WorldWideScience

Sample records for fuel injection progress

  1. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal

    2017-06-29

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  2. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels

    KAUST Repository

    Naser, Nimal; Jaasim, Mohammed; Atef, Nour; Chung, Suk-Ho; Im, Hong G.; Sarathy, Mani

    2017-01-01

    A better understanding on the effects of fuel properties and injection timing is required to improve the performance of advanced engines based on low temperature combustion concepts. In this work, an experimental and computational study was conducted to investigate the effects of physical and chemical kinetic properties of low octane fuels and their surrogates in partially premixed compression ignition (PPCI) engines. The main objective was to identify the relative importance of physical versus chemical kinetic properties in predicting practical fuel combustion behavior across a range of injection timings. Two fuel/surrogate pairs were chosen for comparison: light naphtha (LN) versus the primary reference fuel (PRF) with research octane number of 65 (PRF 65), and FACE (fuels for advanced combustion engines) I gasoline versus PRF 70. Two sets of parametric studies were conducted: the first varied the amount of injected fuel mass at different injection timings to match a fixed combustion phasing, and the second maintained the same injected fuel mass at each injection timing to assess resulting combustion phasing changes. Full-cycle computational fluid dynamic engine simulations were conducted by accounting for differences in the physical properties of the original and surrogate fuels, while employing identical chemical kinetics. The simulations were found to capture trends observed in the experiments, while providing details on spatial mixing and chemical reactivity for different fuels and injection timings. It was found that differences in physical properties become increasingly important as injection timing was progressively delayed from premixed conditions, and this was rationalized by analysis of mixture stratification patterns resulting from injection of fuels with different physical properties. The results suggest that accurate descriptions of both physical and chemical behavior of fuels are critical in predictive simulations of PPCI engines for a wide range of

  3. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Dhar, Atul; Gupta, Jai Gopal; Kim, Woong Il; Choi, Kibong; Lee, Chang Sik; Park, Sungwook

    2015-01-01

    Highlights: • Effect of FIP on microscopic spray characteristics. • Effect of FIP and SOI timing on CRDI engine performance, emissions and combustion. • Fuel injection duration shortened, peak injection rate increased with increasing FIP. • SMD (D 32 ) and AMD (D 10 ) of fuel droplets decreased for lower biodiesel blends. • Increase in biodiesel blend ratio and FIP, fuel injection duration decreased. - Abstract: In this investigation, effect of 10%, 20% and 50% Karanja biodiesel blends on injection rate, atomization, engine performance, emissions and combustion characteristics of common rail direct injection (CRDI) type fuel injection system were evaluated in a single cylinder research engine at 300, 500, 750 and 1000 bar fuel injection pressures at different start of injection timings and constant engine speed of 1500 rpm. The duration of fuel injection slightly decreased with increasing blend ratio of biodiesel (Karanja Oil Methyl Ester: KOME) and significantly decreased with increasing fuel injection pressure. The injection rate profile and Sauter mean diameter (D 32 ) of the fuel droplets are influenced by the injection pressure. Increasing fuel injection pressure generally improves the thermal efficiency of the test fuels. Sauter mean diameter (D 32 ) and arithmetic mean diameter (D 10 ) decreased with decreasing Karanja biodiesel content in the blend and significantly increased for higher blends due to relatively higher fuel density and viscosity. Maximum thermal efficiency was observed at the same injection timing for biodiesel blends and mineral diesel. Lower Karanja biodiesel blends (up to 20%) showed lower brake specific hydrocarbon (BSHC) and carbon monoxide (BSCO) emissions in comparison to mineral diesel. For lower Karanja biodiesel blends, combustion duration was shorter than mineral diesel however at higher fuel injection pressures, combustion duration of 50% blend was longer than mineral diesel. Up to 10% Karanja biodiesel blends in a CRDI

  4. Dual fuel injection piggyback controller system

    Science.gov (United States)

    Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim

    2017-09-01

    Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.

  5. Advanced diesel electronic fuel injection and turbocharging

    Science.gov (United States)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  6. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  7. Premixed direct injection nozzle for highly reactive fuels

    Science.gov (United States)

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  8. Fuel injection apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, H; Kobayashi, H; Nagata, S

    1975-01-07

    A fuel injection apparatus for a rapid cut of fuel supply to internal combustion engines during deceleration is described. The fuel cut is achieved by an electromagnetic switch. The number of engine revolutions are determined by the movement of cam shafts, and one of the cam shafts is made of electroconductive and nonconductive materials which generate an intermittent electrical signal to the magnetic switch. The device can cut the fuel in any deceleration condition, therefore it is more advantageous than fuel injection utilizing the intake load variation which can operate only under certain deceleration conditions.

  9. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  10. An experimental study of fuel injection strategies in CAI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Hunicz, J.; Kordos, P. [Department of Combustion Engines and Transport, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

  11. Influence of fuel injection pressures on Calophyllum inophyllum methyl ester fuelled direct injection diesel engine

    International Nuclear Information System (INIS)

    Nanthagopal, K.; Ashok, B.; Karuppa Raj, R. Thundil

    2016-01-01

    Highlights: • Effect of injection pressure of Calophyllum inophyllum biodiesel is investigated. • Engine characteristics of 100% Calophyllum inophyllum biodiesel has been performed. • Calophyllum inophyllum is a non-edible source for biodiesel production. • Increase in injection pressure of biodiesel, improves the fuel economy. • Incylinder pressure characteristics of biodiesel follows similar trend as of diesel. - Abstract: The trend of using biodiesels in compression ignition engines have been the focus in recent decades due to the promising environmental factors and depletion of fossil fuel reserves. This work presents the effect of Calophyllum inophyllum methyl ester on diesel engine performance, emission and combustion characteristics at different injection pressures. Experimental investigations with varying injection pressures of 200 bar, 220 bar and 240 bar have been carried out to analyse the parameters like brake thermal efficiency, specific fuel consumption, heat release rate and engine emissions of direct injection diesel engine fuelled with 100% biodiesel and compared with neat diesel. The experimental results revealed that brake specific fuel consumption of C. inophyllum methyl ester fuelled engine has been reduced to a great extent with higher injection pressure. Significant reduction in emissions of unburnt hydrocarbons, carbon monoxide and smoke opacity have been observed during fuel injection of biodiesel at 220 bar compared to other fuel injection pressures. However oxides of nitrogen increased with increase in injection pressures of C. inophyllum methyl ester and are always higher than that of neat diesel. In addition the combustion characteristics of biodiesel at all injection pressures followed a similar trend to that of conventional diesel.

  12. A Study on the Influence of Fuel Pipe on Fuel Injection Characteristics of Each Nozzle Hole in Diesel Injector

    Directory of Open Access Journals (Sweden)

    Luo Fuqiang

    2016-01-01

    Full Text Available The inner diameter of high pressure fuel pipe has a significant effect on the fuel injection process and the performance of a diesel engine. The spray impact force of each nozzle hole of a conventional injection system of pump-line-nozzle for diesel engine (based on the spray momentum flux and the injection pressure (on a fuel injection pump test rig were measured. With varying fuel injection quantities and pump speed, the effects of the inner diameter of the high pressure fuel pipe on fuel injection process and the fuel injection characteristics of each nozzle hole were analyzed. It was noted from experimental results that the fuel injection pressure changes with variations in the inner diameter of the high pressure fuel pipe and also the injection duration gradually increases with increase in the inner diameter. At low injection pump speed, even with the same geometric fuel deliver rate, the injection duration also increases gradually. Due to throttling effect and reduction in injection pressure, the fuel injection quantities of the injection nozzle were relatively minimal when the inner diameters of the high pressure fuel pipe were respectively small and large. The optimum injection pipe inner diameter for the right quantity for fuel injection falls between the two cases (between small and large. In addition, the injection rate of each nozzle hole increases with the decrease in angle between the needle axis and each of the nozzle hole axis. The fuel injection quantity of each nozzle hole increases while their relative difference decreases with increasing pump speed.

  13. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  14. Hydrogen fuel injection - the bridge to fuel cells

    International Nuclear Information System (INIS)

    Gilchrist, J.S.

    2004-01-01

    'Full text:' For over a century, industry has embraced a wide variety of applications for hydrogen. Since the mid-1970's, the focus of the bulk of hydrogen research has been in the area of fuel cells. Unfortunately, there is limited awareness of more immediate applications for hydrogen as a catalyst designed to improve the performance of existing hydro-carbon fuelled internal combustion engines. Canadian Hydrogen Energy Company manufactures a patented Hydrogen Fuel Injection System (HFI) that produces hydrogen and oxygen from distilled water and injects them, in measured amounts, into the air intake system on any heavy-duty diesel or gasoline application including trucks, buses, stationary generators, etc. In use on over 30 fleets, research is supported by over 40 million miles of field data. The hydrogen acts as a catalyst to promote more complete combustion, with remarkable results. Dramatically reduce emissions, particularly Carbon Monoxide and Particulate Matter. Increase horsepower and torque. Improved fuel efficiency (a minimum 10% improvement is guaranteed). Reduced oil degradation The HFI system offers the first large-scale application of the use of hydrogen and an excellent bridge to the fuel-cell technologies of the future. (author)

  15. Detailed modeling of common rail fuel injection process

    NARCIS (Netherlands)

    Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2005-01-01

    Modeling of fuel injection equipment is a tool that is used increasingly for explaining or predicting the effect of advanced diesel injection strategies on combustion and emissions. This paper reports on the modeling of the high-pressure part of a research type Heavy Duty Common Rail (CR) fuel

  16. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  17. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    Science.gov (United States)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  18. Effect of Biodiesel Fuel Injection Timing and Venture for Gaseous Fuel Induction on the Performance, Emissions and Combustion Characteristics of Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2018-02-01

    Full Text Available Advancing or retarding pilot fuel injection timing in a diesel engine provided with either conventional mechanical fuel injection (CMFIS or high pressure injection as in common rail fuel injection (CRDI systems can significantly affect its performance and tail pipe emissions. Performance of diesel engine when fueled with various biofuels as well as gaseous fuels tends to vary with subsequent changes in pilot fuel injection timings. Biodiesel derived from rubber seed oil called Rubber Seed Oil Methyl Ester (RuOME and hydrogen (H2 and hydrogen enriched compressed natural gas called (HCNG both being renewable fuels when used in diesel engines modified to operate in dual fuel mode can provide complete replacement for fossil diesel. In the present study, effect of injection timings and venture design for gas mixing on the performance, combustion and emission characteristics of dual fuel engine fitted with both CMFIS and CRDI injection systems and operated on RuOME and HCNG/hydrogen has been investigated. Results showed that high pressure CRDI assisted injection of RuOME with optimized mixing chamber (carburetor for hydrogen induction in dual fuel engine performed improved compared to that with CMFIS. In addition, for the same fuel combinations, CRDI resulted in lower biodiesel consumption, lower carbon monoxide (BSCO and hydrocarbon (BSHC emissions and increased NOx emissions than CMFIS operation.

  19. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  20. Pressure Fluctuations in a Common-Rail Fuel Injection System

    Science.gov (United States)

    Rothrock, A M

    1931-01-01

    This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.

  1. Impact of physical properties of mixture of diesel and biodiesel fuels on hydrodynamic characteristics of fuel injection system

    Directory of Open Access Journals (Sweden)

    Filipović Ivan M.

    2014-01-01

    Full Text Available One of the alternative fuels, originating from renewable sources, is biodiesel fuel, which is introduced in diesel engines without major construction modifications on the engine. Biodiesel fuel, by its physical and chemical properties, is different from diesel fuel. Therefore, it is expected that by the application of a biodiesel fuel, the characteristic parameters of the injection system will change. These parameters have a direct impact on the process of fuel dispersion into the engine cylinder, and mixing with the air, which results in an impact on the quality of the combustion process. Method of preparation of the air-fuel mixture and the quality of the combustion process directly affect the efficiency of the engine and the level of pollutant emissions in the exhaust gas, which today is the most important criterion for assessing the quality of the engine. The paper presents a detailed analysis of the influence of physical properties of a mixture of diesel and biodiesel fuels on the output characteristics of the fuel injection system. The following parameters are shown: injection pressure, injection rate, the beginning and duration of injection, transformation of potential into kinetic energy of fuel and increase of energy losses in fuel injection system of various mixtures of diesel and biodiesel fuels. For the analysis of the results a self-developed computer program was used to simulate the injection process in the system. Computational results are verified using the experiment, for a few mixtures of diesel and biodiesel fuels. This paper presents the verification results for diesel fuel and biodiesel fuel in particular.

  2. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  3. Exhaust emissions from an indirect injection dual-fuel engine

    International Nuclear Information System (INIS)

    Abd Alla, G.H.; Badr, O.A.; Soliman, H.A.; Abd Rabbo, M.F.

    2000-01-01

    Diesel engines operating on gaseous fuels are commonly known as dual-fuel engines. In the present work, a single-cylinder, compression ignition, indirect injection research (Ricardo E6) engine has been installed at United Arab Emirates University for investigation of the exhaust emissions when the engine is operating as a dual-fuel engine. The influence of changes in major operating and design parameters, such as the concentration of gaseous fuel in the cylinder charge, pilot fuel quantity, injection timing and intake temperature, on the production of exhaust emissions was investigated. Diesel fuel was used as the pilot fuel, while methane or propane was used as the main fuel which was inducted in the intake manifold and mixed with the intake air. The experimental investigations showed that the poor emissions at light loads can be improved significantly by increasing the concentration of gaseous fuel (total equivalence ratio), employing a large pilot fuel quantity, advancing the injection timing of the pilot fuel and increasing the intake temperature. It is demonstrated that, in general, any measure that tends to increase the size of the combustion regions within the overly lean cylinder charge will reduce markedly the concentrations of unburned hydrocarbons and carbon monoxide in the exhaust gases. (Author)

  4. Exhaust emissions from an indirect injection dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Badr, O.A.; Soliman, H.A.; Abd Rabbo, M.F. [Zagazig Univ., Dept. of Mechanical Engineering, Cairo (Egypt)

    2000-04-01

    Diesel engines operating on gaseous fuels are commonly known as dual-fuel engines. In the present work, a single-cylinder, compression ignition, indirect injection research (Ricardo E6) engine has been installed at United Arab Emirates University for investigation of the exhaust emissions when the engine is operating as a dual-fuel engine. The influence of changes in major operating and design parameters, such as the concentration of gaseous fuel in the cylinder charge, pilot fuel quantity, injection timing and intake temperature, on the production of exhaust emissions was investigated. Diesel fuel was used as the pilot fuel, while methane or propane was used as the main fuel which was inducted in the intake manifold and mixed with the intake air. The experimental investigations showed that the poor emissions at light loads can be improved significantly by increasing the concentration of gaseous fuel (total equivalence ratio), employing a large pilot fuel quantity, advancing the injection timing of the pilot fuel and increasing the intake temperature. It is demonstrated that, in general, any measure that tends to increase the size of the combustion regions within the overly lean cylinder charge will reduce markedly the concentrations of unburned hydrocarbons and carbon monoxide in the exhaust gases. (Author)

  5. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  6. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  7. Fuel injection system and method of operating the same for an engine

    Science.gov (United States)

    Topinka, Jennifer Ann [Niskayuna, NY; DeLancey, James Peter [Corinth, NY; Primus, Roy James [Niskayuna, NY; Pintgen, Florian Peter [Niskayuna, NY

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  8. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  9. Experimental validation of combustion control with multi-pulse fuel injection

    NARCIS (Netherlands)

    Luo, X.; Velayutham, S.; Willems, F.P.T.

    2017-01-01

    Closed-loop combustion control helps to achieve precise fuel injection and robust engine performance against disturbances. The controller design complexity increases greatly with larger number of fuel injection pulses due to the coupled influence of changing individual pulse on the combustion

  10. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    Science.gov (United States)

    Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk

    2001-01-01

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  11. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  12. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  13. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    International Nuclear Information System (INIS)

    Dablow, J.; Hicks, R.; Cacciatore, D.

    1995-01-01

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  14. Fuel injection nozzle and method of manufacturing the same

    Science.gov (United States)

    Monaghan, James Christopher; Johnson, Thomas Edward; Ostebee, Heath Michael

    2017-02-21

    A fuel injection head for use in a fuel injection nozzle comprises a monolithic body portion comprising an upstream face, an opposite downstream face, and a peripheral wall extending therebetween. A plurality of pre-mix tubes are integrally formed with and extend axially through the body portion. Each of the pre-mix tubes comprises an inlet adjacent the upstream face, an outlet adjacent the downstream face, and a channel extending between the inlet and the outlet. Each pre-mix tube also includes at least one fuel injector that at least partially extends outward from an exterior surface of the pre-mix tube, wherein the fuel injector is integrally formed with the pre-mix tube and is configured to facilitate fuel flow between the body portion and the channel.

  15. Progress in Titanium Metal Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  16. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  17. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    Science.gov (United States)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  18. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  19. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  20. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    Science.gov (United States)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  1. Two-stroke engine with gaseous and liquid fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, Rene Sejer [MAN Diesel and Turbo SE, Copenhagen (Denmark)

    2012-08-15

    The need to lower emissions of CO{sub 2}, NO{sub x}, SO{sub x} and particulates as well as rising oil prices have increased engine operators' interest in alternative fuels and fuel flexibility. The low speed two-stroke ME-GI and ME-LGI dual-fuel engines with diesel pilot injection from MAN Diesel and Turbo offer the opportunity of utilising fuels such as LNG, LPG, and methanol in a wide range of liquid to gaseous fuel ratios. (orig.)

  2. Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The focus of this study was to investigate the spray characteristics and atomization performance of gasoline fuel (G100), bioethanol fuel (E100), and bioethanol blended gasoline fuel (E85) in a direct injection gasoline injector in a gasoline engine. The overall spray and atomization characteristics such as an axial spray tip penetration, spray width, and overall SMD were measured experimentally and predicted by using KIVA-3V code. The development process and the appearance timing of the vortices in the test fuels were very similar. In addition, the numerical results accurately described the experimentally observed spray development pattern and shape, the beginning position of the vortex, and the spray breakup on the spray surface. Moreover, the increased injection pressure induced the occurrence of a clear circular shape in the downstream spray and a uniform mixture between the injected spray droplets and ambient air. The axial spray tip penetrations of the test fuels were similar, while the spray width and spray cone angle of E100 were slightly larger than the other fuels. In terms of atomization performance, the E100 fuel among the tested fuels had the largest droplet size because E100 has a high kinematic viscosity and surface tension.

  3. DIAGNOSTICS OF GASOLINE FUEL SYSTEMS WITH DIRECT INJECTION

    Directory of Open Access Journals (Sweden)

    M. Bulgakov

    2017-11-01

    Full Text Available A method of diagnosing fuel systems with direct injection by means of producing a pressure oscillation in a hydraulic accumulator is presented. Having obtained a signal from pressure sensor it is possible to register a pressure drop at the moment of injection. If the system has a malfunction, then the pressure drop will be higher.

  4. Experimental investigations of a single cylinder genset engine with common rail fuel injection system

    Directory of Open Access Journals (Sweden)

    Gupta Paras

    2014-01-01

    Full Text Available Performance and emissions characteristics of compression ignition (CI engines are strongly dependent on quality of fuel injection. In an attempt to improve engine combustion, engine performance and reduce the exhaust emissions from a single cylinder constant speed genset engine, a common rail direct injection (CRDI fuel injection system was deployed and its injection timings were optimized. Results showed that 34°CA BTDC start of injection (SOI timings result in lowest brake specific fuel consumption (BSFC and smoke opacity. Advanced injection timings showed higher cylinder peak pressure, pressure rise rate, and heat release rate due to relatively longer ignition delay experienced.

  5. Imaging diagnostics of ethanol port fuel injection sprays for automobile engine applications

    International Nuclear Information System (INIS)

    Padala, Srinivas; Le, Minh Khoi; Kook, Sanghoon; Hawkes, Evatt R.

    2013-01-01

    This paper presents characteristics of ethanol sprays at port fuel injection (PFI) conditions with variations in injection and ambient parameters. Details of temporal and spatial development of ethanol PFI sprays are studied using Mie-scattering and high-speed shadowgraph imaging techniques. Momentum flux-based injection rate measurement is also performed. The influences of fuel flow-rate, injection duration, and ambient air cross-flow are of particular interest in an effort to understand ethanol PFI spray characteristics that are relevant to automobile engines. For comparison purposes, the results from gasoline fuel are also presented. Ethanol flow-rate effects are studied using two injectors with different nozzle-hole sizes at a fixed injection pressure. From the experiments, it was found that the actual injection duration was longer for the higher flow-rate injector although an electronic pulse width was fixed. This was due to an extended delay in the injector needle closing as the flow resistance against the needle was increased for the high flow-rate injector. For liquid droplets, the larger hole size of the higher flow-rate injector caused a higher mean droplet diameter and higher number of droplets. Injection duration was also varied to study transient spray behaviour: short-injection sprays with the end-of-injection transient dominating the overall spray development were compared to long, steady-injection sprays. From Mie-scattering images, the number of droplets and mean droplet diameter were found to be less for the short injection sprays. Detailed analysis using an axial profile of the number of droplets and mean droplet diameter suggested that the observed trends were a result of increased evaporation rate near the nozzle after the end of injection. This was consistent with shadowgraph images showing no liquid regions but only the vapour-phase fuel near the nozzle. Under the influence of ambient air cross-flow, both mean droplet diameter and number of

  6. Biomass fueled closed cycle gas turbine with water injection

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Silvia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    Direct water injection has been studied for a small scale ({approx} 8 MW fuel input) closed cycle gas turbine coupled to a biomass fueled CFB furnace. Two different working fluids have been considered (helium-water mixture and nitrogen-water mixture). The water injection could take place between the compressor stages, as an intercooler, or after the high pressure compressor, as an aftercooler. Both this options have been studied, varying the relative humidity levels after the injection and the temperatures of the injected water. The effect of water injection on thermodynamic properties of the working fluids has been studied, together with its effect on turbomachinery isentropic efficiency. A sensitivity analysis on turbomachinery efficiency and cycle base pressure has been included. The results from this study have been compared to the performance of a dry closed cycle without water injection. The wet cycle shows an electric efficiency in the range 29-32% with helium-water mixture as working fluid and 30-32% with nitrogen-water mixture as working fluid, while the total efficiency (referring to the fuel LHV) is always higher than 100%. In the non-injected cycle the electric efficiency is 30-35% with helium and 32-36 with nitrogen. The total efficiency in the dry case with two level intercooling and postcooling is 87-89%, while is higher than 100% when only one stage inter- and postcooling is present. Aside from this, the study also includes a sizing of the heat exchangers for the different cycle variations. The heat transfer area is very sensible to the working fluid and to the amount of injected water and it's always higher when a nitrogen-water mixture is used. Compared to the cycle without water injection, by the way, the number of heat exchangers is reduced. This will lead to a lower pressure drop and a simpler plant layout. The total heat transfer area, however, is higher in the wet cycle than in the dry cycle.

  7. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  8. Emission constrained multiple-pulse fuel injection optimisation and control for fuel-efficient diesel engines

    NARCIS (Netherlands)

    Luo, X.; Jager, de A.G.; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injec- tion profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  9. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  10. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani; Farooq, Aamir; Kalghatgi, Gautam T.

    2017-01-01

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  11. Recent progress in gasoline surrogate fuels

    KAUST Repository

    Sarathy, Mani

    2017-12-06

    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine

  12. A Comparison of Fueling with Deuterium Pellet Injection from Different Locations on the DIII-D Tokamak

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Gohil, P.; Houlberg, W.A.; Hsieh, C.; Jernigan, T.C.; Parks, P.B.

    1999-01-01

    Initial pellet injection experiments on DIII-D with high field side (HFS) injection have demonstrated that deeper pellet fuel deposition is possible even with HFS injected pellets that are significantly slower than pellets injected from the low field side (LFS) (outer midplane) location. A radial displacement of the pellet mass shortly after or during the ablation process is consistent with the observed mass deposition profiles measured shortly after injection. Vertical injection inside the magnetic axis shows some improvement in fueling efficiency over LFS injection and may provide an optimal injection location for fueling with high speed pellets

  13. Influence of injection timing on the exhaust emissions of a dual-fuel CI engine

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Uslu, Kadir [Department of Automotive Education, Fatih Vocational High School, 54100 Sakarya (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2008-06-15

    Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. As an alternative, biodegradable, and renewable fuel, ethanol is receiving increasing attention. Therefore, in this study, influence of injection timing on the exhaust emission of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine has an original injection timing 27 CA BTDC. The tests were performed at five different injection timings (21 , 24 , 27 , 30 , and 33 CA BTDC) by changing the thickness of advance shim. The experimental test results showed that NO{sub x} and CO{sub 2} emissions increased as CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing, at the retarded injection timings (21 and 24 CA BTDC), NO{sub x} and CO{sub 2} emissions increased, and unburned HC and CO emissions decreased for all test conditions. On the other hand, with the advanced injection timings (30 and 33 CA BTDC), HC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted for all test conditions. (author)

  14. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    Science.gov (United States)

    Kannan, Gopal Radhakrishnan

    2018-02-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  15. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, October-December 1981

    International Nuclear Information System (INIS)

    Steindler, M.J.; Bates, J.K.; Cannon, T.F.

    1982-05-01

    Methods of measuring rates of leaching from simulated waste glasses using neutron activation analysis and radiotracers have been developed. Laboratory-scale impact tests of solid alternative waste forms are being performed to obtain a size analysis of the fragments. Logging techniques are being developed to measure the relative amount of residual oil in a depleted oil reservoir by injecting gamma-active solution into it. Work to test the behavior of radionuclides leached from proposed nuclear-waste repositories using laboratory-analog experiments is in progress. High potassium levels in crushed granite from a Northern Illinois drill hole are probably derived by the leaching of potassium feldspar. Testing and development of equipment for the destructive analysis of full-length irradiated fuel rods from the LWBR are in progress. 19 figures, 13 tables

  16. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Stork, Kevin [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  17. Experimental investigation and combustion analysis of a direct injection dual-fuel diesel-natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, A.P.; De Risi, A.; Laforgia, D.; Naccarato, F. [Department of Engineering for Innovation, University of Salento, CREA, via per Arnesano, 73100 Lecce (Italy)

    2008-02-15

    A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG-air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load and speed. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the combustion development and, as a consequence, on the engine performance, in terms of specific emission levels and fuel consumption. (author)

  18. 2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.

    2000-12-11

    The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

  19. Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang; Huang, Ronghua

    2015-01-01

    Highlights: • A 5D PDF table was used to model the dual-fuel turbulence–chemistry interactions. • The cooling effect of ethanol direct injection (EDI) was examined. • The higher flame speed of ethanol in EDI + GPI increased the thermal efficiency. • The partially premixed combustion in EDI + GPI reduced the combustion temperature. • Ethanol’s low evaporation rate in low temperature led to incomplete combustion. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. Multi-dimensional computational fluid dynamics modelling was conducted on an EDI + GPI engine in both single and dual fuelled conditions. The in-cylinder flow field was solved in the realizable k−ε turbulence model with detailed engine geometry. The temporal and spatial distributions of the liquid and vapour fuels were simulated with the spray breakup and evaporation models. The combustion process was modelled with the partially premixed combustion concept in which both mixture fraction and progress variable were solved. The three-dimensional and five-dimensional presumed Probability Density Function (PDF) look-up tables were used to model the single-fraction-mixture and two-fraction-mixture turbulence–chemistry interactions respectively. The model was verified by comparing the numerical and experimental results of spray pattern and cylinder pressure. The simulation results showed that the combustion process of EDI + GPI dual-fuelled condition was partially premixed combustion because of the low evaporation rate of ethanol spray in low temperature environment before combustion. Compared with GPI only, the higher flame speed of ethanol fuel contributed to the greater pressure rise rate and maximum cylinder pressure in EDI + GPI condition, which consequently resulted in higher power output and thermal efficiency. The lower adiabatic flame temperature of

  20. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  1. The effect of injection timing on energy and exergy analysis of a diesel engine with biodiesel fuel

    Directory of Open Access Journals (Sweden)

    A Farhadi

    2017-05-01

    Full Text Available Introduction Nowadays, due to higher environmental pollution and decreasing fossil fuels many countries make decisions to use renewable fuels and restrict using of fossil fuels. Renewable fuels generally produce from biological sources. Biodiesel is an alternative diesel fuel derived from the transesterification of vegetable oils, animal fats, or waste frying oils. Considering the differences between diesel and biodiesel fuels, engine condition should be modified based on the fuel or fuel blends to achieve optimum performance. One of the simplest and yet the most widely used models is the thermodynamic model. After verification of the data obtained by model with experimental data it is possible to generalize the extracted data to an unlimited number of functional conditions or unlimited number of fuel types which saves time and reduces costs for experimental engine tests. Using the second law of thermodynamics, it is possible to calculate and analyze the exergy of the engine.4 Materials and Methods In this work, the zero-dimensional model was used to account for internal energy variations, pressure work, heat transfer losses to the solid walls and heat release. The applied assumptions include: The cylinder mixture temperature, pressure and composition were assumed uniform throughout the cylinder. Furthermore, the one-zone thermodynamic model assumes instantaneous mixing between the burned and unburned gases. The cylinder gases were assumed to behave as an ideal gas mixture, Gas properties, include enthalpy, internal energy modeled using polynomial equations associated with temperature. In this research, the equations 1 to 20 were used in Fortran programming language. The results of incylinder pressure obtained by the model were validated by the results of experimental test of OM314 engine. Then the effects of injection timing on Energy and Exergy of the engine were analyzed for B20 fuel. Results and Discussion Comparing the results of the model

  2. Experimental investigation of timed manifold injection of acetylene in direct injection diesel engine in dual fuel mode

    International Nuclear Information System (INIS)

    Lakshmanan, T.; Nagarajan, G.

    2010-01-01

    The increase in demand and decrease in availability of fossil fuels with more stringent emission norms have led to research in finding an alternative fuel for internal combustion (IC) engines. Among the alternative fuels, gaseous fuels find a great potential. The gaseous fuel taken up for the present study is acetylene, which possesses excellent combustion properties. Preignition is the major problem with this fuel. In the present study, timed manifold injection technique is adopted to induct the fuel into the IC engine. A four-stroke, 4.4 kW diesel engine is selected, with slight modification in intake manifold for holding the gas injector, which is controlled by an electronic control unit (ECU). By using an ECU, an optimized injection timing of 10 o after top dead center and 90 o crank angle duration are arrived. At this condition, experiments were conducted for the various gas flow rates of 110 g/s, 180 g/s and 240 g/s. The performance was nearer to diesel at full load. Oxides of nitrogen, hydrocarbon and carbon monoxide emission decreased due to lean operation with marginal increase in smoke emission. To conclude, a safe operation of acetylene replacement up to 24% was possible with reduction in emission parameters.

  3. Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas

    International Nuclear Information System (INIS)

    Wang, Xiaole; Qian, Yong; Zhou, Qiyan; Lu, Xingcai

    2016-01-01

    Highlights: • Influences of direct injection strategy on biogas RCCI mode are researched. • Excessive early pilot injection timing leads to the retard of combustion. • Overall indicated thermal efficiency of low-grade biogas can be higher than 40%. • Pilot injection timing has strong influence on particle size distribution. • Composition of biogas has a great influence on the gas emissions. - Abstract: Recently, as a kind of renewable fuel, low-grade biogas has been researched to apply in internal combustion engine. In this paper, an experimental study was conducted to study the influence of injection strategies on the efficient utilization of low-grade biogas in Reactivity Controlled Compression Ignition (RCCI) mode with port fuel injection of biogas and in-cylinder direct injection of diesel based on a modified electronic controlled high-pressure directly injected compression ignition engine. Considered the high proportion of inert gas in biogas, a four-components simulated gas (H_2:CO:CH_4:N_2 = 5:40:5:50 vol%) has been selected as test fuels to simulate biogas. The effects of several injection control parameters such as pilot injection timing, main injection timing, common rail pressure and pilot injection ratio on the combustion and emissions are analyzed in detail. The research demonstrates that the main injection timing can effectively control the combustion phase and excessive early pilot injection timing leads to retard of combustion. CO emissions are relatively high due to homogenous charge of biogas. NOx and smoke emissions can be effectively controlled. In RCCI mode, the indicated thermal efficiency of biogas/diesel can reach 40%.

  4. An insight on hydrogen fuel injection techniques with SCR system for NO{sub X} reduction in a hydrogen-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, ICE Division, College of Engineering, Guindy, Anna University-Chennai, Chennai 600 025 (India)

    2009-11-15

    Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NO{sub X} increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NO{sub X} emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NO{sub X} emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NO{sub X} emission from hydrogen fueled diesel engines. (author)

  5. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  6. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho

    2016-01-01

    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  7. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME)

    International Nuclear Information System (INIS)

    Park, Su Han; Kim, Hyung Jun; Suh, Hyun Kyu; Lee, Chang Sik

    2009-01-01

    The spray atomization characteristics of an undiluted biodiesel fuel (soybean oil methyl ester, SME) in a diesel engine were investigated and compared with that of diesel fuel (ultra low sulfur diesel, ULSD). The experimental results were compared with numerical results predicted by the KIVA-3V code. The spray characteristics of the spray tip penetration, spray area, spray centroid and injection delay were analyzed using images obtained from a visualization system. The Sauter mean diameter (SMD) was analyzed using a droplet analyzer system to investigate the atomization characteristics. It was found that the peak injection rate increases and advances when the injection pressure increases due to the increase of the initial injection momentum. The injection rate of the SME, which has a higher density than diesel fuel, is higher than that of diesel fuel despite its low injection velocity. The high ambient pressure induces the shortening of spray tip penetration of the SME. Moreover, the predicted spray tip penetration pattern is similar to the pattern observed experimentally. The SMD of the SME decreases along the axial distance. The predicted local and overall SMD distribution patterns of diesel and SME fuels illustrate similar tendencies when compared with the experimental droplet size distribution patterns

  8. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    Science.gov (United States)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  9. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    International Nuclear Information System (INIS)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B.

    2013-01-01

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs

  10. Fabrication of U-10wt.%Zr Fuel slug for SFR by Injection Casting

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Hwan; Song, Hoon; Kim, Hyung Tae; Ko, Young Mo; Kim, Ki Hwan; Lee, Chan B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fabrication technology of metal fuel has been developed by various methods such as rolling, swaging, wire drawing, and co-extrusion, but each of these methods had process limitations requiring an additional subsequent process, and needing the fabrication equipment is complex, which is not favorable for remote use. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, in the early 1950s, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, vacuum injection casting suitable for remote operation has been developed to fabricate metallic fuel for an SFR. Vacuum injection casting technique was developed to fabricate metallic fuel for an SFR. The appearance of the fabricated U-10wt.%Zr fuel was generally sound and the internal integrity was found to be satisfactory through gamma-ray radiography. Minimum fuel losses after casting relative to the initial charge amount of U-10wt.%Zr fuel slugs met the proposed goal of less than 0.1% fuel losses during fabrication. Modifications of the current facility system and advanced casting techniques are underway to produce higher quality fuel slugs.

  11. Direct-injection strategies for a hydrogen-fueled engine : an optical and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, S.; Salazar, V. [Sandia National Labs, Albuquerque, NM (United States); Scarcelli, R.; Wallner, T. [Argonne National Lab, Argonne, IL (United States)

    2009-07-01

    Vehicles with hydrogen-fueled engines are competitive with systems based on fuel cells. There is a lack of fundamental knowledge about in-cylinder processes in hydrogen direct injection engines. This presentation discussed a study that used a variety of injector configurations to establish a broad database. A light-load conditions that can profit from stratification was investigated. Several results were presented, including the 5-hole nozzle produced an asymmetric jet pattern which may be good for late injection. Very lean regions in the wake of the transient jets were found to be similar to those found in diesel injection. The 13-hole nozzle demonstrated complete jet collapse, consistent with Schlieren imaging by Petersen. Stratification made efficiency sensitive to the targeting of the single-hole injector. Computational fluid dynamics with a commercially available code aimed to improve the process of design optimization. The simulation predicted less fuel dispersion than was experimentally measured. Details of the fuel penetration were captured. It was concluded that for the single-hole nozzle, the pre-spark fuel distribution is consistent with results from the fired engine. tabs., figs.

  12. Progress in hydrogen fueled busses

    International Nuclear Information System (INIS)

    Scott, P.B.; Mazaika, D.M.; Tyler, T.

    2004-01-01

    'Full text:' The Thor/ISE fuel cell bus has been in demonstration and revenue service during 2002-2003 at sites including SunLine Transit, Chula Vista Transit, Los Angeles County Metropolitan Transit Authority, and AC Transit in Oakland. By taking advantage of ISE's advanced hybrid-electric drive technology, this 30-foot bus operates with a much smaller fuel cell than those used in other buses of this class. Further, stress on the fuel cell is diminished. Based on the exceptional performance of this prototype bus, the transit agencies listed above have concluded that hybrid electric hydrogen fueled buses are attractive. Two types of hydrogen fueled hybrid electric buses will be described: - fuel cell powered, and - HICE (Hydrogen Internal Combustion Engine) This progress report will include: 1. Experience with the Thor/ISE fuel cell bus, including results from revenue service at two transit locations, 2. Design and fabrication status of the advanced fuel cell buses being built for AC Transit and SunLine Transit, 3. Design and fabrication status of the prototype HHICE (Hybrid electric Hydrogen fueled Internal Combustion Engine) bus that uses a Ford hydrogen burning engine, mated to a generator, rather than a fuel cell. Other than the engine, the drive train in the HHICE bus is nearly identical to that of a fuel cell hybrid-electric bus. Canadian participation in the HHICE bus is extensive, it is a New Flyer platform and will be winter tested in Winnipeg. (author)

  13. Toyota's innovative concept for a SI direct fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, E.; Kanda, M.; Hattori, F. [Toyota Motor Corporation, Shizuoka (Japan)

    2013-08-01

    To reduce environmental footprint of vehicle, demands have been intensifying for gasoline engines with lower fuel consumption, improved power performance, and lower emissions. The adoption of direct injection technology is rapidly expanding because it is an efficient way to achieve these targets. Originally, gasoline direct injection engines were designed to allow stratified lean combustion, which has a significant fuel consumption reduction effect. However, as exhaust gas emission regulations have become more stringent, the combustion strategy of most gasoline direct injection engines was changed to homogeneous stoichiometric combustion. Stratified lean combustion can nevertheless be used during catalyst heat up phase to fasten it and reduce pollutant emissions. In addition, exhaust gas recirculation (EGR), widely used in Diesel combustion, can also be used in gasoline engine to further reduce fuel consumption by reducing fuel requirement to maintain stoichiometric combustion. Regulations covering the emission of particulate matter (PM), which is an issue of direct injection, have also been strengthened, such as by the introduction of particle number restrictions in Europe. Based on this background, this article introduces the new Toyota direct injection (D-4S) concept that was developed to respond to such requirements. In this concept, combustion speed and air-fuel mixture homogeneity were improved by active usage of spray jets to strengthen the in-cylinder flow. The PM number and oil dilution were significantly reduced by usage of a thin fan-shaped spray formed by a slit nozzle. In addition, this developed slit nozzle has high potential to avoid deposit build-up. Moreover, fast catalyst warming up performance was secured to achieve a low level of emissions compatible with the super ultra low emission vehicle (SULEV) standards in North America. (orig.)

  14. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  15. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  16. Apparatus and method for controlling the secondary injection of fuel

    Science.gov (United States)

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  17. Superheated fuel injection for combustion of liquid-solid slurries

    Science.gov (United States)

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  18. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    1990-01-01

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  19. Fuel injection assembly for use in turbine engines and method of assembling same

    Science.gov (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  20. Idling operation apparatus for multicylinder fuel injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Kanahira, A

    1974-11-20

    A device to cut off the fuel supply to a number of cylinders at idling is described for those engines equipped with multicylinder fuel injection systems. The discontinuation of the fuel gas supply to the cylinders is made by a magnetically operated valve which is related to the accelerator. When the engine is idling, a switch activates the magnetic valve and the tube leading to the cylinder closes while a valve on the tube leading to a dual tank opens, and the pumped gas returns to the tank. This valve is installed on several cylinders, but not on all. Thus, at idling only a certain number of cylinders are firing, which lowers the hydrocarbon levels in the exhaust gas since non-firing cylinders intake and discharge only air.

  1. Trait Mindfulness and Progression to Injection Use in Youth With Opioid Addiction.

    Science.gov (United States)

    Wilson, J Deanna; Vo, Hoa; Matson, Pamela; Adger, Hoover; Barnett, Gabriela; Fishman, Marc

    2017-09-19

    Many youth initiate opioid misuse with prescription opioids and transition over time to more severe substance-using behaviors, including injection. Trait mindfulness is a potentially protective factor. This is a cross-sectional study characterizing a sample of opioid-using youth by level of mindfulness and examines the potential effect modification of emotion regulation on the relationship between mindfulness and progression to injection opioid use. A convenience sample of 112 youth (ages 14-24) was recruited during an episode of inpatient detoxification and residential treatment for opioid use disorders. We examined emotion regulation (Difficulties in Emotion Regulation Scale), mindfulness (Child Acceptance and Mindfulness Measure), and opioid use. We completed multivariable regressions stratified by degree of emotion regulation looking at relationship of mindfulness on time to injection use from age of first prescription opioid. Youth had difficulties in emotion regulation (m = 104.2; SD = 2.41) and low mindfulness (m = 19.1;SD = 0.59). While we found overall that mindfulness was associated with time to progression to injection opioid use, there was significant effect modification. Among youth with high levels of difficulty in emotion regulation, those with high mindfulness trait had quicker progressions to injection (-1.31 years; p =.003). In contrast, youth with normal emotion regulation and high mindfulness trait had a slower progression to injection (1.67 years; p =.041). Conclusion/Importance: Our study showed a majority of youth presenting with opioid use disorders have impairments in emotion regulation and deficits in trait mindfulness. The relationship between mindfulness and opioid use is impacted by emotion regulation capacity. More research is needed to understand the various facets of mindfulness and how they interact with emotion regulation in youth.

  2. Emission potentials of future diesel fuel injection systems; Emissionspotentiale zukuenftiger Diesel-Einspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schommers, J.; Breitbach, H.; Stotz, M.; Schnabel, M. [DaimlerChrysler AG (Germany)

    2007-07-01

    The historical evolution of the diesel engine correlates strongly with fuel injection system developments. Mercedes-Benz contributed significantly to the recent success of the diesel engine, being one of the first car manufacturers to introduce a modern common rail diesel engine in the Mercedes C220 CDI in 1997. The excellent characteristics of modern diesel engines resulted in a 50% market share in newly registered cars in Germany. These characteristics have to be further improved in the next years to keep the diesel engine attractive. Emissions and at the same time fuel consumption and noise need to be further reduced, while engine power has to go up. For Mercedes-Benz key steps to reach these goals are lower compression ratio, higher boost pressures, higher exhaust gas recirculation rates and better EGR cooling, multiple injection patterns and components with stable application parameters over lifetime. Important requirements for future fuel injection systems are high spray momentum, good stability over lifetime, good robustness of injected quantities for varying injection patterns and a low shot-to-shot variation of injected quantities. The high spray momentum has to be achieved especially for small injections and for part load operating points with low pressures. Therefore, the needle opening and closing velocities are of special importance. With special focus on the above requirements, different injector concepts were hydraulically evaluated. Both concepts in serial production and under development from system suppliers, as well as Mercedes-Benz developed prototype injector concepts were chosen. The concepts analysed are a servo-hydraulically driven injector with control piston, two servo-hydraulically driven injectors without control piston with differently adjusted hydraulics, and a direct driven injector, where the needle is driven directly from an actuator without servo-hydraulic amplification. The hydraulic investigations show an excellent performance of

  3. A Study of Spill Control Characteristics of JP-8 and Conventional Diesel Fuel with a Common Rail Direct Injection System

    Directory of Open Access Journals (Sweden)

    Seomoon Yang

    2017-12-01

    Full Text Available Diversification of energy sources is a key task for decreasing environmental impacts and global emission of gases. JP-8, a fuel derived from natural gas, coal, biomass, and waste plastics, is a bright prospect. JP-8 is considered a multi-source multi-purpose fuel, with several applications. A preliminary characterization of the JP-8 injection rate and injection quantity behavior was investigated based on the high-pressure common rail injection system used in a heavy-duty engine. According to the spill injection and injection pressure, a trade-off trend between injection rate and injection quantity was observed. As expected, pilot injection of JP-8 aviation fuel and diesel fuel affects the spray quantity and injection evolution of the subsequent operation without pilot injection. The difference in spilling between diesel and JP-8 aviation fuel is greater than the difference in injection amount per time; in the process of controlling the injector solenoid through ECU (Electric Control Units, the oil pressure valve and the needle valve operate to a higher extent in order to maintain the diesel fuel’s injection quantity volume. It was found that the total injection quantity was decreased by adding 20% pilot injection duration. Because the pilot injection quantity causes solenoid response, loss and needle lift stroke friction loss.

  4. AECL's progress in developing the DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Cox, D.S.

    1995-01-01

    Spent Pressurized Water Reactor (PWR) fuel can be used directly in CANDU reactors without the need for wet chemical reprocessing or reenrichment. Considerable experimental progress has been made in verifying the practicality of this fuel cycle, including hot-cell experiments using spent PWR fuels and out-cell trials using surrogate fuels. This paper describes the current status of these experiments. (author)

  5. Exergo-Ecological Assessment Of Auxiliary Fuel Injection Into Blast-Furnace

    Directory of Open Access Journals (Sweden)

    Stanek W.

    2015-06-01

    Full Text Available Metallurgy represents complex technological chain supplied with different kinds of primary resources. Iron metallurgy based on blast-furnace process, dominates in world steel production. Metallurgical coke is the basic fuel in this case. Its production is connected with several environmental disadvantageous impacts. One of them is the extended production chain from primary energy to final energy. The reduction of coke consumption in the process can be achieved e.g. by injection of auxiliary fuels or increasing the thermal parameters in the process. In present injection of pulverised coal dominates while recirculation of top-gas seems to be future technology. However, the latter one requires the CO2 removal that additionally extended the production chain. The evaluation of resources management in complex energy-technological systems required application of advanced method based on thermodynamics. In the paper the system exergo-ecological assessment of pulverised coal injection into blast-furnace and top-gas recirculation has been applied. As a comparative criterion the thermo-ecological cost has been proposed.

  6. Influence of injection timing on DI diesel engine characteristics fueled with waste transformer oil

    Directory of Open Access Journals (Sweden)

    S. Prasanna Raj Yadav

    2015-12-01

    Full Text Available This research work targets on the effective utilization of WTO (waste transformer oil in a diesel engine, which would rather reduce environmental problems caused by disposing of it in the open land. The waste transformer oil was compared with the conventional diesel fuel and found that it can also be used as fuel in compression ignition engines since the WTO is also a derivative of crude oil. In this present work, the WTO has been subjected to traditional base-catalyzed trans-esterification process in order to reduce the high viscosity of the WTO which helps to effectively utilize WTO as a fuel in DI diesel engine. The objective of the work is to study the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine using TWTO (trans-esterified waste transformer oil as a fuel. Experiments were performed at four injection timings (23°, 22°, 21°, and 20° bTDC. The results indicate that the retarded injection timing of 20° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon by 11.57%, 17.24%, and 10% respectively while the brake thermal efficiency and smoke increased under all the load conditions when compared to that of standard injection timing.

  7. Pulsed, supersonic fuel jets-A review of their characteristics and potential for fuel injection

    International Nuclear Information System (INIS)

    Milton, B.E.; Pianthong, K.

    2005-01-01

    High pressure fuel injection has provided considerable benefits for diesel engines, substantially reducing smoke levels while increasing efficiency. Current maximum pressures provide jets that are at less than the sonic velocity of the compressed air in the cylinders at injection. It has been postulated that a further increase into the supersonic range may benefit the combustion process due to increased aerodynamic atomization and the presence of jet bow shock waves that provide higher temperatures around the fuel. Pulsed, supersonic injection may also be beneficial for scramjet engines. The current program is examining pulsed, supersonic jets from a fundamental viewpoint both experimentally and numerically. Shock wave structures have been viewed for jets ranging from 600 to 2400 m/s, velocity attenuation and penetration distance measured, different nozzle designs examined and autoignition experiments carried out. Inside the nozzle, numerical simulation using the Autodyne code has been used to support an analytic approach while in the spray, the FLUENT code has been used. While benefits have not yet been defined, it appears that some earlier claims regarding autoignition at atmospheric conditions were optimistic but that increased evaporation and mixing are probable. The higher jet velocities are likely to mean that wall interactions are increased and hence matching such injectors to engine size and airflow patterns will be important

  8. AN EXPERIMENTAL NOX REDUCTION POTENTIAL INVESTIGATION OF THE PARTIAL HCCI APPLICATION, ON A HIGH PRESSURE FUEL INJECTION EQUIPPED DIESEL ENGINE BY IMPLEMENTING FUMIGATION OF GASOLINE PORT INJECTION

    OpenAIRE

    ERGENÇ, Alp Tekin; YÜKSEK, Levent; ÖZENER, Orkun; IŞIN, Övün

    2016-01-01

    This work investigates the effects of partial HCCI (Homogeneous charge compression ignition) application on today's modern diesel engine tail pipe NOx emissions. Gasoline fumigation is supplied via a port fuel injection system located in the intake port of DI(Direct injection) diesel engine to maintain partial HCCI conditions and also diesel fuel injected directly into the combustion chamber before TDC(Top dead center). A single cylinder direct injection diesel research engine equipped w...

  9. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  10. Numerical Investigation of Injection Timing Influence on Fuel Slip and Influence of Compression Ratio on Knock Occurrence in Conventional Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mario Sremec

    2017-12-01

    Full Text Available Compressed natural gas can be used in diesel engine with great benefits, but because of its low reactivity it is usually used in a so called dual fuel combustion process. Optimal parameters for dual fuel engines are not yet investigated thoroughly which is the motivation for this work. In this work, a numerical study performed in a cycle simulation tool (AVL Boost v2013 on the influence of different injection timings on fuel slip into exhaust and influence of compression ratio on knock phenomena in port injected dual fuel engine was conducted. The introduction of natural gas into the intake port of a diesel engine usually results in some fuel slipping into the exhaust port due to valve overlap. By analysing the simulation results, the injection strategy that significantly decreases the natural gas slip is defined. The knock occurrence study showed that the highest allowed compression ratio that will result in knock free operation of the presented engine is 18 for ambient intake condition, while for charged intake conditions the compression ratio should be lowered to 16.

  11. Behaviour analysis of the fuel injected in the intake manifold of port-injected spark ignition engines: modeling and experimental validation; Analyse du comportement du carburant injecte dans les conduits d`admission des moteurs a allumage commande a injection multipoint: modelisation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Sches, C

    1999-01-27

    In order to limit pollutant emissions resulting from transient engine operation, the mastering of mixture formation is essential. In this context, an interactive work was undertaken between a modeling job and an experimental study, to get better understanding of the mechanisms of fuel dynamic behavior in the intake manifold of port-injected spark-ignition engines. The experimental study, elaborated thanks to experimental designs, showed out two essential factors: injection timing and coolant liquid temperature, which act on the fuel dynamic behavior through a second order filter. Then, a phenomenological modeling was established and validated, to analyze the various phenomena influencing mixture formation and to calculate the air/fuel ratio evolutions during transient operation. This program uses the results of a 3D model describing the fuel spray transportation, evaporation and impact on the port walls. The calculation does not need any boundary conditions and the running times are vary satisfactory. We showed that a correct description of the liquid fuel film was necessary to get good prediction of the mixture fuel/air ratio. The spray modeling, which is necessary, can however be kept simple. Future work may develop either in the engine control filed (injection strategies development, optimization of the injection system configuration, ...), or in the theoretical field (better modeling of fuel film displacement or of secondary atomization of the fuel on the intake valve). (author) 79 refs.

  12. Fueling an D.I. agricultural diesel engine with waste oil biodiesel: Effects over injection, combustion and engine characteristics

    International Nuclear Information System (INIS)

    Radu, Rosca; Petru, Carlescu; Edward, Rakosi; Gheorghe, Manolache

    2009-01-01

    The paper presents the results of a research concerning the use of a biodiesel type fuel in D.I. Diesel engine; the fuel injection system and the engine were tested. The results indicated that the injection characteristics are affected when a blend containing 50% methyl ester and 50% petrodiesel is used as fuel (injection duration, pressure wave propagation time, average injection rate, peak injection pressure). As a result, the engine characteristics are also affected, the use of the biodiesel blend leading to lower output power and torque; the lower autoignition delay and pressure wave propagation time led to changes of the cylinder pressure and heat release traces and to lower peak combustion pressures.

  13. Cylinder Pressure-based Combustion Control with Multi-pulse Fuel Injection

    NARCIS (Netherlands)

    Luo, X.; Wang, S.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With an increased number of fuel injection pulses, the control problem in diesel engines becomes complex. Consisting of multiple single-input single-output (SISO) controllers, the conventional control strategy shows unsatisfactory dynamic performance in tracking combustion load and phase reference

  14. Fuel Chemistry Division annual progress report for 1990

    International Nuclear Information System (INIS)

    Vaidyanathan, R.

    1993-01-01

    The progress report gives brief descriptions of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1990. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Quality Control of Nuclear Fuels, and studies related to Nuclear Materials Accounting. At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 7 figs., 52 tabs

  15. Fuel Chemistry Division: annual progress report for 1988

    International Nuclear Information System (INIS)

    Vaidyanathan, S.

    1991-01-01

    The progress report gives the brief descriptions of various activites of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1988. The descriptions of activities are arranged under the headings: Fuel Development Chemistry of Actinides, Quality Control of Fuel, and Studies related to Nuclear Material Accounting. At the end of report, a list of publications published in journals and papers presented at various conferences/symposia during 1988 is given. (author). 13 figs., 61 tabs

  16. Near-frictionless carbon coatings for spark-ignited direct-injected fuel systems. Final report, January 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Hershberger, J.; Ozturk, O.; Ajayi, O. O.; Woodford, J. B.; Erdemir, A.; Fenske, G. R.

    2002-01-01

    This report describes an investigation by the Tribology Section of Argonne National Laboratory (ANL) into the use of near-frictionless carbon (NFC) coatings for spark-ignited, direct-injected (SIDI) engine fuel systems. Direct injection is being pursued in order to improve fuel efficiency and enhance control over, and flexibility of, spark-ignited engines. SIDI technology is being investigated by the Partnership for a New Generation of Vehicles (PNGV) as one route towards meeting both efficiency goals and more stringent emissions standards. Friction and wear of fuel injector and pump parts were identified as issues impeding adoption of SIDI by the OTT workshop on ''Research Needs Related to CIDI and SIDI Fuel Systems'' and the resulting report, Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines. The following conclusions were reached: (1) Argonne's NFC coatings consistently reduced friction and wear in existing and reformulated gasolines. (2) Compared to three commercial DLC coatings, NFC provided the best friction reduction and protection from wear in gasoline and alternative fuels. (3) NFC was successfully deposited on production fuel injectors. (4) Customized wear tests were performed to simulate the operating environment of fuel injectors. (5) Industry standard lubricity test results were consistent with customized wear tests in showing the friction and wear reduction of NFC and the lubricity of fuels. (6) Failure of NFC coatings by tensile crack opening or spallation did not occur, and issues with adhesion to steel substrates were eliminated. (7) This work addressed several of the current research needs of the OAAT SIDI program, as defined by the OTT report Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines

  17. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  18. Numerical Study on the Performance Characteristics of Hydrogen Fueled Port Injection Internal Combustion Engine

    OpenAIRE

    Rosli A. Bakar; Mohammed K. Mohammed; M. M. Rahman

    2009-01-01

    This study was focused on the engine performance of single cylinder hydrogen fueled port injection internal combustion engine. GT-Power was utilized to develop the model for port injection engine. One dimensional gas dynamics was represented the flow and heat transfer in the components of the engine model. The governing equations were introduced first, followed by the performance parameters and model description. Air-fuel ratio was varied from stoichiometric limit to a lean limit and the rota...

  19. Quantitative characterization of near-field fuel sprays by multi-orifice direct injection using ultrafast x-tomography technique

    International Nuclear Information System (INIS)

    Liu, X.; Im, K.S.; Wang, Y.; Wang, J.; Hung, D.L.S.; Winkelman, J.R.; Tate, M.W.; Ercan, A.; Koerner, L.J.; Caswell, T.; Chamberlain, D.; Schuette, D.R.; Philipp, H.; Smilgies, D.M.; Gruner, S.M.

    2006-01-01

    A low-pressure direct injection fuel system for spark ignition direct injection engines has been developed, in which a high-turbulence nozzle technology was employed to achieve fine fuel droplet size at a low injection pressure around 2 MPa. It is particularly important to study spray characteristics in the near-nozzle region due to the immediate liquid breakup at the nozzle exit. By using an ultrafast x-ray area detector and intense synchrotron x-ray beams, the interior structure and dynamics of the direct injection gasoline sprays from a multi-orifice turbulence-assisted nozzle were elucidated for the first time in a highly quantitative manner with μs-temporal resolution. Revealed by a newly developed, ultrafast computed x-microtomography technique, many detailed features associated with the transient liquid flows are readily observable in the reconstructed spray. Furthermore, an accurate 3-dimensional fuel density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. The time-dependent fuel density distribution revealed that the fuel jet is well broken up immediately at the nozzle exits. These results not only reveal the near-field characteristics of the partial atomized fuel sprays with unprecedented detail, but also facilitate the development of an advanced multi-orifice direct injector. This ultrafast tomography capability also will facilitate the realistic computational fluid dynamic simulations in highly transient and multiphase fuel spray systems.

  20. Progress in Electrolyte-Free Fuel Cells

    International Nuclear Information System (INIS)

    Lu, Yuzheng; Zhu, Bin; Cai, Yixiao; Kim, Jung-Sik; Wang, Baoyuan; Wang, Jun; Zhang, Yaoming; Li, Junjiao

    2016-01-01

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  1. Progress in Electrolyte-Free Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuzheng [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Zhu, Bin, E-mail: binzhu@kth.se [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Cai, Yixiao [Ångström Laboratory, Department of Engineering Sciences, Uppsala University, Uppsala (Sweden); Kim, Jung-Sik [Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough (United Kingdom); Wang, Baoyuan [Faculty of Physics and Electronic Technology, Hubei Collaborative Innovation Center for Advanced Organic Materials, Hubei University, Wuhan (China); Department of Energy Technology, Royal Institute of Technology KTH, Stockholm (Sweden); Wang, Jun, E-mail: binzhu@kth.se; Zhang, Yaoming [Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing (China); Li, Junjiao [Nanjing Yunna Nano Technology Co., Ltd., Nanjing (China)

    2016-05-02

    Solid oxide fuel cell (SOFC) represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable, and challenges still hinder commercialization. Recently, a novel type of electrolyte-free fuel cell (EFFC) with single component was invented, which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance, and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed, and future opportunities and challenges are discussed.

  2. Emulation study on system characteristic of high pressure common-rail fuel injection system for marine medium-speed diesel engine

    Science.gov (United States)

    Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua

    2018-05-01

    In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.

  3. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    Science.gov (United States)

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  4. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  5. The UK fuel poverty strategy: 5th annual progress report 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This fifth annual progress report details government progress in 2007 in tackling fuel poverty and movement towards targets. The United Kingdom were the first country in the world to recognise the issue of fuel poverty and to put in place measures to tackle the issue, including spending 20 billion pounds sterling on benefits and programmes since the year 2000. The report covers progress to date, schemes and initiatives to tackle fuel poverty, the energy market and looks ahead to the future. Progress and development of the schemes across the devolved nations are also considered. This report is the first to publish the Government's proposals for the Carbon Emissions Reduction Target (CERT) priority group, which were laid before Parliament on 5th December 2007. This report is the first to present the fuel poverty figures for 2005, and shows the effects of rising energy prices. The Government continues to take action to ensure that the energy market is working properly, and to encourage reform in the EU on energy market liberalisation - this should reduce pressure on prices. Those in fuel poverty have much to gain by switching supplier and this report outlines the action taken by Ofgem and Energywatch to encourage this

  6. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  7. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends

    International Nuclear Information System (INIS)

    Du, Jiakun; Sun, Wanchen; Guo, Liang; Xiao, Senlin; Tan, Manzhi; Li, Guoliang; Fan, Luyan

    2015-01-01

    Highlights: • A compound combustion concept was proposed and investigated. • Premixed combustion near the top dead center was investigated using blended fuels. • Increasing gasoline blend ratio was found to enhance the mixture preparation. • Too much addition of gasoline decreases indicated thermal efficiency. • Gasoline/diesel blends may be a promising alternative for premixed combustion. - Abstract: The effects of gasoline/diesel blended fuel composed of diesel fuel with gasoline as additives in volume basis, on combustion, fuel economies and exhaust emissions were experimentally investigated. Tests were carried out based on a turbocharged Common-rail Direct Injection engine at a constant engine speed of 1800 r/min and different loads of 3.2 bar, 5.1 bar Indicated Mean Effective Pressure. Additionally, the effect of combustion phasing and Exhaust Gas Recirculation were evaluated experimentally for various fuels. The results indicated that with the fraction of gasoline increasing in blends, the ignition delay was prolonged and the combustion phasing was retarded with the common injection timing. This led to a significant increase of premixed burning phase, which was in favor of smoke reduction; although, too much gasoline might be adverse to fuel consumption. An optimum combustion phasing was identified, leading to a higher thermal efficiency and better premixed combustion with blended fuels. A combined application of Exhaust Gas Recirculation and blended fuel with a high gasoline fraction was confirmed effective in reducing the oxides of nitrogen and smoke emissions simultaneously at the optimum combustion phasing without giving significant penalty of fuel consumption. A compound combustion mode with its emission lower than the conventional Compression Ignition engines, and efficiency higher than the typical Spark Ignition engines, could be achieved with a cooperative control of Exhaust Gas Recirculation and combustion phasing of the gasoline

  8. Cavitation phenomena in a fuel injection nozzle of a diesel engine by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, N.; Kawabata, Y.; Miyata, D.; Kawabata, Y.; Sim, C. M.; Lim, I. C.

    2005-01-01

    Visualization of cavitation phenomena in a Diesel engine fuel injection nozzle was carried out by using neutron radiography system in Research Reactor Institute in Kyoto University and HANARO in Korea Atomic Energy Research Institute. A neutron chopper was synchronized to the engine rotation for high shutter speed exposures. A multi exposure method was applied to obtain a clear image as an ensemble average of the synchronized images. Some images were successfully obtained and suggested new understanding of the cavitation phenomena in a Diesel engine fuel injection nozzle

  9. Installation, maintenance and operating manual for the Lucas-type fuel injection system of the 3 B rotary engine

    Science.gov (United States)

    1985-01-01

    The installation procedure, maintenance, adjustment and operation of a Lucas type fuel injection system for 13B rotary racing engine is outlined. Components of the fuel injection system and installation procedure and notes are described. Maintenance, adjustment, and operation are discussed.

  10. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  11. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine

    International Nuclear Information System (INIS)

    Jain, Ayush; Singh, Akhilendra Pratap; Agarwal, Avinash Kumar

    2017-01-01

    Highlights: • NOx and PM emissions were lowest at 700 bar fuel injection pressure (FIP). • PCCI showed lower knocking than compression ignition combustion mode. • Increasing FIP reduced emissions of nitrogen oxides and smoke opacity in PCCI mode. • Increasing FIP reduced nucleation mode particle concentration. • Increasing FIP with advanced main injection timings improved PCCI combustion. - Abstract: This experimental study focuses on developing new combustion concept for compression ignition (CI) engines by achieving partially homogeneous charge, leading to low temperature combustion (LTC). Partially premixed charge compression ignition (PCCI) combustion is a single-stage phenomenon, with combustion shifting towards increasingly premixed combustion phase, resulting in lower in-cylinder temperatures. PCCI leads to relatively lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) simultaneously. To investigate combustion, performance and emission characteristics of the PCCI engine, experiments were performed in a mineral diesel fueled single cylinder research engine, which was equipped with flexible fuel injection equipment (FIE). Effects of fuel injection pressure (FIP) were investigated by changing the FIP from 400 bar to 1000 bar. Experiments were carried out by varying start of main injection (SoMI) timings (from 12° to 24° before top dead center (bTDC)), when using single pilot injection. This experimental study included detailed investigations of particulate characteristics such as particulate number-size distribution using engine exhaust particle sizer (EEPS), particulate bound trace metal analysis using inductively coupled plasma-optical emission spectrometer (ICP-OES), and soot morphology using transmission electron microscopy (TEM). PCCI combustion improved with increasing FIP (up to 700 bar) due to superior fuel atomization however further increasing FIP deteriorated PCCI combustion and engine performance due to intense

  12. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    Directory of Open Access Journals (Sweden)

    Ommi F

    2013-04-01

    Full Text Available The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA. A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  13. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    Science.gov (United States)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  14. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    Science.gov (United States)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  15. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun

    2013-01-01

    Highlights: • Injection pressure of pilot fuel in dual fuel combustion (DFC) affects the engine power and exhaust emissions. • In the biodiesel–CNG DFC mode, the combustion begins and ends earlier as the pilot-fuel injection pressure increases. • The ignition delay in the DFC mode is about 1.2–2.6 °CA longer than that in the diesel single fuel combustion (SFC) mode. • The smoke and NOx emissions are significantly reduced in the DFC mode. - Abstract: Biodiesel–compressed natural gas (CNG) dual fuel combustion (DFC) system is studied for the simultaneous reduction of particulate matters (PM) and nitrogen oxides (NOx) from diesel engine. In this study, biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC system. In particular, the pilot injection pressure is controlled to investigate the characteristics of engine performance and exhaust emissions in a single cylinder diesel engine. The results show that the indicated mean effective pressure (IMEP) of biodiesel–CNG DFC mode is lower than that of diesel single fuel combustion (SFC) mode at higher injection pressure. However, the combustion stability of biodiesel–CNG DFC mode is increased with the increase of pilot injection pressure. At the same injection pressure, the start of combustion of biodiesel–CNG DFC is delayed compared to diesel SFC due to the increase of ignition delay of pilot fuel. On the contrary, it is observed that as the pilot injection pressure increase, the combustion process begins and ends a little earlier for biodiesel–CNG DFC. The ignition delay in the DFC is about 1.2–2.6 °CA longer compared to diesel SFC, but decreases with increases of pilot injection pressure. Smoke and NOx emissions are decreased and increased, respectively, as the pilot injection pressure increases in the biodiesel–CNG DFC. In comparison to diesel SFC, smoke emissions are significantly reduced over all the operating conditions and NOx emissions also exhibited similar

  16. Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol–diesel blends

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Yang, Ruzhi; Zhu, Tianru; Zhao, Ruiqing; Wang, Yaodong

    2015-01-01

    Highlights: • The effects of pre-injected timing and pre-injected mass were studied in CI engine. • The addition of n-butanol consumed OH free radicals, which delayed the ignition time. • With the increase of n-butanol, the BSFC and MPRR increased, NO_x and soot decreased. • With the advance of pilot injection timing, the BSFC increased, NO_x and soot decreased. • With the increase of pilot injection mass, NO_x increased, soot decreased then increased. - Abstract: The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in high-speed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NO_x and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NO_x emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NO_x and soot emissions decreasing. The simulation of the combustion of n-butanol–diesel fuel blends, which was based on the n-heptane–n-butanol–PAH–toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals

  17. Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    Various solutions have been proposed for improving the combustion process of conventional diesel engines and reducing the exhaust emissions without making serious modifications on the engine, one of which is the use of natural gas as a supplement for the conventional diesel fuel, the so called dual fuel natural gas diesel engines. The most common type of these is referred to as the pilot ignited natural gas diesel engine (PINGDE). Here, the primary fuel is natural gas that controls the engine power output, while the pilot diesel fuel injected near the end of the compression stroke auto-ignites and creates ignition sources for the surrounding gaseous fuel mixture to be burned. Previous research studies have shown that the main disadvantage of this dual fuel combustion is its negative impact on engine efficiency compared to the normal diesel operation, while carbon monoxide emissions are also increased. The pilot diesel fuel quantity and injection advance influence significantly the combustion mechanism. Then, in order to examine the effect of these two parameters on the performance and emissions, a comprehensive two-zone phenomenological model is employed and applied on a high-speed, pilot ignited, natural gas diesel engine located at the authors' laboratory. According to the results, the simultaneously increase of the pilot fuel quantity accompanied with an increase of its injection timing results to an improvement of the engine efficiency (increase) and of the emitted CO emissions (decrease) while it has a negative effect (increase) of NO emissions

  18. Ducted fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Charles J.

    2018-03-06

    Various technologies presented herein relate to enhancing mixing inside a combustion chamber to form one or more locally premixed mixtures comprising fuel and charge-gas with low peak fuel to charge-gas ratios to enable minimal, or no, generation of soot and other undesired emissions during ignition and subsequent combustion of the locally premixed mixtures. To enable sufficient mixing of the fuel and charge-gas, a jet of fuel can be directed to pass through a bore of a duct causing charge-gas to be drawn into the bore creating turbulence to mix the fuel and the drawn charge-gas. The duct can be located proximate to an opening in a tip of a fuel injector. The duct can comprise of one or more holes along its length to enable charge-gas to be drawn into the bore, and further, the duct can cool the fuel and/or charge-gas prior to combustion.

  19. Neural control systems for alternatively fuelled vehicles and natural gas fuel injection for DACIA NOVA

    Energy Technology Data Exchange (ETDEWEB)

    Sulatisky, M. [Saskatchewan Research Council, Saskatoon, SK (Canada); Ghelesel, A. [BC Gas International, Vancouver, BC (Canada)

    1999-07-01

    The elements of natural gas vehicle conversion technology are described as background to a discussion of the development of bi-fuel injection system for the Rumanian-manufactured DACIA-NOVA automobile. The bi-fuel injection system mirrors the fueling system installed by the original equipment manufacturer; it can also be easily installed on Ford, General Motors and DaimlerChrysler vehicles as well as on most imports.To meet emission standards after 2000, it is envisaged to install on the DACIA NOVA a neural control system (NCS) and a completely adaptive linear control system (ACLS). Details of natural gas vehicles development and the development of NCS and ACLS are discussed, including short-term and long-term objectives.

  20. CFD Modeling of Fuel Injection and Combustion in an HDDI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Rijk, E.

    2009-07-01

    In this study, the Star-CD CFD package is first used to model spray formation in a constant volume chamber and in a cycle of a heavy duty direct injection (HDDI) engine. Secondly, combustion is modeled using a standard Star-CD combustion model and a user-defined tabulated chemistry method (FGM). In modern diesel engines, fuel is injected into the combustion chamber by an injector, at a high pressure. As the fuel flows through this nozzle, phenomena like cavitation can occur influencing the injection velocity. When the liquid fuel jet exits the nozzle, it breaks up into droplets, which is called primary break-up. Due to the velocity difference between the in-cylinder air and these droplets, they break-up even further, called secondary break-up. The high temperature in the combustion chamber make the droplets evaporate until a point is reached where no liquid fuel is present anymore (liquid length). Hereafter, the evaporated fuel penetrates further (fuel penetration) and at some point in time, the spray auto-ignites. In Star-CD, different sub-models are present to simulate nozzle flow, primary and secondary break-up in a Eulerian-Lagrangian framework. The best performing sub-models are determined by comparing measured liquid length and fuel penetration with calculated values. To be able to do this objectively, a virtual Mie scattering method is developed and applied, together with a previously designed virtual Schlieren method. Using this optimal combination of sub-models, a sensitivity study is performed as previous research revealed that CFD calculations can be highly mesh and timestep dependent. When the optimal settings are known, the Star-CD spray results are validated with experimental data containing a wide range of nozzle diameters, ambient conditions, injection pressures and fuel types. Next to Star-CD, non-Lagrangian models are used to calculate liquid length and spray penetration. It appears that the accuracies of Star-CD and the non-Lagrangian model of

  1. Modeling analysis of urea direct injection on the NOx emission reduction of biodiesel fueled diesel engines

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Li, J.; Zhou, D.Z.

    2015-01-01

    Highlights: • The effects of urea direct injection on NO x emissions reduction was investigated. • Aqueous urea solution was proposed to be injected after the fuel injection process. • The optimized injection strategy achieved a reduction efficiency of 58%. • There were no severe impacts on the CO emissions and BSFC. - Abstract: In this paper, a numerical simulation study was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NO x emissions of a biodiesel fueled diesel engine. Simulation studies were performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. The chemical behaviors of the NO x formation and urea/NO x interaction processes were modeled by a modified extended Zeldovich mechanism and urea/NO interaction sub-mechanism. To ensure an efficient NO x reduction process, various aqueous urea injection strategies in terms of post injection timing, injection angle, and injection rate and urea mass fraction were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. The orientation of the aqueous urea injection was also shown to play a critical role in determining the NO x removal efficiency, and 50 degrees injection angle was determined to be the optimal injection orientation which gave the most NO x reduction. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NO x removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NO emission levels. At last, with the optimized injection

  2. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  3. Fuel-oil boilers are improving; Les chaudieres a fioul progressent

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-08-01

    The share of domestic fuel oil consumption in France is progressively growing up in space heating applications. In order to perennialize this growth, the 'Chauffage Fioul' association has developed an advertising strategy for the promotion of fuel-oil boilers in accommodations. Short paper. (J.S.)

  4. Effect of cetane improver addition into diesel fuel: Methanol mixtures on performance and emissions at different injection pressures

    Directory of Open Access Journals (Sweden)

    Candan Feyyaz

    2017-01-01

    Full Text Available In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.

  5. Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection

    Directory of Open Access Journals (Sweden)

    Zhaojie Shen

    2018-02-01

    Full Text Available External exhaust gas recirculation (EGR stratification in diesel engines contributes to reduction of toxic emissions. Weak EGR stratification lies in that strong turbulence and mixing between EGR and intake air by current introduction strategies of EGR. For understanding of ideal EGR stratification combustion, EGR was assigned radically at −30 °CA after top dead center (ATDC to organize strong EGR stratification using computational fluid dynamics (CFD. The effects of assigned EGR stratification on diesel performance and emissions are discussed in this paper. Although nitric oxides (NOx and soot emissions are both reduced by means of EGR stratification compared to uniform EGR, the trade-off between NOx and soot still exists under the condition of arranged EGR stratification with different fuel injection strategies. A deterioration of soot emissions was observed when the interval between main and post fuel injection increased, while NO emissions increased first then reduced. The case with a 4 °CA interval between main and post fuel injection is suitable for acceptable NO and soot emissions. Starting the main fuel injection too early and too late is not acceptable, which results in high NO emissions and high soot emissions respectively. The start of the main fuel injection −10 °CA ATDC is suitable.

  6. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  7. Experimental investigation concerning the influence of fuel type and properties on the injection and atomization of liquid biofuels in an optical combustion chamber

    International Nuclear Information System (INIS)

    Galle, J.; Defruyt, S.; Van de Maele, C.; Rodriguez, R. Piloto; Denon, Q.; Verliefde, A.; Verhelst, S.

    2013-01-01

    Due to the scarcity of fossil fuels and the future stringent emission limits, there is an increasing interest for the use of renewable biofuels in compression ignition engines. However, these fuels have different physical, chemical and thermodynamic properties affecting atomization, spray development and combustion processes. The results reported in this paper have been obtained by experimentation with a constant volume combustion chamber. The influences of physical fuel properties on injections under non-evaporating conditions are studied, using a pump-line-nozzle system from a medium speed diesel engine with injection pressures up to 1200 bar, by changing the fuel type and temperature. Experiments were conducted for diesel, biodiesel, straight vegetable oils and animal fats. Injection pressure and needle lift measurements were analyzed. A high speed camera was used to visualize the spray, which enabled us to study the spray penetration and spray angle. Our results show that the fuel temperature is an important parameter to control because it significantly affects the fuel properties. Both the injection timing and injection duration are affected by the fuel properties. The influences of these properties on the spray development were less pronounced. At low temperatures, a strongly deteriorated atomization of oils and fats was observed. -- Highlights: • Spray measurements in an optical combustion chamber. • Influence on the injections system is compared for different bio-fuels. •Temperature effects the fuel properties, with strong influence on the injection system. • Viscosity has significant influence on atomization, especially for viscous fuels. • No difference for spray penetration and angle unlike the mass distribution

  8. Evaluation of High Pressure Components of Fuel Injection Systems Using Speckle Interferometry

    OpenAIRE

    Basara, Adis

    2007-01-01

    The modern high pressure fuel injection systems installed in engines provide a highly efficient combustion process accompanied by low emissions of exhaust gases and an impressive level of dynamic response. The design and development of mechanical components for such systems pose a great challenge, since they have to operate under extremely high fluctuating pressures (e.g. up to 2000 bar) for a long lifetime (more than 1000 injections per minute). The permanent change between a higher and a lo...

  9. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    International Nuclear Information System (INIS)

    Sayin, Cenk; Canakci, Mustafa

    2009-01-01

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 deg., 24 deg., 27 deg., 30 deg. and 33 deg. CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO x and CO 2 increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 deg. CA BTDC), NO x and CO 2 emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 deg. and 24 deg. CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 deg. and 33 deg. CA BTDC), decreasing HC and CO emissions diminished, and NO x and CO 2 emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads

  10. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2009-01-15

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 , 24 , 27 , 30 and 33 CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO{sub x} and CO{sub 2} increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 CA BTDC), NO{sub x} and CO{sub 2} emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 and 24 CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 and 33 CA BTDC), decreasing HC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads. (author)

  11. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-23

    The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.

  12. Consolidated fuel reprocessing. Program progress report, April 1-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This progress report is compiled from major contributions from three programs: (1) the Advanced Fuel Recycle Program at ORNL; (2) the Converter Fuel Reprocessing Program at Savannah River Laboratory; and (3) the reprocessing components of the HTGR Fuel Recycle Program, primarily at General Atomic and ORNL. The coverage is generally overview in nature; experimental details and data are limited.

  13. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    Science.gov (United States)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  14. Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol

    Directory of Open Access Journals (Sweden)

    Simona Silvia Merola

    2017-06-01

    Full Text Available Within the context of ever wider expansion of direct injection in spark ignition engines, this investigation was aimed at improved understanding of the correlation between fuel injection strategy and emission of nanoparticles. Measurements performed on a wall guided engine allowed identifying the mechanisms involved in the formation of carbonaceous structures during combustion and their evolution in the exhaust line. In-cylinder pressure was recorded in combination with cycle-resolved flame imaging, gaseous emissions and particle size distribution. This complete characterization was performed at three injection phasing settings, with butanol and commercial gasoline. Optical accessibility from below the combustion chamber allowed visualization of diffusive flames induced by fuel deposits; these localized phenomena were correlated to observed changes in engine performance and pollutant species. With gasoline fueling, minor modifications were observed with respect to combustion parameters, when varying the start of injection. The alcohol, on the other hand, featured marked sensitivity to the fuel delivery strategy. Even though the start of injection was varied in a relatively narrow crank angle range during the intake stroke, significant differences were recorded, especially in the values of particle emissions. This was correlated to the fuel jet-wall interactions; the analysis of diffusive flames, their location and size confirmed the importance of liquid film formation in direct injection engines, especially at medium and high load.

  15. Fuel Chemistry Division annual progress report for 1989

    International Nuclear Information System (INIS)

    Singh Mudher, K.D.

    1993-01-01

    The progress report gives a brief description of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1989. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemical Quality Control, Chemistry of Actinides, Sol-Gel process for the non Nuclear Ceramics and Studies related to Nuclear Material Accounting.At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 69 tabs., 6 figs

  16. Bi-fuel System - Gasoline/LPG in A Used 4-Stroke Motorcycle - Fuel Injection Type

    Science.gov (United States)

    Suthisripok, Tongchit; Phusakol, Nachaphat; Sawetkittirut, Nuttapol

    2017-10-01

    Bi-fuel-Gasoline/LPG system has been effectively and efficiently used in gasoline vehicles with less pollutants emission. The motorcycle tested was a used Honda AirBlade i110 - fuel injection type. A 3-litre LPG storage tank, an electronic fuel control unit, a 1-mm LPG injector and a regulator were securely installed. The converted motorcycle can be started with either gasoline or LPG. The safety relief valve was set below 48 kPa and over 110 kPa. The motorcycle was tuned at the relative rich air-fuel ratio (λ) of 0.85-0.90 to attain the best power output. From dynamometer tests over the speed range of 65-100 km/h, the average power output when fuelling LPG was 5.16 hp; dropped 3.9% from the use of gasoline91. The average LPG consumption rate from the city road test at the average speed of 60 km/h was 40.1 km/l, about 17.7% more. This corresponded to lower LPG’s energy density of about 16.2%. In emission, the CO and HC concentrations were 44.4% and 26.5% lower. Once a standard gas equipment set with ECU and LPG injector were securely installed and the engine was properly tuned up to suit LPG’s characteristics, the converted bi-fuel motorcycle offers efficiently, safely and economically performance with environmental friendly emission.

  17. LMFBR fuel cycle studies progress report, August 1972, No. 42

    International Nuclear Information System (INIS)

    Unger, W.E.; Blanco, R.E.; Crouse, D.J.; Irvine, A.R.; Watson, C.D.

    1972-10-01

    This report continues a series outlining progress in the development of methods for reprocessing of LMFBR fuels. Development work is reported on problems of irradiated fuel transport to the processing facility, the dissolution of the fuel and the chemical recovery of PuO 2 --UO 2 values, the containment of volatile fission products, product purification, conversion of fuel processing plant product nitrate solutions to solids suitable for shipping and for subsequent fuel fabrication. Pertinent experimental results are presented for the information of those immediately concerned with the field. Detailed description of experimental work and data are included in the topical reports and in the Chemical Technology Division Annual Reports

  18. Piezoelectric Injection Systems

    Science.gov (United States)

    Mock, R.; Lubitz, K.

    The origin of direct injection can be doubtlessly attributed to Rudolf Diesel who used air assisted injection for fuel atomisation in his first self-ignition engine. Although it became apparent already at that time that direct injection leads to reduced specific fuel consumption compared to other methods of fuel injection, it was not used in passenger cars for the moment because of its disadvantageous noise generation as the requirements with regard to comfort were seen as more important than a reduced specific consumption.

  19. A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors

    International Nuclear Information System (INIS)

    Asgari, Behrad; Amani, Ehsan

    2017-01-01

    Highlights: •An Eulerian-Lagrangian model for the fuel spray injection is evaluated. •The drop breakup, spray-vortex interaction, and wall-wetting play the key roles. •The injection location and direction are the most important parameters. •The best design candidates are proposed using multi-objective optimizations. •A large central perpendicular injection with high co-rotating swirls is optimal. -- Abstract: The main goal of this research is to investigate the effects of fuel injection strategy on the performance of the premixing chamber of modern Dry-Low-Emission (DLE) Gas-Turbine (GT) combustors. Here, an Eulerian-Lagrangian model for multi-phase multi-component flows is evaluated and used to investigate the effects of different fuel spray design parameters, including the injection location, direction, mass-flow-rate partitioning, and flow Swirl number, on the performance of the premixing chamber. The analysis is enriched by multi-objective optimizations accounting for several goals, including the evaporation efficiency, mixture stratification, entropy generation, and flow recirculation. It is observed that the droplet breakup, spray-vortex interactions, and wall-wetting have significant influences on the performance objectives while the droplet residence time effect is minor. Among the design parameters, the injection location and direction have a profound impact on the droplet breakup which predominately controls the evaporation efficiency. In addition, the interactions between the spray and the two swirling vertices inside the chamber strongly affect the mixture stratification (uniformity), e.g. the location and direction of the injection should not be chosen such that a large proportion of fuel droplets are trapped in the shear layer between the two vortices (otherwise the evaporation efficiency drops significantly) or trapped in the strong outer swirling vortex (if large mixture non-uniformity should be avoided). Finally, the best designs meeting

  20. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  1. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  2. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-09

    The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.

  3. The Use of Large Valve Overlap in Scavenging a Supercharged Spark-ignition Engine Using Fuel Injection

    Science.gov (United States)

    Schey, Oscar W; Young, Alfred W

    1932-01-01

    This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.

  4. Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels

    International Nuclear Information System (INIS)

    Benajes, Jesús; Molina, Santiago; García, Antonio; Monsalve-Serrano, Javier

    2015-01-01

    Highlights: • E85 requires notable lower premixed energy ratios to achieve a stable combustion. • E10-95 leads to shorter and advanced combustion with higher maximum RoHR peaks. • E20-95, E10-98 and E10-95 reach EURO VI NOx and soot levels for all the engine loads. • E10-95 allows a significant reduction in HC and CO emissions. - Abstract: This work investigates the effects of the direct injection timing and blending ratio on RCCI performance and engine-out emissions at different engine loads using four low reactivity fuels: E10-95, E10-98, E20-95 and E85 (port fuel injected) and keeping constant the same high reactivity fuel: diesel B7 (direct injected). The experiments were conducted using a heavy-duty single-cylinder research diesel engine adapted for dual-fuel operation. All the tests were carried out at 1200 rpm. To assess the blending ratio effect, the total energy delivered to the cylinder coming from the low reactivity fuel was kept constant for the different fuel blends investigated by adjusting the low reactivity fuel mass as required in each case. In addition, a detailed analysis of the air/fuel mixing process has been developed by means of a 1-D in-house developed spray model. Results suggest that notable higher diesel amount is required to achieve a stable combustion using E85. This fact leads to higher NOx levels and unacceptable ringing intensity. By contrast, EURO VI NOx and soot levels are fulfilled with E20-95, E10-98 and E10-95. Finally, the higher reactivity of E10-95 results in a significant reduction in CO and HC emissions, mainly at low load

  5. Structural investigation of the spinel phase formed in fuel CRUD before and after zinc injection

    International Nuclear Information System (INIS)

    Chen, J.

    2002-01-01

    Spinel phase is an important constituent of fuel CRUD. Since it can accommodate 60 Co in its crystal structure, its stability in reactor water environment is crucial for the radioactivity control in LWR plants. With increasing curiosity about zinc injection technology, the mechanism of the interaction of zinc with the spinel has drawn much attention. This paper describes the crystal and microstructures of spinel phase in the fuel CRUD collected on four fuel rods of 1- and 5-cycle, respectively, from Barsebaeck 2 BWR before and after zinc injection operation. High precision X-ray powder diffraction technique has been applied to identify the phase compositions of fuel CRUD and to measure the cell length of the spinel phase formed. The results show that, after about 1-cycle zinc injection operation, the tenacious CRUD formed on the fresh fuel rod contains defective zinc oxide, in addition to hematite and spinel as commonly seen. Moreover, the phase ratio of spinel to hematite is much increased. The cell length of the spinel is increased accordingly, which is the direct evidence for the presence of zinc in the spinel structure. For the 5-cycle rod, however, neither zinc oxide nor any change in the phase ratio has been detected. The cell length of the spinel has been increased, in a less degree, however, as compared to that for the 1-cycle rod. The cell lengths of spinel are similar in both tenacious and loose CRUD layers, indicating that zinc was able to easily penetrate through the tenacious CRUD layer. (authors)

  6. Calculation of spent fuel pool severe accident with MELCOR

    International Nuclear Information System (INIS)

    Deng Jian; Xiang Qing'an; Zhou Kefeng

    2014-01-01

    A calculation model was established for spent fuel pool (SFP) using MELCOR code to study the severe accident phenomena caused by the long term station black-out (SBO), including spent fuel heatup, zirconium cladding oxidation, and the injection into SFP to mitigate the severe accident. The results show that the severe accident progression is slow and relates directly with the initial water level in SFP. It is illustrated that the injection into SFP is one of the best mitigated measures for the SFP severe accident. (authors)

  7. Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint Transient Operation and Air-Fuel Ratio Control of Spark-Ignition Port-Injected Engines

    Directory of Open Access Journals (Sweden)

    Le Moyne L.

    2006-12-01

    Full Text Available Sur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre. Air-fuel ratio excursions are observed on port-injected spark ignition engines during transients. This excursions result from the liquid fuel film deposited on intake port. They can be compensated by controlling the injected fuel mass. In order to have the amount of fuel that keeps air-fuel ratio constant, we have developed a 2D model of flows in the intake port during engine cycle. This separate phases model describes the flow of fresh gases, injected droplets, hot burned gases and film on port walls. We show that the model effectively predicts the equivalence ratio and how it allows to eliminate excursions. Equivalence ratio measures are made with an oxygen sensor which functioning is validated during transients by correlating it to maximal pressure during engine cycle.

  8. Multidimensional modeling of the effect of fuel injection pressure on temperature distribution in cylinder of a turbocharged DI diesel engine

    Directory of Open Access Journals (Sweden)

    Sajjad Emami

    2013-06-01

    Full Text Available In this study, maintaining a constant fuel rate, injection pressure of 275 bar to 1000 bar (275×102 kPa to 1000×102 kPa, has been changed. Effect of injection pressure, the pressure inside the cylinder on the free energy, power, engine indicators, particularly indicators of fuel consumption, pollutants and their effects on parameters affecting the output of the engine combustion chamber have been studied in droplet diameter. Finally, the effects of fuel mixture equivalence, Cantor temperature, soot and NOx due to the increase of injection pressure, engine efficiency and emissions have been examined.

  9. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  10. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Chen, Zheng; Liu, Jingping; Wu, Zhenkuo; Lee, Chiafon

    2013-01-01

    Highlights: • A DI diesel engine with PFI of n-butanol in combination with EGR is investigated. • Butanol concentration and EGR have a coupled impact on combustion process. • A combination of butanol PFI and EGR can break through tradeoff between NOx and soot. • DI diesel with butanol PFI has lower ITE than DI of diesel–butanol blends. - Abstract: An experimental investigation was conducted on a direct injection (DI) diesel engine with exhaust gas recirculation (EGR), coupled with port fuel injection (PFI) of n-butanol. Effects of butanol concentration and EGR rate on combustion, efficiency, and emissions of the tested engine were evaluated, and also compared to a DI mode of diesel–butanol blended fuel. The results show butanol concentration and EGR rate have a coupled impact on combustion process. Under low EGR rate condition, both the peak cylinder pressure and the peak heat release rate increase with increased butanol concentration, but no visible influence was found on the ignition delay. Under high EGR rate condition, however, the peak cylinder pressure and the peak heat release rate both decrease with increased butanol concentration, accompanied by longer ignition delay and longer combustion duration. As regard to the regulated emissions, HC and CO emissions increase with increased butanol concentration, causing higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE). It is also noted that butanol PFI in combination with EGR can change the trade-off relationship between NOx and soot, and simultaneously reduce both into a very low level. Compared with the DI mode of diesel–butanol blended fuel, however, the DI diesel engine with butanol PFI has higher HC and CO emissions and lower ITE. Therefore, future research should be focused on overcoming the identified shortcomings by an improved injection strategy of butanol PFI

  11. Impact of physical properties of biodiesel on the injection process in a common-rail direct injection system

    International Nuclear Information System (INIS)

    Boudy, Frederic; Seers, Patrice

    2009-01-01

    This paper presents the influence of biodiesel fuel properties on the injection mass flow rate of a diesel common-rail injection system. Simulations are first performed with ISO 4113 diesel fuel on a four-cylinder common-rail system to evaluate a single and triple injection strategies. For each injection strategy, the impact of modifying a single fuel property at a time is evaluated so as to quantify its influence on the injection process. The results show that fuel density is the main property that affects the injection process, such as total mass injected and pressure wave in the common-rail system. The fuel's viscosity and bulk modulus also influence, but to a lessen degree, the mass flow rate of the injector notably during multiple injection strategies as individual properties change the fuel's dampening property and friction coefficient.

  12. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  13. Improved fueling and transport barrier formation with pellet injection from different locations on DIII-D

    International Nuclear Information System (INIS)

    Baylor, L.R.; Jernigan, T.C.; Gohil, P.

    2001-01-01

    Pellet injection has been employed on DIII-D from different injection locations to optimize the mass deposition for density profile control and internal transport barrier formation. Transport barriers have been formed deep in the plasma core with central mass deposition from high field side (HFS) injected pellets and in the edge with pellets that trigger L-mode to H-mode transitions. Pellets injected from all locations can trigger the H-mode transition, which depends on the edge density gradient created and not on the radial extent of the pellet deposition. Pellets injected from inside the magnetic axis from the inner wall or vertical port lead to stronger central mass deposition than pellets injected from the low field side (LFS) and thus yield deeper more efficient fueling. (author)

  14. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions

  15. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-03-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  16. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions.

  17. Numerical investigation on the combined effects of varying piston bowl geometries and ramp injection rate-shapes on the combustion characteristics of a kerosene-diesel fueled direct injection compression ignition engine

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji

    2017-01-01

    Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the

  18. Flex-Fuel Two-Stroke Snowmobile: Development of a Flex-Fuel, Two-Stroke, Direct-Injection Snowmobile for Use in the Clean Snowmobile Challenge and National Parks

    Science.gov (United States)

    2009-09-01

    The University of Idaho's entry into the 2009 SAE Clean Snowmobile Challenge (CSC) was a semi-direct-injection (SDI) two-stroke powered REV-XP snowmobile modified to use flex fuel. The flex fuel engine produces stock engine power on any blend of etha...

  19. Progress and status of the integral fast reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. The Integral Fast Reactor (IFR) fuel cycle, is based on the use of a metallic fuel alloy (U-Pu-Zr) that permits use of an innovative method for processing of spent fuel. This method, a combination of pyrometallurgical and electrochemical processes, has been termed pyroprocessing. It offers the advantages of a simple, compact processing system and limited volumes of stabilized high-level wastes. This translates to an economically viable system that is likely to receive favorable public response, particularly when combined with the other attributes of the Integral Fast Reactor. Substantial progress has been made in the development of the IFR pyroprocessing method. A comprehensive demonstration of the process will soon begin at the Argonne National Laboratory Idaho site, using spent fuel from the EBR-II reactor. An important advantage of the IFR is its ability to recycle fuel in the process of power generation, extending fuel resources by a considerable amount and assuring the continued viability of nuclear power stations by reducing dependence on external fuel supplies. Pyroprocessing is the means whereby the recycle process is accomplished. It can also be applied to the recovery of fuel constituents from spent fuel generated in the process of operation of conventional light water reactor power plants, offering the means to recover the valuable fuel resources remaining in that material

  20. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs

  1. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. 10 refs.

  2. Progress and status of the Integral Fast Reactor (IFR) fuel cycle development

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.

    1991-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and the future plans and directions. (author)

  3. 1999 annual progress report -- Energy conservation team

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S. (EERE OTT Office of Advanced Automotive Technologies Energy Conversion Team Leader)

    1999-10-19

    This report highlights progress achieved during FY 1999 under the Light-duty Fuels Utilization R and D Program. The program is comprised of two elements: the Advanced Petroleum-Based APB Fuels Program which focused on developing and testing advanced fuels for use with compression-ignition direct-injection (CIDI) engines and fuel cells and the Alternative Fuels Program which focused on Natural gas and natural gas derived fuels. The report contains 17 summaries of industry and National Laboratory projects. Fuel efficient vehicles with very low emissions are essential to meet the challenges of climate change, energy security, and improved air quality. The authors anticipate cooperative efforts with the auto and energy industries to develop new and innovative technologies that will be used to make advanced transportation vehicles that are fuel efficient, clean, and safe.

  4. The Jet multipellet launcher and fueling of Jet plasmas by multipellet injection

    International Nuclear Information System (INIS)

    Kupschus, P.; Cheetham, A.; Denne, B.; Gadeberg, M.; Gowers, C.; Gondhalekar, A.; Tubbing, B.; Schmidt, G.L.; Colestock, P.; Hammett, G.; Zarnstorff, M.

    1989-01-01

    A multipellet long-pulse plasma fueling system, in operation on JET, is described. Plasma fueling experiments are performed with the 2.7 and 4.0 mm guns operating in the multipellet mode. The penetration of the pellets, which agrees with neutral and plasma shielding models, is shown. Details of particle deposition in ohmic plasmas and the plasma density evolution from far-infrared data, in response to pellet injection, are illustrated. A variety of plasma density profile shapes is produced with peak to average values ranging up to 2.5 and peak plasma density up to 1.2 X 10 20 /m 3

  5. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i

  6. Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Tiegang Fang; Robert E. Coverdill; Chia-fon F. Lee; Robert A. White [North Carolina State University, Raleigh, NC (United States). Department of Mechanical and Aerospace Engineering

    2008-11-15

    Effects of injection angles and injection pressure on the combustion processes employing multiple injection strategies in a high-speed direct-injection (HSDI) diesel engine are presented in this work. Whole-cycle combustion and liquid spray evolution processes were visualized using a high-speed video camera. NOx emissions were measured in the exhaust pipe. Different heat release patterns are seen for two different injectors with a 70-degree tip and a 150-degree tip. No evidence of fuel-wall impingement is found for the first injection of the 150-degree tip, but for the 70-degree tip, some fuel impinges on the bowl wall and a fuel film is formed. For the second injection, a large amount of fuel deposition is observed for the 70-degree tip. Weak flame is seen for the first injection of the 150-degree tip while two sorts of flames are seen for the first injection of the 70-degree tip including an early weak flame and a late luminous film combustion flame. Ignition occurs near the spray tip in the vicinity of the bowl wall for the second injection events of the 150-degree tip, however, it is near the injector tip in the central region of the bowl for the 70-degree tip. The flame is more homogeneous for the 150-degree tip with higher injection pressure with little soot formation similar to a premixed-charge-compression-ignition (PCCI) combustion. For other cases, liquid fuel is injected into flames showing diffusion flame combustion. More soot luminosity is seen for the 70-degree tip due to significant fuel film deposition on the piston wall with fuel film combustion for both injection events. Lower NOx emissions were obtained for the narrow-angle injector due to the rich air-fuel mixture near the bowl wall during the combustion process. 30 refs., 11 figs., 3 tabs.

  7. Compact toroid injection fueling in a large field-reversed configuration

    Science.gov (United States)

    Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.

    2017-07-01

    A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5  ×  1021 m-3, ~30 eV and 0.5-1.0  ×  1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.

  8. Influence of the pressure holding time on strain generation in fuel injection lines

    International Nuclear Information System (INIS)

    Basara, Adis; Alt, Nicolas; Schluecker, Eberhard

    2011-01-01

    An influence of the pressure holding time on residual strain generation during the autofrettage process was studied experimentally for the first time in the present work. It is the state of the art that fuel injection lines are held at the autofrettage pressure for only a few seconds in an industrial production. In doing so, it is assumed that a desirable residual stress-strain pattern is generated. However, the results of the experimental investigations outlined in this work indicated that completion of the plastic deformation caused by the autofrettage process and generation of the desirable stress-strain pattern require a much longer period. As shown, a third-order polynomial equation best described the interdependence between the time required for the completion of the process, the corresponding autofrettage pressure and the generated strain state. The method presented can be used as a tool for the determination of the optimal autofrettage process parameters in industrial production of fuel injection lines.

  9. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  10. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2017-07-03

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  11. Optimization experiment of gas oil direct injection valve for CNG dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [Chonnam National University Graduate School, Jeonju (Korea); Park, C. K. [Chonnam National University, Jeonju (Korea)

    1999-04-01

    In this study, we studied for a conversion from diesel engine to natural gas dual fuel engine. For this experimental, we tested about the injection quantity characteristics of pilot valve with the plunger diameter at the retraction volume and investigated to the engine performance and exhaust emissions with the nozzle hole number and injection nozzle diameter. As a result, when the plunger diameter is 7.5 mm at the retraction volume, 25 mm{sup 3}/st, the injection quantity characteristics develop. Also, when a nozzle type is 4*{phi} 0.24, total hydrocarbon(THC) emission reduce at low equivalence ratio. (author). 5 refs., 10 figs., 2 tabs.

  12. Consolidated fuel reprocessing program. Progress report, January 1-March 31, 1981

    International Nuclear Information System (INIS)

    1981-06-01

    Progress and activities are reported on process development, laboratory R and D, engineering research, engineering systems, Integrated Equipment Test (IET) facility operations, and HTGR fuel reprocessing

  13. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie

    2017-03-28

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  14. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  15. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    International Nuclear Information System (INIS)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection

  16. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  17. Consolidated fuel reprocessing program. Progress report, July 1-September 30, 1981

    International Nuclear Information System (INIS)

    1981-12-01

    Technical progress is reported in overview fashion in the following areas: process development, laboratory R and D, engineering research, engineering systems, integrated equipment test facility (IET) operations, and HTGR fuel reprocessing

  18. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  19. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  20. Method and means for repairing injection fuel pump pistons

    Energy Technology Data Exchange (ETDEWEB)

    Ash, E.G.; Tompkins, M.J. Jr.

    1988-06-07

    This patent describes an improvement in timing pistons for rotary fuel injection pumps of the type having a die cast aluminum housing. The housing has a cylindrical chamber, a steel piston, the piston being received in the chamber, means for reciprocating the piston lengthwise of the chamber, an aluminum jacket surrounding the piston and extending the full length thereof, the jacket being rigidly secured to the piston. The jacket has an exterior surface hard coat anodized to the hardness of about 60-70 Rockwell (C scale) as the means of preventing galling due to the reciprocal movement of the aluminum jacket piston within the aluminum chamber.

  1. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  2. Progress in safety evaluation for the JMTR core conversion to LEU fuel

    International Nuclear Information System (INIS)

    Sakurai, F.; Komori, Y.; Saito, J.; Komukai, B.; Ando, H.; Nakata, H.; Sakakura, A.; Niiho, S.; Saito, M.; Futamura, Y.

    1991-01-01

    The JMTR (50 MWt) has been in steady operation with MEU fuel since July 1986. The effort is still continued to convert the core from MEU to LEU fuel. The LEU silicide fuel element at 4.8 gU/cm 3 with Cd wires as burnable absorbers has been selected in order to achieve upgraded fuel cycle performance of extended cycle length and reduced control rod movement operation. The neutronic calculation methods (diffusion theory model) developed for the LEU core with Cd wires was benchmarked with a detailed Monte Carlo model and verified experimentally using the critical facility, JMTRC. Hydraulic tests of the LEU silicide fuel element with Cd wires were completed with satisfactory results, and measurements of release/born (R/B) ratios of FPs of silicide fuel at high temperature are in progress. (orig.)

  3. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    Science.gov (United States)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  4. A laser-induced-fluorescence visualization study of transverse, sonic fuel injection in a nonreacting supersonic combustor

    Science.gov (United States)

    Mcdaniel, J. C.; Graves, J., Jr.

    1986-01-01

    The present paper reports work which has been conducted in the first phase of a research program which is to provide a data base of spatially-resolved measurements in nonreacting supersonic combustors. In the measurements, a nonintrusive diagnostic technique based on the utilization of laser-induced fluorescence (LIF) is employed. The reported work had the objective to conduct LIF visualization studies of the injection of a simulated fuel into a Mach 2.07 airstream for comparison with corresponding numerical calculations. Attention is given to injection from a single orifice into a constant-area duct, injection from a single orifice behind a rearward-facing step, and injection from staged orifices behind a rearward-facing step.

  5. Recent Progress in the Development of Diesel Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  6. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  7. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  8. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  9. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    Science.gov (United States)

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  10. Fuel performance improvement program. Quarterly/annual progress report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Crouthamel, C.E.

    1978-10-01

    This quarterly/annual report reviews and summarizes the activities performed in support of the Fuel Performance Improvement Program (FPIP) during Fiscal Year 1978 with emphasis on those activities that transpired during the quarter ending September 30, 1978. Significant progress has been made in achieving the primary objectives of the program, i.e., to demonstrate commercially viable fuel concepts with improved fuel - cladding interaction (FCI) behavior. This includes out-of-reactor experiments to support the fuel concepts being evaluated, initiation of instrumented test rod experiments in the Halden Boiling Water Reactor (HBWR), and fabrication of the first series of demonstration rods for irradiation in the Big Rock Point Reactor

  11. Lube-oil dilution of gasoline direct-injection engines with ethanol fuels; Schmieroelverduennung von direkteinspritzenden Ottomotoren unter Kaltstartrandbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, Carsten; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Artmann, Chrsitina; Rabl, Hans-Peter [Hochschule Regensburg (Germany). Labor fuer Verbrennungsmotoren und Abgasnachbehandlung

    2013-09-15

    Ethanol fuel mixtures account for the majority of biofuels used worldwide. However, their properties make these fuels more difficult to use in cold conditions and especially when starting a cold engine. As part of the FVV research project 'Lubricant Dilution with Ethanol Fuels under Cold Start Conditions', the Institute for Combustion Engines (VKA) at RWTH Aachen University and the Combustion Engines and Emission Control Laboratory at Regensburg University of Applied Sciences have investigated the influence of the ethanol content in fuels on the dilution of the lubricating oil in modern direct-injection gasoline engines. (orig.)

  12. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  13. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J; Mannila, P; Laukkanen, J [Oulu Univ. (Finland)

    1997-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  14. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  15. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  16. Effect of Fuel Composition on Particulate Matter Emissions from a Gasoline Direct Injection Engine

    Science.gov (United States)

    Smallwood, Bryden Alexander

    The effects of fuel composition on reducing PM emissions were investigated using a Ford Focus wall-guided gasoline direct injection engine (GDI). Initial results with a 65% isooctane and 35% toluene blend showed significant reductions in PM emissions. Further experiments determined that this decrease was due to a lack of light-end components in that fuel blend. Tests with pentane content lower than 15% were found to have PN concentrations 96% lower than tests with 20% pentane content. This indicates that there is a shift in mode of soot production. Pentane significantly increases the vapour pressure of the fuel blend, potentially resulting in surface boiling, less homogeneous mixtures, or decreased fuel rebound from the piston. PM mass measurements and PN Index values both showed strong correlations with the PN concentration emissions. In the gaseous exhaust, THC, pentane, and 1,3 butadiene showed strong correlations with the PM emissions.

  17. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline

    International Nuclear Information System (INIS)

    He, Bang-Quan; Chen, Xu; Lin, Chang-Lin; Zhao, Hua

    2016-01-01

    Highlights: • Different injection approaches for n-butanol and gasoline affect combustion events. • High n-butanol percentage in the total energy of fuels improves combustion stability. • N-butanol promotes ignition and shortens combustion duration. • Lean burn increases indicated mean effective pressure at fixed total energy of fuels. • Different fuel injection methods slightly affect indicated mean effective pressure. - Abstract: N-butanol, as a sustainable biofuel, is usually used as a blend with gasoline in spark ignition engines. In this study, the combustion characteristics were investigated on a four-cylinder spark ignition gasoline engine with independent port fuel injection and direct injection systems for n-butanol and gasoline in different operating conditions. The results show that in the case of port fuel injection of n-butanol with direct injection gasoline at a given total energy released in a cycle, indicated mean effective pressure is slightly affected by spark timing at stoichiometry while it changes much more with delayed spark timing in lean burn conditions and is much higher in lean burn conditions compared to stoichiometry at given spark timings. With the increase of n-butanol percentage in a fixed total energy released in a cycle at given spark timings, ignition timing advances, combustion duration shortens, indicated mean effective pressure and indicated thermal efficiency increase. For the cases of port fuel injection of n-butanol with direction injection gasoline and port fuel injection of gasoline with direction injection n-butanol at a fixed total energy released in a cycle, their indicated mean effective pressures are close. But their combustion processes are dependent on fuel injection approaches.

  18. The progressive achievement of a closed fuel cycle in France; La mise en oeuvre progressive d'un cycle ferme en France

    Energy Technology Data Exchange (ETDEWEB)

    Hugelmann, D.; Devezeaux de Lavergne, J.G. [AREVA NC, 78 - Velizy Villacoublay (France)

    2008-03-15

    The author reviews the progressive building of a strong nuclear fuel cycle industry in France. The first major step was the abandon of the graphite-gas reactor system to the PWR system. The government's decision to opt for reactors operating with enriched uranium opened the way to the application at an industrial scale of uranium enrichment technology that was only confined to military purposes. The legal entity 'EURODIF S A' was founded at that time and the different production units of the George-Besse-1 enrichment plant entered into service progressively from 1978 to 1982. The Comurhex company was created in 1969, and was in charge of producing the uranium hexafluoride necessary to the fabrication of nuclear fuels. La-Hague plant entered into service in 1966, its aim was to process spent fuels from graphite-gas reactors. Inside this plant the HAO (High Activity Oxide) dedicated to PWR spent fuels was operating in 1974. The MELOX plant dedicated to the fabrication of mixed oxides fuels (Mox) entered into operation in 1995 (till now more than 5000 Mox assemblies have been fabricated. Another important step was the processing of Mox fuels. During these 30 years, the nuclear industry has made impressing progress concerning: the increase of burn-up rates, the performance of fuels, the increase in the volume being processed, the packaging of radioactive wastes, the development of nuclear transport, and a reduction of the impact on the environment. In order to maintain its level of performance the nuclear industry has made important investments concerning: mining (a global investment of 2.3*10{sup 9} euros), Comurhex-2 (a 610*10{sup 6} euros investment) and Georges-Besse-2 plant (a 3*10{sup 9} euros investment for the enrichment of uranium through centrifugation). (A.C.)

  19. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  20. Numerical investigation of the effect of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Yang, Wenming; Liu, Yangxian; Bani, Stephen; Chen, Wei

    2017-01-01

    Highlights: • For injection timing, the fuel movement is controlled by the intensity of the vortex I. • For injection duration, the fuel movement is controlled by the value of jet flux. • The ideal fuel distribution at ignition timing for high combustion rate is studied. • The optimal injection strategy had an increase in the peak pressure and NO emissions. - Abstract: This work aimed to numerically study the influence of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine. On the base of a 3D dynamic simulation model which was established in our previous work, some critical information was obtained, which was difficult to obtain through experiment, in terms of the flow field, the fuel distribution, the temperature field and the concentration fields of some intermediates. Simulation results showed that for mixture formation, the movements of fuel in injection stage were mainly controlled by the intensity of the vortex I for injection timing, and the value of jet flux for injection duration respectively. With retarded injection timing, the decreasing intensity of the vortex I resulted in less fuel moving toward the back of the combustion chamber. With the extension in injection duration, the decreasing value of jet flux resulted in more fuel staying at the back of the combustion chamber. For combustion process, the overall combustion rate for injection strategy which had an injection timing of 390 °CA (BTDC) and injection duration of 51.5 °CA (case ID4) was the fastest. This was mainly due to the fact that the accumulation area of fuel was at the middle and front of the combustion chamber. Meanwhile, fuel concentration near the leading and trailing spark plugs was conducive for the flame kernel formation. Compared with the injection strategy which had an injection timing of 450 °CA (BTDC) and an injection duration of 55 °CA (case IT1), the improved combustion rate of case ID4 had a 23% increase in

  1. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  2. Feedback controlled fuel injection system can accommodate any alcohol-gasoline blend

    Energy Technology Data Exchange (ETDEWEB)

    Pefley, R K; Pullman, J B; Suga, T P; Espinola, S

    1980-01-01

    A fuel metering system has been adapted and permits operation on all blends of alcohols and gasoline ranging from pure gasoline to pure ethanol and methanol. It is a closed loop electronic feedback controlled fuel injection system (EFI) with exhaust oxygen sensor. The system is used by Toyota Motor Company in their Supra and Cressida models in conjunction with a 3-way catalytic exhaust system. These models meet California exhaust and evaporative emission standards. An unmodified model has been tested on alcohol gasoline blends from pure gasoline to 50% ethanol-50% gasoline and 30% methanol-70% gasoline and found to meet all exhaust and evaporative emissions standards. A Cressida with modified EFI system is currently being tested. It is capable of operating on pure gasoline, pure methanol or ethanol and all intermediate blends. The testing to date shows that the vehicle meets all exhaust emissions standards while operating over the blend range from pure gasoline to pure ethanol while maintaining driveability and energy based fuel economy. The paper will present the total test evidence for all gasoline-alcohol blends. This will include exhaust and evaporative emissions, fuel economy and driveability as determined in accordance with United States Federal Test Procedures. Additionally, the paper will report experiences accumulated from road operation of the vehicle over a six-month period.

  3. Demonstrating the benefits of fuel cells: further significant progress towards commercialisation

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-01-01

    The fourteenth Fuel Cell Seminar held in San Diego, California in 1994 is reported. The phosphoric acid fuel cell (PAFC) is the closest to widespread commercialization. PAFC cogeneration plants have to be shown to compare favourable in reliability with current mature natural gas-fuelled engine and turbine technologies. Although highly efficient, further development is necessary to produce cost effective generators. Progress is being made on proton exchange membrane fuel cell (PEMFC) stationary power plants, too, which may prove to be cost effective. In view of its lower operating temperature, at below 100[sup o]C compared with about 200[sup o]C for the PAFC, the principal use of the PEMFC has been identified as powering vehicles. Fuel cells have significant environmental advantages but further capital cost reductions are necessary if they are to compete with established technologies. (UK)

  4. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon; Chung, Suk-Ho; Yoo, Chun Sang

    2017-01-01

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  5. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    KAUST Repository

    Luong, Minh Bau

    2017-06-10

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C8H18) with a pseudo-iso-octane (PC8H18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC8H18 model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C8H18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C8H18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C8H18. Finally, a misfire is observed for the DDFS combustion when

  6. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  7. A new concept of auxiliary fuel injection through tuyeres in blast furnaces developed by numerical simulations

    Directory of Open Access Journals (Sweden)

    Bruno Orlando de Almeida Santos

    2014-04-01

    Full Text Available The Injection of powdered materials in blast furnaces is a great option for reducing costs, increasing productivity and satisfy the environmental norms. Thus, this paper presents a study on the use of a flame stabilization system with rotation, designed to promote greater coal injection in the combustion zone, reducing losses and increasing the efficiency of the equipment. A physical model was used to evaluate scattering of pulverized fuel and is compared with numerical results in the same scale. In the second step, a combustion model was added to the numerical simulation, using dimensions of a real blast furnace. Fields like temperature, velocity and behavior of chemical reactions were analyzed. The results showed that double lances promote better particle injection when compared with simple lance for reduced material injection. The new injection system proposed, with swirl numbers of 0.12 and 0.24, promoted a better injection of both reduced material and temperature in the raceway zone. The swirl 0.24 showed superior performance when compared to other injection systems.

  8. Progress on the Application of Metallic Fuels for Actinide Transmutation

    International Nuclear Information System (INIS)

    Kennedy, J. Rory; Fielding, Randall; Janney, Dawn; Mariani, Robert; Teague, Melissa; Egeland, Gerald

    2015-01-01

    Full text of publication follows: Idaho National Laboratory (INL) is developing actinide bearing alloy metallic fuels intended for effecting the transmutation of long-lived isotopes in fast reactor application as part of a partitioning and transmutation strategy. This presentation will report on progress in three areas of this effort: demonstration of the fabrication of fuels under remote (hot cell) conditions directly coupled to the product from the Pyro-processing of spent fuel as part of the Joint Fuel Cycle Studies (JFCS) collaboration with the Korean Atomic Energy Research Institute (KAERI); the chemical sequestration of lanthanide fission products to mitigate fuel-cladding-chemical-interaction (FCCI); and transmission electron microscopy (TEM) and atom probe tomography (APT) studies on the as-cast microstructure of the metallic fuel alloy. For the JFCS efforts, we report on the implementation of the Glove-box Advanced Casting System (GACS) as a prototype casting furnace for eventual installation into the INL Hot Fuel Examination Facility (HFEF) where the recycled fuel will be cast. Results from optimising process parameters with respect to fuel characteristics, americium volatility, materials interaction, and lanthanide fission product carry over distribution will be discussed. With respect to the lanthanide carry over from the Pyro-processing product, encouraging studies on concepts to chemically sequester the FCCI promoting lanthanides within the fuel matrix thus inhibiting migration and interaction with the cladding will be presented. Finally, in relation to advanced modelling and simulation efforts, detailed investigations and interpretation on the nano-scale as cast microstructure of possible recycle fuel composition containing U, Pu, Am, Np as well as carry-over lanthanide species will be discussed. These studies are important for establishing the initial conditions from which advanced physics based fuel performance codes will run. (authors)

  9. Triple-combination treatment with oral α-lipoic acid, betamethasone injection, and NB-UVB for non-segmental progressive vitiligo.

    Science.gov (United States)

    Li, Li; Li, Lu; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2016-06-01

    Vitiligo is an acquired depigmenting disease with uncertain etiopathogenesis and the treatment modalities need to be consistently updated. To evaluate a triple-combination treatment with oral α-lipoic acid (ALA), betamethasone injection, and narrowband ultraviolet B (NB-UVB) on vitiligo. Patients with non-segmental and progressive vitiligo lesions were randomly assigned to two groups. The treatment group and the control group were respectively treated with oral ALA and placebo, in combination with betamethasone injection and NB-UVB. The effectiveness and adverse events were evaluated by investigators and patients before and after treatment. Fifty non-segmental progressive vitiligo patients were enrolled in the study. The treatment period was 6 months. In treatment group, over 40% patients achieved > 50% improvement and ≥ 5 satisfaction score by 3-month therapy (M3). This percentage increased to 90% at M6. Treatment group achieved better efficacy than control group at M3, while no difference was seen at M6. The combined treatment with oral ALA, betamethasone injection, and NB-UVB was effective and safe on non-segmental progressive vitiligo. ALA could accelerate the initial response of repigmentation.

  10. The role of the fuel injection system for combustion process optimization of highly turbocharged PC diesel engines; Die Rolle des Einspritzsystems bei der Brennverfahrensoptimierung von hochaufgeladenen Pkw-Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Juergen; Leonhard, Rolf; Krueger, Michael; Naber, Dirk; Pitt, J. [Robert Bosch GmbH, Stuttgart (Germany)

    2008-07-01

    In order to comply with continuously rising requirements from emission legislation and fuel economy enhancement, modern Diesel engines for passenger cars still offer a variety of measures. Focus of this paper is the importance of a highly flexible fuel-injection system and an optimized injection strategy as direct measures to improve both, tail-pipe emission as well as vehicle fuel economy. An integrated system approach of high pressure pump, injector and nozzle provides the latest injection patterns combined with an increased rail pressure level with a best-in-class hydraulic efficiency. The resulting improvement in the injection system and thus in the combustion also enables the introduction of additional indirect, very effective measures for fuel consumption reduction, such as downsizing and downspeeding. In order to fully utilize the potent of the mentioned approaches, the application of advanced boosting technology is an additional key factor. Bosch Diesel injection technology and optimized combustion systems pave the way to achieve the goal of efficient emission reduction. (orig.)

  11. US Progress on Property Characterization to Support LEU U-10 Mo Monolithic Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Cole, James Irvin [Idaho National Laboratory; Rabin, Barry H [Idaho National Laboratory; Smith, James Arthur [Idaho National Laboratory; Scott, Clark Landon [Idaho National Laboratory; Benefiel, Bradley Curtis [Idaho National Laboratory; Larsen, Eric David [Idaho National Laboratory; Lind, Robert Paul [Idaho National Laboratory; Sell, David Alan [Idaho National Laboratory

    2016-03-01

    The US High Performance Research Reactor program is pursuing development and qualification of a new high density monolithic LEU fuel to facilitate conversion of five higher power research reactors located in the US (ATR, HFIR, NBSR, MIT and MURR). In order to support fabrication development and fuel performance evaluations, new testing capabilities are being developed to evaluate the properties of fuel specimens. Residual stress and fuel-cladding bond strength are two characteristics related to fuel performance that are being investigated. In this overview, new measurement capabilities being developed to assess these characteristics in both fresh and irradiated fuel are described. Progress on fresh fuel testing is summarized and on-going hot-cell implementation efforts to support future PIE campaigns are detailed. It is anticipated that benchmarking of as-fabricated fuel characteristics will be critical to establishing technical bases for specifications that optimize fuel fabrication and ensure acceptable in-reactor fuel performance.

  12. Review of hydrogen pellet injection technology for plasma fueling applications

    International Nuclear Information System (INIS)

    Milora, S.L.

    1989-01-01

    In the past several years, steady progress has been made worldwide in the development of high-speed hydrogen pellet injectors for fueling magnetically confined plasmas. Several fueling systems based on the conventional pneumatic and centrifuge acceleration concepts have been put into practice on a wide variety of toroidal plasma confinement devices. Long-pulse fueling has been demonstrated in the parameter range 0.8--1.3 km/s, for pellets up to 6 mm in diameter, and at delivery rates up to 40 Hz. Conventional systems have demonstrated the technology to speeds approaching 2 km/s, and several more exotic accelerator concepts are under development to meet the more demanding requirements of the next generation of reactor-grade plasmas. These include a gas gun that can operate in tritium, the two-stage light gas gun, electrothermal guns, electromagnetic rail guns, and an electron-beam-driven thruster. Although these devices are in various stages of development, velocities of 3.8 km/s have already been achieved with two-stage light gas guns, and the prospects for attaining 5 km/s in the near future appear good

  13. Recent progresses in materials for the direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, C; Leger, J M [Centre National de la Recherche Scientifique (CNRS), 86 - Poitiers (France)

    1998-12-31

    Research programs are being conducted worldwide to develop a clean, zero emissions electric vehicle. However, even with the most advanced batteries, such as nickel/metal hydride, or lithium ion batteries, the driving range is limited and the recharging time is long. Only fuel cells which can convert chemical energy directly into electrical energy can compete with internal combustion engines. This paper reviewed the recent progress made in the development of a direct methanol fuel cell using the concept developed for the proton exchange membrane fuel cell (PEMFC). It was noted that the electrode materials, at the methanol anode and oxygen cathode need to be improved by using multifunctional electrocatalysts. The development of new temperature resistant proton exchange membranes with good ionic conductivity and low methanol cross-over, which resulted from the need to increase operating temperatures above 100 degrees C was also reviewed. 35 refs., 1 tab., 2 figs.

  14. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  15. Critical firing and misfiring boundary in a spark ignition methanol engine during cold start based on single cycle fuel injection

    International Nuclear Information System (INIS)

    Li, Zhaohui; Gong, Changming; Qu, Xiang; Liu, Fenghua; Sun, Jingzhen; Wang, Kang; Li, Yufeng

    2015-01-01

    The influence of the mass of methanol injected per cycle, ambient temperature, injection and ignition timing, preheating methods, and supplying additional liquefied petroleum gas (LPG) injection into the intake manifold on the critical firing and misfiring boundary of an electronically injection controlled spark ignition (SI) methanol engine during cold start were investigated experimentally based on a single cycle fuel injection with cycle-by-cycle control strategy. The critical firing and misfiring boundary was restricted by all parameters. For ambient temperatures below 16 °C, methanol engines must use auxiliary start-aids during cold start. Optimal control of the methanol injection and ignition timing can realize ideal next cycle firing combustion after injection. Resistance wire and glow plug preheating can provide critical firing down to ambient temperatures of 5 °C and 0 °C, respectively. Using an additional LPG injection into the intake manifold can provide critical firing down to an ambient temperature of −13 °C during cold start. As the ambient temperature decreases, the optimal angle difference between methanol injection timing and LPG injection timing for critical firing of a methanol engine increases rapidly during cold start. - Highlights: • A single cycle fuel injection and cycle-by-cycle control strategy are used to study. • In-cylinder pressure and instantaneous speed were used to determine firing boundary. • For the ambient temperatures below 16 °C, an auxiliary start-aids must be used. • A preheating and additional LPG were used to expand critical firing boundary. • Additional LPG can result in critical firing down to ambient temperature of −13 °C

  16. Dimpled/grooved face on a fuel injection nozzle body for flame stabilization and related method

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo; Zuo, Baifang

    2013-08-20

    A fuel injection head for a fuel nozzle used in a gas turbine combustor includes a substantially hollow body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween. A plurality of pre-mix tubes or passages extend axially through the hollow body with inlets at the upstream end face and outlets at the downstream end face. An exterior surface of the downstream end face is formed with three-dimensional surface features that increase a total surface area of the exterior surface as compared to a substantially flat, planar downstream end face.

  17. Modelling the effect of injection pressure on heat release parameters and nitrogen oxides in direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Yüksek Levent

    2014-01-01

    Full Text Available Investigation and modelling the effect of injection pressure on heat release parameters and engine-out nitrogen oxides are the main aim of this study. A zero-dimensional and multi-zone cylinder model was developed for estimation of the effect of injection pressure rise on performance parameters of diesel engine. Double-Wiebe rate of heat release global model was used to describe fuel combustion. extended Zeldovich mechanism and partial equilibrium approach were used for modelling the formation of nitrogen oxides. Single cylinder, high pressure direct injection, electronically controlled, research engine bench was used for model calibration. 1000 and 1200 bars of fuel injection pressure were investigated while injection advance, injected fuel quantity and engine speed kept constant. The ignition delay of injected fuel reduced 0.4 crank angle with 1200 bars of injection pressure and similar effect observed in premixed combustion phase duration which reduced 0.2 crank angle. Rate of heat release of premixed combustion phase increased 1.75 % with 1200 bar injection pressure. Multi-zone cylinder model showed good agreement with experimental in-cylinder pressure data. Also it was seen that the NOx formation model greatly predicted the engine-out NOx emissions for both of the operation modes.

  18. Spent Fuel and Waste Management Technology Development Program. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.W.

    1994-01-01

    This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

  19. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  20. Deterioration of the fuel injection parameters as a result of Common Rail injectors deposit formation

    Directory of Open Access Journals (Sweden)

    Stępień Zbigniew

    2017-01-01

    Full Text Available The article describes external and internal Common Rail injectors deposits formed in dynamometer engine simulation tests. It discussed not only the key reasons and factors influencing injector deposit formation but also the resulting way of fuel preparation and engine test approaches. The effects of external coking deposit as well as internal deposits two most common form types that is carboxylic soaps and organic amides on deterioration of the fuel injection parameters were assessed. The assessments covered both deposits impacts on quantitative and qualitative changes of the injectors diagnostic parameters and as a result on deterioration of the injector performance. Finally the comparisons between characteristic of dosage of one fuel injector before test and characteristics few injectors after engine tests of simulated deposit formation were made.

  1. Flexible injection control for fuel consumption and emission reduction in passenger cars?; Flexible Einspritzverlaufsformung: Auch bei PKW-Dieselmotoren ein wirkungsvolles Mittel zur Reduzierung von Verbrauch und Schadstoffemissionen?

    Energy Technology Data Exchange (ETDEWEB)

    Laumen, H.J.; Koerfer, T.; Lamping, M. [FEV Motorentechnik GmbH, Aachen (Germany); Pischinger, S.; Schmuecker, K.J. [RWTH Aachen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen

    2007-07-01

    In the recent decade the Diesel injection technology has been modified significantly. The old cam driven injection systems have been replaced nearly completely by modern Common Rail systems which enable a significantly higher degree of freedom especially with respect to multi-injection strategies and exhaust aftertreatment demands. Nevertheless, cam driven injection systems offered special characteristics which were favorable regarding fuel consumption and emissions. Due to the much higher nozzle opening and closing velocity, the seat throttling effects are widely reduced. Furthermore the fuel injection rate during ignition delay is smaller, compared to today's Common Rail systems. A new type of a piezoelectric Common Rail injector for passenger car engines, called FIRST (Flexible Injection Rate Shaping Tool) is described in this article, which combines both, the flexibility of modern Common Rail injectors as well as the benefits of cam driven injection systems regarding reduced seat throttling effects. Additionally flexible injection rate shaping is enabled by forming the slope of the actuator voltage. Both, the hydraulic behavior and also the engine performance with the new injector are presented in comparison to conventional injectors. The FIRST injector offers a benefit of 20% in PM and CO emission with constant NO{sub x} emission and reduced fuel consumption at part load as a result of the reduced seat throttling. By an optimization of the injection rate shape, the NO{sub x} emissions can be reduced by 40% at constant fuel consumption and PM emissions and without deterioration of NVH level. (orig.)

  2. Progress on the Hanford K basins spent nuclear fuel project

    International Nuclear Information System (INIS)

    Culley, G.E.; Fulton, J.C.; Gerber, E.W.

    1996-01-01

    This paper highlights progress made during the last year toward removing the Department of Energy's (DOE) approximately, 2,100 metric tons of metallic spent nuclear fuel from the two outdated K Basins at the Hanford Site and placing it in safe, economical interim dry storage. In the past year, the Spent Nuclear Fuel (SNF) Project has engaged in an evolutionary process involving the customer, regulatory bodies, and the public that has resulted in a quicker, cheaper, and safer strategy for accomplishing that goal. Development and implementation of the Integrated Process Strategy for K Basins Fuel is as much a case study of modern project and business management within the regulatory system as it is a technical achievement. A year ago, the SNF Project developed the K Basins Path Forward that, beginning in December 1998, would move the spent nuclear fuel currently stored in the K Basins to a new Staging and Storage Facility by December 2000. The second stage of this $960 million two-stage plan would complete the project by conditioning the metallic fuel and placing it in interim dry storage by 2006. In accepting this plan, the DOE established goals that the fuel removal schedule be accelerated by a year, that fuel conditioning be closely coupled with fuel removal, and that the cost be reduced by at least $300 million. The SNF Project conducted coordinated engineering and technology studies over a three-month period that established the technical framework needed to design and construct facilities, and implement processes compatible with these goals. The result was the Integrated Process Strategy for K Basins Fuel. This strategy accomplishes the goals set forth by the DOE by beginning fuel removal a year earlier in December 1997, completing it by December 1999, beginning conditioning within six months of starting fuel removal, and accomplishes it for $340 million less than the previous Path Forward plan

  3. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    Science.gov (United States)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  4. Simulated effect of timing and Pt quantity injected on On-line NobleChem application on total fuel liftoff

    International Nuclear Information System (INIS)

    Pop, M.G.; Riddle, J.M.; Lamanna, L.S.; Gregorich, C.; Hoornik, A.

    2015-01-01

    Total liftoff is a measure of fuel performance and a risk indicator for fuel reliability. Fuel operability and license limits are directly related to the expected total lifetime liftoff. AREVA's continued commitment to zero fuel failure is expressed, among other efforts, in the continued development and improvement of its fuel cladding corrosion and crud risk assessment tools. The AREVA models used to assess and predict crud deposition on BWR cores over their lifespan have been refined by the development and incorporation of the PEZOG tool in response to the move in the industry to the On-Line NobleChem TM (OLNC) technology. PEZOG models the platinum-enhanced zirconium oxide growth of fuel cladding when exposed to platinum during operation. Depending on the local chemistry and radiation condition, noble metals act as catalysts for many reactions, including but not limited to hydrogen oxidation and oxygen reduction. OLNC's intention is to catalyze the hydrogen and oxygen recombination reaction for core internals protection. However, research has indicated that noble metals catalyze the oxygen reduction under the chemistry and radiation conditions as experienced in the pores of crud deposits, and hence, can increase the corrosion rate of zirconium alloy cladding. The developed PEZOG module calculates the oxide thickness as a function of platinum injection strategy. The stratified nature of oxide and crud layers formed on fuel cladding surfaces is reflected in the calculations as are the different platinum interaction in each of the layers. This paper presents examples of the evaluation of various aspects of the platinum injection strategies and their influence on the oxide growth enhancement as applied to conditions of a U.S. plant. (authors)

  5. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  6. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1980-02-01

    Studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two 238 PuO 2 pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported

  7. Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing

    International Nuclear Information System (INIS)

    Wang, Ying; Zhao, Yuwei; Xiao, Fan; Li, Dongchang

    2014-01-01

    Highlights: • Combustion and emission of diesel engine with DME as premixing fuel were examined. • Injection timing has profound effect on HRR of diffusive combustion in PCCI engine. • DME introduction drastically influenced HRR of PCCI combustion, especially for HTR. • Effect of injection timing on emission of PCCI engine is similar to that of DICI engine. - Abstract: This work dealt with the combustion and exhaust performance of a DME premixed charge compression ignition diesel engine. With the port premixing DME, the heat-release process was made up of the premixed charge homogeneous charge compression ignition combustion and diffusion combustion. The in-cylinder fuel injection timing and port premixing DME quantity played the important roles in combustion and emission control. They had little impact on the peak position of heat-release rate (HRR) during LTR phase. However, they had great effects on the peak values and the crank-angle positions corresponding to the HRR peaks during HTR and diffusion combustion phase. The peak value of HRR increased and the crank-angle corresponding to the HRR peak advanced with an incremental DME quantity or an early injection during HTR phase. However, the peak value of HRR dropped with an incremental DME quantity or a late injection during the diffusion combustion phase. p max and T max increased with an incremental DME quantity or an early injection. At the fixed direct-injection timing, BSFC decreased slightly with a rise of DME quantity due to CA50 closer to TDC. At a fixed DME quantity, BSFC was lowest when diesel was injected into cylinder at 7°CA BTDC. Moreover, as more DME was aspirated from port, NO x emissions decreased firstly but this decreasing trend ceased later. Smoke reduced, but CO and HC increased with a rise of DME quantity. Meanwhile, like the conventional DICI operation, NO x increased, but smoke, CO and HC declined with an early direct-injection

  8. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  9. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  10. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Seoung Woo, E-mail: swkuk@kaeri.re.kr [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Youn, Young-Sang [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  11. UV-visible digital imaging of split injection in a Gasoline Direct Injection engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia

    2015-01-01

    Full Text Available Ever tighter limits on pollutant emissions and the need to improve energy conversion efficiency have made the application of gasoline direct injection (GDI feasible for a much wider scale of spark ignition engines. Changing the way fuel is delivered to the engine has thus provided increased flexibility but also challenges, such as higher particulate emissions. Therefore, alternative injection control strategies need to be investigated in order to obtain optimum performance and reduced environmental impact. In this study, experiments were carried out on a single-cylinder GDI optical engine fuelled with commercial gasoline in lean-burn conditions. The single-cylinder was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio and wall guided fuel injection. Optical accessibility was ensured through a conventional elongated hollow Bowditch piston and an optical crown, accommodating a fused-silica window. Experimental tests were performed at fixed engine speed and injection pressure, whereas the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions. UV-visible digital imaging was applied in order to follow the combustion process, from ignition to the late combustion phase. All the optical data were correlated with thermodynamic analysis and measurements of exhaust emissions. Split injection strategies (i.e. two injections per cycle with respect to single injection increased combustion efficiency and stability thanks to an improvement of fuel air mixing. As a consequence, significant reduction in soot formation and exhaust emission with acceptable penalty in terms of HC and NOx were measured.

  12. Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission

    Science.gov (United States)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Kyungcheol; Park, Seongho; Kim, Hyung-Man

    2015-11-01

    The emphasis on increasing fuel economy and reducing emissions is increasing. Attention has turned to how the performance of a gasoline direct injection (GDI) engine can be improved to achieve lower fuel consumption and NOx emission. Therefore, positive effects can reduce fuel consumption and NOx emission as well as knock suppression. The cooled exhaust gas recirculation (EGR) ranges within the characteristic map are characterized from the experimental results at various speeds and brake mean effective pressures in a GDI engine. The results show that the application of cooled EGR system brought in 3.63 % reduction as for the fuel consumption and 4.34 % as for NOx emission.

  13. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  14. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  15. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC-Engines, TATA Motors Ltd, Pimpri, Pune, Maharashtra 411018 (India); Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai, Tamil Nadu 600 025 (India)

    2009-01-15

    Over the past two decades there has been a considerable effort to develop and introduce alternative transportation fuels to replace conventional fuels, gasoline and diesel. Environmental issues are the principal driving forces behind this effort. To date the bulk of research has focused on the carbon-based fuels such as reformulated gasoline, methanol and natural gas. One alternative fuel to carbon-based fuels is hydrogen which is considered to be low polluting fuel. In the present experimental investigation hydrogen was injected into the intake manifold by using an injector. Using an electronic control unit (ECU) the injection timing and the duration were controlled. From the results it is observed that the optimum injection timing is at gas exchange top dead center (GTDC). The efficiency improved by about 15% with an increase in NO{sub X} emission by 3% compared to diesel. The smoke emission decreased by almost 100%. A net reduction in carbon emissions was also noticed due to the use of hydrogen. By adopting manifold injection technique the hydrogen-diesel dual fuel engine operates smoothly with a significant improvement in performance and reduction in emissions. (author)

  16. Effects of pilot injection timing and EGR on a modern V6 common rail direct injection diesel engine

    Science.gov (United States)

    Rosli Abdullah, Nik; Mamat, Rizalman; Wyszynski, Miroslaw L.; Tsolakis, Anthanasios; Xu, Hongming

    2013-12-01

    Nitric oxide and smoke emissions in diesel engine can be controlled by optimising the air/fuel mixture. Early injection produces premixed charge resulted in simultaneous NOx and smoke emissions reduction. However, there could be an increase in hydrocarbons and CO emissions due to fuel impinged to the cylinder wall. The focus of the present work is to investigate the effects of a variation of pilot injection timing with EGR to NOx and smoke level on a modern V6 common rail direct injection. This study is carried out at two different engine load conditions of 30 Nm and 55 Nm, at constant engine speed of 2000 rpm. The results show that the early pilot injection timing contributed to the lower smoke level and higher NOx emissions. The higher level of NOx is due to higher combustion temperatures resulting from the complete combustion. Meanwhile, the lower smoke level is due to complete fuel combustion and soot oxidation. The early pilot injection timing produces an intermediate main ignition delay which also contributed to complete combustion. The formation of smoke is higher at a high engine load compared with low engine load due to the higher amount of fuel being injected.

  17. Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines

    International Nuclear Information System (INIS)

    Bozza, Fabio; De Bellis, Vincenzo; Teodosio, Luigi

    2016-01-01

    Highlights: • 1D simulation of a turbocharged VVA engine under knock limited operation. • Description of turbulence, combustion and knock by phenomenological models. • Comparison of EGR and ported water injection at high load for knock mitigation and fuel economy. • Virtual calibration of engine control parameters by a 1D model. - Abstract: It is well known that the downsizing philosophy allows the improvement of the brake specific fuel consumption (BSFC) at part load operation for spark ignition (SI) engines. On the other hand, the BSFC is penalized at high load because of the knock occurrence and of further limitations on the turbine inlet temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while the TIT control requires the enrichment of the air-to-fuel ratio (A/F), with additional BSFC drawbacks. In this work, two promising techniques are investigated by a 1D approach with the aim of improving the fuel economy of a turbocharged SI engine at full load knock-limited operation. The first technique is the recirculation of low-pressure cooled exhaust gas (EGR), while the second is the injection of liquid water at the intake ports. Proper “in-house developed” sub-models are used to describe the turbulence, combustion and knock phenomena. The effects of the above techniques are studied in six operating points at full load and different speeds for various A/F levels and inert content, by varying the EGR rate and water-to-fuel ratio. The presented results highlight that both the solutions involve significant BSFC improvements, especially in the operating conditions at medium engine speeds. In fact, the introduction of inert gas in the cylinder contributes to reduce the knock tendency, resulting in the possibility to advance the combustion phasing and reduce, or even avoid, the mixture over-fuelling. The heat subtracted by the water evaporation enhances the above effects

  18. Intravitreal anti-VEGF injection for the treatment of progressive juxtapapillary retinal capillary hemangioma: a case report and mini review of the literature

    Directory of Open Access Journals (Sweden)

    Chelala E

    2013-10-01

    Full Text Available Elias Chelala, Ali Dirani, Ali Fadlallah Saint-Joseph University, Faculty of Medicine, Beirut, Lebanon Abstract: We report a case of a patient known to have a von Hippel–Lindau disease with documented progressive juxtapapillary retinal capillary hemangioma (JRCH with well-preserved visual acuity (VA and visual field (VF. The patient received a single injection of intravitreal ranibizumab (IVR. Six months after IVR injection, the JRCH showed reduced vascularization, fibrosis, and mild shrinkage, and VA and VF remained unchanged. IVR therapy might therefore be considered as an alternative treatment for progressive JRCH, especially in patients with well-preserved VA and VF. Keywords: juxtapapillary retinal capillary hemangioma, intravitreal anti-VEGF injection, von Hippel–Lindau disease

  19. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  20. Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine

    International Nuclear Information System (INIS)

    Yang, Bo; Wei, Xing; Xi, Chengxun; Liu, Yifu; Zeng, Ke; Lai, Ming-Chia

    2014-01-01

    Highlights: • Natural gas injection timing has obvious effects on combustion of dual-fuel engine. • Combustion performance is improved with optimized natural gas injection timing. • BSHC and BSCO decreased with retarded natural gas injection timing at low load. • BSNO x increased at part load while reduced at high load with delay N.G. injection. • PM is very low and insensitive to the variation of natural gas injection timing. - Abstract: Natural gas combustion with pilot ignition has been considered to be one of the most promising ways to utilize natural gas in existing diesel engine without serious engine modification and it has been widely researched all over the world. In this study, three experiments of different loads (BMEP 0.240 MPa, 0.480 MPa and 0.767 MPa) were performed on a 2.8 L four-cylinder, natural gas manifold injection dual-fuel engine to investigate the effects of natural gas injection timing on engine combustion performance and emissions. The pilot injection parameters (pilot injection timing and pressure) and natural gas injection pressure remain constant at a speed of 1600 rpm in the experiment. The cylinder pressure, HRR, CoV imep , flame development duration, CA50 and brake thermal efficiency were analyzed. The results indicated that under low and part engine loads, the flame development duration and CA50 can be reduced by properly retarding natural gas injection timing, while the CoV imep increased with retarded natural gas injection timing. As a result, the brake thermal efficiency is increased and the combustion stability slightly deteriorates. Meanwhile, under low and part engine loads, PM emissions in the dual-fuel engine is much lower than that in conventional diesel engines, furthermore, at high load, the PM emissions are near zero. CO and HC emissions are reduced with retarded natural gas injection timing under low and part loads, however, NO x emissions are slightly increased. Under high load, the flame development duration

  1. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system

    International Nuclear Information System (INIS)

    Han, Dong; Wang, Chunhai; Duan, Yaozong; Tian, Zhisong; Huang, Zhen

    2014-01-01

    The injection and spray characteristics of diesel and gasoline blends are investigated on a common rail injection system. The injection rate, fuel spray evolution process (tip penetration distance, spray cone angle, projected spray area and relative brightness intensity contour) and microscopic droplet features are analyzed. The results show that diesel and gasoline blends have higher volumetric injection rates, earlier starts of injection and shorter injection delays, but little variances are observed in the mass injection rates for different test fuels. Increased gasoline proportion in the test blends causes slightly decreased spray tip penetration distance but increased spray cone angle. Also, more smaller-size droplets are observed in the fuel jet of the diesel and gasoline blends, indicating that the spray breakup and atomization processes are promoted. - Highlights: • Injection rate and spray characteristics of diesel and gasoline blends are studied. • Diesel and gasoline blends have higher volumetric injection rates. • Earlier starts of injection are found when using diesel and gasoline blends. • Diesel and gasoline blends produce shorter spray penetration but higher cone angle. • The number of small droplets increases in the spray of diesel and gasoline blends

  2. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  3. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    International Nuclear Information System (INIS)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-01

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor

  4. Progress of the DUPIC Fuel Compatibility Analysis (IV) - Fuel Performance

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ryu, Ho Jin; Roh, Gyu Hong; Jeong, Chang Joon; Park, Chang Je; Song, Kee Chan; Lee, Jung Won

    2005-10-15

    This study describes the mechanical compatibility of the direct use of spent pressurized water reactor (PWR) fuel in Canada deuterium uranium (CANDU) reactors (DUPIC) fuel, when it is loaded into a CANDU reactor. The mechanical compatibility can be assessed for the fuel management, primary heat transport system, fuel channel, and the fuel handling system in the reactor core by both the experimental and analytic methods. Because the physical dimensions of the DUPIC fuel bundle adopt the CANDU flexible (CANFLEX) fuel bundle design which has already been demonstrated for a commercial use in CANDU reactors, the experimental compatibility analyses focused on the generation of material property data and the irradiation tests of the DUPIC fuel, which are used for the computational analysis. The intermediate results of the mechanical compatibility analysis have shown that the integrity of the DUPIC fuel is mostly maintained under the high power and high burnup conditions even though some material properties like the thermal conductivity is a little lower compared to the uranium fuel. However it is required to slightly change the current DUPIC fuel design to accommodate the high internal pressure of the fuel element. It is also strongly recommended to perform more irradiation tests of the DUPIC fuel to accumulate a database for the demonstration of the DUPIC fuel performance in the CANDU reactor.

  5. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    Science.gov (United States)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  6. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  7. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    Science.gov (United States)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  8. Fuelling regulation with Electronic fuel injection for small spark ignition engine using Fuzzy Logic

    International Nuclear Information System (INIS)

    Shah, S.R.; Sahir, M.H.

    2004-01-01

    The use of Electronic Control systems in automotive applications gives the design engineer greater control over various processes compared with mechanical methods Examples of such electronic control systems are Electronic Fuel Injection (EFI), Traction Control Systems (TCS) and Anti-lock Braking Systems (ABS). In addition, the development of inexpensive and fast microcontrollers has remarkably improve, performance of passive and active safety systems of automobiles, without causing excessive increase in prices of vehicles -a favourable factor from the consumer's perspective. This paper deals with a possible electronic aid for the improvement of power control in a motorcycle. Controlling the speed and power of a motorcycle is difficult; especially on bumpy and uneven terrain. In this paper, the development of an EPI system is discussed, incorporating artificial intelligence to regulate the fuel supplied to the engine. It would minimize wheel slippage and jerky and sudden acceleration which potentially dangerous. It would also reduce production of large quantities of pollutant like hydrocarbons and carbon monoxide. Fuel consumption would also improve during stop-and-go traffic. (author)

  9. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

    1995-02-01

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

  10. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  11. Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules

    International Nuclear Information System (INIS)

    Ferrari, A.; Mittica, A.

    2016-01-01

    Highlights: • Direct and indirect acting injectors are tested considering multiple injections. • The injection fusion threshold is higher for ballistic injectors than for stroke-end limited injectors. • The internal dynamics of the injector is analyzed for closely-coupled double injections. • Different regimes are identified and classified in the short dwell time range. • Innovative rate shaping injection schedules are defined for solenoid injectors. - Abstract: The multiple injection performance of Common Rail injectors has been analyzed at a hydraulic test rig as the dwell time was varied. The dependence of the injected volume on the dwell time has been investigated for direct acting piezoelectric and hydraulically-controlled (or indirect-acting) servo injectors. The injected fuel volumes in the long dwell-time range have been shown to be affected by the pressure waves that travel along the high pressure circuit for hydraulically-controlled servo injectors. On the other hand, the influence of pressure-wave-induced disturbances on multiple injection performance has been shown to be negligible for direct acting piezoelectric injectors. An analysis of closely-coupled injections has been conducted on a solenoid injector. When the dwell time is progressively reduced below a critical value, an increase in the fuel quantity that is injected in the second shot is observed. Injection fusion phenomena occur as the dwell time is diminished below a certain threshold and a maximum in the fuel volume, which is injected during the joint injections, is eventually detected for a very short electric dwell time value close to 100 μs. The cycle-to-cycle dispersion around this dwell time value results to be reduced significantly. A previously developed 1D model of the fuel injection system has been applied to analyze the injector transients. Detailed knowledge of the injection dynamics in the short dwell time region is of fundamental importance to optimize the

  12. Investigation of the effect of heated ethanol fuel on combustion and emissions of an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang

    2016-01-01

    Highlights: • Effect of EDI heating on the EDI + GPI engine performance was investigated. • CO and HC were significantly reduced and NO was slightly increased by EDI heating. • IMEP and combustion speed were slightly reduced by EDI heating. • EDI heating is effective to address the evaporation and over-cooling issues of EDI + GPI engine. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to utilise ethanol fuel more efficiently and flexibly in spark ignition engines. One issue needs to be addressed in the development of EDI + GPI is the ethanol fuel’s low vapour pressure and large latent heat which slow down the ethanol’s evaporation and result in the mixture unready for combustion by the time of spark ignition and the consequent increase of CO and HC emissions. Heating the ethanol fuel to be directly injected (EDI heating) has been proposed to address this issue. This paper reports the investigation of the effect of EDI heating on the combustion and emissions of a research engine equipped with EDI + GPI. The results showed that EDI heating effectively reduced the CO and HC emissions of the engine due to the increase of evaporation rate and reduced fuel impingement and local over-cooling. The reduction of CO and HC became more significant with the increase of ethanol ratio. When the temperature of the ethanol fuel was increased by 40 °C, the CO and HC were reduced by as much as 43% and 51% respectively in EDI only condition at the original spark timing of 15 CAD BTDC, and 15% and 47% respectively at the minimum spark advance for best torque (MBT) timing of 19 CAD BTDC. On the other hand, the NO emission was slightly increased, but still much smaller than that in GPI only condition due to the strong cooling effect and low combustion temperature of EDI. The IMEP and combustion speed were slightly reduced by EDI heating due to the decrease of injector fuel flow rate and spray collapse of flash-boiling. The

  13. Analyse de la sensibilité aux paramètres gazoles d'un moteur diesel d'automobile à injection directe Small Direct Injection Diesel Engine Sensitivity to the Diesel Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Montagne X.

    2006-12-01

    particules totales sont plutôt dépendantes de la viscosité et des fractions légères des carburants. Les émissions sonores sont étroitement liées à l'indice de cétane. Par ailleurs, l'ensemble des résultats acquis semble indiquer que les paramètres pilotant le délai d'auto-inflammation sont importants sur ce type de convertisseur. Il serait cependant nécessaire de disposer de mesures directes des caractéristiques des jets d'injection (taille des gouttelettes, pénétration du spray en fonction des différents carburants pour pouvoir quantifier l'effet des paramètres tels que la viscosité et la densité sur la partie physique du délai d'auto-inflammation. Among the technical solutions that can lead to energy converters with low pollutant emissions and low fuel consumption, diesel engines rank, by nature, in a good position. On this base, direct injection diesel engine has been developed and are now spreading in private passanger cars because of their performances, especially in terms of fuel consumption. However, this equipment requires an efficient injection system, electronically driven, needs EGR and an oxidation catalyst to improve the pollutant emissions and the noise level. Thus, it is a major concern to be able to assess precisely the sensitivity to fuel characteristics of direct injection engines as to take the best advantage of this technology. With a set of fuels formulated to cover a large range of chemical nature, viscosity, cetane number and density, an Audi direct injection engine (1Z model was run at the test bench. The impact of the fuel characteristics on pollutant emissions, regulated or unregulated (PAH, aldehydes, and on noise levels was assessed either under standard tuning conditions, either by changing the EGR rate and the injection timing. The results obtained at the end of this program point out the main criteria that have an influence on emissions. They also allow a comparison between direct injection engines and their homologues

  14. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    International Nuclear Information System (INIS)

    Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L.

    2015-01-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE–SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors

  15. Progress in the development of uranium silicide (U3Si2) fuel at BATAN

    International Nuclear Information System (INIS)

    Suripto, A.; Soentono, S.

    1995-01-01

    After successful fabrication of two full-size prototype fuel elements containing ∼3.0 gU/cm 3 in the form of U 3 Si 2 -Al dispersion now undergoing irradiation in the Reaktor Serba Guna G.A. Siwabessy (RSG-GAS) core since 1990, further development in U 3 Si 2 -A2 dispersion fuel element manufacturing has been pursued, whose progress in discussed in this paper, with a special attention on the use of much higher-loading aimed at obtaining a better understanding on the influence of higher-loading on fuel core and plate manufacturing and quality. At present, high-loading U 3 Si 2 -AI dispersion miniplates are being manufactured for preparing some mini-fuel elements to be test-irradiated in the new MTR in-pile loop of the RSG-GAS. (author)

  16. Transformation of a car diesel engine with direct injection and common rail into a dual fuel engine; Trasformazione di un motore automobilistico diesel ad iniezione diretta dotato di common rail in un motore dual fuel

    Energy Technology Data Exchange (ETDEWEB)

    De Risi, A.; Laforgia, D. [Lecce Univ. (Italy). Dipt. di Scienza dei Materiali

    1999-08-01

    The reduced polluting emissions make natural gas a quite interesting alternative fuel for automotive applications. Therefore a car diesel engine has been transformed into a dual fuel engine with pilot injection via the common rail injection system used to ignite the methane-air charge. Standard injection pumps show a certain instability at low flow rates and high engine speed. On the opposite the new common rail system allows to ignite the fuel in all conditions with an amount of gas oil less than 8% of the entire energy required by the engine was enough to ignite the fuel. Furthermore, a power increase has been obtained, with an overall efficiency equal to or even higher than a conventional engine. The article deals with a series of test carried out on 1929 cm{sup 3} direct injection turbo-charged engine and presents the preliminary results. [Italian] La riduzione delle emissioni inquinanti rende il metano un combustibile alternativo piuttosto interessante per applicazioni automobilistiche. Per quasta ragione e' stata realizzata la trasformazione di un motore automobilitico diesel ad iniezione diretta in un motore dual fuel con iniezione pilota prodotta da un sistema common rail. L'adozione del sistema common rail consente l'accensione in ogni condizione con una quantita' di combustibile inferiore all'8% dell'intera energia richiesta alla potenza nominale del motore risolvendo i problemi di instabilita' che una pompa normale presenta a basse portate e ad alta velocita'. In alcuni casi e' stato sufficiente il 3% dell'energia totale richiesta dal motore per accendere la carica. Inoltre si e' ottenuto un aumento della potenza con un'efficienza globale analoga a qualla del motore tradizionale o addirittura migliore. Si riportano i risultati di una campagna di prove condotta su un motore sovralimentato ad iniezione diretta (1929 cm{sup 3}).

  17. Progress of Shenqi Fuzheng Injection as Adjuvant Therapy for Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Jing WANG

    2017-09-01

    Full Text Available Tumor is a kind of common and frequently-occurring disease that severely impaires human lives and health. As is proposed in Required Readings for Medical Professions, “Accumulation of virus causes insuffcient healthy qi, and then results in invasion of evil qi into the body”. Tumor is caused by interaction of exogenous evil qi and pathogenic products in the body such as phlegm and blood stasis on the basis of healthy qi defciency and disharmony of viscera. Therefore, the condition of healthy qi is not only the key of the occurrence of tumor, but a decisive factor of the development and prognosis of the disease. At present, the main therapeutic approaches for malignant tumors are radiotherapy and chemotherapy. However, during the disease process, the healthy qi gradually decreases due to the consumption of malignant tumors and the injury caused by radiotherapy and chemotherapy. In recent years, taking advantages of traditional Chinese drugs such as Shenqi Fuzheng Injection in combination with radiotherapy or chemotherapy is an important approach for many clinical physicians to improve therapeutic effects and alleviate toxic and side effects induced by radiotherapy and chemotherapy. This study mainly reviewed the progress of mechanisms and application of Shenqi Fuzhen Injection in malignant tumors in recent years.

  18. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  19. Zinc injection on the EDF fleet monitoring the injection on 12 units

    International Nuclear Information System (INIS)

    Le-Meur, Gaelle Harmand; Anne-Marie; Stutzmann, Agnes; Taunier, Stephane; Benfarah, Moez; Bretelle, Jean-Luc; Alain, Rocher; Claeys, Myriam; Bonne, Sebastien

    2012-09-01

    After a first implementation of zinc injection at Bugey 2 and Bugey 4, EDF decided to extend the program to other units of its fleet. 14 more reactors from the French fleet of 58 were chosen in order to - Reduce the radiation sources for curative or preventive (after SGR) reasons - Mitigate stress corrosion cracking on nickel alloys and reduce the rate of generalized corrosion - Prevent the risk of CIPS, mainly after a fuel management change. Zinc injection started on 9 new units in 2011, 1 unit in 2012 and will be extended to 4 other units before the end of 2013. To monitor the injection, EDF has defined a complete program concerning chemistry, radiation protection (dose rate and deposited activities measurements), materials (statistical analysis of SG tube cracks), fuel (oxide measurements) and waste (radiochemical characterization of filters). Reference units were chosen for each field because of the size of the fleet. This paper will detail the different monitoring programs on the EDF plants injecting zinc. (authors)

  20. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    Science.gov (United States)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  1. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    International Nuclear Information System (INIS)

    Oener, Cengiz; Altun, Sehmus

    2009-01-01

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO x ), sulphur dioxide (SO 2 ) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO x emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  2. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  3. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    Directory of Open Access Journals (Sweden)

    A. Bortolon

    2017-08-01

    Full Text Available Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux (Bortolon et al., Nucl. Fus., 56, 056008, 2016. However, in scenarios with high pedestal density (∼6 ×1019m−3, the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation. Furthermore, transient heat-flux deposition correlated with granule injections was observed far from the strike-points. Field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.

  4. Formation and sustainment of a very low aspect ratio tokamak using coaxial helicity injection (the Helicity Injected [HIT] experiment). Annual progress report No. 5, December 1, 1993--December 31, 1994

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Nelson, B.A.

    1995-01-01

    This is the fifth Progress Report on the Helicity Injected Tokamak (HIT) at the University of Washington, Seattle, DOE Grant DE-FE06-90ER54095. This report covers the period of December 1, 1993 through December 31

  5. Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A

    NARCIS (Netherlands)

    Matheis, Jan; Hickel, S.

    2018-01-01

    We present and evaluate a two-phase model for Eulerian large-eddy simulations (LES) of liquid-fuel injection and mixing at high pressure. The model is based on cubic equations of state and vapor-liquid equilibrium calculations and can represent the coexistence of supercritical states and

  6. Preliminary pellet injection experiment in the Gamma 10 tandem mirror

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, Eiichirou; Tamano, Teruo; Nakashima, Yousuke; Yoshikawa, Masayuki; Kobayashi, Shinji; Cho, Teruji; Ishii, Kameo; Yatsu, Kiyoshi [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Mase, Atsushi [Advanced Sceince and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka (Japan)

    2000-07-01

    In the GAMMA 10 tandem mirror, pellet injection experiments have been started as a solution for the density limit problem. This is the first pellet injection experiment in open systems. We describe the possibilities of confinement of pellet fueled particles. For that, we measure the number of end loss particles and compare them with pellet fueled ones in various conditions of confining potentials. The deterioration of confining potential with the pellet injection is a fundamental issue. The results show that the ion confining potential recover faster than central electron temperature due to thermal barrier. We also consider the operating space for fueling method. It is demonstrated that the operating space for pellet injection exceeds gas fueled one on hot ion mode plasmas. (author)

  7. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for

  8. Effects of Supercritical Environment on Hydrocarbon-fuel Injection

    Institute of Scientific and Technical Information of China (English)

    Bongchul Shin; Dohun Kim; Min Son; Jaye Koo

    2017-01-01

    In this study,the effects of environment conditions on decane were investigated.Decane was injected in subcritical and supercritical ambient conditions.The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions.For supercritical ambient conditions,the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K.The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method.A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions.Conversely,for supercritical injection in supercritical ambient conditions,a small density gradient was observed at the jet interface.In a manner similar to that observed in other cases,supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid.Additionally,there were changes in the interface,and the supercritical injection core width was thicker than that in the subcritical injection.Furthermore,in cases with the same injection conditions,the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface.Therefore,the interface was affected by the changing ambient condition.Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine,the effects of the ambient conditions were investigated experimentally.

  9. Effects of supercritical environment on hydrocarbon-fuel injection

    Science.gov (United States)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  10. Zinc injection implementation process at EDF: risk analysis, chemical specifications and operating procedures

    International Nuclear Information System (INIS)

    Tigeras, A.; Stutzmann, A.; Bremnes, O.; Claeys, M.; Ranchoux, G.; Segura, J.C.; Errera, J.; Bonne, S.

    2010-01-01

    Zinc's ability to replace cobalt from oxides of primary circuit surfaces has provided the first motivation for implementing the zinc addition in BWRs since the mid-1980s. The beneficial results regarding dose reductions have been demonstrated; therefore, this practice has been extended to PWRs since the 1990s, not only for radiation fields considerations, but also for reducing PWSCC. From the beginning of the 2000s, further reasons to inject zinc associated with the fuel management process have been identified (e; g; power increase, high burn-up, and/or cycle length increase). These evolutions must be accompanied by an adapted chemistry program in order to mitigate the crud deposition on fuel assemblies and the consequent AOA/CIPS or localized clad corrosion risks. The source term reduction (due to the decrease of the general corrosion rate of several materials) and the absence of negative impact on alloy cladding in the presence of zinc in the primary coolant are the main reasons for selecting zinc injection as a reliable option for preventing and/or mitigating the effects of fuel deposits. These three PWR motivations (field radiation, components performance, and fuel reliability) are also the major objectives of CANDU®, WWER, and new reactors (EPR, AP1000), where the zinc injection feasibility analyses are in progress in order to improve the safety of their operating conditions. With the purpose of achieving the optimal results of zinc injection, the process's implantation in a unit must be conducted with an appropriate risk analysis, covering all possible domains affected by this primary coolant chemistry modification : safety, fuel and component performance, radioprotection, waste, environment, human and installation security, human and material resources, staff formation, and documentation. EDF has performed a complete analysis of this enlarged scope, relying upon theoretical and experimental results as well as NPP feedback. This paper describes EDF

  11. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  12. Effects of Direct Fuel Injection Strategies on Cycle-by-Cycle Variability in a Gasoline Homogeneous Charge Compression Ignition Engine: Sample Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2015-01-01

    Full Text Available In this study we summarize and analyze experimental observations of cyclic variability in homogeneous charge compression ignition (HCCI combustion in a single-cylinder gasoline engine. The engine was configured with negative valve overlap (NVO to trap residual gases from prior cycles and thus enable auto-ignition in successive cycles. Correlations were developed between different fuel injection strategies and cycle average combustion and work output profiles. Hypothesized physical mechanisms based on these correlations were then compared with trends in cycle-by-cycle predictability as revealed by sample entropy. The results of these comparisons help to clarify how fuel injection strategy can interact with prior cycle effects to affect combustion stability and so contribute to design control methods for HCCI engines.

  13. Critical experiments supporting underwater storage of tightly packed configurations of spent fuel pins. Technical progress report, January 1-March 31, 1981

    International Nuclear Information System (INIS)

    Hoovler, G.S.; Baldwin, M.N.

    1981-04-01

    Critical experiments are in progress on arrays of 2 1/2% enriched UO 2 fuel pins simulating underwater pin storage of spent power reactor fuel. Pin storage refers to a spent fuel storage concept in which the fuel assemblies are dismantled and the fuel pins are tightly packed into specially designed canisters. These experiments are providing benchmark data with which to validate nuclear codes used to design spent fuel pin storage racks

  14. Injection sealing of the TASS tunnel. Progress report

    International Nuclear Information System (INIS)

    Funehag, Johan

    2008-12-01

    SKB's disposal facility is planned to be located approx. 400-500 m deep and the demands of its water tightness will be very high. The plant will be located in relatively fault-free rock with limited discharge and sealing will be carried out by injection. Given the very fine cracks that need to be sealed and the strong desire to use an injection material which generate a leachate with a pH lower than 11, SKB performs studies of silica sol and cement-based mortar with low pH in order to be able to use these in the sealing works. In the sealing project a 100 m long tunnel is constructed, the TASS tunnel at a depth of 450 min at SKB's rock laboratory on Aespoe. This report includes the results obtained until September 2008. At this date the injection stages 1, 2, and half of stage 3 have been done and preparation for Stage 3 is ongoing. The tunnel has reached a length of 55.5 m and the results from leaching measurements exist for stage 2 (Section 10-34 m). Both cement-based mortar with low pH and silica sol has been used, but cement-based mortar has been used only in relatively small scale. The cement-based mortar is developed especially for the repository. Silica sol used a particle size of about 25 nm and accelerator in the form of sodium chloride. The limit for inward leakage in the tunnel is 1 l/min and 60 m tunnel. Groundwater pressure was found to be 3.0-3.5 MPa. Past results obtained from Stage 2 indicate that injection shields fulfil the rate requirement over a 23 meter distance. The control holes drilled in the screens have been used to gradually steer the injection and to demonstrate a direct sealing effect of the screens. A controllable gelation time is necessary for efficient and controllable injection. Used mixing procedure has been proven to work and intended gelation times have been achieved. The two cement-based mortar mixtures for crack injection used in the project are robust and have desirable properties. Design methodology linking borehole distance

  15. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  16. Experimental optimization of a direct injection homogeneous charge compression ignition gasoline engine using split injections with fully automated microgenetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli Univ., Izmit (Turkey); Reitz, R.D. [Wisconsin Univ., Dept. of Mechanical Engineering, Madison, WI (United States)

    2003-03-01

    Homogeneous charge compression ignition (HCCI) is receiving attention as a new low-emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion under homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NO{sub x} and particulate matter (PM) as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to an HCCI direct injection (DI) gasoline engine. The engine features an electronically controlled low-pressure direct injection gasoline (DI-G) injector with a 60 deg spray angle that is capable of multiple injections. The use of double injection was explored for emission control and the engine was optimized using fully automated experiments and a microgenetic algorithm optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing and the split injection parameters (per cent mass of fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 r/min with a constant fuel flowrate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies. (Author)

  17. Investigation of ecological parameters of four-stroke SI engine, with pneumatic fuel injection system

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.

  18. Injection characteristics of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.

    1996-09-01

    Dimethyl ether (DME) has proved to be a new ultra-clean alternative fuel for diesel engines. Engine tests have shown considerably lower NO{sub x} emissions, no particle emissions and lower noise compared to that obtained from normal diesel engine operation. DME also has demonstrated favorable response to Exhaust Gas Recirculation (EGR). The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME. Fundamental spray behaviour was characterized by fuel spray penetration and angle, atomization and droplet size and evaporation. The influence of fuel characteristics, nozzle geometry and ambient pressure on the DME and diesel spray behavior was investigated. Fuel was injected into an unheated injection chamber with a ambient pressure of 15 bar and 25 bar, respectively, giving a simplified simulation of the environment in an operating engine. Two nozzles were studied: a single hole nozzle and a pintle nozzle. A conventional fuel injection system was used for both nozzles. Injection parameters of RPM, throttle position, fuel line length and chamber environment were held constant for both nozzles. The sprays were visualized using schlieren and high speed photography. Results show that the general appearance of the DME spray is similar to that of diesel spray. The core of the DME spray seems less dense and the spray tip less sharp compared to diesel spray, indicating smaller droplets with a lower momentum in the core of the DME spray. Schlieren film shows that with both DME and diesel fuel, the spray tip only consists of liquid and that evaporation occurs after a brief time interval. Penetration of DME is about one third that of diesel using the pintle nozzle. Also, the spray angle is considerably larger for the DME spray compared to the diesel spray. A comparatively smaller difference in penetration is observed using the hole nozzle. Differences in penetration for the hole nozzle are within the limit of the penetration

  19. Chemical composition and source of fine and nanoparticles from recent direct injection gasoline passenger cars: Effects of fuel and ambient temperature

    Science.gov (United States)

    Fushimi, Akihiro; Kondo, Yoshinori; Kobayashi, Shinji; Fujitani, Yuji; Saitoh, Katsumi; Takami, Akinori; Tanabe, Kiyoshi

    2016-01-01

    Particle number, mass, and chemical compositions (i.e., elemental carbon (EC), organic carbon (OC), elements, ions, and organic species) of fine particles emitted from four of the recent direct injection spark ignition (DISI) gasoline passenger cars and a port fuel injection (PFI) gasoline passenger car were measured under Japanese official transient mode (JC08 mode). Total carbon (TC = EC + OC) dominated the particulate mass (90% on average). EC dominated the TC for both hot and cold start conditions. The EC/TC ratios were 0.72 for PFI and 0.88-1.0 (average = 0.92) for DISI vehicles. A size-resolved chemical analysis of a DISI car revealed that the major organic components were the C20-C28 hydrocarbons for both the accumulation-mode particles and nanoparticles. Contribution of engine oil was estimated to be 10-30% for organics and the sum of the measured elements. The remaining major fraction likely originated from gasoline fuel. Therefore, it is suggested that soot (EC) also mainly originated from the gasoline. In experiments using four fuels at three ambient temperatures, the emission factors of particulate mass were consistently higher with regular gasoline than with premium gasoline. This result suggest that the high content of less-volatile compounds in fuel increase particulate emissions. These results suggest that focusing on reducing fuel-derived EC in the production process of new cars would effectively reduce particulate emission from DISI cars.

  20. Monolithic fuel injector and related manufacturing method

    Science.gov (United States)

    Ziminsky, Willy Steve [Greenville, SC; Johnson, Thomas Edward [Greenville, SC; Lacy, Benjamin [Greenville, SC; York, William David [Greenville, SC; Stevenson, Christian Xavier [Greenville, SC

    2012-05-22

    A monolithic fuel injection head for a fuel nozzle includes a substantially hollow vesicle body formed with an upstream end face, a downstream end face and a peripheral wall extending therebetween, an internal baffle plate extending radially outwardly from a downstream end of the bore, terminating short of the peripheral wall, thereby defining upstream and downstream fuel plenums in the vesicle body, in fluid communication by way of a radial gap between the baffle plate and the peripheral wall. A plurality of integral pre-mix tubes extend axially through the upstream and downstream fuel plenums in the vesicle body and through the baffle plate, with at least one fuel injection hole extending between each of the pre-mix tubes and the upstream fuel plenum, thereby enabling fuel in the upstream plenum to be injected into the plurality of pre-mix tubes. The fuel injection head is formed by direct metal laser sintering.

  1. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    Science.gov (United States)

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  2. State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry

    International Nuclear Information System (INIS)

    Collins, E.D.; DelCul, G.D.; Spencer, B.B.; Jubin, R.T.; Maher, C.; Kim, I.-T.; Lee, H.; Federov, Yu. S.; Saprykin, V.F.; Beznosyuk, V.I.; Kolyadin, A.B.; Baron, P.; Miguirditchian, M.; Sorel, C.; Morita, Y.; Taylor, R.; Khaperskaya, A.; Hill, C.; Malmbeck, R.; Law, J.; Angelis, G. de; Boucher, L.; Xeres, X.; Collins, E.; Mendes, E.; Lee, H.-S.; Inoue, T.; Glatz, J.P.; Kormilitsyn, M.; Uhlir, J.; Ignatiev, V.; Serp, J.; Delpech, S.

    2018-01-01

    The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the long-term risks associated with nuclear power generation. R and D programs worldwide are attempting to address such challenges, and many processes for advanced reprocessing and partitioning minor actinides are being developed. This report provides a comprehensive overview of progress on separation chemistry processes, and in particular on the technologies associated with the separation and recovery of minor actinides for recycling so as to help move towards the implementation of advanced fuel cycles. The report examines both aqueous and pyro processes, as well as the status of current and proposed technologies described according to the hierarchy of separations targeting different fuel components. The process criteria that will affect technology down-selection are also reviewed, as are non-proliferation requirements. The maturity of different reprocessing techniques are assessed using a scale based on the technology readiness level, and perspectives for future R and D are reviewed

  3. 2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, Sunita [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  4. 2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    Popovich, Neil

    2015-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  5. 2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

  6. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fioroni, Gina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fatouraie, Mohammad [Robert Bosch LLC; Frommherz, Mario [Robert Bosch LLC; Mosburger, Michael [Robert Bosch LLC; Chapman, Elana [General Motors LLC; Li, Sharon [General Motors LLC

    2018-04-03

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.

  7. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  8. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    Science.gov (United States)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  9. Multiplexed electrospray scaling for liquid fuel injection

    International Nuclear Information System (INIS)

    Waits, C Mike; Hanrahan, Brendan; Lee, Ivan

    2010-01-01

    Evaporation and space-charge requirements are evaluated to understand the effect of device scaling and fuel preheating for a liquid fuel injector using a multiplexed electrospray (MES) configuration in compact combustion applications. This work reveals the influence of the droplet diameter, droplet velocity and droplet surface temperature as well as the surrounding gas temperature on the size and performance of microfabricated MES. Measurements from MES devices are used in the model to accurately account for the droplet diameter versus flow rate relationship, the minimum droplet diameter and the relevant droplet velocities. A maximum extractor electrode to ground electrode distance of 3.1 mm required to overcome space-charge forces is found to be independent of voltage or droplet velocity for large levels of multiplexing. This maximum distance also becomes the required evaporation length scale which imposes minimum fuel pre-heating requirements for large flow densities. Required fuel preheating is therefore evaluated for both ethanol and 1-butanol with combustor parameters relevant to fuel reformation, thermoelectric conversion, thermophotovoltaic conversion and thermionic conversion

  10. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Nwafor, O.M.I.; Rice, G.; Ogbonna, A.I.

    2000-01-01

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  11. Recent progress in the development of anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cowin, Peter I.; Petit, Christophe T.G.; Lan, Rong; Tao, Shanwen [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2011-05-15

    The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A summary of the program and progress to 1984 December of the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Dixon, R.S.

    1986-08-01

    The Canadian Nuclear Fuel Waste Management Program involves research into the storage and transportation of used nuclear fuel, immobilization of fuel waste, and deep geological disposal of the immobilized waste. The program is now in the fifth year of a ten-year generic research and development phase. The objective of this phase of the program is to assess the safety and environmental aspects of the deep underground disposal of immobilized fuel waste in plutonic rock. The objectives of the research for each component of the program and the progress made to the end of 1984 are described in this report. 74 refs

  13. Progress and recent trends in biodiesel fuels

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    Fossil fuel resources are decreasing daily. Biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. Biodiesel fuel typically comprises lower alkyl fatty acid (chain length C 14 -C 22 ), esters of short-chain alcohols, primarily, methanol or ethanol. Various methods have been reported for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsification, pyrolysis, and transesterification. Among these, transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages over other new-renewable and clean engine fuel alternatives. Biodiesel fuel is a renewable substitute fuel for petroleum diesel or petrodiesel fuel made from vegetable or animal fats; it can be used in any mixture with petrodiesel fuel, as it has very similar characteristics, but it has lower exhaust emissions. Biodiesel fuel has better properties than petrodiesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future; it has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification

  14. Chilean fuel elements fabrication progress report

    International Nuclear Information System (INIS)

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  15. Pre-AIDS mortality and its association with HIV disease progression in haemophilic men, injecting drug users and homosexual men

    NARCIS (Netherlands)

    Prins, M. [= Maria; Sabin, C. A.; Lee, C. A.; Devereux, H.; Coutinho, R. A.

    2000-01-01

    To study pre-AIDS mortality and its association with HIV disease progression in different exposure groups with known intervals of HIV seroconversion. The type and rate of pre-AIDS deaths were assessed in 111 HIV-infected haemophilic men followed in London, and 118 injecting drug users and 158

  16. Laser-Based Spatio-Temporal Characterisation of Port Fuel Injection (PFI Sprays

    Directory of Open Access Journals (Sweden)

    C. T. N. Anand

    2010-06-01

    Full Text Available In the present work, detailed laser-based diagnostic experiments were conducted to characterise the spray from low pressure 2-hole and 4-hole Port Fuel Injection (PFI injectors. The main objective of the work included obtaining quantitative information of the spatio-temporal spray structure of such low-pressure gasoline sprays. A novel approach involving a combination of techniques such as Mie scattering, Granulometry, and Laser Sheet Dropsizing (LSD was used to study the spray structure. The droplet sizes, distributions with time, Sauter Mean Diameters (SMD, droplet velocities, cone angles and spray tip penetrations of the sprays from the injectors were determined. The spray from these injectors is found to be ‘pencil like’ and not dispersed as in high pressure sprays. The application of the above mentioned techniques provides two-dimensional SMD contours of the entire spray at different instants of time, with reasonable accuracy.

  17. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao

    2015-01-01

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  18. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  19. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  20. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  1. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  2. Factors affecting diesel fuel degradation using a bespoke high-pressure fuel system rig

    OpenAIRE

    Gopalan, Kesavan; Smith, Christopher; Pickering, Simon; Chuck, Christopher; Bannister, Christopher

    2018-01-01

    Recently, there has been automotive industry-wide impetus to reduce overall diesel vehicle emissions and fuel consumption by increasing fuel injection pressures within common rail systems. Many production fuel injection systems are now capable of delivering rail pressures of 1800-2000 bar with those able to achieve 3000 bar under development. In addition, there has been a gradual increase in the permitted FAME content in EN590 diesel from 5% to 7% with further increases to 10% proposed. With ...

  3. Coordination of ministerial actions regarding the use of liquefied natural gas as marine fuel. Progress report at 31 August 2014

    International Nuclear Information System (INIS)

    Maler, Philippe; Erhardt, Jean-Bernard; Ourliac, Jean-Paul

    2014-09-01

    This report is the second of a series dealing with the coordination of ministerial actions in favor of the use of liquefied natural gas (LNG) as marine fuel. Tougher sulfur oxides pollution regulations will lead to the progressive abandonment of heavy fuels in maritime propulsion. LNG can meet the future environmental imperatives but its introduction as marine fuel implies important naval and infrastructure investments. This report presents, first, a summary of the report's recommendations and the aim of this coordination study, and, then, treats more thoroughly of the different coordination aspects: 1 - Progresses made by the coordination mission between February 2013 and July 2014 (multiplicity of intervening actors and communication problems); 2 - situation and perspectives of member countries policy having an impact on marine bunker fuels (fuel substitution directive project, marine CO 2 pollution monitoring project, EU's air quality policy and ships emissions, energy and environment policies by 2030, maritime transport and environmental pollution); 3 - rules and standards for LNG-fueled ships supply and exploitation (LNG-fueled ships, fuel supply, regulations, personnel training, European framework); 4 - ships and LNG facilities financing (European programs, financing); 5 - pilot project's situation (Dunkerque harbour, Brittany Ferries project, Montoir and Fos LNG terminals, big and decentralized harbours, Ministry's actions, French projects with European participation)

  4. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  5. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  6. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  7. High temperature turbine technology program. Phase II. Technology test and support studies. Annual technical progress report, January 1, 1979-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Work performed on the High Temperature Turbine Technology Program, Phase II - Technology Test and Support Studies during the period from January 1, 1979 through December 31, 1979 is summarized. Objectives of the program elements as well as technical progress and problems encountered during this Phase II annual reporting period are presented. Progress on design, fabrication and checkout of test facilities and test rigs is described. LP turbine cascade tests were concluded. 350 hours of testing were conducted on the LP rig engine first with clean distillate fuel and then with fly ash particulates injected into the hot gas stream. Design and fabrication of the turbine spool technology rig components are described. TSTR 60/sup 0/ sector combustor rig fabrication and testing are reviewed. Progress in the design and fabrication of TSTR cascade rig components for operation on both distillate fuel and low Btu gas is described. The new coal-derived gaseous fuel synthesizing facility is reviewed. Results and future plans for the supporting metallurgical programs are discussed.

  8. Sequential injection lab-on-valve: the third generation of flow injection analysis

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    Termed the third generation of flow injection analysis, sequential injection (SI)-lab-on-valve (LOV) has specific advantages and allows novel, unique applications - not least as a versatile front end to a variety of detection techniques. This review presents snd discusses progress to date of the ...

  9. Electrically controlled fuel injection device for internal combustion engines with air quantity meter. Elektrisch gesteuerte Kraftstoffeinspritzeinrichtung fuer Brennkraftmaschinen mit Luftmengenmesser

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, B; Soell, W

    1980-12-11

    The invention concerns an electrically controlled preferably intermittently working fuel injection device for internal combustion engines with a throttle valve, a solenoid operated injection valve and a transistor circuit, which supplies electrical pulses used to open the injection valve synchronously to the revolution of the crankshaft. The invention is characterized by the fact that an electrical control device is provided, which extends the individual opening pulses in thrust operation (with the throttle valve closed or nearly closed and with a working speed above the speed). The extension produced by the control device decreases from a value at about 20% for the maximum speed to a value of 0 for the tickover speed. Details of the transistor control are made clear by detailed circuit diagrams and 5 patent claims.

  10. Effects of pilot injection parameters on low temperature combustion diesel engines equipped with solenoid injectors featuring conventional and rate-shaped main injection

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2016-01-01

    Highlights: • The influence of the principal pilot injection parameters is discussed for low-temperature combustion systems. • Swirl-sweep and dwell-time sweep results are combined to analyze soot emissions. • The pilot injection effects are investigated in injection profiles featuring rate-shaped main injections. - Abstract: The potential of pilot injection has been assessed on a low-temperature combustion diesel engine for automotive applications, which was characterized by a reduced compression-ratio, high EGR rates and postponed main injection timings. Dwell time sweeps have been carried out for pilot injections with distinct energizing times under different representative steady-state working conditions of the medium load and speed area of the New European Driving Cycle. The results of in-cylinder analyses of the pressure, heat-release rate, temperature and emissions are presented. Combustion noise has been shown to decrease significantly when the pilot injected mass increases, while it is scarcely affected by the dwell time between the pilot and main injections. The HC, CO and fuel consumption trends, with respect to both the pilot injection dwell time and mass, are in line with those of conventional combustion systems, and in particular decreasing trends occur as the pilot injection energizing time is increased. Furthermore, a reduced sensitivity of NO_x emissions to both dwell time and pilot injected mass has been found, compared to conventional combustion systems. Finally, it has been observed that soot emissions diminish as the energizing time is shortened, and their dependence on dwell time is influenced to a great extent by the presence of local zones with reduced air-to-fuel ratios within the cylinder. A combined analysis of the results of swirl sweeps and dwell time sweeps is here proposed as a methodology for the detection of any possible interference between pilot combustion burned gases and the main injected fuel. The effect of pilot

  11. Fabrication of nuclear fuel by powder injection moulding: Study of the binders systems and the de-binding of feedstock containing actinide powder

    International Nuclear Information System (INIS)

    Bricout, J.

    2012-01-01

    Powder Injection Moulding (PIM) is identified as an innovative process for the nuclear fuel fabrication. Technological breakthrough compared to the current process of powder metallurgy, the impact of actinide powder's specificities on the different steps of PIM is performed. Alumina powders simulating actinide powder have been implemented with a reference binders system. Thermal and rheological studies show the injectability and the de-binding of feedstocks with adequate solid loading (≥50 %vol), thanks to the de-agglomeration during the mixing step, which allow to obtain net shape fuel pellet. Specific surface area of powders, acting as a key role in behaviour's feedstocks, has been integrated in analysis models of viscosity prediction according to the shear rate. Also conducted studies on uranium oxide powder show that the selected binders systems, which have a compatible rheological behaviour with PIM process, impact the de-agglomeration of powder and final microstructure of the fuel pellet, consistent with the results obtained on alumina powders. Independent behaviour of binders and uranium oxide powder, showing no adverse chemical reaction against the PIM process, show a residual mass of carbon of about 150 ppm after sintering. Binders system using polystyrene, resistant to radiolysis phenomena and loadable more than 50 %(vol) of actinide powder, shows the promising potential of PIM process for the fuel fabrication. (author) [fr

  12. Transient CFD studies on multiple jets issuing from injection tube

    International Nuclear Information System (INIS)

    Kumawat, Ganesh Lal; Kansal, Anuj Kumar; Maheshwari, Naresh Kumar; Rama Rao, A.

    2016-01-01

    Shut down system 2 of Advanced Heavy Water reactor incorporates the injection of liquid poison into moderator through injection tubes. The injection tubes consist of several holes distributed axially and circumferentially. Investigation of the poison jet progression and spreading from the holes of injection tube is important aspect of determining negative reactivity injection rate. This paper presents the CFD simulation to investigate poison jet progression and its spreading from the holes of injection tube. (author)

  13. An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    In this paper a method for estimating the fuel cell impedance is presented, namely the current pulse injection (CPI) method, which is well suited for online implementation. This method estimates the fuel cell impedance and unlike electrochemical impedance spectroscopy (EIS), it is simple...... to implement at a low cost. This makes it appealing as a characterization method for on-line diagnostic algorithms. In this work a parameter estimation method for estimation of equivalent electrical circuit (EEC) parameters, which is suited for on-line use is proposed. Tests on a 10 cell high temperature PEM...... fuel cell show that the method yields consistent results in estimating EEC parameters for different current pulse at different current loads, with a low variance. A comparison with EIS shows that despite its simplicity the response of CPI can reproduce well the impedance response of the high...

  14. Fuel Rod Melt Progression Simulation Using Low-Temperature Melting Metal Alloy

    International Nuclear Information System (INIS)

    Seung Dong Lee; Suh, Kune Y.; GoonCherl Park; Un Chul Lee

    2002-01-01

    The TMI-2 accident and various severe fuel damage experiments have shown that core damage is likely to proceed through various states before the core slumps into the lower head. Numerous experiments were conducted to address when and how the core can lose its original geometry, what geometries are formed, and in what processes the core materials are transported to the lower plenum of the reactor pressure vessel. Core degradation progresses along the line of clad ballooning, clad oxidation, material interaction, metallic blockage, molten pool formation, melt progression, and relocation to the lower head. Relocation into the lower plenum may occur from the lateral periphery or from the bottom of the core depending upon the thermal and physical states of the pool. Determining the quantities and rate of molten material transfer to the lower head is important since significant amounts of molten material relocated to the lower head can threaten the vessel integrity by steam explosion and thermal and mechanical attack of the melt. In this paper the focus is placed on the melt flow regime on a cylindrical fuel rod utilizing the LAMDA (Lumped Analysis of Melting in Degrading Assemblies) facility at the Seoul National University. The downward relocation of the molten material is a combination of the external film flow and the internal pipe flow. The heater rods are 0.8 m long and are coated by a low-temperature melting metal alloy. The electrical internal heating method is employed during the test. External heating is adopted to simulate the exothermic Zircaloy-steam reaction. Tests are conducted in several quasi-steady-state conditions. Given the variable boundary conditions including the heat flux and the water level, observation is made for the melting location, progression, and the mass of molten material. Finally, the core melt progression model is developed from the visual inspection and quantitative analysis of the experimental data. As the core material relocates

  15. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  16. Progress in Chemical Kinetic Modeling for Surrogate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

    2008-06-06

    Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

  17. Progress Report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This document is the 1994 annual progress report of the CEA-Direction of Waste Management (DGD). It comprises four chapters. The first chapter is a general presentation of radioactive wastes, of the management of liquid effluents, solid wastes, sealed sources, of the relations with the ANDRA (The French Agency for the Management of Radioactive Wastes), and of the research and development studies in progress for the improvement of waste management. The second chapter concerns the spent fuels and their reprocessing, in particular AGR and PWR type reactor fuels, the ''Caramel'' fuel from Osiris reactor and the cover elements from the Rapsodie reactor core. The long time storage of ancient fuels is also discussed. The third chapter concerns the dismantling of decommissioned installations, the actions in progress and the planning of dismantling actions up to the year 2000. Chapter four is devoted to the management of wastes from the Direction of Military Applications (DAM), the actions in progress in the different DAM centers and the cleansing projects at Marcoule plant. (J.S.). 5 figs., 28 tabs., 21 photos., 3 appendix

  18. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Directory of Open Access Journals (Sweden)

    Gunasekaran Anandkumar

    2016-01-01

    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  19. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  20. Spray-controlled combustionprocess with piezo injection; Strahlgefuehrtes Brennverfahren mit Piezo-Benzineinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schaupp, U.; Altenschmidt, F.; Bertsch, D.; Laudenbach, N. [DaimlerChrysler AG, Stuttgart (Germany)

    2007-07-01

    The novel 2nd generation injection system of Mercedes-Benz have resulted in reduced fuel consumption and lower emissions while improving the engine performance. The piezo technology is a great technical advance. The characteristic field range in which stratified charge operation is possible has been extended since the first generation of injection systems. Lower fuel consumption is achieved not only in normal traffic but also when cruising on motorways at constant speed. The advantages are noticeable not only in the test cycle but also in real operation. The piezo injection valve was not available on the market and had to be constructed, including the 200 bar high-pressure fuel injection system. The stability of the injection system and the good mixing characteristics resulted in an optimally combustible mixture at the spark plug. Apart from stability in stratified charge operation, the possibility of multiple injection also has further advantages and potentials in terms of consumption and emissions. (orig.)

  1. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  2. Fuel Maps for the GEP 6.5LT Engine When Operating on at J/JP-8 Fuel Blends at Ambient and Elevated Temperatures

    Science.gov (United States)

    2015-04-01

    system. The new calibrated fuel injection pump and injectors were installed, and the fuel injection timing of the new fuel injection system was set to...Product 6.5L Turbocharged diesel engine at two inlet temperature conditions. The GEP 6.5LT engine represents legacy diesel engine design with...derived cetane number DF-2 Diesel Fuel number 2 ft Foot HEFA Hydro-treated Esters and Fatty Acid(s) HP or hp Horsepower hr Hour in Inch in³ cubic

  3. Hydrogen pellet injection into Alcator C

    International Nuclear Information System (INIS)

    Greenwald, M.

    1983-09-01

    A four-shot pneumatic pellet injector, based on an ORNL design, has been built and operated on the Alcator C tokamak at MIT. The injector fires four independently-timed frozen hydrogen pellets with velocities in the range 8 x 10 4 - 1 x 10 5 cm/sec. Each contains 6 x 10 19 particles which corresponds to = 2 x 10 14 /cm 3 . The objectives of this experiment are to study pellet fueling and penetration, particle confinement, dependence of energy confinement on density profile and fueling mode, and edge physics and recycling as a function of fueling mode. Typical pre-injection plasmas have had anti n/sub e/ = 2 - 3 x 10 14 , Bt = 80 - 100 kG, Ip = 400 - 500 kA, T/sub e/(0) = 1200 - 1500 ev. A single pellet injected into this plasma will roughly double the electron density. Record plasma densities have been obtained by multiple injections. Line average densities in excess of 8 x 10 14 have been achieved, with highly peaked profiles. Central densities of 1.5 - 2 x 10 15 have been measured

  4. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  5. Injection of zinc in plants of ANAV. Impact on fuel and operation experience; Inyeccion de cinc en las plantas de ANAV. Impacto sobre el combustible y experiencia de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Doncell, N.; Gago, J. L.

    2015-07-01

    Zinc injection performed in the three ANAV (Asociacion Nuclear Asco-Vandellos) plants is part of an overall primary water chemistry program, material management and dose reduction program. The application of zinc shown significant benefits in radiation field reduction as well as in mitigation of PWSCC initiation. Although zinc injection also reduces general corrosion rates and consequently reduces corrosion product transport to the fuel, and evaluation of the risks with respect to fuel performance should be done. ANAV and ENUSA, following industry recommendations, have coordinated the task related to the viability of the program in Asco and Vandellos including monitoring, inspections and control parameters. finally, this article includes a comprehensive review of operating experience and an assessment of fuel performance effects. (Author)

  6. Development of lean burn gas engines using pilot fuel for ignition source; Developpement d'un moteur a gaz avec pre-injection de carburant pour la source d'allumage

    Energy Technology Data Exchange (ETDEWEB)

    Sakonji, T.; Saito, H.; Sakurai, T. [Tokyo Gas Co., Ltd. (Japan); Hirashima, T.; Kanno, K. [Nissan Diesel Motor Co., Ltd. (Japan)

    2000-07-01

    A development was conducted to investigate the performance of an open chamber gas engine with pilot fuel for ignition source. Experiments were conducted by using a gas engine equipped with a common-rail injection system. Main gas fuel is supplied to the engine cylinder, and then a small quantity of diesel fuel (approximately 1 % of total fuel energy input) was injected into the main chamber for ignition. The single cylinder prototype gas engine has demonstrated superior performance, such as, a shaft-end thermal efficiency of 36.7% with NO{sub x} level of 0.4 g/kW-h, which equals those of conventional spark ignited pre-chamber lean burn gas engines. For the next step, the multi-cylinder gas engine has been developed. That has 138 mm bore, 142 mm stroke, V8 configuration and 229 kW engine output 1500 rpm. This engine can also run with only diesel fuel for Standby-Power-Concurrent Co-generation. (authors)

  7. Fueling of magnetic-confinement devices

    International Nuclear Information System (INIS)

    Milora, S.L.

    1981-01-01

    A general overview of the fueling of magnetic confinement devices is presented, with particular emphasis on recent experimental results. Various practical fueling mechanisms are considered, such as cold gas inlet (or plasma edge fueling), neutral beam injection, and injection of high speed cryogenic hydrogen pellets. The central role played by charged particle transport and recycle of plasma particles from material surfaces in contact with the plasma is discussed briefly. The various aspects of hydrogen pellet injection are treated in detail, including applications to the production of high purity startup plasmas for stellarators and other devices, refueling of tokamak plasmas, pellet ablation theory, and the technology and performance characteristics of low and high speed pellet injectors

  8. Gas injection system in the Tara center cell

    International Nuclear Information System (INIS)

    Brau, K.; Post, R.S.; Sevillano, E.

    1985-11-01

    Precise control of the gas fueling is essential to the successful operation of tandem mirror plasmas. Improper choice of fueling location, magnetic geometry, and gas injection rates can prevent potential and thermal barrier formation, as well as reduce the energy confinement time. In designing the new gas injection configuration for the Tara center cell, the following issues were addressed: RF potential barriers, gas leakage, and charge exchange recombination. 2 refs., 6 figs

  9. Particulate emission characteristics of a port-fuel-injected SI engine

    International Nuclear Information System (INIS)

    Gupta, S.; Poola, R.; Lee, K. O.; Sekar, R.

    2000-01-01

    Particulate emissions from spark-ignited (SI) engines have come under close scrutiny as they tend to be smaller than 50 nm, are composed mainly of volatile organic compounds, and are emitted in significant numbers. To assess the impact of such emissions, measurements were performed in the exhaust of a current-technology port-fuel-injected SI engine, which was operated at various steady-state conditions. To gain further insights into the particulate formation mechanisms, measurements were also performed upstream of the catalytic converter. At all engine speeds, a general trend was observed in the number densities and mass concentrations: a moderate increase at low loads followed by a decrease at mid-range loads, which was followed by a steep increase at high loads. Within reasonable bounds, one could attribute such a trend to three different mechanisms. An unidentified mechanism at low loads results in particulate emissions monotonically increasing with load. At medium loads, wherein the engine operates close to stoichiometric conditions, high exhaust temperatures lead to particulate oxidation. At high loads, combustion occurs mostly under fuel-rich conditions, and the contribution from combustion soot becomes significant. Estimates of the number of particles emitted per kilometer by a vehicle carrying the current test engine were found to be lower than those from a comparable diesel vehicle by three orders of magnitude. Similar estimates for mass emissions (grams of particulates emitted per kilometer) were found to be two orders of magnitude lower than the future regulated emission value of 0.006 (g/km) for light-duty diesel vehicles. Moreover, considering the fact that these particles have typical lifetimes of 15 min, the health hazard from particulate emissions from SI engines appears to be low

  10. RERTR program progress in qualifying reduced-enrichment fuels

    International Nuclear Information System (INIS)

    Snelgrove, James L.

    1983-01-01

    In order to provide the technical means for reducing the enrichment of uranium used to fuel research and test reactors, the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program has been engaged in the development and testing of higher-uranium-density fuels than had been used previously. This fuel development effort included work to increase the density of fuels which were being used at the time the Program began and work on a fuel with the potential for much higher density. The ultimate goal of the fuel development and testing phase of the Program is to 'qualify' the fuel for use. A fuel is considered qualified when a sufficient data base for the fuel exists that it can be approved by regulating bodies for use in reactors. To convert a core to the use of reduced-enrichment fuel it is necessary to show that the core will behave properly during normal and off-normal operating conditions and to show that the fuel will behave properly to a reasonable margin beyond the conditions expected during normal operation. It is this latter area that this paper will address. The main characteristics to be considered in evaluating the performance of a fuel are its swelling, its blister-threshold temperature, and its metallurgical appearance. Data for the qualification of the reduced-enrichment fuels being developed by the RERTR Program are obtained from examination of miniature fuel plates (miniplates) which successfully pass the irradiation screening tests and from examinations of full-sized fuel elements. This paper will summarize the miniplate data reported in other papers presented during this meeting and will give the status of full-sized element irradiations. Finally, the current status of qualification of the various fuel types will be discussed and some projections of the future will be given

  11. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  12. Iron making technology with fuels and other materials injection in blast furnace tuyeres. Part 1. Auxiliary fuels characteristics and its influence in the blast furnace process; Tecnologia de fabricacion de arrabio con la inyeccion de combustibles y otros materiales por toberas en el horno alto. I parte. Caracteristicas de los combustibles auxiliares y su influencia en el proceso del horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L. [Union de Empresas de Recuperacion de Materias Primas. Ciudad de La Habana (Cuba); Cores, A.; Formoso, A. [Centro Nacional de Investigaciones Metalurgicas. Madrid (Spain); Babich, A.; Yaroshevskii, S. [Universidad Estatal Tecnologica de Donetsk. Ucrania (Ukraine)

    1998-06-01

    The injection of fuels by tuyeres in the blast furnace is a used practice in most furnaces with the principal aim to reduce the coke consumption by ton of pig iron produced. The nature of these fuels is very diverse and depends on the resources of each country and of the fuel price. At this moment the coal injection (pulverized and granular) is the most extended practice, and the number of furnaces with facilities for coal injection increases continuously. (Author) 14 refs.

  13. Fuel utilization in a progressive conversion reactor (PCR)

    International Nuclear Information System (INIS)

    Leyse, C.F.; Judd, J.L.

    1981-05-01

    Preliminary studies indicate that for once-through fuel cycles, the PCR offers potential improvements over current LWRs in the following major areas: improved uranium utilization (reduced uranium demand), degraded plutonium product in spent fuel, reduced plutonium content of spent fuel, reduced amount of spent fuel, reduced fissile content of spent fuel, and reduced separative work

  14. Reductions of PAH and Soot by Center Air Injection

    Directory of Open Access Journals (Sweden)

    Kazuhiro Yamamoto

    2014-07-01

    Full Text Available In this study, to reduce the amount of pollutant PAH and soot in the flame, we examined the burner system equipped with a center air injection. For this purpose, by using PAH-LIF and soot LII, we evaluated relative PAH and soot amounts in both the triple port burner and the conventional co-axial burner (double port burner to discuss effects of center air injection on the formation of PAH and soot. The fuel was propane. In the triple port burner, two different blue flames are observed near the burner rim, followed by bright luminous flames with soot. The flame length is longer when the fuel flow velocity is increased. On the other hand, the flame length is shorter with an increase in internal air flow velocity. As for PAH and soot, these amounts of the triple port burner are much smaller than those of the double port burner. For the triple port burner, due to the center air injection, the fuel consumption occurs in both inner and outer flames. On the other hand, for the double port burner, the oxygen is supplied from one side air, and as a result, the fuel consumption rate is relatively lower. Hence, by the center air injection, the fuel consumption is largely accelerated, resulting in the reduction of PAH and soot.

  15. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2008 progress report

    International Nuclear Information System (INIS)

    2009-02-01

    The purpose of the work is to review the progress of the IAEA international project for innovative reactors and fuel cycle technologies (INPRO). The publication reports about the recognition of INPRO and on general Information on INPRO, its strengths, memberships, collaboration with other international initiatives, the INPRO organization and management and the history of INPRO. The section on the progress of INPRO in 2008 contains task 1: INPRO Methodology, task 2: Assessment Studies, task 3: Nuclear Energy Visions for the 21st Century, task 4: Infrastructure and Institutional Innovation, task 5: Common User Considerations and task 6: Collaborative Projects. Conclusions and New Trends are followed by a bibliography. Annex I deals with the INPRO project management in 2008 and Annex II provides a selection of photographs from 2008. Finally a list of acronyms is provided

  16. Development of railgun pellet injector for nuclear fusion fueling

    International Nuclear Information System (INIS)

    Azuma, Kingo; Oda, Yasushi; Onozuka, Masanori.

    1996-01-01

    Recent fusion plasmas have become larger as fusion research progresses. This requires high-velocity solid-hydrogen pellet injection that is the most efficient fueling method. The application of the electro-magnetic railgun system for pellet injection is one of the most feasible technologies for accelerating a pellet to a high speed. The system consists of a pneumatic pre-accelerator for the first acceleration stage and a railgun for the second stage. The railgun is operated by a low voltage discharged from a pulse-forming-network power supply to accelerate a plasma armature between the rail electrodes. The plasma is induced by high-power laser beam irradiation. The highest velocity of a solid-hydrogen pellet obtained using the railgun was 2.6 km/s. This velocity is higher than the maximum pellet velocity of 2.3 km/s achieved by MHI's pneumatic pellet injector. It was also found that the pellet velocity could be controlled easily using railgun pellet injection. (author)

  17. Development of railgun pellet injector for nuclear fusion fueling

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, Kingo [Mitsubishi Heavy Industries Ltd., Takasago, Hyogo Takasago Research and Development Center (Japan); Oda, Yasushi; Onozuka, Masanori

    1996-03-01

    Recent fusion plasmas have become larger as fusion research progresses. This requires high-velocity solid-hydrogen pellet injection that is the most efficient fueling method. The application of the electro-magnetic railgun system for pellet injection is one of the most feasible technologies for accelerating a pellet to a high speed. The system consists of a pneumatic pre-accelerator for the first acceleration stage and a railgun for the second stage. The railgun is operated by a low voltage discharged from a pulse-forming-network power supply to accelerate a plasma armature between the rail electrodes. The plasma is induced by high-power laser beam irradiation. The highest velocity of a solid-hydrogen pellet obtained using the railgun was 2.6 km/s. This velocity is higher than the maximum pellet velocity of 2.3 km/s achieved by MHI`s pneumatic pellet injector. It was also found that the pellet velocity could be controlled easily using railgun pellet injection. (author).

  18. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol

    2013-01-01

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft 2 -gal- .deg. F. Those plants with a HDCI of 150 Btu/ft 2 -gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft 2 -gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft 2 -gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn't accelerate clad corrosion. Based

  19. Study of fuel control strategy based on an fuel behavior model for starting conditions; Nenryo kyodo model ni motozuita shidoji no nenryo hosei hosho ni tsuite no kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Uchida, M; Iwano, H; Oba, H [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have applied a fuel behavior model to a fuel injection system which we call SOFIS (Sophisticated and Optimized Fuel Injection System) so that we get air/fuel ratio control accuracy and good driveability. However the fuel behavior under starting conditions is still not clear. To meet low emission rules and to get better driveability under starting conditions, better air/fuel ratio control is necessary. Now we have understood the ignition timing, injection timing, and injection pulse width required in such conditions. In former days, we analyzed the state of the air/fuel mixture under cold conditions and made a new fuel behavior model which considered fuel loss such as hydrocarbons and dissolution into oil and so on. Al this time, we have applied this idea to starting. We confirm this new model offers improved air/fuel ratio control. 6 refs., 9 figs., 3 tabs.

  20. Emission, efficiency, and influence in a diesel n-butanol dual-injection engine

    International Nuclear Information System (INIS)

    Zhu, Yanchun; Chen, Zheng; Liu, Jingping

    2014-01-01

    Highlights: • Dual-injection combustion for diesel n-butanol dual-fuel is investigated. • Higher EGR rate results in lower NOx and ITE, but higher smoke, HC and CO. • Larger butanol fraction results in lower smoke and ITE, but higher NOx, HC and CO. • Advanced injection can decrease smoke, HC and CO, and increase ITE. • Coupling of butanol fraction, EGR and injection timing makes for a better performance. - Abstract: In this work, a dual-injection combustion mode for diesel n-butanol dual-fuel, combined direct injection (DI) of diesel with port fuel injection (PFI) of n-butanol, was introduced. Effects of n-butanol fraction, EGR rate and injection timing on this mode were studied on a modified single-cylinder diesel engine at the speed of 1400 r/min and the IMEP of 1.0 MPa. The results indicate that with increased EGR rate, NOx emissions reduce, but smoke emissions increase. As n-butanol fraction is increased, smoke emissions decrease with a small increase in NOx. However, higher HC and CO emissions, higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE) have to be paid with increased n-butanol fraction, especially at high EGR condition. Advancing diesel injection timing suitably has the capacity of mitigating those costs and further decreasing smoke emissions with a small penalty in NOx emissions. Coupling of large butanol fraction, high EGR rate, and advanced injection suitably contributes to a better balance between emissions and efficiency in the diesel n-butanol dual-injection engine

  1. Effect of injection pressure on heat release rate and emissions in CI engine using orange skin powder diesel solution

    International Nuclear Information System (INIS)

    Purushothaman, K.; Nagarajan, G.

    2009-01-01

    Experiments have been conducted to study the effect of injection pressure on the combustion process and exhaust emissions of a direct injection diesel engine fueled with Orange Skin Powder Diesel Solution (OSPDS). Earlier investigation by the authors revealed that 30% OSPDS was optimum for better performance and emissions. In the present investigation the injection pressure was varied with 30% OSPDS and the combustion, performance and emissions characteristics were compared with those of diesel fuel. The different injection pressures studied were 215 bar, 235 bar and 255 bar. The results showed that the cylinder pressure with 30% OSPDS at 235 bar fuel injection pressure, was higher than that of diesel fuel as well as at other injection pressures. Similarly, the ignition delay was longer and with shorter combustion duration with 30% OSPDS at 235 bar injection pressure. The brake thermal efficiency was better at 235 bar than that of other fuel injection pressures with OSPDS and lower than that of diesel fuel. The NO x emission with 30% OSPDS was higher at 235 bar. The hydrocarbon and CO emissions were lower with 30% OSPDS at 235 bar. The smoke emission with 30% OSPDS was marginally lower at 235 bar and marginally higher at 215 bar than for diesel fuel. The combustion, performance and emission characteristics of the engine operating on the test fuels at 235 bar injection pressure were better than other injection pressures

  2. Detection device for the failed position in fuels

    International Nuclear Information System (INIS)

    Tokunaga, Kensuke; Nomura, Teiji; Hiruta, Koji

    1985-01-01

    Purpose: To detect the failed position of a fuel assembly with ease and safety. Constitution: A fuel assembly is tightly closed in a sipper tube equipped with a gas supply tube and a gas exhaust tube at the upper portion and a purified water injection tube and a draining tube at the lower end. Then, water in the sipper tube is drained to the lower portion of the fuel assembly by the pressure of gases while opening the gas supply tube and the draining tube, and closing the exhaust tube and the injection tube. Then, after closing the gas supply tube and the draining tube while opening theexhaust tube and the injection tube, purified water is injected into the sipper tube from the injection tube to an optional height till the fuel assembly is immersed. Then, after leaving for a predetermined of time, water is sampled and the radioactive material density therein is measured. By changing the injection level of the purified water, since the radioactive material density changes at the failed position, the failed position can be detected with ease. (Sekiya, K.)

  3. Preliminary study on the control of direct injection diesel engine for better fuel flexibility and emissions control. Pt. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Egnell, R.; Kassem, N.; Bohlin, T.

    1985-01-01

    This report summarizes the results of a preliminary study on turbocharged direct injection diesel engines. Part I reviews the qualitative dynamic aspects of turbocharged diesel engine and the factors that affect its transient behaviour. It gives a brief account of the model structure and the interrelationships between the different components of the model as well as the different types of engine models and the methods of simulation. The transient response of a turbocharged engine under changing load, speed, and ambient conditions are discussed. Methods to improve the transient response, thus reducing fuel consumption and smoke emissions are briefly reviewed. Finally, both conventional and advanced control strategies are discussed with emphasis on the control of fuel injection (Delta-control), injection time (Alfa-control), and exhaust gas recirculation (EGR-control). Part II (in Swedish) consists of a literature survey on hardware components such as sensors, actuators, and injection systems that are, or expect to be, available with reasonable commercial costs. The objective of this survey is to provide the grounds on which to decide if these components satisfy the requirements of electronic control systems. Part III (in Swedish) discusses the transient response measurements obtained from two sets of experiments conducted on a six-cylinder motor working under varying conditions of load and speed. The objective of the first set of experiments was to quantify the difference in ignition delay between the transient and steady state operating conditions. The second set of experiments were aimed to provide a basis on which the engine efficiency obtained under transient conditions can be compared to that obtained from a single-cylinder motor working under steady state conditions.

  4. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  5. An analysis of direct-injection spark-ignition (DISI) soot morphology

    Science.gov (United States)

    Barone, Teresa L.; Storey, John M. E.; Youngquist, Adam D.; Szybist, James P.

    2012-03-01

    We have characterized particle emissions produced by a 4-cylinder, 2.0 L DISI engine using transmission electron microscopy (TEM) and image analysis. Analyses of soot morphology provide insight to particle formation mechanisms and strategies for prevention. Particle emissions generated by two fueling strategies were investigated, early injection and injection modified for low particle number concentration emissions. A blend of 20% ethanol and 80% emissions certification gasoline was used for the study given the likelihood of increased ethanol content in widely available fuel. In total, about 200 particles and 3000 primary soot spherules were individually measured. For the fuel injection strategy which produced low particle number concentration emissions, we found a prevalence of single solid sub-25 nm particles and fractal-like aggregates. The modal diameter of single solid particles and aggregate primary particles was between 10 and 15 nm. Solid particles as small as 6 nm were present. Although nanoparticle aggregates had fractal-like morphology similar to diesel soot, the average primary particle diameter per aggregate had a much wider range that spanned from 7 to 60 nm. For the early fuel injection strategy, liquid droplets were prevalent, and the modal average primary particle diameter was between 20 and 25 nm. The presence of liquid droplets may have been the result of unburned fuel and/or lubricating oil originating from fuel impingement on the piston or cylinder wall; the larger modal aggregate primary particle diameter suggests greater fuel-rich zones in-cylinder than for the low particle number concentration point. However, both conditions produced aggregates with a wide range of primary particle diameters, which indicates heterogeneous fuel and air mixing.

  6. Efficient Spin Injection into Semiconductor

    International Nuclear Information System (INIS)

    Nahid, M.A.I.

    2010-06-01

    Spintronic research has made tremendous progress nowadays for making future devices obtain extra advantages of low power, and faster and higher scalability compared to present electronic devices. A spintronic device is based on the transport of an electron's spin instead of charge. Efficient spin injection is one of the very important requirements for future spintronic devices. However, the effective spin injection is an exceedingly difficult task. In this paper, the importance of spin injection, basics of spin current and the essential requirements of spin injection are illustrated. The experimental technique of electrical spin injection into semiconductor is also discussed based on the experimental experience. The electrical spin injection can easily be implemented for spin injection into any semiconductor. (author)

  7. Fuel supply system for diesel engines. Kraftstoffzufuhrsystem fuer Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mowbray, D F; Jarrett, B A

    1979-10-05

    The invention deals with a fuel feeding system, in particular for diesel engines with direct injection, provided with electromagnetic fuel pumps and injection nozzles for every combustion chamber. The pumps are equiped with control systems, which are actuated during the injection process. Switch valves with magnetic control devices serve as controllers.

  8. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  9. Results of ionospheric parameters measurements during injections of exhaust streams of TSC "Progress" OMS

    Science.gov (United States)

    Khakhinov, Vitaly; Alsatkin, Sergey; Medvedev, Andrey; Kushnarev, Dmitriy; Lebedev, Valentin; Potekhin, Alexander; Ratovsky, Konstantin; Shpynev, Boris

    Since 2006 we have carried out active space experiments using the transport spacecraft (TSC) "Progress" and the ground-base Radio-Optic Complex of ISTP SB RAS including Irkutsk Incoherent Scatter Radar (IISR). Engine burns of TSC orbital maneuvering subsystem (OMS) were used as a source of ionospheric disturbances and changing radar signature characteristics of TSC. The flight altitudes were about 340 km. The amount of engine exhaust products was varied from 2 to 11 kg. The flow directions relative to IISR and amount of injected exhaust products were changed from flight to flight. The flows directed to IISR were almost parallel to the geomagnetic field line. For these cases the most pronounced effects were observed, the electron density depletion reached 20-40

  10. Fueling moving ring field-reversed mirror reactor plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.

    1980-01-01

    The concept of small fusion reactors is being studied jointly by Lawrence Livermore Laboratory General Atomic Company, and Pacific Gas and Electric Company. The objective is to investigate alternatives and then to develop a conceptual design for a small reactor that could produce useful, though not necessarily economical, energy by the late 1980s. Three methods of fueling a small moving ring field-reversed mirror are considered: injection of fuel pellets accelerated by laser ablation, injection of fuel pellets accelerated by deflagration-gun ablation, and direct injection of plasma by a deflagration gun. 13 refs

  11. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft{sup 2}-gal- .deg. F. Those plants with a HDCI of 150 Btu/ft{sup 2}-gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft{sup 2}-gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft{sup 2}-gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn

  12. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  13. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  14. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    Energy Technology Data Exchange (ETDEWEB)

    Kassa, Mateos [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Hall, Carrie [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Ickes, Andrew [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA; Wallner, Thomas [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA

    2016-10-07

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air

  15. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels

    KAUST Repository

    Wang, Libing

    2016-11-18

    Characterization of the spray angle, penetration, and droplet size distribution is important to analyze the spray and atomization quality. In this paper, the spray structure development and atomization characterization of two naphtha fuels, namely light naphtha (LN) and whole naphtha (WN) and two reference fuel surrogates, i.e. toluene primary reference fuel (TPRF) and primary reference fuel (PRF) were investigated using a gasoline direct injection (GDI) fuel injector. The experimental setup included a fuel injection system, a high-speed imaging system, and a droplet size measurement system. Spray images were taken by using a high-speed camera for spray angle and penetration analysis. Sauter mean diameter, Dv(10), Dv(50), Dv(90), and particle size distribution were measured using a laser diffraction technique. Results show that the injection process is very consistent for different runs and the time averaged spray angles during the measuring period are 103.45°, 102.84°, 102.46° and 107.61° for LN, WN, TPRF and PRF, respectively. The spray front remains relatively flat during the early stage of the fuel injection process. The peak penetration velocities are 80 m/s, 75 m/s, 75 m/s and 79 m/s for LN, WN, TPRF and PRF, respectively. Then velocities decrease until the end of the injection and stay relatively stable. The transient particle size and the time-averaged particle size were also analyzed and discussed. The concentration weighted average value generally shows higher values than the arithmetic average results. The average data for WN is usually the second smallest except for Dv90, of which WN is the biggest. Generally the arithmetic average particle sizes of PRF are usually the smallest, and the sizes does not change much with the measuring locations. For droplet size distribution results, LN and WN show bimodal distributions for all the locations while TPRF and PRF shows both bimodal and single peak distribution patterns. The results imply that droplet size

  16. Numerical simulation of progressive BWR fuel inlet orifices

    International Nuclear Information System (INIS)

    Sara Lundgren; Hernan Tinoco; Aleksander Pohl; Wiktor Frid

    2005-01-01

    Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to the two

  17. Numerical simulation of progressive BWR fuel inlet orifices

    Energy Technology Data Exchange (ETDEWEB)

    Sara Lundgren; Hernan Tinoco [Forsmarks Kraftgrupp AB, 742 03 Oesthammar (Sweden); Aleksander Pohl; Wiktor Frid [The Royal Institute of Technology, Dept. Energy Technology, SE-100 44 Stockholm (Sweden)

    2005-07-01

    Full text of publication follows: A 'progressive' orifice is characterized by an edge-shaped hole that gives a Reynolds number dependent resistance coefficient. For Reynolds numbers smaller than a critical one, the resistance coefficient has a high constant value that drops to a much lower value for Reynolds numbers greater than this critical value. A similar effect is widely known for external flows around bodies of different shapes, i. e. spheres, cylinders, etc., and the sudden drop in drag coefficient is due to the shift from laminar to turbulent boundary-layer flow. Experimentally, progressive orifices have been investigated under high-pressure and high-temperature conditions by Akiba et al. (2001) for a reduced set of geometrical parameters. Using the sparse experimental data, a core stability study was carried out by Forsmaks Kraftgrupp AB that showed an improvement in core stability but without the expected reduction in pump power at normal operation. The reason for this partial success was the impossibility of optimizing the fuel inlet pressure drop owing to the limited amount of available data. Due to the high costs associated with the experimental generation of high-pressure, high-temperature data, it was considered that, if possible, the lacking data could be generated numerically at much lower cost. Therefore, the present work deals with the possibility of numerically simulate the flow through progressive orifices, and with the conditions under which to reproduce and generate resistance coefficient data by means of a commercial CFD-code. The results obtained with a two-dimensional, axisymmetric approximation show that Reynolds Averaged Navier-Stokes (RANS) turbulence models are able to qualitatively capture the physics of the phenomenon but with an earlier transition to turbulent boundary-layer flow and with an underestimation of the resistance coefficient by approximately 20 %. This underestimation of the resistance coefficient is related to

  18. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  19. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  20. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  1. PENGARUH TEMPERATUR SOLAR TERHADAP PERFORMA MESIN DIESEL DIRECK INJECTION PUTARAN KONSTAN

    Directory of Open Access Journals (Sweden)

    Murni Murni

    2012-07-01

    Full Text Available The imperfect combustion process will be a problem in the development effort of diesel engine’s performance.Nonhomogen air–fuel mixing process is one of the factors which cause the imperfect combustion.By heating upthe diesel solar up to a certain temperature before it goes through the high pressure injection pump will lowerits density and viscosity. Therefore, when injected in the combustion chamber, it will formed smaller droplets offuel spray which result in a more homogenious air–fuel mixture. Also by using higher temperature will make thediesel fuel easier to ignite in order to compensate the limited time which is available in high speed operatingconditions. Diesel engine Dong Feng 1 cylinder direct injection at constant speed was used in this research. Thefuel used are solar with temperature variations in the range from 30oC to 70oC . The best thermal efficiency forsolar fuel is 30 % at 60oC with 28 % BSFC. In this condition, the fuel consumption was decreased 4 % bycomparing with that at 30oC.

  2. Servo-driven piezo common rail diesel injection system; Servogetriebene Piezo-Common-Rail-Dieseleinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schoeppe, Detlev; Stahl, Christian; Krueger, Grit; Dian, Vincent [Continental Automotive GmbH, Regensburg (Germany). Geschaeftsbereich Engine Systems

    2012-03-15

    The requirements to be met by future diesel engines represent major challenges for fuel injection technology: Fuel consumption, emissions and noise development are to be further reduced without impairing driving enjoyment. To address these challenges, Continental has developed a new fuel injection system that features a high level of precision and accuracy. The key component is a servo-driven injector that is operated in a closed control circuit. (orig.)

  3. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  4. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  5. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    International Nuclear Information System (INIS)

    Saravanan, N.; Nagarajan, G.

    2010-01-01

    Automobiles are one of the major sources of air pollution in the environment. In addition CO 2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 o crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 o CA before gas exchange top dead centre (BGTDC) with injection duration of 30 o CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO X emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO 2 ) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen

  6. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India)

    2010-07-15

    Automobiles are one of the major sources of air pollution in the environment. In addition CO{sub 2} emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 CA before gas exchange top dead centre (BGTDC) with injection duration of 30 CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO{sub X} emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO{sub 2}) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of

  7. Bioethanol E85 as a fuel for dual fuel diesel engine

    International Nuclear Information System (INIS)

    Tutak, Wojciech

    2014-01-01

    Highlights: • An increase in the E85 fraction is changing the nature of the HRR course. • Change of combustion phasing with E85 fraction. • The ignition delay of dual fuel engine decreases with increasing E85 fuel. • Premixed combustion of E85 fuel reduces smoke emissions. - Abstract: This study investigates the potential of E85 fuelling in a diesel engine. Researches were performed using a three-cylinder a direct injection diesel engine. A dual-fuelling technology is implemented such that E85 is introduced into the intake manifold using a port-fuel injector while diesel is injected directly into the cylinder. The primary aim of the study was to determine the operating parameters of the engine powered on E85 bioethanol fuel in dual fuel system. The parameters that were taken into account are: engine efficiency, indicated mean effective pressure, heat release rate, combustion duration and ignition delay, combustion phasing and exhaust toxicity. With E85 fuel participation, NO x and soot emissions were reduced, whereas CO and HC emissions increased considerably. It was found that E85 participation in a combustible mixture reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of nitrogen oxides and soot

  8. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  9. Autoignition of liquid-fuel sprays

    International Nuclear Information System (INIS)

    Mitzutani, Y.

    1991-01-01

    This paper reports on the published autoignition data of liquid fuel sprays that were extensively reviewed by classifying them into the following three categories; liquid fuels injected into a stagnant hot atmosphere, liquid fuels injected into a hot air stream (vitiated or unvitiated), and droplet cluster ignited behind an incident or reflected shock. Comparison of these data with the counterparts of gaseous fuels and single droplets revealed that it was the ignition process dominated by droplet evaporation whereas it was the one dominated by chemical kinetics. It consisted, depending on the experimental condition, of the data and of the ignition process dominated by the shattering of droplets by an incident shock. In addition, theoretical works on spray autoignition were reviewed, pointing out that they were still far from universally predicting the ignition delays of liquid fuel sprays

  10. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  11. Development of ceramic roller bush for diesel fuel injection pump; Nenryo funsha pump yo ceramics sei roller bush no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K; Kamiya, S; Fujimura, M; Tsuzuki, M [Toyota Motor Corp., Aichi (Japan); Taniguchi, K [Denso Corp., Aichi (Japan)

    1997-10-01

    Silicon nitride ceramics have been applied to roller bush for diesel fuel injection pump in order to improve the seizure resistance. It was found that ceramic roller bush made it possible to improve the seizure load by more than three times as compared to conventional metal roller bush when the kerosene was used as lubricant The ceramic roller bush proved to be durable under engine operating conditions. 6 refs., 13 figs., 1 tab.

  12. Recent progress in the development of metallic fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Lahm, C.E.; Pahl, R.G.; Tsai, H.C.

    1990-01-01

    Tests to date demonstrate that metallic fuel for advanced liquid metal reactors performs well, is easily reprocessed and refabricated and provides inherent reactor safety within an economic design. The behavior and performance of metallic fuel is key to the demonstration of the Integral Fast Reactor (IFR) concept at Argonne National Laboratory. Since 1985, more than 40 assemblies of experimental fuel in addition to the standard metallic driver fuel for Experimental Breeder Reactor 2 (EBR-2)have been irradiated; several more continue to be designed and fabricated. Results have characterized the influence of a wide range of fabrication, design and material variables upon irradiation behavior throughout the fuel lifetime under normal and upset conditions including operation with breached cladding. Results of test, both in- and out-of-reactor, indicate that metallic fuel is readily and economically fabricated, capable of achieving high exposure and long reactor residence times, and possesses unique and promising safety features. 9 refs., 6 figs

  13. Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Gumus, Metin [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Ilhan, Murat [Raytheon Training International GmbH, GM Academy, 34843 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)]|[Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2009-05-15

    Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15 , 20 and 25 CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NO{sub x} and CO{sub 2} emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NO{sub x} and CO{sub 2} emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 CA BTDC). On the other hand, with the advanced injection timing (25 CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads. (author)

  14. Progress with helicity injection current drive

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Raman, R.; Nelson, B.A.

    2003-01-01

    Coaxial Helicity Injection (CHI) experiments in the NSTX and HIT-II devices are reported. NSTX has produced toroidal currents of 0.4 MA and pulse lengths of up to 0.33 s. These discharges nearly fill the NSTX main chamber, and show the n=1 rotating distortion characteristic of high-performance CHI plasmas. CHI has been used in HIT-II to provide a closed flux startup plasma for inductive drive. The CHI startup method saves transformer volt-seconds and greatly improves reproducibility and reliability of inductively driven discharges, even in the presence of diminishing wall conditions. (author)

  15. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.M.; Tomita, E.; Kawahara, N.; Harada, Y.; Sakane, A. [Okayama University, Okayama (Japan). Dept. of Mechanical Engineering

    2009-12-15

    This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.

  16. HPLC method for rapidly following biodiesel fuel transesterification reaction progress using a core-shell column.

    Science.gov (United States)

    Allen, Samuel J; Ott, Lisa S

    2012-07-01

    There are a wide and growing variety of feedstocks for biodiesel fuel. Most commonly, these feedstocks contain triglycerides which are transesterified into the fatty acid alkyl esters (FAAEs) which comprise biodiesel fuel. While the tranesterification reaction itself is simple, monitoring the reaction progress and reaction products is not. Gas chromatography-mass spectrometry is useful for assessing the FAAE products, but does not directly address either the tri-, di-, or monoglycerides present from incomplete transesterification or the free fatty acids which may also be present. Analysis of the biodiesel reaction mixture is complicated by the solubility and physical property differences among the components of the tranesterification reaction mixture. In this contribution, we present a simple, rapid HPLC method which allows for monitoring all of the main components in a biodiesel fuel transesterification reaction, with specific emphasis on the ability to monitor the reaction as a function of time. The utilization of a relatively new, core-shell stationary phase for the HPLC column allows for efficient separation of peaks with short elution times, saving both time and solvent.

  17. Diesel Fuel Systems. Teacher Edition (Revised).

    Science.gov (United States)

    Clark, Elton; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…

  18. Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine - A parametric study using CFD

    International Nuclear Information System (INIS)

    Jayashankara, B.; Ganesan, V.

    2010-01-01

    This paper presents the computational fluid dynamics (CFD) modeling to study the effect of fuel injection timing and intake pressure (naturally aspirated as well as supercharged condition) on the performance of a direct injection (DI) diesel engine. The performance characteristics of the engine are investigated under transient conditions. A single cylinder direct injection diesel engine with two directed intake ports whose outlet is tangential to the wall of the cylinder and two exhaust ports has been taken up for the study. Effect of injection timing (start of injection 16, 12 and 8 CAD bTDC) and intake pressure (1.01, 1.21 and 1.71 bar) on the performance of the engine has been investigated for an engine speed of 1000 rpm. CFD predicted results during both suction and compression strokes under motoring conditions have been validated with experimental results available in the literature. Magnusson's eddy break-up model is used for combustion simulation. Predicted performance and emission characteristics such as pressure, temperature, heat release, NO x , and soot are presented and discussed. The predicted values reveal that retarding the injection timing results in increase in-cylinder pressure, temperature, heat release rate, cumulative heat release and NO x emissions. Decreasing trend is observed by advancing the injection timing. In case of soot emission the increasing trend is observed up to certain crank angle then reverse trend is seen. The supercharged with inter-cooled cases show lower peak heat release rate and maximum cumulative heat release, shorter ignition delay, higher NO x and lower soot emissions.

  19. Quarterly Progress Report Fuels Development Operation: October - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1960-01-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  20. Quarterly Progress Report Fuels Development Operation: January - March 1958

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1958-04-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  1. Quarterly Progress Report Fuels Development Operation: July - September 1957

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Wallace, W. P. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1957-10-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  2. Investigation of direct-injection via micro-porous injector

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; Luijten, C.C.M.; Goey, de L.P.H.

    2009-01-01

    The possibility to reduce soot emissions by means of injecting diesel fuel through a porous injector is investigated. From literature it is known that better oxygen entrainment into the fuel spray leads to lower soot emissions. By selection of porous material properties and geometry, the spray is

  3. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  4. Common Rail Direct Injection Mode of CI Engine Operation with Different Injection Strategies - A Method to Reduce Smoke and NOx Emissions Simultaneously

    Directory of Open Access Journals (Sweden)

    S. V. Khandal

    2018-03-01

    Full Text Available Compression ignition (CI engines are most efficient and robust prime movers used in transportation, power generation applications but suffer from the problems of higher level of exhaust smoke and NOx tailpipe emissions with increased use of fossil fuels. Alternative fuel that replaces diesel and at the same time that result in lower smoke and NOx emissions is presently needed. Therefore the main aim of this experimental study is to lower the smoke and NOx emissions and to use non edible oils that replace the diesel. For this locally available honge biodiesel (BHO and cotton seed biodiesel (BCO were selected as alternative fuels to power CI engine operated in common rail direct injection (CRDI mode. In the first part, optimum fuel injection timing (IT and injection pressure (IP for maximum engine brake thermal efficiency (BTE was obtained. In the second part, performance, combustion and emission characteristics of the CRDI engine was studied with two different fuel injectors having 6 and 7 holes each having 0.2 mm orifice diameter. The CRDI engine results obtained were compared with the baseline date reported. The combustion chamber (CC used for the study was toroidal re-entrant (TRCC. The experimental tests showed that BHO and BCO fuelled CRDI engine showed overall improved performance with 7 hole injector when engine was operated at optimized fuel IT of 10° before top dead centre (bTDC and IP of 900 bar. The smoke emission reduced by 20% to 26% and NOx reduced by 16% to 20% in diesel and biodiesel powered CRDI engine as compared to conventional CI mode besides replacing diesel by biodiesel fuel (BDF.

  5. Recent Progress on the DUPIC Fuel Fabrication Technology at KAERI

    International Nuclear Information System (INIS)

    Jung-Won Lee; Ho-Jin Ryu; Geun-Il Park; Kee-Chan Song

    2008-01-01

    Since 1991, KAERI has been developing the DUPIC fuel cycle technology. The concept of a direct use of spent PWR fuel in Candu reactors (DUPIC) is based on a dry processing method to re-fabricate Candu fuel from spent PWR fuel without any intentional separation of the fissile materials and fission products. A DUPIC fuel pellet was successfully fabricated and the DUPIC fuel element fabrication processes were qualified on the basis of a Quality Assurance program. Consequently, the DUPIC fuel fabrication technology was verified and demonstrated on a laboratory-scale. Recently, the fuel discharge burn-up of PWRs has been extended to reduce the amount of spent fuel and the fuel cycle costs. Considering this trend of extending the fuel burn-up in PWRs, the DUPIC fuel fabrication technology should be improved to process high burn-up spent fuels. Particularly the release behavior of cesium from the pellet prepared with a high burn-up spent fuel was assessed. an improved DUPIC fuel fabrication technology was experimentally established with a fuel burn-up of 65,000 MWd/tU. (authors)

  6. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  7. Dual-fuel HCCI operation with DME/LPG/gasoline/hydrogen

    International Nuclear Information System (INIS)

    Bae, C.

    2009-01-01

    The advantages of homogeneous charge compression ignition (HCCI) engines include usage of the different type of fuels, ultra low nitrogen oxide and particulate matter emissions and improved fuel economy. Disadvantages include an excessive combustion rate, engine noise, and hydrocarbon and carbon emissions. An experiment on dual-fuel HCCI operation with dimethyl ether (DME)/liquefied petroleum gas (LPG)/gasoline/hydrogen was presented. The advantages and disadvantages were first presented and the dual-fuel HCCI combustion engine was illustrated through an experimental apparatus. The experimental conditions were also presented in terms of engine speed, DME injection quantity, LPC injection quantity, and LPC composition. Experimental results were discussed for output performance and indicated mean effective pressure (IMEP). It was concluded that the effect of LPG composition in a DME-LPG dual-fueled HCCI engine at various injection quantity and injective timing were observed. Specifically, it was found that propane was a more effective way to increase IMEP in this study, and that in a DME HCCI engine, higher load limit was extended by using LPG as an ignition inhibitor. tabs., figs.

  8. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  9. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement

  10. Fuel-cycle programs. Quarterly progress report, January-March 1981

    International Nuclear Information System (INIS)

    Steindler, M.J.; Vogler, S.; Vandegrift, G.F.

    1982-03-01

    A program continues for the development of an interim waste form that can be transported from facilities where waste is generated to terminal waste processing. Measurements of rates of leaching from simulated nuclear waste forms ar continuing. The data suggest that leaching from SRL glasses is inhibited by the formation of a Si/Ca/Fe/Al-rich surface layer. Impact tests of solid alternative waste forms (glass and ceramic) are being performed to assess source terms of airborne release (from particle size distributions) and to assess the increases in source terms of leach rates (from increases in surface area). Logging techniques are being developed to measure the relative amount of residual oil in a depleted oil reservoir. A simple technique for the elution of pore fluid (groundwater) from igneous rocks is described, using a special coreholder, as is the elution of brine (in the same apparatus) from a core of Precambrian granite. Testing and development of equipment for the destructive analysis of full-length irradiated fuel rods from the LWBR is in progress

  11. Review of progress on enhanced accident tolerant fuel

    International Nuclear Information System (INIS)

    McCoy, K.; Dunn, B.; Kochendarfer, R.

    2015-01-01

    The accident at Fukushima has resulted in renewed interest in understanding the performance of nuclear power plants under accident conditions. Part of that interest is directed toward determining how to improve the performance of fuel during an accident that involves long exposures of the fuel to high temperatures. This paper describes the method being used by AREVA to select and evaluate approaches for improving the accident tolerance of nuclear fuel. The method involves starting with a large number of approaches that might enhance accident tolerance, and reviewing how well each approach satisfies a set of engineering requirements and goals. Among the approaches investigated we have the development of fuel pellets that contain a second phase to improve thermal conductivity, the use of molybdenum alloy tubing as fuel cladding, the use of oxidation-resistant coatings to zirconium cladding, and the use of nanoparticles in the coolant to improve heat transfer

  12. Nuclear fuel

    International Nuclear Information System (INIS)

    D Hondt, P.

    1998-01-01

    The research and development programme on nuclear fuel at the Belgian Nuclear Research Centre SCK/CEN is described. The objective of this programme is to enhance the quantitative prediction of the operational limits of nuclear fuel and to assess the behaviour of fuel under incidental and accidental conditions. Progress is described in different domains including the modelling of fission gas release in LWR fuel, thermal conductivity, basic physical phenomena, post-irradiation examination for fuel performance assessment, and conceptual studies of incidental and accidental fuel experiments

  13. Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port

    Science.gov (United States)

    Marshall, Joel H.

    A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.

  14. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  15. Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline

    International Nuclear Information System (INIS)

    Merola, Simona Silvia; Tornatore, Cinzia; Irimescu, Adrian; Marchitto, Luca; Valentino, Gerardo

    2016-01-01

    Given the instability in supply and finite nature of fossil fuels, alternative renewable energy sources are continuously investigated throughout the production–distribution-use chain. Within this context, the research presented in this work is focused on using butanol as gasoline replacement in a Direct Injection Spark Ignition engine. The impact of this fuel on the combustion processes was investigated using optical diagnostics and conventional methods in a transparent single cylinder engine. Three different load settings were investigated at fixed engine speed, with combined throttling and mixture strength control. The engine was operated in homogenous charge mode, with commercial gasoline and pure n-butanol fueling. High spatial and temporal resolution visualization was applied in the first phase of the combustion process in order to follow the early flame development for the two fuels. The optical data were completed with conventional measurements of thermodynamic data and pollutants emission at the exhaust. Improved performance was obtained in throttled stoichiometric mode when using the alternative fuel, while at wide open throttle, gasoline featured higher indicated mean effective pressure at both air–fuel ratio settings. These overall findings were correlated to flame characteristics; the alcohol was found to feature more distorted flame contour compared to gasoline, especially in lean conditions. Differences were reduced during throttled stoichiometric operation, confirming that mass transfer processes, along with fuel chemistry and physical properties, exert a significant influence on local phenomena during combustion. - Highlights: • Butanol can replace gasoline without performance penalties in throttled, stoichiometric operation. • Butanol induces higher flame contour distortion than gasoline, especially in lean case. • Fuel chemical–physical properties strongly influence local phenomena during combustion. • Butanol ensured lower smoke

  16. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    International Nuclear Information System (INIS)

    Durgun, O.; Sahin, Z.

    2009-01-01

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  17. Experimental investigation of spray characteristics of alternative aviation fuels

    International Nuclear Information System (INIS)

    Kannaiyan, Kumaran; Sadr, Reza

    2014-01-01

    Highlights: • Physical properties of GTL fuel are different from those of conventional jet fuels. • Spray characteristics of GTL and Jet A-1 fuels are experimentally investigated using phase Doppler anemometry. • Regions near the nozzle are influenced by differences in fuel physical properties. • Spray characteristics of GTL can be predicted by empirical relations developed for conventional jet fuels. - Abstract: Synthetic fuels derived from non-oil feedstock are gaining importance due to their cleaner combustion characteristics. This work investigates spray characteristics of two Gas-to-Liquid (GTL) synthetic jet fuels from a pilot-scale pressure swirl nozzle and compares them with those of the conventional Jet A-1 fuel. The microscopic spray parameters are measured at 0.3 and 0.9 MPa injection pressures at several points in the spray using phase Doppler anemometry. The results show that the effect of fuel physical properties on the spray characteristics is predominantly evident in the regions close to the nozzle exit at the higher injection pressure. The lower viscosity and surface tension of GTL fuel seems to lead to faster disintegration and dispersion of the droplets when compared to those of Jet A-1 fuel under atmospheric conditions. Although the global characteristics of the fuels are similar, the effects of fuel properties are evident on the local spray characteristics at the higher injection pressure

  18. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  19. Effect of main injection timing for controlling the combustion phasing of a homogeneous charge compression ignition engine using a new dual injection strategy

    International Nuclear Information System (INIS)

    Das, Pranab; Subbarao, P.M.V.; Subrahmanyam, J.P.

    2015-01-01

    Highlights: • A new dual injection concept is developed by minimum geometry modification. • The occurrence of combustion parameters strongly depend on main injection timing. • At higher load, premixed equivalence ratio dominates over main injection timing. • Retarded of main injection timing tends to retard combustion phasing. • Slightly retarded main injection timing is recommended to avoid intense knocking. - Abstract: Homogeneous charge compression ignition combustion of diesel fuel is implemented using a novel dual injection strategy. A new experimental technique is developed to modify a single cylinder direct injection diesel engine to run on homogeneous combustion mode. Effect of main injection timing is investigated covering a range from 26 to 8 crank angle degrees before top dead center with an interval of 3°. Retarded main injection timing is identified as a control strategy for delaying combustion phasing and a means of controlled combustion phasing of direct injection homogeneous charge compression ignition combustion. Two load conditions were investigated and it was observed that at higher load, start of combustion depends more on fuel air equivalence ratio than main injection timing, whereas at low load, it significantly varies with varying main injection timing. Significant improvements in smoke and oxides of nitrogen emissions are observed when compared with the baseline conventional combustion. By studying different combustion parameters, it is observed that there is an improvement in performance and emissions with marginal loss in thermal efficiency when the main injection timing is 20° before top dead center. This is identified as the optimum main injection timing for such homogeneous combustion under the same operating condition

  20. Effects of fuel and air mixing on WOT output in direct injection gasoline engine; Chokufun gasoline kikan ni okeru nenryo to kuki no kongo to shutsuryoku seino

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T; Iriya, Y; Naito, K; Mitsumoto, H; Iiyama, A [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The effects of in-cylinder charge motion and the characteristics of the fuel spray and piston crown shape on WOT output in a direct injection gasoline engine are investigated. The fuel and air mixing process in a cylinder is analyzed by computer simulation and LIF method visualization. As a result, the technical factors to achieve enough mixing in a DI gasoline engine equipped with bowl in piston optimized for stratified combustion are clarified. 7 refs., 9 figs., 1 tab.

  1. An experimental study on the cathode humidification and evaporative cooling of polymer electrolyte membrane fuel cells using direct water injection method at high current densities

    International Nuclear Information System (INIS)

    Hwang, Seong Hoon; Kim, Min Soo

    2016-01-01

    Highlights: • Proposal of a cathode humidification and evaporative cooling system for PEM fuel cells. • An external-mixing air-assist atomizer is used to produce a very fine water spray. • The system is effective in both cathode humidification and stack cooling. • Increased water flow rate improves stack performance and evaporative cooling capacity. • At a given water flow rate, lower stack temperatures cause greater humidification effect. - Abstract: Humidification and cooling are critical issues in enhancing the efficiency and durability of polymer electrolyte membrane fuel cells (PEMFCs). However, existing humidifiers and cooling systems have the disadvantage that they must be quite large to achieve adequate PEMFC performance. In this study, to eliminate the need for a bulky humidifier and to lighten the cooling load of PEMFCs, a cathode humidification and evaporative cooling system using an external-mixing air-assist atomizer was developed and its performance was investigated. The atomization performance of the nozzle was analyzed experimentally under various operating conditions with minimal changes in the system design. Experiments with a five-cell PEMFC stack with an active area of 250 cm"2 were carried out to analyze the effects of various parameters (such as the operating temperature, current density, and water injection flow rate) on the evaporation of injected water for humidification and cooling performances. The experimental results demonstrate that the direct water injection method proposed in this study is quite effective in cathode humidification and stack cooling in PEM fuel cells at high current densities. The stack performance was improved by humidification effect and the coolant temperature at the stack outlet decreased by evaporative cooling effect.

  2. Optimization of combustion chamber geometry and operating conditions for compression ignition engine fueled with pre-blended gasoline-diesel fuel

    International Nuclear Information System (INIS)

    Lee, Seokhwon; Jeon, Joonho; Park, Sungwook

    2016-01-01

    Highlights: • Pre-blended gasoline-diesel fuel was used with direct injection system. • KIVA-CHEMKIN code modeled dual-fuel fuel spray and combustion processes with discrete multi-component model. • The characteristics of Combustion and emission on pre-blended fuel was investigated with various fuel reactivities. • Optimization of combustion chamber shape improved combustion performance of the gasoline-diesel blended fuel engine. - Abstract: In this study, experiments and numerical simulations were used to improve the fuel efficiency of compression ignition engine using a gasoline-diesel blended fuel and an optimization technology. The blended fuel is directly injected into the cylinder with various blending ratios. Combustion and emission characteristics were investigated to explore the effects of gasoline ratio on fuel blend. The present study showed that the advantages of gasoline-diesel blended fuel, high thermal efficiency and low emission, were maximized using the numerical optimization method. The ignition delay and maximum pressure rise rate increased with the proportion of gasoline. As the gasoline fraction increased, the combustion duration and the indicated mean effective pressure decreased. The homogeneity of the fuel-air mixture was improved due to longer ignition delay. Soot emission was significantly reduced up to 90% compared to that of conventional diesel. The nitrogen oxides emissions of the blended fuel increased slightly when the start of injection was retarded toward top dead center. For the numerical study, KIVA-CHEMKIN multi-dimensional CFD code was used to model the combustion and emission characteristics of gasoline-diesel blended fuel. The micro genetic algorithm coupled with the KIVA-CHEMKIN code were used to optimize the combustion chamber shape and operating conditions to improve the combustion performance of the blended fuel engine. The optimized chamber geometry enhanced the fuel efficiency, for a level of nitrogen oxides

  3. Numerical Modeling of a Jet Ignition Direct Injection (JI DI LPG Engine

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2017-01-01

    Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel. 

  4. Numerical simulation of progressive inlet orifices in boiling water reactor fuel

    International Nuclear Information System (INIS)

    Lundgren, Sara

    2004-07-01

    This thesis was carried out at Forsmark Nuclear Power Plant. The power plant in Forsmark consists of three boiling water reactors (BWR) which produce about 17% of Swedish electricity. In a BWR the nuclear reactions are used to boil water inside the reactor vessel. The water works both as a coolant and as a moderator and the resulting steam is used directly to run the turbines. A problem when running a BWR at low flow conditions is the density wave oscillations that might occur to the water flow inside the fuel assemblies. These oscillations arise due to the connection between power and flow rate in a heated channel with two-phase flow. In order to improve the stability performance of the channel an orifice plate is placed at the inlet of each fuel assembly. Today these orifice plates have sharp edges and a constant resistance coefficient. Experimental work has been done with progressive orifices, the edge of which is half-oval in shape. The advantage of progressive orifices is the lower pressure losses with an increase of the Reynolds number, a similar phenomenon that appears in external flow around curved bodies. Since there are high costs associated with experimental generation of high- temperature and high-pressure data, it is of some interest to be able to reproduce and generate data using Computational Fluid Dynamics (CFD). This work deals with the possibility to use the CFD-code Fluent to do numerical simulations of the flow through progressive orifices. The following conclusions may be drawn from the numerical results: All simulations using Reynolds-Averaged Navier-Stokes (RANS) turbulence models, two-dimensional and three-dimensional, capture an abrupt decrease of the resistance coefficient at higher Reynolds numbers. Two-equation models seem to under-predict the critical Reynolds number. The five-equation Reynolds Stress Model (RSM) gives a critical Reynolds number of the same order of magnitude of that measured in experiments. No major differences have

  5. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  6. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are

  7. IAEA technical committee meeting on pellet injection

    International Nuclear Information System (INIS)

    1993-01-01

    The IAEA Technical Committee Meeting on Pellet Injection, May 10-12, 1993, at the Japan Atomic Energy Research Institute, Naka, Ibaraki-ken, Japan, was held to review the latest results on pellet injection and its effects on plasma confinement. In particular, topics included in the meeting include (i) pellet ablation and particle fueling results, (ii) pellet injection effects on confinement, including improved confinement modes, edge effects, magnetohydrodynamic activity and impurity transport, and (iii) injector technology and diagnostics using pellets. About 30 experts attended and 23 papers were presented. Refs, figs and tabs

  8. Deuterium pellet injection in the TFR Tokamak

    International Nuclear Information System (INIS)

    Lazare, O.

    1985-07-01

    Injecting fresh fuel deep inside the plasma of a thermonuclear reactor appears to be necessary; the only way to do that is to inject fast solid deuterium pellets. The existing theoretical, technical and experimental aspects of this method are presented. The experiments on TFR have confirmed that injecting pellets is technically feasible; a new kind of injector is presented. The injection does not degrade stability nor confinement of the plasma. The study of the transient phenomena occuring during the injection has proved to be an efficient way to investigate particles and energy transport in the discharge; in particular, a fast transport phenomenon, similar to those occuring during disruptions, has been studied in details. Conclusions about disruptions are drawn. (Ref 101) [fr

  9. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  10. Progress in fuel pin modelling in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J D; Biancheria, A; Leibnitz, D; O' Reilly, B D; Liu, Y Y; Labar, M P; Gneiting, B C [General Electric Company, Sunnyvale, CA (United States)

    1979-12-01

    In the USA, the focus for theoretical fuel pin modeling is the LIFE system. This system of codes, algorithms, criteria and analysis guidelines is intended to provide a common basis for communication amongst the development groups, a reference set of analysis guidelines for design, and eventually a consensus on the state-of-the-art for licensing. The technical objective is to predict the effect of design options on fuel pin performance limits, which include fuel temperature, pin deformation and cladding breach during normal operation and design basis transients. The mechanistic approach to modeling is taken in LIFE to the extent possible. That is, the approach is to describe the key phenomena in sufficient detail to provide a fundamental understanding of their synergistic effect on the fuel pin performance limits.

  11. Progress in qualifying low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Hayes, S.L.; Meyer, M.K.

    2001-01-01

    The U.S. Reduced Enrichment for Research and Test Reactors program is working to qualify dispersions of U-Mo alloys in aluminum with fuel-meat densities of 8 to 9 gU cm -3 . Post irradiation examinations of the small fuel plates irradiated in the Advanced Test Reactor during the high-temperature RERTR-3 tests are virtually complete, and analysis of the large quantity of data obtained is underway. We have observed that the swelling of the fuel plates is stable and modest and that the swelling is dominated by the temperature-dependent interaction of the U-Mo fuel and the aluminum matrix. In order to extract detailed information about the behavior of these fuels from the data, a complex fuel-plate thermal model is being developed to account for the effects of the changing fission rate and thermal conductivity of the fuel meat during irradiation. This paper summarizes the empirical results of the post irradiation examinations and the preliminary results of the model development. In addition, the schedule for irradiation of full-sized elements in the HFR-Petten is briefly discussed. (author)

  12. Chemical engineering division fuel cycle programs. Progress report, January--September 1977

    International Nuclear Information System (INIS)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1977-01-01

    Fuel-cycle studies reported for this period include pyrochemical separation of plutonium and americium oxides from contaminated materials of construction such as steel. When slag and actinide-contaminated metal in the same process vessel are heated until liquefied, the actinides are partitioned to a high degree into the slags. Also, studies of advanced solvent extraction techniques are focused on the development of centrifugal contactors for use in Purex processes. A miniature contactor is to be used for performance studies applicable to larger units. In other work, literature on the process chemistry of zirconium and ruthenium has been reviewed to aid in improving the process when short-residence-time contactors are used. In addition, a review of information on the dispersion of reagents and products during accidents in fuel reprocessing facilities has been initiated to develop systematic data useful in identifying source terms. A review and evaluation of the encapsulation of high-level waste in a metal matrix are continuing. The data will be used to identify the state of the art and the importance of selected features of this process. In other work, criteria for the handling of hulls are being developed on the basis of past work on the pyrophoricity of zirconium alloys and related criteria from several sources. These suggested criteria will be assembled with the necessary technical rationalization into a package for review by interested parties. Other work consists of a brief program to explore the disposal of noble gas fission products by deep-well injection and laboratory-scale experiments to study the migratory characteristics of nuclear waste confined in geologic formations. 28 figures, 26 tables

  13. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    Science.gov (United States)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  14. Plasma behavior with molecular beam injection in the HL-1m tokamak

    International Nuclear Information System (INIS)

    Yao Lianghua; Tang Nianyi; Cui Zhengying; Xu Deming; Deng Zhongchao; Ding Xuantong; Luo Junlin; Dong Jiafu; Guo Gancheng; Yang Shikun; Cui Chenghe; Xiao Zhenggui; Liu Dequan; Chen Xiaoping; Yan Longwen; Yan Donghai; Wang Enyao; Deng Xiwen

    1999-01-01

    The authors report effect of the new fueling method of high speed molecular beam injection on Tokamak confinement improvement. The present method is an improvement of conventional gas puffing, with performance comparable to the small pellet injection in HL-1M and also to the slow pellet in ASDEX. The fact that a shallower fueling can lead to similar confinement improvement as a deep one suggests that there may exist a critical position in a Tokamak plasma such that any kind of fueling will have a better confinement as long as it can give rise to density peaking at the critical position

  15. Effect of injection timing on combustion and performance of a direct injection diesel engine running on Jatropha methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, S. [Mechanical Engineering Department, College of Technology & Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur 313001 (India)

    2011-07-01

    The present study aims at evaluation of effect of injection timing on the combustion, performance and emissions of a small power diesel engine, commonly used for agriculture purpose, running on pure biodiesel, prepared from Jatropha (Jatropha curcas) vegetable oil. The effect of varying injection timing was evaluated in terms of thermal efficiency, specific fuel consumption, power and mean effective pressure, exhaust temperature, cylinder pressure, rate of pressure rise and the heat release rate. It was found that retarding the injection timing by 3 degrees enhances the thermal efficiency by about 8 percent.

  16. A study on the amount of pilot injection and its effects on rich and lean boundaries of the premixed CNG/air mixture for a CNG/diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang Lin; Wanhua Su [Tianjin University (China). State Key Laboratory of Engines

    2003-07-01

    A sequential port injection, lean-burn, fully electronically-controlled compressed natural gas (CNG)/diesel dual-fuel engine has been developed based on a turbo-charged and inter-cooled direct injection (D.I.) diesel engine. During the optimisation of engine overall performance, the effects of pilot diesel and premixed CNG/air mixture equivalence ratio on emissions (CO, HC, NO{sub x}, soot), knocking, misfire and fuel economy are studied. The rich and lean boundaries of the premixed CNG/air mixture versus engine load are also provided, considering the acceptable values of NO{sub x} and THC emissions, respectively. It is interesting to find that there is a critical amount of pilot diesel for each load and speed point, which proved to be the optimum amount of pilot fuel. Any decrease in the amount of pilot diesel from this optimum amount results in an increase of NO{sub x} emissions, because the premixed CNG/air mixture must be made richer, otherwise THC emissions would increase. However, the soot emissions remain almost unchanged at a very low level. (author)

  17. Alternative Fuels DISI Engine Research ? Autoignition Metrics.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl Magnus Goran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vuilleumier, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Improved engine efficiency is required to comply with future fuel economy standards. Alternative fuels have the potential to enable more efficient engines while addressing concerns about energy security. This project contributes to the science base needed by industry to develop highly efficient direct injection spark igniton (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on quantifying autoignition behavior for a range of spark-ignited engine conditions, including directly injected boosted conditions. The efficiency of stoichiometrically operated spark ignition engines is often limited by fuel-oxidizer end-gas autoignition, which can result in engine knock. A fuel’s knock resistance is assessed empirically by the Research Octane Number (RON) and Motor Octane Number (MON) tests. By clarifying how these two tests relate to the autoignition behavior of conventional and alternative fuel formulations, fuel design guidelines for enhanced engine efficiency can be developed.

  18. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  19. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Arabaci, Emre; İçingür, Yakup; Solmaz, Hamit; Uyumaz, Ahmet; Yilmaz, Emre

    2015-01-01

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  20. Criticality safety studies for plutonium–uranium metal fuel pin fabrication facility

    International Nuclear Information System (INIS)

    Stephen, Neethu Hanna; Reddy, C.P.

    2013-01-01

    Highlights: ► Criticality safety limits for PUMP-F facility is identified. ► The fissile mass which can be handled safely during alloy preparation is 10.5 kg. ► The number of fuel slugs which can be handled safely during injection casting is 53. ► The number of fuel slugs which can be handled safely after fuel fabrication is 71. - Abstract: This study focuses on the criticality safety during the fabrication of fast reactor metal fuel pins comprising of the fuel type U–15Pu, U–19Pu and U–19Pu–6Zr in the Plutonium–Uranium Metal fuel Pin fabrication Facility (PUMP-F). Maximum amount of fissile mass which can be handled safely during master alloy preparation, Injection casting and fuel slug preparation following fuel pin fabrication were identified and fixed based on this study. In the induction melting furnace, the fissile mass can be limited to 10.5 kg. During fuel slug preparation and fuel pin fabrication, fuel slugs and pins were arranged in hexagonal and square lattices to identify the most reactive configuration. The number of fuel slugs which can be handled safely after injection casting can be fixed to be 53, whereas after fuel fabrication it is 71

  1. 40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... if I use water or steam injection? 60.4335 Section 60.4335 Protection of Environment ENVIRONMENTAL... compliance for NOX if I use water or steam injection? (a) If you are using water or steam injection to... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine...

  2. Effects of a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine

    International Nuclear Information System (INIS)

    Tziourtzioumis, Dimitrios; Stamatelos, Anastassios

    2012-01-01

    Highlights: ► We demonstrate how the fuel injection system responds to different fuel properties. ► Improvements to the ECU maps of the engine are suggested. ► These allow operation at high biodiesel blends without loss in engine performance. ► Continued operation with high biodiesel fuel blend, resulted in fuel pump failure. - Abstract: The results of steady state and transient engine bench tests of a 2.0l common-rail passenger car diesel engine fuelled by B70 biodiesel blend are compared with the corresponding results of baseline tests with standard EN 590 diesel fuel. The macroscopic steady-state performance and emissions of the same engine has already been presented elsewhere. The current study demonstrates how the engine management system responds to different fuel properties, with focus to the fuel system dynamics and the engine’s transient response. A set of characteristic transient operation points was selected for the tests. Data acquisition of engine ECU variables was made by means of INCA software/ETAS Mac2 interface. Additional data acquisition regarding engine performance was based on external sensors. The results indicate significant differences in fuel system dynamics and transient engine operation with the B70 blend at high fuel flow rates. Certain modifications to engine ECU maps and control parameters are proposed, aimed at improvement of transient performance of modern engines run on high percentage biodiesel blends. However, a high pressure pump failure that was observed after prolonged operation with the B70 blend, hints to the use of more conservative biodiesel blending in fuel.

  3. A numerical study of the effects of injection rate shape on combustion and emission of diesel engines

    Directory of Open Access Journals (Sweden)

    He Zhixia

    2014-01-01

    Full Text Available The spray characteristics including spray droplet sizes, droplet distribution, spray tip penetration length and spray diffusion angle directly affects the mixture process of fuel and oxygen and then plays an important role for the improvement of combustion and emission performance of diesel engines. Different injection rate shapes may induce different spray characteristics and then further affect the subsequent combustion and emission performance of diesel engines. In this paper, the spray and combustion processes based on four different injection rate shapes with constant injection duration and injected fuel mass were simulated in the software of AVL FIRE. The numerical models were validated through comparing the results from the simulation with those from experiment. It was found that the dynamic of diesel engines with the new proposed hump shape of injection rate and the original saddle shape is better than that with the injection rate of rectangle and triangle shape, but the emission of NOX is higher. And the soot emission is lowest during the late injection period for the new hump-shape injection rate because of a higher oxidation rate with a better mixture between fuel and air under the high injection pressure.

  4. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    Science.gov (United States)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  5. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  6. Effects of Oxygen Content of Fuels on Combustion and Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Haiwen Song

    2016-01-01

    Full Text Available Effects of oxygen content of fuels on combustion characteristics and emissions were investigated on both an optical single cylinder direct injection (DI diesel engine and a multi-cylinder engine. Three fuels were derived from conventional diesel fuel (Finnish City diesel summer grade by blending Rapeseed Methyl Ester (RME or Diglyme and Butyl-Diglyme of different quantities to make their oxygen content 3%, 3% and 9%, respectively. The experimental results with three tested fuels show that the fuel spray development was not affected apparently by the oxygenating. Compared with the base fuel, the ignition delay to pilot injection was shortened by 0%, 11% and 19% for three oxygenated fuels, respectively. The ignition delay to main injection was shortened by 10%, 19% and 38%, respectively. With regard to emissions, the smoke level was reduced by 24% to 90%, depending on fuel properties and engine running conditions. The penalties of increased NOx emissions and fuel consumption were up to 19% and 24%, respectively.

  7. Diversion-resistant nuclear-fuels processing. Progress report, 1980-1981

    International Nuclear Information System (INIS)

    Tomlinson, R.E.; Campbell, M.H.; Hansen, L.E.; Jaech, J.L.; Merker, L.G.; Malody, C.W.; Nilson, R.; Schneider, R.A.

    1983-01-01

    Design objectives for the projected colocated facilities were formulated. An assessment methodology, was developed. As a baseline, the modified Delphi procedure was used to evaluate the most recent US designs of a fuel reprocessing plant and a fuels refabrication plant against the identified regulations and goals. An upgraded design concept was synthesized, using the baseline fuel reprocessing plant design as a starting point but using a new design concept for fuel conversion and refabrication. The modified Delphi procedure was used to evaluate the upgrading design concepts against identified regulations and goals. The upgraded portions, product conversion, fuel fabrication, and laboratory received ratings of 95% or higher compared with ratings of about 60% for the baseline designs. Alternative reprocessing and refabrication processes were evaluated to determine if any process could offer an inherent safeguards advantage over the combination included in the upgraded design concept. Tentative conclusions reached are: A combination of a modified Purex solvent extraction fuel reprocessing and a Sphere-Pac fuel fabrication flowsheet, coupled with an improved measurement system and a rapid draw-down inventory procedure, can provide the means for meeting most NRC and IAEA Goals. Given industry and DOE support, fuels fabricated by the Sphere-Pac process can probably be licensed by 1990. With a modest demonstration effort, the processes and equipment modifications envisioned can be ready for incorporation in a detailed design by 1985. Practical techniques and equipment are available for the assured control of the movement of plutonium and personnel into and out of the plant and between plant segments. The incremental cost of facilities and procedures needed to provide the above capabilities would probably increase the unit cost of fuel reprocessing and conversion by 5 to 10%

  8. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues - potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)

  9. New concept of combustion technology in small DI diesel engines. 4th Report. Effects of fuel injection rates on MK combustion; Kogata chokufun diesel kikan no shinnensho concept. 4. Funsharitsu no MK nensho eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Matsui, Y; Kamihara, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A previous paper showed that EGR cooling and a low compression ratio which prolongs the ignition delay can expand the area of the new combustion concept. Experimental investigations were conducted in this research to examine the effects of the fuel injection rates, the injection pressure and the injection duration, on the exhaust emissions of an engine incorporating the MK concept The results showed that a higher injection pressure was effective in reducing NOx and particulate matter (PM) under MK combustion conditions. 10 refs., 9 figs., 1 tab.

  10. A volumetric flow sensor for automotive injection systems

    International Nuclear Information System (INIS)

    Schmid, U; Krötz, G; Schmitt-Landsiedel, D

    2008-01-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature

  11. A volumetric flow sensor for automotive injection systems

    Science.gov (United States)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  12. Effects of biobutanol and biobutanol–diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot injection strategies

    International Nuclear Information System (INIS)

    Yun, Hyuntae; Choi, Kibong; Lee, Chang Sik

    2016-01-01

    Highlights: • Effects of biobutanol blends on NOx and soot emission characteristics in a diesel engine. • Comparison of combustion characteristics between biobutanol and diesel fuels. • Effect of pilot injection on combustion and emissions reduction in a diesel engine. - Abstract: In this study, we investigated the effect of biobutanol and biobutanol–diesel blends on the combustion and emission characteristics in a four-cylinder compression ignition engine using pilot injection strategies. The test fuels were a mixture of 10% biobutanol and 90% conventional diesel (Bu10), 20% biobutanol and 80% diesel (Bu20), and 100% diesel fuel (Bu0) based on mass. To study the combustion and emission characteristics of the biobutanol blended fuels, we carried out experimental investigations under various pilot injection timings from BTDC 20° to BTDC 60° with constant main injection timing. As the butanol content in the blended fuel increased, the experimental results indicated that the ignition delay was longer than that of diesel fuel for all pilot injection timings. Also, the indicated specific fuel consumption (ISFC) of the blended fuels was higher than that of diesel at all test conditions. However, the exhaust temperature was lower than that of diesel at all injection timings. Nitrogen oxide (NOx), carbon monoxide (CO) and soot from Bu20 were lower than those from diesel fuel at all test conditions and hydrocarbons (HC) were higher than that from diesel.

  13. Research on the performance of water-injection twin screw compressor

    International Nuclear Information System (INIS)

    Li Jianfeng; Wu Huagen; Wang Bingming; Xing Ziwen; Shu Pengcheng

    2009-01-01

    Due to the development of the automotive fuel cell systems, the study on water-injection twin screw compressor has been aroused again. Twin screw compressors with water injection can be used to supply the clean compressed air for the Proton Exchange Membrane (PEM) fuel cell systems. In this research, a thermodynamic model of the working process of water-injection twin screw compressor was established based on the equations of conservation of mass and energy. The effects of internal leakage and air-water heat transfer were taken into account simultaneously in the present mathematical model. The experiments of the performance of a prototype compressor operating under various conditions were conducted to verify the model. The results show that the predictions of the model are in reasonable agreement with the experimental data.

  14. Apparatus for injection casting metallic nuclear energy fuel rods

    Science.gov (United States)

    Seidel, Bobby R.; Tracy, Donald B.; Griffiths, Vernon

    1991-01-01

    Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

  15. Study of a fuel injection quantity sensor in diesel engine. Part 3. Experimental evaluation of the improved type micro turbine sensor; Diesel kikan ni okeru nenryo funsharyo sensor no kenkyu. 3. Funsharyo keisoku no seido kojo ni kansuru jikken hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Maehara, H; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan)

    1997-10-01

    A Micro Turbine Sensor has been developed to measure fuel injection quantity and injection rate. Previous reports described results of experiments on the MTS which were carried out under steady and unsteady flow conditions. The MTS has been improved in shape of a holder tip and a detecting procedure for rotating speed of a turbine. As a result revolution speed of the turbine increased 18% over the conventional type holder under steady flow condition. Furthermore the measurement resolution of the MTS came up to about 2(mm{sup 3}/pulse) at 20(mm{sup 3}/stroke) under intermittent spray conditions using fuel injection pump. 11 refs., 11 figs., 1 tab.

  16. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H; Matsui, Y; Kimura, S [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  17. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    Science.gov (United States)

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  18. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Li, Weihua; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong

    2017-01-01

    Highlights: • Steam injection was adopted in a turbocompound engine to further recover waste heat. • Thermodynamics model for the turbocompound engine was established and calibrated. • Steam injection at CT inlet obtained lower engine BSFC than injection at PT inlet. • The optimal injected steam mass at different engine speeds was presented. • Turbocompounding combined with steam injection can reduce the BSFC by 6.0–11.2%. - Abstract: Steam injection and turbocompouding are both effective methods for engine waste heat recovery. The fuel saving potential obtained by the combination of the two methods is not clear. Based on a turbocompound engine developed in the previous study, the impacts of pre-turbine steam injection on the fuel saving potentials of the turbocompound engine were investigated in this paper. Firstly, thermodynamic cycle model for the baseline turbocompound engine is established using commercial software GT-POWER. The cycle model is calibrated with the experiment data of the turbocompound engine and achieves high accuracy. After that, the influences of steam mass flow rate, evaporating pressure and injection location on the engine performance are studied. In addition, the impacts of hot liquid water injection are also investigated. The results show that steam injection at the turbocharger turbine inlet can reduce the turbocompound engine BSFC at all speed conditions. The largest fuel reduction 6.15% is obtained at 1000 rpm condition. However, steam injection at power turbine inlet can only lower the BSFC at high speed conditions. Besides, it is found that hot liquid water injection in the exhaust cannot improve the engine performance. When compared with the conventional turbocharged engine, the combination of turbocompounding and steam injection can reduce the BSFC by 6.0–11.2% over different speeds.

  19. Recent Progress on the Key Materials and Components for Proton Exchange Membrane Fuel Cells in Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2016-07-01

    Full Text Available Fuel cells are the most clean and efficient power source for vehicles. In particular, proton exchange membrane fuel cells (PEMFCs are the most promising candidate for automobile applications due to their rapid start-up and low-temperature operation. Through extensive global research efforts in the latest decade, the performance of PEMFCs, including energy efficiency, volumetric and mass power density, and low temperature startup ability, have achieved significant breakthroughs. In 2014, fuel cell powered vehicles were introduced into the market by several prominent vehicle companies. However, the low durability and high cost of PEMFC systems are still the main obstacles for large-scale industrialization of this technology. The key materials and components used in PEMFCs greatly affect their durability and cost. In this review, the technical progress of key materials and components for PEMFCs has been summarized and critically discussed, including topics such as the membrane, catalyst layer, gas diffusion layer, and bipolar plate. The development of high-durability processing technologies is also introduced. Finally, this review is concluded with personal perspectives on the future research directions of this area.

  20. Progress Report 1994; Rapport d`activite 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document is the 1994 annual progress report of the CEA-Direction of Waste Management (DGD). It comprises four chapters. The first chapter is a general presentation of radioactive wastes, of the management of liquid effluents, solid wastes, sealed sources, of the relations with the ANDRA (The French Agency for the Management of Radioactive Wastes), and of the research and development studies in progress for the improvement of waste management. The second chapter concerns the spent fuels and their reprocessing, in particular AGR and PWR type reactor fuels, the ``Caramel`` fuel from Osiris reactor and the cover elements from the Rapsodie reactor core. The long time storage of ancient fuels is also discussed. The third chapter concerns the dismantling of decommissioned installations, the actions in progress and the planning of dismantling actions up to the year 2000. Chapter four is devoted to the management of wastes from the Direction of Military Applications (DAM), the actions in progress in the different DAM centers and the cleansing projects at Marcoule plant. (J.S.). 5 figs., 28 tabs., 21 photos., 3 appendix.

  1. Low-cost high-efficiency GDCI engines for low octane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kolodziej, Christopher P.; Sellnau, Mark C.

    2018-01-09

    A GDCI engine has a piston arranged within a cylinder to provide a combustion chamber. According to one embodiment, the GDCI engine operates using a method that includes the steps of supplying a hydrocarbon fuel to the combustion chamber with a research octane number in the range of about 30-65. The hydrocarbon fuel is injected in completely stratified, multiple fuel injections before a start of combustion and supplying a naturally aspirated air charge to the combustion chamber.

  2. Research on the combustion, energy and emission parameters of diesel fuel and a biomass-to-liquid (BTL) fuel blend in a compression-ignition engine

    International Nuclear Information System (INIS)

    Rimkus, Alfredas; Žaglinskis, Justas; Rapalis, Paulius; Skačkauskas, Paulius

    2015-01-01

    Highlights: • Researched physical–chemical and performance properties of diesel fuel and BTL blend (85/15 V/V). • BTL additive reduced Brake Specific Fuel Consumption, improved engine efficiency. • Simpler BTL molecular chains and lower C/H ratio reduced CO_2 emission and smokiness. • Higher cetane number of BTL reduced heat release in beginning of combustion and NO_x emission. • Advanced start of fuel injection caused reduced fuel consumption and smokiness, increased NO_x emission. - Abstract: This paper presents the comparable research results of the physical–chemical and direct injection (DI) diesel engine properties of diesel fuel and BTL (biomass-to-liquid) blend (85/15 V/V). The energy, ecological and in-cylinder parameters were analysed under medium engine speed and brake torque load regimes; the start of fuel injection was also adjusted. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that the BTL additive shortened the fuel ignition delay phase, reduced the heat release in the pre-mixed intensive combustion phase, reduced the nitrogen oxide (NO_x) concentration in the engine exhaust gases and reduced the thermal and mechanical load of the crankshaft mechanism. BTL additive reduced the rates of carbon dioxide (CO_2), incompletely burned hydrocarbons (HC) emission and smokiness due to its chemical composition and combustion features. BTL also reduced Brake Specific Fuel Consumption (BSFC, g/kW h) and improved engine efficiency (η_e); however, the volumetric fuel consumption changed due to the lower density of BTL. The start of fuel injection was adjusted for maximum engine efficiency; concomitantly, reductions in the CO_2 concentration, HC concentration and smokiness were achieved. However, the NO_x and thermo-mechanical engine load increased.

  3. 发动机早喷过程中燃油喷射混合的大涡模拟%Large eddy simulation for fuel injection and mixing of early-injection in diesel engine

    Institute of Scientific and Technical Information of China (English)

    周磊; 解茂昭; 贾明; 史俊瑞

    2012-01-01

    The feasibility of large eddy simulation (LES) for predicting fuel injection and mixing of early injection in diesel engine was studied. LES turbulent model was implemented into KTVA3V code to make numerical simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is obviously better than those using RANS model and good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES is less than those of the RANS models', and with the increase of time, the sub-grid turbulent kinetic energy and viscosity also increase and concentrate on the spray area. Meantime, advancing the injection timing can help to achieve more homogenous mixture between the fuel and ambient gas. The distribution of the mixture is more uniform and the tree-dimension and disorder structures are more obvious using LES model. Compared to RANS model, LES model can better reflect the real spray flow field of early injection process in diesel engine.%对大涡模型在预测发动机早喷中燃料和空气混合过程的适用性进行研究.将大涡模拟(LES)湍流模型加入KIVA3V程序中,对定容弹中燃油短喷以及在1台Ford高速直喷柴油发动机中的早喷过程进行数值模拟.研究结果表明:LES模型预测的喷雾浓度分布和贯穿距与实验结果较相符,明显比RANS模型的优;在燃烧室中LES模型得到的湍动能和黏性都要比RANS模型的小,而且随着喷射时间的增加,亚网格湍动能和黏性都增加并集中在喷射区域;同时,喷油时刻提前有利于燃油与空气的均质混合,LES模型得到的混合气分布更加均匀,三维紊乱的结构更加明显;与RANS模型相比,ES模型更能真实反映柴油机早喷过程中的喷雾流场.

  4. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by suspension plasma spraying with axial feedstock injection

    Science.gov (United States)

    Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera

    2013-12-01

    Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.

  5. High brightness extreme ultraviolet (at 13.5 nm) emission from time-of-flight controlled discharges with coaxial fuel injection

    International Nuclear Information System (INIS)

    Hosokai, Tomonao; Horioka, Kazuhiko; Hotta, Eiki; Yokoyama, Takuma; Sato, Hiroto; Zhidkov, Alexei

    2008-01-01

    Extreme ultraviolet (EUV) emission from discharge produced plasma with the coaxial injection of fuel vapor (tin and lithium) produced by laser ablation is experimentally studied. Multiple plasma pinches preceding a strong and long recombination radiation of EUV are observed in the first half cycle of a sinusoidal discharge current. Due to the time-of-flight control type of the discharge, the shape of pinch radiation pulses is almost identical. With the coaxial injection of time-of-flight controlled discharges, the highest brightness of EUV emission (maximum extracted energy of 244.3 mJ/2π sr per pulse with the emitter size of ∼1x0.3 mm 2 in full width at half maximum) is provided with efficiency exceeding 2% of deposited energy into the plasma (or 1% of dissipated energy in the discharge) due to a much better matching with the optimal plasma parameters in the recombination regime and a decrease in the off-duty factor. Stability of emitting plasma of the repetitive pinches is essentially improved with use of a second laser pulse

  6. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  7. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  8. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  9. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  10. Experimental investigation of the concomitant injection of gasoline and CNG in a turbocharged spark ignition engine

    International Nuclear Information System (INIS)

    Momeni Movahed, M.; Basirat Tabrizi, H.; Mirsalim, M.

    2014-01-01

    Highlights: • Concomitant injection of gasoline and CNG is compared with gasoline and CNG modes. • BSFC, HC and CO emissions of the concomitant injection are lower than gasoline mode. • Deteriorations of the concomitant injection are negligible compared to gasoline mode. • Cylinder peak pressure and heat loss to coolant of the concomitant injection are lower than CNG mode. • Some shortcomings in CNG mode can be solved by changing the spark timing and lambda. - Abstract: Concomitant injection of gasoline and CNG is a new concept to overcome problems of bi-fueled spark ignition engines, which operate in single fuel mode, either in gasoline or in CNG mode. This experimental study indicates how some problems of gasoline mode such as retarded ignition timings for knock prevention and rich air–fuel mixture for component protection can be resolved with the concomitant injection of gasoline and CNG. Results clearly show that the concomitant injection improves thermal efficiency compared to gasoline mode. On the other hand, simultaneous injection of gasoline and CNG reduces some problems of CNG mode such as high cylinder pressure and heat loss to the engine coolant. This decreases the stringent requirements for thermal and mechanical strength of the engine components in CNG mode. In addition, it is shown that by modifying the spark advance and air fuel ratio in CNG mode, the engine operation improves in terms of NOx emissions and maximum in-cylinder pressure as the concomitant injection does. Nevertheless, new requirements such as an intercooler with higher cooling capacity are implied to the engine configuration. Finally, the most important concerns in control strategies of the engine control unit for a vehicle with concomitant injection of gasoline and CNG are discussed

  11. Progress toward magnetic confinement of a positron-electron plasma: nearly 100% positron injection efficiency into a dipole trap

    Science.gov (United States)

    Stoneking, Matthew

    2017-10-01

    The hydrogen atom provides the simplest system and in some cases the most precise one for comparing theory and experiment in atomics physics. The field of plasma physics lacks an experimental counterpart, but there are efforts underway to produce a magnetically confined positron-electron plasma that promises to represent the simplest plasma system. The mass symmetry of positron-electron plasma makes it particularly tractable from a theoretical standpoint and many theory papers have been published predicting modified wave and stability properties in these systems. Our approach is to utilize techniques from the non-neutral plasma community to trap and accumulate electrons and positrons prior to mixing in a magnetic trap with good confinement properties. Ultimately we aim to use a levitated superconducting dipole configuration fueled by positrons from a reactor-based positron source and buffer-gas trap. To date we have conducted experiments to characterize and optimize the positron beam and test strategies for injecting positrons into the field of a supported permanent magnet by use of ExB drifts and tailored static and dynamic potentials applied to boundary electrodes and to the magnet itself. Nearly 100% injection efficiency has been achieved under certain conditions and some fraction of the injected positrons are confined for as long as 400 ms. These results are promising for the next step in the project which is to use an inductively energized high Tc superconducting coil to produce the dipole field, initially in a supported configuration, but ultimately levitated using feedback stabilization. Work performed with the support of the German Research Foundation (DFG), JSPS KAKENHI, NIFS Collaboration Research Program, and the UCSD Foundation.

  12. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1997-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  13. Pyrolysis oil as diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gros, S. [Wartsila Diesel International Ltd., Vaasa (Finland). Diesel Technology

    1996-12-31

    Wood waste pyrolysis oil is an attractive fuel alternative for diesel engine operation. The main benefit is the sustainability of the fuel. No fossil reserves are consumed. The fact that wood waste pyrolysis oil does not contribute to CO{sub 2} emissions is of utmost importance. This means that power plants utilising pyrolysis oil do not cause additional global warming. Equally important is the reduced sulphur emissions that this fuel alternative implies. The sulphur content of pyrolysis oil is extremely low. The high water content and low heating value are also expected to result in very low NO{sub x} emissions. Utilisation of wood waste pyrolysis oil in diesel engines, however, involves a lot of challenges and problems to be solved. The low heating value requires a new injection system with high capacity. The corrosive characteristics of the fluid also underline the need for new injection equipment materials. Wood waste pyrolysis oil contains solid particles which can clog filters and cause abrasive wear. Wood waste pyrolysis oil has proven to have extremely bad ignition properties. The development of a reliable injection system which is able to cope with such a fuel involves a lot of optimisation tests, redesign and innovative solutions. Successful single-cylinder tests have already been performed and they have verified that diesel operation on wood pyrolysis oil is technically possible. (orig.)

  14. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  15. Effect of pilot fuel quantity on the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2000-04-01

    It is well known that the operation of dual fuel engines at lower loads suffers from lower thermal efficiency and higher unburned percentages of fuel. To rectify this problem, tests have been conducted on a special single cylinder compression ignition research engine (Ricardo E6) to investigate the effect of pilot fuel quantity on the performance of an indirect injection diesel engine fuelled with gaseous fuel. Diesel fuel was used as the pilot fuel and methane or propane was used as the main fuel which was inducted into the intake manifold to mix with the intake air. Through experimental investigations, it is shown that, the low efficiency and excess emissions at light loads can be improved significantly by increasing the amount of pilot fuel, while increasing the amount of pilot fuel at high loads led to early knocking. (author)

  16. Canadian fuel cell commercialization roadmap update : progress of Canada's hydrogen and fuel cell industry

    International Nuclear Information System (INIS)

    Filbee, S.; Karlsson, T.

    2009-01-01

    Hydrogen and fuel cells are considered an essential part of future low-carbon energy systems for transportation and stationary power. In recognition of this, Industry Canada has worked in partnership with public and private stakeholders to provide an update to the 2003 Canadian Fuel Cell Commercialization Roadmap to determine infrastructure requirements for near-term markets. The update includes technology and market developments in terms of cost and performance. This presentation included an overview of global hydrogen and fuel cell markets as background and context for the activities of the Canadian industry. Approaches toward commercial viability and mass market success were also discussed along with possible scenarios and processes by which these mass markets could develop. Hydrogen and fuel cell industry priorities were outlined along with recommendations for building a hydrogen infrastructure

  17. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    Science.gov (United States)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  18. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  19. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  20. Progress of the DUPIC fuel compatibility analysis (II) - thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Choi, Hang Bok

    2005-03-01

    Thermal-hydraulic compatibility of the DUPIC fuel bundle with a 713 MWe Canada deuterium uranium (CANDU-6) reactor was studied by using both the single channel and sub-channel analysis methods. The single channel analysis provides the fuel channel flow rate, pressure drop, critical channel power, and the channel exit quality, which are assessed against the thermal-hydraulic design requirements of the CANDU-6 reactor. The single channel analysis by the NUCIRC code showed that the thermal-hydraulic performance of the DUPIC fuel is not different from that of the standard CANDU fuel. Regarding the local flow characteristics, the sub-channel analysis also showed that the uncertainty of the critical channel power calculation for the DUPIC fuel channel is very small. As a result, both the single and sub-channel analyses showed that the key thermal-hydraulic parameters of the DUPIC fuel channel do not deteriorate compared to the standard CANDU fuel channel.

  1. Pengaruh Prosentase Etanol terhadap Torsi dan Emisi Motor Indirect Injection dengan Memodifikasi Engine Control Module

    Directory of Open Access Journals (Sweden)

    Hadi Rahmad

    2016-10-01

    Full Text Available This research present the torque and exhaust emission level from four stroke indirect injection fuel system engine. An engine fueled by ethanol gasoline blend. The original Engine Controle Module injected lean mixture into Combustion Chamber. Lean Mixture decreased Torque drastically. Therefore, the Engine Controle Module was modified to produce stoichiometric mixture. Injector was controlled by digital pulse of Fuel Controller. Ethanol was added into gasoline 0% - 100% at 1500 rpm-5000 rpm. The result demonstrate that increasing ethanol concentration into gasoline fuel system, decreasing Torque, and CO, HC, CO2 emission. By increasing ethanol concentration also increase CO2 emission to 34.6%.

  2. An Optical Method for Measuring Injection Timing in Diesel Engines, Using a Single Port

    Science.gov (United States)

    2014-09-01

    injection, naturally aspirated marine diesel engine with mechanical unit injectors and showed satisfactory results with blends ranging from 25% HRD/75... injector technology, they further concluded that the mechanical unit injectors found throughout the naval fleet and on the Detroit Diesel 3–53 in the...injection timing in a pump-line- nozzle system of blending Fischer- Tropsch derived diesel fuel with low sulfur, ultra-low sulfur and biodiesel fuels. The

  3. Progress in researches on MOX fuel pellet producing technology in China

    International Nuclear Information System (INIS)

    Hu Xiaodan

    2010-01-01

    Being the key section of nuclear-fuel cycle, the producing technology of MOX(UO 2 -PuO 2 ) fuel had driven to maturity in France, England, Russia, Belgium, etc. MOX fuel had been applied in FBR and LWR successfully in those countries. With the rapidly developing of nuclear-generated power, the MOX fuel for FBR and LWR was active demanded in China. However, the producing technology of MOX fuel developed slowly. During the period of 'the seventh five year's project', MOX fuel pellet was produced by mechanically mixed method and oxalate deposited method, respectively. Parts of cool performance of MOX fuel pellet produced by oxalate deposited method reached the qualification of fuel for FBR. During the period of 'the ninth five year's project' and 'the tenth five year's project', the technical route of producing MOX fuel was determined, and the test line of producing MOX fuel was built preliminarily. In the same time, the producing technology and analyzing technology of MOX fuel pellet by mechanically mixed was studied roundly, and the representative analogue pellet(UO 2 -CeO 2 ) was produced. That settled the supporting technology for the commercial process and research of MOX fuel rod and MOX fuel module. (authors)

  4. An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions

    International Nuclear Information System (INIS)

    Kowalski, Jerzy

    2014-01-01

    Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO 2 emission increase and NOx emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO 2 emission and the decrease of NOx emission. - Highlights: •Chosen malfunctions of the fuel injection pump of marine engine are simulated. •Changes of thermodynamic parameters of marine engine are analyzed. •Changes of CO, CO 2 and NOx emission characteristics of marine engine are analyzed. •Injection pump malfunctions take significant changes in emission characteristics

  5. Bitumen/Water Emulsions as Fuels for High-Speed Ci Engines Preliminary Investigations

    DEFF Research Database (Denmark)

    Schramm, Jesper; Sigvardsen, R.; Forman, M.

    2003-01-01

    Mixtures of bitumen and water, are cheap fuel alternatives for combustion engines. There are, however, several problems that have to be solved before these fuels can be applied in high-speed diesel engines. These are: - emulsion break up due to high temperature or high shear stress in the injection...... system - high content of heavy metals - high emissions of particulate matter and PAH This investigation deals with the problem of separation due to high shear stress in the injection system. It is shown that the viscosity of the injected fuel can be used to estimate whether the emulsion has separated...

  6. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  7. Progress and status of the international project on innovative nuclear reactors and fuel cycles (INPRO) - 5182

    International Nuclear Information System (INIS)

    Ponomarev, A.; Fesenko, G.; Grigoriev, F.G.; Korinny, A.; Phillips, J.R.; Rho, K.

    2015-01-01

    The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution. INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21. century. INPRO membership has grown to 41 members and 16 observers. The paper presents the current prospectus of the INPRO programme and details the most recent achievements in the following 7 projects: 1) the GAINS project (Global Architecture of Innovative Nuclear Energy Systems with thermal and fast reactors and a closed nuclear fuel cycle); 2) the SYNERGIES project applies and amends the analytical framework developed in GAINS project to examine more specifically the various forms of regional collaboration among nuclear energy suppliers and users; 3) the KIND project (Key Indicators for Innovative Nuclear Energy Systems) has the objective of developing guidance on the evaluation on innovative nuclear technologies; 4) the ROADMAPS project addresses several possible stages toward nuclear energy sustainability; 5) the RISC project aims at demonstrating that the evolution of safety requirements and technical innovations provide continual progress towards the avoidance of evacuation measures outside NPP sites in case of severe accidents; 6) the FANES project has the objective of carrying out feasibility analyses of advanced and innovative fuels for different reactor systems; and 7) the WIRAF project aims at identifying problematic waste from innovative reactor designs and corresponding nuclear fuel cycles

  8. Experimental Investigation of the Effect of Biodiesel Blends on a DI Diesel Engine’s Injection and Combustion

    Directory of Open Access Journals (Sweden)

    Dimitrios N Tziourtzioumis

    2017-07-01

    Full Text Available Differences in the evolution of combustion in a single cylinder, DI (direct injection diesel engine fuelled by B20 were observed upon processing of the respective indicator diagrams. Aiming to further investigate the effects of biodiesel on the engine injection and combustion process, the injection characteristics of B0, B20, B40, B60, B80 and B100 were measured at low injection pressure and visualized at low and standard injection pressures. The fuel atomization characteristics were investigated in terms of mean droplet velocity, Sauter mean diameter, droplet velocity and diameter distributions by using a spray visualization system and Laser Doppler Velocimetry. The jet break-up characteristics are mainly influenced by the Weber number, which is lower for biodiesel, mainly due to its higher surface tension. Thus, Sauter mean diameter (SMD of sprays with biodiesel blended-fuel is higher. Volume mean diameter (VMD and arithmetic mean diameter (AMD values also increase with blending ratio. Kinematic viscosity and surface tension become higher as the biodiesel blending ratio increases. The SMD, VMD and AMD of diesel and biodiesel blended fuels decreased with an increase in the axial distance from spray tip. Comparison of estimated fuel burning rates for 60,000 droplets’ samples points to a decrease in mean fuel burning rate for B20 and higher blends.

  9. Fuel utilization experience in Bohunice NPP and regulatory requirements for implementation of progressive fuel management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Patenyi, V [Nuclear Regulatory Authority, Bratislava (Slovakia); Darilek, P; Majercik, J [Vyskumny Ustav Jadrovych Elektrarni, Trnava (Slovakia)

    1994-12-31

    The experience gained in fuel utilization and the basic requirements for fuel licensing in the Slovak NPPs is described. The original project of WWER-440 reactors supposes 3-year fuel cycle with cycle length of about 320 full power days (FPD). Since 1984 it was reduced to 290 FPD. Based on the experience of other countries, a 4-year fuel cycle utilization started in 1987. It is illustrated with data from the Bohunice NPP units. Among 504 fuel assemblies left for the fourth burnup cycle no leakage was observed. The mean burnup achieved in the different units varied from 33.1 to 38.5 Mwd/kg U. The new fuel assemblies used are different from the recent ones in construction, thermohydraulics, water-uranium ratio, enrichment and material design. To meet the safety criteria, regulatory requirements for exploitation of new fuel in WWER-440 were formulated by the Nuclear Regulatory Authority of Slovak Republic. 1 tab., 5 refs.

  10. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  11. Design assumptions and bases for small D-T-fueled Sperical Tokamak (ST) fusion core

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Galambos, J.D.; Fogarty, P.J.

    1996-01-01

    Recent progress in defining the assumptions and clarifying the bases for a small D-T-fueled ST fusion core are presented. The paper covers several issues in the physics of ST plasmas, the technology of neutral beam injection, the engineering design configuration, and the center leg material under intense neutron irradiation. This progress was driven by the exciting data from pioneering ST experiments, a heightened interest in proof-of-principle experiments at the MA level in plasma current, and the initiation of the first conceptual design study of the small ST fusion core. The needs recently identified for a restructured fusion energy sciences program have provided a timely impetus for examining the subject of this paper. Our results, though preliminary in nature, strengthen the case for the potential realism and attractiveness of the ST approach

  12. Ultrafast X-ray Imaging of Fuel Sprays

    Science.gov (United States)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  13. Ultrafast X-ray Imaging of Fuel Sprays

    International Nuclear Information System (INIS)

    Wang Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means

  14. Nuclear fuel cycle under progressing preparation of its systemisation

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Trends of nuclear development in Japan show more remarkable advancements in 2000, such as new addition of nuclear power plant, nuclear fuel cycling business, and so on. Based on an instruction of the criticality accident in JCO formed on September, 1999, government made efforts on revision of the law on regulation of nuclear reactor and so forth and establishment of a law on protection of nuclear accident as sooner, to enforce nuclear safety management and nuclear accident protective countermeasure. On the other hand, the nuclear industry field develops some new actions such as establishment of Nuclear Safety Network (NSnet)', mutual evaluation of nuclear-relative works (pier review), and so forth. And, on the high level radioactive wastes disposal of the most important subject remained in nuclear development, the Nuclear Waste Management Organization of Japan' of its main business body was established on October, 1999 together with establishment of the new law, to begin a business for embodiment of the last disposal aiming at 2030s to 2040s. On the same October, the Japan Nuclear Fuel Limited. concluded a safety agreement on premise of full-dress transportation of the used fuels to the Rokkasho Reprocessing Plant in Aomori prefecture with local government, to begin their transportation from every electric company since its year end. Here were described on development of the nuclear fuel cycling business in Japan, establishment of nuclear fuel cycling, disposal on the high level radioactive wastes, R and D on geological disposal of the high level radioactive wastes, establishment on cycle back-end of nuclear fuels, and full-dressing of nuclear fuel cycling. (G.K.)

  15. Mixed deuterium-tritium neutral beam injection

    International Nuclear Information System (INIS)

    Ruby, L.; Lewis, M.S.

    1989-01-01

    An alternative mixed beam neutral beam injector (MNBI) for fusion reactors is proposed that eliminates the conventional isotope separation system (ISS) in the fuel cycle. The principal advantage of the alternative system is a capital and operating cost savings in the fuel cycle, as the ISS employs cryogenic distillation at liquid-hydrogen temperatures to effect a separation of hydrogen isotopes and to eliminate a buildup of normal hydrogen in the recycled fuel. Possible additional advantages of the alternative method involve an improvement in overall safety and a reduction of the amount of tritium in the fuel cycle. The alternative heating system uses an electromagnetic separation in the MNBI to limit the buildup of normal hydrogen. Calculations indicate that an MNBI can be reasonably optimized in the case of an upgraded injection system for the Tokamak Fusion Test Reactor

  16. Improvements of diesel combustion with pilot and main injections at different piston positions; Piston iso wo koryoshita pilot funsha ni yoru diesel nenshono kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.; Ogawa, H.; Miyamoto, N. [Hokkaido University, Sapporo (Japan); Sakai, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    2000-06-25

    The fuel spray distribution in a DI diesel engine with a pilot injection was actively controlled by pilot and main fuel injections at different piston positions to avoid the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separated the cores of the pilot and main fuel sprays. The experiments showed that more smoke was emitted with pilot injection in an ordinary cavity without the central lip while smokeless and low NO{sub x} operation was realized with pilot injection in a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emitted smoke so much. The indicated specific energy consumption ISEC was a little bit higher with the pilot injection, mainly because of the reduction in the degree of constant volume combustion. With the advanced pilot injection, ISEC was improved more than that with the retarded pilot injection while the NO{sub x} is a little higher than the retarded pilot injection maintaining still much lower than in ordinary operation. (author)

  17. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey); Aydin, Kadir [Engineering and Architectural Faculty, Cukurova University, 01330 Adana (Turkey)

    2008-04-15

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  18. Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel

    International Nuclear Information System (INIS)

    Keskin, Ali; Guerue, Metin; Altiparmak, Duran; Aydin, Kadir

    2008-01-01

    In this study, usability of cotton oil soapstock biodiesel-diesel fuel blends as an alternative fuel for diesel engines were studied. Biodiesel was produced by reacting cotton oil soapstock with methyl alcohol at determined optimum condition. The cotton oil biodiesel-diesel fuel blends were tested in a single cylinder direct injection diesel engine. Engine performances and smoke value were measured at full load condition. Torque and power output of the engine with cotton oil soapstock biodiesel-diesel fuel blends decreased by 5.8% and 6.2%, respectively. Specific fuel consumption of engine with cotton oil soapstock-diesel fuel blends increased up to 10.5%. At maximum torque speeds, smoke level of engine with blend fuels decreased up to 46.6%, depending on the amount of biodiesel. These results were compared with diesel fuel values. (author)

  19. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  20. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  1. Reactor Structure Materials: Nuclear Fuel

    International Nuclear Information System (INIS)

    Sannen, L.; Verwerft, M.

    2000-01-01

    Progress and achievements in 1999 in SCK-CEN's programme on applied and fundamental nuclear fuel research in 1999 are reported. Particular emphasis is on thermochemical fuel research, the modelling of fission gas release in LWR fuel as well as on integral experiments

  2. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  3. Foam injection method and system

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W C; Parmley, J B; Shepard, J C

    1977-05-10

    A method is described for more efficiently practicing in situ combustion techniques by generating a gas-water mist or foam adjacent to the combustion formation within the injection well. The mist or foam is forced out of the well into the formation to transport heat away from the burned region of the formation toward the periphery of the combustion region to conserve fuel. Also taught are a method and system for fluid treating a formation while maintaining enhanced conformance of the fluid injection profile by generating a mist or foam down-hole adjacent to the formation and then forcing the mist or foam out into the formation. (19 claims)

  4. Progress in development of low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.

    2002-01-01

    Results from post irradiation examinations and analyses of U-Mo/Al dispersion mini plates are presented. Irradiation test RERTR-5 contained mini- fuel plates with fuel loadings of 6 and 8 g U cm -3 . The fuel material consisted of 6, 7 and 10 wt. % Mo-uranium-alloy powders in atomized and machined form. The swelling behavior of the various fuel types is analyzed, indicating athermal swelling of the U-Mo alloy and temperature-dependent swelling owing to U-Mo/Al interdiffusion. (author)

  5. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  6. Particle fueling experiments with a series of pellets in LHD

    Science.gov (United States)

    Baldzuhn, J.; Damm, H.; Dinklage, A.; Sakamoto, R.; Motojima, G.; Yasuhara, R.; Ida, K.; Yamada, H.; LHD Experiment Group; Wendelstein 7-X Team

    2018-03-01

    Ice pellet injection is performed in the heliotron Large Helical Device (LHD). The pellets are injected in short series, with up to eight individual pellets. Parameter variations are performed for the pellet ice isotopes, the LHD magnetic configurations, the heating scenario, and some others. These experiments are performed in order to find out whether deeper fueling can be achieved with a series of pellets compared to single pellets. An increase of the fueling efficiency is expected since pre-cooling of the plasma by the first pellets within a series could aid deeper penetration of later pellets in the same series. In addition, these experiments show which boundary conditions must be fulfilled to optimize the technique. The high-field side injection of pellets, as proposed for deep fueling in a tokamak, will not be feasible with the same efficiency in a stellarator or heliotron because there the magnetic field gradient is smaller than in a tokamak of comparable size. Hence, too shallow pellet fueling, in particular in a large device or a fusion reactor, will be an issue that can be overcome only by extremely high pellet velocities, or other techniques that will have to be developed in the future. It turned out by our investigations that the fueling efficiency can be enhanced by the injection of a series of pellets to some extent. However, further investigations will be needed in order to optimize this approach for deep particle fueling.

  7. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  8. Study on performance of blended fuel PPO - Diesel at generator

    Science.gov (United States)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  9. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC

    International Nuclear Information System (INIS)

    Li, Tie; Gao, Yi; Wang, Jiasheng; Chen, Ziqian

    2014-01-01

    Highlights: • At high load, LIVC is superior over EIVC in improving fuel economy. • The improvement with LIVC is due to advanced combustion phasing and increased pumping work. • At low load, EIVC is better than LIVC in improving fuel economy. • Pumping loss with EIVC is smaller than with LIVC at low load. • But heat release rate with EIVC is slower than with LIVC. - Abstract: A combination of downsizing, highly boosting and direct injection (DI) is an effective way to improve fuel economy of gasoline engines without the penalties of reduced torque or power output. At high loads, however, knock problem becomes severer when increasing the intake boosting. As a compromise, geometric compression ratio (CR) is usually reduced to mitigate knock, and the improvement of fuel economy is discounted. Application of Miller cycle, which can be realized by either early or late intake valve closing (EIVC or LIVC), has the potential to reduce the effective CR and suppress knock. In this paper, the effects of EIVC and LIVC on the fuel economy of a boosted DI gasoline production engine reformed with a geometric CR of 12.0 are experimentally compared at low and high loads. Compared to the original production engine with CR 9.3, at the high load operation, the brake specific fuel consumption (BSFC) is improved by 4.7% with CR12.0 and LIVC, while the effect of EIVC on improving BSFC is negligibly small. At the low load operation, combined with CR12.0, LIVC and EIVC improve the fuel economy by 6.8% and 7.4%, respectively, compared to the production engine. The mechanism behind the effects of LIVC and EIVC on improving the fuel economy is discussed. These results will be a valuable reference for engine designers and researchers

  10. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  11. Progressive outer retinal necrosis in the era of highly active antiretroviral therapy: successful management with intravitreal injections and monitoring with quantitative PCR.

    Science.gov (United States)

    Yin, Philip D; Kurup, Shree K; Fischer, Steven H; Rhee, Henry H; Byrnes, Gordon A; Levy-Clarke, Grace A; Buggage, Ronald R; Nussenblatt, Robert B; Mican, JoAnn M; Wright, Mary E

    2007-03-01

    Progressive outer retinal necrosis (PORN) is an ocular disease in individuals with AIDS and is associated with substantial morbidity. The optimal management of PORN and its clinical course in the HAART era is unclear. We report a case of successfully managed PORN that provides insight into the monitoring and treatment of this disease. Intravitreal injections and intravenous therapy targeted towards varicella zoster virus (VZV) were used to treat PORN. HAART was initiated for HIV-1 therapy. Serial PCR for VZV was performed on aqueous humor to monitor the clinical course. The presence of VZV DNA from aqueous humor correlated with clinical exacerbations of disease. Initiation of twice weekly intravitreal injections with dual antiviral drugs appeared to be an important therapeutic intervention that resulted in remission of PORN. Secondary prophylaxis against VZV was successfully withdrawn after HAART induced partial immune recovery. In addition to aggressive therapy with intravitreal injections, HAART and quantitative measurements of VZV DNA from aqueous humor have important roles in the management of PORN. A multidisciplinary approach involving specialists in infectious diseases, ophthalmology, and clinical microbiology will improve the chances for successful long-term outcomes.

  12. Research and application of zinc injection in PWRs

    International Nuclear Information System (INIS)

    Jiang Lei

    2012-01-01

    In the middle 1990s, some PWRs in USA and Germany started to inject Zinc into the reactor coolant system for reducing both radiation fields and primary water stress corrosion cracking (PWSCC). Based on data from the labs and experience in the demonstration pants, Zinc injection obviously reduced radiation fields, and effectively mitigated PWSCC. Plants in USA injected high concentration zinc that is 15 ppb to 40 ppb to restrained PWSCC. Whereas, plants in Germany injected low concentration zinc that is 5 ppb to 10 ppb to reduce radiation fields. There are more than ten years at aspect of zinc rejection in overseas PWR, but domestic plants don't add zinc. The building PWR in Zhejiang Sanmen is the first AP1000 unit in the world, according to requirement of designers, it will start to inject zinc in the initial fuel cycle. (author)

  13. In-core fuel management and perspectives

    International Nuclear Information System (INIS)

    Waeckel, N.

    2009-01-01

    The management of nuclear fuel inside the core has to take into account the necessity to stop the reactor periodically to renew the fuel partially and to perform maintenance operations. The fuel management strategy determines the cost of the fuel (through the number of assemblies that have been changed and their enrichment rate) and the duration of the campaign till next stop. Fuel management strategies have to conciliate different objectives: -) the safety of the reactor, -) the reliability of the fuel assemblies, -) the optimization of the fuel cost by increasing the discharge burnup. The necessity of spent fuel processing implies a maximal discharge burnup. During the 1990-2000 period, the discharge burnups have been progressively increased through the following fuel management strategies: Garance, Cyclades and Gemmes. During the years 2000-2009, the progressive absorption of the nuclear over-equipment, the opening of the European electricity markets favored power production through the MOX-parity, Alcade and Galice fuel management strategies. The perspective for next decade is to favor production to the prejudice of higher burnups. (A.C.)

  14. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    International Nuclear Information System (INIS)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M.; Foster, Christopher W.; Banks, Craig E.; Munoz, Rodrigo A.A.

    2016-01-01

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L −1 HClO 4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  15. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Altiparmak, D.; Keskin, A.; Koca, A. [Gazi University, Ankara (Turkey). Technical Education Faculty; Guru, M. [Gazi University, Ankara (Turkey). Engineering and Architectural Faculty

    2007-01-15

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load conditions. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO{sub x} emissions increased up to 30% with the new fuel blends. The smoke capacity did not vary significantly. (author)

  16. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    Science.gov (United States)

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  17. PIV measurement of internal structure of diesel fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z M [Ecotechnology System Lab., Yokohama National Univ. (Japan); Nishino, K [Div. of Artificial Environment and Systems, Yokohama National Univ. (Japan); Mizuno, S [Yokohama National Univ. (Japan); Torii, K [Dept. of Mechanical Engineering and Materials Science, Yokohama National Univ. (Japan)

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70 MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0 MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called 'branch-like structures' by Azetsu et al. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented. (orig.)

  18. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  19. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  20. Fuel cycles for the 80's

    International Nuclear Information System (INIS)

    1980-01-01

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base