BMR's recently revised petroleum production forecasts, looks at the outlook for crude oil and condensate production, also to 2005. Chapter 4 discusses the range of government initiatives already in place to foster the efficient exploration and production of petroleum in Australia. This Chapter also examines the outlook for Australian alternative liquid fuels. Chapter 5, which is based on analysis by ABARE, broadly examines the possible macroeconomic implications of declining oil production for Australia while Chapter 6 examines the issue of energy security and in particular its relationship with oil self sufficiency. Finally, Chapter 7 identifies some energy policy considerations and recommendations arising out of the Working Group's analysis. 7 tabs, 3 figs

  8. Environmental Accounting and Reporting in Fossil Fuel Sector : A Study on Bangladesh Oil, Gas and Mineral Corporation (Petrobangla)

    OpenAIRE

    Bose, Sudipta

    2006-01-01

    Petrobangla is the sole responsible organization to maintain the fossil fuel sector in Bangladesh. It is accountable to next generations for oil, gas and other natural resources. It is necessary to ensure optimum use of these resources. Development activities cannot be sustained if these resources are depleted through wasteful use. This study indicates that Petrobangla takes many initiatives to provide environment-friendly energy in the economy. Environmental Accounting and reporting is th...

  9. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  10. Fossil fuels in a sustainable energy future

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, T.F. [Dept. of Energy, Morgantown, WV (United States)

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  11. Castor oil biodiesel and its blends as alternative fuel

    International Nuclear Information System (INIS)

    Berman, Paula; Nizri, Shahar; Wiesman, Zeev

    2011-01-01

    Intensive production and commercialization of biodiesel from edible-grade sources have raised some critical environmental concerns. In order to mitigate these environmental consequences, alternative oilseeds are being investigated as biodiesel feedstocks. Castor (Ricinus communis L.) is one of the most promising non-edible oil crops, due to its high annual seed production and yield, and since it can be grown on marginal land and in semi-arid climate. Still, few studies are available regarding its fuel-related properties in its pure form or as a blend with petrodiesel, many of which are due to its extremely high content of ricinoleic acid. In this study, the specifications in ASTM D6751 and D7467 which are related to the fatty acid composition of pure castor methyl esters (B100) and its blend with petrodiesel in a 10% vol ratio (B10) were investigated. Kinematic viscosity and distillation temperature of B100 (15.17 mm 2 s -1 and 398.7 o C respectively) were the only two properties which did not meet the appropriate standard limits. In contrast, B10 met all the specifications. Still, ASTM D7467 requires that the pure biodiesel meets the requirements of ASTM D6751. This can limit the use of a wide range of feedstocks, including castor, as alternative fuel, especially due to the fact that in practice vehicles normally use low level blends of biodiesel and petrodiesel. These issues are discussed in depth in the present study. -- Highlights: → CaME can be used as a biodiesel alternative feedstock when blended in petrodiesel. → Due to the high levels of ricinoleic acid maximum blending level is limited to 10%. → Today, CaME blends are not a viable alternative feedstock. → ASTM D7467 requires that pure biodiesel must meet all the appropriate limits.

  12. July 1, 2007: electricity and gas markets open to competition. Oil and gas pipelines, vital energy arteries. Warming of the Earth's northern latitudes: what are the consequences? Nuclear power, an alternative to costly fossil fuels; 1. juillet 2007: les marches de l'electricite et du gaz sont ouverts a la concurrence. Oleoducs et gazoducs, arteres vitales de l'energie. Rechauffement des terres froides: quelles consequences? Le nucleaire, alternative aux hydrocarbures chers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2008-07-01

    This issue of Alternatives newsletter features 4 main articles dealing with: 1 - July 1, 2007 - electricity and gas markets open to competition: first telecommunications, now energy. Starting July 1, 2007, every one of the European Union's 500 million consumers is free to chose a supplier for electricity and natural gas. How will this work? A road map. 2 - Oil and gas pipelines, vital energy arteries: they criss-cross the planet over land and under sea, offering an alternative to sea lanes. How do these strategically placed pipelines work to transport fossil fuels? 3 - Warming of the Earth's northern latitudes: what are the consequences?: Dr. Oleg Anisimov, one of the experts on the Intergovernmental Panel on Climate Change (IPCC) that met in April 2007, reviews the consequences of human activity on permafrost, that huge expense of ice covering almost 20% of the Earth's surface. 4 - Nuclear power, an alternative to costly fossil fuels: part two of a report on the World energy outlook. This publication of the International Energy agency predicts that nuclear power will continue to be one of the main sources of energy supply for the next 25 years.

  13. Application of energy management coupled with fuel switching on a hydrotreater unit

    Directory of Open Access Journals (Sweden)

    Eman M. Gabr

    2016-03-01

    Full Text Available In the last decades, saving energy and protecting environment became the most important topics for search and survey. The energy engineer for any chemical process is obliged by restrictions of “Kyoto Protocol” for limitation of carbon dioxide emissions from fuel combustion, so he does his best to reduce utility consumption and thus reduce gas emission. Proper designing of the heat exchanger network (HEN for any process is an effective and successful method to minimize utility consumption and therefore minimize gas emission (mainly carbon gases (CO2 and sulfur gases (SOx. Fuel switching coupled with energy targeting achieved the least gas emission. In this work we choose a hydrotreater unit of a petroleum refinery as a case study due to its effective role and its obvious consumption of utility. We applied the methodology of energy targeting through HEN design (using pinch technology at several values of mean temperature difference (ΔTmin; where the maximum percentage of energy saving was 37% for hot and cold utility which directly leads to percentage reduction of gas emission by 29% for CO2 and 17% for SOx. Switching fuel oil to other types of fuel realized gas emission reduction percentage where the maximum reduction established was through natural gas fuel type and reached 54% for CO2 and 90% for SOx. Comparison between existing design and the optimum ΔTmin HEN led to few modifications with the least added capital cost for the hydrotreater existing design to revamp it through four scenarios; the first one depended on fuel switching to natural gas while the second one switched fuel to diesel oil, in the third scenario we applied heat integration only and the fourth one used both of heat integration and fuel switching in a parallel way.

  14. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  15. Synergy potential for oil and geothermal energy exploitation

    NARCIS (Netherlands)

    Ziabakhshganji, Z.; Maghami Nick, Hamidreza M.; Donselaar, Rick; Bruhn, D.F.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources,

  16. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization

    International Nuclear Information System (INIS)

    Sinha, Shailendra; Agarwal, Avinash Kumar; Garg, Sanjeev

    2008-01-01

    Increased environmental awareness and depletion of resources are driving industry to develop viable alternative fuels from renewable resources that are environmentally more acceptable. Vegetable oil is a potential alternative fuel. The most detrimental properties of vegetable oils are its high viscosity and low volatility, and these cause several problems during their long duration usage in compression ignition (CI) engines. The most commonly used method to make vegetable oil suitable for use in CI engines is to convert it into biodiesel, i.e. vegetable oil esters using process of transesterification. Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral Diesel. In the present work, the transesterification process for production of rice bran oil methyl ester has been investigated. The various process variables like temperature, catalyst concentration, amount of methanol and reaction time were optimized with the objective of producing high quality rice bran oil biodiesel with maximum yield. The optimum conditions for transesterification of rice bran oil with methanol and NaOH as catalyst were found to be 55 deg. C reaction temperature, 1 h reaction time, 9:1 molar ratio of rice bran oil to methanol and 0.75% catalyst (w/w). Rice bran oil methyl ester thus produced was characterized to find its suitability to be used as a fuel in engines. Results showed that biodiesel obtained under the optimum conditions has comparable properties to substitute mineral Diesel, hence, rice bran oil methyl ester biodiesel could be recommended as a mineral Diesel fuel substitute for compression ignition (CI) engines in transportation as well as in the agriculture sector

  17. Measuring energy security: Trends in the diversification of oil and natural gas supplies

    International Nuclear Information System (INIS)

    Cohen, Gail; Joutz, Frederick; Loungani, Prakash

    2011-01-01

    We present evidence on one facet of energy security in OECD economies-the extent of diversification in sources of oil and natural gas supplies. Viewed from the perspective of the energy-importing countries as a whole, there has not been much change in diversification in oil supplies over the last decade, but diversification in sources of natural gas supplies has increased steadily. We document the considerable cross-country heterogeneity in the extent of diversification. We also show how the extent of diversification changes if account is taken of the political risk attached to suppliers; the size of the importing country; and transportation risk. - Highlights: → Global diversification is constant but large differences exist among countries. → Political risk and distance have large impacts on diversity measures. → Size has little impact on diversity measures. → France, US, and UK show low vulnerability for both fuels. → Smaller European countries show high vulnerability for both fuels.

  18. Treatment of Mineral Oil Refinery Wastewater in Microbial Fuel Cells Using Ionic Liquid Based Separators

    Directory of Open Access Journals (Sweden)

    Hasna Addi

    2018-03-01

    Full Text Available Microbial fuel cells (MFCs are an environmentally friendly technology that can recover electricity directly from several wastes at ambient temperatures. This work explores the use of mineral oil refinery wastewater as feedstock in single-chamber air-cathode MFC devices. A polymer inclusion membrane based on the ionic liquid methyltrioctylammonium chloride, [MTOA+][Cl−], at a concentration of 70% w/w, was used as separator, showing a good efficiency in power production and chemical oxygen demand (COD removal. The power and the chemical oxygen demand removal reached values of 45 mW/m3 and over 80%, respectively. The evolution of other parameters of the wastewater including nitrites, phosphates and sulphates were also studied. Kjeldahl nitrogen and sulphates were significantly reduced during MFC operation. The results show that mineral oil refinery wastewater can be used as feedstock in air breathing cathode-microbial fuel cells based on polymer ionic liquid inclusion membranes. This configuration could represent a good alternative for wastewater depuration while producing energy during the process.

  19. North American natural gas outlook : does gas remain a fuel option for oil sands?

    International Nuclear Information System (INIS)

    George, R.R.

    2003-01-01

    This paper presents a North America natural gas outlook from Purvin and Gertz, an international energy consulting firm that has 30 years experience in providing strategic, commercial and technical advice to the petroleum industry. In particular, this presentation focuses on natural gas market fundamentals and how they may impact on oil sands development. It includes charts and graphs depicting NYMEX natural gas outlooks to July, 2009 and examines how supply will react to major changes in Canada's supply portfolio. It was noted that oil sands development is a driver for natural gas demand in Alberta. The existing regional gas pipeline infrastructure was presented and the market impact on upgrader options was discussed. The author suggests that if gas prices are too high, there are other fuel options for steam and power generation. These include bitumen, asphalt, coke, coal and nuclear. However, these options have additional costs, uncertainties and environmental issues. A key factor for success would be to have a clear understanding of the benefits and risks between these fuel options. 1 tab., 9 figs

  20. Oil Depletion and the Energy Efficiency of Oil Production: The Case of California

    Directory of Open Access Journals (Sweden)

    Adam R. Brandt

    2011-10-01

    Full Text Available This study explores the impact of oil depletion on the energetic efficiency of oil extraction and refining in California. These changes are measured using energy return ratios (such as the energy return on investment, or EROI. I construct a time-varying first-order process model of energy inputs and outputs of oil extraction. The model includes factors such as oil quality, reservoir depth, enhanced recovery techniques, and water cut. This model is populated with historical data for 306 California oil fields over a 50 year period. The model focuses on the effects of resource quality decline, while technical efficiencies are modeled simply. Results indicate that the energy intensity of oil extraction in California increased significantly from 1955 to 2005. This resulted in a decline in the life-cycle EROI from 6.5 to 3.5 (measured as megajoules (MJ delivered to final consumers per MJ primary energy invested in energy extraction, transport, and refining. Most of this decline in energy returns is due to increasing need for steam-based thermal enhanced oil recovery, with secondary effects due to conventional resource depletion (e.g., increased water cut.

  1. Fuel consumption from vehicles of China until 2030 in energy scenarios

    International Nuclear Information System (INIS)

    Zhang Qingyu; Tian Weili; Zheng Yingyue; Zhang Lili

    2010-01-01

    Estimation of fuel (gasoline and diesel) consumption for vehicles in China under different long-term energy policy scenarios is presented here. The fuel economy of different vehicle types is subject to variation of government regulations; hence the fuel consumption of passenger cars (PCs), light trucks (Lts), heavy trucks (Hts), buses and motor cycles (MCs) are calculated with respect to (i) the number of vehicles, (ii) distance traveled, and (iii) fuel economy. On the other hand, the consumption rate of alternative energy sources (i.e. ethanol, methanol, biomass-diesel and CNG) is not evaluated here. The number of vehicles is evaluated using the economic elastic coefficient method, relating to per capita gross domestic product (GDP) from 1997 to 2007. The Long-range Energy Alternatives Planning (LEAP) system software is employed to develop a simple model to project fuel consumption in China until 2030 under these scenarios. Three energy consumption decrease scenarios are designed to estimate the reduction of fuel consumption: (i) 'business as usual' (BAU); (ii) 'advanced fuel economy' (AFE); and (iii) 'alternative energy replacement' (AER). It is shown that fuel consumption is predicted to reach 992.28 Mtoe (million tons oil equivalent) with the BAU scenario by 2030. In the AFE and AER scenarios, fuel consumption is predicted to be 734.68 and 600.36 Mtoe, respectively, by 2030. In the AER scenario, fuel consumption in 2030 will be reduced by 391.92 (39.50%) and 134.29 (18.28%) Mtoe in comparison to the BAU and AFE scenarios, respectively. In conclusion, our models indicate that the energy conservation policies introduced by governmental institutions are potentially viable, as long as they are effectively implemented.

  2. Hydrogen and fuel cells: security and energy sustainability; Hidrogeno y pilas de combustible: seguridad y sostenibilidad energetica

    Energy Technology Data Exchange (ETDEWEB)

    Brey Sanchez, J. J.

    2012-11-01

    As fuel, hydrogen burns, burn like gasoline or natural gas, but with the difference that the only emission is water vapor produced without the presence of carbon dioxide. So, this is a clean fuel when its use. However, while the coal, oil or natural gas is found in nature, hydrogen must be produced from a primary energy source: it is said to be a energy vector. (Author)

  3. Durability Properties of Palm Oil Fuel Ash Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    T. Ofuyatan

    2015-02-01

    Full Text Available Self Compacting Concrete (SCC is a new innovation in technology that can flow readily into place under its own self weight and fill corner areas of reinforcement structures without the need to vibrate and without segregation of its constitute. The problem of durability of concrete structures due to inadequate compaction by skilled workers has become a source of concern globally. The shortage of skilled manpower, noise and vibration of equipment on construction sites has led to the development of self compacting concrete. This paper presents an experimental study on the durability properties of Self Compacting Concrete with partial placement of Palm Oil Fuel Ash (POFA. Twelve POFA self-compacting concretes of various strength grades were designed at varying percentages of 0, 5, 10, 15, 20, 25 and 30%. The concrete with no placement of ash served as control. Conplast SP432MS was used as superplasticiser in the mix. The experiments are carried out by adopting a water-powder ratio of 0.36. Workability of the fresh concrete is determined by using tests such as: slump flow, T50, V-funnel and L-Box tests. The durability of concrete is tested by acid resistance, sulphate attack and saturated water absorption at the age of 14, 28, 56 and 90 days.

  4. Low energy electron scattering from fuels

    International Nuclear Information System (INIS)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M.

    2011-01-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  5. Low energy electron scattering from fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Cristina A.; Silva, Daniel G.M.; Coelho, Rafael F.; Duque, Humberto V.; Santos, Rodrigo R. dos; Ribeiro, Thiago M. [Universidade Federal de Juiz de Fora (UFJF), MG (Brazil). Dept. de Fisica; Yates, Brent; Hong, Ling; Khakoo, Murtadha A. [California State University at Fullerton, CA (US). Physics Department; Bettega, Marcio H.F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Fisica; Costa, Romarly F. da [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, Marco A.P. [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, SP (Brazil)

    2011-07-01

    Full text. Accurate and precise values of absolute total cross section (TCS) represent important information in many scientific and technological applications. In our case, for example, we are motivated to provide such information for electron-fuel collision processes which are specifically relevant to modeling spark ignition in alcohol-fuelled internal combustion engines. Many electron scattering TCS measurements are presently available for a diverse range of atomic and molecular targets. However, lack of data for important bio-molecular targets still remains. Disagreements between the available TCS data for the alcohols have prompted several studies of electron scattering collision of slow electrons with these molecules which are currently important in applications as bio- fuels. This relevance, which has attracted much attention, has been one of the subjects of a recent collaboration between experimental and theoretical groups in the USA and Brazil. Recently this collaboration reported first measurements and calculations of differential cross sections for elastic low-energy (rotationally unresolved) electron scattering by several primary alcohols. In this work we address methanol and ethanol TCSs at low energy range and report additional studies of resonant structure in ethanol using the detection of metastable states produced by electron impact excitation with high energy resolution. We have recently constructed a TCS apparatus in our laboratory at Universidade Federal de Juiz de Fora, Brazil, based on the well-known linear transmission technique. The experimental setup is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the atoms or molecules to be studied at a given pressure. It consists essentially of an electron gun, a gas cell and an electron energy analyzer composed of an array of decelerating electrostatic lenses, a cylindrical dispersive 127o analyzer and a Faraday cup. To our knowledge, there exist

  6. A review of catalytic upgrading of bio-oil to engine fuels

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Grunwaldt, Jan-Dierk; Jensen, Peter Arendt

    2011-01-01

    As the oil reserves are depleting the need of an alternative fuel source is becoming increasingly apparent. One prospective method for producing fuels in the future is conversion of biomass into bio-oil and then upgrading the bio-oil over a catalyst, this method is the focus of this review article...... are traditional hydrodesulphurization (HDS) catalysts, such as Co–MoS2/Al2O3, or metal catalysts, as for example Pd/C. However, catalyst lifetimes of much more than 200h have not been achieved with any current catalyst due to carbon deposition. Zeolite cracking is an alternative path, where zeolites, e.g. HZSM-5...... produce fuels of acceptable grade for the current infrastructure. HDO is evaluated as being a path to fuels in a grade and at a price equivalent to present fossil fuels, but several tasks still have to be addressed within this process. Catalyst development, understanding of the carbon forming mechanisms...

  7. Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions

    Science.gov (United States)

    McCollum, David L.; Jewell, Jessica; Krey, Volker; Bazilian, Morgan; Fay, Marianne; Riahi, Keywan

    2016-07-01

    Oil prices have fluctuated remarkably in recent years. Previous studies have analysed the impacts of future oil prices on the energy system and greenhouse gas emissions, but none have quantitatively assessed how the broader, energy-system-wide impacts of diverging oil price futures depend on a suite of critical uncertainties. Here we use the MESSAGE integrated assessment model to study several factors potentially influencing this interaction, thereby shedding light on which future unknowns hold the most importance. We find that sustained low or high oil prices could have a major impact on the global energy system over the next several decades; and depending on how the fuel substitution dynamics play out, the carbon dioxide consequences could be significant (for example, between 5 and 20% of the budget for staying below the internationally agreed 2 ∘C target). Whether or not oil and gas prices decouple going forward is found to be the biggest uncertainty.

  8. A revisit of fossil-fuel subsidies in China: Challenges and opportunities for energy price reform

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    Highlights: • We measure fossil-fuel subsidies and effects of subsidy removal in a systematic fashion during 2006–2010. • Fossil-fuel subsidies scale of China was CNY 881.94 billion in 2010, equivalent to 2.59% of GDP. • Impacts of removing subsidies on macroeconomic variables are examined by the CGE model. • Future policy should focus on designing transparent, targeted and efficient energy subsidies. - Abstract: Fossil-fuel subsidies contribute to the extensive growth of energy demand and the related carbon dioxide emissions in China. However, the process of energy price reform is slow, even though China faces increasing problems of energy scarcity and environmental deterioration. This paper focuses on analyzing fossil fuel subsidies in China by estimating subsidies scale and the implications for future reform. We begin by measuring fossil-fuel subsidies and the effects of subsidy removal in a systematic fashion during 2006–2010 using a price-gap approach. Results indicate that the oil price reform in 2009 significantly reduced China’s fossil-fuel subsidies and modified the subsidy structure. Fossil-fuel subsidies scale in China was 881.94 billion CNY in 2010, which was lower than the amount in 2006, equivalent to 2.59% of the GDP. The macro-economic impacts of removing fossil-fuel subsidies are then evaluated by the computable general equilibrium (CGE) model. Results demonstrate that the economic growth and employment will be negatively affected as well as energy demand, carbon dioxide and sulfur dioxide emissions. Finally, policy implications are suggested: first, risks of government pricing of energy are far from negligible; second, an acceptable macroeconomic impact is a criterion for energy price reform in China; third, the future energy policy should focus on designing transparent, targeted and efficient energy subsidies

  9. EVALUATION OF THE IMPACT OF OIL PRESENCE IN THE AVIATION FUEL ON PARTICLE SIZE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Remigiusz JASIŃSKI

    2017-03-01

    Full Text Available Emissions from aircraft engines represent a highly complex and important issue, which is related to the risk to human health. Particles emitted in urban areas and in the vicinity of airports affect air quality and have a particularly negative impact on airport workers. The development of measurement techniques and the methodology for evaluating exhaust emissions have allowed for the elaboration of appropriate procedures for the certification of aircraft and the enhancement of existing standards. Particulate matter emissions depend, among other things, on the composition of the fuel used and its additives. Some aircraft engine designs require a fuel additive in the form of oil, which ensures the proper operation of the fuel supply system. This article presents the results of studies conducted on jet engines powered by clean aviation fuel and fuel with the addition of oil. The aim of the study was to evaluate the effect of the addition of oil on the size distribution and concentration of emitted particles. It was found that, for small values of thrust, oil additive increases the concentration of particles. With an increase in the thrust force, the reduction of particles concentration was recorded in the case of the engine powered by fuel with oil additive. There was no significant effect of oil additive on the size distribution of emitted particles.

  10. Use of a non-edible vegetable oils as an alternative fuel in compression ignition engines

    International Nuclear Information System (INIS)

    Jayaraj, S.; Ramadhas, A.S.; Muraleedharan, C.

    2006-01-01

    Shortage of petroleum fuels is assumed predominance globally and hence efforts are being made in every country to look for alternative fuels, especially for running internal compression ignition engines. However, the limited availability of edible vegetable oils in excess amounts is a limiting factors, which limits their large usage as an alternative fuel. A remedy for this is the use of non-edible oils obtained mainly from seeds, which are otherwise dumped as waste material. An effort is made here to use rubber seed oil as fuel in compression ignition engine at various proportions, mixed with diesel oil. The performance and emission characteristics of the engine are measured under dual fuel operation. The compression ignition engine could be run satisfactorily without any noticeable problem, even with 100% rubber seed oil. A multi-layer artificial neural network model was developed for predicting the performance and emission characteristics of the engine under dual fuel operation. Experimental data has been used to train the network. The predicted engine performance and emission characteristics obtained by neural network model are validated by using the experimental data. The neural network model is found to be quite efficient in predicting engine performance and emission characteristics. It has been found that 60-80% diesel replacement by rubber seed oil is the optimum in order to get maximum engine performance and minimum exhaust emission

  11. Fuel poverty, excess winter deaths, and energy costs in Vermont: Burdensome for whom?

    International Nuclear Information System (INIS)

    Teller-Elsberg, Jonathan; Sovacool, Benjamin; Smith, Taylor; Laine, Emily

    2016-01-01

    Energy, whether from electricity, natural gas, heating oil, propane, kerosene, or wood, is essential for the well-being of many Americans, yet those who spend more than 10 percent of their income of energy services can be considered “fuel poor.” This study assesses the extent and severity of fuel poverty in Vermont. It analyzes energy burdens in Vermont by household income deciles, using data from the Census Bureau's American Community Survey. Approximately 71,000 people suffered from fuel poverty in Vermont in 2000, and in 2012 the number rose to 125,000, or one in five Vermonters. Startlingly, fuel poverty grew 76 percent during this period. Excess winter deaths, caused potentially by fuel poverty, kill more Vermonters each year than car crashes. The article then provides 12 policy recommendations based on a small sample of elite semi-structured research interviews. These include suggestions that the Vermont legislature better fund investments in weatherization among low-income households; that community groups and social service agencies scale up the training of energy efficiency coaches; that state agencies endorse improvements in housing efficiency and appropriate fuel switching; and that utilities and fuel providers offer extra assistance for disconnected households and allow for on-bill financing of efficiency improvements. - Highlights: • Those spending 10 percent of their monthly income or more on energy services are in “fuel poverty”. • In this study we analyze the energy burden in Vermont by household income deciles. • We calculate that excess winter deaths caused potentially by fuel poverty kill more Vermonters each year than car crashes. • We conclude with implications for energy planners and policymakers.

  12. Trends and Effective Use of Energy Input in the Palm Kernel Oil Mills

    Directory of Open Access Journals (Sweden)

    Bamgboye, AI.

    2007-01-01

    Full Text Available This work aims at studying the importance and the efficiency of energy use in a few palm kernel oil mills selected for their representativity. Pattern of energy use, the cost of energy per unit product, energy intensity and normalized performance indicator (NPI were determined. Results show that the medium and the large mills depend largely on fossil fuel; while the small mill depends on electricity. It was found out that the large mill has the most effective use of energy with high energy intensity. The annual cost of energy per unit product of N8,360,000 ($64,307.69; N12,262,250 ($94,325 and N13,353,870 ($102, 722.08 were obtained for small, medium and large mills respectively. The NPI results show that there was no wastage of energy through space heating in energy supplied for production within the factory site.

  13. Data on kinetic, energy and emission performance of biodiesel from waste frying oil

    Directory of Open Access Journals (Sweden)

    Silverio Catureba da Silva Filho

    2018-06-01

    Full Text Available The data presented in this article are related to the research article “Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city” (Silva Filho et al., 2018 [1]. This article presents the variation of the concentration of waste frying oil (WFO with the reaction time and temperature during the transesterification of WTOs collected in the residences and restaurants of the city of São Paulo. Then, the biodiesel samples were mixed with the S-10 diesel oil in order to obtain the B10, B20, B30, B40, B50, B75 and B100 blends, which were tested in a diesel engine and their power, fuel consumption and gas emissions (CO, CO2 and SO2 have been measured to verify their greenhouse effect and energy efficiency. Keywords: Biodiesel, Kinetic curves, Greenhouse gas emission, Energy efficiency

  14. Jatropha oil and biogas in a dual fuel CI engine for rural electrification

    NARCIS (Netherlands)

    Luijten, C.C.M.; Kerkhof, E.

    2011-01-01

    This work presents the first dual fuel measurements with pure jatropha oil and biogas, using a 12 kW diesel engine generator. Reference tests are done with pure jatropha oil and with diesel to characterize the engine’s thermal efficiency eta_t, volumetric efficiency eta_v and air excess ratio lambda

  15. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra

    International Nuclear Information System (INIS)

    Ong, H.C.; Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Chong, W.T.; Boosroh, M.H.

    2013-01-01

    Highlights: • Biodiesel is an effective way to overcome environmental issue by diesel fuel. • Two stage acid (H 2 SO 4 ) and base (NaOH) catalyst transesterification process ware carried out to produce methyl ester. • Properties of produced jatropha, sterculia and ceiba methyl ester are within the ASTM D6751 standard. • The methyl ester content was 96.75%, 97.50% and 97.72% for JCME, SFME and CPME respectively. - Abstract: Biodiesel production from non-edible vegetable oil is one of the effective ways to overcome the problems associated with energy crisis and environmental issues. The non-edible oils represent potential sources for future energy supply. In this study, the physical and chemical properties of crude Jatropha curcas oil (CJCO), crude Sterculia foetida oil (CSFO) and crude Ceiba pentandra oil (CCPO) and its methyl ester have been studied. The acid values of three oils were found to be 12.78 mg KOH per g, 5.11 mg KOH per g and 11.99 mg KOH per g which required acid-esterification and alkali-transesterification process. Acid value was decreased by esterification process using sulfuric acid anhydrous (H 2 SO 4 ) as a catalyst and alkaline (NaOH) catalyst transesterification was carried out for the conversion of crude oil to methyl esters. The optimal conditions of FAME yield achieved for those three biodiesel were 96.75%, 97.50% and 97.72% respectively. Furthermore, the fuel properties of J. curcas methyl ester (JCME), S. foetida methyl ester (SFME) and C. pentandra methyl ester (CPME) were determined and evaluated. As a result, those produced biodiesel matched and fulfilled ASTM 6751 and EN 14214 biodiesel standards. Based on the results, JCME, SFME and CPME are potential non-edible feedstock for biodiesel production

  16. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  17. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  18. 77 FR 27451 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft...

    Science.gov (United States)

    2012-05-10

    ... (other than diesel fuels) pursuant to hydraulic fracturing operations related to oil, gas, or geothermal... during HF related to oil, gas, or geothermal operations must obtain a UIC permit before injection begins... diesel fuels are available through the UIC Class II Program, the well class for oil and gas activities.\\1...

  19. 77 FR 40354 - Permitting Guidance for Oil and Gas Hydraulic Fracturing Activities Using Diesel Fuels-Draft

    Science.gov (United States)

    2012-07-09

    ... through the UIC Class II Program, the well class for oil and gas activities. Geothermal activities are not... inject diesel fuels during hydraulic fracturing related to oil, gas, or geothermal operations must obtain... geothermal activities, the draft guidance only covers hydraulic fracturing using diesel fuels related to oil...

  20. Additives for rapeseed oil fuel. Influence on the exhaust gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kastl, Johannes; Remmele, Edgar; Thuneke, Klaus [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-06-01

    In contrast to fossil diesel fuel, the use of additives is not common in rapeseed oil fuel. In a preceding research project the efficacy of several additives, that are commercially available for the use in fossil diesel or FAME, has been investigated for rapeseed oil fuel in the lab. Four additives could be identified, which have a significant influence on the ignition delay or the low temperature flow behaviour of rapeseed oil fuel. To investigate whether there are negative effects of the additives on other fuel-related properties in practical use, a test series on an agricultural tractor capable of running on vegetable oils has been conducted. Attention is focused on the operating parameters like power, torque or fuel consumption as well as on regulated emissions (CO, HC, particulate matter or NOx) and non-regulated emissions like polycyclic aromatic hydrocarbons. Additionally, the influence of the additives on the storage stability of rapeseed oil fuel is investigated in long term studies. No negative influence of the additives on the regulated emissions could be seen in the experiments, the data of the non-regulated emissions is still being analysed. This paper will focus on the emissions testing; results of the long term studies will be given in the presentation. (orig.)

  1. Exchange of researchers of oil substituting energies in EU countries; EU shokoku no sekiyu daitai energy kenkyusha koryu jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to further promote smoother introduction of oil substituting energies and development of new energies and energy saving technologies, it was intended to exchange and acquire items of information effective to learn the current state and policy trends on research and development of new energies and energy conservation in the EU countries who are the industrialized countries like Japan and enthusiastic in developing oil substituting energies. Therefore, exchange of researchers was carried out with an objective to contribute to research and development of oil substituting energies by deepening mutual understanding on the development efforts and forming efficient cooperative relationship. The researchers who visited Japan are Dr. Robert Durand (France) and Prof. and Dr. Bruno Scrosati (Italy). Dr. Durand has a great knowledge about fuel cells and storage batteries, and Dr. Scrosati about electrolytes and lithium batteries. Both gentlemen have visited the Agency of Industrial Science and Technology and the Agency of Natural Resources and Energy of the Ministry of International Trade and Industry, NEDO, Toshiba, Sony, Sanyo Electric, Japan Storage Battery, Matsushita Battery Industry, the Industrial Technology Research Institute of Osaka, and Kansai Electric Power Company. Views and information were exchanged and a number of good results were rewarded.

  2. Energy and fuel efficient parallel mild hybrids for urban roads

    International Nuclear Information System (INIS)

    Babu, Ajay; Ashok, S.

    2016-01-01

    Highlights: • Energy and fuel savings depend on battery charge variations and the vehicle speed parameters. • Indian urban conditions provide lot of scope for energy and fuel savings in mild hybrids. • Energy saving strategy has lower payback periods than the fuel saving one in mild hybrids. • Sensitivity to parameter variations is the least for energy saving strategy in a mild hybrid. - Abstract: Fuel economy improvements and battery energy savings can promote the adoption of parallel mild hybrids for urban driving conditions. The aim of this study is to establish these benefits through two operating modes: an energy saving mode and a fuel saving mode. The performances of a typical parallel mild hybrid using these modes were analysed over urban driving cycles, in the US, Europe, and India, with a particular focus on the Indian urban conditions. The energy pack available from the proposed energy-saving operating mode, in addition to the energy already available from the conventional mode, was observed to be the highest for the representative urban driving cycle of the US. The extra energy pack available was found to be approximately 21.9 times that available from the conventional mode. By employing the proposed fuel saving operating mode, the fuel economy improvement achievable in New York City was observed to be approximately 22.69% of the fuel economy with the conventional strategy. The energy saving strategy was found to possess the lowest payback periods and highest immunity to variations in various cost parameters.

  3. The world energy demand in 2007: How high oil prices impact the global energy demand? June 9, 2008

    International Nuclear Information System (INIS)

    2008-01-01

    How high oil prices impact the global energy demand? The growth of energy demand continued to accelerate in 2007 despite soaring prices, to reach 2,8 % (+ 0,3 point compared to 2006). This evolution results from two diverging trends: a shrink in energy consumption in most of OECD countries, except North America, and a strong increase in emerging countries. Within the OECD, two contrasting trends can be reported, that compensate each other partially: the reduction of energy consumption in Japan (-0.8%) and in Europe (-1.2%), particularly significant in the EU-15 (-1.9%); the increase of energy consumption in North America (+2%). Globally, the OECD overall consumption continued to increase slightly (+0.5%), while electricity increased faster (2,1%) and fuels remained stable. Elsewhere, the strong energy demand growth remained very dynamic (+5% for the total demand, 8% for electricity only), driven by China (+7.3%). The world oil demand increased by 1% only, but the demand has focused even more on captive end usages, transports and petrochemistry. The world gasoline and diesel demand increased by around 5,7% in 2007, and represents 53% of the total oil products demand in 2007 (51% in 2006). If gasoline and diesel consumption remained quasi-stable within OECD countries, the growth has been extremely strong in the emerging countries, despite booming oil prices. There are mainly two factors explaining this evolution where both oil demand and oil prices increased: Weak elasticity-prices to the demand in transport and petrochemistry sectors Disconnection of domestic fuel prices in major emerging countries (China, India, Latin America) compared to world oil market prices Another striking point is that world crude oil and condensate production remained almost stable in 2007, hence the entire demand growth was supported by destocking. During the same period, the OPEC production decreased by 1%, mainly due to the production decrease in Saudi Arabia, that is probably more

  4. Computations between metallocalix(4)arene host and a series of four oil-based fuel pollutant guests

    International Nuclear Information System (INIS)

    Pathak, D.A.; Street, N.C.

    2006-01-01

    Calculations using PM3 and mechanics methods on metallocalix(4)arene hosts (1-10) and substituted dibenzothiophene guests (A-D), which are generally known as oil-based fuel pollutants, show that host-guest formation is energetically favored. Calculations have been carried out for both 1/1 and 1/4 ratios of host/guest. There is no direct bonding between the metal center of the host and the sulfur of the guest in the host-guest complex. Sterically hundered dibenzothiophene guests show similar energies to the unhindered analogs. For calix(4)arenas (5-10) in partial cone conformations and having hydrogen rather than p-tert-butyl groups on the wide rim, host-guest formation occurs within the narrow rim rather than the wide rim. Host-guest association appears to occur via Pie-Pie interactions between host and guest phenyl groups rather than via metal-sulfur bonding. The study has importance especially in oil refining to obtain environmentally safe fuel oils and help supramolecular chemists in designing and synthesizing more sophisticated host molecules for the removal of sulfur from crude oil / refinery oil. (author)

  5. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Bazmi, Aqeel Ahmed [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia); Biomass Conversion Research Center (BCRC), Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore (Pakistan); Zahedi, Gholamreza; Hashim, Haslenda [Process Systems Engineering Centre (PROSPECT), Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, University Technology Malaysia, Skudai 81310, Johor Bahru, JB (Malaysia)

    2011-01-15

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  6. Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation

    International Nuclear Information System (INIS)

    Bazmi, Aqeel Ahmed; Zahedi, Gholamreza; Hashim, Haslenda

    2011-01-01

    It has been broadly accepted worldwide that global warming, indeed, is the greatest threat of the time to the environment. Renewable energy (RE) is expected as a perfect solution to reduce global warming and to endorse sustainable development. Progressive release of greenhouse gases (GHG) from increasing energy-intensive industries has eventually caused human civilization to suffer. Realizing the exigency of reducing emissions and simultaneously catering to needs of industries, researchers foresee the RE as the perfect entrant to overcome these challenges. RE provides an effective option for the provision of energy services from the technical point of view while biomass, a major source of energy in the world until before industrialization when fossil fuels become dominant, appears an important renewable source of energy and researches have proven from time to time its viability for large-scale production. Being a widely spread source, biomass offers the execution of decentralized electricity generation gaining importance in liberalized electricity markets. The decentralized power is characterized by generation of electricity nearer to the demand centers, meeting the local energy needs. Researchers envisaged an increasing decentralization of power supply, expected to make a particular contribution to climate protection. This article investigates the progress and challenges for decentralized electricity generation by palm oil biomass according to the overall concept of sustainable development. (author)

  7. Upgrading biomass pyrolysis bio-oil to renewable fuels.

    Science.gov (United States)

    2015-01-01

    Fast pyrolysis is a process that can convert woody biomass to a crude bio-oil (pyrolysis oil). However, some of these compounds : contribute to bio-oil shelf life instability and difficulty in refining. Catalytic hydrodeoxygenation (HDO) of the bio-o...

  8. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  9. Fuel cell energy service Enron`s commerical program

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, M.W.

    1996-04-01

    Enron, the premier provider of clean fuels worldwide, has launched a unique energy service based on fuel cell technology. The goal of this program is to bring the benefits of fuel cell power to the broad commercial marketplace. Enron`s Energy Service is currently based on a 200 kilowatt phosphoric acid power plant manufactured by ONSI Corporation. This plant is fueled by natural gas or propane, and exhibits superior performance. Enron offers a `no hassle` package that provides customers with immediate benefits with no upfront capital or technical risks. This paper describes Enron`s fuel cell commercial program.

  10. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2017-08-24

    Heavy fuel oil (HFO) obtained from crude oil distillation is a widely used fuel in marine engines and power generation technologies. In the present study, the pyrolysis and combustion of a Saudi Arabian HFO in nitrogen and in air, respectively, were investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due to the thermal degradation of HFO at temperatures up to 1000°C and at various heating rates of 5, 10 and 20°C/min, in air and N2 atmospheres. FTIR analysis was then performed to study the composition of the evolved gases. The TG/DTG curves during HFO combustion show the presence of three distinct stages: the low temperature oxidation (LTO); fuel decomposition (FD); and high temperature oxidation (HTO) stages. The TG/DTG curves obtained during HFO pyrolysis show the presence of two devolatilization stages similar to that seen in the LTO stage of HFO combustion. Apart from this, the TG/DTG curves obtained during HFO combustion and pyrolysis differ significantly. Kinetic analysis was also performed using the distributed activation energy model, and the kinetic parameter (E) was determined for the different stages of HFO combustion and pyrolysis processes, yielding a good agreement with the measured TG profiles. FTIR analysis showed the signal of CO2 as approximately 50 times more compared to the other pollutant gases under combustion conditions. Under pyrolytic conditions, the signal intensity of alkane functional groups was the highest followed by alkenes. The TGA-FTIR results provide new insights into the overall HFO combustion processes, which can be used to improve combustor designs and control emissions.

  11. Thermal stability evaluation of palm oil as energy transport media

    International Nuclear Information System (INIS)

    Wan Nik, W.B.; Ani, F.N.; Masjuki, H.H.

    2005-01-01

    The thermal stability of palm oil as energy transport media in a hydraulic system was studied. The oils were aged by circulating the oil in an open loop hydraulic system at an isothermal condition of 55 deg. C for 600 h. The thermal behavior and kinetic parameters of fresh and degraded palm oil, with and without oxidation inhibitor, were studied using the dynamic heating rate mode of a thermogravimetric analyser (TGA). Viscometric properties, total acid number and iodine value analyses were used to complement the TGA data. The thermodynamic parameter of activation energy of the samples was determined by direct Arrhenius plot and integral methods. The results may have important applications in the development of palm oil based hydraulic fluid. The results were compared with commercial vegetable based hydraulic fluid. The use of F10 and L135 additives was found to suppress significantly the increase of acid level and viscosity of the fluid

  12. Energy security of supply and oil shale resources

    International Nuclear Information System (INIS)

    Elkarmi, F.

    1994-01-01

    Jordan must utilize its huge oil shale deposits in order to increase domestic security of energy supply and benefit financially. Utilization processes will require large scale financial expenditures, beyond Jordan's means. Therefore, the BOT scheme seems to be the perfects solution. Since oil shale retorting technology will produce oil which can be traded to generate valuable foreign exchange revenues, it is more advantageous than direct burning technology which produces electricity limited to local consumption regardless of economics. Under the BOT scheme, the incentive, for the foreign sponsor is to return his investment via quantities of oil; for Jordan the aim is to meet local energy demand and acquire the plant infrastructure in the long term. Recent events in the more traditional oil fields of the region make such a project in Jordan more attractive. (author) 3 tabs. 2 figs

  13. Peak Oil, threat or energy worlds' phantasm?

    International Nuclear Information System (INIS)

    Favennec, Jean-Pierre

    2011-01-01

    The concept of Peak Oil is based on the work of King Hubbert, a petroleum geologist who worked for Shell in the USA in the 1960's. Based on the fact that discoveries in America reached a maximum in the 1930's, he announced that American production would reach a maximum in 1969, which did actually occur. Geologists members of the Association for the Study of Peak Oil have extrapolated this result to a worldwide scale and, since oil discoveries reached a peak in the 1960's, argued that production will peak in the very near future. It is clear that hydrocarbon reserves are finite and therefore exhaustible. But little is known regarding the level of ultimate (i.e. total existing) reserves. There are probably very large reserves of non conventional oil in addition to the reserves of conventional oil. An increasing number of specialists put maximum production at less than 100 Mb/d more for geopolitical than physical reasons. Attainable peak production will probably vary from year to year and will depend on how crude oil prices develop

  14. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals

    International Nuclear Information System (INIS)

    Cherubini, Francesco

    2010-01-01

    A great fraction of worldwide energy carriers and material products come from fossil fuel refinery. Because of the on-going price increase of fossil resources, their uncertain availability, and their environmental concerns, the feasibility of oil exploitation is predicted to decrease in the near future. Therefore, alternative solutions able to mitigate climate change and reduce the consumption of fossil fuels should be promoted. The replacement of oil with biomass as raw material for fuel and chemical production is an interesting option and is the driving force for the development of biorefinery complexes. In biorefinery, almost all the types of biomass feedstocks can be converted to different classes of biofuels and biochemicals through jointly applied conversion technologies. This paper provides a description of the emerging biorefinery concept, in comparison with the current oil refinery. The focus is on the state of the art in biofuel and biochemical production, as well as discussion of the most important biomass feedstocks, conversion technologies and final products. Through the integration of green chemistry into biorefineries, and the use of low environmental impact technologies, future sustainable production chains of biofuels and high value chemicals from biomass can be established. The aim of this bio-industry is to be competitive in the market and lead to the progressive replacement of oil refinery products. (author)

  15. Externalities of fuel cycles 'ExternE' project. Oil fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Friedrich, R.; Krewitt, W.; Mayerhofer, P.; Trukenmueller, A.; Gressmann, A.; Runte, K.-H.; Kortum, G.; Weltschev, M.

    1994-01-01

    principal objectives: - to quantify the external costs and benefits of the major fuel cycles for electricity generation and conservation, using the best available methods and information; - to adopt a common framework for assessment of fuel cycles, in order that a fair comparison can be made between them, and - to make recommendations on areas in which further research is required in order that future estimates of damages can be made with greater confidence. Within the study the following fuel cycles for electricity generation will be assessed: coal, uranium, lignite, oil, gas, wind, photovoltaics, biomass, small scale hydroelectric projects and energy conservation. The project started by considering the coal and the nuclear fuel cycles. The methodological framework established during the work on these two fuel cycles now has to be modified and transferred to other fuel cycles to demonstrate the general applicability of the accounting framework and to guarantee a consistent analysis of various fuel cycles

  16. First international congress on plant oil fuels. Proceedings; Erster Internationaler Kongress zu Pflanzenoel-Kraftstoffen. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The conference proceedings contain 31 contributions on the following topics: biofuels - status and perspectives; ecological evaluation; plant oils: engineering - production and quality; plant oils: international markets and economy; mobile applications - techniques and emissions; stationary applications: techniques and economy; the renewable energies law (EEG), the biofuel quoting law (BioKraftQuG) and the energy tax law (EnergieStG).

  17. Experimental Investigation of the Use of Waste Mineral Oils as a Fuel with Organic-Based Mn Additive

    Directory of Open Access Journals (Sweden)

    Bülent Özdalyan

    2018-06-01

    Full Text Available The heat values of waste mineral oils are equal to the heat value of the fuel oil. However, heat value alone is not sufficient for the use of waste minerals oils as fuel. However, the critical physical properties of fuels such as density and viscosity need to be adapted to the system in order to be used. In this study, the engine oils used in the first 10,000 km of the vehicles were used as waste mineral oil. An organic-based Mn additive was synthesized to improve the properties of the waste mineral oil. It was observed that mixing the Mn additive with the waste mineral oil at different doses (4, 8, 12, and 16 ppm improves the viscosity of the waste oil and the flash point. The resulting fuel was evaluated for emission using different loads in a 5 kW capacity generator to compare the fuel with standard diesel fuel and to determine the effect of Mn addition. In the experimental study, it was observed that the emission characteristics of the fuel obtained from waste mineral oil were worse than diesel fuel, but some improvement was observed with Mn addition. As a result, we found that the use of waste mineral oils in engines in fuel standards was not appropriate, but may be improved with additives.

  18. Simulation of demand (or consumption) of fuel and lubricating oils in countries of Asia

    International Nuclear Information System (INIS)

    Tuzelbaev, B.I.; Khisarov, B.D.

    1997-01-01

    Demand on fuel and lubricating oils mixtures is estimated in transport sector of the Asia countries. Model of demand is constructed with help of co-integration structures and error correction model for definition of fuel and lubricating oils mixtures elasticity. Researches have been conducted with use of program complex in operational medium of the Windows-95. Co-integrating vectors for demand on gasoline were defined by all of considered countries (beside Thailand), for demand on diesel fuel - for Indonesia and South Korea

  19. Climate design of vegetable oil fuels for agricultural equipment; Klimadesign von Pflanzenoelkraftstoffen fuer landwirtschaftliche Maschinen

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Michael [B.A.U.M. Consult GmbH, Muenchen (Germany). International and Energy Projects; Pickel, Peter [John Deere European Technology Innovation Center, Kaiserslautern (Germany)

    2012-07-01

    The use of biofuels in agricultural machinery is an option for complying with climate protection requirements that are presently discussed to be placed on manufacturers of mobile off-road machinery by the European Commission. A mathematical model has been developed that allows calculating greenhouse gas emissions (GHGE) of biofuels for complex production paths in a straightforward, transparent manner and in pattern with the EU's Fuel Quality Directive (FQD). Therewith it has been shown that both rape seed and camelina sativa oil fuels can save more than 60 % GHGE. Key parameters have been identified and rules for a climate design of vegetable oil fuels have been formulated. (orig.)

  20. Relative bioavailability and toxicity of fuel oils leaking from World War II shipwrecks.

    Science.gov (United States)

    Faksness, Liv-Guri; Daling, Per; Altin, Dag; Dolva, Hilde; Fosbæk, Bjørn; Bergstrøm, Rune

    2015-05-15

    The Norwegian Authorities have classified 30 WWII shipwrecks to have a considerable potential for pollution to the environment, based on the location and condition of the wreck and the types and amount of fuel. Oil thus far has been removed from eight of these shipwrecks. The water accommodated fractions of oils from two British wrecks and two German wrecks have been studied with special emphasis on chemistry and biological effects (algae growth (Skeletonema costatum) and copepod mortality (Calanus finmarchicus)). Chemical analyses were also performed on three additional German wreck oils. The results from these studies show that the coal based oils from German WWII shipwrecks have higher toxicity to marine organisms than the mineral oils from the British shipwrecks. The potential for higher impact on the marine environment of coal based oils has resulted in an altering of the priority list for oil recovery from WWII wrecks by the authorities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Impact of burning oil as auxiliary fuel in kraft recovery furnaces upon SO2 emissions

    International Nuclear Information System (INIS)

    Someshwar, A.V.; Caron, A.L.; Pinkerton, J.E.

    1990-01-01

    The relationship between burning medium sulfur oil as auxiliary fuel in kraft recovery furnaces and SO 2 emissions was examined. Analysis of long-term CEMS SO 2 data from four furnaces shows no increase in SO 2 emissions as a result of oil burning. The results of field tests conducted at four furnaces while co-firing oil with liquor (up to 34% of total heat input) show that (1) average SO 2 emissions during the oil firing period either decreased or remained unchanged; (2) the overall sulfur retention within the furnace remained consistently high (more than 90%) with increasing levels of oil burning; (3) apportioning stack SO 2 emissions between those derived from oil and black liquor was infeasible. The results indicate that the same alkali fume generation processes that lead to the efficient capture of SO 2 resulting from black liquor combustion may be responsible for the capture of SO 2 resulting from sulfur-containing oil combustion

  2. Effects of No. 2 fuel oil on hatchability of marine and estuarine bird eggs

    Science.gov (United States)

    White, Donald H.; King, Kirke A.; Coon, Nancy C.

    1979-01-01

    Oil spills and discharges may kill birds directly by destroying the insulation that their feathers provide so that they die of exposure; by poisoning them if they ingest oil; and by stressing them so that they starve to death. But oil pollution has more subtle effects, too. Nesting birds exposed to sublethal quantities of oil may transfer the oil to eggs in their nests, thereby causing failure of the eggs to hatch (RITTINGHAUS 1956). Laboratory studies have shown that very small quantities of oil, when applied to eggs of waterfowl, significantly reduced hatchability (HARTUNG 1965, ALBERS 1977a, SZARO and ALBERS 1977). The objective of this study was to determine the effects of external applications of No. 2 fuel oil on embryo survival of naturally and of artificially incubated eggs of marine and estuarine birds.

  3. Effects of Fuel Oil on the Geotechnical Properties of Clay Soil

    Directory of Open Access Journals (Sweden)

    Mahdi Obaid Karkush

    2017-08-01

    Full Text Available The present study highlights the effects of medium fuel oil (MFO on the chemical, physical and mechanical properties of clay soil samples (disturbed and undisturbed obtained from the site of the electrical power plant in the campus of the University of Baghdad at Al-Jadriah district in Baghdad/Iraq. The soil sample was classified according to the unified soil classification system (USCS as CL and described as lean clay of low plasticity. The medium fuel oil is an industrial wastewater disposed as a byproduct from the fuel used in the electricity power plant. The soil samples are artificially contaminated with two percentages of medium fuel oil, 10 and 20 % related to the dry weight of soil. The soil samples were mixed with the contaminant (MFO by hand and then left for 4 days for homogeneity. A series of laboratory tests are conducted on both natural and artificially contaminated soil samples to measure the effects of medium fuel oil on the chemical, physical and mechanical properties of soil samples. The results of tests showed that the medium fuel oil has significant impacts on some properties of soil and slight effects on the others. Increasing the percentage of contaminant causes a slight decrease in the liquid limit and particle size distribution; on the other hand, it causes a considerable increase in the consolidation parameters and decrease in shear strength parameters. Also, there is a slight change in the chemical composition of soil samples.

  4. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.

    2009-08-15

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  5. Energy from algae using microbial fuel cells

    KAUST Repository

    Velasquez-Orta, Sharon B.; Curtis, Tom P.; Logan, Bruce E.

    2009-01-01

    Bioelectricity production froma phytoplankton, Chlorella vulgaris, and a macrophyte, Ulva lactuca was examined in single chamber microbial fuel cells (MFCs). MFCs were fed with the two algae (as powders), obtaining differences in energy recovery, degradation efficiency, and power densities. C. vulgaris produced more energy generation per substrate mass (2.5 kWh/kg), but U. lactuca was degraded more completely over a batch cycle (73±1% COD). Maximum power densities obtained using either single cycle or multiple cycle methods were 0.98 W/m2 (277 W/m3) using C. vulgaris, and 0.76 W/m2 (215 W/m3) using U. lactuca. Polarization curves obtained using a common method of linear sweep voltammetry (LSV) overestimated maximum power densities at a scan rate of 1 mV/s. At 0.1 mV/s, however, the LSV polarization data was in better agreement with single- and multiple-cycle polarization curves. The fingerprints of microbial communities developed in reactors had only 11% similarity to inocula and clustered according to the type of bioprocess used. These results demonstrate that algae can in principle, be used as a renewable source of electricity production in MFCs. © 2009 Wiley Periodicals, Inc.

  6. Impacts of renewable fuel regulation and production on agriculture, energy, and welfare

    Science.gov (United States)

    McPhail, Lihong Lu

    The purpose of this dissertation is to study the impact of U.S. federal renewable fuel regulations on energy and agriculture commodity markets and welfare. We consider two federal ethanol policies: the Renewable Fuel Standard (RFS) contained in the Energy Security and Independence Act of 2007 and tax credits to ethanol blenders contained in the Food, Conservation, and Energy Act of 2008. My first essay estimates the distribution of short-run impacts of changing federal ethanol policies on U.S. energy prices, agricultural commodity prices, and welfare through a stochastic partial equilibrium model of U.S. corn, ethanol, and gasoline markets. My second essay focuses on studying the price behavior of the renewable fuel credit (RFC) market, which is the mechanism developed by the Environmental Protection Agency (EPA) to meet the RFS. RFCs are a tradable, bankable, and borrowable accounting mechanism to ensure that all obligated parties use a mandated level of renewable fuel. I first develop a conceptual framework to understand how the market works and then apply stochastic dynamic programming to simulate prices for RFCs, examine the sensitivity of prices to relevant shocks, and estimate RFC option premiums. My third essay assesses the impact of policy led U.S. ethanol on the markets of global crude oil and U.S. gasoline using a structural Vector Auto Regression model of global crude oil, U.S. gasoline and ethanol markets.

  7. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  8. Removing heavy fuel oil from the submerged wreck of the Jacob Luckenbach

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, C [PCCI Inc./GPC, Williamsburg, VA (United States); Beaver, T [Global Diving and Salvage Inc., Seattle, WA (United States); Snyder, B [PCCI Inc., Alexandria, VA (United States)

    2003-07-01

    The Jacob Luckenbach cargo carrier sank in July 1953 just west of the Golden Gate Bridge in San Francisco, California after being struck by another vessel. It was carrying a cargo of military vehicles and railroad parts and was topped with heavy No.6 residual oil in deep and double bottom tanks. In 2002, the sunken ship was named as the source of mystery oil spills along the California coast. In response, the United States Coast Guard contracted Titan Maritime LLC and PCCI Inc. to conduct a vessel assessment and removal available oil. Diving services were provided by Seattle-based Global Diving and Salvage. The recovery operation proved difficult due to cold-water saturation diving at depths to 55 metres, strong currents, bad weather and poor subsea visibility. Pumping the heavy residual oil from the tanks also proved to be difficult because some tanks contained oil that was much more viscous than normal No.6 fuel oil, and the tanks had to be heated to more than 78 degrees C to allow for better fluid flow. Some of the abnormal differences in fuel oil rheologies were described along with the tools used to find and recover the oil and to minimize leaks in the wreck. The project, although more difficult than expected, was successful in removing all accessible oil and mitigating the potential for a catastrophic oil release. More than 460 metric tons of heavy fuel oil and emulsified water-in-oil product was removed from the wreck. One of the most important lessons learned was that cohesiveness and a united front are very much needed when a diverse group of salvage personnel are brought together. 1 tab., 5 figs.

  9. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    Science.gov (United States)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  10. Sustainable energy policy: the impact of government subsidies on ethanol as a renewable fuel

    Science.gov (United States)

    Osuagwu, Denis Ahamarula

    The United States Congress passed the Energy Policy Act of 1978 to promote ethanol production and reduce American dependence on foreign oil. The provision of subsidies in the act is indicative of the importance of energy in the economy. America needs a national energy policy that is economically, socially, and environmentally sustainable. Considering the importance of these needs, this study examines (a) the implementation of the Energy Policy Act of 1978 in regard to government subsidies and its effect on ethanol production, (b) the effect of gasoline consumption and cost on ethanol production, (c) the effect of corn production and price on ethanol fuel, and (d) the role of mandates and global crises on ethanol production. Secondary qualitative and quantitative data collected from various sources in 1978 through 2005 study the effect of ethanol subsidies on ethanol production. An autoregression error model is used to estimate the relevance of the explanatory variables on variations in ethanol production. The following are major study findings: (1) there is a positive correlation between corn production and ethanol production, is statistically significant; (2) government subsidies have a statistically significant positive correlation with ethanol production; (3) oil import has a statistically significant positive correlation with ethanol production, but has not contributed to a reduction the quantity of imported oil; (4) the price of corn has a statistically significant inverse relationship with ethanol production; (5) though not statistically significant, the price per barrel of oil is inversely related to ethanol production; (6) the budget surplus or deficit is associated with ethanol production; and (7) advocacy and lobbying for renewable fuel have encouraged support of ethanol production. The findings also show that global crises in the oil producing regions tend to influence the passage of favorable legislation for ethanol production. Furthermore, the

  11. Fuel and control modifications to fire oil and gas individually or simultaneously

    International Nuclear Information System (INIS)

    Des Chenes, C.D.; Connolly, J.M.

    1992-01-01

    Jacksonville Electric Authority's (JEA's) Northside station Unit 1 (NS-1) is now modified to fire natural gas as well as the original No. 6 fuel oil. Hardware and control modifications accommodate oil, gas. or simultaneous oil and gas firing in the boiler. Working with Stone and Webster Engineering Corporation, this flexibility derives from control modifications not previously used in North American power plants. This paper reports that the modifications not only reduce fuel costs, but also increase flexibility in meeting air emissions requirements. Emission levels for particulate and nitrous oxides (NO x ) on oil were demonstrated prior to the modification. No emission increases are allowed as a result of the modification in any firing mode. Particulate emission limits in pounds per million British thermal units (lb/mmBtu) are 0.1/mm Btu and NO x limits are 0.45 lb/mmBtu. No x emissions from gas firing are also stipulated to be below oil emission limits

  12. Global resources and energy trade. An overview for coal, natural gas, oil and uranium

    Energy Technology Data Exchange (ETDEWEB)

    Remme, U.; Blesl, M.; Fahl, U.

    2007-07-15

    Despite efforts to improve energy effi-ciency and increase the usage of renewable energy carriers, fossil fuels and nuclear energy will continue to be important sources of global energy supply for the coming decades. Present global oil and gas supply is characterized by a concentration of production in a few world areas, mainly the Middle East and the Former Soviet Union, and a transport from these regions to the industrialized countries. Depletion of conventional reserves, especially oil, in combination with a surge for energy in emerging economies, as China and India, how-ever, is expected to change this picture in the future: unconventional resources in other world regions may be exploited to cover the surge energy demand, infrastructure for energy transport along new routes may have to be established. To provide a data base for such ques-tions, this report gives an overview of the current global resource situation for coal, natural gas, oil and uranium. In the first part, an assessment of the con-ventional and unconventional reserves and resources as well as their supply costs is given for the different regions of the world. The second part describes the current energy trade infrastructure between world regions and estimates the costs for existing and new trade links between these regions. (orig.)

  13. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  14. Three Essays on National Oil Company Efficiency, Energy Demand and Transportation

    Science.gov (United States)

    Eller, Stacy L.

    This dissertation is composed of three separate essays in the field of energy economics. In the first paper, both data envelopment analysis and stochastic production frontier estimation are employed to provide empirical evidence on the revenue efficiency of national oil companies (NOCs) and private international oil companies (IOCs). Using a panel of 80 oil producing firms, the analysis suggests that NOCs are generally less efficient at generating revenue from a given resource base than IOCs, with some exceptions. Due to differing firm objectives, however, structural and institutional features may help explain much of the inefficiency. The second paper analyzes the relationship between economic development and the demand for energy. Energy consumption is modeled using panel data from 1990 to 2004 for 50 countries spanning all levels of development. We find the relationship between energy consumption and economic development corresponds to the structure of aggregate output and the nature of derived demand for electricity and direct-use fuels in each sector. Notably, the evidence of non-constant income elasticity of demand is much greater for electricity demand than for direct-use fuel consumption. In addition, we show that during periods of rapid economic development, one in which the short-term growth rate exceeds the long-run average, an increase in aggregate output is met by less energy-efficient capital. This is a result of capital being fixed in the short-term. As additional, more efficient capital stock is added to the production process, the short-term increase in energy intensity will diminish. In the third essay, we develop a system of equations to estimate a model of motor vehicle fuel consumption, vehicle miles traveled and implied fuel efficiency for the 67 counties of the State of Florida from 2001 to 2008. This procedure allows us to decompose the factors of fuel demand into elasticities of vehicle driving demand and fuel efficiency. Particular

  15. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  16. Catalytic Conversion of Bio-oil to Fuel for Transportation

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard

    identied as a prospective route to bio-fuels. The upgrading is most favorably done by hydrodeoxygenation (HDO), producing bio-fuels at a quality equivalent to conventional fossil fuels. The topic of this Ph.D. thesis has been the development of active and stable catalysts for this reaction. In the search...

  17. Upgrading of raw tall oil soap into fuel oils and lubricants. Final report; Raakasuovan jalostus poltto- ja voiteluoeljyksi. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Oasmaa, A.; Arpiainen, V.; McKeough, P.

    1997-12-31

    Thermochemical processing of tall oil soap originating from various mixtures of birch and pine has been experimentally investigated. The organic matter of tall oil soap, which is a by- product of Kraft pulping, originated mainly from wood extractives. Conventional processing of tall oil soap involves acidification with sulfuric acid to yield crude tall oil and subsequent distillation of the oil at centralized refineries. Because tall oil originating from birch wood is far less valuable than that from pine, there is an economic incentive in the Nordic Countries to develop alternative conversion processes for the tall oil soap produced at pulp mills where birch is widely used as feedstock. Furthermore, thermochemical processing of tall oil soap does not introduce sulfur into the chemical recovery cycle. This would be a significant advantage in future mills employing closure of water circuits and/or sulfur-free pulping. In small-scale experiments tall oil soaps from wood mixtures with high birch content have been processed using both liquid-phase thermal treatment and pyrolysis. The liquid-phase thermal treatment at 450 deg C under a nitrogen atmosphere yielded a good-quality oil product at high yield (about 50 % of the energy content of the tall oil soap). Also in the atmospheric pyrolysis of birch tall oil soap a separation of inorganic and organic constituents was obtained. The energy value of the product gases was high. Both processes are promising, but the pyrolysis alternative has the greater economic potential, providing that the promising preliminary experimental results have given a true picture of the performance of the full-scale pyrolysis process Bioenergy Research Programme; 3 refs., 3 figs.

  18. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  19. Papers of the Public Policy Forum conference : Fueling our future : strategic energy policy opportunities for Canada

    International Nuclear Information System (INIS)

    2004-01-01

    The Public Policy Forum is a unique organization in Canada which promotes excellence in public policy development due to its firm belief that high quality government is fundamental in the competitive global economy. This conference provided a forum to discuss recent developments in the oil markets and energy policies from a public policy perspective. Trends in global energy supply and demand were also reviewed with emphasis on issues such as industry consolidation, regulatory reform and oil pricing. The presentations examined the world energy outlook in terms of fossil fuel consumption, demand growth in developing countries, energy security, and how to reduce greenhouse gases for sustainable development. This conference featured 20 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security

    Directory of Open Access Journals (Sweden)

    Azadeh M. Rouhani

    2012-07-01

    Full Text Available The imbalance between energy resource availability, demand, and production capacity, coupled with inherent economic and environmental uncertainties make strategic energy resources planning, management, and decision-making a challenging process. In this paper, a descriptive approach has been taken to synthesize the world’s energy portfolio and the global energy balance outlook in order to provide insights into the role of Organization of Petroleum Exporting Countries (OPEC in maintaining “stability” and “balance” of the world’s energy market. This synthesis illustrates that in the absence of stringent policies, i.e., if historical trends of the global energy production and consumption hold into the future, it is unlikely that non-conventional liquid fuels and renewable energy sources will play a dominant role in meeting global energy demand by 2030. This should be a source of major global concern as the world may be unprepared for an ultimate shift to other energy sources when the imminent peak oil production is reached. OPEC’s potential to impact the supply and price of oil could enable this organization to act as a facilitator or a barrier for energy transition policies, and to play a key role in the global energy security through cooperative or non-cooperative strategies. It is argued that, as the global energy portfolio becomes more balanced in the long run, OPEC may change its typical high oil price strategies to drive the market prices to lower equilibria, making alternative energy sources less competitive. Alternatively, OPEC can contribute to a cooperative portfolio management approach to help mitigate the gradually emerging energy crisis and global warming, facilitating a less turbulent energy transition path while there is time.

  1. China's energy security: Oil and gas

    International Nuclear Information System (INIS)

    Wu, Kang

    2014-01-01

    China is currently the largest energy consuming country in the world. Until the early 1990s, China had long been a net energy exporter. The country became a net oil importer in 1993, the first time since the 1960s. For China, energy security first means oil supply security. China turned into a net natural gas importer in 2007 and then a net coal importer in 2009. In other words, China is now a net importer of all three types of fossil energy—oil, natural gas, and coal. In the context of rising oil imports and implementation of China's 12th Five-Year Program from 2011 to 2015, this paper examines China's energy security strategies with a focus on three leading elements, namely overseas oil investment, strategic petroleum reserves (SPR)and unconventional gas development. Our findings suggest that the Chinese government has promoted overseas investment strongly; its SPR program has been established though the progress for Phase II has been slower than expected and the government intends to boost the unconventional gas sector development. However, the challenges are enormous as well. As for future research, other elements for each dimension of energy security should be reviewed to reach a comprehensive conclusion about how well China has done and what steps are needed to move forward. - Highlights: • Identified China's key energy security strategies during the 12th Five-Year Program (FYP) and previous FYPs. • Provided a unique insight into China's rising oil imports. • Reviewed China's overseas oil and gas investment as a key energy security measure. • Assessed China's strategic petroleum reserves program and the future growth. • Provided a comprehensive coverage of China's unconventional gas development, including both coal-bed methane and shale gas

  2. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    International Nuclear Information System (INIS)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman

    2009-01-01

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  3. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type

    International Nuclear Information System (INIS)

    Luo, Yan; Guda, Vamshi Krishna; Hassan, El Barbary; Steele, Philip H.; Mitchell, Brian; Yu, Fei

    2016-01-01

    Highlights: • Oxidation had more influence on the yield of total hydrocarbons than distillation. • The highest total hydrocarbon yield was obtained from oxidized distilled bio-oil. • The 2nd-stage hydrocarbons were in the range of gasoline fuel boiling points. • The main products for upgrading of oxidized bio-oil were aliphatic hydrocarbons. • The main products for upgrading of non-oxidized bio-oil were aromatic hydrocarbons. - Abstract: Distilled and oxidized distilled bio-oils were subjected to 1st-stage mild hydrodeoxygenation and 2nd-stage full hydrodeoxygenation using nickel/silica–alumina catalyst as a means to enhance hydrocarbon yield. Raw bio-oil was treated for hydrodeoxygenation as a control to which to compare study treatments. Following two-stage hydrodeoxygenation, four types of hydrocarbons were mainly comprised of gasoline and had water contents, oxygen contents and total acid numbers of nearly zero and higher heating values of 44–45 MJ/kg. Total hydrocarbon yields for raw bio-oil, oxidized raw bio-oil, distilled bio-oil and oxidized distilled bio-oil were 11.6, 16.2, 12.9 and 20.5 wt.%, respectively. The results indicated that oxidation had the most influence on increasing the yield of gasoline fuel type followed by distillation. Gas chromatography/mass spectrometry characterization showed that 66.0–76.6% of aliphatic hydrocarbons and 19.5–31.6% of aromatic hydrocarbons were the main products for oxidized bio-oils while 35.5–38.7% of aliphatic hydrocarbons and 58.2–63.1% of aromatic hydrocarbons were the main products for non-oxidized bio-oils. Both aliphatic and aromatic hydrocarbons are important components for liquid transportation fuels and chemical products.

  4. Malaysian palm oil. Surviving the food versus fuel dispute for a sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Man Kee; Tan, Kok Tat; Lee, Keat Teong; Mohamed, Abdul Rahman [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2009-08-15

    For the past few decades, palm oil has gone through a revolution that few would have predicted. From a humble source of edible oil that was heavily criticized as being un-healthy and un-fit for human consumption, it has proven itself based on scientific findings that it is indeed one of the most nutritious edible oils in the world. Besides, palm oil, the cheapest vegetable oil in the market has diversified as one of the main feedstock for oleo-chemical industries. Recently, with the price of crude petroleum hitting records height every other day, palm oil has become one of the few feasible sources for biodiesel, a renewable substitute for petroleum-derived diesel. Nevertheless, the conversion of palm oil into biodiesel has again received criticism from various NGOs worldwide, mainly on extinction of orang utans, deforestation and particularly the food versus fuel dispute. It was claimed that the conversion of food crops to fuel would significantly increase the number of undernourished people in the world. Malaysia, being the world second largest producer of palm oil, is not spared from this criticism. On the contrary, in the present study it was found that palm oil is indeed the most economical and sustainable source of food and biofuel in the world market. Besides, it was shown that it has the capacity to fulfill both demands simultaneously rather than engaging in priority debate. Nevertheless, fuel is now a necessity rather than a luxury for economy and development purposes. A few strategies will then be presented on how palm oil can survive in this feud and emerged as the main supply of affordable and healthy source of edible oil while concurrently satisfying the market demand for biodiesel throughout the world. (author)

  5. Notice and Supplemental Determination for Renewable Fuels Produced Under the Final Renewable Fuel Standard Program from Canola Oil

    Science.gov (United States)

    This rule finalizes the determination that canola oil biodiesel meets the lifecycle greenhouse gas (GHG) emission reduction threshold of 50 required by the Energy Independence and Security Act of 2007 (EISA).

  6. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    Science.gov (United States)

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  7. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  8. Advanced CANDU reactor: an optimized energy source of oil sands application

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Bock, D.; Miller, A.; Kuran, S.; Keil, H.; Fiorino, L.; Duffey, R.; Dunbar, R.B.

    2003-01-01

    Atomic Energy of Canada Limited (AECL) is developing the ACR-700 TM (Advanced CANDU Reactor-700 TM ) to meet customer needs for reduced capital cost, shorter construction schedule, high capacity factor while retaining the benefits of the CANDU experience base. The ACR-700 is based on the concept of CANDU horizontal fuel channels surrounded by heavy water moderator. The major innovation of this design is the use of slightly enriched uranium fuel in a CANFLEX bundle that is cooled by light water. This ensures: higher main steam pressures and temperatures providing higher thermal efficiency; a compact and simpler reactor design with reduced capital costs and shorter construction schedules; and reduced heavy water inventory compared to existing CANDU reactors. ACR-700 is not only a technically advanced and cost effective solution for electricity generating utilities, but also a low-cost, long-life and sustainable steam source for increasing Alberta's Oil Sand production rates. Currently practiced commercial surface mining and extraction of Oil Sand resources has been well established over the last three decades. But a majority of the available resources are somewhat deeper underground require in-situ extraction. Economic removal of such underground resources is now possible through the Steam Assisted Gravity Drainage (SAGD) process developed and proto-type tested in-site. SAGD requires the injection of large quantities of high-pressure steam into horizontal wells to form reduced viscosity bitumen and condensate mixture that is then collected at the surface. This paper describes joint AECL studies with CERI (Canadian Energy Research Institute) for the ACR, supplying both electricity and medium-pressure steam to an oil sands facility. The extensive oil sands deposits in northern Alberta are a very large energy resource. Currently, 30% of Canda's oil production is from the oil sands and this is expected to expand greatly over the coming decade. The bitumen deposits in the

  9. Utilization of waste cooking oil as an alternative fuel for Turkey.

    Science.gov (United States)

    Arslan, Ridvan; Ulusoy, Yahya

    2017-04-03

    This study is based on three essential considerations concerning biodiesel obtained from waste cooking oil: diesel engine emissions of biodiesel produced from waste cooking oil, its potential in Turkey, and policies of the Turkish government about environmentally friendly alternative fuels. Emission tests have been realized with 35.8 kW, four-cylinder, four-stroke, direct injection diesel tractor engine. Test results are compared with Euro non-road emission standards for diesel fuel and five different blends of biodiesel production from waste cooking oil. The results of the experimental study show that the best blends are B10 and B20 as they show the lowest emission level. The other dimensions of the study include potential analysis of waste cooking oil as diesel fuels, referring to fuel price policies applied in the past, and proposed future policies about the same issues. It was also outlined some conclusions and recommendations in connection with recycling of waste oils as alternative fuels.

  10. Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy niche in Malaysia 1990–2011

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan

    2014-01-01

    The economic development in emerging economies in Southeast Asia has significantly increased the use of fossil fuel based energy. This has severe implications for global climate change, and against this background, scholars within the sustainable transition tradition have taken an interest...... in addressing how transitions towards more sustainable development pathways in this region may be achieved. This paper contributes to the abovementioned literature by examining the conducive and limiting factors for development and proliferation of a palm oil biomass waste-to-energy niche in Malaysia during...... the period 1990–2011. Rising oil prices, strong pressure on the palm oil industry from environmental groups, and a persisting palm oil biomass waste disposal problem in Malaysia appear to have been conducive to niche proliferation, and on top of this national renewable energy policies and large-scale donor...

  11. Fuel cell research: Towards efficient energy

    CSIR Research Space (South Africa)

    Rohwer, MB

    2008-11-01

    Full Text Available fuel cells by optimising the loading of catalyst (being expensive noble metals) and ionomer; 2) Improving conventional acidic direct alcohol fuel cells by developing more efficient catalysts and by investigating other fuels than methanol; 3... these components add significantly to the overall cost of a PEMFC. 1 We focused our research activities on: 1) The effect of the loading of catalytic ink on cell performance; 2) The effect of the ionomer content in the catalytic ink; 3) Testing...

  12. National Bio-fuel Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly [NextEnergy Center, Detroit, MI (United States)

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  13. Energy Return on Investment from Recycling Nuclear Fuel

    International Nuclear Information System (INIS)

    2011-01-01

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  14. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  15. Development of fuel economy 5W-20 gasoline engine oil; Teinenpi 5W-20 gasoline engine yu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Ueda, F; Kurono, K; Kawai, H; Sugiyama, S [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    A 5W-20 gasoline engine oil which improves vehicle fuel efficiency by more than 1.5% relative to a conventional 5W-30 gasoline engine oil was newly developed. Its high fuel economy performance lasts 10,000 km. The viscosity was optimized to satisfy both fuel economy and antiwear performances. Thiadiazole was used to retain the initial fuel economy performance provided by MoDTC. 5 refs., 7 figs., 2 tabs.

  16. Energy poor or fuel poor: What are the differences?

    International Nuclear Information System (INIS)

    Li, Kang; Lloyd, Bob; Liang, Xiao-Jie; Wei, Yi-Ming

    2014-01-01

    Energy poverty and fuel poverty are descriptors of problems of households' energy consumption, they are both distinct problems and have been addressed by many researchers, organizations and governments. Cross use of the terms of energy poverty and fuel poverty in published papers is common. As an accurate descriptor is the presupposition of research and policy development, especially for those who just started to pay attention to this issue, this paper compares the definitions, research priorities, status quo, and problems of these two concepts, and summarizes the relationship between them. The paper suggests that only when the research targets are households who are living in a cold climate and have difficulty in getting access to electricity or modern cooking facilities, and in supplying indoor heating with appropriate cost, the concepts of energy poverty and fuel poverty have the chance to be broadened and mutually integrated. - Highlights: • Address energy poverty and fuel poverty simultaneously. • Compare energy poverty and fuel poverty from 4 perspectives. • Summarize the relationship between energy poverty and fuel poverty. • Divide energy poor and fuel poor into three categories

  17. Metabolizable energy and oil intake in brown commercial layers

    Directory of Open Access Journals (Sweden)

    Amadeu Benedito Piozzi da Silva

    2012-10-01

    Full Text Available With the objective to establish the best metabolizable energy (ME intake for layers, and the best dietary vegetable oil addition level to optimize egg production, an experiment was carried out with 432 30-week-old Hisex Brown layers. Birds were distributed into nine treatments with six replicates of eight birds each according to a 3 × 3 factorial arrangement, consisting of three daily metabolizable energy intake (280, 300 or 320 kcal/bird/day and three oil levels (0.00; 0.75 and 1.50 g/bird/day. Daily feed intake was limited to 115, 110 and 105 g/bird in order to obtain the desired energy and oil intake in each treatment. The following parameters were evaluated: initial weight, final weight, body weight change, egg production, egg mass, feed conversion ratio per dozen eggs and per egg mass and energy conversion. There was no influence of the treatments on egg production (% or egg mass (g/bird/day. Final weight and body weight change were significantly affected by increasing energy intake. Feed conversion ratio per egg mass, feed conversion ratio per dozen eggs and energy conversion significantly worsened as a function of the increase in daily energy intake. An energy intake of 280 kcal/bird/day with no addition of dietary oil does not affect layer performance.

  18. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  19. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  20. Hydrogen and fuel cells. Towards a sustainable energy future

    International Nuclear Information System (INIS)

    Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P.

    2008-01-01

    A major challenge - some would argue, the major challenge facing our planet today - relates to the problem of anthropogenic-driven climate change and its inextricable link to our global society's present and future energy needs [King, D.A., 2004. Environment - climate change science: adapt, mitigate, or ignore? Science 303, 176-177]. Hydrogen and fuel cells are now widely regarded as one of the key energy solutions for the 21st century. These technologies will contribute significantly to a reduction in environmental impact, enhanced energy security (and diversity) and creation of new energy industries. Hydrogen and fuel cells can be utilised in transportation, distributed heat and power generation, and energy storage systems. However, the transition from a carbon-based (fossil fuel) energy system to a hydrogen-based economy involves significant scientific, technological and socioeconomic barriers to the implementation of hydrogen and fuel cells as clean energy technologies of the future. This paper aims to capture, in brief, the current status, key scientific and technical challenges and projection of hydrogen and fuel cells within a sustainable energy vision of the future. We offer no comments here on energy policy and strategy. Rather, we identify challenges facing hydrogen and fuel cell technologies that must be overcome before these technologies can make a significant contribution to cleaner and more efficient energy production processes. (author)

  1. Performance, emissions and lubricant oil analysis of diesel engine running on emulsion fuel

    International Nuclear Information System (INIS)

    Hasannuddin, A.K.; Wira, J.Y.; Sarah, S.; Wan Syaidatul Aqma, W.M.N.; Abdul Hadi, A.R.; Hirofumi, N.; Aizam, S.A.; Aiman, M.A.B.; Watanabe, S.; Ahmad, M.I.; Azrin, M.A.

    2016-01-01

    Highlights: • The rate of NO x and PM reduction was lower than the rate of CO increase when using emulsion fuel. • The lubricant oil viscosity variation did not exceed the limits during the engine operation. • Emulsion fuel offers beneficial properties in terms of lower wear and friction. • Average depletions of lubricant oil additives were found at the lowest level for emulsion fuel in compared with D2. - Abstract: Emulsion fuel is one of the alternative fuels for diesel engines which are well-known for simultaneous reduction of Particulate Matter (PM) and Nitrogen Oxides (NO x ) emissions. However lack of studies have been conducted to investigate the effect of emulsion fuel usage for long run. Therefore, this study aims to investigate the effect of lubricant oil in diesel engine that operated using emulsion fuels for 200 h in comparison with Malaysian conventional diesel fuel (D2). Two emulsion fuels were used in the experiment comprising of water, low grade diesel fuel and surfactant; with ratio of 10:89:1 v/v% (E10) and 20:79:1 v/v% (E20). Engine tests were focused on fuel consumption, NO x , PM, Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Oxygen (O 2 ) and exhaust temperature. Parameters for the lubricant oil analysis measured were included kinematic viscosity, Total Acid Number (TAN), ash, water content, flash point, soot, wear metals and additive elements. The findings showed the fuel consumption were up to 33.33% (including water) and lower 9.57% (without water) using emulsion. The NO x and PM were reduced by 51% and 14% respectively by using emulsion fuel. Kinematic viscosity, TAN, ash, water content, flash point and soot for emulsion fuel were observed to be better or no changes in comparison to D2. The emulsion fuel did not cause any excessive amount of metals or degraded the additive. The average percentage of wear debris concentration reduction by emulsion fuel were 8.2%, 9.1%, 16.3% and 21.0% for Iron (Fe) Aluminum (Al), Copper (Cu) and

  2. Micro Fine Sized Palm Oil Fuel Ash Produced Using a Wind Tunnel Production System

    Directory of Open Access Journals (Sweden)

    R. Ahmadi

    2016-01-01

    Full Text Available Micro fine sized palm oil fuel ash (POFA is a new supplementary cementitious material that can increase the strength, durability, and workability of concrete. However, production of this material incurs high cost and is not practical for the construction industry. This paper investigates a simple methodology of producing micro fine sized POFA by means of a laboratory scale wind tunnel system. The raw POFA obtained from an oil palm factory is first calcined to remove carbon residue and then grinded in Los Angeles abrasion machine. The grinded POFA is then blown in the fabricated wind tunnel system for separation into different ranges of particle sizes. The physical, morphological, and chemical properties of the micro fine sized POFA were then investigated using Laser Particle Size Analyser (PSA, nitrogen sorption, and Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX. A total of 32.1% micro fine sized POFA were collected from each sample blown, with the size range of 1–10 micrometers. The devised laboratory scale of wind tunnel production system is successful in producing micro fine sized POFA and, with modifications, this system is envisaged applicable to be used to commercialize micro fine sized POFA production for the construction industry.

  3. Catalytic Hydrotreatment of Light Distillates Obtained from Bio-Oil for Use in Oxygenated Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Xianwei Zheng

    2015-06-01

    Full Text Available Bio-oil can be fractionated into three parts according to their boiling points. This research reported that light distillates could be converted into oxygenated liquid fuels through a two-stage hydrotreatment approach, using a Pd/C catalyst. The main goal of the first hydrotreatment stage was to stabilize the high active components, which contained carbon–carbon double bonds and aldehyde groups. The second hydrotreatment stage aimed to saturate the components with benzene rings and keto groups, resulting in saturated oxygenated compounds. The H/Ceff ratio was improved greatly after the two-stage hydrotreatment, increasing from 0.51 (in the reactant to 1.67 (in the final products. The high heating value of the final products was 31.63 MJ/kg. After the two-stage hydrotreatment, the main products were C5–C9 alcohols, which were tested via gas chromatography–mass spectrometry. The products could be blended with gasoline directly. Based on the experiments regarding the hydrogenated model compounds, a reaction schematic for the two-stage hydrotreatment was created. Moreover, the bio-oil hydrotreatment kinetics were investigated. The order of the hydrotreatment reaction was 2.0, and the apparent activation energy (Ea was 57.29 KJ/mol.

  4. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils.

    Science.gov (United States)

    Breyer, Sacha; Mekhitarian, Loucine; Rimez, Bart; Haut, B

    2017-02-01

    This work is a preliminary study for the development of a co-pyrolysis process of plastic wastes excavated from a landfill and used lubrication oils, with the aim to produce an alternative liquid fuel for industrial use. First, thermogravimetric experiments were carried out with pure plastics (HDPE, LDPE, PP and PS) and oils (a motor oil and a mixture of used lubrication oils) in order to highlight the interactions occurring between a plastic and an oil during their co-pyrolysis. It appears that the main decomposition event of each component takes place at higher temperatures when the components are mixed than when they are alone, possibly because the two components stabilize each other during their co-pyrolysis. These interactions depend on the nature of the plastic and the oil. In addition, co-pyrolysis experiments were led in a lab-scale reactor using a mixture of excavated plastic wastes and used lubrication oils. On the one hand, the influence of some key operating parameters on the outcome of the process was analyzed. It was possible to produce an alternative fuel for industrial use whose viscosity is lower than 1Pas at 90°C, from a plastic/oil mixture with an initial plastic mass fraction between 40% and 60%, by proceeding at a maximum temperature included in the range 350-400°C. On the other hand, the amount of energy required to successfully co-pyrolyze, in lab conditions, 1kg of plastic/oil mixture with an initial plastic mass fraction of 60% was estimated at about 8MJ. That amount of energy is largely used for the thermal cracking of the molecules. It is also shown that, per kg of mixture introduced in the lab reactor, 29MJ can be recovered from the combustion of the liquid resulting from the co-pyrolysis. Hence, this co-pyrolysis process could be economically viable, provided heat losses are addressed carefully when designing an industrial reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Economics of fuel energy in an Indian village ecosystem

    International Nuclear Information System (INIS)

    Nisanka, S.K.; Misra, M.K.; Sahu, N.C.

    1992-01-01

    Fuel energy consumption pattern and its associated socio-economic factors have been intensively studied in the Bhabinarayanpur village ecosystem, Orissa, located on the east coast of India. About 21% of the gross annual income of the village is devoted to the fuels. Biomass, which is mostly collected free from the environment, is the major source of fuel energy. It constitutes 94.1% of the total fuel consumption. Family size and consumption of cereals and legumes significantly influence fuel use. However, there is no significant correlation between fuel consumption and other variables such as farm size, income and number of earning members in the family. The efficiency of the traditional stove is low in respect of all the biomass fuels for which more than three-quarters of the total energy is lost in the village. There is scope for improving the efficiency of fuel consumption and for ensuring a continuous supply of fuel energy to the village, for which suggestions have been made. (author)

  6. The impact of energy derivatives on the crude oil market

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, J.; Ostdiek, B. [Jones Graduate School of Management, Rice University, MS 531, P.O. Box 1892 Houston, TX (United States)

    1999-04-01

    We examine the effects of energy derivatives trading on the crude oil market. There is a common public and regulatory perception that derivative securities increase volatility and can have a destabilizing effect on the underlying market. Consistent with this view, we find an abnormal increase in volatility for three consecutive weeks following the introduction of NYMEX crude oil futures. While there is also evidence of a longer-term volatility increase, this is likely due to exogenous factors, such as the continuing deregulation of the energy markets. Subsequent introductions of crude oil options and derivatives on other energy commodities have no effect on crude oil volatility. We also examine the effects of derivatives trading on the depth and liquidity of the crude oil market. This analysis reveals a strong inverse relation between the open interest in crude oil futures and spot market volatility. Specifically, when open interest is greater, the volatility shock associated with a given unexpected increase in volume is much smaller. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. The impact of energy derivatives on the crude oil market

    International Nuclear Information System (INIS)

    Fleming, J.; Ostdiek, B.

    1999-01-01

    We examine the effects of energy derivatives trading on the crude oil market. There is a common public and regulatory perception that derivative securities increase volatility and can have a destabilizing effect on the underlying market. Consistent with this view, we find an abnormal increase in volatility for three consecutive weeks following the introduction of NYMEX crude oil futures. While there is also evidence of a longer-term volatility increase, this is likely due to exogenous factors, such as the continuing deregulation of the energy markets. Subsequent introductions of crude oil options and derivatives on other energy commodities have no effect on crude oil volatility. We also examine the effects of derivatives trading on the depth and liquidity of the crude oil market. This analysis reveals a strong inverse relation between the open interest in crude oil futures and spot market volatility. Specifically, when open interest is greater, the volatility shock associated with a given unexpected increase in volume is much smaller. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. RANKING OF LOCAL AND DOMESTIC FUEL-ENERGY RECOURSES IN GROSS CONSUMPTION OF BELARUSSIAN FUEL-ENERGY RECOURSES

    Directory of Open Access Journals (Sweden)

    Y. N. Rumiantsava

    2008-01-01

    Full Text Available Local and domestic fuel-energy recourses of theRepublicofBelarusin gross consumption of fuel-energy  recourses  has  been ranked on the  basis of the  analysis of scientific  literature,  statistical information and also fundamental documentation in the sphere of energy policy and power saving. The paper proposes to give a special emphasis on usage of products after processing domestically manufactured fuel-energy recourses that have been obtained from local and imported raw-materials with the purpose to estimate a power security level of the Republic from a new point of view.

  9. Energy Globalization: Oil Geopolitics in Central Asia Big Race for the Caspian Oil

    OpenAIRE

    VOLKOVA, JANINA

    2007-01-01

    The research aims to show causal relations between recent global change in geopolitics towards energy resources, its effect on foreign policies of Russia, the USA and China; as well as the role of oil factor in their rivalry, development of the newly formed Central Asian (the Caspian region) states-donors and international relations in general . Globalization, geopolitics, oil factor, Russia, the USA, China, the Caspian Sea, international relations, Asia

  10. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide

    International Nuclear Information System (INIS)

    Kelly-Yong, Tau Len; Lee, Keat Teong; Mohamed, Abdul Rahman; Bhatia, Subhash

    2007-01-01

    Various catastrophes related to extreme weather events such as floods, hurricanes, droughts and heat waves occurring on the Earth in the recent times are definitely a clear warning sign from nature questioning our ability to protect the environment and ultimately the Earth itself. Progressive release of greenhouse gases (GHG) such as CO 2 and CH 4 from development of various energy-intensive industries has ultimately caused human civilization to pay its debt. Realizing the urgency of reducing emissions and yet simultaneously catering to needs of industries, researches and scientists conclude that renewable energy is the perfect candidate to fulfill both parties requirement. Renewable energy provides an effective option for the provision of energy services from the technical point of view. In this context, biomass appears as one important renewable source of energy. Biomass has been a major source of energy in the world until before industrialization when fossil fuels become dominant and researches have proven from time to time its viability for large-scale production. Although there has been some successful industrial-scale production of renewable energy from biomass, generally this industry still faces a lot of challenges including the availability of economically viable technology, sophisticated and sustainable natural resources management, and proper market strategies under competitive energy markets. Amidst these challenges, the development and implementation of suitable policies by the local policy-makers is still the single and most important factor that can determine a successful utilization of renewable energy in a particular country. Ultimately, the race to the end line must begin with the proof of biomass ability to sustain in a long run as a sustainable and reliable source of renewable energy. Thus, the aim of this paper is to present the potential availability of oil palm biomass that can be converted to hydrogen (leading candidate positioned as the

  11. Shale oil. I. Genesis of oil shales and its relation to petroleum and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R H; Manning, P D.V.

    1927-01-01

    Oil-shale kerogen originated from resinous vegetation residues of past eras, whereas well petroleum was formed from oil shales by pressure and mild heat. Petroleum migrated to its present reservoir from neighboring oil-shale deposits, leaving a residue of black bituminous shales. The high carbon dioxide content of gases present in petroleum wells originated from kerogen, as it gives off carbon dioxide gas before producing soluble oil or bitumen.

  12. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource

    Science.gov (United States)

    Sharuddin, S. D. A.; Abnisa, F.; Daud, W. M. A. W.; Aroua, M. K.

    2018-03-01

    The worldwide plastic generation expanded over years because of the variety applications of plastics in numerous sectors that caused the accumulation of plastic waste in the landfill. The growing of plastics demand definitely affected the petroleum resources availability as non-renewable fossil fuel since plastics were the petroleum-based material. A few options that have been considered for plastic waste management were recycling and energy recovery technique. Nevertheless, several obstacles of recycling technique such as the needs of sorting process that was labour intensive and water pollution that lessened the process sustainability. As a result, the plastic waste conversion into energy was developed through innovation advancement and extensive research. Since plastics were part of petroleum, the oil produced through the pyrolysis process was said to have high calorific value that could be used as an alternative fuel. This paper reviewed the thermal and catalytic degradation of plastics through pyrolysis process and the key factors that affected the final end product, for instance, oil, gaseous and char. Additionally, the liquid fuel properties and a discussion on several perspectives regarding the optimization of the liquid oil yield for every plastic were also included in this paper.

  13. The Brazilian fuel substitution dilemma: Recent experience from an energy supply study

    International Nuclear Information System (INIS)

    Aringhoff, R.

    1984-01-01

    The paper is intended as a basis for discussing strategic supply options and their economic impacts for an advanced developing country. It represents a first brief assessment of an energy systems analysis project which was carried out by the Secretaria de Tecnologia do Ministerio das Minas e Energia and Kernforschungsanlage Juelich between May 1982 and May 1984. In view of the fact that Brazil had to spend 50% of its annual export revenues to import oil in 1980 and taking into account that this import bill of roughly US $10x10 9 affects the balance of payments and foreign debt burden significantly, the Brazilian Ministry of Energy and Mines decided to evaluate the consequences of alternative supply strategies utilizing domestic energy resources with priority. There is a big challenge and opportunity to develop and utilize domestic energy resources, mainly hydropower, coal for thermal uses in industry and biomass for the rural and residential sectors. Supplying the Brazilian energy system in general will not be the problem. The oil substitution dilemma becomes obvious when one looks at the specific requirements of the transport sector. For historical reasons the transport system is nearly totally based on road transport. Around two thirds of the total fuel consumption is swallowed up by this sector. Replacing crude oil means replacing gasoline and diesel. This means producing ethanol from sugar-cane and methanol from hard coal. These alternatives are leading to a significantly higher overall system cost of the energy system. The efforts of the Brazilian Government to replace imported fuel oil and ensure a self-sufficient domestic energy supply of high security were financed until now by a significant public budget deficit. This strategy will run into difficulties in the future, as the latest IMF negotiations show. One way to escape this dilemma can be a careful examination of ways to reconstruct the transport system. (author)

  14. The performance of oil-fired boilers: The influence of fuel sulfur on emissions and appliance integrity

    International Nuclear Information System (INIS)

    Lee, S.W.

    1997-01-01

    ASHRAE research project RP-757 examined the impact of distillate fuel sulfur content on the energy and emission performance of oil-fired boilers. The project involved construction of a combustion test rig housed in a constant-temperature test room; installation of a 102.5 kW (350,000 Btu/h) capacity, steel hot water boiler equipped with a special test section to simulate boiler heat exchanger surfaces; introduction of continuous emission analyzers and data-acquisition/control systems; and preparation of specific test fuel oils in the 0.01% to 1.2% sulfur range. The combustion experiments provided comprehensive data including flue gas composition, total deposit weight on test heat exchanger surfaces, pH, sulfite and sulfate in the flue gas condensate and soluble deposits, and iron and sulfur in soluble and insoluble deposits. Controlled combustion experiments using the experimental boiler and fuels have provided the following observations for a systematic increase of boiler fuel sulfur: the flue gas SO 2 increased linearly; the acidity and concentrations of sulfite and sulfate in flue gas condensate and the soluble deposits increased; total surface deposits, which are made up of the soluble and insoluble portions, increased linearly; higher amounts of soluble iron sulfates formed with apparent increased corrosion potential of metal surfaces; and the boiler efficiency remained unchanged during the short-term combustion experiments

  15. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  16. In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery

    Science.gov (United States)

    Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall

    2016-01-01

    This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.

  17. Energy strategy 2050. From coal, oil and gas to green energy; Danish Government's energy policy; Energistrategi 2050 - fra kul, olie og gas til groen energi

    Energy Technology Data Exchange (ETDEWEB)

    2011-02-15

    The Danish Government's ''Energy strategy 2050'' describes how the country can achieve its independence from coal, oil and gas by the year 2050 and significantly reduce its greenhouse gas emissions. The strategy contains a raft of initiatives that will reduce the energy industry's use of fossil fuels by 33 % in 2020, compared with 2009. The reduction will put Denmark well on its way to complete independence of fossil fuels by 2050. The strategy calls for a significant increase in renewable energy obtained from wind, biomass and biogas which over the next decade will increase the share of renewable to 33 % of energy consumption, if the initiatives in the strategy are implemented. The strategy offers an economically responsible path to the conversion of the Danish energy supply, and includes specific initiatives, that are all fully financed and which will not damage the nation's competitiveness. Homeowners will experience moderate increases in the costs of heat and electricity, but will also be given opportunities to lower their energy expenses through greater efficiency. Companies can expect added expenses amounting to 0.1 % of the rise in their gross revenue growth by 2020. (ln)

  18. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    Science.gov (United States)

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  19. Effect of energy taxation on fuel choice and emissions (Energiaverojen vaikutus polttoainevalintoihin ja paeaestoeihin). Research notes

    International Nuclear Information System (INIS)

    Leino, P.; Kosunen, P.; Rauhamaeki, J.

    1997-05-01

    The aim of the project was to study how various tax models for power plant fuels affect the fuel consumption and