WorldWideScience

Sample records for fuel integral fuel

  1. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  2. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  3. Integral-fuel blocks

    International Nuclear Information System (INIS)

    Cunningham, C.; Simpkin, S.D.

    1975-01-01

    A prismatic moderator block is described which has fuel-containing channels and coolant channels disposed parallel to each other and to edge faces of the block. The coolant channels are arranged in rows on an equilateral triangular lattice pattern and the fuel-containing channels are disposed in a regular lattice pattern with one fuel-containing channel between and equidistant from each of the coolant channels in each group of three mutually adjacent coolant channels. The edge faces of the block are parallel to the rows of coolant channels and the channels nearest to each edge face are disposed in two rows parallel thereto, with one of the rows containing only coolant channels and the other row containing only fuel-containing channels. (Official Gazette)

  4. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  5. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  6. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  7. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  8. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  9. Integrated spent nuclear fuel database system

    International Nuclear Information System (INIS)

    Henline, S.P.; Klingler, K.G.; Schierman, B.H.

    1994-01-01

    The Distributed Information Systems software Unit at the Idaho National Engineering Laboratory has designed and developed an Integrated Spent Nuclear Fuel Database System (ISNFDS), which maintains a computerized inventory of all US Department of Energy (DOE) spent nuclear fuel (SNF). Commercial SNF is not included in the ISNFDS unless it is owned or stored by DOE. The ISNFDS is an integrated, single data source containing accurate, traceable, and consistent data and provides extensive data for each fuel, extensive facility data for every facility, and numerous data reports and queries

  10. Performance tests for integral reactor nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Dong-Seong; Yim, Jeong-Sik; Lee, Chong-Tak; Kim, Han-Soo; Koo, Yang-Hyun; Lee, Byung-Ho; Cheon, Jin-Sik; Oh, Je-Yong

    2006-02-15

    An integral type reactor SMART plans to utilize metallic Zr-U fuel which is Zr-based alloy with 34{approx}38 wt% U. In order to verify the technologies for the design and manufacturing of the fuel and get a license, performance tests were carried out. Experimental Fuel Assembly (EFA) manufactured in KAERI is being successfully irradiated in the MIR reactor of RIAR from September 4 2004, and it has achieved burnup of 0.21 g/cc as of January 25 2006. Thermal properties of irradiated Zr-U fuel were measured. Up to the phase transformation temperature, thermal diffusivity increased linearly in proportion to temperature. However its dependence on the burnup was not significant. RIA tests with 4 unirradiated Zr-U fuel rods were performed in Kurchatov Institute to establish a safety criterion. In the case of the un-irradiated Zr-U fuel, the energy deposition during the control rod ejection accident should be less than 172 cal/g to prevent the failure accompanying fuel fragmentation and dispersal. Finally the irradiation tests of fuel rods have been performed at HANARO. The HITE-2 test was successfully completed up to a burnup of 0.31 g/cc. The HITE-3 test began in February 2004 and will be continued up to a target burnup of 0.6 g/cc.

  11. 46 CFR 119.435 - Integral fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  12. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  13. 46 CFR 182.435 - Integral fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  14. Assesment of strength and integrity of fuel channels

    International Nuclear Information System (INIS)

    2000-01-01

    Detailed analysis to base strength and integrity of fuel channels was necessary for the licensing process. Description of tasks performed in this direction in 1999 is presented: fuel channel independent strength calculations, assessment of present fuel channels state, analysis of dynamic processes during partial group distribution header rupture, structural integrity analysis of fuel channels located next to broke channel

  15. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  16. Simulation of integral local tests with high-burnup fuel

    International Nuclear Information System (INIS)

    Gyori, G.

    2011-01-01

    The behaviour of nuclear fuel under LOCA conditions may strongly depend on the burnup-dependent fuel characteristics, as it has been indicated by recent integral experiments. Fuel fragmentation and the associated fission gas release can influence the integral fuel behaviour, the rod rupture and the radiological release. The TRANSURANUS fuel performance code is a proper tool for the consistent simulation of burnup-dependent phenomena during normal operation and the thermo-mechanical behaviour of the fuel rod in a subsequent accident. The code has been extended with an empirical model for micro-cracking induced FGR and fuel fragmentation and verified against integral LOCA tests of international projects. (author)

  17. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  18. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  19. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  20. Preliminary study or RSG-GAS reactor fuel element integrity

    International Nuclear Information System (INIS)

    Soejoedi, A.; Tarigan, A.; Sujalmo; Prayoga, S.; Suhadi

    1996-01-01

    After 8 years of operation, RSG-GAS was able to reach 15 cycles of reactor operation with 116 irradiated fuels, whereas 49 fuels were produced by NUKEM; and the other 67 were produced by PEBN-BATAN. At the 15 T h cycles, it have been used 40 standard fuels and 8 control fuels (Forty standard fuels and eight control fuels have been used in the 15 t h core cycles). Several activities have been performed in the reactor, to investigate the fuel integrity, among of them are: .fuel visual test with under water camera, which the results were recorder in the video cassette, primary water quality test during, reactor operation, fuel failure detector system examination and compared the PIE results in the Radiometallurgy Installation (RMI). The results showed that the fuel integrity, before and after irradiation, have still good performance and the fission products have not been released yet

  1. Integrating the fuel cycle at IFR [Integral Fast Reactor

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1992-01-01

    During the past few years Argonne National Laboratory has been developing the Integral Fast Reactor (IFR), an advanced liquid metal reactor. Much of the IFR technology stems from Argonne National Laboratory's experience with the Experimental Breeder Reactors, EBR 1 and 2. The unique aspect of EBR 2 is its success with high-burnup metallic fuel. Irradiation tests of the new U-Pu-Zr fuel for the IFR have now reached a burnup level of 20%. The results to date have demonstrated excellent performance characteristics of the metallic fuel in both steady-state and off-normal operating conditions. EBR 2 is now fully loaded with the IFR fuel alloys and fuel performance data are being generated. In turn, metallic fuel becomes the key factor in achieving a high degree of passive safety in the IFR. These characteristics were demonstrated dramatically by two landmark tests conducted at EBR 2 in 1986: loss of flow without scram; and loss of heat sink without scram. They demonstrated that the combination of high heat conductivity of metallic fuel and thermal inertia of the large sodium pool can shut the reactor down during potentially severe accidents without depending on human intervention or the operation of active engineered components. The IFR metallic fuel is also the key factor in compact pyroprocessing. Pyroprocessing uses high temperatures, molten salt and metal solvents to process metal fuels. The result is suitable for fabrication into new fuel elements. Feasibility studies are to be conducted into the recycling of actinides from light water reactor spent fuel in the IFR using the pyroprocessing approach to extract the actinides (author)

  2. Fuels planning: science synthesis and integration; fact sheet: The Fuels Synthesis Project overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The geographic focus of the "Fuels Planning: Science Synthesis and Integration" project #known as the Fuels Synthesis Project# is on the dry forests of the Western United States. Target audiences include fuels management specialists, resource specialists, National Environmental Policy Act #NEPA# planning team leaders, line officers in the USDA Forest Service...

  3. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  4. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  5. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  6. Integrity of spent CANDU fuel during and following dry storage

    International Nuclear Information System (INIS)

    Villagran, J.E.

    2004-01-01

    This report examines the issue of CANDU fuel integrity at the back end of the fuel cycle and outlines a program designed to provide assurance that used CANDU fuel will retain its integrity over an extended period. In specific terms, the program is intended to provide assurance that during and following extended dry storage the fuel will remain fit to undergo, without loss of integrity, the handling, packaging and transportation operations that might be necessary until it is placed in disposal containers. The first step in the development of the program was a review of the available technical information on phenomena relevant to fuel integrity. The major conclusions from that review were the following: Under normal storage conditions it is unlikely that the spent fuel will suffer significant degradation during a one-hundred year period and it should be possible to retrieve, repackage and transport the fuel as required, using methods and systems similar to those used today. However, to provide increased confidence regarding the above conclusion, investigations should be conducted in areas where there is higher uncertainty in the prediction of fuel condition and on some degradation processes to which the fuel appears to present higher vulnerability. The proposed program includes, among other tasks, irradiated fuel tests, analytical studies on the most relevant fuel degradation processes and the development of a long-term fuel verification program. (Author)

  7. Fuel motion in overpower tests of metallic integral fast reactor fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Bauer, T.H.; Stanford, G.S.; Regis, J.P.; Dickerman, C.E.

    1992-01-01

    In this paper results from hodoscope data analyses are presented for transient overpower (TOP) tests M5, M6, and M7 at the Transient Reactor Test Facility, with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding breach and prefailure elongation of D9-clad ternary (U-Pu-Zr) integral fast reactor-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT-9-clad binary (U-Zr) Fast Flux Test Facility driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure

  8. Calculation of resonance integral for fuel cluster

    International Nuclear Information System (INIS)

    Remsak, S.

    1969-01-01

    The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO 2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV [sr

  9. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  10. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  11. Integrated data base for spent fuel and radwaste: inventories

    International Nuclear Information System (INIS)

    Notz, K.J.; Carter, W.L.; Kibbey, A.H.

    1982-01-01

    The Integrated Data Base (IDB) program provides and maintains current, integrated data on spent reactor fuel and radwaste, including historical data, current inventories, projected inventories, and material characteristics. The IDB program collects, organizes, integrates, and - where necessary - reconciles inventory and projection (I/P) and characteristics information to provide a coherent, self-consistent data base on spent fuel and radwaste

  12. Development of nuclear fuel for integrated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO{sub 2}-based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO{sub 2}-based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method.

  13. Development of nuclear fuel for integrated reactor

    International Nuclear Information System (INIS)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M.

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO 2 -based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO 2 -based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method

  14. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  15. Fuel conservation integrated into airline economics

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, D.R.

    1981-01-01

    Fuel conservation efforts at most major airlines involve close scrutiny and intensive analysis in all areas - flight, maintenance and ground handling. Yet, despite the concern and attention devoted, the fundamental question of fuel saving versus time trade-offs remains unanswered. This paper introduces and defines the concept ''The value of an airplane to an airline is that airplane's earning power.

  16. Apparatus for integrated fuel assembly inspection system

    International Nuclear Information System (INIS)

    Ahmed, H.J.; Burchill, S.R.

    1988-01-01

    In a fuel assembly inspection apparatus, the combination is described comprising: (a) an elongated fixture mounted in a stationary upright position; (b) upper means mounted to an upper portion of the fixture and lower means mounted adjacent to a lower portion of the fixture, the upper and lower means being disposed outwardly from a side of the fixture for supporting a nuclear fuel assembly therebetween and extending along the side of the fixture; (c) a bottom carriage having a central opening adapted to receive the fuel assembly therethrough when supported between the upper and lower means such that the bottom carriage being connected only to, and extending in cantilever fashion outwardly from, the side of the fixture for generally vertical movement along the side of the fixture and along the fuel assembly extending along the side of the fixture; (d) drive means for selectively moving the bottom carriage; and (e) means disposed on the bottom carriage for measuring the envelop, of the fuel assembly when the bottom carriage is moved to and stationed at selected axial positions along the fuel assembly

  17. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  19. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  20. The integrity of CANDU fuel during load following

    International Nuclear Information System (INIS)

    Tayal, M.; Manzer, A.M.; Sejnoha, R.; Hains, A.J.

    1989-08-01

    This paper summarizes data and analyses of integrity and of physics of CANDU fuel during load following. Measurements of irradiated fuel show that power cycles do not enhance release of fission gas. Data from research reactors show that the power cycles cause cyclic strains in the sheath. Finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath. The stresses and the strains are well into the plastic range. The cyclic loads 'use up' some fraction of the sheath's resistance to environmentally-assisted cracking (EAC), depending on the details of the fuel design and of then power cycles. The balance of the sheath's resistance to EAC continues to be available to counteract static loads. Thousands of fuel bundles have experienced many power cycles in research and in commercial reactors. Overall integrity of fuel bundles is well over 99%. Thus, CANDU fuel continues to show good performance in both base-load and load-following reactors

  1. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  2. Industrial integration of the fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1983-01-01

    The power-reactor construction program in Argentina for the period 1976-1985 is described on the basis of which the nuclear-fuel requirements have been determined. Activities connected with the fuel cycle commenced in 1950 in Argentina with the prospection and working of uranium deposits. On the basis of the nuclear power program described, plans have been drawn up for the establishment of the industrial plants that will be needed to ensure the domestic supply of fuel. The demand for fuel is correlated with the availability of uranium resoures and it is shown to be desirable from the technical, economic and industrial point of view to integrate the front end of the fuel cycle, keeping the irradiation aspects and the tail end at the development level. Progress made in this field and current programs covering exploration, concentrate production, nuclear purification, conversion to uranium dioxide, production of special alloys and fuel element fabrication are described

  3. Industrial integration of the fuel cycle in Argentina

    International Nuclear Information System (INIS)

    Koll, J.H.; Kittl, J.E.; Parera, C.A.; Coppa, R.C.; Aguirre, E.J.

    1977-01-01

    The paper describes the power reactor construction programme in Argentina for the period 1976-1985, on the basis of which the nuclear fuel requirements have been determined. Activities connected with the fuel cycle commenced in 1950 in Argentina with the prospection and working of uranium deposits. On the basis of the nuclear power programme described, plans have been drawn up for the establishment of the industrial plants that will be needed to ensure the domestic supply of fuel. The demand for fuel is correlated with the availability of uranium resources and it is shown to be desirable from the technical, economic and industrial point of view to integrate the front end of the fuel cycle, keeping the irradiation aspects and the tail end at the development level. The authors report the progress that has been made in this field and describe current programmes covering prospection, concentrate production, nuclear purification, conversion to uranium dioxide, production of special alloys and fuel element fabrication. (author)

  4. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  5. Integrated planning for a fuel industry with emphasis on minimum size to fabricate own fuel

    International Nuclear Information System (INIS)

    Kondal Rao, N.; Katiyar, H.C.; Rajendran, R.; Sinha, K.K.; Swaminathan, N.; Subramanyam, R.B.; Pande, B.P.; Krishnan, T.S.; Agarwala, G.C.; Chandramouli, V.A.

    1977-01-01

    The Indian nuclear energy programme is based on the utilization of indigenous resources for the economic generation of power, developing its own know-how. In order to gain time, the first nuclear power station at Tarapur is a turn-key job based on enriched uranium fuel. Taking into consideration the established resources of uranium and thorium in the country, a strategy for nuclear power programme has been drawn up. The first phase is based on natural uranium fuel, the second phase on the recycle of plutonium and conversion of thorium and the third phase is the breeder system based on utilization of U 233 and conversion of thorium. This programme is specially significant for India in view of its vast resources of thorium. After the experience and confidence gained with the manufacture of metallic uranium fuel for the research reactors and about 40 tonnes of fuel for the initial loading of the Rajasthan Reactor, the fuel manufacturing programme within the country has been implemented to meet the entire initial and reload fuel requirements. The plant capacities are small compared to similar activities in developed countries. Further, by planning for an integrated fuel and component manufacturing complex, any draw-back in smaller scale of some of the operations is off-set. At the Nuclear Fuel Complex, set up on the above principles, production plants are in operation for the manufacture of reload fuel for the 400 MW Tarapur station, natural uranium oxide fuel, various zircaloy components such as fuel sheaths, pressure tubes, calandria tubes, channels and various other zircaloy components. Provisions have been made to expand the production facilities as the demand for reload fuel grows. With the facilities provided, the production programme can be diversified to take up the production of fast breeder reactor components of stainless steel and also the blanket thorium elements. The unitary control of all aspects of the manufacture and quality control of different types

  6. Integrated analysis of oxide nuclear fuel sintering

    International Nuclear Information System (INIS)

    Baranov, V.; Kuzmin, R.; Tenishev, A.; Timoshin, I.; Khlunov, A.; Ivanov, A.; Petrov, I.

    2011-01-01

    Dilatometric and thermal-gravimetric investigations have been carried out for the sintering process of oxide nuclear fuel in gaseous Ar - 8% H 2 atmosphere at temperatures up to 1600 0 C. The pressed compacts were fabricated under real production conditions of the OAO MSZ with application of two different technologies, so called 'dry' and 'wet' technologies. Effects of the grain size growth after the heating to different temperatures were observed. In order to investigate the effects produced by rate of heating on properties of sintered fuel pellets, the heating rates were varied from 1 to 8 0 C per minute. Time of isothermal overexposure at maximal temperature (1600 0 C) was about 8 hours. Real production conditions were imitated. The results showed that the sintering process of the fuel pellets produced by two technologies differs. The samples sintered under different heating rates were studied with application of scanning electronic microscopy analysis for determination of mean grain size. A simulation of heating profile for industrial furnaces was performed to reduce the beam cycles and estimate the effects of variation of the isothermal overexposure temperatures. Based on this data, an optimization of the sintering conditions was performed in operations terms of OAO MSZ. (authors)

  7. Catalyst development and systems analysis of methanol partial oxidation for the fuel processor - fuel cell integration

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Mizsey, P; Hottinger, P; Truong, T B; Roth, F von; Schucan, Th H [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Methanol partial oxidation (pox) to produce hydrogen for mobile fuel cell applications has proved initially more successful than hydrocarbon pox. Recent results of catalyst screening and kinetic studies with methanol show that hydrogen production rates have reached 7000 litres/hour/(litre reactor volume) for the dry pox route and 12,000 litres/hour/(litre reactor volume) for wet pox. These rates are equivalent to 21 and 35 kW{sub th}/(litre reactor volume) respectively. The reaction engineering problems remain to be solved for dry pox due to the significant exotherm of the reaction (hot spots of 100-200{sup o}C), but wet pox is essentially isothermal in operation. Analyses of the integrated fuel processor - fuel cell systems show that two routes are available to satisfy the sensitivity of the fuel cell catalysts to carbon monoxide, i.e. a preferential oxidation reactor or a membrane separator. Targets for individual system components are evaluated for the base and best case systems for both routes to reach the combined 40% efficiency required for the integrated fuel processor - fuel cell system. (author) 2 figs., 1 tab., 3 refs.

  8. Development of code SFINEL (Spent fuel integrity evaluator)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Min, Chin Young; Ohk, Young Kil; Yang, Yong Sik; Kim, Dong Ju; Kim, Nam Ku [Hanyang University, Seoul (Korea)

    1999-01-01

    SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed through this project. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms. SFINEL code has been thoroughly benchmarked against the collected in-pile data and operating experiences: deformation and rupture, and cladding oxidation, rod internal pressure creep, then comprehensive whole degradation process. (author). 75 refs., 51 figs., 5 tabs.

  9. Incorporation of Integral Fuel Burnable Absorbers Boron and Gadolinium into Zirconium-Alloy Fuel Clad Material

    International Nuclear Information System (INIS)

    Sridharan, K.; Renk, T.J.; Lahoda, E.J.; Corradini, M.L

    2004-01-01

    Long-lived fuels require the use of higher enrichments of 235U or other fissile materials. Such high levels of fissile material lead to excessive fuel activity at the beginning of life. To counteract this excessive activity, integral fuel burnable absorbers (IFBA) are added to some rods in the fuel assembly. The two commonly used IFBA elements are gadolinium, which is added as gadolinium-oxide to the UO2 powder, and boron, which is applied as a zirconium-diboride coating on the UO2 pellets using plasma spraying or chemical vapor deposition techniques. The incorporation of IFBA into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be very costly because of their small volume and can add from 20 to 30% to the manufacturing cost of the fuel. Other manufacturing issues that impact cost and performance are maintaining the correct levels of dosing, the reduction in fuel melting point due to gadolinium-oxide additions, and parasitic neutron absorption at fuel's end-of-life. The goal of the proposed research is to develop an alternative approach that involves incorporation of boron or gadolinium into the outer surface of the fuel cladding material rather than as an additive to the fuel pellets. This paradigm shift will allow for the introduction of the IFBA in a non-nuclear regulated environment and will obviate the necessity of additional handling and processing of the fuel pellets. This could represent significant cost savings and potentially lead to greater reproducibility and control of the burnable fuel in the early stages of the reactor operation. The surface alloying is being performed using the IBEST (Ion Beam Surface Treatment) process developed at Sandia National Laboratories. IBEST involves the delivery of energetic ion beam pulses onto the surface of a material, near-surface melting, and rapid solidification. The non-equilibrium nature of such processing allows f or surface

  10. Waste management in IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  11. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  12. Fuels planning: science synthesis and integration; economic uses fact sheet 04: My Fuel Treatment Planner

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    In the face of rapidly changing public and political attitudes toward fire and fuel planning, one thing remains constant: the fuel planner is ultimately responsible for making decisions on the land. This fact sheet discusses the options for fuel treatments, and the need, development, and use of the MS Excel-based tool, My Fuel Treatment Planner.

  13. The FIT Model - Fuel-cycle Integration and Tradeoffs

    International Nuclear Information System (INIS)

    Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.

    2010-01-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  14. PHWR Fuel - an integrated approach in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2008-07-01

    The nuclear power programme in India is based on a three-stage approach in which the Pressurized Heavy Water Reactors (PHWR) forms the backbone of the first stage. Over the years, apart from gaining expertise in design, construction and operation of PHWRs, innovative fuel designs and manufacturing technologies have also been evolved. Presently, thirteen PHWR 220 units and two PHWR 540 units are in operation. Three more PHWR 220 units are in the advanced stage of construction. In addition, the PHWR power generation programme envisages construction of eight more PHWR 700 units. Nuclear Fuel Complex (NFC) at Hyderabad, established in early 70s, is the only manufacturer of fuel and reactor core structurals for all the PHWRs in India. Since inception, the thrust has been on indigenous development of technology in the areas of production processes, equipment manufacture and quality assurance programmes. Commensurate with the PHWR programme, NFC has expanded its production capacities and has fabricated more than 380,000 fuel bundles since inception. Towards optimization of uranium resources and implementation of 'closed fuel cycle' concept, large quantities of reprocessed uranium fuel bundles have been manufactured and introduced in the initial cores of PHWRs. In recent times, NFC introduced several modifications in the production processes like vapour ammonia precipitation for UO{sub 2} powder production, advanced resistance welding controls and improved versions of welding machines, which all have facilitated in improving the quality and productivity of the fuel. Superior quality control systems like spectrophotometric determination of SSA of UO{sub 2} powders, machine vision systems for pellet inspection, thermography for evaluating weld integrity, etc. has channelised NDT techniques into fuel production lines. The paper summarizes various improvements carried out in the design and manufacture of PHWR fuel. New concepts evolved in high burn-up fuels and

  15. PHWR Fuel - an integrated approach in Indian context

    International Nuclear Information System (INIS)

    Jayaraj, R.N.

    2008-01-01

    The nuclear power programme in India is based on a three-stage approach in which the Pressurized Heavy Water Reactors (PHWR) forms the backbone of the first stage. Over the years, apart from gaining expertise in design, construction and operation of PHWRs, innovative fuel designs and manufacturing technologies have also been evolved. Presently, thirteen PHWR 220 units and two PHWR 540 units are in operation. Three more PHWR 220 units are in the advanced stage of construction. In addition, the PHWR power generation programme envisages construction of eight more PHWR 700 units. Nuclear Fuel Complex (NFC) at Hyderabad, established in early 70s, is the only manufacturer of fuel and reactor core structurals for all the PHWRs in India. Since inception, the thrust has been on indigenous development of technology in the areas of production processes, equipment manufacture and quality assurance programmes. Commensurate with the PHWR programme, NFC has expanded its production capacities and has fabricated more than 380,000 fuel bundles since inception. Towards optimization of uranium resources and implementation of 'closed fuel cycle' concept, large quantities of reprocessed uranium fuel bundles have been manufactured and introduced in the initial cores of PHWRs. In recent times, NFC introduced several modifications in the production processes like vapour ammonia precipitation for UO 2 powder production, advanced resistance welding controls and improved versions of welding machines, which all have facilitated in improving the quality and productivity of the fuel. Superior quality control systems like spectrophotometric determination of SSA of UO 2 powders, machine vision systems for pellet inspection, thermography for evaluating weld integrity, etc. has channelised NDT techniques into fuel production lines. The paper summarizes various improvements carried out in the design and manufacture of PHWR fuel. New concepts evolved in high burn-up fuels and development of state

  16. Validating the BISON fuel performance code to integral LWR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gamble, K.A., E-mail: Kyle.Gamble@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Pastore, G., E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Gardner, R.J., E-mail: Russell.Gardner@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Liu, W., E-mail: Wenfeng.Liu@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States); Mai, A., E-mail: Anh.Mai@anatech.com [ANATECH Corporation, 5435 Oberlin Dr., San Diego, CA 92121 (United States)

    2016-05-15

    Highlights: • The BISON multidimensional fuel performance code is being validated to integral LWR experiments. • Code and solution verification are necessary prerequisites to validation. • Fuel centerline temperature comparisons through all phases of fuel life are very reasonable. • Accuracy in predicting fission gas release is consistent with state-of-the-art modeling and the involved uncertainties. • Rod diameter comparisons are not satisfactory and further investigation is underway. - Abstract: BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON's computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to date for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Results demonstrate that (1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, (2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and (3) comparison

  17. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  18. Description of reactor fuel breeding with three integral concepts

    International Nuclear Information System (INIS)

    Ott, K.O.; Hanan, N.A.; Maudlin, P.J.; Borg, R.C.

    1979-01-01

    The time-dependent breeding of fuel in a growing system of breeder reactors can be characterized by the transitory (instantaneous) growth rate, γ(t). The three most important aspects of γ(t) can be expressed by time-independent integral concepts. Two of these concepts are in widespread use. A third integral concept that links the two earlier ones is introduced. The time-dependent growth rate has an asymptotic value, γ/sup infinity/, the equilibrium growth rate, which is the basis for the calculation of the doubling time. The equilibrium growth rate measures the breeding capability and represents a reactor property. Maximum deviation of γ(t) and γ/sup infinity/ generally appears at the initial startup of the reactor, where γ(t = 0) = γ 0 . This deviation is due to the difference between the initial and asymptotic fuel inventory composition. The initial growth rate can be considered a second integral concept; it characterizes the breeding of a particular fuel in a given reactor. Growth rates are logarithmic derivatives of the growing mass of fuel in breeder reactors, especially γ/sup infinity/, which describes the asymptotic growth by exp(γ/sup infinity/t). There is, however, a variation in the fuel-mass factor in front of this exponential function during the transition from γ 0 to γ/sup infinity/. It is shown that this variation of the fuel mass during transitioncan be described by a third integral concept, termed the breeding bonus, b. The breeding bonus measures the quality of a fuel for its use in a given reactor in terms of its impact on the magnitude of the asymptotically growing fuel mass. The calculation of γ 0 and γ/sup infinity/ is facilitated by use of the critical mass (CM) worths and the breeding worth factors, respectively

  19. Transport fuel demand responses to fuel price and income projections : Comparison of integrated assessment models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.; van Vuuren, Detlef; Bertram, C.; Carrara, S.; Emmerling, J.; Daly, H.; Kitous, A.; McCollum, D. L.; Saadi Failali, N.

    Income and fuel price pathways are key determinants in projections of the energy system in integrated assessment models. In recent years, more details have been added to the transport sector representation in these models. To better understand the model dynamics, this manuscript analyses transport

  20. Fuel pin integrity assessment under large scale transients

    International Nuclear Information System (INIS)

    Dutta, B.K.

    2006-01-01

    The integrity of fuel rods under normal, abnormal and accident conditions is an important consideration during fuel design of advanced nuclear reactors. The fuel matrix and the sheath form the first barrier to prevent the release of radioactive materials into the primary coolant. An understanding of the fuel and clad behaviour under different reactor conditions, particularly under the beyond-design-basis accident scenario leading to large scale transients, is always desirable to assess the inherent safety margins in fuel pin design and to plan for the mitigation the consequences of accidents, if any. The severe accident conditions are typically characterized by the energy deposition rates far exceeding the heat removal capability of the reactor coolant system. This may lead to the clad failure due to fission gas pressure at high temperature, large- scale pellet-clad interaction and clad melting. The fuel rod performance is affected by many interdependent complex phenomena involving extremely complex material behaviour. The versatile experimental database available in this area has led to the development of powerful analytical tools to characterize fuel under extreme scenarios

  1. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  2. Spray sealing: A breakthrough in integral fuel tank sealing technology

    Science.gov (United States)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  3. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  4. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  5. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  6. Fuel integrity project: analysis of light water reactor fuel rods test results

    Energy Technology Data Exchange (ETDEWEB)

    Dallongeville, M.; Werle, J. [COGEMA Logistics (AREVA Group) (France); McCreesh, G. [BNFL Nuclear Sciences and Technology Services (United Kingdom)

    2004-07-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  7. Fuel integrity project: analysis of light water reactor fuel rods test results

    International Nuclear Information System (INIS)

    Dallongeville, M.; Werle, J.; McCreesh, G.

    2004-01-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  8. Integrated Fuel-Coolant Interaction (IFCI 6.0) code

    International Nuclear Information System (INIS)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks

  9. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  10. Integrated fuel cell energy system for modern buildings

    Energy Technology Data Exchange (ETDEWEB)

    Moard, D.M.; Cuzens, J.E.

    1998-07-01

    Energy deregulation, building design efficiency standards and competitive pressures all encourage the incorporation of distributed fuel cell cogeneration packages into modern buildings. The building marketplace segments to which these systems apply include office buildings, retail stores, hospitals, hotels, food service and multifamily residences. These applications represent approximately 60% of the commercial building sector's energy use plus a portion of the residential sector's energy use. While there are several potential manufacturers of fuel cells on the verge of marketing equipment, most are currently using commercial hydrogen gas to fuel them. There are few suppliers of equipment, which convert conventional fuels into hydrogen. Hydrogen Burner Technology, Inc. (HBT) is one of the few companies with a proven under-oxidized-burner (UOB) technology, patented and already proven in commercial use for industrial applications. HBT is developing a subsystem based on the UOB technology that can produce a hydrogen rich product gas using natural gas, propane or liquid fuels as the feed stock, which may be directly useable by proton exchange membrane (PEM) fuel cells for conversion into electricity. The combined thermal output can also be used for space heating/cooling, water heating or steam generation applications. HBT is currently analyzing the commercial building market, integrated system designs and marketplace motivations which will allow the best overall subsystem to be designed, tested and introduced commercially in the shortest time possible. HBT is also actively involved in combined subsystem designs for use in automotive and small residential services.

  11. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  12. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  13. Fuel assembly

    International Nuclear Information System (INIS)

    Nomata, Terumitsu.

    1993-01-01

    Among fuel pellets to be loaded to fuel cans of a fuel assembly, fuel pellets having a small thermal power are charged in a region from the end of each of spacers up to about 50mm on the upstream of coolants that flow vertically at the periphery of fuel rods. Coolants at the periphery of fuel rods are heated by the heat generation, to result in voids. However, since cooling effect on the upstream of the spacers is low due to influences of the spacers. Further, since the fuel pellets disposed in the upstream region have small thermal power, a void coefficient is not increased. Even if a thermal power exceeding cooling performance should be generated, there is no worry of causing burnout in the upstream region. Even if burnout should be caused, safety margin and reliability relative to burnout are improved, to increase an allowable thermal power, thereby enabling to improve integrity and reliability of fuel rods and fuel assemblies. (N.H.)

  14. Integrated fuel cell stack shunt current prevention arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Robert P. (Cheshire, CT); Nowak, Michael P. (Bolton, CT)

    1992-01-01

    A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.

  15. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  16. Exergy analysis of an integrated fuel processor and fuel cell (FP-FC) system

    NARCIS (Netherlands)

    Delsman, E.R.; Uju, C.U.; Croon, de M.H.J.M.; Schouten, J.C.; Ptasinski, K.J.

    2006-01-01

    Fuel cells have great application potential as stationary power plants, as power sources in transportation, and as portable power generators for electronic devices. Most fuel cells currently being developed for use in vehicles and as portable power generators require hydrogen as a fuel. Chemical

  17. Fuels planning: science synthesis and integration; economic uses fact sheet 03: economic impacts of fuel treatments

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    With increased interest in reducing hazardous fuels in dry inland forests of the American West, agencies and the public will want to know the economic impacts of fuel reduction treatments. This fact sheet discusses the economic impact tool, a component of My Fuel Treatment Planner, for evaluating economic impacts.

  18. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  19. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  20. Transient feedback from fuel motion in metal IFR [Integral Fast Reactor] fuel

    International Nuclear Information System (INIS)

    Rhodes, E.A.; Stanford, G.S.; Regis, J.P.; Bauer, T.H.; Dickerman, C.E.

    1990-01-01

    Results from hodoscope data analyses are presented for TREAT transient-overpower tests M5 through M7 with emphasis on transient feedback mechanisms, including prefailure expansion at the tops of the fuel pins, subsequent dispersive axial fuel motion, and losses in relative worth of the fuel pins during the tests. Tests M5 and M6 were the first TOP tests of margin to cladding branch and prefailure elongation of D9-clad ternary (U-Pu-Zr) IFR-type fuel. Test M7 extended these results to high-burnup fuel and also initiated transient testing of HT9-clad binary (U-Zr) FFTF-driver fuel. Results show significant prefailure negative reactivity feedback and strongly negative feedback from fuel driven to failure. 4 refs., 6 figs

  1. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  2. A High Integrity Can Design for Degraded Nuclear Fuel

    International Nuclear Information System (INIS)

    Holmes, P.A.

    1999-01-01

    A high integrity can (HIC), designed to meet the ASME Boiler and Pressure Vessel Code (Section III, Div. 3, static conditions) is proposed for the interim storage and repository disposal of Department of Energy (DOE) spent nuclear fuel. The HIC will be approximately 5 3/8 inches (134.38mm) in outside diameter with 1/4 inch (6.35mm) thick walls, and have a removable lid with a metallic seal that is capable of being welded shut. The opening of the can is approximately 4 3/8 inches (111.13mm). The HIC is primarily designed to contain items in the DOE SNF inventory that do not meet acceptance standards for direct disposal in a geologic repository. This includes fuel in the form of particulate dusts, sectioned pieces of fuel, core rubble, melted or degraded (non-intact) fuel elements, unclad uranium alloys, metallurgical specimens, and chemically reactive fuel components. The HIC is intended to act as a substitute cladding for the spent nuclear fuel, further isolate problematic materials, provide a long-term corrosion barrier, and add an extra internal pressure barrier to the waste package. The HIC will also delay potential fission product release and maintain geometry control for extended periods of time. For the entire disposal package to be licensed by the Nuclear Regulatory Commission, a HIC must effectively eliminate the disposal problems associated with problem SNF including the release of radioactive and/or reactive material and over pressurization of the HIC due to chemical reactions within the can. Two HICs were analyzed to envelop a range of can lengths between 42 and 101 inches. Using Abacus software, the HIC's were analyzed for end, side, and corner drops. Hastelloy C-22 was chosen based upon structural integrity, corrosion resistance, and neutron adsorption properties

  3. Spent fuel and fuel pool component integrity. Annual report, FY 1979

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-μm) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report

  4. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  5. Melcor benchmarking against integral severe fuel damage tests

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.K. [Brookhaven National Lab., Upton, NY (United States)

    1995-09-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the U.S. Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC to provide independent assessment of MELCOR, and a very important part of this program is to benchmark MELCOR against experimental data from integral severe fuel damage tests and predictions of that data from more mechanistic codes such as SCDAP or SCDAP/RELAP5. Benchmarking analyses with MELCOR have been carried out at BNL for five integral severe fuel damage tests, namely, PBF SFD 1-1, SFD 14, and NRU FLHT-2, analyses, and their role in identifying areas of modeling strengths and weaknesses in MELCOR.

  6. Benchmark solution of contemporary PWR integral fuel burnable absorbers

    International Nuclear Information System (INIS)

    Stucker, D.L.; Hone, M.J.; Holland, R.A.

    1993-01-01

    This paper presents a closely controlled benchmark solution of the two major contemporary pressurized water reactor integral burnable absorber designs: zirconium diboride (ZrB 2 ) and gadolinia (Gd 2 O 3 ). The comparison is accomplished using self-generating equilibrium cycles with equal energy, equal discharge burnup, and equal safety constraints. The reference plant for this evaluation is a 3411-MW(thermal) Westinghouse four-loop nuclear steam supply system operating with an inlet temperature of 285.9 degrees C, a core coolant mass now rate of 16877.3 kg/s, and coolant pressure of 15.5 MPa. The reactor consists of 193 VANTAGE 5H fuel assemblies that are discharged at a region average burnup of 48.4 GWd/tonne U. Each fuel assembly contains a natural uranium axial blanket 15.24 cm long at the top and the bottom of the fuel rod. The burnable absorber rods are symmetrically radially dispersed within the fuel assembly such that intrabundle power peaking is minimized. The burnable absorber material for both ZrB 2 and Gd 2 O 3 is axially zoned to the central 304.8 cm of the absorber-bearing fuel rods. The fuel management was constrained such that the thermal and safety limitations of F δH q -5 /degrees C were simultaneously achieved. The maximum long-term operating soluble boron concentration was also limited to 446 effective full-power days (EFPDs) including 14 EFPDs of power coastdown were assumed

  7. A Study of Integrity Evaluation System for Spent Fuel and Selection of the Representative Spent Fuel

    International Nuclear Information System (INIS)

    Kim, J. G.; Lee, S. K.; Lim, C. J.; Kim, J. K.; Lee, S. J.

    2014-01-01

    Spent fuel (SF) integrity evaluation is a regulatory requirement that is described in 10 CFR 71(transportation) and 10 CFR 72(storage) of the U. S. NRC licensing requirement. NRC regulation states that retrievability of SF after storage should be ensured and SF integrity under the normal condition must be guaranteed during transportation and handling process that is entailed before/during/after the interim storage. And SF integrity evaluation under the hypothetical accident condition is a core technology element for an assessment of critical, shielding, and containment. In this paper, SF integrity evaluation system which is suitable for domestic situation is suggested, and necessity of representative SF selection and its method is described. The ultimate goal of the SF integrity evaluation is to evaluate a safety margin in case of transportation/ handling/storage of SFs. It means that retrievability of SF after storage should be assured and SF integrity must be guaranteed at normal condition in the process of transportation/handling accompanied before/during/after interim storage. In Korea, SF integrity evaluation system is not established up to date. Especially, representative SF selection technology that is essential to SF integrity evaluation has not been fulfilled. To overcome this situation effectively, the methodology and technology of an overseas agency need to be benchmarked. In this paper, an overseas SF integrity evaluation system is analyzed, and an evaluation system suitable for domestic situation is suggested. Also, necessity of representative SF selection and its method is described

  8. Forests at risk: integrating risk science into fuel management strategies.

    Science.gov (United States)

    Jonathan. Thompson

    2008-01-01

    The threat from wildland fire continues to grow across many regions of the Western United States. Drought, urbanization, and a buildup of fuels over the last century have contributed to increasing wildfire risk to property and highly valued natural resources. Fuel treatments, including thinning overly dense forests to reduce fuel and lower fire risk, have become a...

  9. Alternative Fuels

    Science.gov (United States)

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  10. Integral approach to innovative fuel and material investigations in the Halden reactor

    International Nuclear Information System (INIS)

    Volkov, B.

    2009-01-01

    Integral approach used for fuel and material investigations in the Halden reactor can be used in support of qualification and certification of fuel to be introduced in commercial NPPs. This approach has been partly used for WWER fuel investigation in the Halden Reactor in a series of irradiation tests. In-pile fuel performance tests with reliable measurements provided by Halden instrumentation under different conditions can be used for validation of the WWER fuel behaviour models and verification of fuel performance codes. These models and codes can be used for qualification of innovative fuel behaviour under extended conditions

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  13. Purifier-integrated methanol reformer for fuel cell vehicles

    Science.gov (United States)

    Han, Jaesung; Kim, Il-soo; Choi, Keun-Sup

    We developed a compact, 3-kW, purifier-integrated modular reformer which becomes the building block of full-scale 30-kW or 50-kW methanol fuel processors for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by composite metal membrane and catalytic combustion by washcoated wire-mesh catalyst were combined with the conventional methanol steam-reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems using preferential oxidation. In this system, steam reforming, hydrogen purification, and catalytic combustion all take place in a single reactor so that the whole system is compact and easy to operate. Hydrogen from the module is ultrahigh pure (99.9999% or better), hence there is no power degradation of PEMFC stack due to contamination by CO. Also, since only pure hydrogen is supplied to the anode of the PEMFC stack, 100% hydrogen utilization is possible in the stack. The module produces 2.3 Nm 3/h of hydrogen, which is equivalent to 3 kW when PEMFC has 43% efficiency. Thermal efficiency (HHV of product H 2/HHV of MeOH in) of the module is 89% and the power density of the module is 0.77 kW/l. This work was conducted in cooperation with Hyundai Motor Company in the form of a Korean national project. Currently the module is under test with an actual fuel cell stack in order to verify its performance. Sooner or later a full-scale 30-kW system will be constructed by connecting these modules in series and parallel and will serve as the fuel processor for the Korean first fuel cell hybrid vehicle.

  14. An integrated expert system for optimum in core fuel management

    International Nuclear Information System (INIS)

    Abd Elmoatty, Mona S.; Nagy, M.S.; Aly, Mohamed N.; Shaat, M.K.

    2011-01-01

    Highlights: → An integrated expert system constructed for optimum in core fuel management. → Brief discussion of the ESOIFM Package modules, inputs and outputs. → Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). → The Package verification showed good agreement. - Abstract: An integrated expert system called Efficient and Safe Optimum In-core Fuel Management (ESOIFM Package) has been constructed to achieve an optimum in core fuel management and automate the process of data analysis. The Package combines the constructed mathematical models with the adopted artificial intelligence techniques. The paper gives a brief discussion of the ESOIFM Package modules, inputs and outputs. The Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). Moreover, the data of DNRR have been used as a case study for testing and evaluation of ESOIFM Package. This paper shows the comparison between the ESOIFM Package burn-up results, the DNRR experimental burn-up data, and other DNRR Codes burn-up results. The results showed good agreement.

  15. Nuclear fuels

    International Nuclear Information System (INIS)

    Gangwani, Saloni; Chakrabortty, Sumita

    2011-01-01

    Nuclear fuel is a material that can be consumed to derive nuclear energy, by analogy to chemical fuel that is burned for energy. Nuclear fuels are the most dense sources of energy available. Nuclear fuel in a nuclear fuel cycle can refer to the fuel itself, or to physical objects (for example bundles composed of fuel rods) composed of the fuel material, mixed with structural, neutron moderating, or neutron reflecting materials. Long-lived radioactive waste from the back end of the fuel cycle is especially relevant when designing a complete waste management plan for SNF. When looking at long-term radioactive decay, the actinides in the SNF have a significant influence due to their characteristically long half-lives. Depending on what a nuclear reactor is fueled with, the actinide composition in the SNF will be different. The following paper will also include the uses. advancements, advantages, disadvantages, various processes and behavior of nuclear fuels

  16. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  17. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  18. Enhanced canopy fuel mapping by integrating lidar data

    Science.gov (United States)

    Peterson, Birgit E.; Nelson, Kurtis J.

    2016-10-03

    BackgroundThe Wildfire Sciences Team at the U.S. Geological Survey’s Earth Resources Observation and Science Center produces vegetation type, vegetation structure, and fuel products for the United States, primarily through the Landscape Fire and Resource Management Planning Tools (LANDFIRE) program. LANDFIRE products are used across disciplines for a variety of applications. The LANDFIRE data retain their currency and relevancy through periodic updating or remapping. These updating and remapping efforts provide opportunities to improve the LANDFIRE product suite by incorporating data from other sources. Light detection and ranging (lidar) is uniquely suitable for gathering information on vegetation structure and spatial arrangement because it can collect data in three dimensions. The Wildfire Sciences Team has several completed and ongoing studies focused on integrating lidar into vegetation and fuels mapping.

  19. KMRR fuel design

    International Nuclear Information System (INIS)

    Son, D.S.; Sim, B.S.; Kim, T.R.; Hwang, W.; Kim, B.G.; Ku, Y.H.; Lee, C.B.; Lim, I.C.

    1992-06-01

    KMRR fuel rod design criteria on fuel swelling, blistering and oxide spallation have been reexamined. Fuel centerline temperature limit of 250deg C in normal operation condition and fuel swelling limit of 12 % at the end of life have been proposed to prevent fuel failure due to excessive fuel swelling. Fuel temperature limit of 485deg C has been proposed to exclude the possibility of fuel failures during transients or under accident condition. Further analyses are needed to decide the fuel cladding temperature limit to preclude the oxide spallation. Design changes in fuel assembly structure and their effects on related systems have been reviewed from a structural integrity viewpoint. The remained works in fuel mechanical design area have been identified and further efforts of fuel design group will be focused on these aspects. (Author)

  20. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  1. Behavior of actinides in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Courtney, J.C.; Lineberry, M.J.

    1994-01-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ( 237 Np, 240 Pu, 241 Am, and 243 Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors' confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs

  2. Pyrometallurgical processing of Integral Fast Reactor metal fuels

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Gay, E.C.

    1991-01-01

    The pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor is now in an advanced state of development. This process involves electrorefining spent fuel with a cadmium anode, solid and liquid cathodes, and a molten salt electrolyte (LiCl-KCl) at 500 degrees C. The initial process feasibility and flowsheet verification studies have been conducted in a laboratory-scale electrorefiner. Based on these studies, a dual cathode approach has been adopted, where uranium is recovered on a solid cathode mandrel and uranium-plutonium is recovered in a liquid cadmium cathode. Consolidation and purification (salt and cadmium removal) of uranium and uranium-plutonium products from the electrorefiner have been successful. The process is being developed with the aid of an engineering-scale electrorefiner, which has been successfully operated for more than three years. In this electrorefiner, uranium has been electrotransported from the cadmium anode to a solid cathode in 10 kg quantities. Also, anodic dissolution of 10 kg batches of chopped, simulated fuel (U--10% Zr) has been demonstrated. Development of the liquid cadmium cathode for recovering uranium-plutonium is under way

  3. Performance evaluation of integrated fuel processor for residential PEMFCs application

    International Nuclear Information System (INIS)

    Yu Taek Seo; Dong Joo Seo; Young-Seog Seo; Hyun-Seog Roh; Wang Lai Yoon; Jin Hyeok Jeong

    2006-01-01

    KIER has been developing the natural gas fuel processor to produce hydrogen rich gas for residential PEMFCs system. To realize a compact and high efficiency, the unit processes of steam reforming, water gas shift, and preferential oxidation are chemically and physically integrated in a package. Current fuel processor designed for 1 kW class PEMFCs shows thermal efficiency of 78% as a HHV basis with methane conversion of 90% at rated load operation. CO concentration below 10 ppm in the produced gas is achieved with preferential oxidation unit using Pt and Ru based catalyst under the condition of [O 2 ]/[CO]=2.0. The partial load operation have been carried out to test the performance of fuel processor from 40% to 80% load, showing stable methane conversion and CO concentration below 10 ppm. The durability test for the daily start-stop and 8 hr operation procedure is under investigation and shows no deterioration of its performance after 40 start-stop cycles. (authors)

  4. Pressurized solid oxide fuel cell integral air accumular containment

    Science.gov (United States)

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  5. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  6. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  7. Fuel rods

    International Nuclear Information System (INIS)

    Adachi, Hajime; Ueda, Makoto

    1985-01-01

    Purpose: To provide a structure capable of measuring, in a non-destructive manner, the releasing amount of nuclear gaseous fission products from spent fuels easily and at a high accuracy. Constitution: In order to confirm the integrity and the design feasibility of a nuclear fuel rod, it is important to accurately determine the amount of gaseous nuclear fission products released from nuclear pellets. In a structure where a plurality of fuel pellets are charged in a fuel cladding tube and retained by an inconel spring, a hollow and no-sealed type spacer tube made of zirconium or the alloy thereof, for example, not containing iron, cobalt, nickel or manganese is formed between the spring and the upper end plug. In the fuel rod of such a structure, by disposing a gamma ray collimator and a gamma ray detector on the extension of the spacer pipe, the gamma rays from the gaseous nuclear fission products accumulated in the spacer pipe can be detected while avoiding the interference with the induction radioactivity from inconel. (Kamimura, M.)

  8. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    Science.gov (United States)

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Integrating repositories with fuel cycles: The airport authority model

    International Nuclear Information System (INIS)

    Forsberg, C.

    2012-01-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  10. Integrating repositories with fuel cycles: The airport authority model

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  11. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  12. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  13. Economic prospects of the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    The IFR fuel cycle based on pyroprocessing involves only few operational steps and the batch-oriented process equipment systems are compact. This results in major cost reductions in all of three areas of reprocessing, fabrication, and waste treatment. This document discusses the economic aspects of this fuel cycle

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Fujibayashi, Toru.

    1970-01-01

    Herein disclosed is a fuel assembly in which a fuel rod bundle is easily detachable by rotating a fuel rod fastener rotatably mounted to the upper surface of an upper tie-plate supporting a fuel bundle therebelow. A locking portion at the leading end of each fuel rod protrudes through the upper tie-plate and is engaged with or separated from the tie-plate by the rotation of the fastener. The removal of a desired fuel rod can therefore be remotely accomplished without the necessity of handling pawls, locking washers and nuts. (Owens, K.J.)

  15. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  16. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  17. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  18. Integral logistics of the nuclear fuel Factory Juzbado

    International Nuclear Information System (INIS)

    Perez, P.

    2015-01-01

    The Logistic considers the complete process since the determination of possible demand, production planning, materials procurement, production control and delivery of final products to customer. This complete process is managed in all the scope under the same department called Planning and Logistic. This integration, some times really complex, has allowed to Enusa factory control all the key aspects that allow its running completely, considering the synergy's and important advantages to solve different problems. This article describes how we work of the main areas of procurement, production planning and control, fuel delivery and project planning of improvements on equipment's and factory systems, with an integrated management of all of them under the same direction. (Author)

  19. Evaluation of mechanical integrity for helical coil hold-down spring of PLUS7TM fuel

    International Nuclear Information System (INIS)

    Choi, Ki Sung; Kim, Yong Hwan; Kwon, Jung Tack; Kim, Kyu Tae

    2004-01-01

    Nuclear fuel assembly is subject to hydraulic forces generated by primary coolant flow during reactor operation. These forces may be sufficient to overcome the fuel assembly weight thereby allowing the fuel assembly to lift off of its support. To provide a positive hold-down margin against the upward coolant flow forces, helical coil springs or leaf springs are installed in the fuel assemblies. An advanced fuel for Korean Standard Nuclear Power Plants (KSNP), PLUS7 fuel has developed to get the thermal margin increase, failure free and high seismic resistance, etc. And the new designed helical coil hold-down spring was introduced into PLUS7 fuel assembly. The purpose of this paper is to evaluate the mechanical integrity for the helical coil hold-down spring of PLUS7 fuel assembly

  20. Fuel management

    International Nuclear Information System (INIS)

    Schwarz, E.R.

    1975-01-01

    Description of the operation of power plants and the respective procurement of fuel to fulfil the needs of the grid. The operation of the plants shall be optimised with respect to the fuel cost. (orig./RW) [de

  1. Fuel gases

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This paper gives a brief presentation of the context, perspectives of production, specificities, and the conditions required for the development of NGV (Natural Gas for Vehicle) and LPG-f (Liquefied Petroleum Gas fuel) alternative fuels. After an historical presentation of 80 years of LPG evolution in vehicle fuels, a first part describes the economical and environmental advantages of gaseous alternative fuels (cleaner combustion, longer engines life, reduced noise pollution, greater natural gas reserves, lower political-economical petroleum dependence..). The second part gives a comparative cost and environmental evaluation between the available alternative fuels: bio-fuels, electric power and fuel gases, taking into account the processes and constraints involved in the production of these fuels. (J.S.)

  2. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  3. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  4. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  5. Molten carbonate fuel cell integral matrix tape and bubble barrier

    International Nuclear Information System (INIS)

    Reiser, C.A.; Maricle, D.L.

    1983-01-01

    A molten carbonate fuel cell matrix material is described made up of a matrix tape portion and a bubble barrier portion. The matrix tape portion comprises particles inert to molten carbonate electrolyte, ceramic particles and a polymeric binder, the matrix tape being flexible, pliable and having rubber-like compliance at room temperature. The bubble barrier is a solid material having fine porosity preferably being bonded to the matrix tape. In operation in a fuel cell, the polymer binder burns off leaving the matrix and bubble barrier providing superior sealing, stability and performance properties to the fuel cell stack

  6. Hydrogen, fuel cells and renewable energy integration in islands

    International Nuclear Information System (INIS)

    Bauen, A.; Hart, D.; Foradini, F.; Hart, D.

    2002-01-01

    Remote areas such as islands rely on costly and highly polluting diesel and heavy fuel oil for their electricity supply. This paper explored the opportunities for exploiting economically and environmentally viable renewable energy sources, in particular hydrogen storage, on such islands. In particular, this study focused on addressing the challenge of matching energy supply with demand and with technical issues regarding weak grids that are hindered with high steady state voltage levels and voltage fluctuations. The main technical characteristics of integrated renewable energy and hydrogen systems were determined by modelling a case study for the island of El Hierro (Canary Islands). The paper referred to the challenges regarding the technical and economic viability of such systems and their contribution to the economic development of remote communities. It was noted that energy storage plays an important role in addressing supply and demand issues by offering a way to control voltage and using surplus electricity at times of low load. Electrical energy can be stored in the form of potential or chemical energy. New decentralized generation technologies have also played a role in improving the energy efficiency of renewable energy sources. The feasibility of using hydrogen for energy storage was examined with particular reference to fuel-cell based energy supply in isolated island communities. 4 refs., 5 figs

  7. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  8. Fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A new fuel can with a loose bottom and head is described. The fuel bar is attached to the loose bottom and head with two grid poles keeping the distance between bottom and head. A bow-shaped handle is attached to the head so that the fuel bar can be lifted from the can

  9. A micro fuel reformer integrated with a combustor and a microchannel evaporator

    Science.gov (United States)

    Yoshida, Kazushi; Tanaka, Shuji; Hiraki, Hisashi; Esashi, Masayoshi

    2006-09-01

    This paper describes the development of a micro fuel reformer integrated with a combustor and an evaporator. Fuel reforming tests were performed by using a mixture of methanol and water as reforming fuel and hydrogen as combustion fuel. It was found that the design of the microchannel evaporator is critical to obtain larger hydrogen output. Hydrogen output and CO concentration were investigated by varying the input combustion power at different fuel feeding rates. 32.9 sccm of hydrogen, which is equivalent to 5.9 W in lower heating value, was produced, when input combustion power was 11 W.

  10. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  11. A proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps -- a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented

  12. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  13. LPG fuel

    International Nuclear Information System (INIS)

    Dagnas, F.X.; Jeuland, N.; Fouquet, J.P.; Lauraire, S.; Coroller, P.

    2005-01-01

    LPG fuel has become frequently used through a distribution network with 2 000 service stations over the French territory. LPG fuel ranks number 3 world-wide given that it can be used on individual vehicles, professional fleets, or public transport. What is the environmental benefit of LPG fuel? What is the technology used for these engines? What is the current regulation? Government commitment and dedication on support to promote LPG fuel? Car makers projects? Actions to favour the use of LPG fuel? This article gathers 5 presentations about this topic given at the gas conference

  14. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  15. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  16. Fuel Services

    International Nuclear Information System (INIS)

    Silberstein, A.

    1982-09-01

    FRAGEMA has developed most types of inspection equipments to work on irradiated fuel assemblies and on single fuel rods during reactor outages with an efficiency compatible with the utilities operating priorities. In order to illustrate this statement, two specific examples of inspection equipments are shortly described: the on-site removable fuel rod assembly examination stand, and the fuel assembly multiple examination device. FRAGEMA has developed techniques for the identifiction of the leaking fuel rods in the fuel assembly and the tooling necessary to perform the replacement of the faulted element. These examples of methods, techniques and equipments described and the experience accumulated through their use allow FRAGEMA to qualify for offering the supply of the corresponding software, hardware or both whenever an accurate understanding of the fuel behaviour is necessary and whenever direct intervention on the assembly and associated components is necessary due to safety, operating or economical reasons

  17. Fuel assembly

    International Nuclear Information System (INIS)

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    In a fuel assembly in which spectral shift type moderator guide members are arranged, the moderator guide member has a flow channel resistance member, that provides flow resistance against the moderators, in the upstream of a moderator flowing channel, by which the ratio of removing coolants is set greater at the upstream than downstream. With such a constitution, the void distribution increasing upward in the channel box except for the portion of the moderator guide member is moderated by the increase of the area of the void region that expands downward in the guide member. Accordingly, the axial power distribution is flattened throughout the operation cycle and excess distortion is eliminated to improve the fuel integrity. (T.M.)

  19. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  20. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  1. Operational method for demonstrating fuel loading integrity in a reactor having accessible 235U fuel

    International Nuclear Information System (INIS)

    Ward, D.R.

    1979-07-01

    The Health Physics Research Reactor is a small pulse reactor at the Oak Ridge National Laboratory. It is desirable for the operator to be able to demonstrate on a routine basis that all the fuel pieces are present in the reactor core. Accordingly, a technique has been devised wherein the control rod readings are recorded with the reactor at delayed critical and corrections are made to compensate for the effects of variations in reactor height above the floor, reactor power, core temperature, and the presence of any massive neutron reflectors. The operator then compares these readings with the values expected based on previous operating experience. If this routine operational check suggests that the core fuel loading might be deficient, a more rigorous follow-up may be made

  2. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-01-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel

  3. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  4. Integration of the military and civilian nuclear fuel cycles in Russia

    International Nuclear Information System (INIS)

    Bukharin, O.

    1994-01-01

    This paper describes the close integration of the civil and military nuclear fuel cycles in Russia. Individual processing facilities, as well as the flow of nuclear material, are described as they existed in the 1980s and as they exist today. The end of the Cold War and the breakup of the Soviet Union weakened the ties between the two nuclear fuel cycles, but did not separate them. Separation of the military and civilian nuclear fuel cycles would facilitate Russia's integration into the world's nuclear fuel cycle and its participation in international non-proliferation regimes

  5. A comparison of integral block and tubular interacting fuel element concepts for low enrichment HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A

    1972-04-15

    The tubular interacting fuel element has to date been the favoured U.K. high temperature reactor design. Recent attempts to lower fuel costs and the progress of the Fort St. Vrain reactor has focussed attention on alternative designs, and in particular on the attractive design simplicity of the integral block concept. The aim of this investigation is to compare the merits of both concepts from fuel cycle cost and thermal performance viewpoints and to determine whether optimization of the integral block concept leads to changes in the current design values of (a) fuel density, (b) Nc/Nu, and/or (c) mean discharge irradiation within the framework of present design limits.

  6. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  7. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  8. On-line fuel and control rod integrity management in BWRs

    International Nuclear Information System (INIS)

    Larsson, Irina; Sihver, Lembit

    2011-01-01

    Surveillance of fuel and control rod integrity in a BWR core is essential to maintain a safe and reliable operation of a nuclear power plant. An accurate and prompt way to monitor fuel integrity in a reactor core during reactor operation is by using on-line measurements of the gamma emitting noble gas activities in the off-gas system. The integrity of control rods can be efficiently followed by on-line measurements of the helium (He) concentration in the off-gases. This method also gives information about fuel rod failures since He is used as a fill gas in the fuel rods. To survey fuel and control rod integrity during reactor operation, a system consisting of combined gamma and He on-line measurements in the off-gases should be used. Such a system can detect and follow the behavior of fuel and control rod failures. In addition, it can separate fuel failures from control rod failures since fuel rods contain both He and gamma emitting noble gases, while control rods only contain He. Moreover, the system is able to distinguish primary fuel failures from degradation of already existing ones. In this paper we present a combined system for on-line measurements of He and gamma emitting noble gases in the reactor off-gas system and measuring experiences from different BWRs. (author)

  9. Analysis of a fuel cell on-site integrated energy system for a residential complex

    Science.gov (United States)

    Simons, S. N.; Maag, W. L.

    1979-01-01

    The energy use and costs of the on-site integrated energy system (OS/IES) which provides electric power from an on-site power plant and recovers heat that would normally be rejected to the environment is compared to a conventional system purchasing electricity from a utility and a phosphoric acid fuel cell powered system. The analysis showed that for a 500-unit apartment complex a fuel OS/IES would be about 10% more energy conservative in terms of total coal consumption than a diesel OS/IES system or a conventional system. The fuel cell OS/IES capital costs could be 30 to 55% greater than the diesel OS/IES capital costs for the same life cycle costs. The life cycle cost of a fuel cell OS/IES would be lower than that for a conventional system as long as the cost of electricity is greater than $0.05 to $0.065/kWh. An analysis of several parametric combinations of fuel cell power plant and state-of-art energy recovery systems and annual fuel requirement calculations for four locations were made. It was shown that OS/IES component choices are a major factor in fuel consumption, with the least efficient system using 25% more fuel than the most efficient. Central air conditioning and heat pumps result in minimum fuel consumption while individual air conditioning units increase it, and in general the fuel cell of highest electrical efficiency has the lowest fuel consumption.

  10. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  11. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  12. Fuel assembly

    International Nuclear Information System (INIS)

    Bando, Masaru.

    1993-01-01

    As neutron irradiation progresses on a fuel assembly of an FBR type reactor, a strong force is exerted to cause ruptures if the arrangement of fuel elements is not displaced, whereas the fuel elements may be brought into direct contact with each other not by way of spacers to cause burning damages if the arrangement is displaced. In the present invention, the circumference of fuel elements arranged in a normal triangle lattice is surrounded by a wrapper tube having a hexagonal cross section, wire spacers are wound therearound, and deformable spacers are distributed to optional positions for fuel elements in the wrapper tube. Interaction between the fuel elements caused by irradiation is effectively absorbed, thereby enabling to delay the occurrence of the rupture and burning damages of the elements. (N.H.)

  13. Fuel assembly

    International Nuclear Information System (INIS)

    Yokota, Tokunobu.

    1990-01-01

    A fuel assembly used in a FBR type nuclear reactor comprises a plurality of fuel rods and a moderator guide member (water rod). A moderator exit opening/closing mechanism is formed at the upper portion of the moderator guide member for opening and closing a moderator exit. In the initial fuel charging operation cycle to the reactor, the moderator exit is closed by the moderator exit opening/closing mechanism. Then, voids are accumulated at the inner upper portion of the moderator guide member to harden spectrum and a great amount of plutonium is generated and accumulated in the fuel assembly. Further, in the fuel re-charging operation cycle, the moderator guide member is used having the moderator exit opened. In this case, voids are discharged from the moderator guide member to decrease the ratio, and the plutonium accumulated in the initial charging operation cycle is burnt. In this way, the fuel economy can be improved. (I.N.)

  14. Fuel spacer

    International Nuclear Information System (INIS)

    Nishida, Koji; Yokomizo, Osamu; Kanazawa, Toru; Kashiwai, Shin-ichi; Orii, Akihito.

    1992-01-01

    The present invention concerns a fuel spacer for a fuel assembly of a BWR type reactor and a PTR type reactor. Springs each having a vane are disposed on the side surface of a circular cell which supports a fuel rods. A vortex streams having a vertical component are formed by the vanes in the flowing direction of a flowing channel between adjacent cylindrical cells. Liquid droplets carried by streams are deposited on liquid membrane streams flowing along the fuel rod at the downstream of the spacer by the vortex streams. In view of the above, the liquid droplets can be deposited to the fuel rod without increasing the amount of metal of the spacer. Accordingly, the thermal margin of the fuel assembly can be improved without losing neutron economy. (I.N.)

  15. An Integrated Model for Identifying Linkages Between the Management of Fuel Treatments, Fire and Ecosystem Services

    Science.gov (United States)

    Bart, R. R.; Anderson, S.; Moritz, M.; Plantinga, A.; Tague, C.

    2015-12-01

    Vegetation fuel treatments (e.g. thinning, prescribed burning) are a frequent tool for managing fire-prone landscapes. However, predicting how fuel treatments may affect future wildfire risk and associated ecosystem services, such as forest water availability and streamflow, remains a challenge. This challenge is in part due to the large range of conditions under which fuel treatments may be implemented, as response is likely to vary with species type, rates of vegetation regrowth, meteorological conditions and physiographic properties of the treated site. It is also due to insufficient understanding of how social factors such as political pressure, public demands and economic constraints affect fuel management decisions. To examine the feedbacks between ecological and social dimensions of fuel treatments, we present an integrated model that links a biophysical model that simulates vegetation and hydrology (RHESSys), a fire spread model (WMFire) and an empirical fuel treatment model that accounts for agency decision-making. We use this model to investigate how management decisions affect landscape fuel loads, which in turn affect fire severity and ecosystem services, which feedback to management decisions on fuel treatments. We hypothesize that this latter effect will be driven by salience theory, which predicts that fuel treatments are more likely to occur following major wildfire events. The integrated model provides a flexible framework for answering novel questions about fuel treatments that span social and ecological domains, areas that have previously been treated separately.

  16. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  17. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  18. Development of advanced spent fuel management process / criticality safety analysis for integrated mockup and metallized spent fuel storage

    International Nuclear Information System (INIS)

    Ro, Seong Gy; Shin, Hee Sung; Shin, Young Joon; Bae, Kang Mok

    1999-02-01

    Benchmark calculation for SCALE4.3 CSAS6 module and burnup credit criticality analysis performed by CSAS6 module are described in this report. Calculation biases by the SCALE4.3 CSAS6 module for PWR spent fuel, metallized spent fuel and aqueous nuclear materials have been determined on the basis of the benchmark to be 0.011, 0.023 and 0.010, respectively. The maximum allowable multiplication factor for an integrated mockup and metallized spent fuel storage is conservatively determined to be 0.927. With the aid of this code system, K eff values as a function of metallization ratio for the integrated mockup have been calculated. The maximum values of K eff for normal and hypothetical accident conditions are 0.346 and 0.598, respectively, much less than the maximum allowable multiplication factor of 0.927. Besides, burnup credit criticality analysis has been performed for infinite arrays of square and hexagonal canisters containing metallized spent fuel rods with different canister wall thickness, canister surface-to-surface distance and water content. It is revealed that the effective multiplication factor for canister arrays as mentioned above is well below the subcritical limit regardless of external conditions when its wall thickness is over 9 mm. (Author). 37 refs., 27 tabs., 64 figs

  19. Design of a thermally integrated bioethanol-fueled solid oxide fuel cell system integrated with a distillation column

    Science.gov (United States)

    Jamsak, W.; Douglas, P. L.; Croiset, E.; Suwanwarangkul, R.; Laosiripojana, N.; Charojrochkul, S.; Assabumrungrat, S.

    Solid oxide fuel cell systems integrated with a distillation column (SOFC-DIS) have been investigated in this study. The MER (maximum energy recovery) network for SOFC-DIS system under the base conditions (C EtOH = 25%, EtOH recovery = 80%, V = 0.7 V, fuel utilization = 80%, T SOFC = 1200 K) yields Q Cmin = 73.4 and Q Hmin = 0 kW. To enhance the performance of SOFC-DIS, utilization of internal useful heat sources from within the system (e.g. condenser duty and hot water from the bottom of the distillation column) and a cathode recirculation have been considered in this study. The utilization of condenser duty for preheating the incoming bioethanol and cathode recirculation for SOFC-DIS system were chosen and implemented to the SOFC-DIS (CondBio-CathRec). Different MER designs were investigated. The obtained MER network of CondBio-CathRec configuration shows the lower minimum cold utility (Q Cmin) of 55.9 kW and total cost index than that of the base case. A heat exchanger loop and utility path were also investigated. It was found that eliminate the high temperature distillate heat exchanger can lower the total cost index. The recommended network is that the hot effluent gas is heat exchanged with the anode heat exchanger, the external reformer, the air heat exchanger, the distillate heat exchanger and the reboiler, respectively. The corresponding performances of this design are 40.8%, 54.3%, 0.221 W cm -2 for overall electrical efficiency, Combine Heat and Power (CHP) efficiency and power density, respectively. The effect of operating conditions on composite curves on the design of heat exchanger network was investigated. The obtained composite curves can be divided into two groups: the threshold case and the pinch case. It was found that the pinch case which T SOFC = 1173 K yields higher total cost index than the CondBio-CathRec at the base conditions. It was also found that the pinch case can become a threshold case by adjusting split fraction or operating at

  20. Nuclear fuel

    International Nuclear Information System (INIS)

    Azevedo, J.B.L. de.

    1980-01-01

    All stages of nuclear fuel cycle are analysed with respect to the present situation and future perspectives of supply and demand of services; the prices and the unitary cost estimation of these stages for the international fuel market are also mentioned. From the world resources and projections of uranium consumption, medium-and long term analyses are made of fuel availability for several strategies of use of different reactor types. Finally, the cost of nuclear fuel in the generation of electric energy is calculated to be used in the energetic planning of the electric sector. (M.A.) [pt

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  2. Standard for assessment of fuel integrity under anticipated operational occurrences in BWR power plant:2002

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Suzuki, Riichiro; Komura, Seiichi; Kudo, Yoshiro; Yamanaka, Akihiro; Oomizu, Satoru; Kitamura, Hideya; Nagata, Yoshifumi

    2003-01-01

    To secure fuel integrity, a Light Water Reactor (LWR) core is designed so that no boiling transition (BT) should take place in fuel assemblies and excessive rise in fuel cladding temperature due to deteriorated that transfer should be avoided in Anticipated Operational Occurrences (AOO). In some AOO in a Boiling Water Reactor (BWR), however, the rise in reactor power could be limited by SCRAM or void reactivity effect. Recent studies have provided accumulated knowledge that even if BT takes place in fuel assemblies, the rise in fuel cladding temperature could be so small that it will not threat to fuel integrity, as long as the BT condition terminates within a short period of time. In addition, appropriate methods have been developed to evaluate the cladding temperature during dryout. This standard provides requirements in the assessment of fuel integrity under AOO in which limited-BT condition is temporarily reached and the propriety of reusing a fuel assembly that has experienced limited-BT condition. The standard has been approved by the Atomic Energy Society of Japan following deliberation by impartial members for two and half years. It is now expected that this standard will provide an effective measure for the rational expansion of fuel design and operational margin. (author)

  3. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  4. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  5. Progress and status of the integral fast reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. The Integral Fast Reactor (IFR) fuel cycle, is based on the use of a metallic fuel alloy (U-Pu-Zr) that permits use of an innovative method for processing of spent fuel. This method, a combination of pyrometallurgical and electrochemical processes, has been termed pyroprocessing. It offers the advantages of a simple, compact processing system and limited volumes of stabilized high-level wastes. This translates to an economically viable system that is likely to receive favorable public response, particularly when combined with the other attributes of the Integral Fast Reactor. Substantial progress has been made in the development of the IFR pyroprocessing method. A comprehensive demonstration of the process will soon begin at the Argonne National Laboratory Idaho site, using spent fuel from the EBR-II reactor. An important advantage of the IFR is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  6. Spent fuel test. Climax data acquisition system integration report

    International Nuclear Information System (INIS)

    Nyholm, R.A.; Brough, W.G.; Rector, N.L.

    1982-06-01

    The Spent Fuel Test - Climax (SFT-C) is a test of the retrievable, deep geologic storage of commercially generated, spent nuclear reactor fuel in granitic rock. Eleven spent fuel assemblies, together with 6 electrical simulators and 20 guard heaters, are emplaced 420 m below the surface in the Climax granite at the Nevada Test Site. On June 2, 1978, Lawrence Livermore National Laboratory (LLNL) secured funding for the SFT-C, and completed spent fuel emplacement May 28, 1980. This multi-year duration test is located in a remote area and is unattended much of the time. An extensive array of radiological safety and geotechnical instrumentation is deployed to monitor the test performance. A dual minicomputer-based data acquisition system collects and processes data from more than 900 analog instruments. This report documents the design and functions of the hardware and software elements of the Data Acquisition System and describes the supporting facilities which include environmental enclosures, heating/air-conditioning/humidity systems, power distribution systems, fire suppression systems, remote terminal stations, telephone/modem communications, and workshop areas. 9 figures

  7. Nondestructive analysis of irradiated fuels

    International Nuclear Information System (INIS)

    Dudey, N.D.; Frick, D.C.

    1977-01-01

    The principal nondestructive examination techniques presently used to assess the physical integrity of reactor fuels and cladding materials include gamma-scanning, profilometry, eddy current, visual inspection, rod-to-rod spacing, and neutron radiography. LWR fuels are generally examined during annual refueling outages, and are conducted underwater in the spent fuel pool. FBR fuels are primarily examined in hot cells after fuel discharge. Although the NDE techniques are identical, LWR fuel examinations emphasize tests to demonstrate adherence to technical specification and reliable fuel performance; whereas, FBR fuel examinations emphasize aspects more related to the relative performance of different types of fuel and cladding materials subjected to variable irradiation conditions

  8. Integrity, behavior and proposal of CARA fuel irradiation with empty negative coefficient

    International Nuclear Information System (INIS)

    Marino, Armando C.; Brasnarof, Daniel O.; Demarco, Gustavo L.; Agueda, Horacio C.

    2007-01-01

    The main issues of the CARA fuel, CVN version, are its negative void reactivity coefficient and an extraction burnup of ∼20000 MWd/ton U. The analysis of the fuel rod behaviour, under the irradiation conditions of the Embalse, Atucha I and II NPPs, are the key to recognize their demanding under operation, to review the classic issues of the PHWR fuels and to prepare a programme of experimental irradiations in order to demonstrate the CARA concept, to assess the fuel integrity, to improve the performance and the enhancement of the safety margins. (author) [es

  9. Influence of the resonance integral value on the fuel cycle characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, G; Trauwaert, E

    1972-04-24

    The problem that is considered here is to determine what can be done about a variation in resonance integral when the complete geometry of the reactor and of the fuel elements are fixed, leaving as only free parameters the amount of heavy metal and the enrichment to put in the fuel pins.

  10. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions

  11. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs

  12. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. (author)

  13. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs.

  14. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-03-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  15. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  16. Integrated quality status and inventory tracking system for FFTF driver fuel pins

    International Nuclear Information System (INIS)

    Gottschalk, G.P.

    1979-11-01

    An integrated system for quality status and inventory tracking of Fast Flux Test Facility (FFTF) driver fuel pins has been developed. Automated fuel pin identification systems, a distributed computer network, and a data base are used to implement the tracking system

  17. Fuel element

    International Nuclear Information System (INIS)

    Kennedy, S.T.

    1982-01-01

    A nuclear reactor fuel element wherein a stack of nuclear fuel is prevented from displacement within its sheath by a retainer comprising a tube member which is radially expanded into frictional contact with the sheath by means of a captive ball within a tapered bore. (author)

  18. Nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, H [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1976-10-01

    It is expected that nuclear power generation will reach 49 million kW in 1985 and 129 million kW in 1995, and the nuclear fuel having to be supplied and processed will increase in proportion to these values. The technical problems concerning nuclear fuel are presented on the basis of the balance between the benefit for human beings and the burden on the human beings. Recently, especially the downstream of nuclear fuel attracts public attention. Enriched uranium as the raw material for light water reactor fuel is almost monopolized by the U.S., and the technical information has not been published for fear of the diversion to nuclear weapons. In this paper, the present situations of uranium enrichment, fuel fabrication, transportation, reprocessing and waste disposal and the future problems are described according to the path of nuclear fuel cycle. The demand and supply of enriched uranium in Japan will be balanced up to about 1988, but afterwards, the supply must rely upon the early establishment of the domestic technology by centrifugal separation method. No problem remains in the fabrication of light water reactor fuel, but for the fabrication of mixed oxide fuel, the mechanization of the production facility and labor saving are necessary. The solution of the capital risk for the construction of the second reprocessing plant is the main problem. Japan must develop waste disposal techniques with all-out efforts.

  19. Fuel cells

    NARCIS (Netherlands)

    Veen, van J.A.R.; Janssen, F.J.J.G.; Santen, van R.A.

    1999-01-01

    The principles and present-day embodiments of fuel cells are discussed. Nearly all cells are hydrogen/oxygen ones, where the hydrogen fuel is usually obtained on-site from the reforming of methane or methanol. There exists a tension between the promise of high efficiency in the conversion of

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Nakajima, Akiyoshi; Bessho, Yasunori; Aoyama, Motoo; Koyama, Jun-ichi; Hirakawa, Hiromasa; Yamashita, Jun-ichi; Hayashi, Tatsuo

    1998-01-01

    In a fuel assembly of a BWR type reactor in which a water rod of a large diameter is disposed at the central portion, the cross sectional area perpendicular to the axial direction comprises a region a of a fuel rod group facing to a wide gap water region to which a control rod is inserted, a region b of a fuel rod group disposed on the side of the wide gap water region other than the region a, a region d of a fuel rod group facing to a narrow gap water region and a region c of a fuel rod group disposed on the side of the narrow gap water region other than the region d. When comparing an amount of fission products contained in the four regions relative to that in the entire regions and average enrichment degrees of fuel rods for the four regions, the relative amount and the average enrichment degree of the fuel rod group of the region a is minimized, and the relative amount and the average enrichment degree of the fuel rod group in the region b is maximized. Then, reactor shut down margin during cold operation can be improved while flattening the power in the cross section perpendicular to the axial direction. (N.H.)

  1. Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

    1994-01-01

    Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described

  2. Assessment of clad integrity of PHWR fuel pin following a postulated severe accident

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-01-01

    A mechanistic fuel performance analysis code FAIR has been developed. The code can analyse fuel pins with free standing as well as collapsible clad under normal, off-normal and accident conditions of reactors. The code FAIR is capable of analysing the effects of high burnup on fuel behaviour. The code incorporates finite element based thermo-mechanical module for computing transient temperature distribution and thermal-elastic-plastic stresses in the fuel pin. A number of high temperature thermo-physical and thermo-mechanical models also have been incorporated for analysing fuel pins subjected to severe accident scenario. The present paper describes salient features of code FAIR and assessment of clad integrity of PHWR fuel pins with different initial burnup subjected to severe accident scenario. (author)

  3. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.

    1993-01-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations

  4. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  5. Fuels planning: science synthesis and integration; social issues fact sheet 13: Strategies for managing fuels and visual quality

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    The public's acceptance of forest management practices, including fuels reduction, is heavily based on how forests look. Fuels managers can improve their chances of success by considering aesthetics when making management decisions. This fact sheet reviews a three-part general strategy for managing fuels and visual quality: planning, implementation, and monitoring...

  6. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 05: fuel treatment principles for complex landscapes

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Appropriate types of thinning and surface fuel treatments are clearly useful in reducing surface and crown fire hazards under a wide range of fuels and topographic situations. This paper provides well-established scientific principles and simulation tools that can be used to adjust fuel treatments to attain specific risk levels.

  7. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  8. Nuclear fuel

    International Nuclear Information System (INIS)

    Quinauk, J.P.

    1990-01-01

    Since 1985, Fragema has been marketing and selling the Advanced Fuel Assemby AFA whose main features are its zircaloy grids and removable top and bottom nozzles. It is this product, which exists for several different fuel assembly arrays and heights, that will be employed in the reactors at Daya Bay. Fragema employs gadolinium as the consumable poison to enable highperformance fuel management. More recently, the company has supplied fuel assemblies of the mixed-oxide(MOX) and enriched reprocessed uranium type. The reliability level of the fuel sold by Fragema is one of the highest in the world, thanks in particular to the excellence of the quality assurance and quality control programs that have been implemented at all stages of its design and manufacture

  9. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  10. INEL integrated spent nuclear fuel consolidation task team report

    International Nuclear Information System (INIS)

    Henry, R.N.; Clark, J.H.; Chipman, N.A.

    1994-01-01

    This document describes a draft plan and schedule to consolidate spent nuclear fuel (SNF) and special nuclear material (SNW) from aging storage facilities throughout the Idaho National Engineering Laboratory (INEL) to the Idaho Chemical Processing Plant (ICPP) in a safe, cost-effective, and expedient manner. A fully integrated and resource-loaded schedule was developed to achieve consolidation as soon as possible. All of the INEL SNF and SNM management task, projects, and related activities from fiscal year 1994 to the end of the consolidation period are logic-tied and integrated with each other. The schedule and plan are presented to initiate discussion of their implementation, which is expected to generate alternate concepts that can be evaluated using the methodology described in this report. Three perturbations to consolidating SNF as soon as possible are also explored. If the schedule is executed as proposed, the new and on-going consolidation activities will require about 6 years to complete and about $25.3M of additional funding. Reduced annual operating costs are expected to recover the additional investment in about 6.4 years. The total consolidation program as proposed will cost about $66.8M and require about 6 years to recover via reduced operating costs from retired SNF/SNM storage facilities. Detailed schedules and cost estimates for the Test Reactor Area Materials Test Reactor canal transfers are included as an example of the level of detail that is typical of the entire schedule (see Appendix D). The remaining work packages for each of the INEL SNF consolidation transfers are summarized in this document. Detailed cost and resource information is available upon request for any of the SNF consolidation transfers

  11. Application of fuel cells with heat recovery for integrated utility systems

    Science.gov (United States)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  12. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  13. A status report on the integral fast reactor fuels and safety program

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor (ALMR) concept being developed at Argonne National Laboratory. The IFR program is specifically responsible for the irradiation performance, advanced core design, safety analysis, and development of the fuel cycle for the US Department of Energy's ALMR program. The basic elements of the IFR concept are (a) metallic fuel, (b) liquid-sodium cooling, (c) modular, pool-type reactor configuration, (d) an integral fuel cycle based upon pyrometallurgical processing. The most significant safety aspects of the IFR program result from its unique fuel design, a ternary alloy of uranium, plutonium, and zirconium. This fuel is based on experience gained through > 25 yr operation of the Experimental Breeder Reactor II (EBR-II) with a uranium alloy metallic fuel. The ultimate criteria for fuel pin design is the overall integrity at the target burnup. The probability of core meltdown is remote; however, a theoretical possibility of core meltdown remains. The next major step in the IFR development program will be a full-scale pyroprocessing demonstration to be carried out in conjunction with EBR-II. The IFR fuel cycle closure based on pyroprocessing will also have a dramatic impact on waste management options and on actinide recycling

  14. The concept of fuel cycle integrated molten salt reactor for transmuting Pu+MA from spent LWR fuels

    International Nuclear Information System (INIS)

    Hirose, Y.; Takashima, Y.

    2001-01-01

    Japan should need a new fuel cycle, not to save spent fuels indefinitely as the reusable resources but to consume plutonium and miner actinides orderly without conventional reprocessing. The key component is a molten salt reactor fueled with the Pu+MA (PMA) separated from LWR spent fuels using fluoride volatility method. A double-tiered once-through reactor system can burn PMA down to 5% remnant ratio, and can make PMA virtually free from the HAW to be disposed geometrically. A key issue to be demonstrated is the first of all solubility behavior of trifluoride species in the molten fuel salt of 7 LiF-BeF 2 mixture. (author)

  15. Drop analysis for structural integrity evaluation of KJRR fuel transport container

    International Nuclear Information System (INIS)

    Yang, Yun Young; Lim, Jong Min; Choi, Woo Seok; Lee, Ju Chan

    2016-01-01

    A fuel transport container for KiJang Research Reactor(KJRR) has been developed to transport fresh fuel assemblies and fission molly targets which are used for a research reactor built in Kijang. The KJRR fuel transport container is a type-A(F) container, which is defined in domestic and foreign regulations of a radioactive substance container. According to Nuclear Safety and Security Commission's notification, the container should meet the accident conditions defined in IAEA safety Standard Series, US NRC and etc. In this study, a structural integrity of the KJRR fuel transport container is evaluated by conducting computational analyses of 9-meter free drop and 1 meter puncture. It is confirmed that structural integrity of the KJRR fuel transport container can be maintained in the transportation accident condition. Hereafter, when the test model is produced, a safety test will be conducted and its result will be compared with the result of drop and puncture analyses.

  16. Fuel cycle integration issues associated with P/T technology

    International Nuclear Information System (INIS)

    Michaels, G.E.; Ludwig, S.B.

    1992-01-01

    The three primary interfaces between a generic partitioning and transmutation (P/T) technology and the existing United States fuel cycle are the light-water reactor (LWR) spent fuel inventory, the reprocessed uranium (RU) stream, and the high-level waste stream. The features and implications of these three interfaces are reviewed and their implications for P/T system design and for waste management are assessed. The variability of transuranic nuclide composition in the LWR spent fuel is calculated and its potential implications for transmutation system core design are discussed. The radiological characteristics of the RU stream are presented, and options for disposition of the stream are reviewed. Most P/T scenarios assume that RU will be recycled to LWRs. This study demonstrates, however, that LWR recycle cannot totally consume the reprocessed stream, and disposal of a waste uranium steam with high levels of radiologically-significant isotopes will still be necessary. The radioactivity of the tails stream for enrichment plants resulting from a dedicated RU campaign is calculated. The tendency of gaseous diffusion plant enrichment technology to deplete the tails stream of minor uranium isotopes is seen as a benefit and an advantage over Atomic Vapor Laser Isotope Separation-type technology. Finally, the implications of P/T on LWR-origin wastes reporting to the repository is discussed, and several significant differences between LWR-origin waste originating from transmutation systems are assessed

  17. Integrated spent fuel storage and transportation system using NUHOMS

    International Nuclear Information System (INIS)

    Lehnert, R.; McConaghy, W.; Rosa, J.

    1990-01-01

    As utilities with nuclear power plants face increasing near term spent fuel store needs, various systems for dry storage such as the NUTECH Horizontal Modular Storage (NUHOMS) system are being implemented to augment existing spent fuel pool storage capacities. These decisions are based on a number of generic and utility specific considerations including both short term and long term economics. Since the US Department of Energy (DOE) is tasked by the Nuclear Waste Policy Act with the future responsibility of transporting spent fuel from commercial nuclear power plants to a Monitored Retrievable Storage (MRS) facility anchor a permanent geologic repository, the interfaces between the utilities at-reactor dry storage system and the DOE's away-from-reactor transportation system become important. This paper presents a study of the interfaces between the current at-reactor NUHOMS system and the future away-from-reactor DOE transportation system being developed under the Office of Civilian Radioactive Waste Management (OCRWM) program. 7 refs., 9 figs., 1 tab

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  19. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  20. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  1. Indigenous development of system integration for proton exchange membrane fuel cell operation

    International Nuclear Information System (INIS)

    Hussain, S.; Arshad, M.; Anjum, A.R.

    2011-01-01

    System integration was developed for fuel cell to control various parameters including voltage, current, power, temperature, pressure of gas (H/sub 2/), humidification, etc. The compact software has also been developed for monitoring different parameters of fuel cell system. System integrated was installed on fuel cell stack to manipulate these parameters. The compact software has been linked with the integrated system for visual monitoring of different parameters of fuel cell system during operation on PC. The installation of software and integrated system on fuel cell stack is the key achievement for the safe operation of fuel cell stack and for the provision of requisite power to any electric device for optimum performance. The compact software was developed for micro controller in KIEL. Control card and driver card are controlled by software-driven micro controller. A communication protocol was designed and developed. PC software has been developed to control and watch the values of all parameters of fuel cell such as voltage, current, power, temperature, pressure of hydrogen, pressure of oxygen, operational times and performance of the system on computer screen. (author)

  2. The integral fast reactor fuels reprocessing laboratory at Argonne National Laboratory, Illinois

    International Nuclear Information System (INIS)

    Wolson, R.D.; Tomczuk, Z.; Fischer, D.F.; Slawecki, M.A.; Miller, W.E.

    1986-09-01

    The processing of Integral Fast Reactor (IFR) metal fuel utilizes pyrochemical fuel reprocessing steps. These steps include separation of the fission products from uranium and plutonium by electrorefining in a fused salt, subsequent concentration of uranium and plutonium for reuse, removal, concentration, and packaging of the waste material. Approximately two years ago a facility became operational at Argonne National Laboratory-Illinois to establish the chemical feasibility of proposed reprocessing and consolidation processes. Sensitivity of the pyroprocessing melts to air oxidation necessitated operation in atmosphere-controlled enclosures. The Integral Fast Reactor Fuels Reprocessing Laboratory is described

  3. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  4. Fuel behaviour

    International Nuclear Information System (INIS)

    Fodor, M.; Matus, L.; Vigassy, J.

    1987-11-01

    A short summary of the main critical points in fuel performance of nuclear power reactors from chemical and mechanical point of view is given. A schedule for a limited research program is included. (author) 17 refs

  5. Fuel cells

    International Nuclear Information System (INIS)

    Niederdoeckl, J.

    2001-01-01

    Europe has at present big hopes on the fuel cells technology, in comparison with other energy conversion technologies, this technology has important advantages, for example: high efficiency, very low pollution and parallel use of electric and thermal energy. Preliminary works for fuel cells developing and its commercial exploitation are at full speed; until now the European Union has invested approx. 1.7 billion Schillings, 60 relevant projects are being executed. The Austrian industry is interested in applying this technique to drives, thermal power stations and the miniature fuel cells as replacement of batteries in electronic products (Notebooks, mobile telephones, etc.). A general description of the historic development of fuel cells including the main types is given as well as what is the situation in Austria. (nevyjel)

  6. Fuel assembly

    International Nuclear Information System (INIS)

    Ishibashi, Yoko; Aoyama, Motoo; Oyama, Jun-ichi.

    1995-01-01

    Burnable poison-incorporating fuel rods of a first group are disposed in a region in adjacent with a water rod having a large diameter (neutron moderator rod) disposed to the central portion of a fuel assembly. Burnable poison-incorporating fuel rods of a second group are disposed to a region other than peripheral zone in adjacent with a channel box and corners positioned at an inner zone, in adjacent with the channel box. The average concentration of burnable poisons of the burnable poison-incorporating fuel rods of the first group is made greater than that of the second group. With such a constitution, when the burnable poisons of the first group are burnt out, the burnable poisons of the second group are also burnt out at the same time. Accordingly, an amount of burnable poisons left unburnt at the final stage of the operation cycle is reduced, to improve the reactivity. This can improve the economical property. (I.N.)

  7. Fuel element services

    International Nuclear Information System (INIS)

    Marta, H.; Alvarez, P.; Jimenez, J.

    2006-01-01

    Refuelling outages comprise a number of maintenance tasks scheduled long in advance to assure a reliable operation throughout the next cycle and, in the long run, a safer and more efficient plant. Most of these tasks are routine service of mechanical and electrical system and likewise fuel an be considered a critical component as to handling, inspection, cleaning and repair. ENUSA-ENWESA AIE has been working in this area since 1995 growing from fuel repair to a more integrated service that includes new and spent fuel handling, inserts, failed fuel rod detection systems, ultrasonic fuel cleaning, fuel repair and a comprehensive array of inspection and tests related to the reliability of the mechanical components in the fuel assembly, all this, performed in compliance with quality, safety, health physics and any other nuclear standard. (Author)

  8. Fuel element

    International Nuclear Information System (INIS)

    Armijo, J.S.

    1976-01-01

    A fuel element for nuclear reactors is proposed which has a higher corrosion resisting quality in reactor operations. The zirconium alloy coating around the fuel element (uranium or plutonium compound) has on its inside a protection layer of metal which is metallurgically bound to the substance of the coating. As materials are namned: Alluminium, copper, niobium, stainless steel, and iron. This protective metallic layer has another inner layer, also metallurgically bound to its surface, which consists usually of a zirconium alloy. (UWI) [de

  9. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Sei; Ando, Ryohei; Mitsutake, Toru.

    1995-01-01

    The present invention concerns a fuel assembly suitable to a BWR-type reactor and improved especially with the nuclear characteristic, heat performance, hydraulic performance, dismantling or assembling performance and economical property. A part of poison rods are formed as a large-diameter/multi-region poison rods having a larger diameter than a fuel rod. A large number of fuel rods are disposed surrounding a large diameter water rod and a group of the large-diameter/multi-region poison rods in adjacent with the water rod. The large-diameter water rod has a burnable poison at the tube wall portion. At least a portion of the large-diameter poison rods has a coolant circulation portion allowing coolants to circulate therethrough. Since the large-diameter poison rods are disposed at a position of high neutron fluxes, a large neutron multiplication factor suppression effect can be provided, thereby enabling to reduce the number of burnable poison rods relative to fuels. As a result, power peaking in the fuel assembly is moderated and a greater amount of plutonium can be loaded. In addition the flow of cooling water which tends to gather around the large diameter water rod can be controlled to improve cooling performance of fuels. (N.H.)

  10. Future trends in nuclear fuels

    International Nuclear Information System (INIS)

    Guitierrez, J.E.

    2006-01-01

    This series of transparencies presents: the fuel management cycle and key areas (security of supplies, strategies and core management, reliability, spent fuel management), the world nuclear generating capacity, concentrate capacity, enrichment capacity, and manufacturing capacity forecasts, the fuel cycle strategies and core management (longer cycles, higher burnups, power up-rates, higher enrichments), the Spanish nuclear generation cost, the fuel reliability (no defects, robust designs, operational margins, integrated fuel and core design), spent fuel storage (design and safety criteria, fuel performance and integrity). (J.S.)

  11. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection

    International Nuclear Information System (INIS)

    Alencar, Donizete Anderson de

    2004-01-01

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  12. Structural integrity assessment and stress measurement of CHASNUPP-1 fuel assembly

    Directory of Open Access Journals (Sweden)

    Waseem

    2016-01-01

    Full Text Available Fuel assembly of the PWR nuclear power plant is a long and flexible structure. This study has been made in an attempt to find the structural integrity of the fuel assembly (FA of Chashma Nuclear Power Plant-1 (CHASNUPP-1 at room temperature in air. The non-linear contact and structural tensile analysis have been performed using ANSYS 13.0, in order to determine the fuel assembly (FA elongation behaviour as well as the location and values of the stress intensity and stresses developed in axial direction under applied tensile load of 9800 N or 2 g being the fuel assembly handling or lifting load [Y. Zhang et al., Fuel assembly design report, SNERDI, China, 1994]. The finite element (FE model comprises spacer grids, fuel rods, flexible contacts between the fuel rods and grid's supports system and guide thimbles with dash-pots and flow holes, in addition to the spot welds between spacer grids and guide thimbles, has been developed using Shell181, Conta174 and Targe170 elements. FA is a non-straight structure. The actual behavior of the geometry is non-linear due to its curvature or design tolerance. It has been observed that fuel assembly elongation values obtained through FE analysis and experiment [SNERDI Tech. Doc., Mechanical strength and calculation for fuel assembly, Technical Report, F3.2.1, China, 1994] under applied tensile load are comparable and show approximately linear behaviors. Therefore, it seems that the permanent elongation of fuel assembly may not occur at the specified load. Moreover, the values of stresses obtained at different locations of the fuel assembly are also comparable with the stress values of the experiment determined at the same locations through strain gauges. Since the results of both studies (analytical and experimental are comparable, therefore, validation of the FE methodology is confirmed. The stress intensity of the FE model and maximum stresses developed along the guide thimbles in axial direction are

  13. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  14. Calculating failure probabilities for TRISO-coated fuel particles using an integral formulation

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Maki, John T.; Knudson, Darrell L.; Petti, David A.

    2010-01-01

    The fundamental design for a gas-cooled reactor relies on the safe behavior of the coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles, termed the TRISO coating, act as a pressure vessel that retains fission products. The quality of the fuel is reflected in the number of particle failures that occur during reactor operation, where failed particles become a source for fission products that can then diffuse through the fuel element. The failure probability for any batch of particles, which has traditionally been calculated using the Monte Carlo method, depends on statistical variations in design parameters and on variations in the strengths of coating layers among particles in the batch. An alternative approach to calculating failure probabilities is developed herein that uses direct numerical integration of a failure probability integral. Because this is a multiple integral where the statistically varying parameters become integration variables, a fast numerical integration approach is also developed. In sample cases analyzed involving multiple failure mechanisms, results from the integration methods agree closely with Monte Carlo results. Additionally, the fast integration approach, particularly, is shown to significantly improve efficiency of failure probability calculations. These integration methods have been implemented in the PARFUME fuel performance code along with the Monte Carlo method, where each serves to verify accuracy of the others.

  15. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  16. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  17. Development of comprehensive long-term-dry stored Spent Fuel INtegrity EvaLuator [SFINEL] - I

    International Nuclear Information System (INIS)

    Kwon, H. M.; Yang, Y. S.; Kim, Y. S.; You, K. S.; Min, D. K.; No, S. K.

    1999-01-01

    Safe management of spent nuclear fuels is socially, technically, and economically very important in terms of environmental protection and utilization of recyclable resources. One of the most critical parts in the management is to establish the comprehensive monitoring system which can maintain and confirm the integrity of the spent fuels, whenever necessary, until final policy is determined on the their treatment and disposal. Especially in the first stage of maturing up the system, it is essential to secure a computing tool or code which can evaluate the integrity of the fuel cladding based on its power history and cladding degradation mechanisms. SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed in this research. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms

  18. Environmental Assessment of Integrated Food and Cooking Fuel Production for a Village in Ghana

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Bolwig, Simon

    2016-01-01

    Small-scale farming in Ghana is typically associated with synthetic fertilizer dependence and soil degradation. The farmers often rely on wood fuel for cooking imported from outside the farmland, a practice that is associated with deforestation. Integration of food and energy production may...... be a holistic approach to solving these issues. We study four approaches to providing food and fuel for cooking in a small-scale farming community. Present practice (PP) of synthetic fertilizer based food production and provision of wood fuel from outside the farming area is compared to three modeled...

  19. The light-water-reactor version of the Uranus integral fuel-rod code

    International Nuclear Information System (INIS)

    Moreno, A.; Lassmann, K.

    1977-01-01

    The LWR of the Uranus code, a digital computer programme for the thermal and mechanical analysis of fuel rods, is presented. Material properties are discussed and their effect on integral fuel rod behaviour elaborated via Uranus results for some carefully selected reference experiments. The numerical results do not represent post-irradiation analysis of in-pile experiments, they illustrate rather typical and diverse Uranus capabilities. The performance test shows that Uranus is reliable and efficient, thus the code is a most valuable tool in fuel fod analysis work. K. Lassmann developed the LWR version of the Uranus code, material properties were reviewed and supplied by A. Moreno. (author)

  20. Fuel rods

    International Nuclear Information System (INIS)

    Hattori, Shinji; Kajiwara, Koichi.

    1980-01-01

    Purpose: To ensure the safety for the fuel rod failures by adapting plenum springs to function when small forces such as during transportation of fuel rods is exerted and not to function the resilient force when a relatively great force is exerted. Constitution: Between an upper end plug and a plenum spring in a fuel rod, is disposed an insertion member to the lower portion of which is mounted a pin. This pin is kept upright and causes the plenum spring to function resiliently to the pellets against the loads due to accelerations and mechanical vibrations exerted during transportation of the fuel rods. While on the other hand, if a compression force of a relatively high level is exerted to the plenum spring during reactor operation, the pin of the insertion member is buckled and the insertion member is inserted to the inside of the plenum spring, whereby the pellets are allowed to expand freely and the failures in the fuel elements can be prevented. (Moriyama, K.)

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Sano, Hiroki; Fushimi, Atsushi; Tominaga, Kenji; Aoyama, Motoo; Ishii, Kazuya.

    1997-01-01

    In burnable poison-incorporated uranium fuels of a BWR type reactor, the compositional ratio of isotopes of the burnable poisons is changed so as to increase the amount of those having a large neutron absorbing cross sectional area. For example, if the ratio of Gd-157 at the same burnable poison enrichment degree is made greater than the natural ratio, this gives the same effect as the increase of the enrichment degree per one fuel rod, thereby providing an effect of reducing a surplus reactivity. Gadolinium, hafnium and europium as burnable poisons have an absorbing cross sectional area being greater in odd numbered nuclei than in even numbered nuclei, on the contrary, boron has a cross section being greater in even numbered nucleus than odd numbered nuclei. Accordingly, if the ratio of isotopes having greater cross section at the same burnable poison enrichment degree is made greater than the natural ratio, surplus reactivity at the initial stage of the burning can be reduced without greatly increasing the amount of burnable poison-incorporated uranium fuels, fuel loading amount is not reduced and the fuel economy is not worsened. (N.H.)

  3. Actinide recycle potential in the integral fast reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Based on the recent IFR process development, a preliminary assessment has been made to investigate the feasibility of further adapting pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs

  4. Canadian power reactor fuel

    International Nuclear Information System (INIS)

    Page, R.D.

    1976-03-01

    The following subjects are covered: the basic CANDU fuel design, the history of the bundle design, the significant differences between CANDU and LWR fuel, bundle manufacture, fissile and structural materials and coolants used in the CANDU fuel program, fuel and material behaviour, and performance under irradiation, fuel physics and management, booster rods and reactivity mechanisms, fuel procurement, organization and industry, and fuel costs. (author)

  5. A tomographic method for verification of the integrity of spent nuclear fuel

    International Nuclear Information System (INIS)

    Jacobsson, Staffan; Haakansson, Ane; Andersson, Camilla; Jansson, Peter; Baecklin, Anders

    1998-03-01

    A tomographic method for experimental investigation of the integrity of used LWR fuel has been developed. It is based on measurements of the gamma radiation from the fission products in the fuel rods. A reconstruction code of the algebraic type has been written. The potential of the technique has been examined in extensive simulations assuming a gamma-ray energy of either 0.66 MeV ( 137 Cs) or 1.27 MeV ( 154 Eu). The results of the simulations for BWR fuel indicate that single fuel rods or groups of rods replaced with water or fresh fuel can be reliably detected independent of their position in the fuel assembly using 137 Cs radiation. For PWR fuel the same result is obtained with the exception of the most central positions. Here the more penetrable radiation from 154 Eu must be used in order to allow a water channel to be distinguished from a fuel rod. The results of the simulations have been verified experimentally for a 8x8 BWR fuel assembly. Special equipment has been constructed and installed at the interim storage CLAB. The equipment allows the mapping of the radiation field around a fuel assembly with the aid of a germanium detector fitted with a collimator with a vertical slit. The intensities measured in 2520 detector positions were used as input for the reconstruction code used in the simulations. The results agreed very well with the simulations and revealed significantly a position containing a water channel in the central part of the assembly

  6. Review of the Effects of Normal Conditions of Transport on Spent Fuel Integrity in Transportation Casks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junggoo; Yoo, Youngik; Lee, Seongki; Lim, Chaejoon [Korea Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-10-15

    Spent fuel(SF) storage capacity of each domestic nuclear power plant will reach a saturated state in the near future. Although there are several methods of SF disposal, interim storage is suggested as the most realistic and promising alternative. SF integrity evaluation is a regulatory requirement that is described in Part 71 of Code of Federal Regulations, Title 10 of the U..S. NRC licensing requirement. In this paper, the report is reviewed written by EPRI in US and it is helpful to a development of domestic SF integrity evaluation technology. EPRI report about integrity evaluation method on normal conditions of high burn-up spent fuel transport is reviewed. First, dynamic forces occurred in one-foot side drop are calculated. And deformation patterns and fuel rods responses by dynamic forces calculated from spent fuel and cask model are analyzed. It is shown that the damage of fuel rods is not occurred by the dynamic forces on normal conditions. Assembly distortion is not predicted, by virtue of the facts that the spacer grids do not experience significant permanent deformation. Axial forces, bending moments and pinch forces of fuel rods are calculated and compared with the results under the hypothetical accident conditions. No occurrence of transverse tearing mode that is the most serious damage mode in side drop case is predicted. Till now, in Korea, regulatory requirements related with structural integrity of spent fuel are not specified such as 10CFR71. To establish own regulation standards, producing and analyzing sufficient experimental data must be performed preferentially. Based on this, failure analysis and criteria establishment are necessary through modeling and analyzing of spent fuel.

  7. Fuels planning: science synthesis and integration; environmental consequences fact sheet 08: Evaluating sedimentation risks associated with fuel management

    Science.gov (United States)

    William Elliot; Pete Robichaud

    2005-01-01

    This fact sheet describes the sources of sediment in upland forest watersheds in the context of fuel management activities. It presents the dominant forest soil erosion processes, and the principles behind the new sediment delivery interface developed to aid in erosion analysis of fuel management projects.

  8. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  9. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 04: role of silviculture in fuel treatments

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The principal goals of fuel treatments are to reduce fireline intensities, reduce the potential for crown fires, improve opportunities for successful fire suppression, and improve forest resilience to forest fires. This fact sheet discusses thinning, and surface fuel treatments, as well as challenges associated with those treatments.

  10. Fuels planning: science synthesis and integration; environmental consequences fact sheet 04: wildlife responses to fuels treatments: key considerations

    Science.gov (United States)

    David Pilliod

    2004-01-01

    Managers face a difficult task in predicting the effects of fuels treatments on wildlife populations, mostly because information on how animals respond to fuels treatments is scarce or does not exist. This paper discusses key considerations-aspects of an animal's ecology and available information-that, despite the scarcity of information, may make predictions of...

  11. Integrated data management system for radioactive waste and spent fuel in Korea

    International Nuclear Information System (INIS)

    Shin, Young Ho

    2001-03-01

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation, and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. So through the system, the five principles (independence, openness, clearance, efficiency and reliance) of safety regulation can be realized, and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted by providing reliable information, it can ensure an openness within the international nuclear community and efficiently support international agreements among contracting parties by operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible to holistic control and finally re-organize the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy is to integrate safe management and unit safe disposal. For this objectives, benchmark study was performed on similar data base system worldwide and data specification with major input/output data during the first phase of this project

  12. Integrated system of safety features for spent fuel interim storage

    International Nuclear Information System (INIS)

    Pantazi, Doina; Stanciu, Marcela; Mateescu, Silvia; Marin, Ion

    1999-01-01

    The design of the spent fuel interim storage facility (SFISF) must meet the applicable safety requirements in order to ensure radiological protection of the personnel, public and environment during all phases of the facility. To elaborate the safety documentation necessary for licensing, we were trying to chose the most appropriate approach related to safety features for SFISF, based on national and international regulations, standards and recommendations, as well as on the experience of other countries with similar facilities and finally, on our own experience in designing other nuclear objectives in Romania. The paper presents the issues that we consider important for the safety evaluation and are developed as a detailed diagram. The diagram contains in a logical succession the following issues: - fundamental principles of radioprotection; - fundamental safety principles of radioactive waste management; - safety objectives of SFISF; - safety criteria for SFISF; - safety requirements for SFISF; - siting criteria for SFISF; - siting requirements for SFISF. (authors)

  13. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  14. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  15. Current status of the transient integral fuel element performance code URANUS

    International Nuclear Information System (INIS)

    Preusser, T.; Lassmann, K.

    1983-01-01

    To investigate the behavior of fuel pins during normal and off-normal operation, the integral fuel rod code URANUS has been extended to include a transient version. The paper describes the current status of the program system including a presentation of newly developed models for hypothetical accident investigation. The main objective of current development work is to improve the modelling of fuel and clad material behavior during fast transients. URANUS allows detailed analysis of experiments until the onset of strong material transport phenomena. Transient fission gas analysis is carried out due to the coupling with a special version of the LANGZEIT-KURZZEIT-code (KfK). Fuel restructuring and grain growth kinetics models have been improved recently to better characterize pre-experimental steady-state operation; transient models are under development. Extensive verification of the new version has been carried out by comparison with analytical solutions, experimental evidence, and code-to-code evaluation studies. URANUS, with all these improvements, has been successfully applied to difficult fast breeder fuel rod analysis including TOP, LOF, TUCOP, local coolant blockage and specific carbide fuel experiments. Objective of further studies is the description of transient PCMI. It is expected that the results of these developments will contribute significantly to the understanding of fuel element structural behavior during severe transients. (orig.)

  16. Review of Current Criteria of Spent Fuel Rod Integrity during Dry Storage

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2006-01-01

    A PWR spent fuel has been stored in a wet storage pool in Korea. However, the amount of spent fuel is expected to exceed the capacity of a wet storage pool within 10∼15 years. From the early 1970's, a research on the PWR spent fuel dry storage started because the dry storage system has been economical compared with the wet storage system. The dry storage technology for Zircaloy-clad fuel was assessed and licensed in many countries such as USA, Canada, FRG and Switzerland. In the dry storage system, a clad temperature may be higher than in the wet storage system and can reach up to 400 .deg.. A higher clad temperature can cause cladding failures during the period of dry storage, and thus a dry storage related research has essentially dealt with the prevention of clad degradation. It is temperature and rod internal pressure that cause cladding failures through the mechanisms such as clad creep rupture, hydride re-orientation, and stress-corrosion cracking etc.. In this paper, the current licensing criteria are summarized for the PWR spent fuel dry storage system, especially on spent fuel rod integrity. And it is investigated that an application propriety of existing criteria to Korea spent fuel dry storage system

  17. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  18. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  19. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  20. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  1. Fuels characterization studies. [jet fuels

    Science.gov (United States)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  2. Alternative Fuels Data Center: Ethanol Fueling Stations

    Science.gov (United States)

    ... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure fueling stations by location or along a route. Infrastructure Development Learn about ethanol fueling infrastructure; codes, standards, and safety; and ethanol equipment options. Maps & Data E85 Fueling Station

  3. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Science.gov (United States)

    Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a location or along a route. Infrastructure Development Learn about biodiesel fueling infrastructure codes Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate

  4. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  5. Fuel assembly

    International Nuclear Information System (INIS)

    Kurihara, Kunitoshi; Azekura, Kazuo.

    1992-01-01

    In a reactor core of a heavy water moderated light water cooled pressure tube type reactor, no sufficient effects have been obtained for the transfer width to a negative side of void reactivity change in a region of a great void coefficient. Then, a moderation region divided into upper and lower two regions is disposed at the central portion of a fuel assembly. Coolants flown into the lower region can be discharged to the cooling region from an opening disposed at the upper end portion of the lower region. Light water flows from the lower region of the moderator region to the cooling region of the reactor core upper portion, to lower the void coefficient. As a result, the reactivity performance at low void coefficient, i.e., a void reaction rate is transferred to the negative side. Thus, this flattens the power distribution in the fuel assembly, increases the thermal margin and enables rapid operaiton and control of the reactor core, as well as contributes to the increase of fuel burnup ratio and reduction of the fuel cycle cost. (N.H.)

  6. Fuel assembly

    International Nuclear Information System (INIS)

    Fushimi, Atsushi; Shimada, Hidemitsu; Aoyama, Motoo; Nakajima, Junjiro

    1998-01-01

    In a fuel assembly for an n x n lattice-like BWR type reactor, n is determined to 9 or greater, and the enrichment degree of plutonium is determined to 4.4% by weight or less. Alternatively, n is determined to 10 or greater, and the enrichment degree of plutonium is determined to 5.2% by weight or less. An average take-out burnup degree is determined to 39GWd/t or less, and the matrix is determined to 9 x 9 or more, or the average take-out burnup degree is determined to 51GWd/t, and the matrix is determined to 10 x 10 or more and the increase of the margin of the maximum power density obtained thereby is utilized for the compensation of the increase of distortion of power distribution due to decrease of the kinds of plutonium enrichment degree, thereby enabling to reduce the kind of the enrichment degree of MOX fuel rods to one. As a result, the manufacturing step for fuel pellets can be simplified to reduce the manufacturing cost for MOX fuel assemblies. (N.H.)

  7. Fuel rods

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1984-01-01

    Purpose: To reduce the size of the reactor core upper mechanisms and the reactor container, as well as decrease the nuclear power plant construction costs in reactors using liquid metals as the coolants. Constitution: Isotope capturing devices comprising a plurality of pipes are disposed to the gas plenum portion of a nuclear fuel rod main body at the most downstream end in the flowing direction of the coolants. Each of the capturing devices is made of nickel, nickel alloys, stainless steel applied with nickel plating on the surface, nickel alloys applied with nickel plating on the surface or the like. Thus, radioactive nuclides incorporated in the coolants are surely captured by the capturing devices disposed at the most downstream end of the nuclear fuel main body as the coolants flow along the nuclear fuel main body. Accordingly, since discharging of radioactive nuclides to the intermediate fuel exchange system can be prevented, the maintenance or reparing work for the system can be facilitated. (Moriyama, K.)

  8. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  9. An integrated methodology to evaluate a spent nuclear fuel storage system

    International Nuclear Information System (INIS)

    Yoon, Jeong Hyoun

    2008-02-01

    This study introduced a methodology that can be applied for development of a dry storage system for spent nuclear fuels. It consisted of several design activities that includes development of a simplified program to analyze the amount of spent nuclear fuels from reflecting the practical situation in spent nuclear fuel management and a simplified program to evaluate the cost of 4 types of representing storage system to choose the most competitive option considering economic factor. As verification of the implementation of the reference module to practical purpose, a simplified thermal analysis code was suggested that can see fulfillment of limitation of temperature in long term storage and oxidation analysis. From the thermal related results, the reference module can accommodate full range of PHWR spent nuclear fuels and significant portion of PWR ones too. From the results, the reference storage system can be concluded that has fulfilled the important requirements in terms of long term integrity and radiological safety. Also for the purpose of solving scattered radiation along with deep penetration problems in cooling storage system, small but efficient design alternation was suggested together with its efficiency that can reduce scattered radiation by 1/3 from the original design. Along with the countermeasure for the shielding problem, in consideration of PWR spent nuclear fuels, simplified criticality analysis methodology retaining conservativeness was proposed. The results show the reference module is efficient low enrichment PWR spent nuclear fuel and even relatively high enrichment fuels too if burnup credit is taken. As conclusive remark, the methodology is simple but efficient to plan a concept design of convective cooling type of spent nuclear fuels storage. It can be also concluded that the methodology derived in this study and the reference module has feasibility in practical implementation to mitigate the current complex situation in spent fuel

  10. Implementation and operational experience of an integrated fuel information service at the BNFL THORP facility

    International Nuclear Information System (INIS)

    Robson, D.N.; Ramsden, P.N.

    1995-01-01

    BNFL's THORP Plant, which started active operations early in 1994, has contracts to reprocess 7000t(U) of fuel belonging to 33 customers in 9 countries in the UK, Europe and Japan during its first 10 years of operation. Contracts are in place or being negotiated, and further business sought after, with the expectation of extending THORP's operations well beyond the initial 10 years. An integrated data management service, for the fuel storage areas of BNFL's THORP Division, is being implemented to replace several, independent, systems. This Fuel Information Service (FIS) will bring the Nuclear Materials Accountancy and Safeguards Records together with the Operating Records into one database from which all Safeguards Reports will be made. BNFL's contractual and commercial data and technical data on the stored fuel, required to support the reprocessing business, will also be brought into the common database. FIS is the first stage in a project to integrate the Materials Management systems throughout the THORP nuclear recycling business including irradiated fuel receipt and storage, reprocessing and storage of products, mixed oxide fuel manufacture and the conditioning and storage of wastes

  11. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  12. Plans for the development of the IFR [Integral Fast Reactor] fuel cycle

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1986-01-01

    The Integral Fast Reactor (IFR) is a concept for a self-contained facility in which several sodium-cooled fast reactors of moderate size are located at the same site along with complete fuel-recycle and waste-treatment facilities. After the initial core loading with enriched uranium or plutonium, only natural or depleted uranium is shipped to the plant, and only wastes in final disposal forms are shipped out. The reactors have driver and blanket fuels of uranium-plutonium-zirconium alloys in stainless steel cladding. The use of metal alloy fuels is central to the IFR concept, contributing to the inherent safety of the reactor, the ease of reprocessing, and the relatively low capital and operating costs. Discharged fuels are recovered in a pyrochemical process that consists of two basic steps: an electrolytic process to separate fission products from actinides, and halide slagging to separate plutonium from uranium

  13. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    Science.gov (United States)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  14. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  15. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos

    2009-01-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  16. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  17. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  18. Control structure design of a solid oxide fuel cell and a molten carbonate fuel cell integrated system: Top-down analysis

    International Nuclear Information System (INIS)

    Jienkulsawad, Prathak; Skogestad, Sigurd; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • Control structure of the combined fuel cell system is designed. • The design target is trade-off between power generation and carbon dioxide emission. • Constraints are considered according to fuel cell safe operation. • Eight variables have to be controlled to maximize profit. • Two control structures are purposed for three active constraint regions. - Abstract: The integrated system of a solid oxide fuel cell and molten carbonate fuel cell theoretically has very good potential for power generation with carbon dioxide utilization. However, the control strategy of such a system needs to be considered for efficient operation. In this paper, a control structure design for an integrated fuel cell system is performed based on economic optimization to select manipulated variables, controlled variables and control configurations. The objective (cost) function includes a carbon tax to get an optimal trade-off between power generation and carbon dioxide emission, and constraints include safe operation. This study focuses on the top-down economic analysis which is the first part of the design procedure. Three actively constrained regions as a function of the main disturbances, namely, the fuel and steam feed rates, are identified; each region represents different sets of active constraints. Under nominal operating conditions, the system operates in region I. However, operating the fuel cell system in region I and II can use the same structure, but in region III, a different control structure is required.

  19. Dynamic modeling of gas turbines in integrated gasification fuel cell systems

    Science.gov (United States)

    Maclay, James Davenport

    2009-12-01

    Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles

  20. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  1. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  2. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  3. Dry Process Fuel Performance Evaluation

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  4. The spent fuel safety experiment

    International Nuclear Information System (INIS)

    Harmms, G.A.; Davis, F.J.; Ford, J.T.

    1995-01-01

    The Department of Energy is conducting an ongoing investigation of the consequences of taking fuel burnup into account in the design of spent fuel transportation packages. A series of experiments, collectively called the Spent Fuel Safety Experiment (SFSX), has been devised to provide integral benchmarks for testing computer-generated predictions of spent fuel behavior. A set of experiments is planned in which sections of unirradiated fuel rods are interchanged with similar sections of spent PWR fuel rods in a critical assembly. By determining the critical size of the arrays, one can obtain benchmark data for comparison with criticality safety calculations. The integral reactivity worth of the spent fuel can be assessed by comparing the measured delayed critical fuel loading with and without spent fuel. An analytical effort to model the experiments and anticipate the core loadings required to yield the delayed critical conditions runs in parallel with the experimental effort

  5. Theoretical analysis of the temperature changes and resultant loss of fuel integrity in the IEA-R1 research reactor fuel elements following a loss of coalant accident

    International Nuclear Information System (INIS)

    Garone, J.G.M.

    1983-01-01

    The IEA-R1 core following a loss of coolant accident (LOCA) is analysed. THe AIRLOCA code was used to calculate fuel temperatures, heat generation due to fission product decay and convective and radiative heat transfer from the fuel elements to the surrounding air both during and following the loss of coolant. The influence of certain critical parameters, such as log time, specific power was studied in detail. Representative results are presented and suggestions made to ensure that fuel integrity is maintained following a LOCA. (Author) [pt

  6. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  7. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  8. Integrated Fuel-Coolant Interaction (IFCI 7.0) Code User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Young, Michael F.

    1999-05-01

    The integrated fuel-coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, three-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a description of IFCI 7.0. The user's manual describes the hydrodynamic method and physical models used in IFCI 7.0. Appendix A is an input manual provided for the creation of working decks.

  9. Integrated Fuel-Coolant Interaction (IFCI 7.0) Code User's Manual

    International Nuclear Information System (INIS)

    Young, Michael F.

    1999-01-01

    The integrated fuel-coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, three-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a description of IFCI 7.0. The user's manual describes the hydrodynamic method and physical models used in IFCI 7.0. Appendix A is an input manual provided for the creation of working decks

  10. Integrity: A semi-mechanistic model for stress corrosion cracking of fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M; Hallgrimson, K; Macquarrie, J; Alavi, P [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Sato, S; Kinoshita, Y; Nishimura, T [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-08-01

    In this paper we describe the features, validation, and illustrative applications of a semi-mechanistic model, INTEGRITY, which calculates the probability of fuel defects due to stress corrosion cracking. The model expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The assessments of defect probability continue to reflect the influence of conventional parameters like ramped power, power-ramp, burnup and Canlub coating. In addition, the INTEGRITY model provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation. Some examples of the latter include pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, coolant temperature and pressure, etc. The model has been fitted to a database of 554 power-ramp irradiations of CANDU fuel with and without Canlub. For this database the INTEGRITY model calculates 75 defects vs 75 actual defects. Similarly good agreements were noted in the different sub-groups of the data involving non-Canlub, thin-Canlub, and thick-Canlub fuel. Moreover, the shapes and the locations of the defect thresholds were consistent with all the above defects as well as with additional 14 ripple defects that were not in the above database. Two illustrative examples demonstrate how the defect thresholds are influenced by changes in the internal design of the fuel element and by extended burnup. (author). 19 refs, 7 figs.

  11. Integrity: A semi-mechanistic model for stress corrosion cracking of fuel

    International Nuclear Information System (INIS)

    Tayal, M.; Hallgrimson, K.; Macquarrie, J.; Alavi, P.; Sato, S.; Kinoshita, Y.; Nishimura, T.

    1997-01-01

    In this paper we describe the features, validation, and illustrative applications of a semi-mechanistic model, INTEGRITY, which calculates the probability of fuel defects due to stress corrosion cracking. The model expresses the defect probability in terms of fundamental parameters such as local stresses, local strains, and fission product concentration. The assessments of defect probability continue to reflect the influence of conventional parameters like ramped power, power-ramp, burnup and Canlub coating. In addition, the INTEGRITY model provides a mechanism to account for the impacts of additional factors involving detailed fuel design and reactor operation. Some examples of the latter include pellet density, pellet shape and size, sheath diameter and thickness, pellet/sheath clearance, coolant temperature and pressure, etc. The model has been fitted to a database of 554 power-ramp irradiations of CANDU fuel with and without Canlub. For this database the INTEGRITY model calculates 75 defects vs 75 actual defects. Similarly good agreements were noted in the different sub-groups of the data involving non-Canlub, thin-Canlub, and thick-Canlub fuel. Moreover, the shapes and the locations of the defect thresholds were consistent with all the above defects as well as with additional 14 ripple defects that were not in the above database. Two illustrative examples demonstrate how the defect thresholds are influenced by changes in the internal design of the fuel element and by extended burnup. (author). 19 refs, 7 figs

  12. Hydrogen production with fully integrated fuel cycle gas and vapour core reactors

    International Nuclear Information System (INIS)

    Anghaie, S.; Smith, B.

    2004-01-01

    This paper presents results of a conceptual design study involving gas and vapour core reactors (G/VCR) with a combined scheme to generate hydrogen and power. The hydrogen production schemes include high temperature electrolysis as well as two dominant thermochemical hydrogen production processes. Thermochemical hydrogen production processes considered in this study included the calcium-bromine process and the sulphur-iodine processes. G/VCR systems are externally reflected and moderated nuclear energy systems fuelled by stable uranium compounds in gaseous or vapour phase that are usually operated at temperatures above 1500 K. A gas core reactor with a condensable fuel such as uranium tetrafluoride (UF 4 ) or a mixture of UF 4 and other metallic fluorides (BeF 2 , LiF, KF, etc.) is commonly known as a vapour core reactor (VCR). The single most relevant and unique feature of gas/vapour core reactors is that the functions of fuel and coolant are combined into one. The reactor outlet temperature is not constrained by solid fuel-cladding temperature limits. The maximum fuel/working fluid temperature in G/VCR is only constrained by the reactor vessel material limits, which is far less restrictive than the fuel clad. Therefore, G/VCRs can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. Gas and vapour fuel reactors feature very low fuel inventory and fully integrated fuel cycle that provide for exceptional sustainability and safety characteristics. With respect to fuel utilisation, there is no fuel burn-up limit for gas core reactors due to continuous recycling of the fuel. Owing to the flexibility in nuclear design characteristics of cavity reactors, a wide range of conversion ratio from completely burner to breeder is achievable. The continuous recycling of fuel in G/VCR systems allow for complete burning of actinides without removing and reprocessing of the fuel. The only waste products at the back

  13. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  14. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in uranium-based metal alloys as a fuel for sodium-cooled fast reactors. In this paper we will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel. In the final section of this paper we extend the calculations to consider the failure of IFR ternary fuel under reactor accident conditions. (orig./GL)

  15. Recent enhancements of the INSIGHT integrated in-core fuel management tool

    International Nuclear Information System (INIS)

    Akio, Yamamoto

    2001-01-01

    Recent enhancements of the INSIGHT system are described in this paper. The INSIGHT system is an integrated in-core fuel management tool for pressurized water reactors (PWRs) runs on UNIX workstations. The INSIGHT system provides various capabilities which contribute to reduce fuel cycle cost and workload of in-core fuel management tasks, i.e. core follow calculations, interactive loading pattern design, automated multicycle analysis and interface between detailed core calculation codes. To minimize engineers' workload, most of input data for analysis modules are automatically generated by the INSIGHT system through specification of calculation conditions in the graphic user interface. Recent enhancements of the INSIGHT system are mainly focused to improve efficiency of loading pattern optimization and flexibility of multicycle analyses. To increase optimization efficiency, a parallel calculation capability, various optimization theories, extension of heuristic rules, screening by neural networks and so on were incorporated in the loading pattern optimization module. The multicycle analyses module was rewritten to increase flexibility such as cycle dependent specification of loading pattern search methods and so on. The INSIGHT system is currently used by Japanese utilities not only for regular in-core fuel management tasks but also for strategic fuel management studies to reduce fuel cycle cost

  16. Criteria for the selection of graphites for HTR integral block fuel elements

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1980-01-01

    This paper is concerned with the special requirements for integral block fuel elements of the type first used in the Fort St. Vrain reactor. The main idea of these elements is that the carrier block and separate graphite clad fuel pins are combined into a single monolith. This combination leads to lower fabrication costs and some improvement in the thermal performance (lower temperature difference between fuel and the surface of heat transfer into the coolant). The advent of block fuel for HTRs of the Fort St. Vrain type has placed a fresh emphasis on the selection of graphite for block manufacture in respect of physical properties. This is because the temperature distributions typical of such fuelled blocks lead to shutdown stresses close to the maximum the graphite can sustain without damage. Figures presented in this paper suggest that the physical properties of the graphite can play a relatively large part in reducing such stress levels and that guidance on the key requirements for suitable specifications is therefore particularly needed by the manufacturers of fuel block graphites. While graphites for fuel blocks have this special need for combinations of physical properties which lead to low thermal and shrinkage stresses, the other characteristics must also receive attention. A low graphite cost combined with good homogeneity in the brick, so that waste minimized, are still necessary, while isotropy is also very important

  17. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    International Nuclear Information System (INIS)

    Oh, Jinho

    2013-01-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe

  18. Impact Analysis for Fuel Assemblies in Spent Fuel Storage Rack

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    The design and structural integrity evaluation of a spent fuel storage rack (SFSR) utilized for storing and protecting the spent fuel assemblies generated during the operation of a reactor are very important in terms of nuclear safety and waste management. The objective of this study is to show the validity of the SFSR design as well as fuel assembly through a structural integrity evaluation based on a numerical analysis. In particular, a dynamic time history analysis considering the gaps between the fuel assemblies and the walls of the storage cell pipes in the SFSR was performed to check the structural integrity of the fuel assembly and storage cell pipe.

  19. Fuel trading

    International Nuclear Information System (INIS)

    2015-01-01

    A first part of this report proposes an overview of trends and predictions. After a synthesis on the sector changes and trends, it indicates and comments the most recent predictions for the consumption of refined oil products and for the turnover of the fuel wholesale market, reports the main highlights concerning the sector's life, and gives a dashboard of the sector activity. The second part proposes the annual report on trends and competition. It presents the main operator profiles and fuel categories, the main determining factors of the activity, the evolution of the sector context between 2005 and 2015 (consumptions, prices, temperature evolution). It analyses the evolution of the sector activity and indicators (sales, turnovers, prices, imports). Financial performances of enterprises are presented. The economic structure of the sector is described (evolution of the economic fabric, structural characteristics, French foreign trade). Actors are then presented and ranked in terms of turnover, of added value, and of result

  20. Fuel element

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1982-01-01

    Purpose: To increase the plenum space in a fuel element used for a liquid metal cooled reactor. Constitution: A fuel pellet is secured at one end with an end plug and at the other with a coil spring in a tubular container. A mechanism for fixing the coil spring composed of a tubular unit is mounted by friction with the inner surface of the tubular container. Accordingly, the recoiling force of the coil spring can be retained by fixing mechanism with a small volume, and since a large amount of plenum space can be obtained, the internal pressure rise in the cladding tube can be suppressed even if large quantities of fission products are discharged. (Kamimura, M.)

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Kawai, Mitsuo.

    1988-01-01

    Purpose: To reduce the corrosion rate and suppress the increase of radioactive corrosion products in reactor water of nuclear fuel assemblies for use in BWR type reactors having spacer springs made of nickel based deposition reinforced type alloys. Constitution: Spacer rings made of nickel based deposition reinforced type alloy are incorporated and used as fuel assemblies after applying treatment of dipping and maintaining at high temperature water followed by heating in steams. Since this can remove the nickel leaching into reactor water at the initial stage, Co-58 as the radioactive corrosion products in the reactor water can be reduced, and the operation at in-service inspection or repairement can be facilitated to improve the working efficiency of the nuclear power plant. The dipping time is desirably more than 10 hours and more desirably more than 30 hours. (Horiuchi, T. )

  2. Fuel assemblies

    International Nuclear Information System (INIS)

    Yoshioka, Ritsuo.

    1983-01-01

    Purpose: To improve the operation performance of a BWR type reactor by improving the distribution of the uranium enrichment and the incorporation amount of burnable poisons in fuel assemblies. Constitution: The average enrichment of uranium 235 is increased in the upper portion as compared with that in the lower portion, while the incorporation amount of burnable poisons is increased in an upper portion as compared with that in the lower portion. The difference in the incorporation amount of the burnable poisons between the upper and lower portions is attained by charging two kinds of fuel rods; the ones incorporated with the burnable poisons over the entire length and the others incorporated with the burnable poisons only in the upper portions. (Seki, T.)

  3. Dimensional measurements and eddy currents control of the sheath integrity for a set of irradiated candu fuel elements

    International Nuclear Information System (INIS)

    Gheorghe, G.; Man, I.

    2015-01-01

    During irradiation in the nuclear reactor, fuel elements undergo dimensional and structural changes, and changes of sheath surface condition as well, which can lead to damages and even loss of integrity. This paper presents the results of dimensional measurements and of examination technique with eddy currents for three fuel elements of an irradiated CANDU fuel bundle. One of the fuel elements (FE), which is studied in detail, presented a crack about 40 mm long. The purpose of these nondestructive examination techniques is to determine those parameters that characterize the behavior and performance of nuclear fuel operation. This paper contains images of defects and interpretations of the causes of their occurrence. (authors)

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Hirukawa, Koji; Sakurada, Koichi.

    1992-01-01

    In a fuel assembly for a BWR type reactor, water rods or water crosses are disposed between fuel rods, and a value with a spring is disposed at the top of the coolant flow channel thereof, which opens a discharge port when pressure is increased to greater than a predetermined value. Further, a control element for the amount of coolant flow rate is inserted retractable to a control element guide tube formed at the lower portion of the water rod or the water cross. When the amount of control elements inserted to the control element guide tube is small and the inflown coolant flow rate is great, the void coefficient at the inside of the water rod is less than 5%. On the other hand, when the control elements are inserted, the flow resistance is increased, so that the void coefficient in the water rod is greater than 80%. When the pressure in the water rod is increased, the valve with the spring is raised to escape water or steams. Then, since the variation range of the change of the void coefficient can be controlled reliably by the amount of the control elements inserted, and nuclear fuel materials can be utilized effectively. (N.H.)

  5. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  6. Actinide recycle potential in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1990-01-01

    In the Integral Fast Reactor (IFR) development program, the entire reactor system -- reactor, fuel cycle, and waste process is being developed and optimized at the same time as a single integral entity. The use of metallic fuel in the IFR allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. In the electrorefining operation, uranium and plutonium are selectively transported from an anode to a cathode, leaving impurity elements, mainly fission products, either in the anode compartment or in a molten salt electrolyte. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management, because these actinides are automatically recycled back into the reactor for in-situ burning. Based on the recent IFR process development, a preliminary assessment has also been made to investigate the feasibility of further adapting the pyrochemical processes to directly extract actinides from LWR spent fuel. The results of this assessment indicate very promising potential and two most promising flowsheet options have been identified for further research and development. This paper also summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 5 refs., 4 figs., 4 tabs

  7. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  8. Structural Integrity Evaluation for Damaged Fuel Canister of a Research Reactor

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwak, Jinsung; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo

    2016-01-01

    The purpose of this document is to confirm the structural integrity of damaged fuel canister through the numerical simulation. The analysis results of canister including damaged fuel are evaluated with design limits of the ASME Sec. III NF Codes and Standards. The main function of canister is to store and protect the damaged fuel assembly generated from the operation of the research reactor. The canister is classified into safety class NNS (Non-nuclear Safety) and seismic category II. The shape of the canister is designed into commercialized circular tube due to economic benefit and easy manufacturing. The damaged fuel assembly is loaded in a dedicated canister by using special tool and supported by lower block in the canister. Then it is move into the damaged fuel storage rack under safeguards arrangements. The canister is securely supported at guide plate and base plate of rack. The structural integrity evaluation for the canister is performed by using response spectrum analysis. The analysis results show that the stress intensity of the canister under the seismic loads is within the ASME Code limits. Thus, the validity of the present design of the canister has been demonstrated

  9. Structural Integrity Evaluation for Damaged Fuel Canister of a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwak, Jinsung; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this document is to confirm the structural integrity of damaged fuel canister through the numerical simulation. The analysis results of canister including damaged fuel are evaluated with design limits of the ASME Sec. III NF Codes and Standards. The main function of canister is to store and protect the damaged fuel assembly generated from the operation of the research reactor. The canister is classified into safety class NNS (Non-nuclear Safety) and seismic category II. The shape of the canister is designed into commercialized circular tube due to economic benefit and easy manufacturing. The damaged fuel assembly is loaded in a dedicated canister by using special tool and supported by lower block in the canister. Then it is move into the damaged fuel storage rack under safeguards arrangements. The canister is securely supported at guide plate and base plate of rack. The structural integrity evaluation for the canister is performed by using response spectrum analysis. The analysis results show that the stress intensity of the canister under the seismic loads is within the ASME Code limits. Thus, the validity of the present design of the canister has been demonstrated.

  10. Integration of the AVLIS [atomic vapor laser isotopic separation] process into the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF 6 -in UF 6 -out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs

  11. CANDU fuel sheath integrity and oxide layer thickness determination by Eddy current technique

    International Nuclear Information System (INIS)

    Gheorghe, Gabriela; Man, Ion; Parvan, Marcel; Valeca, Serban

    2010-01-01

    This paper presents results concerning the integrity assessment of the fuel elements cladding and measurements of the oxide layer on sheaths, using the eddy current technique. Flaw detection using eddy current provides information about the integrity of fuel element sheath or presence of defects in the sheath produced by irradiation. The control equipment consists of a flaw detector with eddy currents, operable in the frequency range 10 Hz to 10 MHz, and a differential probe. The calibration of the flaw detector is done using artificial defects (longitudinal, transversal, external and internal notches, bored and unbored holes) obtained on Zircaloy-4 tubes identical to those out of which the sheath of the CANDU fuel element is manufactured (having a diameter of 13.08 mm and a wall thickness of 0.4 mm). When analyzing the behavior of the fuel elements' cladding facing the corrosion is important to know the thickness of the zirconium oxide layer. The calibration of the device measuring the thickness of the oxide layer is done using a Zircaloy-4 tube identical to that which the cladding of the CANDU fuel element is manufactured of, and calibration foils, as well. (authors)

  12. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  13. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 02: fire hazard

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fire hazard reflects the potential fire behavior and magnitude of effects as a function of fuel conditions. This fact sheet discusses crown fuels, surface fuels, and ground fuels and their contribution and involvement in wildland fire.Other publications in this series...

  14. Factors controlling metal fuel lifetime

    International Nuclear Information System (INIS)

    Porter, D.L.; Hofman, G.L.; Seidel, B.R.; Walters, L.C.

    1986-01-01

    The reliability of metal fuel elements is determined by a fuel burnup at which a statistically predicted number of fuel breaches would occur, the number of breaches determined by the amount of free fission gas which a particular reactor design can tolerate. The reliability is therefore measured using experimentally determined breach statistics, or by modelling fuel element behavior and those factors which contribute to cladding breach. The factors are fuel/cladding mechanical and chemical interactions, fission gas pressure, fuel phase transformations involving volume changes, and fission product effects on cladding integrity. Experimental data for EBR-II fuel elements has shown that the primary, and perhaps the only significant factor affecting metal fuel reliability, is the pressure-induced stresses caused by fission gas release. Other metal fuel/cladding systems may perform similarly

  15. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  16. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  17. Integrated scheme of long-term for spent fuel management of power nuclear reactors

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Palacios H, J. C.; Martinez C, E.

    2015-09-01

    After of irradiation of the nuclear fuel in the reactor core, is necessary to store it for their cooling in the fuel pools of the reactor. This is the first step in a processes series before the fuel can reach its final destination. Until now there are two options that are most commonly accepted for the end of the nuclear fuel cycle, one is the open nuclear fuel cycle, requiring a deep geological repository for the fuel final disposal. The other option is the fuel reprocessing to extract the plutonium and uranium as valuable materials that remaining in the spent fuel. In this study the alternatives for the final part of the fuel cycle, which involves the recycling of plutonium and the minor actinides in the same reactor that generated them are shown. The results shown that this is possible in a thermal reactor and that there are significant reductions in actinides if they are recycled into reactor fuel. (Author)

  18. Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model

    International Nuclear Information System (INIS)

    Tuya, Delgersaikhan; Obara, Toru

    2016-01-01

    Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.

  19. Thermodynamic investigation of an integrated gasification plant with solid oxide fuel cell and steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering, Thermal Energy System

    2012-07-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas was rather clean for feeding to the SOFC stacks after a simple cleaning step. Because all the fuel cannot be burned in the SOFC stacks, a burner was used to combust the remaining fuel. The off-gases from the burner were then used to produce steam for the bottoming steam cycle in a heat recovery steam generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system integration configurations are completely novel and have not been studied elsewhere. Plant efficiencies of 56% were achieved under normal operation which was considerably higher than the IGCC (Integrated Gasification Combined Cycle) in which a gasification plant is integrated with a gas turbine and a steam turbine. Furthermore, it is shown that under certain operating conditions, plant efficiency of about 62 is also possible to achieve. (orig.)

  20. Fuels planning: science synthesis and integration; environmental consequences fact sheet 05: prescriptions and fire effects

    Science.gov (United States)

    Melanie Miller

    2004-01-01

    Fuels planning: science synthesis and integration; environmental consequences fact sheet 5: prescriptions and fire effects. Miller, Melanie. 2004. Res. Note RMRS-RN-23-5-WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2 p. While our understanding of the causes for variation in postfire effects is increasing, burn...

  1. Integrated data management system for radioactive waste and spent fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Taek [Korea Power Engineering Co., Inc., Yongin (Korea, Republic of)

    2002-05-15

    An integrated data management system for the safe management of radioactive waste and spent fuel in Korea is developed to collect basic information, provide the framework for national regulation and improve national competition and efficiency in the management of radioactive waste and spent fuel. This system can also provide public access to information such as a statistical graphs and integrated data from various waste generators to meet increased public needs and interests. Through the system, the five principles(independence, openness, clearance, efficiency and reliance) of safety regulation can be realized and public understanding and reliance on the safety of spent fuel and radioactive waste management can be promoted. By providing reliable information and openness within the international nuclear community can be ensured and efficient support of international agreements among contracting parties can be ensured. By operating safe and efficient management of spent fuel and radioactive waste (IAEA joint convention on the safety of spent fuel management and on the safety of radioactive waste management), the system can compensate for the imperfections in safe regulation of radioactive waste and spent fuel management related to waste generation, storage and disposal, and make it possible for holistic control and reorganization of the basic framework of KINS's intermediate and long term research organization and trends, regarding waste management policy so as to integrate safe management and unit safe disposal. To meet this objectives, design of the database system structure and the study of input/output data validation and verification methodology was performed during the second phase of this project.

  2. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.; Tobin, Stephen J.; Fensin, Mike L.; Menlove, Howard O.

    2009-01-01

    be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC and A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full

  3. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  4. Fuel element loading system

    International Nuclear Information System (INIS)

    Arya, S.P; s.

    1978-01-01

    A nuclear fuel element loading system is described which conveys a plurality of fuel rods to longitudinal passages in fuel elements. Conveyor means successively position the fuel rods above the longitudinal passages in axial alignment therewith and adapter means guide the fuel rods from the conveyor means into the longitudinal passages. The fuel elements are vibrated to cause the fuel rods to fall into the longitudinal passages through the adapter means

  5. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  6. Improved nuclear fuel element

    International Nuclear Information System (INIS)

    Klepfer, H.H.

    1974-01-01

    A nuclear fuel element is described which comprises: 1) an elongated clad container, 2) a layer of high lubricity material being disposed in and adjacent to the clad container, 3) a low neutron capture cross section metal liner being disposed in the clad container and adjacent to the layer, 4) a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, 5) an enclosure integrally secured and sealed at each end of the container, and a nuclear fuel material retaining means positioned in the cavity. (author)

  7. Thermodynamic Analysis of a Woodchips Gasification Integrated with Solid Oxide Fuel Cell and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Integrated gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power application is analysed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas which is utilized for feeding the SOFC stacks for electricity...... and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on LHV (lower heating value) can be achieved. Different parameter studies are performed to analysis system behaviour under different conditions. The analysis show that increasing fuel mass flow from the design point results...

  8. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  9. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  10. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    A feasibility study was carried out in 1993 by Skellefteaa Kraft AB, to analyse the technical and economical possibilities to build a new baseload district heating production plant. The conclusion from the study was that, as a first step, a new cogeneration plant, based on a circulating fluidised bed boiler, should be built. The commissioning of the cogeneration plant took place in autumn 1996. The plant was prepared for a future integration with a biofuel drying process for pellets production. During spring 1996 an investment decision was taken and the fuel factory was erected in may 1997. Vaermeforsk Service AB has financed this research project and the Swedish state energy program (Fabel) has contributed with 33,7 Million SEK to the financing of the recovery electric power generation part of the fuel factory. The aim with this research project has been to evaluate and compare the integrated cogeneration plant fuel factory concept with a conventional co-generation plant, specially when it comes to increased power generation. The fuel factory comprises of fuel feeding system, fuel dryer, steam converter from fuel moisture to low pressure process steam, low pressure condensing turbine, cooling water system, fuel pellets production and storage with ship loading plant in the harbour of Skellefteaa. The steam to the fuel factory is extracted from the cogeneration turbine at a pressure level between 12-26 bar and the extraction flow has then already generated power in the cogeneration turbine. Power is also generated in the low pressure condensing turbine of the fuel factory. The low pressure steam is generated with fuel moisture in the steam converter. During the first years of operation there has been both conventional commissioning problems but also technical problems related to the new process concept. The last are for example corrosion and erosion problems, fouling problems of heat exchangers, capacity and leakage problems. The performance goals of the fuel

  11. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  12. Artificial fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, L L.W.

    1918-08-20

    Lignite, peat, sud, leaf-mold, or shale, or two or more of these raw carbonaceous materials are mixed with cellulose material, such as sawdust, silica, alkali, and tar or pitch, or residues from tar or pitch, or residues from the distillation of oils, and the mixture is molded into blocks. Other carbonaceous materials, such as graphite, anthracite, or coal-dust, coke, breeze, or culm, and mineral substances, such as iron and manganese ores, may be added. A smokeless fuel can be obtained by coking the blocks in the usual way in retorts.

  13. The Light-Water-Reactor Version of the URANUS Integral fuel-rod code

    Energy Technology Data Exchange (ETDEWEB)

    Labmann, K; Moreno, A

    1977-07-01

    The LWR version of the URANUS code, a digital computer programme for the thermal and mechanical analysis of fuel rods, is presented. Material properties are discussed and their effect on integral fuel rod behaviour elaborated via URANUS results for some carefully selected reference experiments. The numerical results do not represent post-irradiation analyses of in-pile experiments, they illustrate rather typical and diverse URANUS capabilities. The performance test shows that URANUS is reliable and efficient, thus the code is a most valuable tool in fuel rod analysis work. K. LaBmann developed the LWR version of the URANUS code, material properties were reviewed and supplied by A. Moreno. (Author) 41 refs.

  14. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    % is achieved; plant size and nominal power are selected based on the required cultivation area. SOFC heat recovery with SKC is compared to a Steam Cycle (SC). Although ammonia-water more accurately fits the temperature profile of the off-gases, the presence of a Hybrid Recuperator enhances the available work......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel......A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre...

  15. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  16. Proliferation resistance of the fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.

    1993-01-01

    Argonne National Laboratory has developed an electrorefining pyrochemical process for recovery and recycle of metal fuel discharged from the Integral Fast Reactor (FR). This inherently low decontamination process has an overall decontamination factor of only about 100 for the plutonium metal product. As a result, all of the fuel cycle operations must be conducted in heavily shielded cells containing a high-purity argon atmosphere. The FR fuel cycle possesses high resistance to clandestine diversion or overt, state- supported removal of plutonium for nuclear weapons production because of two main factors: the highly radioactive product, which is also contaminated with heat- and neutron-producing isotopes of plutonium and other actinide elements, and the difficulty of removing material from the FR facility through the limited number of cell transfer locks without detection

  17. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  18. Physics studies of weapons plutonium disposition in the Integral Fast Reactor closed fuel cycle

    International Nuclear Information System (INIS)

    Hill, R.N.; Wade, D.C.; Liaw, J.R.; Fujita, E.K.

    1995-01-01

    The core performance impact of weapons plutonium introduction into the Integral Fast Reactor (IFR) closed fuel cycle is investigated by comparing three disposition scenarios: a power production mode, a moderate destruction mode, and a maximum destruction mode, all at a constant heat rating of 840 MW(thermal). For each scenario, two fuel cycle models are evaluated: cores using weapons material as the sole source of transuranics in a once-through mode and recycle cores using weapons material only as required for a makeup feed. In addition, the impact of alternative feeds (recycled light water reactor or liquid-metal reactor transuranics) on burner core performance is assessed. Calculated results include mass flows, detailed isotopic distributions, neutronic performance characteristics, and reactivity feedback coefficients. In general, it is shown that weapons plutonium does not have an adverse effect on IFR core performance characteristics; also, favorable performance can be maintained for a wide variety of feed materials and fuel cycle strategies

  19. The need for integral critical experiments with low-moderated MOX fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The use of MOX fuel in commercial reactors is a means of burning plutonium originating from either surplus weapons or reprocessed irradiated uranium fuel. This requires the fabrication of MOX assemblies on an industrial scale. The OECD/NEA Expert Group on Experimental Needs for Criticality Safety has highlighted MOX fuel manufacturing, as an area in which there is a specific need for additional experimental data for validation purposes. Indeed, integral experiments with low-moderated MOX fuel are either scarce or not sufficiently accurate to provide an appropriate degree of validation of nuclear data and computer codes. New and accurate experimental data would enable a better optimisation of the fabrication process by decreasing the uncertainties in the determination of multiplication factors of configurations such as the homogenization of MOX powders. In this context, the OECD/NEA Nuclear Science Committee organised a workshop to address the following topics: expression and justification of the need for critical or near-critical experiments employing low-moderated MOX fuels; proposals for experimental programmes to address these needs; prospects for an international co-operative programme. The workshop was held at OECD headquarters in Paris on 14-15 April 2004. (author)

  20. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  1. An integrated approach for investigation of failed nuclear fuel used at NPP Cernavoda Unit 1

    International Nuclear Information System (INIS)

    Tuturici, I.L.; Parvan, M.; Popov, M.; Dobrin, R.; Staicu, C.

    1996-01-01

    At NPP Cernavoda-Unit 1 the fuel surveillance and the defect detection system in operation are based on monitoring the coolant activity concentration and on measuring the flux of delayed neutrons emitted by some short-lived fission products. In order to identify the failed fuel underwater non-destructive examination has to be performed. The major interest for the availability of underwater examination consists in the necessity of a speedy acquisition of the data on failed fuel in operation and of appropriate follow-up actions to be taken. Often the identification operation will be followed by more detailed examinations on selected fuel rods in the hot cells of the Post-irradiation Examination Laboratory of the Institute for Nuclear Research at Pitesti. Transfer of selected fuel rods will be done by the use of a type B(U) road transportation cask. Such an integrated approach will help to keep the level of activity concentration of the primary circuit well below the authorized limits. (author). 2 figs., 1 tab., 2 refs

  2. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  3. Nuclear Fuel elements

    International Nuclear Information System (INIS)

    Hirakawa, Hiromasa.

    1979-01-01

    Purpose: To reduce the stress gradient resulted in the fuel can in fuel rods adapted to control the axial power distribution by the combination of fuel pellets having different linear power densities. Constitution: In a fuel rod comprising a first fuel pellet of a relatively low linear power density and a second fuel pellet of a relatively high linear power density, the second fuel pellet is cut at its both end faces by an amount corresponding to the heat expansion of the pellet due to the difference in the linear power density to the adjacent first fuel pellet. Thus, the second fuel pellet takes a smaller space than the first fuel pellet in the fuel can. This can reduce the stress produced in the portion of the fuel can corresponding to the boundary between the adjacent fuel pellets. (Kawakami, Y.)

  4. Integrated management platform of nuclear fuel storage and transportation based on RFID

    International Nuclear Information System (INIS)

    Song Yafeng; Ma Yanqin; Chen Liyu; Jiang Yong; Wu Jianlei; Yang Haibo; Zhang Haiyan

    2012-01-01

    This paper describes integrated system model to improve work efficiency and optimize control measures of nuclear fuel storage and transportation, RFID and information integration technology is introduced, traditional management processes are innovated in data acquisition and monitoring fields as well, system solutions and design model are given by emphasizing on the following key technologies: cascade protection of information system, security protocol of RFID information, algorithm of collision. (authors)

  5. Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator

    Science.gov (United States)

    Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.

    A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.

  6. Fuel assembly

    International Nuclear Information System (INIS)

    Hiraiwa, Koji; Ueda, Makoto

    1989-01-01

    In a fuel assembly used for a light water cooled reactor such as a BWR type reactor, a water rod is divided axially into an upper outer tube and a lower outer tube by means of a plug disposed from the lower end of a water rod to a position 1/4 - 1/2 of the entire length for the water rod. Inlet apertures and exit apertures for moderators are respectively perforated for the divided outer tube and upper and lower portions. Further, an upper inner tube with less neutron irradiation growing amount than the outer tube is perforated on the plug in the outer tube, while a lower inner tube with greater neutron irradiation growing amount than the outer tube is suspended from the lower surface of the plug in the outer tube. Then, the opening area for the exit apertures disposed to the upper outer tube and the lower outer tube is controlled depending on the difference of the neutron irradiation growing amount between the upper inner tube and the upper outer tube, and the difference of the neutron irradiation growing amount between the lower inner tube and the lower outer tube. This enables effective spectral shift operation and improve the fuel economy. (T.M.)

  7. Fuel Burn Estimation Model

    Science.gov (United States)

    Chatterji, Gano

    2011-01-01

    Conclusions: Validated the fuel estimation procedure using flight test data. A good fuel model can be created if weight and fuel data are available. Error in assumed takeoff weight results in similar amount of error in the fuel estimate. Fuel estimation error bounds can be determined.

  8. Long distance relationships : the secret for fuel cell success? fuel cell developers and integrators form trans-oceanic partnerships to crash through cultural barriers

    International Nuclear Information System (INIS)

    Horwitz, J.

    2009-01-01

    The varieties of viable fuel cell applications and widely varying regional market conditions have created global partnerships among entities with complementary attributes. Although it may appear that domestic liaisons among culturally similar players spawned from industry clusters should provide the clearest route to success in this industry, it is the intercontinental groupings which are demonstrating the most potential. This paper discussed the global fuel cell challenge and the vertical integration of multi-national partnerships. The paper also discussed the current global stationary market in perspective. Fuel cells require unique maintenance, support, and refueling including operator instruction and a new supply infrastructure. The paper addressed the fact that fuel cells represent a disruptive technology. A telecom backup status report was also presented. Other topics that were discussed included developing markets as well as specific examples of global organizations such as Canadian Ballard and Danish Dantherm Power and their fuel cell application solutions. It was concluded that after an inconsistent history, fuel cells have finally achieved viability in the real world. However, there is significant cultural resistance to their implementation in the United States. 4 figs

  9. Fuel assembly supporting structure

    International Nuclear Information System (INIS)

    Aisch, F.W.; Fuchs, H.P.; Knoedler, D.; Steinke, A.; Steven, J.

    1976-01-01

    For use in forming the core of a pressurized-water reactor, a fuel assembly supporting structure for holding a bundle of interspaced fuel rods, is formed by interspaced end pieces having holes in which the end portions of control rod guide tubes are inserted, fuel rod spacer grids being positioned by these guide tubes between the end pieces. The end pieces are fastened to the end portions of the guide tubes, to integrate the supporting structure, and in the case of at least one of the end pieces, this is done by means which releases that end piece from the guide tubes when the end pieces receive an abnormal thrust force directed towards each other and which would otherwise place the guide tubes under a compressive stress that would cause them to buckle. The spacer grids normally hold the fuel rods interspaced by distances determined by nuclear physics, and buckling of the control rod guide tubes can distort the fuel rod spacer grids with consequent dearrangement of the fuel rod interspacing. A sudden loss of pressure in a pressurized-water reactor pressure vessel can result in the pressurized coolant in the vessel discharging from the vessel at such high velocity as to result in the abnormal thrust force on the end pieces of each fuel assembly, which could cause buckling of the control rod guide tubes when the end pieces are fixed to them in the normal rigid and unyielding manner

  10. Integral power evaluation in fossil fuel power plants; Evaluacion energetica integral en unidades de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa I, Luis R; Sanchez H, Laura E; Rodriguez M, Jose H [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Nebradt G, Jesus [Unidad de Investigacion y Desarrollo de la Subdireccion de Generacion de la Comision Federal de Electricidad, (Mexico)

    2006-07-01

    In this occasion, a methodology is presented that carries out an integral energy evaluation of fossil fuel power plants units (FFPPU) with the purpose of determining the root of the significant decrements of power produced soon after the annual maintenance service. This proposal, besides identifying the origin of the energy efficiency problems, offers information about the contributions of each one of the involved equipment in the total decrement of the unit. With this methodology, the maintenance focuses in the equipment that contributes to the greater energy loss. This document presents such methodology along with its application in a real case, results and necessary remedial actions, demonstrating that its application offers bases for the investment in corrective measures. [Spanish] En esta ocasion se presenta una metodologia que efectua una evaluacion energetica integral de las unidades de centrales termoelectricas (UCT) con el fin de determinar la raiz de los decrementos de potencia significativos producidos luego del servicio anual de mantenimiento. Dicha propuesta, ademas de identificar el origen de los problemas de eficiencia energetica, brinda informacion acerca de las aportaciones de cada uno de los equipos involucrados al decremento total de la unidad. Con esta metodologia, el mantenimiento se enfoca a los equipos que contribuyen a la mayor perdida de potencia. Este documento exhibe tal metodologia junto con su aplicacion en un caso real, resultados y las acciones correctivas necesarias, demostrando que su aplicacion ofrece bases para una inversion futura en medidas correctivas.

  11. ClearFuels-Rentech Integrated Biorefinery Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Joshua [Project Director

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  12. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey James [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated

  13. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  14. Fuel processor integrated H{sub 2}S catalytic partial oxidation technology for sulfur removal in fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, T.H.; Berry, D.A.; Lyons, K.D.; Beer, S.K.; Freed, A.D. [U.S. Department of Energy, Morgantown, WV (USA). National Energy Technology Laboratory

    2002-12-01

    H{sub 2}S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O{sub 2}-blown coal-derived synthesis gas. The H{sub 2}S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H{sub 2}S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H{sub 2}S and 0.3 order in O{sub 2}. 18 refs., 14 figs., 3 tabs.

  15. Fuels planning: science synthesis and integration; social issues fact sheet 18: Issues affecting social acceptability of fuels treatments

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Researchers have tried to understand how information about forest management can influence a person's landscape preferences and aesthetic appreciation. These findings are relevant for fuels management projects, since these projects are often characterized by conflicts between aesthetic and ecological objectives. This fact sheet discusses different aspects and ways...

  16. Fuels planning: science synthesis and integration; social issues fact sheet 17: Considering social acceptability of fuels treatments

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    When making decisions about fuels treatments, forest managers need to assess not only the biological impacts of a treatment, but the social impacts as well. Social acceptability is based on value judgments by people-their notions of what is "good" and what is "better." This fact sheet discusses six questions that may be useful for framing initial...

  17. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation

    International Nuclear Information System (INIS)

    Ercolino, Giuliana; Ashraf, Muhammad A.; Specchia, Vito; Specchia, Stefania

    2015-01-01

    Highlights: • Modeling of different fuel processors integrated with PEM fuel cell stack. • Steam or autothermal reforming + CO selective methanation or preferential oxidation. • Reforming of different hydrocarbons: gasoline, light diesel oil, natural gas. • 5 kW e net systems comparison via energy efficiency and primary fuel rate consumed. • Highest net efficiency: steam reformer + CO selective methanation based system. - Abstract: The performances of four different auxiliary power unit (APU) schemes, based on a 5 kW e net proton exchange membrane fuel cell (PEM-FC) stack, are evaluated and compared. The fuel processor section of each APU is characterized by a reformer (autothermal ATR or steam SR), a non-isothermal water gas shift (NI-WGS) reactor and a final syngas catalytic clean-up step: the CO preferential oxidation (PROX) reactor or the CO selective methanation (SMET) one. Furthermore, three hydrocarbon fuels, the most commonly found in service stations (gasoline, light diesel oil and natural gas) are considered as primary fuels. The comparison is carried out examining the results obtained by a series of steady-state system simulations in Aspen Plus® of the four different APU schemes by varying the fed fuel. From the calculated data, the performance of CO-PROX is not very different compared to that of the CO-SMET, but the performance of the SR based APUs is higher than the scheme of the ATR based APUs. The most promising APU scheme with respect to an overall performance target is the scheme fed with natural gas and characterized by a fuel processor chain consisting of SR, NI-WGS and CO-SMET reactors. This processing reactors scheme together with the fuel cell section, notwithstanding having practically the same energy efficiency of the scheme with SR, NI-WGS and CO-PROX reactors, ensures a less complex scheme, higher hydrogen concentration in the syngas, lower air mass rate consumption, the absence of nitrogen in the syngas and higher potential

  18. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Science.gov (United States)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the

  19. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    Energy Technology Data Exchange (ETDEWEB)

    Margalef, Pere; Samuelsen, Scott [National Fuel Cell Research Center (NFCRC), University of California, Irvine, CA 92697-3550 (United States)

    2010-09-01

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two ''off the shelf'' units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow

  20. A Study on the Structural Integrity Issues of a Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Kang-Hee; Lee, Young-Ho; Yoon, Kyung-Ho; Kim, Jae-Yong; Song, Kun-Woo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong Daejeon 305-353 (Korea, Republic of)

    2009-06-15

    A dual-cooled fuel rod has an internal coolant flow passage in addition to the external one. A remarkable power up-rate can be achieved due to the increased surface area, which may draw great interests from the fuel researchers, designers and vendors. However, it requires effective resolution to the difficult technical issues when a fuel assembly is to be realized. It becomes much more difficult if a tough boundary condition needs to be satisfied such as a compatibility with the existing reactor internal structures. This kind of challenge is tackled through a national R and D project in Korea: to develop the structural components of a dual-cooled fuel that should be compatible with the current OPR 1000 (Korea Standard Nuclear Power Plant) internal structures. Fuel rod supporting structures, top and bottom end pieces and guide tubes are the components. Besides, the fuel rod components have to be developed as well since the fuel rod's geometry becomes much different from the conventional rod's one. The dimension change may well affect the above mentioned structural components. As a part of the work, structural integrity of the components of a dual-cooled fuel rod is studied in this paper. The investigated topics are: i) the thickness determination of a cladding tube (especially outer tube of a large diameter), ii) vibration issue of an inner cladding tube, iii) design concern of plenum spring and spacer. The cladding thickness issue arises due to the increased outside diameter of a fuel rod, which is caused by an internal flow passage formation. Among the criteria for the thickness determination, an elastic buckling criteria was focused on. Theoretical background for the well-known formula (such as a stability problem) was revisited. Verification tests were carried out independently with using a cladding tube of PHWR fuel rod. Results showed that the formula was not conservative to apply for the cladding thickness determination. Minimum thickness for the

  1. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  2. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  3. Secondary fuel delivery system

    Science.gov (United States)

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  4. Fuel Property Blend Model

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wagnon, Scott J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhang, Kuiwen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kukkadapu, Goutham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-12

    The object of this project is to develop chemical models and associated correlations to predict the blending behavior of bio-derived fuels when mixed with conventional fuels like gasoline and diesel fuels.

  5. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  6. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  7. Fuel assembly

    International Nuclear Information System (INIS)

    Wataumi, Kazutoshi; Tajiri, Hiroshi.

    1992-01-01

    In a fuel assembly of a BWR type reactor, a pellet to be loaded comprises an external layer of fissile materials containing burnable poisons and an internal layer of fissile materials not containing burnable poison. For example, there is provided a dual type pellet comprising an external layer made of UO 2 incorporated with Gd 2 O 3 at a predetermined concentration as the burnable poisons and an internal layer made of UO 2 not containing Gd 2 O 3 . The amount of the burnable poisons required for predetermined places is controlled by the thickness of the ring of the external layer. This can dissipate an unnecessary poisoning effect at the final stage of the combustion cycle. Further, since only one or a few kinds of powder mixture of the burnable poisons and the fissile materials is necessary, production and product control can be facilitated. (I.N.)

  8. Fuel storage

    International Nuclear Information System (INIS)

    Palacios, C.; Alvarez-Miranda, A.

    2009-01-01

    ENSA is a well known manufacturer of multi-system primary components for the nuclear industry and is totally prepared to satisfy future market requirements in this industry. At the same time that ENSA has been gaining a reputation world wider for the supply of primary components, has been strengthening its commitment and experience in supplying spent fuel components, either pool racks or storage and transportation casks, and offers not only fabrication but also design capabilities for its products. ENSA has supplied Spent Fuel Pool Racks, in spain, Finland, Taiwan, Korea, China, and currently it is in the process of licensing its own rack design in the United States of America for the ESBWR along with Ge-Hitachi. ENSA has supplied racks for 20 pools and 22 different reactors and it has also manufactured racks under all available technologies and developed a design known as Interlock Cell Matrix whose main features are outlined in this article. Another ENSA achievement in rack technology is the use of remote control for re-racking activities instead of using divers, which improves the ALARA requirements. Regarding casks for storage and transportation, ENSA also has al leading worldwide position, with exports prevailing over the Spanish market where ENSA has supplied 16 storage and transportation casks to the Spanish nuclear power Trillo. In some cases, ENSA acts as subcontractor for other clients. Foreign markets are still a major challenge for ENSA. ENSA-is well known for its manufacturing capabilities in the nuclear industry, but has been always involved in design activities through its engineering division, which carries out different tasks: components Design; Tooling Design; Engineering and Documentation; Project Engineering; Calculations, Design and Development Engineering. (Author)

  9. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  10. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  11. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  12. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  13. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  14. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  15. Fuel performance experience

    International Nuclear Information System (INIS)

    Sofer, G.A.

    1986-01-01

    The history of LWR fuel supply has been characterized by a wide range of design developments and fuel cycle cost improvements. Exxon Nuclear Company, Inc. has pursued an aggressive fuel research and development program aimed at improved fuel performance. Exxon Nuclear has introduced many design innovations which have improved fuel cycle economics and operating flexibility while fuel failures remain at very low levels. The removable upper tie plate feature of Exxon Nuclear assemblies has helped accelerate this development, enabling repeated inspections during successive plant outages. Also, this design feature has made it possible to repair damaged fuel assemblies during refueling outages, thereby minimizing the economic impact of fuel failure from all causes

  16. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  17. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  18. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    International Nuclear Information System (INIS)

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP

  19. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... technology have been identified, and new concepts and solutions have been provisionally identified. FURIM is directed at tackling these key issues by concentrating on the further materials development, compatible technologies, and system integration of the high temperature PEMFC. The strategic developments...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...

  20. INSIGHT: an integrated scoping analysis tool for in-core fuel management of PWR

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Noda, Hidefumi; Ito, Nobuaki; Maruyama, Taiji.

    1997-01-01

    An integrated software tool for scoping analysis of in-core fuel management, INSIGHT, has been developed to automate the scoping analysis and to improve the fuel cycle cost using advanced optimization techniques. INSIGHT is an interactive software tool executed on UNIX based workstations that is equipped with an X-window system. INSIGHT incorporates the GALLOP loading pattern (LP) optimization module that utilizes hybrid genetic algorithms, the PATMAKER interactive LP design module, the MCA multicycle analysis module, an integrated database, and other utilities. Two benchmark problems were analyzed to confirm the key capabilities of INSIGHT: LP optimization and multicycle analysis. The first was the single cycle LP optimization problem that included various constraints. The second one was the multicycle LP optimization problem that includes the assembly burnup limitation at rod cluster control (RCC) positions. The results for these problems showed the feasibility of INSIGHT for the practical scoping analysis, whose work almost consists of LP generation and multicycle analysis. (author)

  1. The effect of non-uniform fuel rod temperatures on effective resonance integrals

    International Nuclear Information System (INIS)

    Reichel, A.

    1961-06-01

    The effective resonance integral for heterogeneous lattices can be reduced to the effective resonance integral for an equivalent homogeneous system with a fairly well defined error depending on lump size and geometry. This report investigates the effect of a radial parabolic temperature variation in cylindrical lumps on the equivalent homogeneous effective resonance integral. Also determined is the equivalent uniform temperature to be taken in the usual formulae to allow for non-uniform fuel rod temperature. This effective temperature is found to be T eff. = T s + 4/9 (T c - T s ) where T s and T c are the surface and central temperatures of the lump. (author)

  2. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  3. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Gassner, Martin; D’Amelio, Matilde; Marechal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  4. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  5. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions

  6. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  7. Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1989-11-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs

  8. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Laidler, J.J.

    1994-01-01

    Electrorefining in a molten salt electrolyte is used in the Integral Fast Reactor fuel cycle to recover actinides from spent fuel. Processes that are being developed for removing the waste constituents from the electrorefiner and incorporating them into the waste forms are described in this paper. During processing, halogen, chalcogen, alkali, alkaline earth, and rare earth fission products build up in the molten salt as metal halides and anions, and fuel cladding hulls and noble metal fission products remain as metals of various particle sizes. Essentially all transuranic actinides are collected as metals on cathodes, and are converted to new metal fuel. After processing, fission products and other waste are removed to a metal and a mineral waste form. The metal waste form contains the cladding hulls, noble metal fission products, and (optionally) most rare earths in a copper or stainless steel matrix. The mineral waste form contains fission products that have been removed from the salt into a zeolite or zeolite-derived matrix

  9. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  10. Advanced control system for the Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Lau, L.D.; Randall, P.F.; Benedict, R.W.; Levinskas, D.

    1993-01-01

    A computerized control system has been developed for the remotely-operated fuel pin processor used in the Integral Fast Reactor Program, Fuel Cycle Facility (FCF). The pin processor remotely shears cast EBR- reactor fuel pins to length, inspects them for diameter, straightness, length, and weight, and then inserts acceptable pins into new sodium-loaded stainless-steel fuel element jackets. Two main components comprise the control system: (1) a programmable logic controller (PLC), together with various input/output modules and associated relay ladder-logic associated computer software. The PLC system controls the remote operation of the machine as directed by the OCS, and also monitors the machine operation to make operational data available to the OCS. The OCS allows operator control of the machine, provides nearly real-time viewing of the operational data, allows on-line changes of machine operational parameters, and records the collected data for each acceptable pin on a central data archiving computer. The two main components of the control system provide the operator with various levels of control ranging from manual operation to completely automatic operation by means of a graphic touch screen interface

  11. A software tool integrated risk assessment of spent fuel transpotation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Christian, Robby [Dept. of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy (Korea, Republic of); Kim, Bo Gyung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Sang Hoon [Dept. of Mechanical and Automotive Engineering, Keimyung University, Daegu (Korea, Republic of)

    2017-06-15

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode.

  12. Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1990-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs

  13. Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1991-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs

  14. A software tool integrated risk assessment of spent fuel transpotation and storage

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Almomani, Belal; Ham, Jae Hyun; Kang, Hyun Gook; Christian, Robby; Kim, Bo Gyung; Lee, Sang Hoon

    2017-01-01

    When temporary spent fuel storage pools at nuclear power plants reach their capacity limit, the spent fuel must be moved to an alternative storage facility. However, radioactive materials must be handled and stored carefully to avoid severe consequences to the environment. In this study, the risks of three potential accident scenarios (i.e., maritime transportation, an aircraft crashing into an interim storage facility, and on-site transportation) associated with the spent fuel transportation process were analyzed using a probabilistic approach. For each scenario, the probabilities and the consequences were calculated separately to assess the risks: the probabilities were calculated using existing data and statistical models, and the consequences were calculated using computation models. Risk assessment software was developed to conveniently integrate the three scenarios. The risks were analyzed using the developed software according to the shipment route, building characteristics, and spent fuel handling environment. As a result of the risk analysis with varying accident conditions, transportation and storage strategies with relatively low risk were developed for regulators and licensees. The focus of this study was the risk assessment methodology; however, the applied model and input data have some uncertainties. Further research to reduce these uncertainties will improve the accuracy of this mode

  15. Integrated anode structure for passive direct methanol fuel cells with neat methanol operation

    Science.gov (United States)

    Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui

    2014-02-01

    A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.

  16. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  17. Design considerations for a 10-KW integrated hydrogen-oxygen regenerative fuel cell system

    International Nuclear Information System (INIS)

    Hoberecht, M.A.; Gonzalez-Sanabria, O.D.; Miller, T.B.; Rieker, L.L.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low-earth-orbit (LEO) applications characterized by relatively high overall round-trip electrical efficiency, long life, and high reliability is possible with present state-of-the-art technology. A hypothetical 10-kW system is being computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is being developed under an NASA-LeRC program with United Technologies Corporation (UTC), utilizing advanced cell components and standard Shuttle-Orbiter system hardware. The alkaline electrolysis technology is that of Life Systems, Inc. (LSI), which uses a static water vapor feed technique and scaled-up cell hardware being developed under an NASA-LeRC program. This paper addresses the computeraided study of the performance, operating, and design parameters of the hypothetical system

  18. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  19. The dieselization of America: An integrated strategy for future transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, J.J. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  20. Development of Low Temperature Catalysts for an Integrated Ammonia PEM Fuel Cell

    OpenAIRE

    Hill, Alfred

    2014-01-01

    It is proposed that an integrated ammonia-PEM fuel cell could unlock the potential of ammonia to act as a high capacity chemical hydrogen storage vector and enable renewable energy to be delivered eectively to road transport applications. Catalysts are developed for low temperature ammonia decomposition with activity from 450 K (ruthenium and cesium on graphitised carbon nanotubes). Results strongly suggest that the cesium is present on the surface and close proximity to ruthenium nanoparticl...

  1. Canadian fuel development program

    International Nuclear Information System (INIS)

    Gacesa, M.; Young, E.G.

    1992-11-01

    CANDU power reactor fuel has demonstrated an enviable operational record. More than 99.9% of the bundles irradiated have provided defect-free service. Defect excursions are responsible for the majority of reported defects. In some cases research and development effort is necessary to resolve these problems. In addition, development initiatives are also directed at improvements of the current design or reduction of fueling cost. The majority of the funding for this effort has been provided by COG (CANDU Owners' Group) over the past 10 to 15 years. This paper contains an overview of some key fuel technology programs within COG. The CANDU reactor is unique among the world's power reactors in its flexibility and its ability to use a number of different fuel cycles. An active program of analysis and development, to demonstrate the viability of different fuel cycles in CANDU, has been funded by AECL in parallel with the work on the natural uranium cycle. Market forces and advances in technology have obliged us to reassess and refocus some parts of our effort in this area, and significant success has been achieved in integrating all the Canadian efforts in this area. This paper contains a brief summary of some key components of the advanced fuel cycle program. (Author) 4 figs., tab., 18 refs

  2. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  3. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  4. Nuclear fuel production

    International Nuclear Information System (INIS)

    Randol, A.G.

    1985-01-01

    The production of new fuel for a power plant reactor and its disposition following discharge from the power plant is usually referred to as the ''nuclear fuel cycle.'' The processing of fuel is cyclic in nature since sometime during a power plant's operation old or ''depleted'' fuel must be removed and new fuel inserted. For light water reactors this step typically occurs once every 12-18 months. Since the time required for mining of the raw ore to recovery of reusable fuel materials from discharged materials can span up to 8 years, the management of fuel to assure continuous power plant operation requires simultaneous handling of various aspects of several fuel cycles, for example, material is being mined for fuel to be inserted in a power plant 2 years into the future at the same time fuel is being reprocessed from a discharge 5 years prior. Important aspects of each step in the fuel production process are discussed

  5. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  6. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis

    International Nuclear Information System (INIS)

    Tock, Laurence; Gassner, Martin; Marechal, Francois

    2010-01-01

    A detailed thermo-economic model combining thermodynamics with economic analysis and considering different technological alternatives for the thermochemical production of liquid fuels from lignocellulosic biomass is presented. Energetic and economic models for the production of Fischer-Tropsch fuel (FT), methanol (MeOH) and dimethyl ether (DME) by means of biomass drying with steam or flue gas, directly or indirectly heated fluidized bed or entrained flow gasification, hot or cold gas cleaning, fuel synthesis and upgrading are reviewed and developed. The process is integrated and the optimal utility system is computed. The competitiveness of the different process options is compared systematically with regard to energetic, economic and environmental considerations. At several examples, it is highlighted that process integration is a key element that allows for considerably increasing the performance by optimal utility integration and energy conversion. The performance computations of some exemplary technology scenarios of integrated plants yield overall energy efficiencies of 59.8% (crude FT-fuel), 52.5% (MeOH) and 53.5% (DME), and production costs of 89, 128 and 113 Euro MWh -1 on fuel basis. The applied process design approach allows to evaluate the economic competitiveness compared to fossil fuels, to study the influence of the biomass and electricity price and to project for different plant capacities. Process integration reveals in particular potential energy savings and waste heat valorization. Based on this work, the most promising options for the polygeneration of fuel, power and heat will be determined in a future thermo-economic optimization.

  7. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1993-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have led to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  8. Instrumentation of fuel elements and fuel plates

    International Nuclear Information System (INIS)

    Durand, J.P.; Fanjas, Y.

    1994-01-01

    When controlling the behaviour of a reactor or developing a new fuel concept, it is of utmost interest to have the possibility to confirm the thermohydraulic calculations by actual measurements in the fuel elements or in the fuel plates. For years, CERCA has developed the technology and supplied its customers with fuel elements equipped with pressure or temperature measuring devices according to the requirements. Recent customer projects have lead to the development of a new method to introduce thermocouples directly into the fuel plate meat instead of the cladding. The purpose of this paper is to review the various instrumentation possibilities available at CERCA. (author)

  9. Fuel cycle and waste management: A perspective from British nuclear fuels plc

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Fairhall, G.A.; Robbins, R.A.

    1996-01-01

    The phrase fuel cycle and waste management implies two separate and distinct activities. British Nuclear Fuels plc (BNFL) has adopted a holistic approach to the fuel cycle that integrates the traditional fuel cycle activities of conversion to uranium hexafluoride, fuel fabrication, power generation, and reprocessing with waste arisings, its subsequent treatment, and disposal

  10. Treatment of wastes in the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.; Chow, L.S.H.; Carls, E.L.; Hannum, W.H.; Laidler, J.J.

    1997-01-01

    In both the reactor portion and the fuel-cycle portion of the Integral Fast Reactor (IFR), handling, treatment and disposal of wastes are simpler than in current fuel cycles. The vast majority (> 99.9%) of the very-long-lived radioactive TRU elements are not sent to the repository; rather, they are recycled. High-level waste volume from the IFR process (called ''the pyroprocess'') is lower than that from either the direct disposal of spent fuel or from conventional PUREX-type reprocessing. The quantity of low-level waste is very low. In the pyroprocess, the actinides are recovered and separated from the bulk of the fission products by an electrorefining step wherein the actinides are electrotransported from chopped fuel elements and deposited at cathodes. The volatile fission products xenon, krypton, and tritium are collected for long-term storage and decay. Zirconium and the ''noble metal'' fission products (those that are less easily oxidized than zirconium) remain in the anode compartment, to be removed with the fuel cladding fragments and made into a metal waste form. The remaining fission products collect in the salt as chlorides. A process has been developed to periodically remove the contaminated salt from the electrorefiner, separate most of the fission products, and return the purified salt in a form that is ready for continuing use. To clean up the electrorefiner salt, the fission products are removed by ion exchange onto a column of Zeolite A. After the purification step, the column material and the contained fission products are converted to a mineral waste form for disposal. The processes and equipment for waste isolation and conversion to suitable disposal forms are described in this paper. (author)

  11. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  12. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  13. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  14. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  15. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  16. Treat upgrade fuel fabrication

    International Nuclear Information System (INIS)

    Davidson, K.V.; Schell, D.H.

    1979-01-01

    An extrusion and thermal treatment process was developed to produce graphite fuel rods containing a dispersion of enriched UO 2 . These rods will be used in an upgraded version of the Transient Reactor Test Facility (TREAT). The improved fuel provides a higher graphite matrix density, better fuel dispersion and higher thermal capabilities than the existing fuel

  17. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  18. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  19. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  20. Reactor fueling system

    International Nuclear Information System (INIS)

    Hattori, Noriaki; Hirano, Haruyoshi.

    1983-01-01

    Purpose: To optimally position a fuel catcher by mounting a television camera to a fuel catching portion and judging video images by the use of a computer or the like. Constitution: A television camera is mounted to the lower end of a fuel catching mechanism for handling nuclear fuels and a fuel assembly disposed within a reactor core or a fuel storage pool is observed directly from above to judge the position for the fuel assembly by means of video signals. Then, the relative deviation between the actual position of the fuel catcher and that set in a memory device is determined and the positional correction is carried out automatically so as to reduce the determined deviation to zero. This enables to catch the fuel assembly without failure and improves the efficiency for the fuel exchange operation. (Moriyama, K.)

  1. Nuclear fuel elements

    International Nuclear Information System (INIS)

    Nakai, Keiichi

    1983-01-01

    Purpose: To decrease the tensile stresses resulted in a fuel can as well as prevent decladding of fuel pellets into the bore holes by decreasing the inner pressure within the nuclear fuel element. Constitution: A fuel can is filled with hollow fuel pellets, inserted with a spring for retaining the hollow fuel pellets with an appropriate force and, thereafter, closely sealed at the both ends with end plugs. A cylindrical body is disposed into the bore holes of the hollow fuel pellets. Since initial sealing gases and/or gaseous nuclear fission products can thus be excluded from the bore holes where the temperature is at the highest level, the inner pressure of the nuclear fuel element can be reduced to decrease the tensile strength resulted to the fuel can. Furthermore, decladding of fuel pellets into the bore holes can be prevented. (Moriyama, K.)

  2. Failed fuel rod detector

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Katsuya; Matsuda, Yasuhiko

    1984-05-02

    The purpose of the project is to enable failed fuel rod detection simply with no requirement for dismantling the fuel assembly. A gamma-ray detection section is arranged so as to attend on the optional fuel rods in the fuel assembly. The fuel assembly is adapted such that a gamma-ray shielding plate is detachably inserted into optional gaps of the fuel rods or, alternatively, the fuel assembly can detachably be inserted to the gamma-ray shielding plate. In this way, amount of gaseous fission products accumulated in all of the plenum portions in the fuel rods as the object of the measurement can be determined without dismantling the fuel assembly. Accordingly, by comparing the amounts of the gaseous fission products, the failed fuel rod can be detected.

  3. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel

    International Nuclear Information System (INIS)

    Sipilae, K.

    1995-01-01

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  4. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  5. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  6. Study of renewable energy, fuel cell and demotics integration for stationary energy production

    Energy Technology Data Exchange (ETDEWEB)

    Andaloro, L.; Ferraro, M.; Sergi, F.; Brunaccini, G.; Antonucci, V. [National Research Inst., Messina (Italy)

    2009-07-01

    This paper described a study in which a small house equipped with various renewable technologies was modelled. The aim of the study was to evaluated the integration of fuel cells with various other energy sources. Technologies installed in the house included a photovoltaic (PV) system; a hydrogen system; fuel cells; a battery-storage system; and a thermal solar panel. Maximum energy savings were evaluated for different configurations and combinations of the installed energy sources. A domotic system was also used to automatically control the use of electrical appliances and improve safety and comfort. An energy side management system was designed and compared with a demand side management system. Various scenarios were simulated in order to test the energy management systems in relation to the automated domotic system.

  7. A description of the demonstration Integral Fast Reactor fuel cycle facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Carnes, M.D.; Dwight, C.C.; Forrester, R.J.

    1991-01-01

    A fuel examination facility at the Idaho National Engineering Laboratory is being converted into a facility that will electrochemically process spent fuel. This is an important step in the demonstration of the Integral Fast Reactor concept being developed by Argonne National Laboratory. Renovations are designed to bring the facility up to current health and safety and environmental standards and to support its new mission. Improvements include the addition of high-reliability earthquake hardened off-gas and electrical power systems, the upgrading of radiological instrumentation, and the incorporation of advances in contamination control. A major task is the construction of a new equipment repair and decontamination facility in the basement of the building to support operations

  8. Fuel cycle facility control system for the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Benedict, R.W.; Tate, D.A.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations

  9. Data processing in the integrated data base for spent fuel and radioactive waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Morrison, G.W.; Notz, K.J.

    1984-01-01

    The Integrated Data Base (IDB) Program at Oak Ridge National Laboratory (ORNL) produces for the U.S. Department of Energy (DOE) the official spent fuel and radioactive waste inventories and projections for the United States through the year 2020. Inventory data are collected and checked for consistency, projection data are calculated based on specified assumptions, and both are converted to a standard format. Spent fuel and waste radionclides are decayed as a function of time. The resulting information constitutes the core data files called the Past/Present/Future (P/P/F) data base. A data file management system, SAS /sup R/, is used to retrieve the data and create several types of output: an annual report, an electronic summary data file designed for IBM-PC /sup R/ -compatible computers, and special-request reports

  10. Micro direct methanol fuel cell with perforated silicon-plate integrated ionomer membrane

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Johansson, Anne-Charlotte Elisabeth Birgitta

    2014-01-01

    This article describes the fabrication and characterization of a silicon based micro direct methanol fuel cell using a Nafion ionomer membrane integrated into a perforated silicon plate. The focus of this work is to provide a platform for micro- and nanostructuring of a combined current collector...... at a perforation ratio of 40.3%. The presented fuel cells also show a high volumetric peak power density of 2 mW cm−3 in light of the small system volume of 480 μL, while being fully self contained and passively feed....... and catalytic electrode. AC impedance spectroscopy is utilized alongside IV characterization to determine the influence of the plate perforation geometries on the cell performance. It is found that higher ratios of perforation increases peak power density, with the highest achieved being 2.5 mW cm−2...

  11. HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    DEFF Research Database (Denmark)

    Gao, Xin

    This thesis presents two case studies on improving the efficiency and the loadfollowing capability of a high temperature polymer electrolyte membrane (HTPEM) fuel cell system by the application of thermoelectric (TE) devices. TE generators (TEGs) are harnessed to recover the system exhaust gas...... developed three-dimensional numerical model in ANSYS Fluent®. This thesis introduces the progress of this project in a cognitive order. The first chapter initially prepares the theory and characteristics of the fuel cell system and TE devices. Project motivations are conceived. Then similar studies existing...... power output on the subsystem design and performance were also systematically analyzed. The TEG subsystem configuration is optimized. The usefulness and convenience of the model are proved. TE coolers (TECs) are integrated into the methanol evaporator of the HT-PEM system for improving the whole system...

  12. Spent fuel and radioactive waste: an integrated data base of inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Notz, K.J.; Forsberg, C.W.; Mastal, E.F.

    1984-01-01

    The Integrated Data Base (IDB) Program provides official US Department of Energy (DOE) data on spent fuel and radioactive waste inventories, projections, and characteristics. This information is provided through the cooperative efforts of the IDB Program and DOE lead offices, lead sites, major programs, and generator sites. The program is entering its fifth year, and major accomplishments are summarized in three broad areas: (1) the annual inventory report, including ORIGEN2 applications and a Quality Assurance (QA) plan; (2) the summary data file and direct user access; and (3) data processing methodology and support to other programs. Plans for future work in these areas are outlined briefly, including increased utilization of personal computers. Some examples of spent fuel data are given in terms of projected quantities for two growth scenarios, burnup and age profile of the existing inventory, and the approximate specific thermal power relative to high-level waste (HLW) from various sources. 4 refs., 2 figs., 3 tabs

  13. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  14. Materials for fuel cells

    OpenAIRE

    Haile, Sossina M

    2003-01-01

    Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cell...

  15. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  16. Nuclear fuel storage facility

    International Nuclear Information System (INIS)

    Matsumoto, Takashi; Isaka, Shinji.

    1987-01-01

    Purpose: To increase the spent fuel storage capacity and reduce the installation cost in a nuclear fuel storage facility. Constitution: Fuels handled in the nuclear fuel storage device of the present invention include the following four types: (1) fresh fuels, (2) 100 % reactor core charged fuels, (3) spent fuels just after taking out and (4) fuels after a certain period (for example one half-year) from taking out of the reactor. Reactivity is high for the fuels (1), and some of fuels (2), while low in the fuels (3) (4), Source intensity is strong for the fuels (3) and some of the fuels (2), while it is low for the fuels (1) and (4). Taking notice of the fact that the reactivity, radioactive source intensity and generated after heat are different in the respective fuels, the size of the pool and the storage capacity are increased by the divided storage control. While on the other hand, since the division is made in one identical pool, the control method becomes important, and the working range is restricted by means of a template, interlock, etc., the operation mode of the handling machine is divided into four, etc. for preventing errors. (Kamimura, M.)

  17. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  18. Integration of Forest Fuel Handling in the Ordinary Forestry. Studies on Forestry, Technology and Economy of Forest Fuel Production in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars [Regional Forestry Board of Vaermland-Oerebro, Karlstad (Sweden); Budrys, Renatas [Lithuanian Forest Research Inst. (Lithuania)

    2002-07-01

    During the year 2000, The Swedish Forest Administration and Forest Department, Ministry of Environment in Lithuania, started a bilateral co-operation project, named: 'Swedish Lithuanian Wood Fuel Development Project', financed by the Swedish Energy Agency. The project was divided into 2 phases. The first phase objectives were to make a feasibility study in the eastern part of Lithuania and to identify the present conditions for the utilization of wood fuel within seven state forest enterprises and to define a demonstration and experimental area for the phase 2. The purpose of this work was to find solutions for creating horizontal and vertical integration in the handling of forest fuels in ordinary forestry and supply systems. The aim would be to give specific recommendations on which methods are the most suitable and profitable and on what type of equipment to use for various conditions and by the means of demonstrations to show how to integrate the positive results into the ordinary forestry activities. Different kinds of activities have been carried out to ensure capacity building and development on other levels within the system. 3 activity groups were established and have been working side by side with the appointed team leaders for each activity group from the institutions leading in the specific area within the forest sector in Lithuania. Swedish specialists from the Swedish Forest Administration were involved into the project and the activity groups as well. Lithuanian Forest Research Institute was involved into the project with research support. Additional to the project a mobile drum wood chipper was purchased from Sweden. 3 separate investigations have been conducted, one by Kaunas Univ. of Tech. on the analysis and estimation of material balance in Lithuania saw milling industry, another by Forest Economy Centre on wood fuel produced in industry in Lithuania and the third one by Lithuanian Energy Institute and AF international on Bio fuel

  19. Strategy of fuel management

    International Nuclear Information System (INIS)

    Guesdon, B.; Le Bars, M.; Mathonniere, G.

    1996-01-01

    The management of nuclear fuels in PWR type reactors has been adapted to improve the safety and the competitiveness of brackets. The economic optimum, at the park level, depends on many parameters, variable with time and in function of them, we favour the annual campaigns and the economy won on the cost of cycle, or long campaigns with benefit on availability. The reduction of the number of stopping improves the availability, limits the doses integrated by the personnel of intervention and reduces the number of incidents during the stopping. An other determining factor is connected to the policy of closed cycle with the the principle of equality between the reprocessing flux and the valorization of reprocessed fuels: plutonium and reprocessed uranium. The progress of fuel have allowed significant improvements in the managements of cores. With the safety, the aim is also to keep if not improve the competitiveness of the Nuclear park by valorizing the matter coming from reprocessing. (N.C.)

  20. Taxing carbon in fuels

    International Nuclear Information System (INIS)

    Arnold, Rob

    2000-01-01

    It is argued that both the Climate Change Levy and the fuel duty tax are outdated even before they are implemented. Apparently, the real problems are not in the bringing of road fuels into the scope of the Climate Change Levy but in introducing reforms to improve integration of greenhouse gases and taxation. Both fuel duty and the Levy are aimed at maximising efficiency and reducing air pollution. The system as it stands does not take into account the development of a market where the management and trading of carbon and greenhouse gases may jeopardise the competitiveness of UK businesses. It is argued that an overhaul of climate and emissions-related law is necessary. The paper is presented under the sub-headings of (i) a fixation on energy; (ii) no focus on CO 2 ; (iii) carbon markets - beyond the levy and (iv) tax structure. (UK)

  1. Fueling Global Fishing Fleets

    International Nuclear Information System (INIS)

    Tyedmers, Peter H.; Watson, Reg; Pauly, Daniel

    2005-01-01

    Over the course of the 20th century, fossil fuels became the dominant energy input to most of the world's fisheries. Although various analyses have quantified fuel inputs to individual fisheries, to date, no attempt has been made to quantify the global scale and to map the distribution of fuel consumed by fisheries. By integrating data representing more than 250 fisheries from around the world with spatially resolved catch statistics for 2000, we calculate that globally, fisheries burned almost 50 billion L of fuel in the process of landing just over 80 million t of marine fish and invertebrates for an average rate of 620 L/t. Consequently, fisheries account for about 1.2% of global oil consumption, an amount equivalent to that burned by the Netherlands, the 18th-ranked oil consuming country globally, and directly emit more than 130 million t of CO 2 into the atmosphere. From an efficiency perspective, the energy content of the fuel burned by global fisheries is 12.5 times greater than the edible protein energy content of the resulting catch

  2. Integrated monitoring and reviewing systems for the Rokkasho Spent Fuel Receipt and Storage Facility

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Ishikawa, Masayuki; Matsuda, Yuji

    1998-01-01

    The Rokkasho Spent Fuel Receipt and Storage (RSFS) Facility at the Rokkasho Reprocessing Plant (RRP) in Japan is expected to begin operations in 1998. Effective safeguarding by International Atomic Energy Agency (IAEA) and Japan Atomic Energy Bureau (JAEB) inspectors requires monitoring the time of transfer, direction of movement, and number of spent fuel assemblies transferred. At peak throughput, up to 1,000 spent fuel assemblies will be accepted by the facility in a 90-day period. In order for the safeguards inspector to efficiently review the resulting large amounts of inspection information, an unattended monitoring system was developed that integrates containment and surveillance (C/S) video with radiation monitors. This allows for an integrated review of the facility's radiation data, C/S video, and operator declaration data. This paper presents an outline of the integrated unattended monitoring hardware and associated data reviewing software. The hardware consists of a multicamera optical surveillance (MOS) system radiation monitoring gamma-ray and neutron detector (GRAND) electronics, and an intelligent local operating network (ILON). The ILON was used for time synchronization and MOS video triggers. The new software consists of a suite of tools, each one specific to a single data type: radiation data, surveillance video, and operator declarations. Each tool can be used in a stand-alone mode as a separate ion application or configured to communicate and match time-synchronized data with any of the other tools. A data summary and comparison application (Integrated Review System [IRS]) coordinates the use of all of the data-specific review tools under a single-user interface. It therefore automates and simplifies the importation of data and the data-specific analyses

  3. Run-Beyond-Cladding-Breach (RBCB) test results for the Integral Fast Reactor (IFR) metallic fuels program

    International Nuclear Information System (INIS)

    Batte, G.L.; Hoffman, G.L.

    1990-01-01

    In 1984 Argonne National Laboratory (ANL) began an aggressive program of research and development based on the concept of a closed system for fast-reactor power generation and on-site fuel reprocessing, exclusively designed around the use of metallic fuel. This is the Integral Fast Reactor (IFR). Although the Experimental Breeder Reactor-II (EBR-II) has used metallic fuel since its creation 25 yeas ago, in 1985 ANL began a study of the characteristics and behavior of an advanced-design metallic fuel based on uranium-zirconium (U-Zr) and uranium-plutonium-zirconium (U-Pu-Zr) alloys. During the past five years several areas were addressed concerning the performance of this fuel system. In all instances of testing the metallic fuel has demonstrated its ability to perform reliably to high burnups under varying design conditions. This paper will present one area of testing which concerns the fuel system's performance under breach conditions. It is the purpose of this paper to document the observed post-breach behavior of this advanced-design metallic fuel. 2 figs., 1 tab

  4. Fuels planning: science synthesis and integration; social issues fact sheet 02: Developing personal responsibility for fuels reduction: Types of information to encourage proactive behavior

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Fuels management responsibilities may include providing local property owners with the information for taking responsibility for reducing fuels on their land. This fact sheet discusses three different types of information that may be useful in programs to engage property owners in fuel reduction activities.

  5. Fuels planning: science synthesis and integration; environmental consequences fact sheet 12: Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool

    Science.gov (United States)

    William Elliot; David Hall

    2005-01-01

    The Water Erosion Prediction Project (WEPP) Fuel Management (FuMe) tool was developed to estimate sediment generated by fuel management activities. WEPP FuMe estimates sediment generated for 12 fuel-related conditions from a single input. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user how to obtain the...

  6. Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1988-09-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs

  7. Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2

    International Nuclear Information System (INIS)

    1986-09-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions

  8. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Cardona Alzate, C.A.; Sanchez Toro, O.J.

    2006-01-01

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol

  9. Integrated production of merchantable wood and wood fuels in industry; Teollisuuden ainespuun ja puupolttoaineen integroitu tuotanto

    Energy Technology Data Exchange (ETDEWEB)

    Kuvaja, K [Enso Oy, Imatra (Finland). Forest Dept.

    1997-12-01

    The aim of this project is the economically profitable integrated harvesting of industrial wood and firewood especially in harvesting of small-diameter first thinning wood. The research in 1994 was concentrated on improvement of the quality of the chipping methods based on chain-flail debarking chipping method, and on determination of the possible utilisation targets for the fuel fraction. A reasonably large drum debarking test was also carried out at the industrial scale debarking station of the Enocell Oy. More than 80 000 m{sup 3} of first thinning wood was delivered by Enocell during this project. The quality of wood chips, produced using the chain-flail delimbing method, could be improved in the case of pine nearly to the required quality level, but additional measures are still needed in the case of birch. The fuel fraction deliveries to different points of utilisation was started. The particle size of the fuel fraction appeared to be good after crushing. In 1995 a chain-flail-drum debarking chipping unit was developed to improve and homogenise the quality of chips. (orig.)

  10. Improved method to demonstrate the structural integrity of high density fuel storage racks

    International Nuclear Information System (INIS)

    Hinderks, M.; Ungoreit, H.; Kremer, G.

    2001-01-01

    Reracking of existing fuel pools to the maximum extent is desirable from an economical point of view. This goal can be achieved by minimizing the gaps between the spent fuel storage racks. Since the rack design is aimed at enabling consolidated fuel rod storage, additional requirements arise with respect to the design and the structural analysis. The loads resulting from seismic events are decisive for the structural analysis and require a specially detailed and in-depth analysis for high seismic loads. The verification of structural integrity and functionality is performed in two phases. In the first phase the motional behavior of single racks, rows of racks and, where required, of all racks in the pool is simulated by excitation with displacement time histories under consideration of the fluid-structure interaction (FSI). The displacements from these simulations are evaluated, while the loads are utilized as input data for the structural analysis of the racks and the pool floor. The structural analyses for the racks comprise substantially stress analyses for base material and welds as well as stability analyses for the support channels and the rack outside walls. The analyses are performed in accordance with the specified codes and standards

  11. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal

  12. Measurement control design and performance assessment in the Integral Fast Reactor fuel cycle

    International Nuclear Information System (INIS)

    Orechwa, Y.; Bucher, R.G.

    1994-01-01

    The Integral Fast Reactor (IFR)--consisting of a metal fueled and liquid metal cooled reactor together with an attendant fuel cycle facility (FCF)--is currently undergoing a phased demonstration of the closed fuel cycle at Argonne National Laboratory. The recycle technology is pyrometalurgical based with incomplete fission product separation and all transuranics following plutonium for recycle. The equipment operates in batch mode at 500 to 1,300 C. The materials are highly radioactive and pyrophoric, thus the FCF requires remote operation. Central to the material control and accounting system for the FCF are the balances for mass measurements. The remote operation of the balances limits direct adjustment. The radiation environment requires that removal and replacement of the balances be minimized. The uniqueness of the facility precludes historical data for design and performance assessment. To assure efficient operation of the facility, the design of the measurement control system has called for procedures which assess the performance of the balances in great detail and will support capabilities for the correction of systematic changes in the performance of the balances through software

  13. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics

    International Nuclear Information System (INIS)

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal

  14. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Cardona Alzate, C.A. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia)]. E-mail: ccardonaal@unal.edu.co; Sanchez Toro, O.J. [Department of Chemical Engineering, National University of Colombia at Manizales, Cra. 27 No. 64-60, Manizales (Colombia); Department of Engineering, University of Caldas, Calle 65 No. 26-10, Manizales (Colombia)

    2006-10-15

    Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction-reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65-18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol.

  15. Welfare implications of the renewable fuel standard with an integrated tax-subsidy policy

    International Nuclear Information System (INIS)

    Skolrud, Tristan D.; Galinato, Gregmar I.

    2017-01-01

    This paper derives the optimal integrated tax-subsidy policy where one input is taxed and revenues are used to subsidize the use of a substitute input to reduce greenhouse gas emissions given the existing policies under the Renewable Fuel Standard policies. We measure the welfare effects and impact on cellulosic ethanol production after implementing the tax-subsidy policy using a general equilibrium model. A revenue-neutral integrated tax-subsidy scheme leads to a small positive tax rate for crude oil and a large positive subsidy for cellulosic ethanol because the former has a larger emissions coefficient than the latter. The overall welfare effects of an integrated tax subsidy scheme are less than a 1% increase for the economy but the growth in the cellulosic ethanol industry could range from 28% to 238% because the revenues from taxing crude oil are directly used to subsidize cellulosic ethanol production. - Highlights: • We derive an integrated tax-subsidy interacting with the Renewable Fuel Standard. • The policy is revenue-neutral. • Policy results in a small crude oil tax and a large cellulosic ethanol subsidy. • Simulations indicate a welfare-increasing optimal policy. • Growth in the cellulosic ethanol industry ranges from 28% to 238%.

  16. Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Thorud, Bjoern

    2005-07-01

    This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and

  17. Analysis of fuel operational reliability and fuel failures

    International Nuclear Information System (INIS)

    Smiesko, I.

    1999-01-01

    In this lecture the fuel failure (loss of fuel rod (cladding) integrity, corruption of second barrier for fission product release from duel and their consequences (increase of primary coolant activity; increase of fission product releases to environment; increase of rad-waste activities and potential increase of personnel exposure) are discussed

  18. BWR fuel performance

    International Nuclear Information System (INIS)

    Baily, W.E.; Armijo, J.S.; Jacobson, J.; Proebstle, R.A.

    1979-01-01

    The General Electric experience base on BWR fuel includes over 29,000 fuel assemblies which contain 1,600,000 fuel rods. Over the last five years, design, process and operating changes have been introduced which have had major effects in improving fuel performance. Monitoring this fuel performance in BWRs has been accomplished through cooperative programs between GE and utilities. Activities such as plant fission product monitoring, fuel sipping and fuel and channel surveillance programs have jointly contributed to the value of this extensive experience base. The systematic evaluation of this data has established well-defined fuel performance trends which provide the assurance and confidence in fuel reliability that only actual operating experience can provide

  19. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  20. HTGR Fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents

  1. Elongated fuel road

    International Nuclear Information System (INIS)

    Williams, A.E.; Linkison, W.S.

    1977-01-01

    A fuel rod is proposed where a reorientation of the fuel in case of a considerable temperature increase, causing the melting of the densified fuel powder, will be avoided. For this purpose, in longitudinal direction of the fuel rod, a number of diameter reductions of the can are applied of certain distances. In the reduction zone the cross-sectional area of the fuel is reduced, as compared to the one of the remaining fuel material in the regions without diameter reduction, but not the density of the fuel. The recess is chosen to that in case of melting of the fuel in the center of the not contracted zone the fuel in the center of the narrowed area will remain solid and keep the molten material in position. (HR) [de

  2. 49 CFR 571.301 - Standard No. 301; Fuel system integrity.

    Science.gov (United States)

    2010-10-01

    .... Fuel spillage means the fall, flow, or run of fuel from the vehicle but does not include wetness... driven fuel pump that normally runs when the vehicle's electrical system is activated, it is operating at... equipped with P205/75R15 pneumatic tires inflated to 200 kPa ±21 kPa. S8Phase-In schedule. S8.1Rear impact...

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  4. Management and inspection of integrity of spent fuel from IRT MEPhI research reactor

    International Nuclear Information System (INIS)

    Aden, V.G.; Bulkin, S.Y.; Sokolov, A.V.; Bushuev, A.V.; Redkin, A.F.; Portnov, A.A.

    2002-01-01

    The information on wet storage and dry storage of the spent nuclear fuel (SNF) of the IRT MEPhI reactor and experience from SNF shipment for reprocessing are presented. The procedure and a facility for nondestructive inspection of local power density fields and the burnup of fuel assemblies based on studying the γ-activity of some fission products generated in U 235 and procedure for inspection of the fuel element cladding leak tightness are described. (author)

  5. Transient survivability of LMR oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, E.T.; Pitner, A.L.; Bard, F.E.; Culley, G.E.; Hunter, C.W.

    1986-01-01

    Fuel pin integrity during transient events must be assessed for both the core design and safety analysis phases of a reactor project. A significant increase in the experience related to limits of integrity for oxide fuel pins in transient overpower events has been realized from testing of fuel pins irradiated in FFTF and PFR. Fourteen FFTF irradiated fuel pins were tested in TREAT, representing a range of burnups, overpower ramp rates and maximum overpower conditions. Results of these tests along with similar testing in the PFR/TREAT program, provide a demonstration of significant safety margins for oxide fuel pins. Useful information applied in analytical extrapolation of fuel pin test data have been developed from laboratory transient tests on irradiated fuel cladding (FCTT) and on unirradiated fuel pellet deformation. These refinements in oxide fuel transient performance are being applied in assessment of transient capabilities of long lifetime fuel designs using ferritic cladding

  6. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  7. Part 5. Fuel cycle options

    International Nuclear Information System (INIS)

    Lineberry, M.J.; McFarlane, H.F.; Amundson, P.I.; Goin, R.W.; Webster, D.S.

    1980-01-01

    The results of the FBR fuel cycle study that supported US contributions to the INFCE are presented. Fuel cycle technology is reviewed from both generic and historical standpoints. Technology requirements are developed within the framework of three deployment scenarios: the reference international, the secured area, and the integral cycle. Reprocessing, fabrication, waste handling, transportation, and safeguards are discussed for each deployment scenario. Fuel cycle modifications designed to increase proliferation defenses are described and assessed for effectiveness and technology feasibility. The present status of fuel cycle technology is reviewed and key issues that require resolution are identified

  8. Nuclear fuel element end fitting

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A typical embodiment of the invention has an array of sockets that are welded to the intersections of the plates that form the upper and lower end fittings of a nuclear reactor fuel element. The sockets, which are generally cylindrical in shape, are oriented in directions that enable the longitudinal axes of the sockets to align with the longitudinal axes of the fuel rods that are received in the respective sockets. Detents impressed in the surfaces of the sockets engage mating grooves that are formed in the ends of the fuel rods to provide for the structural integrity of the fuel element

  9. Behavior of low-burnup metallic fuels for the integral fast reactor at elevated temperatures in ex-reactor tests

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Wang, Da-Yung; Kramer, J.M.

    1991-07-01

    A series of ex-reactor heating tests on low burnup U-26wt.%Pu-10wt.%Zr metallic fuel for the PRISM reactor was conducted to evaluate fuel/cladding metallurgical interaction and its effect on cladding integrity at elevated temperatures. The reaction between the fuel and cladding caused liquid-phase formation and dissolution of the inner surface of the cladding. The rate of cladding penetration was below the existing design correlation, which provides a conservative margin to cladding failure. In a test which enveloped a wide range of postulated reactor transient events, a substantial temporal cladding integrity margin was demonstrated for an intact, whole fuel pin. The cause of the eventual pin breach was reaction-induced cladding thinning combined with fission-gas pressure loading. The behavior of the breached pin was benign. 7 refs., 7 figs., 1 tab

  10. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  11. Nuclear fuel storage

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1979-01-01

    A method and apparatus for the storage of fuel in a stainless steel egg crate structure within a storage pool are described. Fuel is initially stored in a checkerboard pattern or in each opening if the fuel is of low enrichment. Additional fuel (or fuel of higher enrichment) is later stored by adding stainless steel angled plates within each opening, thereby forming flux traps between the openings. Still higher enrichment fuel is later stored by adding poison plates either with or without the stainless steel angles. 8 claims

  12. BNFL Springfields Fuel Division

    International Nuclear Information System (INIS)

    Tarkiainen, S.; Plit, H.

    1998-01-01

    The Fuel Division of British Nuclear Fuels Ltd (BNFL) manufactures nuclear fuel elements for British Magnox and AGR power plants as well as for LWR plants. The new fuel factory - Oxide Fuel Complex (OFC), located in Springfields, is equipped with modern technology and the automation level of the factory is very high. With their quality products, BNFL aims for the new business areas. A recent example of this expansion was shown, when BNFL signed a contract to design and license new VVER-440 fuel for Finnish Loviisa and Hungarian Paks power plants. (author)

  13. Fuel cycle centres

    International Nuclear Information System (INIS)

    Hagen, M.

    1977-01-01

    The concept of co-locating and integrating fuel cycle facilities at one site is discussed. This concept offers considerable advantages, especially in minimizing the amount of radioactive material to be transported on public roads. Safeguards and physical protection as relating to such an integrated system of facilities are analysed in detail, also industrial and commercial questions. An overall risk-benefit evaluation turns out to be in favour of fuel cycle centres. These centres seem to be specifically attractive with regard to the back end of the fuel cycle, including on-site disposal of radioactive wastes. The respective German approach is presented as an example. Special emphasis is given to the site selection procedures in this case. Time scale and cost for the implementation of this concept are important factors to be looked at. Since participation of governmental institutions in these centres seems to be indispensable their respective roles as compared to industry must be clearly defined. The idea of adjusting fuel cycle centres to regional rather than national use might be an attractive option, depending on the specific parameters in the region, though results of existing multinational ventures are inconclusive in this respect. Major difficulties might be expected e.g. because of different national safety regulations and standards as well as commercial conditions among partner countries. Public acceptance in the host country seems to be another stumbling block for the realization of this type of multinational facilities

  14. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  15. Integration of Fuel Cell Micro-CHPs on Low. Voltage Grid: A Danish Case Study

    DEFF Research Database (Denmark)

    You, Shi; Marra, Francesco; Træholt, Chresten

    2012-01-01

    The future significance of fuel cell (FC) powered micro combined heat and power (micro-CHP) units in meeting the residential energy demands is set to increase, which may have a considerable impact on the low voltage (LV) grid. The objective of this paper is to investigate into the related technical...... issues using a Danish case study with different penetration levels of uncoordinated FC micro-CHPs. Based on the findings, it is recommended to design grid oriented integration strategies such as Virtual Power Plants (VPPs) for achieving future smart grids with a large roll out of distributed energy...

  16. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells

    DEFF Research Database (Denmark)

    Huang, Liping; Angelidaki, Irini

    2008-01-01

    Pentose and humic acids (HA) are the main components of hydrolysates, the liquid fraction produced during thermohydrolysis of lignocellulosic material. Electricity generation integrated with xylose (typical pentose) degradation as well as the effect of HA on electricity production in microbial fuel...... to controls where HAs were not added, addition of commercial HA resulted in increase of power density and coulombic efficiency, which ranged from 7.5% to 67.4% and 24% to 92.6%, respectively. Digested manure wastewater (DMW) was tested as potential mediator for power generation due to its content of natural...

  17. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  18. Fuel for the bottom line

    International Nuclear Information System (INIS)

    Dickinson, J.

    1992-01-01

    This article discusses the integration of natural gas fuel production with power production in a partnership between the gas producer and the power plant owner that benefits them both. The topics discussed in the article include modifying existing fuel supply agreements, improving the economics of projects under development, and increasing profitability

  19. Irradiation performance of metallic fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Porter, D.L.; Batte, G.L.; Hofman, G.L.

    1989-01-01

    Argonne National Laboratory has been working for the past five years to develop and demonstrate the Integral Fast Reactor (IFR) concept. The concept involves a closed system for fast-reactor power generation and on-site fuel reprocessing, both designed specifically around the use of metallic fuel. The Experimental Breeder Reactor-II (EBR-II) has used metallic fuel for all of its 25-year life. In 1985, tests were begun to examine the irradiation performance of advanced-design metallic fuel systems based on U-Zr or U-Pu-Zr fuels. These tests have demonstrated the viable performance of these fuel systems to high burnup. The initial testing program will be described in this paper. 2 figs

  20. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    Andersor, C.K.; Harris, R.P.; Crump, M.W.; Fuhrman, N.

    1987-01-01

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  1. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  2. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2011-06-28

    ... Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel... be proposing amendments to the renewable fuel standard program regulations to establish annual...

  3. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  4. DUPIC fuel compatibility assessment

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition

  5. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  6. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  7. A decade of advances in metallic fuel

    International Nuclear Information System (INIS)

    Lahm, C.E.; Pahl, R.G.; Porter, D.L.; Tsai, H.; Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Hofman, G.L.; Walters, L.C.

    1991-01-01

    Significant advances in the understanding of behavior and performance of metallic fuels to high burnup have been achieved over the past four decades. Metallic fuels were the first fuels for liquid-metal-cooled fast reactors (LMR) but in the late 1960's worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved. Now metallic fuels are recognized as a preferred viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last decade and highlights the behavior and performance features which have demonstrated a much greater potential than previously expected

  8. Advancing PWR fuel to meet customer needs

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, F W

    1987-03-01

    Since the introduction of the Optimized Fuel Assembly (OFA) for PWRs in the late 1970s, Westinghouse has continued to work with the utility customers to identify the greatest needs for further advance in fuel performance and reliability. The major customer requirements include longer fuel cycle at lower costs, increased fuel discharge burn-up, enhanced operating flexibility, all accompanied by even greater reliability. In response to these needs, Westinghouse developed Vantage 5 PWR fuel. To optimize reactor operations, Vantage 5 fuel features distinct advantages: integral fuel burnable absorbers, axial and radial blankets, intermediate flow mixers, a removable top nozzle, and assembly modifications to accommodate increased discharge burn-up.

  9. Nuclear fuel management in JMTR

    International Nuclear Information System (INIS)

    Naka, Michihiro; Miyazawa, Masataka; Sato, Hiroshi; Nakayama, Fusao; Ito, Haruhiko

    1999-01-01

    amounted to 922 in number, and the longest storage term was about 11 years. As mentioned above, JMTR have used 2,624 fuel elements (about 50,000 fuel plates) until March 1999, and the longest storage term in the canal water reached to 11 years. Despite such conditions, all fuel elements have shown enough integrity without any failure. (author)

  10. Romanian nuclear fuel program

    International Nuclear Information System (INIS)

    Budan, O.

    1999-01-01

    The paper presents and comments the policy adopted in Romania for the production of CANDU-6 nuclear fuel before and after 1990. The CANDU-6 nuclear fuel manufacturing started in Romania in December 1983. Neither AECL nor any Canadian nuclear fuel manufacturer were involved in the Romanian industrial nuclear fuel production before 1990. After January 1990, the new created Romanian Electricity Authority (RENEL) assumed the responsibility for the Romanian Nuclear Power Program. It was RENEL's decision to stop, in June 1990, the nuclear fuel production at the Institute for Nuclear Power Reactors (IRNE) Pitesti. This decision was justified by the Canadian specialists team findings, revealed during a general, but well enough technically founded analysis performed at IRNE in the spring of 1990. All fuel manufactured before June 1990 was quarantined as it was considered of suspect quality. By that time more than 31,000 fuel bundles had already been manufactured. This fuel was stored for subsequent assessment. The paper explains the reasons which provoked this decision. The paper also presents the strategy adopted by RENEL after 1990 regarding the Romanian Nuclear Fuel Program. After a complex program done by Romanian and Canadian partners, in November 1994, AECL issued a temporary certification for the Romanian nuclear fuel plant. During the demonstration manufacturing run, as an essential milestone for the qualification of the Romanian fuel supplier for CANDU-6 reactors, 202 fuel bundles were produced. Of these fuel bundles, 66 were part of the Cernavoda NGS Unit 1 first fuel load (the balance was supplied by Zircatec Precision Industries Inc. ZPI). The industrial nuclear fuel fabrication re-started in Romania in January 1995 under AECL's periodical monitoring. In December 1995, AECL issued a permanent certificate, stating the Romanian nuclear fuel plant as a qualified and authorised CANDU-6 fuel supplier. The re-loading of the Cernavoda NGS Unit 1 started in the middle

  11. Fuel Cell Electric Bus Evaluations | Hydrogen and Fuel Cells | NREL

    Science.gov (United States)

    Bus Evaluations Fuel Cell Electric Bus Evaluations NREL's technology validation team evaluates fuel cell electric buses (FCEBs) to provide comprehensive, unbiased evaluation results of fuel cell bus early transportation applications for fuel cell technology. Buses operate in congested areas where

  12. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  13. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  14. Application of the integral method to modelling the oxidation of defected fuel elements

    International Nuclear Information System (INIS)

    Kolar, M.

    1995-06-01

    The starting point for this report is the discrepancy reported in previous work between the reaction-diffusion calculations and the CEX-1 experiment, which involves storage of defected fuel elements in air at 150 deg C. This discrepancy is considerably diminished here by a more critical choice of theoretical parameters, and by taking into account the fact that different CEX-1 fuel elements were oxidized at very different rates and that the fuel element used previously for comparison with theoretical calculations actually underwent two limited-oxygen-supply cycles. Much better agreement is obtained here between the theory and the third, unlimited-air, storage period of the CEX-1 experiment. The approximate integral method is used extensively for the solution of the one-dimensional diffusion moving-boundary problems that may describe various storage periods of the CEX-1 experiment. In some cases it is easy to extend this method to arbitrary precision by using higher moments of the diffusion equation. Using this method, the validity of quasi-steady-state approximation is verified. Diffusion-controlled oxidation is also studied. In this case, for the unlimited oxygen supply, the integral method leads to an exact analytical solution for linear geometry, and to a good analytical approximation of the solution for the spherically symmetric geometry. These solutions may have some application in the analysis of experiments on the oxidation of small UO 2 fragments or powders when the individual UO 2 grains may be considered to be approximately spherical. (author). 23 refs., 5 tabs., 11 figs

  15. Thermodynamic performance analysis of a fuel cell trigeneration system integrated with solar-assisted methanol reforming

    International Nuclear Information System (INIS)

    Wang, Jiangjiang; Wu, Jing; Xu, Zilong; Li, Meng

    2017-01-01

    Highlights: • Propose a fuel cell trigeneration system integrated with solar-assisted methanol reforming. • Optimize the reaction parameters of methanol steam reforming. • Present the energy and exergy analysis under design and off-design work conditions. • Analyze the contributions of solar energy to the trigeneration system. - Abstract: A solar-assisted trigeneration system for producing electricity, cooling, and heating simultaneously is an alternative scheme to improve energy efficiency and boost renewable energy. This paper proposes a phosphoric acid fuel cell trigeneration system integrated with methanol and steam reforming assisted by solar thermal energy. The trigeneration system consists of a solar heat collection subsystem, methanol steam reforming subsystem, fuel cell power generation subsystem, and recovered heat utilization subsystem. Their respective thermodynamic models are constructed to simulate the system input/output characteristics, and energy and exergy efficiencies are employed to evaluate the system thermodynamic performances. The contribution of solar energy to the system is analyzed using solar energy/exergy share. Through the simulation and analysis of methanol and steam reforming reactions, the optimal reaction pressure, temperature, and methanol to water ratio are obtained to improve the flow rate and content of produced hydrogen. The thermodynamic simulations of the trigeneration system show that the system energy efficiencies at the summer and winter design work conditions are 73.7% and 51.7%, while its exergy efficiencies are 18.8% and 26.1%, respectively. When the solar radiation intensity is different from the design work condition, the total energy and exergy efficiencies in winter decrease approximately by 4.7% and 2.2%, respectively, due to the decrease in solar heat collection efficiency. This proposed novel trigeneration system complemented by solar heat energy and methanol chemical energy is favorable for improving the

  16. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  17. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    ... to light gases then steam reform the light gases into hydrogen rich stream. This report documents the efforts in developing a fuel processor capable of providing hydrogen to a 3kW fuel cell stack...

  18. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  19. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  20. Fuel transporting device

    International Nuclear Information System (INIS)

    Shiratori, Hirozo.

    1979-01-01

    Purpose: In a liquid-metal cooled reactor, to reduce the waiting time of fuel handling apparatuses and shorten the fuel exchange time. Constitution: A fuel transporting machine is arranged between a reactor vessel and an out-pile storage tank, thereby dividing the transportation line of the pot for contracting fuel and transporting the same. By assuming such a construction, the flow of fuel transportation which has heretofore been carried out through fuel transportation pipes is not limited to one direction but the take-out of fuels from the reactor and the take-in thereof from the storage tank can be carried out constantly, and much time is not required for fuel exchange. (Kamimura, M.)

  1. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1981-01-01

    An array of rods comprising zirconium alloy sheathed nuclear fuel pellets assembled to form a fuel element for a pressurised water reactor is claimed. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  2. Nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1984-01-01

    The fuel elements for a pressurised water reactor comprise arrays of rods of zirconium alloy sheathed nuclear fuel pellets. The helium gas pressure within each rod differs substantially from that of its closest neighbours

  3. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  4. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  5. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of WWER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual WWER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the WWER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in WWER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from WWER-440 in the fission products. The next step is multi recycling of Pu in the fission products to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (Authors)

  6. The integration of fast reactor to the fuel cycle in Slovakia

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Necas, V.

    2009-01-01

    A very topical problem of nuclear power is the fuel cycle back-end. One of the options is a LWR spent fuel reprocessing and a fissile nuclides re-use in the fast reactor. A large amount of spent fuel has been stored in the power plant intermediate storage during the operation of VVER-440 reactors in Slovakia. This paper is based on an analysis of Pu and minor actinides content in actual VVER-440 spent fuel stored in Slovakia. The next part presents the possibilities of reprocessing and Pu re-use in fast reactor under Slovak conditions. The fuel cycle consisting of the VVER-440 reactor, PUREX reprocessing plant and a sodium fast reactor was designed. The last section compares two parts of this fuel cycle: one is UOX cycle in VVER-440 reactor and the other is cycle in the fast reactor - SUPER PHENIX loaded with MOX fuel (Pu + Minor Actinides). The starting point is a single recycling of Pu from VVER-440 in the FR. The next step is multirecycling of Pu in the FR to obtain equilibrium cycle. This article is dealing with the solution of power production and fuel cycle indicators. All kinds of calculations were performed by computer code HELIOS 1.10. (authors)

  7. Biomass-powered Solid Oxide Fuel Cells : Experimental and Modeling Studies for System Integrations

    NARCIS (Netherlands)

    Liu, M.

    2013-01-01

    Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical

  8. Fuels planning: science synthesis and integration; economic uses fact sheet 09: Mechanical treatment costs

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2005-01-01

    Although fuel reduction treatments are widespread, there is great variability and uncertainty in the cost of conducting treatments. Researchers from the Rocky Mountain Research Station, USDA Forest Service, have developed a model for estimating the per-acre cost for mechanical fuel reduction treatments. Although these models do a good job of identifying factors that...

  9. Fuels planning: science synthesis and integration; social issues fact sheet 12: Keys to successful collaboration

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Collaborating on fire and fuels management with a host of public and private partners may seem like an impossible undertaking, and presents many challenges. This fact sheet reviews tips for what to focus on as you embark on a collaborative fuels management project.Other...

  10. Fuels planning: science synthesis and integration; social issues fact sheet 05: The importance of working locally

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    People who evaluate their actions in terms of what others think are often said to be guided by community norms. With respect to fuels management, this means that when you are "selling" a property owner on taking steps to reduce fuels, you are not just "selling" to one person, but to a network of people. This fact sheet discusses three tools to help...

  11. Fuels planning: science synthesis and integration; social issues fact sheet 15: Landscape change and aesthetics

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    Fuels management produces changes in the landscape that can impact scenic beauty. If people do not consider a forest to be scenic, they may think that the low scenic quality is a result of poor management or ecological health. This fact sheet looks at the relevency of the effects of natural and human-caused landscape changes, when planning fuels management.

  12. Fuels planning: science synthesis and integration; economic uses fact sheet 02: log hauling cost

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Knowing the cost of fuel reduction treatments and associated activities, such as hauling cut trees, is essential for fire and fuels planning. This fact sheet explores the main factors that determine the cost of hauling cut trees and points the user to an interactive tool that can help plan for those and other expenses.

  13. Fuels planning: science synthesis and integration; economic uses fact sheet 01: mastication treatments and costs

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Mastication, or mulching, is a mechanical fuel treatment that changes the structure and size of fuels in the stand. This fact sheet describes the kinds of equipment available, where mastication should be used, and treatment factors affecting cost.Other publications in this...

  14. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    Science.gov (United States)

    Zafred, Paolo R [Murrysville, PA; Gillett, James E [Greensburg, PA

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  15. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.

    Science.gov (United States)

    Esquivel, J P; Colomer-Farrarons, J; Castellarnau, M; Salleras, M; del Campo, F J; Samitier, J; Miribel-Català, P; Sabaté, N

    2012-11-07

    The present paper reports for the first time the integration of a microfluidic system, electronics modules, amperometric sensor and display, all powered by a single micro direct methanol fuel cell. In addition to activating the electronic circuitry, the integrated power source also acts as a tuneable micropump. The electronics fulfil several functions. First, they regulate the micro fuel cell output power, which off-gas controls the flow rate of different solutions toward an electrochemical sensor through microfluidic channels. Secondly, as the fuel cell powers a three-electrode electrochemical cell, the electronics compare the working electrode output signal with a set reference value. Thirdly, if the concentration measured by the sensor exceeds this threshold value, the electronics switch on an integrated organic display. This integrated approach pushes forward the development of truly autonomous point-of-care devices relying on electrochemical detection.

  16. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Tomihiro.

    1970-01-01

    The present invention relates to fuel assemblies employing wire wrap spacers for retaining uniform spatial distribution between fuel elements. Clad fuel elements are helically wound in the oxial direction with a wave-formed wire strand. The strand is therefore provided with spring action which permits the fuel elements to expand freely in the axial and radial directions so as to retain proper spacing and reduce stresses due to thermal deformation. (Ownes, K.J.)

  17. Fuels and auxiliary materials

    International Nuclear Information System (INIS)

    Svab, V.

    A brief survey is given of the problems of fuels, fuel cans, absorption and moderator materials proceeding from the papers presented at the 1971 4th Geneva Conference on the Peaceful Uses of Nuclear Energy and the 1970 IAEA Conference in New York. Attention is focused on the behaviour of fuel and fuel can materials for thermal and fast reactors during irradiation, radiation stability of absorption materials and the effects of radiation on concrete and on moderator materials. (Z.M.)

  18. Fuel management and economics

    Energy Technology Data Exchange (ETDEWEB)

    Vendryes, G

    1972-11-01

    From international conference on nuclear solutions to world energy problems; Washington, District of Columbia, USA (12 Nov The low cost of the fuel cycle is the most attractive feature of the fast neutron breeder reactor. In order to achieve it a good fuel management is essential, with well balanced fixed investment and renewal fuel costs. In addition the designer can optimize the power station as a whole (fuel cycle and thermal characteristics). (auth)

  19. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  20. Spent fuels program

    International Nuclear Information System (INIS)

    Shappert, L.B.

    1983-01-01

    The goal of this task is to support the Domestic Spent Fuel Storage Program through studies involving the transport of spent fuel. A catalog was developed to provide authoritative, timely, and accessible transportation information for persons involved in the transport of irradiated reactor fuel. The catalog, drafted and submitted to the Transportation Technology Center, Sandia National Laboratories, for their review and approval, covers such topics as federal, state, and local regulations, spent fuel characteristics, cask characteristics, transportation costs, and emergency response information