WorldWideScience

Sample records for fuel droplet sprays

  1. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  2. LES of certain droplet size effects in fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, V. A.

    2010-07-01

    This thesis belongs to the field of mechanical engineering, more precisely to computational fluid dynamics and fuel injection modelling. This type of problems have been extensively studied because of their practical importance, for example, in combustion processes of automotive industry. Novel challenges are reduction of exhaust gas emissions in the present diesel fuel-based and also in bio diesel-based concepts. The problem studied in this work is of generic nature and it can be related to many real world problems. A model problem of droplet-laden jet is studied to emulate a fuel spray. The most essential parameter that is studied is fuel droplet size. More precisely, the ratio of droplet timescale and fluid timescale i.e. the Stokes number. Mathematically, the studied system can be formulated in terms of the Navier-Stokes equation with a spray momentum source term at low Mach number regime. A feature characteristic to this study is to use large scale computer simulation to simulate the system. For adequate modelling, this work makes use of a method called Large-Eddy Simulation (LES) to simulate the motion of the turbulent gas and Lagrangian Particle Tracking (LPT) to simulate the motion of the droplets. The main computational tool used in this work is the OpenFOAM software. In fact, the present work is one of the first computational studies on LES/LPT diesel spray modeling in which droplet-level phenomena are discussed in light of the global behavior of the spray jet in an extensive manner. In view of the literature on this topic the results of the work seem to be realistic. The dependence of spray shape on droplet size (Stokes number) is studied and differences between the shapes are consistently explained. It is noted that mixing inside the spray depends significantly on the fuel droplet size. Quantitative and statistical analysis methods are developed in order to explain the connection between spray shape and mixing. The presented analysis explains the results

  3. Study of droplet size and velocity of fuel containing CO2 spray by means of PDA

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; QIAO Xinqi; HUANG Zhen; FANG Junhua

    2004-01-01

    Injection of fuel containing CO2 has potential to reduce NOx and soot emissions in a diesel engine. This paper presents an experimental study on the spray characteristics of fuel containing CO2 as measured by phase doppler anemometry (PDA). Experiments were performed under atmospheric conditions on diesel hole-type nozzles at constant injection pressure. Effects of CO2 concentration in diesel fuel on the spray pattern, droplet size and velocity were measured. Experimental results show that fuel atomization will improve greatly when the concentration of dissolved CO2 in the fuel exceeds the critical value. The axial and radial velocity of the fuel spray containing CO2 is larger than that of conventional diesel fuel spray near the nozzle exit due to flash boiling phenomena. Downstream of the spray, the radial velocity and droplet size of fuel containing CO2 is much more uniform and smaller than that of pure diesel spray. It is attributed to the greatly enhanced liquid-gas mixing resulting from flash separation of CO2 from the liquid. New insight into the atomization of the fuel containing CO2 was obtained and a possible mechanism to explain the phenomena was proposed. The method may be developed into a new technique for controlling diesel combustion and exhaust emissions.

  4. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  5. Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, A.L.N.; Moita, A.S.; Panao, M.R. [Instituto Superior Tecnico, Laboratory of Thermofluids, Combustion and Energy Systems at IN+, Av Rovisco Pais, 1049 Lisboa, Codex (Portugal)

    2010-10-15

    The impingement of fuel spray onto interposed surfaces in an IC engine, equipped either with a direct or an indirect injection system, is a fundamental issue affecting mixture preparation prior to combustion and, therefore, also affecting engine performance and pollutant emissions. In this context, the development of fuel injection systems relies on accurate knowledge of the fluid dynamic and thermal processes occurring during spray/wall interaction. Injection systems however, are very complex and the background physics requires fundamental studies, performed at simplified flow geometries. In particular, the impact of individual droplets has been extensively used to describe the behaviour of spray impact and to predict its outcome, despite the known fact that a spray does not behave exactly as a summation of individual droplets; then, researchers incorporate all the governing parameters. The present paper offers a critical review of the investigations reported in the literature on spray-wall impact relevant to IC engines, in an attempt to address the rationale of describing spray-wall interactions based on the knowledge of single droplet impacts. Moreover, although the review was first aimed at fuel-spray impingement in IC engines, it also became relevant to provide a systematization of the current state of the art, which can be useful to the scientific community involved with droplet and spray impingement phenomena. (author)

  6. Imaging of Droplets and Vapor Distributions in a Diesel Fuel Spray by Means of a Laser Absorption Scattering Technique

    Science.gov (United States)

    Zhang, Yu-Yin; Yoshizaki, Takuo; Nishida, Keiya

    2000-11-01

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  7. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    Science.gov (United States)

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  8. Measurements in liquid fuel sprays

    Science.gov (United States)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  9. CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

    NARCIS (Netherlands)

    Schmehl, R.; Maier, G.; Wittig, S.

    2000-01-01

    The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced co

  10. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  11. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  12. Velocity and Size of Droplets in Dense Region of Diesel Fuel Spray on Transient Needle Opening Condition

    Institute of Scientific and Technical Information of China (English)

    Hironobu UEKI; Masahiro ISHIDA; Daisaku SAKAGUCHI

    2005-01-01

    @@ In order to investigate the effect of transient needle opening on early stage of spray behavior, simultaneous measurements of velocity and size of droplet were conducted by a newly developed laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F was consisted of two foci with a distance of 36 μm. The tested nozzle had a single hole with a diameter of 0.2 mm. The measurements of injection pressure, needle lift, and crank angle were synchronized with the spray measurement by the L2F at the position 10 mm downstream from the nozzle exit. It has been clearly shown that the velocity and size of droplet increase with needle valve opening and that the probability density distribution of droplet size can be fitted to the Nukiyama-Tanasawa distribution under the transient needle opening condition.

  13. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  14. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    Science.gov (United States)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  15. Measurement of fuel spray vaporisation by laser techniques

    Science.gov (United States)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-01-01

    Comparison of fuel spray structures in heated and in cold environments is made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid 'point' measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporisation of the smallest droplets and the dispersion of droplets by the turbulence.

  16. Numerical investigation of the effects of fuel spray type on the interaction of fuel spray and hot porous medium

    Institute of Scientific and Technical Information of China (English)

    Zhiguo ZHAO; Maozhao XIE

    2008-01-01

    The interaction between two types of fuel spray and a hot porous medium is studied numerically by using an improved version of KIVA-3V code. The improved KIVA-3V code is incorporated with an impingement model, a heat transfer model and a linearized instability sheet atomization (LISA) model to model the hollow cone spray. An evaporating fuel spray impingement on a hot plane surface was simulated under conditions of experiments performed by Senda to validate the reasonability of the KIVA-3V code. The numerical results conform well with experimental data for spray radius in the liquid and the vapor phases. Computational results on the interaction of two types of the fuel spray and the hot porous medium show that the fuel spray can be split, which provides conditions for quick evaporation of fuel droplets and mixing of fuel vapor with air. The possibility of fuel droplets from hollow cone spray crossing the porous medium reduces compared with that from solid cone spray, with the same initial kinetic energy of fuel droplets in both injection types.

  17. Characteristics of droplet motion in effervescent sprays

    Directory of Open Access Journals (Sweden)

    Jedelský Jan

    2014-03-01

    Full Text Available Time resolved droplet size and velocity measurement was made using Phase-Doppler anemometry in an effervescent spray at GLR of 6 % and operation pressure drops 21 – 52 kPa. The spray shows a size dependent variation of mean as well as fluctuating axial and radial velocities of droplets similarly for all operation regimes. Particles under 13 μm follow the gas flow, axially decelerated due to gas expansion. Velocity of medium sized particles is positively size correlated and larger particles keep high velocity, given them during discharge. Fluctuating radial velocity of small particles is larger than that of large particles while fluctuating axial velocity increases with size. Small particles thus reach a ratio of radial to axial velocity fluctuations ~ 0.6 but large particles only ~ 0.1, which indicates large transverse dispersion of small particles. Overall fluctuating velocity ratios smaller than 0.5 document an anisotropic character of the liquid mass fluctuations. Power spectral density (PSD of axial velocity fluctuations of large droplets is uniform up to 1 kHz, while PSD of smaller particles drops down with frequency for frequencies > 100 Hz. Large particles thus preserve the fluctuations imposed during discharge while the gas turbulence drops with frequency. Turbulence intensity reaches 14 to 21 % depending on pressure. Such high-turbulence character of the flow probably results from a heterogeneous gas–liquid mixture at the discharge.

  18. On the modeling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Christer

    1997-12-01

    This report concerns on the modelling of fuel sprays in a non-combustible case using an own developed fuel spray code module. The spray code is made as an independent module to simplify the use of different gas flow solvers together with the spray module. This enables the possibility to use different turbulence models. In the report two turbulence models has been used, the standard k-{epsilon} and the LES (Large Eddy Simulation) model. The report presents results obtained from a sensitivity study of both numerical and physical parameters on an evaporating spray under diesel like conditions (light duty diesel engine) with the spray code module attached to a cylindrical gas phase flow solver. The results from the sensitivity analysis showed that these effects were not so pronounced as has been reported. It was suggested that this was due to the `easy` nature of the investigated case, where the flow field could be sufficiently resolved without violating the droplet void fraction criteria and break-up, collision and combustion that may increase the grid spacing sensitivity were not modelled. An investigation was performed to valuate the feasibility of using LES as turbulence model. Calculations of the initial phase of a developing jet were made and it was found that in the initial phase of the spray and the flow structure were similar to that of a spatially developing jet flow, which is in agreement with experimental observations. Results from LES calculations on a developing spray jet was also compared with k-{epsilon} based ones. This result showed that the spray-LES approach captured the transition from a laminar to a turbulent flow field with an increase in turbulent kinetic energy k along the injection direction 45 refs, 37 figs, 2 tabs

  19. A Comprehensive Review on Fluid Dynamics and Transport of Suspension/Liquid Droplets and Particles in High-Velocity Oxygen-Fuel (HVOF Thermal Spray

    Directory of Open Access Journals (Sweden)

    Mehdi Jadidi

    2015-10-01

    Full Text Available In thermal spraying processes, molten, semi-molten, or solid particles, which are sufficiently fast in a stream of gas, are deposited on a substrate. These particles can plastically deform while impacting on the substrate, which results in the formation of well-adhered and dense coatings. Clearly, particles in flight conditions, such as velocity, trajectory, temperature, and melting state, have enormous influence on the coating properties and should be well understood to control and improve the coating quality. The focus of this study is on the high velocity oxygen fuel (HVOF spraying and high velocity suspension flame spraying (HVSFS techniques, which are widely used in academia and industry to generate different types of coatings. Extensive numerical and experimental studies were carried out and are still in progress to estimate the particle in-flight behavior in thermal spray processes. In this review paper, the fundamental phenomena involved in the mentioned thermal spray techniques, such as shock diamonds, combustion, primary atomization, secondary atomization, etc., are discussed comprehensively. In addition, the basic aspects and emerging trends in simulation of thermal spray processes are reviewed. The numerical approaches such as Eulerian-Lagrangian and volume of fluid along with their advantages and disadvantages are explained in detail. Furthermore, this article provides a detailed review on simulation studies published to date.

  20. Electrostatic charge on spray droplets of aqueous surfactant solutions

    OpenAIRE

    POLAT, Mehmet; Polat, Hürriyet; Chander, Subhash

    2000-01-01

    Electrostatic charges on individual spray droplets were measured using a refined form of the Millikan oil drop method. The measurement system consisted of three main sections; a droplet generation cell, a settling column and a charge measurement chamber. The trajectories required for calculation of charge were determined using a high-speed motion analyzer coupled to a long-focal-length microscope. Charges on droplets were manipulated by the addition of surface-active agents into the spray sol...

  1. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction.

    Science.gov (United States)

    Fritz, Bradley K; Hoffmann, W Clint

    2016-09-16

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected.

  2. Simultaneous measurement of droplet size and velocity field by an interferometric imaging technique in spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Hosokawa, A.; Tomimatsu, S. [Niigata Univ. (Japan). Dept. of Mechanical and Production Engineering

    2003-08-01

    The present paper describes an experimental technique of droplet sizing and velocity measurement for application to a luminous flame in spray combustion. The size measurement of unburnt fuel droplets in combustion is carried out by using an interferometric imaging method, while the corresponding velocity field is measured by particle tracking velocimetry (PTV) in combination with the rotary shutter to avoid the high intensity noise of the luminous flame in spray combustion. The measurements are successfully applied to the spray flow from a gun-type burner with and without combustion. The experimental results in spray combustion indicate that the smaller size of fuel droplets are almost burnt in the centre of the flame and the unburnt droplets of larger size remain in the outer region of the burner flow. It was found that the mean droplet velocity measured by the present PTV technique in combustion is almost independent of the droplet size and agrees closely with the gas velocity. However, the velocity magnitude with combustion is increased in comparison with the case without combustion, which suggests the influence of gas expansion at high temperatures. (author)

  3. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  4. PIV measurement of internal structure of diesel fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Z.M. [Ecotechnology System Lab., Yokohama National Univ. (Japan); Nishino, K. [Div. of Artificial Environment and Systems, Yokohama National Univ. (Japan); Mizuno, S. [Yokohama National Univ. (Japan); Torii, K. [Dept. of Mechanical Engineering and Materials Science, Yokohama National Univ. (Japan)

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70 MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0 MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called 'branch-like structures' by Azetsu et al. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented. (orig.)

  5. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  6. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  7. Laser-Based Spatio-Temporal Characterisation of Port Fuel Injection (PFI Sprays

    Directory of Open Access Journals (Sweden)

    C. T. N. Anand

    2010-06-01

    Full Text Available In the present work, detailed laser-based diagnostic experiments were conducted to characterise the spray from low pressure 2-hole and 4-hole Port Fuel Injection (PFI injectors. The main objective of the work included obtaining quantitative information of the spatio-temporal spray structure of such low-pressure gasoline sprays. A novel approach involving a combination of techniques such as Mie scattering, Granulometry, and Laser Sheet Dropsizing (LSD was used to study the spray structure. The droplet sizes, distributions with time, Sauter Mean Diameters (SMD, droplet velocities, cone angles and spray tip penetrations of the sprays from the injectors were determined. The spray from these injectors is found to be ‘pencil like’ and not dispersed as in high pressure sprays. The application of the above mentioned techniques provides two-dimensional SMD contours of the entire spray at different instants of time, with reasonable accuracy.

  8. Single droplet analysis for spray drying of foods

    OpenAIRE

    2013-01-01

    Many food ingredients, such as enzymes and probiotics, are spray dried to provide shelf-life. Major hurdle to apply spray drying is the lack of scientific insight on the inactivation mechanisms of components and the extensive optimization required for formulation and drying conditions to obtain powders of acceptable quality. This thesis reports on the development of an alternative approach to study drying behaviour involving single droplet experimentation in combination with predictive modell...

  9. Modeling of droplet dynamic and thermal behaviour during spray deposition

    Indian Academy of Sciences (India)

    N S Mahesh; Johnson Mendonca; M K Muralidhara; B K Muralidhara; C Ramachandra

    2003-04-01

    Mathematical modeling of supersonic gas atomization for spray forming has been investigated. Influence of the droplet dynamic and thermal behaviour on the resultant microstructure has been studied. Analytical models have been constructed taking into account the higher Reynolds number owing to supersonic gas flow. The impact velocity profiles of the droplets lend credence to the evolution of equiaxed grain morphology through dendrite fragmentation. The thermal history profile along with the fraction solid plot could yield optimized standoff distance to obtain a mushy droplet. A comparison of secondary dendrite arm spacing obtained from the mathematical model showed good agreement with experimental observations.

  10. Droplet size measurements for spray dryer scale-up.

    Science.gov (United States)

    Thybo, Pia; Hovgaard, Lars; Andersen, Sune Klint; Lindeløv, Jesper Saederup

    2008-01-01

    This study was dedicated to facilitate scale-up in spray drying from an atomization standpoint. The purpose was to investigate differences in operating conditions between a pilot and a production scale nozzle. The intension was to identify the operating ranges in which the two nozzles produced similar droplet size distributions. Furthermore, method optimization and validation were also covered. Externally mixing two-fluid nozzles of similar designs were used in this study. Both nozzles are typically used in commercially available spray dryers, and they have been characterized with respect to droplet size distributions as a function of liquid type, liquid flow rate, atomization gas flow rate, liquid orifice diameter, and atomization gas orifice diameter. All droplet size measurements were carried out by using the Malvern Spraytec with nozzle operating conditions corresponding to typical settings for spray drying. This gave droplets with Sauter Mean Diameters less than 40 microm and typically 5-20 microm. A model previously proposed by Mansour and Chigier was used to correlate the droplet size to the operating parameters. It was possible to make a correlation for water incorporating the droplet sizes for both the pilot scale and the production scale nozzle. However, a single correlation was not able to account properly for the physical properties of the liquid to be atomized. Therefore, the droplet size distributions of ethanol could not be adequately predicted on the basis of the water data. This study has shown that it was possible to scale up from a pilot to production scale nozzle in a systematic fashion. However, a prerequisite was that the nozzles were geometrically similar. When externally mixing two-fluid nozzles are used as atomizers, the results obtained from this study could be a useful guideline for selecting appropriate operating conditions when scaling up the spray-drying process.

  11. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  12. A phenomenological model of two-phase (air/fuel droplet developing and breakup

    Directory of Open Access Journals (Sweden)

    Pavlović Radomir R.

    2013-01-01

    Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.

  13. Electrostatic Method to Measure the Size of the Sprayed Droplets

    Directory of Open Access Journals (Sweden)

    Kuna-Broniowski, M.

    2015-11-01

    Full Text Available In the paper is presented the new method the measurement of the main parameters the atomised stream of liquid. This method base on the measurement of the electric charge carried by water drops charged by high voltage. The electrostatic sensor to measure of the droplets size, is associated with precision mechanic system scanning the sprayed surface. The amplified and conditioned signals from electrostatic sensor are send to the computer system equipped in virtual instrument to analyse the size and spatial distribution of droplets. The virtual instrument control also the scanning system.

  14. A novel gas-droplet numerical method for spray combustion

    Science.gov (United States)

    Chen, C. P.; Shang, H. M.; Jiang, Y.

    1991-01-01

    This paper presents a non-iterative numerical technique for computing time-dependent gas-droplet flows. The method is a fully-interacting combination of Eulerian fluid and Lagrangian particle calculation. The interaction calculations between the two phases are formulated on a pressure-velocity coupling procedure based on the operator-splitting technique. This procedure eliminates the global iterations required in the conventional particle-source-in-cell (PSIC) procedure. Turbulent dispersion calculations are treated by a stochastic procedure. Numerical calculations and comparisons with available experimental data, as well as efficiency assessments are given for some sprays typical of spray combustion applications.

  15. An experimental study on the spray characteristics of diesel-dimethyl ether (DME) blended fuels by phase doppler anemometry

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents an experimental study on the spray characteristics of diesel-dimethyl ether (DME) blended fuels by phase doppler anemometry (PDA). Blended fuels with DME mass fractions of 15%, 30% and pure diesel fuel were used to evaluate the effect of the DME concentration on the spray pattern, droplet size and velocity. The data for spray velocity vector and droplet size field were obtained. The experimental results reveal that the micro-explosive function exists in the jet of diesel-dimethyl ether (DME) blended fuels and the radial velocity of the blended fuels spray is larger than that of conventional diesel fuel spray near the nozzle exit. At the downstream part of the spray, the radial velocity and its attenuation rate of blended fuels are much more uniform and smaller than those of pure diesel spray. At the centerline of the spray, the attenuation rates of all spray axial velocities are similar. With the in- crease of DME concentration in the fuel, the spray angle and the exit velocity increase and the droplet size deceases.

  16. An experimental study on the spray characteristics of diesel-dimethyl ether (DME) blended fuels by phase doppler anemometry

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; HUANG Zhen; QIAO XinQi

    2009-01-01

    This paper presents an experimental study on the spray characteristics of diesel-dimethyl ether (DME) blended fuels by phase doppler anemometry (PDA). Blended fuels with DME mass fractions of 15%,30% and pure diesel fuel were used to evaluate the effect of the DME concentration on the spray pattern,droplet size and velocity. The data for spray velocity vector and droplet size field were obtained. The experimental results reveal that the micro-explosive function exists in the jet of diesel-dimethyl ether (DME) blended fuels and the radial velocity of the blended fuels spray is larger than that of conventional diesel fuel spray near the nozzle exit. At the downstream part of the spray, the radial velocity and its attenuation rate of blended fuels are much more uniform and smaller than those of pure diesel spray. At the centerline of the spray, the attenuation rates of all spray axial velocities are similar. With the increase of DME concentration in the fuel, the spray angle and the exit velocity increase and the droplet size deceases.

  17. Burning Behavior of Liquid Fuel Droplets

    Directory of Open Access Journals (Sweden)

    Shah Shahood Alam

    2015-06-01

    Full Text Available Ignition of flammable liquids by hot surfaces is well known to automotive and aviation industries. However, only a limited data regarding hot surface ignition (HSI of pure and commercial fuels is available in literature. Further, relatively few studies have determined the ignition delay and to our knowledge the combustion lifetime. In the present work, we have generated results from an efficient, reproducible, yet simple experimental setup involving a liquid fuel droplet, a horizontal heated stainless steel plate and quiescent environment. Tests were conducted for diesel, biodiesel and its blends as well as vegetable oils, applied/used as single droplets under variety of conditions to the heated surface. The droplet size range was approximately between 1500 micron to 2000 micron. The objective of this experiment was to determine the minimum temperatures for HSI and also the temperatures where 100% probability of ignition was expected. Further, from this experiment, we were also able to obtain the ignition delay and droplet lifetime. As an extension to this study, a separate droplet combustion model was developed to closely study the general burning behavior of these droplets by generating temperature and species concentration profiles. The droplet mass burning rate was also determined. The results obtained in the present work were in a general agreement with the experimental and modeling observations of other studies.

  18. Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant

    Science.gov (United States)

    Chanin, S. P.; Shearer, A. J.; Faeth, G. M.

    1976-01-01

    An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.

  19. New approaches to the modelling of multi-component fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S

    2015-02-25

    The previously suggested quasi-discrete model for heating and evaporation of complex multi-component hydrocarbon fuel droplets is described. The dependence of density, viscosity, heat capacity and thermal conductivity of liquid components on carbon numbers n and temperatures is taken into account. The effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The analysis is based on the Effective Thermal Conductivity/Effective Diffusivity (ETC/ED) model. This model is applied to the analysis of Diesel and gasoline fuel droplet heating and evaporation. The components with relatively close n are replaced by quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of the heating and evaporation of droplets consisting of many components is replaced with the analysis of the heating and evaporation of droplets consisting of relatively few quasi-components. It is demonstrated that for Diesel and gasoline fuel droplets the predictions of the model based on five quasi-components are almost indistinguishable from the predictions of the model based on twenty quasi-components for Diesel fuel droplets and are very close to the predictions of the model based on thirteen quasi-components for gasoline fuel droplets. It is recommended that in the cases of both Diesel and gasoline spray combustion modelling, the analysis of droplet heating and evaporation is based on as little as five quasi-components.

  20. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels

    KAUST Repository

    Wang, Libing

    2016-11-18

    Characterization of the spray angle, penetration, and droplet size distribution is important to analyze the spray and atomization quality. In this paper, the spray structure development and atomization characterization of two naphtha fuels, namely light naphtha (LN) and whole naphtha (WN) and two reference fuel surrogates, i.e. toluene primary reference fuel (TPRF) and primary reference fuel (PRF) were investigated using a gasoline direct injection (GDI) fuel injector. The experimental setup included a fuel injection system, a high-speed imaging system, and a droplet size measurement system. Spray images were taken by using a high-speed camera for spray angle and penetration analysis. Sauter mean diameter, Dv(10), Dv(50), Dv(90), and particle size distribution were measured using a laser diffraction technique. Results show that the injection process is very consistent for different runs and the time averaged spray angles during the measuring period are 103.45°, 102.84°, 102.46° and 107.61° for LN, WN, TPRF and PRF, respectively. The spray front remains relatively flat during the early stage of the fuel injection process. The peak penetration velocities are 80 m/s, 75 m/s, 75 m/s and 79 m/s for LN, WN, TPRF and PRF, respectively. Then velocities decrease until the end of the injection and stay relatively stable. The transient particle size and the time-averaged particle size were also analyzed and discussed. The concentration weighted average value generally shows higher values than the arithmetic average results. The average data for WN is usually the second smallest except for Dv90, of which WN is the biggest. Generally the arithmetic average particle sizes of PRF are usually the smallest, and the sizes does not change much with the measuring locations. For droplet size distribution results, LN and WN show bimodal distributions for all the locations while TPRF and PRF shows both bimodal and single peak distribution patterns. The results imply that droplet size

  1. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  2. Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F

    Institute of Scientific and Technical Information of China (English)

    Daisaku Sakaguchi; Oluwo le Amida; Hironobu Ueki; Masahiro Ishida

    2008-01-01

    In order to investigate the distribution of droplet sizes in the core region of diesel fuel spray, instantaneous measurement of droplet sizes was conducted by an advanced laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F is made up of two foci and the distance between them is 36 μm. The tested nozzle had a 0.2 mm diameter single-hole. The measurements of injection pressure, needle lift, and crank angle were synchronized with the measurement by the L2F at the position 10 mm downstream from the nozzle exit. It is clearly shown that the droplet near the spray axis is larger than that in the off-axis region under the needle full lift condition and that the spatial distribution of droplet sizes varies temporally. It is found that the probability density distribution of droplet sizes in the spray core region can be fitted to the Nukiyama-Tanasawa distribution in most injection periods.

  3. Characterization of Droplets and Vapor Concentration Distributions in Split-Injection Diesel Sprays by Processing UV and Visible Images

    Science.gov (United States)

    Zhang, Yuyin; Nishida, Keiya; Yoshizaki, Takuo

    Recent experimental studies have shown that with split injection strategy, the soot and NOx emissions from a diesel engine can be reduced significantly in comparison with a conventional non-split injection. To understand the mechanism of emissions reduction, it is essential to clarify the process of mixture formation in the diesel spray. For characterizing the droplets and vapor concentration distributions inside a fuel spray, a dual-wavelength laser absorption-scattering technique (LAS) was developed by using the 2nd harmonic (532nm) and the 4th harmonic (266nm) of an Nd: YAG laser and using dimethylnaphthalene as a test fuel. By applying the ultraviolet-visible LAS imaging technique, the distributions of droplets and vapor concentrations in the spray, which was injected into a high-temperature and high-pressure nitrogen ambient in a constant volume vessel by a common-rail diesel injection system, were measured and quantitatively analyzed. The effect of injection mass ratio of double-pulse injections on distributions of equivalence ratios of vapor and droplets in the sprays was examined.

  4. Linear Stability Analysis of Laminar Premixed Fuel-Rich Double-Spray Flames

    Directory of Open Access Journals (Sweden)

    Noam Weinberg

    2014-03-01

    Full Text Available This paper considers the stability of a double-spray premixed flame formed when both fuel and oxidizer are initially present in the form of sprays of evaporating liquid droplets. To simplify the inherent complexity that characterizes the analytic solution of multi-phase combustion processes, the analysis is restricted to fuel-rich laminar premixed double-spray flames, and assumes a single-step global chemical reaction mechanism. Steady-state solutions are obtained and the sensitivity of the flame temperature and the flame propagating velocity to the initial liquid fuel and/or oxidizer loads are established. The stability analysis revealed an increased proneness to cellular instability induced by the presence of the two sprays, and for the fuel-rich case considered here the influence of the liquid oxidizer was found to be more pronounced than that of the liquid fuel. Similar effects were noted for the neutral pulsating stability boundaries. The impact of unequal latent heats of vaporization is also investigated and found to be in keeping with the destabilizing influence of heat loss due to droplet evaporation. It should be noted that as far as the authors are aware no experimental evidence is available for (at least validation of the predictions. However, they do concur in a general and reasonable fashion with independent experimental evidence in the literature of the behavior of single fuel spray laminar premixed flames.

  5. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  6. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  7. Spray pattern analysis for metered dose inhalers I: Orifice size, particle size, and droplet motion correlations.

    Science.gov (United States)

    Smyth, H; Hickey, A J; Brace, G; Barbour, T; Gallion, J; Grove, J

    2006-10-01

    Factors that influence spray pattern measurements of pressurized, metered-dose inhalers have been evaluated. Spray patterns were correlated with changes in actuator orifice diameter, particle size profiles, and calculated estimates of particle-size dynamics of plumes during a spray. Spray patterns, regardless of actuator orifice size, were ellipsoid in the vertical direction. Measures of elliptical ratio, major axis, and minor axis were significantly influenced by orifice size in a non-linear fashion over the range of orifice sizes investigated. Spray patterns also correlated with particle size profile and spray geometry measurements. Spray distribution asymmetry may be related to droplet evaporation and sedimentation processes. However, the spray patterns did not appear sensitive to changes in gravitational force acting on the plume. Instead, it is postulated that elliptical spray patterns may have dependence on fluid dynamic processes within the inhaler actuator. Developing an understanding of these processes may provide a basis for developing spray pattern tests with relevance to product performance.

  8. Computation of air and fuel droplet flows in S.I. engine manifolds

    Science.gov (United States)

    Chen, P. Y. P.; Behnia, M.; Milton, B. E.

    The flow of air and fuel mixture similar to that in the induction systems of an Sl engine has been studied. A standard, general purpose single phase CFD code was used with some modifications to account for momentum, mass and heat transfers between the air stream and fuel droplets. Based on a Lagrangian approach, the movement from an assumed spray distribution model of fuel droplets were individually tracked. Models using different assumed coupling between the two phases have been investigated. Under typical engine operating conditions, it was found that a fully coupled treatment for momentum is not required. For estimation of fuel evaporation, a computing time saving one-dimensional treatment was found to be adequate. Fuel film formation on various surfaces of a duct and butterfly valve simulating an engine manifold is reported.

  9. Spray pattern and droplet size analyses for high-shear viscosity determination of aqueous suspension corticosteroid nasal sprays.

    Science.gov (United States)

    Pennington, Justin; Pandey, Preetanshu; Tat, Henry; Willson, Jennifer; Donovan, Brent

    2008-09-01

    Aqueous suspension corticosteroid nasal sprays exhibit the rheological property of shear thinning, meaning they exhibit a decrease in viscosity upon application of shear. Most rheological methods are limited in the amount of shear that can be applied to samples (approximately 1,000 s(-1)) and thus can only approximate the viscosities at the high-shear conditions of nasal spray devices (approximately 10(5)-10(6) s(-1)). In the current work, spray area and droplet size were shown to demonstrate viscosity dependence. Three Newtonian fluids were used to determine equations to approximate viscosity at the spray nozzle from correlations to spray area and droplet size using a standard 100 microL Pfeiffer nasal spray pump. Several shear-thinning solutions, including four commercial aqueous suspension corticosteroid nasal sprays and three aqueous Avicel (1, 2, and 3%, wt/wt) samples, were analyzed to demonstrate the ability of spray area and droplet size analysis to estimate high-shear viscosities. The calculated viscosity values trend in accordance with the rheometer data along with the ability to distinguish differences between all samples analyzed.

  10. High Speed Imaging of Diesel Fuel Sprays

    Science.gov (United States)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  11. On the Development of Spray Submodels Based on Droplet Size Moments

    Science.gov (United States)

    Beck, J. C.; Watkins, A. P.

    2002-11-01

    Hitherto, all polydisperse spray models have been based on discretising the liquid flow field into groups of equally sized droplets. The authors have recently developed a spray model that captures the full polydisperse nature of the spray flow without using droplet size classes (Beck, 2000, Ph.D thesis, UMIST; Beck and Watkins, 2001, Proc. R. Soc. London A). The parameters used to describe the distribution of droplet sizes are the moments of the droplet size distribution function. Transport equations are written for the two moments which represent the liquid mass and surface area, and two more moments representing the sum of drop radii and droplet number are approximated via use of a presumed distribution function, which is allowed to vary in space and time. The velocities to be used in the two transport equations are obtained by defining moment-average quantities and constructing further transport equations for the relevant moment-average velocities. An equation for the energy of the liquid phase and standard gas phase equations, including a k-ɛ turbulence model, are also solved. All the equations are solved in an Eulerian framework using the finite-volume approach, and the phases are coupled through source terms. Effects such as interphase drag, droplet breakup, and droplet-droplet collisions are also captured through the use of source terms. The development of the submodels to describe these effects is the subject of this paper. All the source terms for the hydrodynamics of the spray are derived in this paper in terms of the four moments of the droplet size distribution in order to find the net effect on the whole spray flow field. The development of similar submodels to describe heat and mass transfer effects between the phases is the subject of a further paper (Beck and Watkins, 2001, J. Heat Fluid Flow). The model has been applied to a wide variety of different sprays, including high-pressure diesel sprays, wide-angle solid-cone water sprays, hollow

  12. Computational sensitivity study of spray dispersion and mixing on the fuel properties in a gas turbine combustor

    Science.gov (United States)

    Grosshans, Holger; Cao, Le; Fuchs, Laszlo; Szász, Robert-Zoltán

    2017-04-01

    A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel-air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz-Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced.

  13. Experimental Study on the Combustion and Microexplosion of Freely Falling Gelled Unsymmetrical Dimethylhydrazine (UDMH Fuel Droplets

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2012-08-01

    Full Text Available The increasing demand for high energy density fuels and the concern for their safety have propelled research in the field of gelled propellants, where understanding the combustion of single gelled fuel droplets is the first stage to predict the spray combustion characteristics. The experiments utilized single-isolated freely falling gelled unsymmetrical dimethylhydrazine (UDMH droplets instead of the conventional suspended droplet approach, in order to eliminate the perturbation associated with the suspension mechanism. Morphological transformations of the gelled droplet involved in the combustion processes were monitored by employing a high-speed digital camera, while the effects of ambient pressure and oxygen concentration on burning rate constants were also studied. The experimental results show that four main phenomena (droplet deformation, bubble formation and growth, vapor jetting and luminous jetting flame with “horn” shape and three distinct phases were identified in the droplet combustion process; the high yield stress and polymer chain structure of polymer gellant are responsible for the appearance of bubbles with almost the same order of magnitude as the droplets. Increasing the ambient pressure can increase the burning rate, postpone the appearance of microexplosions, and weaken microexplosion intensity; while increasing the ambient oxygen concentration can promote the appearance of microexplosions, strengthen microexplosion intensity and increase the burning rate.

  14. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  15. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.

    2016-08-20

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  16. The potential role of sea spray droplets in facilitating air-sea gas transfer

    Science.gov (United States)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  17. Detailed investigation of a vaporising fuel spray. Part 1: Experimental investigation of time averaged spray

    Science.gov (United States)

    Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.

    1980-01-01

    A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.

  18. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.

    Science.gov (United States)

    Delele, M A; Nuyttens, D; Duga, A T; Ambaw, A; Lebeau, F; Nicolai, B M; Verboven, P

    2016-09-14

    The dynamic impact behaviour of water droplets on plant surfaces was investigated based on a multiphase computational fluid dynamics (CFD) model. The study was conducted using the Volume Of Fluid (VOF) approach. The static contact angle of water droplets on leaf surfaces of different plants (apple, pear, leek and cabbage) was measured and found to vary between 54.9 and 138.2°. Impact experiments were conducted by monitoring the flow and impact characteristics of water droplets on leaves in still air with a high speed camera. Droplets were generated by an agricultural flat fan spray nozzle moving across the leaf at constant speed. The nozzle produced droplets with diameters ranging from 20.6 up to 550.8 μm, and droplet velocity values near the impact between 0.03 and 13.2 m s(-1). The CFD model was capable of predicting the observed dynamic impact behaviour of droplets on the plant surfaces. The fate of the droplets after the impact process for adhesion, bouncing or splashing was accurately predicted for Weber numbers (We) in the range of 0.007 to 1096 and droplet Reynolds numbers (Re) between 5 to 8000. The process was highly dependent on the surface and droplet flow characteristics during the impact. Combinations of We, Re and Ohnesorge (Oh) numbers defined the droplet maximum spread factor, the number of secondary droplets generated as a result of the splashing process and the transition between the different impact outcomes. These criteria can then be used in field scale spray deposition and drift models to better understand agricultural spray operations.

  19. Modeling of sea spray droplets in the ocean

    Directory of Open Access Journals (Sweden)

    Zhu Jian-Bin

    2014-01-01

    Full Text Available Droplets are known to play an important role in momentum, heat, and moisture transfer between the ocean and atmosphere. A lot of scholars and experts aim to investigate the effects of droplets on the climate and make precise forecast for hurricane conditions. So the profiles of droplets concentration at different heights above the sea surface are important. For a better study of the momentum and energy transport among the boundary layer, we also need to know the distribution of droplets with different radii. After wave break, with the coupled effects of inertia, gravity, wind updraught, and turbulent mixing, droplets can be transported to certain heights above the sea surface. In the present study, we develop a modified subgrid-scale flow field model coupled with the large eddy simulation to investigate the profiles of spay droplets concentration after wave break. The results in our simulation show that, the distribution of the droplets with the same radii in vertical direction is roughly Gaussian distribution, and the maximum appears at the height nearly above the significant wave height. For different radii, the concentration of droplets with larger radii can be higher than that of the smaller ones at some heights. Since the droplets in our model only include the spay droplets generated by wave break, the data will not be identical with the measurement in the open ocean and laboratory, which include all the kinds of droplets above the ocean.

  20. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying

    DEFF Research Database (Denmark)

    Pekka Pajander, Jari; Matero, Sanni Elina; Sloth, Jakob

    2015-01-01

    PURPOSE: This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. METHODS: A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet......-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. RESULTS: XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis...

  1. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    The formation, ignition, and combustion of fuel sprays are highly complex processes and the available models have various shortcomings. The development and application of multidimensional CFD models, that describe the different phenomena have rapidly increased through the use of commercial and public software (e.g. Star-CD, KIVA, FIRE and OpenFOAM). The general approach to spray modeling is given by the Eulerian-Lagrangian method, where the gas phase is modeled as a continuum and the droplets are tracked in a Lagrangian way. The accuracy and robustness of today's spray models vary substantially and spray penetration simulations and the levels of spray-generated turbulence are dependent on the discretization. The work presented here deals with the prediction of spray formation and combustion with improved models implemented in the free, open source software package OpenFOAM. The VSB2 spray model was implemented and tested under varying ambient conditions. The design criteria of the model were to be unconditionally robust, have a minimal number of tuning parameters, and be implementable in any CFD software package supporting particle tracking. The main difference between the VSB2 spray model and standard spray models is how the interaction between the liquid fuel and hot gas phase is modeled. In the VSB2 spray model, a 'blob' is defined, containing differently sized droplets; instead of a parcel containing equally sized droplets. Another feature is the definition of a bubble surrounding the blob. The blob just interacts with the gas phase in the bubble instead of with the gas phase in the whole grid cell. The idea is to reduce grid dependency. Furthermore, equilibrium between the blob and the bubble is ensured, which makes the model very robust. Results of spray penetration simulations are compared with data obtained from experiments done at Chalmers Univ. of Technology and with experimental data published by Siebers and Naber from Sandia National

  2. Electric field mediated spraying of miniaturized droplets inside microchannel.

    Science.gov (United States)

    Timung, Seim; Chaudhuri, Joydip; Borthakur, Manash Pratim; Mandal, Tapas Kumar; Biswas, Gautam; Bandyopadhyay, Dipankar

    2016-10-17

    We report a facile and noninvasive way to disintegrate a microdroplet into a string of further miniaturized ones under the influence of an external electrohydrodynamic field inside a microchannel. The deformation and breakup of the droplet was engendered by the Maxwell's stress originating from the accumulation of induced and free charges at the oil-water interface. While at smaller field intensities, for example less than 1 MV/m, the droplet deformed into a plug, at relatively higher field intensities, e.g. ∼1.16 MV/m, a pair of droplets having opposite surface charge was formed. The charged droplets showed an interesting periodic bridging and breakup during their translation motion across the channel. For even higher field intensities, for example more than 1.2 MV/m, the entire droplet underwent dielectrophoresis toward one of the electrodes before experiencing a strong attractive force from the other electrode to deform into a shape of a Taylor cone. With progress in time, mimicking the electrospraying phenomenon, the cone tip periodically ejected a string of miniaturized water droplets to form a microemulsion inside the channel. The frequency and size of the droplet ejection could be tuned by varying the applied field intensity. A water droplet of ∼214 μm diameter could continuously eject droplets of size ∼10 μm or even smaller to form a microemulsion inside the channel.

  3. Effect of oil droplet size on the oxidative stability of spray-dried flaxseed oil powders.

    Science.gov (United States)

    Shiga, Hirokazu; Loon Neoh, Tze; Ninomiya, Ai; Adachi, Sae; Pasten, Ignacio Lopez; Adachi, Shuji; Yoshii, Hidefumi

    2017-04-01

    The effect of the size of oil droplets on the oxidative stability of flaxseed oil in spray-dried powders was investigated. Maltodextrin with a dextrose equivalent of 25 was used as a wall material, and sodium caseinate and transglutaminase-polymerized sodium caseinate were used as emulsifiers. The oxidative stability of flaxseed oil encapsulated in the spray-dried powders was evaluated using lipid oxidation and conductometric determination tests at 105 °C. The powders containing larger oil droplets exhibited higher surface oil content after spray drying, and higher peroxide value and conductivity after storage at 105 °C. Removal of the surface oil from the powders by washing with hexane significantly decreased the conductivity. The results indicated that the surface oil of the spray-dried flaxseed oil powders affected the oxidation stability.

  4. Effects of Spray Mixtures on Droplet Size Under Aerial Application Conditions and Implications on Drift

    Science.gov (United States)

    2010-01-01

    Keywords. Aerial application, Glyphosate , Spray adjuvant, Droplet size, Spray drift, AGDISP. pray drift, which the Environmental Protection Agency (EPA...environmental and human health protection through drift reduction by accelerating the acceptance and use of improved and cost‐effective application...Louis, Mo.) EPA Reg. No. 524‐549, Active ingredient: Glyphosate : N‐(phosphonomethyl) glycine, in the form of its potassium salt: 1 quart/acre rate

  5. Single droplet analysis for spray drying of foods

    NARCIS (Netherlands)

    Perdana, J.A.

    2013-01-01

    Many food ingredients, such as enzymes and probiotics, are spray dried to provide shelf-life. Major hurdle to apply spray drying is the lack of scientific insight on the inactivation mechanisms of components and the extensive optimization required for formulation and drying conditions to obtain powd

  6. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  7. Thermal explosion in a combustible gas containing fuel droplets

    Science.gov (United States)

    McIntosh, A. C.; Gol'dshtein, V.; Goldfarb, I.; Zinoviev, A.

    1998-06-01

    An original physical model of self-ignition in a combustible gas mixture containing liquid fuel droplets is developed. The droplets are small enough for the gas-droplet mixture to be considered as a fine mist such that individual droplet burning is subsumed into a well-stirred, spatially invariant burning approximation. A classical Semenov-type analysis is used to describe the exothermic reaction, and the endothermic terms involve the use of quasi-steady mass transfer/heat balance and the Clausius-Clapeyron evaporative law. The resulting analysis predicts the ignition delay which is a function of the system parameters. Results are given for typical dynamical regimes. The case of different initial temperatures for droplets and gas is highly relevant to gas turbine lean blow-out and re-ignition.

  8. Dispersiveness of Liquid Droplets Sprayed with Cocurrent Gas Flow

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2016-01-01

    Full Text Available Pneumohydraulic stand, equipped with a set of aerosol systems laser diagnostics devices, are presented. The results of experimental measurements of the aerosol liquid-drop size distribution in the ejection nozzle spray pattern are provided.

  9. Modeling of air-droplet interaction, substrate melting and coating buildup in thermal spraying

    Science.gov (United States)

    Wei, Guanghua

    Among the many surface coating techniques now available, thermal spray is known to offer the most advantages. It can meet a wide range of technical and engineering requirements in a relatively inexpensive and easily controllable way with the capability of producing repeatable results. In the last few decades a lot of important strides have been made in the field of measurements and modelling of thermal spraying. However, due to the complex of the process and the lack of basic materials-based knowledge about the particle melting, spreading and deposition, the relationship between the process parameters and the coating properties still remains unclear. In thermal spraying, a particle is melted to form a droplet with morphology and thermal- and kinetic-energy status change by the interaction with the plasma/flame. In order to produce higher-quality coatings and expand the use of this versatile family of technologies, modelling of the particle behaviors during in-flight, spreading and deposition is essential. This thesis investigates the connections between particle characteristics and coating properties. Momentum, heat and mass transfer phenomena related to particle in-flight, droplet impacting, spreading, and splat layering are studied. Numerical models are developed to establish the quantitative relationships between spray parameters, particle and substrate properties and deposition characteristics. Most existing theoretical studies of in-flight particle assume that the particle is in a spherical shape without voids inside. The behavior of porous particles in thermal spray has not been well understood. However, the presence of voids in the feedstock powders may have a great impact on particle in-flight behaviors such as particle acceleration, melting and oxidation because a hollowed particle is also lighter than a densed one and this will affect the particle trajectory. The particle shape also needs to be taken into account because it influences the drag force and

  10. The impact of atomization on the surface composition of spray-dried milk droplets.

    Science.gov (United States)

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions.

  11. Thermal Radiation Effects on Thermal Explosion in Polydisperse Fuel Spray-Probabilistic Model

    Directory of Open Access Journals (Sweden)

    Ophir Navea

    2011-06-01

    Full Text Available We investigate the effect of thermal radiation on the dynamics of a thermal explosion of polydisperse fuel spray with a complete description of the chemistry via a single-step two-reactant model of general order. The polydisperse spray is modeled using a Probability Density Function (PDF. The thermal radiation energy exchange between the evaporation surface of the fuel droplets and the burning gas is described using the Marshak boundary conditions. An explicit expression of the critical condition for thermal explosion limit is derived analytically and represents a generalization of the critical parameter of the classical Semenov theory. Because we investigated the model in the range where the temperature is very high, the effect of the thermal radiation is significant.

  12. Fuel concentration in isothermal Diesel sprays through structured planar laser imaging measurements

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Gimeno, J.; Marti, P. [CMT Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Manin, J., E-mail: jmanin@sandia.gov [Sandia National Laboratories, 7011 East Ave., 94551 Livermore, CA (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Structured illumination has been implemented to quantify mixing in isothermal sprays. Black-Right-Pointing-Pointer Comparison to a gas-jet model conducted to Schmidt number below the unity (Sc = 0.8). Black-Right-Pointing-Pointer Results showed incomplete momentum transfer due to velocity slip between droplets and ambient. Black-Right-Pointing-Pointer Higher injection pressures enhance momentum transfer and lead to better global mixing. - Abstract: The mixing of isothermal liquid sprays in engine-like conditions has been investigated by applying the structured planar laser imaging technique to remove multiple light scattering. The intensity of the illumination plane has been recovered by removing multiply scattered light and mapping the spray three-dimensionally via discrete tomography. Based on the extinction of light within the illumination plane, the number density has been extracted. Coupled with 2-D maps of droplet diameters obtained through LIF/Mie ratio, the number density allowed to calculate the fuel concentration in the sprays. The mixture fraction of DI Diesel sprays injected into an inert environment held at room temperature has been evaluated and compared to a 2-D model based on gas-jet theory. The experimental results showed good agreement with the predictions when a Gaussian radial distribution is assumed and the Schmidt number is correctly tuned. Differences in the radial distribution has been observed and related to incomplete momentum transfer between the liquid spray and the surrounding gases. For different testing conditions, while the influence of ambient density on mixing was expected, the effect of injection pressure has been found to provide additional information concerning the global mixing of liquid sprays.

  13. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  14. Digital Image Processing application to spray and flammability studies

    Science.gov (United States)

    Hernan, M. A.; Parikh, P.; Sarohia, V.

    1985-01-01

    Digital Image Processing has been integrated into a new technique for measurements of fuel spray characteristics. The advantages of this technique are: a wide dynamic range of droplet sizes, accounting for nonspherical droplet shapes not possible with other spray assessment techniques. Finally, the technique has been applied to the study of turbojet engine fuel nozzle atomization performance with Jet A and antimisting fuel.

  15. Transient heating and evaporation of moving fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2014-01-01

    by experimental results available in literature. The model not only reliably produces all the details that help to achieve an in-depth understanding of the underlying physical processes and to derive simplified models for liquid fuel droplet heating and evaporation, but also can be readily reformulated for solid...

  16. Impaction of spray droplets on leaves: influence of formulation and leaf character on shatter, bounce and adhesion

    CERN Document Server

    Dorr, Gary J; Mayo, Lisa C; McCue, Scott W; Forster, W Alison; Hanan, Jim; He, Xiongkui

    2015-01-01

    This paper combines experimental data with simple mathematical models to investigate the influence of spray formulation type and leaf character (wettability) on shatter, bounce and adhesion of droplets impacting with cotton, rice and wheat leaves. Impaction criteria that allow for different angles of the leaf surface and the droplet impact trajectory are presented; their predictions are based on whether combinations of droplet size and velocity lie above or below bounce and shatter boundaries. In the experimental component, real leaves are used, with all their inherent natural variability. Further, commercial agricultural spray nozzles are employed, resulting in a range of droplet characteristics. Given this natural variability, there is broad agreement between the data and predictions. As predicted, the shatter of droplets was found to increase as droplet size and velocity increased, and the surface became harder to wet. Bouncing of droplets occurred most frequently on hard to wet surfaces with high surface ...

  17. Double Jet Emission of Hot Electrons from a Micro-droplet Spray

    Institute of Scientific and Technical Information of China (English)

    彭晓昱; 张杰; 梁天骄; 盛政明; 金展; 李玉同; 王兆华; 于全芝; 郑志远; 刘运全; 武慧春; 郝作强; 远晓辉; 魏志义

    2004-01-01

    Spatial distribution of hot electrons with energies above 50 keV are investigated by an ethanol micro-droplet spray irradiated bylinearly and elliptically polarized 150fs laser pulses at an intensity of 1016 W/cm2. Two symmetric hot electron jets with respect to the laser propagation direction are observed in the polarization plane for a linearly polarized laser field and in the plane of the long electric vector for an elliptically polarized laser field,respectively. Particle-in-cell simulations suggest that the resonance absorption on the spherical surface of the droplets is mainly responsible for the generation of the double-jet emission of hot electrons.

  18. Nucleation and Growth of Atomizing Droplets during Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the behaviors of nucleation and growth of atomizing droplets were investigated by means of microstructure observation and theoretical analysis. The results showed that, there is a unique heterogeneous nucleation mechanism for atomizing process that pre-solid smaller particles colliding with and embedding in liquid-state larger ones act as heterogeneous nuclei. In addition, the reasons of presenting the dendritic growth was analyzed based on the nonequilibrium solute distribution theory, and the relationship between the microstructural refinement and the cooling rate of the material was given.

  19. DROPLETS AND PARTICLES IN SPRAYS: TAILORING PARTICLE PROPERTIES WITHIN SPRAY PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Udo Fritsching

    2005-01-01

    Particle generation via atomization and spray processes is a widely applied method for powder production.By means of atomization processes, the relevant particle properties may be tailored to the powder user's need in a wide range. Understanding and control of the main subprocesses of atomization is a key feature for choosing a suitable type of spray process and operation conditions. Tailoring particle properties and extending the applications of particle production beyond the current limits is also possible in this way. This contribution highlights some features of spray processes for powder production, namely the gas- and fluid-dynamic processes involved, the materials-related subprocesses, and the formation of the multiphase flow in the spray. As an example, the production of fibre- or sphere-shaped particles from melt atomization is discussed.

  20. Improvement on droplet production rate of ultrasonic - nebulizer in spray pyrolysis process

    Science.gov (United States)

    Panatarani, Camellia; Demen, Tuti Aryati; Men, Liu Kin; Maulana, Dwindra Wilham; Hidayat, Darmawan; Joni, I. Made

    2013-09-01

    Atomization is an important part in Spray Pyrolysis (SP) process which is applied to synthesize submicron or nano sized particles or to deposit thin film. Ultrasonic Nebulizer (UN) is usually use in SP due to its homogeneous droplets production with size between 1-5 μm. The drawback of the UN is low droplets production rate. In this research, we successfully developed a Digital Ultrasonic Nebulizer (DUN) with high droplets production rate using two ultrasonic traducers with applied frequency of 2.4 MHz. The result of DUN atomization was improved 4-6 fold compare to the conventional UN. The DUN also has an additional digital features such as pushbutton, LCD and microcontroller which is allow to set duration and applied voltage.

  1. Airspeed and orifice size affect spray droplet spectra from an aerial electrostatic nozzle for rotary-wing applications

    Science.gov (United States)

    The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...

  2. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  3. Characteristics of MCrAlY coatings sprayed by high velocity oxygen-fuel spraying system

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Y.; Saitoh, M.; Tamura, M.

    2000-01-01

    High velocity oxygen-fuel (HVOF) spraying system in open air has been established for producing the coatings that are extremely clean and dense. It is thought that the HVOF sprayed MCrAlY (M is Fe, Ni and/or Co) coatings can be applied to provide resistance against oxidation and corrosion to the hot parts of gas turbines. Also, it is well known that the thicker coating can be sprayed in comparison with any other thermal spraying systems due to improved residual stresses. However, thermal and mechanical properties of HVOF coatings have not been clarified. Especially, the characteristics of residual stress, that are the most important property from the view point of production technique, have not been made clear. In this paper, the mechanical properties of HVOF sprayed MCrAlY coatings were measured in both the case of as-sprayed and heat-treated coatings in comparison with a vacuum plasma sprayed MCrAlY coatings. It was confirmed that the mechanical properties of HVOF sprayed MCrAlY coatings could be improved by a diffusion heat treatment to equate the vacuum plasma sprayed MCrAlY coatings. Also, the residual stress characteristics were analyzed using a deflection measurement technique and a X-ray technique. The residual stress of HVOF coating was reduced by the shot-peening effect comparable to that of a plasma spray system in open air. This phenomena could be explained by the reason that the HVOF sprayed MCrAlY coating was built up by poorly melted particles.

  4. Experimental Investigation of the Influence of Fuel Viscosity on the Spray Characteristics of Diesel Nozzle

    Institute of Scientific and Technical Information of China (English)

    L(U) Xing-cai; QIAO Xin-qi; CHENG Jia; HUANG Zhen

    2007-01-01

    This paper presented an investigation of atomization characteristics including the velocity vector field and the mean droplet sizes for different percentages of DMM-diesel blended fuels using a phase doppler anemometry (PDA) analyzer system. Based on the fuel design concept, an oxygenated fuel named dimethoxy methane (DMM),which has lower viscosity, surface tension, and boiling point, was used to blend with diesel. The experiments were carried out under atmospheric conditions on a single-hole type diesel nozzle, liquid conditions comprise a temperature of 298 K under the needle valve opening pressure of 6 MPa. The results show that the sauter mean diameter (SMD) and spray cone angle of blended fuels decrease with the increase of DMM content; the axial mean velocity in the centerline increases with the increase of DMM. However, the spray behavior of blended fuel in which DMM exceeds 75% is virtually identical to that of neat DMM. The measurement also reveals the existence of an "S" shape in the radial mean velocity variations with radial distance.

  5. Experimental investigation and modeling of diesel engine fuel spray

    OpenAIRE

    Kolodnytska, R. V.; Karimi, K; Crua, C.; Heikal, M. R.; Sazhina, E. M.

    2008-01-01

    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until ...

  6. Droplet turbulence interactions under subcritical and supercritical conditions

    Science.gov (United States)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  7. Experimental Study of Liquid Fuel Spray Combustion

    DEFF Research Database (Denmark)

    Westlye, Fredrik Ree

    from cavitating and non-cavitating large bore injectors. The injectors have been specifically machined to isolate the effects of in-nozzle cavitation on the resulting spray and combusting characteristics. Experiments were carried out in an optically accessible constant volume combustion vessel......This PhD dissertation was carried out at the Technical University of Denmark in the Department of Mechanical Engineering and has been supervised by Associate Professor Anders Ivarsson and co-supervised by Professor Jesper Schramm. The project has been a part of the RADIADE project funded...... for camera non-idealities and postprocessing methods have been developed and refined in this work to measure the optical thickness of the soot in the transient spray flames as accurately as possible. The soot cloud from these wide bore injectors was so optically thick that it appeared opaque to the camera...

  8. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    Science.gov (United States)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  9. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  10. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2013-01-01

    Full Text Available The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm, these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD of the spray droplets was also measured by using Phase Doppler Anemometry (PDA at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  11. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Science.gov (United States)

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  12. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.

    Science.gov (United States)

    Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P

    2009-01-01

    A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the

  13. Hollow Cone Spray Characterization and Integral Modeling

    OpenAIRE

    Bollweg, Peter

    2013-01-01

    The thesis presents a computationally efficient spray model for hollow cone sprays suitable for engine system simulation of direct injecting gasoline internal combustion engines. The model describes the transient evolution of the spray as a two-phase jet. Spatial gradients are resolved along the main injection direction. Momentum exchange, droplet heat-up, and fuel evaporation are accounted for. Diffusive transport of momentum, energy, and fuel species mass between the dense spray zone an...

  14. Modeling and Simulation of the Microstructure Evolution of the Gas-atomized Alloy Droplets during Spray Forming

    Institute of Scientific and Technical Information of China (English)

    Jiuzhou ZHAO; Dongming LIU; Hengqiang YE

    2003-01-01

    In order to understand the solidification process of an atomized droplet and predict the fraction solidification ofdroplets with flight distance during spray forming, a numerical model based on the population dynamics approach isdeveloped to describe the microstructure evolution under the common action of the nucleation and growth of grains.The model is coupled with droplets heat transfer controlling equations and solved for Al-4.5 wt pct Cu alloy. It isdemonstrated that the numerical results describe the solidification process well.

  15. Transient heating and evaporation of moving mono-component liquid fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    This paper presents a complete description of a model for transient heating and evaporation of moving mono-component liquid fuel droplets. The model mainly consists of gas phase heat and mass transfer analysis, liquid phase analysis, and droplet dynamics analysis, which address the interaction...... between the moving droplets and free-stream flow, the flow and heat and mass transfer within the droplets, and the droplet dynamics and size, respectively. For the liquid phase analysis, the droplets are discretized into a number of control volumes along the radial, polar and azimuthal directions, on each...

  16. Evaporation of multi-component mixtures and shell formation in spray dried droplets

    Science.gov (United States)

    Valente, Pedro; Duarte, Íris; Porfirio, Tiago; Temtem, Márcio

    2015-11-01

    Drug particles where the active pharmaceutical ingredient (APIs) is dispersed in a polymer matrix forming an amorphous solid dispersion (ASD) is a commonly used strategy to increase the solubility and dissolution rate of poorly water soluble APIs. However, the formation and stability of an amorphous solid dispersion depends on the polymer/API combination and process conditions to generate it. The focus of the present work is to further develop a numerical tool to predict the formation of ASDs by spray drying solutions of different polymer/API combinations. Specifically, the evaporation of a multi-component droplet is coupled with a diffusion law within the droplet that minimizes the Gibbs free energy of the polymer/API/solvents system, following the Flory-Huggins model. Prior to the shell formation, the evaporation of the solvents is modelled following the simplified approach proposed by Abramzon & Sirignano (1989) which accounts for the varying relative velocity between the droplet and the drying gas. After shell formation, the diffusion of the solvents across the porous shell starkly modifies the evaporative dynamics.

  17. Vacuum plasma spray applications on liquid fuel rocket engines

    Science.gov (United States)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  18. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    Science.gov (United States)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  19. On the application of the PFEM to droplet dynamics modeling in fuel cells

    Science.gov (United States)

    Ryzhakov, Pavel B.; Jarauta, Alex; Secanell, Marc; Pons-Prats, Jordi

    2017-07-01

    The Particle Finite Element Method (PFEM) is used to develop a model to study two-phase flow in fuel cell gas channels. First, the PFEM is used to develop the model of free and sessile droplets. The droplet model is then coupled to an Eulerian, fixed-grid, model for the airflow. The resulting coupled PFEM-Eulerian algorithm is used to study droplet oscillations in an air flow and droplet growth in a low-temperature fuel cell gas channel. Numerical results show good agreement with predicted frequencies of oscillation, contact angle, and deformation of injected droplets in gas channels. The PFEM-based approach provides a novel strategy to study droplet dynamics in fuel cells.

  20. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  1. Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging.

    Science.gov (United States)

    Mishra, Yogeshwar Nath; Kristensson, Elias; Berrocal, Edouard

    2014-02-24

    In this article, Structured Laser Illumination Planar Imaging (SLIPI) is used in combination with the LIF/Mie ratio technique for extracting a reliable two-dimensional mapping of the droplets Sauter Mean Diameter (SMD). We show that even for the case of a fairly dilute spray, where single scattering events are in majority, the conventional LIF/Mie technique still remains largely affected by errors introduced by multiple light scattering. To remove this unwanted light intensity on both the LIF and Mie images SLIPI is used prior to apply the image ratio. For the first time, the SLIPI LIF/Mie results are calibrated and compared with measurement data from Phase Doppler Interferometry (PDI).

  2. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  3. Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion

    Science.gov (United States)

    Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2016-11-01

    This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.

  4. A spray cooling technique for spent fuel assembly stored in pool

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dao-Gang; Cao, Q. [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Wang, Y.; Zhong, Hao-Liang; Duan, Xiao-Han

    2016-05-15

    For the safety of spent nuclear fuel assemblies stored in storage pool in the extreme condition where the water is lost completely, a passive spray cooling technique was designed, and its effectiveness has been validated by a functional experiment. The spray cooling characteristics of the spent fuel assembly have also been investigated by the experiment.

  5. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    Science.gov (United States)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  6. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    Science.gov (United States)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  7. Burning of a spherical fuel droplet in a uniform subsonic flowfield

    Energy Technology Data Exchange (ETDEWEB)

    Madooglu, K.; Karagozian, A.R.

    1989-12-31

    An analytical/numerical model is described for the evaporation and burning of a spherical fuel droplet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compressible potential solution, while the internal flowfield of the droplet is represented by the classical Hill`s spherical vortex. This allows numerical solution for the external boundary layer and diffusion flame characteristics to be made, from which the droplet`s effective drag coefficient, rate of mass loss, size, and flame shape are determined. Comparison with experimental data indicate good agreement, and thus the potential for such simplified models in performing parametric studies.

  8. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    Directory of Open Access Journals (Sweden)

    Bittagopal Mondal

    2016-01-01

    Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.

  9. Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system

    Science.gov (United States)

    Experiments were conducted to study the conidial viability during bioassay spray with different suspensions of Metarhizium anisopliae ATCC 62176 and Beauveria bassiana NI8, and to investigate the effects of conidial density and spray volume on the distribution of droplet size and deposit coverage us...

  10. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  11. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    Science.gov (United States)

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine ... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel...the capability of a recently adopted high fidelity two phase flow solver in the context of diesel engine sprays. Previous works relating to this

  12. Quantitative spray analysis of diesel fuel and its emulsions using digital image processing

    Directory of Open Access Journals (Sweden)

    Faik Ahmad Muneer El-Deen

    2015-01-01

    Full Text Available In the present work, an experimental investigation of spray atomization of different liquids has been carried out. An air-assist atomizer operating at low injection pressures valued (4 and 6 bar has been used to generate sprays of (diesel fuel, 5, 10, and 15% water-emulsified-diesel, respectively. A Photron-SA4 high speed camera has been used for spray imaging at 2000 fps. 20 time intervals (from 5 to 100 ms with 5 ms time difference are selected for analysis and comparison. Spray macroscopic characteristics (spray penetration, dispersion, cone angle, axial and dispersion velocities have been extracted by a proposed technique based on image processing using Matlab, where the maximum and minimum (horizontal and vertical boundaries of the spray are detected, from which the macroscopic spray characteristics are evaluated. The maximum error of this technique is (1.5% for diesel spray and a little bit higher for its emulsions.

  13. Modelling of automotive fuel droplet heating and evaporation: mathematical tools and approximations

    Science.gov (United States)

    Sazhin, Sergei S.; Qubeissi, Mansour Al

    2016-06-01

    New mathematical tools and approximations developed for the analysis of automotive fuel droplet heating and evaporation are summarised. The approach to modelling biodiesel fuel droplets is based on the application of the Discrete Component Model (DCM), while the approach to modelling Diesel fuel droplets is based on the application of the recently developed multi-dimensional quasi-discrete model. In both cases, the models are applied in combination with the Effective Thermal Conductivity/Effective Diffusivity model and the implementation in the numerical code of the analytical solutions to heat transfer and species diffusion equations inside droplets. It is shown that the approximation of biodiesel fuel by a single component leads to under-prediction of droplet evaporation time by up to 13% which can be acceptable as a crude approximation in some applications. The composition of Diesel fuel was simplified and reduced to only 98 components. The approximation of 98 components of Diesel fuel with 15 quasi-components/components leads to under-prediction of droplet evaporation time by about 3% which is acceptable in most engineering applications. At the same time, the approximation of Diesel fuel by a single component and 20 alkane components leads to a decrease in the evaporation time by about 19%, compared with the case of approximation of Diesel fuel with 98 components. The approximation of Diesel fuel with a single alkane quasi-component (C14.763H31.526) leads to under-prediction of the evaporation time by about 35% which is not acceptable even for qualitative analysis of the process. In the case when n-dodecane is chosen as the single alkane component, the above-mentioned under-prediction increases to about 44%.

  14. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.

    Science.gov (United States)

    Theodorakakos, A; Ous, T; Gavaises, M; Nouri, J M; Nikolopoulos, N; Yanagihara, H

    2006-08-15

    The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier-Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas-liquid-solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.

  15. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  16. Phenomenology of break-up modes in contact free externally heated nanoparticle laden fuel droplets

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-12-01

    We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

  17. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    Science.gov (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  18. Comparison of Global Sizing Velocimetry and Phase Doppler Anemometry measurements of alternative jet fuel sprays

    Science.gov (United States)

    Sadr, Reza; Kannaiyan, Kumaran

    2013-11-01

    Atomization plays a crucial precursor role in liquid fuel combustion that directly affects the evaporation, mixing, and emission levels. Laser diagnostic techniques are often used to study the spray characteristics of liquid fuels. The objective of this work is to compare the spray measurements of Gas-to Liquid (GTL) jet fuels obtained using Global Sizing Velocimetry (GSV) and Phase Doppler Anemometry (PDA) techniques at global and local levels, respectively. The chemical and physical properties of GTL fuels are different from conventional jet fuels, owing to the difference in their production methodology. In this work, the experimental facility, the measurement techniques, and spray characteristics of two different GTL fuels are discussed and compared with those of Jet A-1 fuel. Results clearly demonstrate that although the global measurement gives an overall picture of the spray, fine details are obtained only through local measurements and complement in gaining more inferences into the spray characteristics. The results also show a close similarity in spray characteristics between GTL and Jet A-1 fuels. Funded by Qatar Science and Technology Park.

  19. The effect of injection pressure and fuel viscosity on the spray characteristics of biodiesel blends injected into an atmospheric chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ghurri, Ainul; Kim, Jae Duk; Kim, Hyung Gon; Jung, Jae Youn; Song, Kyu Keun [Chonbuk National Univ., Deokjin Gu (Korea, Republic of)

    2012-09-15

    An experimental study was conducted to examine the effect of injection pressure and fuel type on the spray tip penetration length and the angle of spray injected into atmospheric chamber. The objective of the present study is to formulate empirical correlations of the spray tip penetration and the spray angle for non evaporative condition. The experiment was performed by a common rail type high pressure injector for the diesel engine at the injection pressure 40{approx}100 MPa and four different fuels (D100, BD25, BD45, and BD65). The results showed that the biodiesel content increased the spray tip penetration and decreased the spray angle. The correlation of spray tip penetration is expressed for each region before and after spray break up time in terms of injection pressure, fuel viscosity and time after start of injection. The correlation is also obtained for spray angle equation terms of injection pressure and fuel viscosity.

  20. Investigation of Sooting in Microgravity Droplet Combustion: Fuel-Dependent Effects

    Science.gov (United States)

    Manzello, Samuel L.; Hua, Ming; Choi, Mun Young

    1999-01-01

    Kumagai and coworkers first performed microgravity droplet combustion experiments [Kumagai, 1957]. The primary goal of these early experiments were to validate simple 'd(sup 2)-law models [Spalding, 1954, Godsave, 1954] Inherent in the 'd(sup 2) -law' formulation and in the scope of the experimental observation is the neglect of sooting behavior. In fact, the influence of sooting has not received much attention until more recent works [Choi et al., 1990; Jackson et al., 1991; Jackson and Avedisian, 1994; Choi and Lee, 1996; Jackson and Avedisian, 1996; Lee et al., 1998]:. Choi and Lee measured soot volume fraction for microgravity droplet flames using full-field light extinction and subsequent tomographic inversion [Choi and Lee, 1996]. In this investigation, soot concentrations were measured for heptane droplets and it was reported that soot concentrations were considerably higher in microgravity compared to the normal gravity flame. It was reasoned that the absence of buoyancy and the effects of thermophoresis resulted in the higher soot concentrations. Lee et al. [1998] performed soot measurement experiments by varying the initial droplet diameter and found marked influence of sooting on the droplet burning behavior. There is growing sentiment that sooting in droplet combustion must no longer be neglected and that "perhaps one of the most important outstanding contributions of (micro)g droplet combustion is the observation that in the absence of asymmetrical forced and natural convection, a soot shell is formed between the droplet surface and the flame, exerting an influence on the droplet combustion response far greater than previously recognized." [Law and Faeth, 1994]. One of the methods that we are exploring to control the degree of sooting in microgravity is to use different fuels. The effect of fuel structure on sooting propensity has been investigated for over-ventilated concentric coflowing buoyant diffusion flames. (Glassman, 1996]. In these

  1. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  2. Burning of a spherical fuel droplet in a uniform subsonic flowfield

    Energy Technology Data Exchange (ETDEWEB)

    Madooglu, K.; Karagozian, A.R.

    1989-01-01

    An analytical/numerical model is described for the evaporation and burning of a spherical fuel droplet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compressible potential solution, while the internal flowfield of the droplet is represented by the classical Hill's spherical vortex. This allows numerical solution for the external boundary layer and diffusion flame characteristics to be made, from which the droplet's effective drag coefficient, rate of mass loss, size, and flame shape are determined. Comparison with experimental data indicate good agreement, and thus the potential for such simplified models in performing parametric studies.

  3. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    Science.gov (United States)

    Palan, Vikrant; Shepard, W. Steve

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2 mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250 g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength.

  4. Enhanced water removal in a fuel cell stack by droplet atomization using structural and acoustic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Palan, Vikrant; Shepard, W. Steve [Department of Mechanical Engineering, The University of Alabama, 290 Hardaway Hall, Box 870276, Tuscaloosa, AL 35487 (United States)

    2006-09-22

    This work examines new methods for enhancing product water removal in fuel cell stacks. Vibration and acoustic based methods are proposed to atomize condensed water droplets in the channels of a bipolar plate or on a membrane electrode assembly (MEA). The vibration levels required to atomize water droplets of different sizes are first examined using two different approaches: (1) exciting the droplet at the same energy level required to form that droplet; and (2) by using a method called 'vibration induced droplet atomization', or VIDA. It is shown analytically that a 2mm radius droplet resting on a bipolar-like plate can be atomized by inducing acceleration levels as low as 250g at a certain frequency. By modeling the direct structural excitation of a simplified bipolar plate using a realistic source, the response levels that can be achieved are then compared with those required levels. Furthermore, a two-cell fuel cell finite element model and a boundary element model of the MEA were developed to demonstrate that the acceleration levels required for droplet atomization may be achieved in both the bipolar plate as well as the MEA through proper choice of excitation frequency and source strength. (author)

  5. Top-spray fluid bed coating: Scale-up in terms of relative droplet size and drying force

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2008-01-01

    that none of the two parameters alone may be used for successful sealing. Morphology and microscope studies indicated that the coating layer is homogenous and has similar structures across scale only when both the drying force and the relative droplet size were fixed. Impact and attrition tests indicated......Top-spray fluid bed coating scale-up experiments have been performed in three scales in order to test the validity of two parameters as possible scaling parameters: The drying force and the relative droplet size. The aim was to be able to reproduce the degree of agglomeration as well...... as the mechanical properties of the coated granules across scale. Two types of placebo enzyme granule cores were tested being non-porous glass ballotini cores (180-350 mu m) and low porosity sodium sulphate cores (180-350 mu m). Both types of core materials were coated with aqueous solutions of Na2SO4 using Dextrin...

  6. Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding

    Science.gov (United States)

    Maier, Benjamin R.; Garcia-Diaz, Brenda L.; Hauch, Benjamin; Olson, Luke C.; Sindelar, Robert L.; Sridharan, Kumar

    2015-11-01

    Coatings of Ti2AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of accident tolerance to nuclear fuel cladding.

  7. Evolution of temperature of a droplet of liquid composite fuel interacting with heated airflow

    Science.gov (United States)

    Glushkov, D. O.; Zakharevich, A. V.; Strizhak, P. A.; Syrodoy, S. V.

    2016-11-01

    The macroscopic patterns of a temperature change at the center of a droplet of three-component (coal, water, petroleum) composite liquid fuel (CLF) were studied using a low-inertia thermoelectric converter and system of high-speed (up to 105 frames per second) video recording during the induction period at different heating intensity by the air flow with variable parameters: temperature of 670-870 K and motion velocity of 1-4 m/s. The studies were carried out for two groups of CLF compositions: fuel based on brown coal and coal cleaning rejects (filter cake). To assess the effect of liquid combustible component of CLF on characteristics of the ignition process, the corresponding composition of two-component coal-water fuel (CWF) was studied. The stages of inert heating of CLF and CWF droplets with characteristic size corresponding to radius of 0.75-1.5 mm, evaporation of moisture and liquid oil (for CLF), thermal decomposition of the organic part of coal, gas mixture ignition, and carbon burnout were identified. Regularities of changes in the temperature of CLF and CWF droplets at each of identified stages were identified for the cooccurrence of phase transitions and chemical reactions. Comparative analysis of the times of ignition delay and complete combustion of the droplets of examined fuel compositions was performed with varying droplet dimensions, temperatures, and oxidant flow velocity.

  8. 具有冲击平板的雾化喷雾流中汽液流动的模拟%Simulation of Droplet-gas Flow in the Effervescent Atomization Spray with an Impinging Plate

    Institute of Scientific and Technical Information of China (English)

    钱丽娟; 林建忠; 熊红兵

    2009-01-01

    A comprehensive three-dimensional model of droplet-gas flow was presented to study the evolution of spray in the effervescent atomization spray with an impinging plate. For gas phase, the N-S equation with the κ-ε turbulence model was solved, considering two-way coupling interaction between droplets and gas phase. Dispersed droplet phase is modeled as Lagrangian entities, accounting for the physics of droplet generation from primary and secondary breakup, droplet collision and coalescence, droplet momentum and heat transfer. The mean size and sta-tistical distribution of atomized droplets at various nozzle-to-plate distances were calculated. Some simulation re-sults were compared well with experimental data. The results show that the existence of the impinging plate has a pronounced influence on the droplet mean size, size distribution and the droplet spatial distribution. The air-to-liquid ratio has obvious effects on the droplet size and distribution.

  9. Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed R, Negeed [Reactors Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); El-Sayed R, Negeed; Ishihara, N.; Tagashira, K.; Hidaka, S.; Kohno, M.; Takata, Y. [Department of Mechanical Engineering Science, Faculty of Engineering, Kyushu University, Fukuoka (Japan)

    2010-12-15

    The present study investigates experimentally the effects of thermal properties of the hot surface and droplet characteristics on the droplet evaporation. Cylindrical blocks made of Stainless Steel, Aluminum and Brass with different degrees of surface roughness were used. The droplet diameter and velocity were controlled independently. The behavior of droplet during the collision with hot surface was observed with a high-speed camera. The results presented the effect of the thermal properties of the hot surface, droplet Weber number, droplet velocity, droplet size, hot surface conditions; surface superheat and degree of surface roughness on the solid-liquid contact time and the maximum spread of droplet over the surface. Empirical correlations have been deduced describing the relationship between the hydrodynamic characteristics of an individual droplet impinging on a heated surface and concealing the affecting parameters in such process. Also, the comparison between the current results and the results due to others investigators shows good agreement in which the difference between them ranged from 5% to 25%. (authors)

  10. Ignition of Liquid Fuel Spray and Simulated Solid Rocket Fuel by Photoignition of Carbon Nanotube Utilizing a Camera Flash

    Science.gov (United States)

    2011-12-01

    Badakhshan A1 , Danczyk S. A.2, Wirth D.3 and Pilon L. 3 Abstract We have studied the ignition of fuel sprays and simulated solid rocket fuels (SRF...photoignition of solid oxidizer/CNT mixtures exposed to a flash of light. The flash source was a commercial studio flash lamp with a rated maximum

  11. Fundamental studies of spray combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C.; Libby, P.A.; Williams, F.A. [Univ. of California, San Diego, CA (United States)

    1997-12-31

    Our research on spray combustion involves both experiment and theory and addresses the characteristics of individual droplets and of sprays in a variety of flows: laminar and turbulent, opposed and impinging. Currently our focus concerns water and fuel sprays in two stage laminar flames, i.e., flames arising, for example from a stream of fuel and oxidizer flowing opposite to an air stream carrying a water spray. Our interest in these flames is motivated by the goals of reducing pollutant emissions and extending the range of stable spray combustion. There remains considerable research to be carried out in order to achieve these goals. Thus far our research on the characteristics of sprays in turbulent flows has been limited to nonreacting jets impinging on a plate but this work will be extended to opposed flows with and without a flame. In the following we discuss details of these studies and our plans for future work.

  12. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  13. Modeling the impact, flattening and solidification of a molten droplet on a solid substrate during plasma spraying

    Science.gov (United States)

    Zheng, Y. Z.; Li, Q.; Zheng, Z. H.; Zhu, J. F.; Cao, P. L.

    2014-10-01

    It is quite important to clearly understand the dynamic process of single splat formation for optimizing the plasma spraying process. In present study, a three-dimensional model including heat transfer and phase change was developed on Ansys Fluent 14 platform to simulate the impact, flattening and solidification of a molten droplet on a solid substrate during plasma spraying. The phase, contact pressure, temperature and velocity fields at different spreading times were presented to gain an insight into splat formation mechanism. The predicted splat morphology was in good agreement with the experimental photos. The effect of mushy zone constant, a parameter dominating the solidification behavior of fluid in Fluent, on the flattening of droplet was further investigated. Through comparing the calculated spread factor from present model with the experimental value, a mushy zone constant of 108 or 109 was found to be more appropriate for simulation on the solidification problem occurring in high-speed impact and flattening process, instead of the range of 104-107 recommended in Fluent.

  14. Radiation effect on thermal explosion in a gas containing evaporating fuel droplets

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, I.; Gol' dshtein, V.; Katz, D. [Department of Mathematics, Faculty of Natural Sciences, Ben Gurion University of the Negev, Grossman Building, P.O.B. 653, Beer Sheva 84105 (Israel); Sazhin, S. [School of Engineering, Faculty of Science and Engineering, University of Brighton, Cockcroft Building, Brighton BN2 4GJ (United Kingdom)

    2007-02-05

    The dynamics of thermal explosion in a fuel droplets/hot air mixture is investigated using the geometrical version of the method of integral manifolds. The results are applied to the modelling of the ignition process in diesel engines. Effects of the thermal radiation, semi-transparency of droplets and oxidizer are taken into account. In contrast to the previous studies, the difference between gas temperature (responsible for convective heating of droplets) and external temperature (responsible for radiative heating of droplets) is taken into account. The dynamics of the explosion is presented in terms of the dynamics of a multi-scale, singularly perturbed system. The relevant parametric regions of this system are analyzed. Explicit analytical formulae for the ignition delay in the presence of thermal radiation are derived. It is shown that the effect of thermal radiation can lead to considerable reduction (up to about 30%) of the total ignition delay time. (author)

  15. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.

    Science.gov (United States)

    Chen, Jian-Nan; Zhang, Zhen; Xu, Rui-Na; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-09-13

    Numerical investigations of the dynamics and evaporative cooling of water droplets impinging onto heated surfaces can be used to identify spray cooling mechanisms. Droplet impingement dynamics and evaporation are simulated using the presented numerical model. Volume-of-fluid method is used in the model to track the free surface. The contact line dynamics was predicted from a dynamic contact angle model with the evaporation rate predicted by a kinetic theory model. A species transport equation was solved in the gas phase to describe the vapor convection and diffusion. The numerical model was validated by experimental data. The physical effects including the contact angle hysteresis and the thermocapillary effect are analyzed to offer guidance for future numerical models of droplet impingement cooling. The effects of various parameters including surface wettability, surface temperature, droplet velocity, droplet size, and droplet temperature were numerically studied from the standpoint of spray cooling. The numerical simulations offer profound analysis and deep insight into the spray cooling heat transfer mechanisms.

  16. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yanan; Qiao, Li [School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907 (United States)

    2011-02-15

    The burning characteristics of fuel droplets containing nano and micron-sized aluminum particles were investigated. Particle size, surfactant concentration, and the type of base fluid were varied. In general, nanosuspensions can last much longer than micron suspensions, and ethanol-based fuels were found to achieve much better suspension than n-decane-based fuels. Five distinctive stages (preheating and ignition, classical combustion, microexplosion, surfactant flame, and aluminum droplet flame) were identified for an n-decane/nano-Al droplet, while only the first three stages occurred for an n-decane/micron-Al droplet. For the same solid loading rate and surfactant concentration, the disruption and microexplosion behavior of the micron suspension occurred later with much stronger intensity. The intense droplet fragmentation was accompanied by shell rupture, which caused a massive explosion of particles, and most of them were burned during this event. On the contrary, for the nanosuspension, combustion of the large agglomerate at the later stage requires a longer time and is less complete because of formation of an oxide shell on the surface. This difference is mainly due to the different structure and characteristics of particle agglomerates formed during the early stage, which is a spherical, porous, and more-uniformly distributed aggregate for the nanosuspension, but it is a densely packed and impermeable shell for the micron suspension. A theoretical analysis was then conducted to understand the effect of particle size on particle collision mechanism and aggregation rate. The results show that for nanosuspensions, particle collision and aggregation are dominated by the random Brownian motion. For micron suspensions, however, they are dominated by fluid motion such as droplet surface regression, droplet expansion resulting from bubble formation, and internal circulation. And the Brownian motion is the least important. This theoretical analysis explains the

  17. Spray characteristics of high-pressure swirl injector fueled with alcohol

    Institute of Scientific and Technical Information of China (English)

    WANG Xibin; CHEN Wansheng; GAO Jian; JIANG Deming; HUANG Zuohua

    2007-01-01

    The spray characteristics of methanol and ethanol with high-pressure swirl injector were explored experimentally and numerically.Experimental results show that the spray characteristics of methanol and ethanol had displayed the same trends as that of gasoline.Under the low back pressure ambient conditions,the spray behavior exhibited a hollow cone with wide spray angle and initial spray slug at the tip,while the spray presented a solid cone in the case of high back-pressure.Vortexes in the opposite direction existed in the rear part of the spray under low back-pressure ambient conditions while the vortexes formed in the middle part under high back-pressure ambient conditions.Experiments also showed that methanol had the largest cone angle,while ethanol and gasoline presented almost the same cone angle.Simulation results indicated that methanol and ethanol had a slightly larger Sauter mean diameter (SMD) than that of gasoline with swirl injector..The SMD profile of methanol coincided well with that of ethanol under low back-pressure ambient conditions,but displayed a slightly larger value under high back-pressure due to fuel evaporation.Numerical simulation could successfully demonstrate the spray charac teristics of high-pressure swirl injector for methanol and ethanol fuels.

  18. Standardization of Field Methods for Determination of Insecticide Spray Droplet Size

    Science.gov (United States)

    1977-03-15

    1970). 12 Silicone treatment of a glass slide leaves an oleophobic layer that prevents irregular spreading of droplets. An impinging droplet spreads...determination of spread factors for oleophobic coatings. Most methods involve measurement of lens height and base diameter (May 1945, Yeomans 1949, and...Yeomans 1960). Teflon surfaces can be coated on glass slides and are commercially available. The teflon surface is more oleophobic than silicone

  19. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    KAUST Repository

    Sim, Jaeheon

    2015-05-12

    Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

  20. Evaporation and burning of a spherical fuel droplet in a uniform convective flowfield

    Energy Technology Data Exchange (ETDEWEB)

    Madooglu, K.

    1992-01-01

    An analytical/numerical model is developed for the evaporation and burning of a spherical fuel droplet in a subsonic crossflow. The external gaseous flowfield is represented using an approximate compressible potential-flow solution, while the internal flowfield of the droplet is represented by the classical Hill's spherical vortex. This allows a numerical solution for the external boundary layer, from which the droplet's effective drag coefficent, rate of mass loss, size, and the shape of the diffusion flame with infinitely fast chemical reaction kinetics are determined. Subsequently, the quasi-steady model with uniform liquid temperature is extended to examine the effects of the transient heating of the droplet interior. Time-dependent calculations are performed with updated droplet Reynolds numbers and updated surface temperatures. Comparisons of model predictions with experimental data are made. To examine the effects of finite-rate chemical reaction kinetics, a one-step formulation of the combustion mechanism is integrated into the gaseous boundary layer equations. Simplifying assumptions for the variation of gas properties commonly used in combustion calculations, are subjected to an examination as to their degree of accuracy. For this purpose, the droplet model is extended to account for the variation of gas properties with temperature and gas composition within the boundary layer. Comparisons are made between the predictions obtained from the different models developed in this study, as well as with existing experimental data.

  1. Quantitative comparison of fuel spray images obtained using ultrafast coherent and incoherent double-pulsed illumination

    CERN Document Server

    Purwar, Harsh; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Ménard, Thibault

    2015-01-01

    We present a quantitative comparison between the high-pressure fuel spray images obtained experimentally using classical imaging with coherent and incoherent ultrafast illuminations recorded using a compatible CMOS camera. The ultrafast, incoherent illumination source was extracted from the supercontinuum generated by tightly focusing the femtosecond laser pulses in water. The average velocity maps computed using time-correlated image-pairs and spray edge complexity computed using the average curvature scale space maps are compared for the spray images obtained with the two illumination techniques and also for the numerically simulated spray using the coupled volume of fluid and level set method for interface tracking (direct numerical simulation or DNS). The spray images obtained with supercontinuum-derived, incoherent, ultrafast illumination are clearer, since the artifacts arising due to laser speckles and multiple diffraction effects are largely reduced and show a better correlation with the DNS results.

  2. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  3. Ignition of a floating droplet of organic coal-water fuel

    Science.gov (United States)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-06-01

    The results of experimental investigations are presented for the ignition of droplets (particles) of organic coal-water fuels (OCWFs) floating in a flow of an oxidizer using a special combustion chamber from high-temperature quartz glass. The temperature and the velocity of motion of the oxidizer vary in the ranges of 500-900 K and 0.5-3 m/s. The initial sizes (radii) of fuel droplets amounted to 0.3-1.5 mm. As the basic OCWF components, particles (of 80-100 µm in size) of brown coal "B2," water, mazut, and waste castor and compressor oils are used. With use of the system of high-velocity video registration, the conditions providing for floating of OCWF particles without initiation of burning and with the subsequent steady ignition are established. Four modes of OCWF-droplet ignition with different trajectories of their motion in the combustion chamber are singled out. The times of the OCWF-ignition delay in dependence on the size of fuel particles and oxidizer temperatures are determined. The deviations of the OCWF-ignition-delay times obtained under conditions of suspension of a droplet on the thermocouple junction and while floating in the oxidizer flow are established.

  4. Fuel Effects on Nozzle Flow and Spray Using Fully Coupled Eulerian Simulations

    Science.gov (United States)

    2015-09-01

    atomization and mixing characteristics of non-reacting isothermal diesel engine sprays. An Eulerian modeling approach was adopted to simulate both the...of single and multi-component surrogate fuel mixtures on the atomization and mixing characteristics of non-reacting isothermal diesel engine sprays...simulations and has shown the suitability of several multi-component kerosene surrogates at diesel engine conditions. The measurements were validated

  5. Thermal radiation effect on thermal explosion in gas containing fuel droplets

    Science.gov (United States)

    Goldfarb, Igor; Gol'dshtein, Vladimir; Kuzmenko, Grigory; Sazhin, Sergei

    1999-12-01

    The effect of thermal radiation on the dynamics of a thermal explosion of a flammable gas mixture with the addition of volatile fuel droplets is studied. This is based on an original physical model of self-ignition. The thermal radiation energy exchange between the evaporating surface of the fuel droplets and burning gas is described using the P-1 model with Marshak boundary conditions. The original system of equations describing the effects of heating, evaporation and the combustion of fuel droplets is simplified to enable their analysis using asymptotic methods. The mathematical formulation is eventually reduced to a singularly perturbed system of ordinary differential equations. This allows us to apply the advanced geometric asymptotic technique (integral manifold method) for the qualitative analysis of the behaviour of the solution. Possible types of dynamic behaviour of the system are classified and parametric regions of their existence are determined analytically. The main attention is concentrated on the situations where delays might occur before the final ignition. Our study is focused on the impact of thermal radiation on the delay time. The dimensionless parameter responsible for the impact of thermal radiation is singled out and analysed. The dependence of the delay characteristics on the physical parameters of the problem under consideration is analysed. An explicit expression for the minimum time delay of the thermal explosion of fuel droplets in the presence of thermal radiation is derived and applied to the thermal explosion of n-decane and tetralin droplets. It is pointed out that the effects of thermal radiation can be significant, especially at high temperatures, and cannot be ignored in the analysis of this phenomenon.

  6. Manufacturing and Properties of High-Velocity Oxygen Fuel (HVOF)-Sprayed FeVCrC Coatings

    Science.gov (United States)

    Sassatelli, Paolo; Bolelli, Giovanni; Lusvarghi, Luca; Manfredini, Tiziano; Rigon, Rinaldo

    2016-10-01

    This paper studies the microstructure, sliding wear behavior and corrosion resistance of high-velocity oxygen fuel (HVOF)-sprayed FeVCrC-based coatings. Various process parameters were tested to evaluate their effects on the coating properties, which were also compared to those of HVOF-sprayed NiCrBSi and Stellite-6 coatings. The Fe alloy coatings are composed of flattened splats, originating from molten droplets and consisting of a super-saturated solid solution, together with rounded particles, coming from partially unmolten material and containing V- and Fe-based carbide precipitates. All process parameters, apart from "extreme" settings with excess comburent in the flame, produce dense coatings, indicating that the feedstock powder is quite easily processable by HVOF. These coatings, with a microhardness of 650-750 HV0.3, exhibit wear rates of ≈2 × 10-6 mm3/(Nm) in ball-on-disk tests against sintered Al2O3 spheres. They perform far better than the reference coatings, and better than other Fe- and Ni-based alloy coatings tested in previous research. On the other hand, the corrosion resistance of the coating material (tested by electrochemical polarization in 0.1 M HCl solution) is quite low. Even in the absence of interconnected porosity, this results in extensive, selective damage to the Fe-based matrix. This coating material is therefore unadvisable for severely corrosive environments.

  7. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    Science.gov (United States)

    2016-10-05

    rely on air-blast atomizers in order to generate appropriate fuel spray characteristics for the combustion process. In general , such fuel injectors are...droplets based on characteristic time of the large scale turbulent for the three droplet classes were 0.005, 0.01, 0.02 for axial location Z = 0 mm, and...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics

  8. Effect of the Flow of Large Water Droplets on the Water Mist Sprays

    Directory of Open Access Journals (Sweden)

    Beda László

    2014-12-01

    Full Text Available The purpose of this study is to investigate the velocity field generated by water droplets with relatively large diameter that has great effect on the movement of several orders of magnitude smaller particles. A CFD model, Fire Dynamic Simulator (FDS version 5.5.3 was used for the numerical simulation. The data obtained from the numerical studies are analysed.

  9. Passive Dew Droplet Removal from Hydrogen Sensors for Fuel Cell Applications

    Science.gov (United States)

    Kano, Masataka; Ishii, Makoto; Yoshinaga, Haruo; Esashi, Masayoshi; Tanaka, Shuji

    This paper describes three structures to passively remove condensed water droplets from a gas heat conduction type hydrogen sensor for fuel cell applications. The three structures are A: water-repellent coating surrounded by water-absorbing porous ceramic coating, B: suspended porous membrane over a water-repellent sensor surface and C: wettability gradient for water droplet elimination. A real hydrogen sensor was used as a platform for the water-droplet-removal structures. Using helium instead of hydrogen, A and B type sensors and a reference sensor without water-droplet-removal structures were tested in a wet and hot atmosphere simulating a fuel cell environment. B type sensor showed normal output even after exposure to a dew-condensing atmosphere, while the reference and A type sensors showed abnormal output, suggesting dew condensation on the sensor surfaces. For C type sensor, a photochromic compound film on a super-water-repellent undercoat, which changes its wettability by ultraviolet exposure, was used. It was confirmed that the wettability could be controlled by ultraviolet exposure from 157.9° to 72.8° in water contact angle.

  10. A method of extending DPIV and its application in spray droplet size measurements

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A field method for measuring particle size distribution within a spray was developed based on extending of digital particle image velocimetry (DPIV) in this note. The size distribution of a water mist was successfully measured with this method, and the measured results were compared with the simply calculated ones.

  11. Single droplet drying for optimal spray drying of enzymes and probiotics

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Perdana, J.A.; Boom, R.M.

    2012-01-01

    Spray drying is a mild and cost-effective convective drying method. It can be applied to stabilise heat sensitive ingredients, such as enzymes and probiotic bacteria, albeit in industrial practice for example freeze drying or freezing are often preferred. The reason is that optimum drying conditions

  12. Spray Drying Processing: granules production and drying kinetics of droplets; El proceso de secado por atomizacion: formacion de granulos y cinetica de secado de gotas

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-09-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  13. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    OpenAIRE

    Fleetwood, James D

    2014-01-01

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these proc...

  14. SENSORING DROPLET SPRAY TRANSFER IN MIG WELDING BASED ON ARC SPECTRUM SIGNAL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The method to detect droplet transfer by means of arc spectrum, while the experiment sets, testing principle and data processing procedure, are presented. The experiment and analysis results show that arc spectrum signal can be utilized to detect and measure the transfer procedure, the transfer modes and the transfer parameters. The arc spectrum signal enjoys excellent quality with high signal amplitude. Each transfer mode has its specific typical signal mode, and the pulse outline corresponds to an integrated transferring procedure of one droplet. All these features of arc spectrum signal can be easily applied in the control of transfer procedure,the identification and stabilization of transfer mode and the measurement of transfer parameters.

  15. Validation of a Grid Independent Spray Model and Fuel Chemistry Mechanism for Low Temperature Diesel Combustion

    Directory of Open Access Journals (Sweden)

    Takeshi Yoshikawa

    2009-09-01

    Full Text Available Spray and combustion submodels used in a Computational Fluid Dynamics (CFD code, KIVACHEMKIN, were validated for Low Temperature Combustion (LTC in a diesel engine by comparing measured and model predicted fuel spray penetrations, and in-cylinder distributions of OH and soot. The conditions considered were long ignition delay, early and late fuel injection cases. It was found that use of a grid independent spray model, called the GASJET model, with an improved n-heptane chemistry mechanism can well predict the heat release rate, not only of the main combustion stage, but also of the cool flame stage. Additionally, the GASJET model appropriately predicts the distributions of OH and soot in the cylinder even when the resolution of the computational mesh is decreased by half, which significantly reduces the required computational time.

  16. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering

    Science.gov (United States)

    Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.

    2017-06-01

    An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.

  17. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-01

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  18. A compressible real gas eulerian model for LES of fuel sprays

    Science.gov (United States)

    Knudsen, Edward; Doran, Eric

    2015-11-01

    A compressible solver for eulerian multiphase spray simulations is presented. This large eddy simulation solver employs a Peng-Robinson (PR) equation of state to describe mixtures of two species such as liquid dodecane and gaseous nitrogen. Modeling challenges associated with the use of PR are discussed, as are the resource requirements associated with using a compressible formulation to describe liquids when full fuel injector applications are considered. The solver is analyzed using canonical cases and the Spray A experiment from the Engine Combustion Network.

  19. Production of Babbitt Coatings by High Velocity Oxygen Fuel (HVOF) Spraying

    Science.gov (United States)

    Nascimento, A. R. C.; Ettouil, F. B.; Moreau, C.; Savoie, S.; Schulz, R.

    2017-08-01

    This work presents HVOF as an alternative means to produce dense Babbitt coatings by thermal spray. A radial injection setup and low fuel flow rates were used to minimize heat transfer to the low melting point alloy. In-flight particle diagnostic systems were used to correlate spray parameters with the changes in particle velocity and thermal radiation intensity. The use of particles with larger diameters resulted in higher deposition efficiencies. It was shown that HVOF Babbitt coatings combine a dense structure and a fine distribution of intermetallic phases when compared to more traditional babbitting techniques.

  20. Combustion of Interacting Droplet Arrays Being Studied

    Science.gov (United States)

    Dietrich, Daniel L.

    2002-01-01

    The combustion of liquid fuels is a major source of energy in the world today, and the majority of these fuels are burned in the form of a spray. This droplet combustion project at the NASA Glenn Research Center has the overall goal of providing a better understanding of spray combustion by extending existing studies of single droplets to a regime where droplet interactions are important (as occurs in a practical spray). The Combustion of Interacting Droplet Arrays is a collaborative effort between Glenn and the National Center for Microgravity Research. The group at Glenn also collaborates with scientists at the National Institute of Advanced Industrial Science and Technology in Hokkaido, Japan. The project is studying the combustion of a small number of droplets suspended on small quartz fibers in a 0.1-atm combustion chamber. Data consist primarily of video images of the flames and droplets. The tests are being conducted in Glenn's reduced-gravity facilities (2.2-sec and 5.2-sec drop towers) and in the Japan Microgravity Center's 10-sec drop tower (JAMIC).

  1. Injectable Spontaneous Generation of Tremendous Self-Fueled Liquid Metal Droplet Motors in a Moment

    CERN Document Server

    Yao, You-You; Liu, Jing

    2015-01-01

    Micro motors that could run in liquid environment is very important for a variety of practices such as serving as pipeline robot, soft machine, drug delivery, or microfluidics system etc. However, fabrication of such tiny motors is generally rather time and cost consumptive and has been a tough issue due to involve too many complicated procedures and tools. Here, we show a straightforward injectable way for spontaneously generating autonomously running soft motors in large quantity. A basic fabrication strategy thus enabled is established and illustrated. It was found that, injecting the GaIn alloy pre-fueled with aluminum into electrolyte would automatically split in seconds into tremendous droplet motors swiftly running here and there. The driving force originated from the galvanic cell reaction among alloy, aluminum and surrounding electrolyte which offers interior electricity and hydrogen gas as motion power. This finding opens the possibility to develop injectable tiny-robots, droplet machines or microfl...

  2. A computationally efficient model for turbulent droplet dispersion in spray combustion

    Science.gov (United States)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    A novel model for turbulent droplet dispersion is formulated having significantly improved computational efficiency in comparison to the conventional point source stochastic sampling methodology. In the proposed model, a computational parcel representing a group of physical particles is considered to have a normal (Gaussian) probability density function (PDF) in three-dimensional space. The mean of each PDF is determined by Lagrangian tracking of each computational parcel, either deterministically or stochastically. The variance is represented by a turbulence-induced mean squared dispersion which is based on statistical inferences from the linearized direct modeling formulation for particle/eddy interactions. Convolution of the computational parcel PDF's produces a single PDF for the physical particle distribution profile. The validity of the new model is established by comparison with the conventional stochastic sampling method, where in each parcel is represented by a delta function distribution, for non-evaporating particles injected into simple turbulent air flows.

  3. Feature of high velocity oxygen-fuel flame spraying; Kosoku flame yoshaho no tokucho to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Sakaki, K. [Shinshu University, Nagano (Japan). Faculty of Engineering

    1996-05-01

    A description is given about the high velocity flame spraying method. In this method, fuel and oxygen under high pressure are supplied to a spraying gun, a supersonic stream of flame is jetted out of a fine nozzle, and spray particles are injected into the flame to impinge on the substrate surface at a very high speed for the formation of a coating. This method is advantageous in that the spray particles are higher in flying speed than in other spraying methods, that the produced coating is dense and close and excellent in adhesion, that the flame temperature is relatively low, and that the spray material is suppressed in terms of phase transformation, oxidation, and decomposition. This spraying technique is disadvantageous in that the spray materials that it can use are limited in variety because this method meets difficulties in spraying upon high melting-point metal or ceramics. This paper also outlines the spraying devices (chamber combustion type and throat combustion type) and the characteristics of produced coatings, and spray materials and their application (centering about carbide thermit spraying) are mentioned. 23 refs., 6 figs., 2 tabs.

  4. Modelling of heating and evaporation of gasoline fuel droplets: A comparative analysis of approximations

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2013-09-01

    Modelling of gasoline fuel droplet heating and evaporation processes is investigated using several approximations of this fuel. These are quasi-components used in the quasi-discrete model and the approximations of these quasi-components (Surrogate I (molar fractions: 83.0% n-C 6H14 + 15.6% n-C10H22 + 1.4% n-C14H30) and Surrogate II (molar fractions: 83.0% n-C7H16 + 15.6% n-C11H24 + 1.4% n-C15H32)). Also, we have used Surrogate A (molar fractions: 56% n-C7H16 + 28% iso-C8H 18 + 17% C7H8) and Surrogate B (molar fractions: 63% n-C7H16 + 20% iso-C8H 18 + 17% C7H8), originally introduced based on the closeness of the ignition delay of surrogates to that of gasoline fuel. The predictions of droplet radii and temperatures based on three quasi-components and their approximations (Surrogates I and II) are shown to be much more accurate than the predictions using Surrogates A and B. © 2013 Elsevier Ltd. All rights reserved.

  5. A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2012-12-01

    Full Text Available Artificially increasing the albedo of marine boundary layer clouds by the mechanical emission of sea spray aerosol has been proposed as a geoengineering technique to slow the warming caused by anthropogenic greenhouse gases. A previous global model study (Korhonen et al., 2010 found that only modest increases (< 20% and sometimes even decreases in cloud drop number (CDN concentrations would result from emission scenarios calculated using a windspeed dependent geoengineering flux parameterisation. Here we extend that work to examine the conditions under which decreases in CDN can occur, and use three independent global models to quantify maximum achievable CDN changes. We find that decreases in CDN can occur when at least three of the following conditions are met: the injected particle number is < 100 cm−3, the injected diameter is > 250–300 nm, the background aerosol loading is large (≥ 150 cm−3 and the in-cloud updraught velocity is low (< 0.2 m s−1. With lower background loadings and/or increased updraught velocity, significant increases in CDN can be achieved. None of the global models predict a decrease in CDN as a result of geoengineering, although there is considerable diversity in the calculated efficiency of geoengineering, which arises from the diversity in the simulated marine aerosol distributions. All three models show a small dependence of geoengineering efficiency on the injected particle size and the geometric standard deviation of the injected mode. However, the achievability of significant cloud drop enhancements is strongly dependent on the cloud updraught speed. With an updraught speed of 0.1 m s−1 a global mean CDN of 375 cm−3 (previously estimated to cancel the forcing caused by CO2 doubling is achievable in only about 50% of grid boxes which have > 50% cloud cover, irrespective of the amount of aerosol injected. But at stronger updraft speeds (0

  6. Dynamics and heat and mass transfer under spreading of liquid-droplet aviation fuel in the atmosphere

    Science.gov (United States)

    Arkhipov, Vladimir; Zharova, Irina; Kozlov, Eugene; Tkachenko, Aleksey

    2014-08-01

    A physical-mathematical model of dynamics and heat and mass transfer during spreading of liquid-droplet aviation fuel in the atmosphere is presented. The optimal emergency discharge height of kerosene for different Russian regions was evaluated based on the proposed mathematical model. The developed model can be used to select the height limit of reset kerosene, guaranteeing complete evaporation of the droplets in the atmosphere to the different aircraft velocities.

  7. Investigation of the spraying mechanism and combustion of the suspended coal fuel

    Directory of Open Access Journals (Sweden)

    Murko Vasiliy I.

    2015-01-01

    Full Text Available This paper continues the earlier one [1]. It presents the results of the suspended coal fuel spraying with pneumo-mechanical sprayers followed by the fuel combustion in a vortex furnace. It is shown that, during the spraying, two qualitatively different systems of drops are forming. The first one with the “drops” diameter above 80 - 100 mm is presented by coal particles, the other - by water-coal drops. Different dynamics of temperature variation of the coal particle and WCF drops during their combustion is founded. The residence time of the burning particles and WCF drops in the vortex furnace is proportional to their diameter, which permits to provide their effective burn-off.

  8. Nano-stereocomplexation of polylactide (PLA) spheres by spray droplet atomization.

    Science.gov (United States)

    Arias, Veluska; Odelius, Karin; Albertsson, Ann-Christine

    2014-11-01

    A direct, efficient, and scalable method to prepare stereocomplexed polylactide (PLA)-based nanoparticles (NPs) is achieved. By an appropriate combination of fabrication parameters, NPs with controlled shape and crystalline morphology are obtained and even pure PLA stereocomplexes (PLASC) are successfully prepared using the spray-drying technology. The formed particles of varying D- and L-LA content have an average size of ≈400 nm, where the smallest size is obtained for PLA50, which has an equimolar composition of PLLA and PDLA in solution. Raman spectra of the particles show the typical shifts for PLASC in PLA50, and thermal analysis indicates the presence of pure stereocomplexation, with only one melting peak at 226 °C. Topographic images of the particles exhibit a single phase with different surface roughness in correlation with the thermal analysis. A high yield of spherically shaped particles is obtained. The results clearly provide a proficient method for achieving PLASC NPs that are expected to function as renewable materials in PLA-based nanocomposites and potentially as more stable drug delivery carriers. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    Science.gov (United States)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-12-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  10. On the role of physiochemical properties on evaporation behavior of DISI biofuel sprays

    Science.gov (United States)

    Knorsch, Tobias; Heldmann, Markus; Zigan, Lars; Wensing, Michael; Leipertz, Alfred

    2013-06-01

    Biofuels and alternative fuels are increasingly being blended to conventional gasoline fuel to reduce the overall CO2 emissions. The effect on NOx and soot formation is still unclear as the atomization and evaporation of gasoline with biocomponents differ depending on fuel specific physiochemical properties. This work focuses on describing the biofuel evaporation behavior of gasoline sprays at homogeneous charge (early injection timing) and stratified-charge conditions (late injection timing mode) used in modern direct injection spark ignition engines (DISI). A spray plume of a 6-hole solenoid injector is analyzed in terms of liquid spray propagation, and local droplet sizes studied in an injection chamber. Depending on the operating conditions, different physiochemical properties are found to dominate the atomization and evaporation processes: For low and moderate ambient temperature and pressure, high-boiling point components show a strong influence on the spray droplet size distribution. However, at elevated temperature and pressure, the evaporation behavior changes completely. Due to a high degree of evaporation, the evaporation cooling effect dominates the local droplet sizes. Fuel mixtures owing a larger heat of vaporization show larger droplet sizes—even if these fuels have a lower boiling point. Depending on the local evaporation behavior, the different remaining droplet momentum in the spray controls the air entrainment and the subsequent progress of evaporation and mixing. Overall, it can be stated that the heat of vaporization is a dominating physiochemical property for the droplet evaporation rate at high-level supercharged conditions.

  11. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub

    2017-01-01

    Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  12. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  13. Numerical simulations of the breakup of emulsion droplets inside a spraying nozzle

    Science.gov (United States)

    Feigl, Kathleen; Baniabedalruhman, Ahmad; Tanner, Franz X.; Windhab, Erich J.

    2016-12-01

    Numerical simulations are used to investigate the breakup of emulsion drops within a spraying nozzle. The simulations are performed by solving a two-phase flow problem in the nozzle in which individual drops are tracked through the flow field. A modified version of an OpenFOAM® solver is used as a basis for the simulations. The numerical algorithm employs the finite volume method for solving the mass and momentum conservation equations and a volume-of-fluid approach for capturing the fluid-fluid interface. Dynamic meshing is used to maintain a sufficiently refined mesh around a drop as it moves through the flow field. The dispersed phase is Newtonian, while a Newtonian and a shear-thinning non-Newtonian continuous phase are used. The simulations show two types of breakup behavior. Larger drops break up via tipstreaming in which small drops are detached from the tail of the mother drop, while smaller drops break up via filament fracturing in which the daughter drops were formed via pinching at several locations along the stretched drop. The critical drop sizes and critical capillary numbers are determined for each continuous phase fluid along various streamlines. It is found that for both continuous phase fluids, there is an initial rapid decrease in these quantities as the distance from the centerline of the nozzle increases, i.e., as strain rates and stress increase, before leveling off. Moreover, closer to the centerline, these quantities are larger for the Newtonian continuous phase than for the non-Newtonian one, even though the strain rates and stresses are larger for the Newtonian fluid. This is explained in terms of the viscosity ratios reached within the die. Finally, proper scaling of the stresses produces a master critical drop size and critical capillary number curve for the two continuous phase fluids.

  14. Study of the operational parameters of crops turbine sprayer (turbo liner on spray quality and diameter of droplets, using image processing

    Directory of Open Access Journals (Sweden)

    F Behzadi Pour

    2017-05-01

    Full Text Available Introduction Today, attention to safety and environmental issues in all sectors in agriculture, industry and services is very important. Chemical poisons play an important role in rapid progress of agricultural products. Every year about 25 to 35 percent of the world's crops are affected by insects, weeds and plant pathogens disappear and this figure would be raised to 80% if no control was applied. Drift problem and its devastating effects are the most important issue which related to users and sprayers manufacturers. Spray drift reduction and improvements in the efficiency of pesticide application processes are global goals. Where ever spraying is applied, drift will be produced and it must be controlled by controlled of the droplet size. The application of these sprayers is the high in the farms (the number of 2303 in Iran. So, this research was carried out to improve the quality of work in these sprayers by studying the droplets diameter and the spray quality index. Materials and Methods The research was conducted at the University of Khouzestan Ramin Agriculture and Natural Resources. Tests were done with 20 m of water sensitive papers at a distance of 2 meters from each other. To evaluate the technical items affecting on drift, an experiment was conducted using a turbo liner sprayer (TURBINA S.A. 800 and the John Deer (JD 3140 tractor. A completely randomized factorial design was applied. By using 3 replications and the factors were spraying pressure applying three levels (10, 25 and 35 bar, the fan speed with two levels (1998 and 2430 rpm and forward speed with two levels (9 and 13.5 km hr-1. The sprayer started the application, spraying a solution of water and tracer (yellow Tartrazine E 102, 15m before the water sensitive papers and then moved over the water sensitive papers. The spraying was continued 15 m after the end of the sampling area. After spraying, sensitive papers were photographed and then volume diameter of 50% (DV50 and

  15. Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics

    Science.gov (United States)

    Zhang, Qin; Gao, Yunxia; Liu, Jing

    2014-09-01

    A direct electronics printing technique through atomized spraying for patterning room-temperature liquid metal droplets on desired substrate surfaces is proposed and experimentally demonstrated for the first time. This method is highly flexible and capable of fabricating electronic components on various target objects, with either flat or rough surfaces, made of different materials, or having different orientations from 2D to 3D geometrical configurations. With a pre-designed mask, the liquid metal ink can be directly deposited on the substrate to form various specific patterns which lead to the rapid prototyping of electronic devices. Further, extended printing strategies were also suggested to illustrate the adaptability of the method. For example, it can be used for making transparent conductive film with an optical transmittance of 47 % and a sheet resistance of 5.167Ω/□ due to natural porous structure. Different from the former direct writing technology where large surface tension and poor adhesion between the liquid metal and the substrate often impede the flexible printing process, the liquid metal here no longer needs to be pre-oxidized to guarantee its applicability on target substrates. One critical mechanism was that the atomized liquid metal microdroplets can be quickly oxidized in the air due to its large specific surface area, resulting in a significant increase of the adhesion capacity and thus firm deposition of the ink to the substrate. This study paved a generalized way for pervasively and directly printing electronics on various substrates which are expected to be significant in a wide spectrum of electrical engineering areas.

  16. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  17. Algorithms for improving accuracy of spray simulation

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuiYa; ZHANG YuSheng; XIAO HeLin; XU Bo

    2007-01-01

    Fuel spray is the pivotal process of direct injection engine combustion. The accuracy of spray simulation determines the reliability of combustion calculation. However, the traditional techniques of spray simulation in KIVA and commercial CFD codes are very susceptible to grid resolution. As a consequence, predicted engine performance and emission can depend on the computational mesh. The two main causes of this problem are the droplet collision algorithm and coupling between gas and liquid phases. In order to improve the accuracy of spray simulation, the original KIVA code is modified using the cross mesh droplet collision (CMC) algorithm and gas phase velocity interpolation algorithm. In the constant volume apparatus and D.I. Diesel engine, the improvements of the modified KIVA code in spray simulation accuracy are checked from spray structure, predicted average drop size and spray tip penetration, respectively. The results show a dramatic decrease in grid dependency. With these changes, the distorted phenomenon of spray structure is vanished. The uncertainty in predicted average drop size is reduced from 30 to 5 μm in constant volume apparatus calculation, and the uncertainty is further reduced to 2 μm in an engine simulation. The predicted spray tip penetrations in engine simulation also have better consistency in medium and fine meshes.

  18. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    Science.gov (United States)

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  19. Droplet and slug formation in polymer electrolyte membrane fuel cell flow channels: The role of interfacial forces

    Science.gov (United States)

    Colosqui, Carlos E.; Cheah, May J.; Kevrekidis, Ioannis G.; Benziger, Jay B.

    A microfluidic device is employed to emulate water droplet emergence from a porous electrode and slug formation in the gas flow channel of a PEM fuel cell. Liquid water emerges from a 50 μm pore forming a droplet; the droplet grows to span the entire cross-section of a microchannel and transitions into a slug which detaches and is swept downstream. Droplet growth, slug formation, detachment, and motion are analyzed using high-speed video images and pressure-time traces. Slug volume is controlled primarily by channel geometry, interfacial forces, and gravity. As water slugs move downstream, they leave residual micro-droplets that act as nucleation sites for the next droplet-to-slug transition. Residual liquid in the form of micro-droplets results in a significant decrease in slug volume between the very first slug formed in an initially dry channel and the ultimate "steady-state" slug. A physics-based model is presented to predict slug volumes and pressure drops for slug detachment and motion.

  20. Average Droplet Diameter Measurement and Results for Fuel Aerosol Injected by Certain Types of the Turbojet Burners

    Institute of Scientific and Technical Information of China (English)

    TadeuszOpara

    1997-01-01

    Measurement of the diameter of the fuel aerosol droplet is very important in the design of new type burners and in diagnostic process,Diffraction method is one of the most useful measuring procedures in this case.An investigation setup is presented enabling the determination of the substituting drop diameter in fuel aerosol stream created by aeroengine injectors the results obtained for K 108-767,K 108-012,37.03.9595,16.83.0310 types are presented.

  1. Polluting emissions reduction and better fuel utilization through spray characterization; Reduccion de emisiones contaminantes y mejor utilizacion del combustible a traves de la caracterizacion de sprays

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Arguelles, Anselmo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1994-01-01

    In this article, to emphasize their importance, the most outstanding aspects of spray characterization and its correlation, when appropriate, with the combustion process of liquid fuels or with the combustion products, are presented. Also, some modern measuring methods more frequently employed for the spray studies, are described. Finally, some examples taken from specialized literature are discussed, with which it is demonstrated that the spray characterization plays a predominant roll in the combustion control and in the reduction of polluting emissions. [Espanol] En este articulo se presentan los aspectos mas sobresalientes de la caracterizacion de sprays, y se correlacionan, cuando es oportuno, con el proceso de la combustion de combustibles liquidos o con los productos de la combustion para enfatizar su importancia. Asimismo, se describen algunos metodos modernos de medicion que con mayor frecuencia se utilizan en el estudio de sprays. Finalmente, se discuten algunos ejemplos tomados de la literatura especializada, con los cuales se demuestra que la caracterizacion de sprays juega un papel preponderante en el control de la combustion y en la reduccion de emisiones contaminantes.

  2. MECHANISM ON DISTRIBUTION OF PILOT FUEL SPRAY AND COMPRESSING IGNITION IN PREMIXED NATURAL GAS ENGINE IGNITED BY PILOT DIESEL

    Institute of Scientific and Technical Information of China (English)

    Yao Chunde; Yao Guangtao; Song Jinou; Wang Yinshan

    2005-01-01

    Numerical simulations of pilot fuel spray and compressing ignition for pre-mixed natural gas ignited by pilot diesel are described. By means of these modeling, the dual fuel and diesel fuel ignition mechanism of some phenomena investigated on an optional engine by technology of high-speed CCD is analyzed. It is demonstrated that the longer delay of ignition in dual fuel engine is not mainly caused by change of the mixture thermodynamics parameters. The analysis results illustrate that the ignition of pre-mixed natural gas ignited by pilot diesel taking place in dual fuel engine is a process of homogenous charge compression ignition.

  3. Ballistic Imaging of Liquid Breakup Processes in Dense Sprays

    Science.gov (United States)

    2009-06-24

    link in CFD models is the description of the breakup process for the liquid fuel spray, especially primary breakup; the process by which a liquid...the near field of a hollow cone spray breaking up into sheets, ligaments and droplets. He doesn’t quote numbers, but it is likely that We is less...approaching 10) in the near field. The hollow cone image presented by Van Dyke was taken with a classical white light shadowgram arrangement. If the

  4. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications

    Science.gov (United States)

    The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...

  5. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  6. Effects of Oxygen-fuel Ratio on Structure and Property of Detonation Gun Sprayed WC Coating

    Directory of Open Access Journals (Sweden)

    ZHAO Li-ying

    2016-06-01

    Full Text Available The tungsten carbide coating with both high hardness and dense microstructure was prepared by optimizing the detonation gun spraying parameters. The phase identifications and microstructure of the coating were observed and analyzed by optical microscope, X-ray diffraction (XRD and energy dispersive spectrometer (EDS. The results show that with the increase of oxygen-fuel ratio, the hardness and adhesive strength of the coating firstly enhance and then decrease, while porosities firstly decrease and then increase. When the oxygen fuel ratio is too low, slow particle flight speed and insufficient melt are the main reasons for the degradation of the coating compactness and mechanical properties. When the oxygen fuel ratio is too high, particle decarburization and binder phase nonuniform contract in the cooling process are the determining factors to the coating structure and properties. When the oxygen-fuel ratio is 1.15, comprehensive performance of the coating is optimal, and the oxidation and decarburization of the coating can be effectively reduced. The Vickers microhardness HV0.3 of cross-section reaches 1178kg·mm-2, the porosity is 0.86%, and the bonding strength between the coating and substrate is 152MPa.

  7. La pulvérisation du fuel oïl lourd par des combustibles gazeux Using Gaseous Fuels to Spray Heavy Fuel Oil

    Directory of Open Access Journals (Sweden)

    Ladurelli A.

    2006-11-01

    Full Text Available Pour faciliter l'inflammation du fuel lourd on procède à sa pulvérisation au droit du brûleur. Deux méthodes sont généralement employées à cet effet : - La pulvérisation mécanique qui consiste à faire passer le liquide sous forte pression au travers d'orifices calibrés de petit diamètre. - La pulvérisation pneumatique qui consiste à utiliser la détente d'un fluide auxiliaire préalablement comprimé. Les fluides couramment utilisés pour cela sont l'air comprimé et la vapeur d'eau ; toutefois tous les combustibles gazeux, notamment le gaz naturel et les gaz de raffinerie, peuvent également servir de fluide de pulvérisation quand ils sont disponibles sous pression. The igniting of heavy fuel oil is facilitated by spraying it at the burner. Two methods are used as a rule: - Pressure atomization, consisting in causing the liquid to pass at high pressure through calibrated small-diameter orifices. - Twin-fluid atomization, which consists in using the expansion of a previously compressed auxiliary fluid. The fluids commonly used for the purpose are compressed air and steam. However, any gaseous fuel, particularly natural gas and the refinery gases, can be used as the spraying fluid provided it is available under pressure.

  8. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  9. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  10. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  11. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Liu, Shuai; Li, Chang-Jiu; Yang, Guan-Jun; He, Peng-Jiang; Yun, Liang-Liang; Song, Bo; Xie, Ying-Xin

    2017-02-01

    In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

  12. Fabrication and electrochemical performance of solid oxide fuel cell components by atmospheric and suspension plasma spray

    Institute of Scientific and Technical Information of China (English)

    XIA Wei-sheng; YANG Yun-zhen; ZHANG Hai-ou; WANG Gui-lan

    2009-01-01

    The theory of functionally graded material (FGM) was applied in the fabrication process of PEN (Positive- Electrolyte-Negative),the core component of solid oxide fuel cell (SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray (APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process,suspension plasma spray (SPS) was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.

  13. Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lin; Kim, Gap-Yong; Chandra, Abhijit [Iowa State University, Department of Mechanical Engineering, 2034 Black Engineering Building, Ames, IA 50011 (United States)

    2010-10-15

    Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 {mu}m and 21-52%, respectively. (author)

  14. Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis

    Science.gov (United States)

    Liu, Lin; Kim, Gap-Yong; Chandra, Abhijit

    Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce 0.9Gd 0.1O 1.95 on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 μm and 21-52%, respectively.

  15. Thermally Sprayed Large Tubular Solid Oxide Fuel Cells and Its Stack: Geometry Optimization, Preparation, and Performance

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Liu, Shuai; Li, Chang-Jiu; Yang, Guan-Jun; He, Peng-Jiang; Yun, Liang-Liang; Song, Bo; Xie, Ying-Xin

    2017-01-01

    In this study, we develop a large tubular solid oxide fuel cells design with several cells in series on a porous cermet support, which has many characteristics such as self-sealing, low Ohmic loss, high strength, and good thermal expansion coefficient matching. Here, we investigate aspects of the cell design, manufacture, performance, and application. Firstly, the cell length and number of cells in series are optimized by theoretical analysis. Then, thermal spraying is applied as a cost-effective method to prepare all the cell components. Finally, the performance of different types of cells and two types of stacks is characterized. The maximum output power of one tube, which had 20 cells in series, reaches 31 and 40.5 W at 800 and 900 °C, respectively. Moreover, the output power of a stack assembled with 56 tubes, each with ten cells in series, reaches 800 W at 830 °C. The excellent single tube and cell stack performance suggest that thermally sprayed tubular SOFCs have significant potential for commercialized application.

  16. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2008-05-15

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  17. Numerical Simulation on Supersonic Flow in High-Velocity Oxy-Fuel Thermal Spray Gun

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Hideki YAMAMOTO; Kazuyasu MATSUO

    2006-01-01

    This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical simulation. The HVOF gun in the present analysis is an axially symmetric convergent-divergent nozzle with the design Mach number of 2.0. From the present analysis, the distributions of velocity and temperature of the coating particles flying inside and outside of the HVOF gun are predicted. The velocity and temperature of the coating particles at the exit of the gun calculated by the present method agree well with the previous experimental results. Therefore, the present method of calculation is considered to be useful for predicting the HVOF gas and particle flows.

  18. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  19. DYNAMIC ANALYSIS OF PARTICLE FLYING VELOCITY IN HIGH VELOCITY OXYGEN FUEL SPRAY

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Dong Zujue; Huo Shubin

    2000-01-01

    Based on gas dynamics,thermodynamics,fluid dynamics of multiphase systems and other theories,the dynamic analyses of the particle flying velocity in a high velocity oxygen fuel spray (HVOF) is accomplished.The relationships between the flying velocity of a particle and the flying time or flying length,particle size,hot gas velocity,and pressure or density of the gas are proposed.Meanwhile,the influences of the velocity and mass rate of flow of the flame gas of a HVOF gun,and particle size on the particle flying velocity are discussed in detail.The dynamic pressure concept is introduced to express the flow capacity of hot gas of a HVOF gun,and the relationship between the dynamic pressure of a HVOF gun and the velocity of a particle for depositing is presented.

  20. Influence of Processing Parameters on Residual Stress of High Velocity Oxy-Fuel Thermally Sprayed WC-Co-Cr Coating

    Science.gov (United States)

    Gui, M.; Eybel, R.; Asselin, B.; Radhakrishnan, S.; Cerps, J.

    2012-10-01

    Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.

  1. Dehydration and thermal inactivation of Lactobacillus plantarum WCFS1: Comparing single droplet drying to spray and freeze drying

    NARCIS (Netherlands)

    Perdana, J.A.; Bereschenko, L.A.; Fox, M.B.; Kuperus, J.H.; Kleerebezem, M.; Boom, R.M.; Schutyser, M.A.I.

    2013-01-01

    We demonstrated that viability loss during single droplet drying can be explained by the sum of dehydration and thermal inactivation. For Lactobacillus plantarum WCFS1, dehydration inactivation predominantly occurred at drying temperatures below 45 °C and only depended on the moisture content. Above

  2. An experimental-analytical method to study steady spray combustion.

    Science.gov (United States)

    Bracco, F. V.

    1973-01-01

    Description of a method for determining the local parameters of the gas mixture resulting from the combustion of sprayed fuel in a gaseous oxidizer. The method is based on the measurement of local static pressures in the gas mixture and does not require the knowledge of the droplet distribution function, drag, and vaporization characteristics. A set of equations with substituted local pressure values is used for calculations. Application of the method is demonstrated on a liquid oxygen-ethanol rocket fuel.

  3. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)

    2015-12-15

    Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.

  4. Numerical study of droplet dynamics in a polymer electrolyte fuel cell gas channel using an embedded Eulerian-Lagrangian approach

    Science.gov (United States)

    Jarauta, Alex; Ryzhakov, Pavel; Secanell, Marc; Waghmare, Prashant R.; Pons-Prats, Jordi

    2016-08-01

    An embedded Eulerian-Lagrangian formulation for the simulation of droplet dynamics within a polymer electrolyte fuel cell (PEFC) channel is presented. Air is modeled using an Eulerian formulation, whereas water is described with a Lagrangian framework. Using this framework, the gas-liquid interface can be accurately identified. The surface tension force is computed using the curvature defined by the boundary of the Lagrangian mesh. The method naturally accounts for material property changes across the interface and accurately represents the pressure discontinuity. A sessile drop in a horizontal surface, a sessile drop in an inclined plane and droplets in a PEFC channel are solved for as numerical examples and compared to experimental data. Numerical results are in excellent agreement with experimental data. Numerical results are also compared to results obtained with the semi-analytical model previously developed by the authors in order to discuss the limitations of the semi-analytical approach.

  5. Determination of Compatibility of Some Biodiesel Properties Produced under Turkey Conditions to Standards and Effects of Fuel Spraying Amount

    Directory of Open Access Journals (Sweden)

    O. Guven

    2010-05-01

    Full Text Available In this study, viscosity values that is one of the rheological properties of biodiesel samples that have been produced under Turkey conditions. In addition to this, specific weight values that are effective on directly to engine performance curves were also determined. Compatibility of these values to standards were examined. Kinematic viscosity measurements at two different temperatures namely 20 and 40 °C were carried out to determine the effect of temperature on viscosity change. Density measurements according to the standard at 15 °C was also set. In this study, eight biodiesel samples were collected from markets (4 of them are enrolled to Industry and Commerce provincial Directorates, the other four are not registered, and 1 diesel sample as comparison sample were used. In addition to viscosity and specific weight measurements, effect of viscosity and specific weight changes on the amount of fuel sprayed from injector by using 3 different types injectors that are used in different brand widely used tractor engines was determined. In addition to these effects of fuel with different density and viscosity on distribution of sprayed fuel in combustion chamber was determined by manufacturing a model combustion chamber that has identical with tractor combustion chambers. According to research results, increasing of the temperature decreased the viscosity values highly. Including the registered samples, in the great majority of biodiesel samples viscosity and specific weight values were determined to be non-standard. Due to high specific weight and viscosity, amount the sprayed fuel were found higher for all injector and biodiesel samples compared to sprayed diesel amount. According to distrubition in combustion chamber, the highest fuel amount was found for biodiesel 9 that has the maximum viscosity. Diesel was spryed the furthest points in combustion chamber and its distribution was found more homogenity compared with those biodiesel samples.

  6. Deposition and properties of high-velocity-oxygen-fuel and plasma-sprayed Mo-Mo2C composite coatings

    Science.gov (United States)

    Prchlik, L.; Gutleber, J.; Sampath, S.

    2001-12-01

    Molybdenum thermal-spray coatings, dispersion strengthened by molybdenum oxides and molybdenum carbides, play an important role in industrial tribological applications. Traditionally, they have been prepared by plasma and wire flame spraying. High porosity and lower cohesion strength limit their application in situations where both galling and abrasion wear is involved. In this study, high-velocity-oxygen-fuel (HVOF) deposition of molybdenum and molybdenum carbide coatings was attempted. Deposition was achieved for all powders used. Composition, microstructure, mechanical, and wear properties of the HVOF synthesized coatings were evaluated and compared with plasma-sprayed counterparts. The HVOF coatings possessed a very good abrasion resistance, whereas plasma deposits performed better in dry sliding tests. Measurements showed a close relationship between the coating surface hardness and its abrasion resistance. Results also suggested correlation between molybdenum carbide distribution in the molybdenum matrix and the sliding friction response of Mo-Mo2C coatings.

  7. Sterilization of Fungus in Water by Pulsed Power Gas Discharge Reactor Spraying Water Droplets for Water Treatment

    Science.gov (United States)

    Saito, Tsukasa; Handa, Taiki; Minamitani, Yasushi

    We study sterilization of bacteria in water using pulsed streamer discharge of gas phase. This method enhances efficiency of water treatment by spraying pretreatment water in a streamer discharge area. In this paper, yeast was sterilized because we assumed a case that fungus like mold existed in wastewater. As a result, colony forming units decreased rapidly for 2 minutes of the processing time, and all yeast sterilized by 45 minutes of the processing time.

  8. Impingement of hollow cone spray on hot porous medium

    Institute of Scientific and Technical Information of China (English)

    Zhiguo ZHAO; Maozhao XIE

    2008-01-01

    To have a good understanding of the formation of homogenous mixture in a porous medium engine, the interaction between hollow cone spray and hot porous med-ium was studied numerically by using an improved version of KIVA-3V code. The improved KIVA-3V code is incor-porated with an impingement model, heat transfer model and linearized instability sheet atomization (LISA) model to simulate the hollow cone spray. The reasonability of the impingement model and heat transfer model was validated. With a simple model to describe the structure of the porous medium, the interaction between hollow cone spray and hot porous medium was simulated under different ambient pressures and spray cone angles. Computational results show that the fuel spray could be divided into smaller ones, which provides conditions for the quick evaporation of fuel droplets and the mixing of fuel vapor with air. Differences in ambient pressure and spray cone angle affect the distri-bution of droplets in the porous medium.

  9. A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2014-08-01

    A new multi-dimensional quasi-discrete model is suggested and tested for the analysis of heating and evaporation of Diesel fuel droplets. As in the original quasi-discrete model suggested earlier, the components of Diesel fuel with close thermodynamic and transport properties are grouped together to form quasi-components. In contrast to the original quasi-discrete model, the new model takes into account the contribution of not only alkanes, but also various other groups of hydrocarbons in Diesel fuels; quasi-components are formed within individual groups. Also, in contrast to the original quasi-discrete model, the contributions of individual components are not approximated by the distribution function of carbon numbers. The formation of quasi-components is based on taking into account the contributions of individual components without any approximations. Groups contributing small molar fractions to the composition of Diesel fuel (less than about 1.5%) are replaced with characteristic components. The actual Diesel fuel is simplified to form six groups: alkanes, cycloalkanes, bicycloalkanes, alkylbenzenes, indanes & tetralines, and naphthalenes, and 3 components C19H34 (tricycloalkane), C13H 12 (diaromatic), and C14H10 (phenanthrene). It is shown that the approximation of Diesel fuel by 15 quasi-components and components, leads to errors in estimated temperatures and evaporation times in typical Diesel engine conditions not exceeding about 3.7% and 2.5% respectively, which is acceptable for most engineering applications. © 2014 Published by Elsevier Ltd. All rights reserved.

  10. Detection Method of Spray Angle for Transient Fuel Sprays of GDI Fuel Injector%高压喷油器喷雾瞬态的喷雾角检测系统

    Institute of Scientific and Technical Information of China (English)

    吴侠; 万丽; 朱均超; 李建文

    2016-01-01

    Fuel injector is the key part of automobile engine and its spray characteristic is an important factor influencing the performance of its work. The spray angle of fuel injectors is one of the most important parameters in the spray characteristic, and needed to measure in the detection of fuel injector performance. General method of measurement is collecting multiple injections of fuel by patternation, but it is poor accuracy and efficiency. And for gasoline-direct injection injectors, the mass lost to vapor can be very substantial, so lead to measurement errors for unable to collect fuel spray completely. Using machine vision technology can detect the spray angle, and using high-speed cameras to capture the injectors spray image, whose shadow can be eliminated by the microsecond exposures for ensuring the quality of spray image. Then the spray angle gets image preprocessing, image segmentation, and calculation. Experimental results show that this method can detect fuel injector spray angles quickly and accurately, and successfully applied to the injector measuring test-bed developed by research group.%燃油喷油器是汽车发动机的关键部件,其喷雾特性是影响其工作性能的重要因素。喷油器的喷雾角是喷油器喷雾特性的重要参数之一,检测喷油器性能时需要对其进行测量。一般的测量方法是通过集油盘收集多次喷射的燃油量进行测定,效率低、准确性差。且对于喷雾时汽化损失较大的 GDI(汽油缸内直喷)喷油器,液滴无法完全收集,影响测量结果。采用机器视觉技术即可检测喷油器的喷雾角,用高速相机采集喷油器的瞬态喷雾图像,微秒级的曝光时间可以有效消除高速喷雾的拖影,提高图像质量,然后进行图像预处理、图像分割、分析计算即可得出喷雾角。实验结果表明,该方法可以快速准确的检测喷油器的喷雾角,已成功应用于课题组所研制

  11. Simulation of Interpersonal Transport of Expiratory Droplets and Droplet Nuclei between Two Standing Manikins

    DEFF Research Database (Denmark)

    Liu, Li; Y, Li,

    2012-01-01

    Interpersonal transport of expiratory droplets and droplet nuclei constitutes a prerequisite for the transmission of pathogens as well as the transmission of respiratory diseases. Numerical simulations considering droplet evaporation and droplet nucleus sizes were carried out, using two detailed...... the existence of direct spray route of the interpersonal transport of expiratory droplets....

  12. Macroscopic flame structure in a premixed-spray burner. 1st Report. formation and disappearance processes of droplet clusters and two-stage flame structure; Yokongo funmu kaen no kyoshiteki nensho kyodo. 1. Yuteki cluster no keisei shoshitsu katei to niju kaen kozo

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, S.; Saito, H.; Akamatsu, F.; Katsuki, M. [Osaka University, Osaka (Japan)

    2000-08-25

    In an attempt to elucidate formation and disappearance processes of droplet clusters in spray flames, simultaneous measurements consisting of laser tomography and flame chemiluminescence detection are applied to a premixed-spay burner. The smart combination of measurements provides time-series data-set serving for better understanding of spray flames, which essentially contains inhomogeneity in space and time. It is revealed that referential flame propagation through a premixed-spray stream plays a significant role in creating droplet clusters and that droplet clusters formed in this manner evanesces from their outer boundaries. Those observation confirms that the premixed-spray flame comprises both premixed-mode flame in upstream region and diffusion-mode flame in downstream region, respectively, i.e, two-stage flame structure previously reported for spray flames stabilized in either counter or stagnation flows. (author)

  13. Spray characteristics of dimethyl ether (D.M.E.) as on alternative fuel for diesel engine; Daitai diesel nenryo to shite no dimethyl ether (D.M.E.) no funmu tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, K.; Nishida, K.; Yoshizaki, T.; Hiroyasu, H. [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    D.M.E. which was paid attention to as on alternative fuel for a diesel engine, was injected by using Bosch type injection pump and a hole nozzle into a high pressure and high temperature vessel. The spray was observed by using schlieren photography. Spray characteristics, such as, the tip penetration, the cone angle and the volume of the spray were and were compared with a diesel fuel spray. The following thing, and so on were found out as a results. The spray angle of the DME spray of atmosphere pressure Pa=0.1Mpa spreads out large in comparison with the diesel fuel spray, and the way of the change by the pressure is contrary to the case of the diesel fuel spray. 3 refs., 6 figs., 1 tab.

  14. Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    2017-08-01

    Full Text Available On account of their high power, thermal efficiency, good reliability, safety, and durability, low-speed two-stroke marine diesel engines are used as the main drive devices for large fuel and cargo ships. Most marine engines use heavy fuel oil (HFO as the primary fuel, however, the physical and chemical characteristics of HFO are not clear because of its complex thermophysical properties. The present study was conducted to investigate the effects of fuel properties on the spray and combustion characteristics under two-stroke marine engine-like conditions via a sensitivity analysis. The sensitivity analysis of fuel properties for non-reacting and reacting simulations are conducted by comparing two fuels having different physical properties, such as fuel density, dynamic viscosity, critical temperature, and surface tension. The performances of the fuels are comprehensively studied under different ambient pressures, ambient temperatures, fuel temperatures, and swirl flow conditions. From the results of non-reacting simulations of HFO and diesel fuel properties in a constant volume combustion chamber, it can be found that the increase of the ambient pressure promotes fuel evaporation, resulting in a reduction in the steady liquid penetration of both diesel and HFO; however, the difference in the vapor penetrations of HFO and diesel reduces. Increasing the swirl flow significantly influences the atomization of both HFO and diesel, especially the liquid distribution of diesel. It is also found that the ambient temperature and fuel temperature have the negative effects on Sauter mean diameter (SMD distribution. For low-speed marine engines, the combustion performance of HFO is not sensitive to activation energy in a certain range of activation energy. At higher engine speed, the difference in the effects of different activation energies on the in-cylinder pressure increases. The swirl flow in the cylinder can significantly promote fuel evaporation and

  15. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-08-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter heat transfer.

  16. A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays

    Science.gov (United States)

    Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence

    2017-01-01

    Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.

  17. Microscopic Spray Characteristic of 2-Methfuran and Its Blended Fuel with Isooctane%2-甲基呋喃及其与异辛烷掺混燃料喷雾的微观特性研究

    Institute of Scientific and Technical Information of China (English)

    丁海春; 江长照; Hongming XU; 左承基

    2015-01-01

    The second generation of biofuel 2-methfuran (MF) had drawn a lot of attention due to its unique physical and chemical properties and the investigation on atomization effect of MF and its blended fuel became very important .Under differ-ent injection pressures ,ambient temperatures and back pressures ,the droplet diameter and velocity of spray for M F ,isooctane and MF50 blended fuel were researched with phase Doppler particle analyzer(PDPA) .The results show that the droplet size is large in the center of fuel beam and small on both edges .The velocity of droplet decreases with the increase of back pressure and shows a bimodal and unimodal distribution at low and high back pressure respectively .With the increase of back pressure , the droplet size of isooctane increases and the droplet size of M F first decreases then increases .%第二代生物燃料2-甲基呋喃(M F )由于其独特的物理化学性质受到学者们的广泛关注 ,研究M F以及它的掺混燃料在不同条件下的雾化效果也显得尤为重要.利用相位多普勒技术(PDPA ) ,在不同喷射压力、环境温度、环境背压下 ,研究了M F、异辛烷以及两者等体积掺混燃料M F50喷雾的粒径与速度分布规律.结果表明 :测试燃料的喷雾粒径整体分布呈现油束中心大 ,两端小的对称分布.微粒速度随环境背压的增加而降低 ,并且在低背压下速度为双峰分布 ,高背压下则是单峰分布.随着环境背压的增大,异辛烷粒径不断增加 ,MF粒径先减小再增加.

  18. Numerical simulation of fuel sprays and combustion in a premixed lean diesel engine; Kihaku yokongo diesel kikan ni okeru nenryo funmu to nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, T.; Harada, A.; Sasaki, S.; Shimazaki, N.; Hashizume, T.; Akagawa, H.; Tsujimura, K.

    1997-10-01

    Fuel sprays and combustion in a direct injection Premixed lean Diesel Combustion (PREDIC) engine, which can make smokeless combustion with little NOx emission, is studied numerically. Numerical simulation was carried out by means of KIVA II based computer code with a combustion submodel. The combustion submodel describes the formation of combustible fuel vapor by turbulent mixing and four-step chemical reaction which includes low temperature oxidation. Comparison between computation and experiment shows qualitatively good agreement in terms of heat release rate and NO emission. Computational results indicate that the combustion is significantly influenced by fuel spray characteristics and injection timing to vary NO emission. 10 refs., 8 figs., 1 tab.

  19. 旋转盘式雾化雾滴粒径分布实验研究%Experimental Investigation of Spray Droplet Size Distribution Using a Spinning Disk Atomizer

    Institute of Scientific and Technical Information of China (English)

    黄立新; 王春鹏; 周瑞君; 谢普军; MUJUMDAR A S

    2011-01-01

    旋转雾化盘是喷雾干燥系统中的重要部件,但是文献很少涉及到关于这类雾化器产生的雾滴粒径的分布和变化情况.采用一个工业化的2000 t/a生产可再分散性乳胶粉的雾化机作为模型雾化器,该雾化器最大处理量为2 000 kg/h.实验的雾化盘直径是180 mm,盘上有24个通道,激光粒径分析仪用于实测雾化嚣产生的雾滴粒径分布.采用变频嚣控制转速在10000~16000r/min间变化.喷雾干燥后粉体的平均粒径为72 tm,比雾化盘产生的雾滴平均粒径92μm小,同时喷雾干燥后最大粉体直径比雾化盘产生雾滴直径小,表明喷雾干燥过程中存在着雾滴间团聚效应.%Spinning disk atomizer is a key part in many spray drying systems.Few works exist in the literatures dealing with size distribution and changes of the droplets produced by such a type of atomizer.In this work,a model atomizer is used to spray-dry a re-dispersible glue emulsion on an industrial scale production 2 000 t/a.The maximum spray capacity of such an atomizer is 2 000 kg/h.The disk tested has a diameter of 180 mm and 24 channels.A laser analyzer was used to measure the droplet size distribution of sprays produced by the spinning disk atomizer.The effects of the disk rotating speed on water droplet size distribution were investigated.The rotating speed of the disk was varied from 16 000 to 10 000 r/ain using a frequency-inverter.In order to investigate the change of droplet size to dried particle size from the spray dryer,the droplet size distribution of the redispersible glue emulsion and the dried particle size distribution produced were measured.The results show that the mean size was reduced from 92 μm of droplets to 72 pm of dried particles.It was also observed that the maximum dried particle size was larger than that of droplets due to droplet and particle agglomeration taking place within the spray drying chamber.

  20. Multidimensional modeling of Dimethyl Ether(DME) spray combustion in DI diesel engine

    Institute of Scientific and Technical Information of China (English)

    WEN Hua; LIU Yong-chang; WEI Ming-rui; ZHANG Yu-sheng

    2005-01-01

    In the present study a modified CFD code KIVA3V was used to simulate the spray combustion in a small DI diesel engine fueled with DME. The improved spray models consider more spray phenomena such as cavitation flow in nozzle hole, jet atomization, droplet second breakup and spray wall interaction. Otherwise, a reduced DME reaction mechanism is implemented in the combustion model, and a new turbulent combustion model-Partial Stirred Reactor (PaSR) model is selected to simulate the spray combustion process, the effects of turbulent mixing on the reaction rate are considered. The results of engine modeling based on those models agreed well with the experimental measurements. Study of temperature fields variation and particle traces in the combustion chamber revealed that the engine combustion system originally used for diesel fuel must be optimized for DME.

  1. Numerical studies of spray combustion processes of palm oil biodiesel and diesel fuels using reduced chemical kinetic mechanisms

    KAUST Repository

    Kuti, Olawole

    2014-04-01

    Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H 16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate. The Favre-Averaged Navier Stokes based simulation using the renormalization group (RNG) k-ε turbulent model was implemented in the numerical calculations of the spray formation processes while the SAGE chemical kinetic solver is used for the detailed kinetic modeling. The SAGE chemical kinetic solver is directly coupled with the gas phase calculations by renormalization group (RNG) k-ε turbulent model using a well-stirred reactor model. Validations of the spray liquid length, ignition delay and flame lift-off length data were performed against previous experimental results. The simulated liquid length, ignition delay and flame lift-off length were validated at an ambient density of 15kg/m3, and injection pressure conditions of 100, 200 and 300 MPa were utilized. The predicted liquid length, ignition delay and flame lift-off length agree with the trends obtained in the experimental data at all injection conditions. Copyright © 2014 SAE International.

  2. Measurements of the liquid phase temperature in fuel sprays via exciplex fluorescence method. 1st Report. Development of the measuring technique and application to fuel sprays injected into atmospheric pressure and high temperature environments; Exciplex keikoho ni yoru nenryo funmu no ekiso ondo bunpu sokutei. 1. Sokutei shuho no kaihatsu to joatsu koon fun`ikichu ni okeru funmu eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T.; Nishida, K.; Hiroyasu, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering; Funahashi, T.

    1998-07-25

    A measuring method based on the exciplex fluorescence technique has been developed for planar measurements of the liquid phase temperature distribution in fuel sprays. The liquid fuel (n-hexadecane or squalane) was doped with pyrene (C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The spray was excited by laser radiation at 266 nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio. The results demonstrate that this laser-based thermometry technique is available for 2-D measurements of the liquid phase temperature in fuel sprays. 13 refs., 15 figs., 2 tabs.

  3. Microgravity experiments and numerical studies on ethanol/air spray flames

    Science.gov (United States)

    Thimothée, Romain; Chauveau, Christian; Halter, Fabien; Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno

    2017-01-01

    Spray flames are known to exhibit amazing features in comparison with single-phase flames. The weightless situation offers the conditions in which the spray characteristics can be well controlled before and during combustion. The article reports on a joint experimental/numerical work that concerns ethanol/air spray flames observed in a spherical chamber using the condensation technique of expansion cooling (based on the Wilson cloud chamber principle), under microgravity. We describe the experimental set-up and give details on the creation of a homogeneous and nearly monosized aerosol. Different optical diagnostics are employed successfully to measure the relevant parameters of two-phase combustion. A classical shadowgraphy system is used to track the flame speed propagation and allow us to observe the flame front instability. The complete characterization of the aerosol is performed with a laser diffraction particle size analyser by measuring the droplet diameter and the droplet density number, just before ignition. A laser tomography device allows us to measure the temporal evolution of the droplet displacement during flame propagation, as well as to identify the presence of droplets in the burnt gases. The numerical modelling is briefly recalled. In particular, spray-flame propagation is schematized by the combustion spread in a 2-D lattice of fuel droplets surrounded by an initial gaseous mixture of fuel vapour and air. In its spherical expansion, the spray flame presents a corrugated front pattern, while the equivalent single-phase flame does not. From a numerical point of view, the same phenomena of wrinkles are also observed in the simulations. The front pattern pointed out by the numerical approach is identified as of Darrieus-Landau (DL) type. The droplets are found to trigger the instability. Then, we quantitatively compare experimental data with numerical predictions on spray-flame speed. The experimental results show that the spray-flame speed is of the

  4. Dynamics of droplets

    Energy Technology Data Exchange (ETDEWEB)

    Frohn, A.; Roth, N. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik der Luft- und Raumfahrt

    2000-07-01

    Intended to privide an up-to-date overview of the field, this book is also likely to become a standard work of reference on the science of droplets. Beginning with the theoretical background important for droplet dynamics, it continues with a presentation of the various methods for generating single droplets and regular droplet systems. Also included is a detailed description of the experimental methods employed in droplet research. A special chapter is devoted to the various types of droplet interactions without phase transition. A separate chapter then treats many examples of the possible phase transition processes. The final part of the book gives a summary of important applications. With its comprehensive content, this book will be of interest to all scientists and lecturers concerned with two-phase flow, spray technology, heterogeneous combustion, and aerosol science. (orig.)

  5. 直喷汽油机中空锥形燃油喷雾的雾化和蒸发模型%Modeling Atomization and Evaporation Processes of Hollow-Cone Fuel Sprays for GDI Engine

    Institute of Scientific and Technical Information of China (English)

    高剑; 蒋德明; 廖世勇; 曾科

    2004-01-01

    A sheet spray model is proposed to simulate the atomization processes of pressure-swirl hollow-cone fuel sprayswhich are widely used in gasoline direct injection (GDI) engines these days. Breakup of the liquid sheets is modeled by u-sing the surface wave breakup theory. Improved Spalding-type evaporation and drop drag models are used to calculate dropevaporation and drop dynamic drag, and an initial spray slug module is introduced into calculation. All models are imple-mented in a multidimensional computer code KIVA3 and used to study hollow-cone fuel sprays for different injection condi-tions in a constant pressure chamber. Detailed comparisons of computed and experimental spray characteristics such asspray contour structures, spray tip penetrations, drop sizes(SMD) are made. A single droplet evaporation processes are al-so simulated. The computational result from these models coincides with the experimental one very well.%高压旋流中空燃油喷雾日益广泛地应用于缸内直喷(GDI)汽油机中,为此发展了一种适合于模拟这种燃油喷雾雾化过程的薄膜喷雾模型.燃油薄膜的破碎过程采用表面波破碎理论来模拟.对Spalding蒸发模型和油滴阻力模型进行了改进,用来计算油滴的蒸发和阻力变形过程.同时引入初始喷雾液团的计算模块.在多维内燃机计算程序KIVA3的基础上建立了改进的数值计算模型,并对不同喷射条件下的定容压力容器中空旋流燃油喷雾过程进行了数值计算.对计算和实验所得的喷雾特性包括油束外形结构,油束喷雾贯穿度和油滴粒径进行了详细的比较,同时对单液滴的蒸发过程也进行了数值计算.油束模型的计算结果与实验结果吻合良好.

  6. Characterization of sprays

    Science.gov (United States)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  7. Puffing and micro-explosion behavior in combustion of butanol/Jet A-1 and acetone-butanol-ethanol (A-B-E)/Jet A-1 fuel droplets

    CERN Document Server

    Rao, D Chaitanya Kumar; Som, S K

    2016-01-01

    The present investigation deals with the puffing and micro-explosion characteristics in the combustion of a single droplet comprising butanol/Jet A-1, acetone-butanol-ethanol (A-B-E)/Jet A-1 blends, and A-B-E. The onset of nucleation, growth of vapor bubble and subsequent breakup of droplet for various fuel blends have been analyzed from the high-speed images. Puffing was observed to be the dominant phenomenon in 30% butanol blend, while micro-explosion was found to be the dominant one in other fuel blends (blend with 50% butanol or 30% A-B-E or 50% A-B-E). It was observed that puffing always preceded the micro-explosion. The probability of micro-explosion in droplets with A-B-E blends was found to be higher than that of butanol blends. Although the rate of bubble growth was almost similar for all butanol and A-B-E blends, the final bubble diameter before the droplet breakup was found to be higher for 50/50 blends than that of 30/70 blends. The occurrence of micro-explosion shortened the droplet lifetime, and...

  8. High pressure droplet burning experiments in reduced gravity

    Science.gov (United States)

    Chauveau, Christian; Goekalp, Iskender

    1995-01-01

    A parametric investigation of single droplet gasification regimes is helpful in providing the necessary physical ideas for sub-grid models used in spray combustion numerical prediction codes. A research program has been initiated at the LCSR to explore the vaporization regimes of single and interacting hydrocarbon and liquid oxygen droplets under high pressure conditions. This paper summarizes the status of the LCSR program on the high pressure burning of single fuel droplets; recent results obtained under normal and reduced gravity conditions with suspended droplets are presented. In the work described here, parabolic flights of the CNES Caravelle is used to create a reduced gravity environment of the order of 10(exp -2) g(sub O). For all the droplet burning experiments reported here, the suspended droplet initial diameters are scattered around 1.5 mm; and the ambient air temperature is 300 K. The ambient pressure is varied between 0.1 MPa and 12 MPa. Four fuels are investigated: methanol (Pc = 7.9 MPa), n-heptane (Pc = 2.74 MPa), n-hexane (Pc = 3.01 MPa) and n-octane (Pc = 2.48 MPa).

  9. A Review on Atomization and Sprays of Biofuels for IC Engine Applications

    Directory of Open Access Journals (Sweden)

    Prasad Boggavarapu

    2013-06-01

    Full Text Available Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI engine sprays and briefly for spark ignition (SI engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and have narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI engines.

  10. Microstructure and Wear Properties of Fe-based Amorphous Coatings Deposited by High-velocity Oxygen Fuel Spraying

    Institute of Scientific and Technical Information of China (English)

    Gang WANG; Ping XIAO; Zhong-jia HUANG; Ru-jie HE

    2016-01-01

    Fe-based powder with a composition of Fe42·87 Cr15·98 Mo16·33 C15·94 B8·88 (at·%)was used to fabricate coatings by high-velocity oxygen fuel spraying.The effects of the spraying parameters on the microstructure and the wear properties of the Fe-based alloy coatings were systematically studied.The results showed that the obtained Fe-based coatings with a thickness of about 400μm consisted of a large-volume amorphous phase and some nanocrystals.With increasing the fuel and oxygen flow rates,the porosity of the obtained coatings decreased.The coating deposited un-der optimized parameters exhibited the lowest porosity of 2·8%.The excellent wear resistance of this coating was at-tributed to the properties of the amorphous matrix and the presence of nanocrystals homogeneously distributed with-in the matrix.The wear mechanism of the coatings was discussed on the basis of observations of the worn surfaces.

  11. Coupled modeling of water transport and air-droplet interaction in the electrode of a proton exchange membrane fuel cell

    Science.gov (United States)

    Esposito, Angelo; Pianese, Cesare; Guezennec, Yann G.

    In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.

  12. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  13. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    Science.gov (United States)

    2013-05-01

    by controlling the drop numbers contained within a parcel, i.e., Na3 = N0a 3 0. Experimental Setup for Spray Characteriza- tion A pressure swirl...set-up is approximately 0.8. For such high swirl numbers, a central toroidal recirculation zone (CTRZ) is commonly observed on account of adverse axial

  14. Guest Editorial Particle Sizing And Spray Analysis

    Science.gov (United States)

    Chigier, Norman; Stewart, Gerald

    1984-10-01

    The measurement of particle size and velocity in particle laden flows is a subject of interest in a variety of industrial applications. In combustion systems for electricity generation, industrial processes and heating, and transportation, where liquid and solid fuels are injected into air streams for burning in furnaces, boilers, and gas turbine and diesel engines, the initial size and velocity distributions of particles are determining factors in the overall combustion efficiency and the emission of pollutants and particulates. In the design of injectors and burners for the atomization of liquid fuels, a great deal of attention is being focused on developing instrumentation for the accurate measurement of size and velocity distributions in sprays as a function of space and time. Most recent advances in optical engineering techniques using lasers for particle measurement have focused on detailed spray characterization, where there is a major concern with spherical liquid droplets within the size range of 1 to 500 μm in diameter, with droplet velocities within the range of 1 to 100 m/s, and the requirement for making in situ measurements of moving particles by nonintrusive optical probes. The instruments being developed for spray analysis have much wider applications. These include measurement in particle laden flows encountered in a variety of industrial processes with solid particles in gas and liquid streams and liquid particles in gas streams. Sprays used in agriculture, drying, food processing, coating of materials, chemical processing, clean rooms, pharmaceuticals, plasma spraying, and icing wind tunnels are examples of systems for which information is being sought on particle and fluid dynamic interactions in which there is heat, mass, and momentum transfer in turbulent reacting flows.

  15. Evaporation and ignition of droplets in combustion chambers modeling and simulation

    Science.gov (United States)

    Betelin, V. B.; Smirnov, N. N.; Nikitin, V. F.; Dushin, V. R.; Kushnirenko, A. G.; Nerchenko, V. A.

    2012-01-01

    Computer simulation of liquid fuel jet injection into heated atmosphere of combustion chamber, mixture formation, ignition and combustion need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. The problems of fuel droplets atomization, evaporation being the key factors for heterogeneous reacting mixtures, the non-equilibrium effects in droplets atomization and phase transitions will be taken into account in describing thermal and mechanical interaction of droplets with streaming flows. In the present paper processes of non-equilibrium evaporation of small droplets will be discussed. As it was shown before, accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplet diameters less than 100 μm, while the surface tension effects essentially manifest only for droplets below 0.1 μm. Investigating the behavior of individual droplets in a heated air flow allowed to distinguish two scenarios for droplet heating and evaporation. Small droplets undergo successively heating, then cooling due to heat losses for evaporation, and then rapid heating till the end of their lifetime. Larger droplets could directly be heated up to a critical temperature and then evaporate rapidly. Droplet atomization interferes the heating, evaporation and combustion scenario. The scenario of fuel spray injection and self-ignition in a heated air inside combustion chamber has three characteristic stages. At first stage of jet injection droplets evaporate very rapidly thus cooling the gas at injection point, the liquid jet is very short and changes for a vapor jet. At second stage liquid jet is becoming longer, because evaporation rate decreases due

  16. Extended lattice Boltzmann scheme for droplet combustion

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n -butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  17. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  18. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  19. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  20. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    Science.gov (United States)

    2015-09-01

    UNCLASSIFIED 1 Introduction Typical hydrocarbon fuels used in internal combustion engines , such as gasoline, diesel , or jet fuel, are composed of hundreds...optimization, which determines the surrogate composition that minimizes the deviation from the target properties. For modern diesel engines , which employ...of biodiesel and diesel fuel. Pei et al. [20] conducted a sensitivity analysis with a diesel engine simulation to assess the relative effects of

  1. Enhancement and Prediction of Adhesion Strength of Copper Cold Spray Coatings on Steel Substrates for Nuclear Fuel Repository

    Science.gov (United States)

    Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.

    2016-12-01

    Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.

  2. Application of High-Velocity Oxygen-Fuel (HVOF Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Emine Bakan

    2017-04-01

    Full Text Available From the literature, it is known that due to their glass formation tendency, it is not possible to deposit fully-crystalline silicate coatings when the conventional atmospheric plasma spraying (APS process is employed. In APS, rapid quenching of the sprayed material on the substrate facilitates the amorphous deposit formation, which shrinks when exposed to heat and forms pores and/or cracks. This paper explores the feasibility of using a high-velocity oxygen-fuel (HVOF process for the cost-effective fabrication of dense, stoichiometric, and crystalline Yb2Si2O7 environmental barrier coatings. We report our findings on the HVOF process optimization and its resultant influence on the microstructure development and crystallinity of the Yb2Si2O7 coatings. The results reveal that partially crystalline, dense, and vertical crack-free EBCs can be produced by the HVOF technique. However, the furnace thermal cycling results revealed that the bonding of the Yb2Si2O7 layer to the Silicon bond coat needs to be improved.

  3. Computational analysis of a three-dimensional High-Velocity Oxygen-Fuel (HVOF) Thermal Spray torch

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, B.; Lopez, A.R.; Oberkampf, W.L.

    1995-07-01

    An analysis of a High-Velocity Oxygen-Fuel Thermal Spray torch is presented using computational fluid dynamics (CFD). Three-dimensional CFD results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire torch, but wire feed is not simulated. To the authors` knowledge, these are the first published 3-D results of a thermal spray device. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Argon is injected through the center of the nozzle. Pre-mixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled assuming instantaneous chemistry. A standard, two-equation, K-{var_epsilon} turbulence model is employed for the turbulent flow field. An implicit, iterative, finite volume numerical technique is used to solve the coupled conservation of mass, momentum, and energy equations for the gas in a sequential manner. Flow fields inside and outside the aircap are presented and discussed.

  4. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    Science.gov (United States)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  5. Characterization of Copper Coatings Deposited by High-Velocity Oxy-Fuel Spray for Thermal and Electrical Conductivity Applications

    Science.gov (United States)

    Salimijazi, H. R.; Aghaee, M.; Salehi, M.; Garcia, E.

    2017-08-01

    Copper coatings were deposited on steel substrates by high-velocity oxy-fuel spraying. The microstructure of the feedstock copper powders and free-standing coatings were evaluated by optical and scanning electron microscopy. The x-ray diffraction pattern was utilized to determine phase compositions of powders and coatings. Oxygen content was determined by a LECO-T300 oxygen determiner. The thermal conductivity of the coatings was measured in two directions, through-thickness and in-plane by laser flash apparatus. The electrical resistivity of the coatings was measured by the four-point probe method. Oxygen content of the coatings was two times higher than that of the initial powders (0.35-0.37%). The thermal and electrical conductivities of the coatings were different depending on the direction of the measurement. The thermal and electrical conductivity of the coatings improved after annealing for 6 h at a temperature of 600°C.

  6. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  7. Comparison of a laboratory and a production coating spray gun with respect to scale-up.

    Science.gov (United States)

    Mueller, Ronny; Kleinebudde, Peter

    2007-01-19

    A laboratory spray gun and a production spray gun were investigated in a scale-up study. Two Schlick spray guns, which are equipped with a new antibearding cap, were used in this study. The influence of the atomization air pressure, spray gun-to tablet bed distance, polymer solution viscosity, and spray rate were analyzed in a statistical design of experiments. The 2 spray guns were compared with respect to the spray width and height, droplet size, droplet velocity, and spray density. The droplet size, velocity, and spray density were measured with a Phase Doppler Particle Analyzer. A successful scale-up of the atomization is accomplished if similar droplet sizes, droplet velocities, and spray densities are achieved in the production scale as in the laboratory scale. This study gives basic information for the scale-up of the settings from the laboratory spray gun to the production spray gun. Both spray guns are highly comparable with respect to the droplet size and velocity. The scale-up of the droplet size should be performed by an adjustment of the atomization air pressure. The scale-up of the droplet velocity should be performed by an adjustment of the spray gun to tablet bed distance. The presented statistical model and surface plots are convenient and powerful tools for scaling up the spray settings if the spray gun is changed from laboratory spray gun to the production spray gun.

  8. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  9. New tools to optimise spray dryers

    NARCIS (Netherlands)

    Verschueren, M.; Straatsma, J.; Schutyser, M.A.I.; Akkerman, C.; Jong, de P.

    2007-01-01

    Spray drying is an essential unit operation for the manufacture of many products with specific powder properties. It is characterised by atomisation of a solution or suspension into droplets, followed by subsequent drying of these droplets by evaporation of water or other solvents. Spray drying is u

  10. Evaporation of bi-component droplets in a heated, highly turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, F.; Bazile, R. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse, Toulouse (France); CNRS, IMFT, Toulouse (France)

    2012-08-15

    This work aims to understand the phenomena that occur in a combustion chamber where multi-component fuel droplets are injected. Many evaporation models exist but the influence of turbulence on spray vaporization is not yet well understood. This study gives a useful database to improve these models. The objective of the work is to measure the dispersion and the evaporation of bi-component (octane/3-pentanone) droplets and the resulting vapor mixing in a well-known, heated, highly turbulent channel flow. The carrier flow shows high turbulence levels, flat profiles for the mean velocity and the velocity fluctuations. The injected droplets have a large variety of behaviors due to the large polydispersion and to the turbulence. The evolution of 3-pentanone liquid concentration, mass flux, and droplet clusters are described. Mean concentration, fluctuations of concentration, and mixing of the vapor phase are characterized. (orig.)

  11. Review of alternative fuels data bases

    Science.gov (United States)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  12. Fuel spray combustion of waste cooking oil and palm oil biodiesel: Direct photography and detailed chemical kinetics

    KAUST Repository

    Kuti, Olawole

    2013-10-14

    This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle. Also a detailed chemical kinetics for the biodiesel fuels was carried out using ac chemical kinetics solver adopting a 0-D reactor model to obtain the chemical ignition delay of the combusting fuels. Equivalence ratios obtained from the experimental ignition delay were used for the detailed chemical kinetics analyses. The Politecnico di Milano\\'s thermochemical and reaction kinetic data were adopted to simulate the ignition processes of the biodiesels using the five fatty acid methyl esters (FAME) major components in the biodiesel fuels. From the high-speed video observations, it was observed that at increasing injection pressure, experimental ignition delay increased as a result of improvement in fuel and air mixing effects. Also the palm oil biodiesel has a shorter ignition delay compared to waste cooked oil biodiesel. This phenomenon could be attributed to the higher cetane number of palm biodiesel. The fuel spray ignition properties depend on both the physical ignition delay and chemical ignition delay. From the detailed chemical kinetic results it was observed that at the low temperature, high ambient pressure conditions reactivity increased as equivalent ratio

  13. Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques.

    Science.gov (United States)

    Corsetti, Stella; Miles, Rachael E H; McDonald, Craig; Belotti, Yuri; Reid, Jonathan P; Kiefer, Johannes; McGloin, David

    2015-12-24

    Using blends of bioethanol and gasoline as automotive fuel leads to a net decrease in the production of harmful emission compared to the use of pure fossil fuel. However, fuel droplet evaporation dynamics change depending on the mixing ratio. Here we use single particle manipulation techniques to study the evaporation dynamics of ethanol/gasoline blend microdroplets. The use of an electrodynamic balance enables measurements of the evaporation of individual droplets in a controlled environment, while optical tweezers facilitate studies of the behavior of droplets inside a spray. Hence, the combination of both methods is perfectly suited to obtain a complete picture of the evaporation process. The influence of adding varied amounts of ethanol to gasoline is investigated, and we observe that droplets with a greater fraction of ethanol take longer to evaporate. Furthermore, we find that our methods are sensitive enough to observe the presence of trace amounts of water in the droplets. A theoretical model, predicting the evaporation of ethanol and gasoline droplets in dry nitrogen gas, is used to explain the experimental results. Also a theoretical estimation of the saturation of the environment, with other aerosols, in the tweezers is carried out.

  14. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique

    Science.gov (United States)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar

    2014-12-01

    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  15. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  16. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Antonio L.N. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)]. E-mail: moreira@dem.ist.utl.pt; Carvalho, Joao [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal); Panao, Miguel R.O. [Instituto Superior Tecnico, Mechanical Engineering Department, Center for Innovation, Technology and Policy Research, IN Av. Rovisco Pais 1049-001, Lisbon Codex (Portugal)

    2007-04-15

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  17. Simultaneous visualization of oxygen partial pressure, current density, and water droplets in serpentine fuel cell during power generation for understanding reaction distributions

    Science.gov (United States)

    Takanohashi, Kazuhiro; Suga, Takeo; Uchida, Makoto; Ueda, Toshihide; Nagumo, Yuzo; Inukai, Junji; Nishide, Hiroyuki; Watanabe, Masahiro

    2017-03-01

    Understanding the reaction distributions inside a polymer electrolyte fuel cell (PEFC) is essential for the higher performance and durability. We have developed a new see-through cell and visualized the distributions of oxygen partial pressure and current density inside a running PEFC at the temperature of 40 and 80 °C and the relative humidity of 53%. The oxygen utilization was changed from 0% to 80% by changing the current density. At higher oxygen utilizations, the current density was higher and therefore the water generation. Generated water droplets in the flow channel were also visualized, allowing for the simultaneous visualization of the distribution of the oxygen partial pressure, current density, and water droplets. By combining the observations of all three parameters, the reactions inside a membrane-electrode assembly were discussed.

  18. On the formation of nitrogen oxides during the combustion of partially pre-vaporized droplets

    Energy Technology Data Exchange (ETDEWEB)

    Moesl, Klaus Georg

    2012-12-12

    This study contributes to the topic of nitrogen oxide (NO{sub x}) formation at the level of single droplet and droplet array combustion. The influence of the degree of droplet vaporization and the influence of ambient conditions on NO{sub x} emissions are studied in detail by experiments as well as by numerical simulations. Consequently, this study illustrates correlations and dependencies of the most relevant parameters with respect to the formation of NO{sub x}. It merges the fields of droplet pre-vaporization, ignition, combustion, and exhaust gas formation, including a sophisticated approach to NO{sub x} determination. Even though the study was conducted in order to help understand the fundamental process of burning idealized droplets, the processes in spray combustion have also been taken into consideration within its scope. The portability of results obtained from those idealized droplet burning regimes is evaluated for real applications. Thus, this study may also help to derive design recommendations for liquid-fueled combustion devices. While the experimental part focuses on droplet array combustion, the numerical part highlights spherically symmetric single droplet combustion. By performing experiments in a microgravity environment, quasi-spherical conditions were facilitated for droplet burning, and comparability was provided for the experimental and numerical results. A novelty of the numerical part is the investigation of mechanisms of NO{sub x} formation under technically relevant conditions. This includes partial pre-vaporization of the droplets as well as droplet combustion in a hot exhaust gas environment, such as an aero-engine. The results show that the trade-off between ambient temperature and available oxygen determines the NO{sub x} formation of droplets burning in hot exhaust gas. If the ambient temperature is high and there is still sufficient oxygen for full oxidation of the fuel provided by the droplet, the maximum of NOx formation is

  19. Microstructural Characterization and Wear Behavior of Nano-Boride Dispersed Coating on AISI 304 Stainless Steel by Hybrid High Velocity Oxy-Fuel Spraying Laser Surface Melting

    Science.gov (United States)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2015-07-01

    The current study concerns the detailed microstructural characterization and investigation of wear behavior of nano-boride dispersed coating developed on AISI 304 stainless steel by high velocity oxy-fuel spray deposition of nickel-based alloy and subsequent laser melting. There is a significant refinement and homogenization of microstructure with improvement in microhardness due to laser surface melting (1200 VHN as compared to 945 VHN of as-sprayed and 250 VHN of as-received substrate). The high temperature phase stability of the as-coated and laser melted surface has been studied by differential scanning calorimeter followed by detailed phase analysis at room and elevated temperature. There is a significant improvement in wear resistance of laser melted surface as compared to as-sprayed and the as-received one due to increased hardness and reduced coefficient of friction. The mechanism of wear has been investigated in details. Corrosion resistance of the coating in a 3.56 wt pct NaCl solution is significantly improved (4.43 E-2 mm/year as compared to 5 E-1 mm/year of as-sprayed and 1.66 mm/year of as-received substrate) due to laser surface melting as compared to as-sprayed surface.

  20. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer

    Science.gov (United States)

    Breitwieser, Matthias; Bayer, Thomas; Büchler, Andreas; Zengerle, Roland; Lyth, Stephen M.; Thiele, Simon

    2017-05-01

    A novel multilayer membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) is fabricated in this work, within a single spray-coating device. For the first time, direct membrane deposition is used to fabricate a PEMFC by spraying the short-side-chain ionomer Aquivion directly onto the gas diffusion electrodes. The fully sprayed MEA, with an Aquivion membrane 10 μm in thickness, achieved a high power density of 1.6 W/cm2 for H2/air operation at 300 kPaabs. This is one of the highest reported values for thin composite membranes operated in H2/air atmosphere. By the means of confocal laser scanning microscopy, individual carbon fibers from the gas diffusion layer are identified to penetrate through the micro porous layer (MPL), likely causing a low electrical cell resistance in the range of 150 Ω cm2 through the thin sprayed membranes. By spraying a 200 nm graphene oxide/cerium oxide (GO/CeO2) interlayer between two layers of Aquivion ionomer, the impact of the electrical short is eliminated and the hydrogen crossover current density is reduced to about 1 mA/cm2. The peak power density of the interlayer-containing MEA drops only by 10% compared to a pure Aquivion membrane of similar thickness.

  1. Ballistic Imaging of High-Pressure Fuel Sprays using Incoherent, Ultra- short Pulsed Illumination with an Ultrafast OKE-based Time Gating

    CERN Document Server

    Purwar, Harsh; Rozé, Claude; Blaisot, Jean-Bernard

    2015-01-01

    We present an optical Kerr effect based time-gate with the collinear incidence of the pump and probe beams at the Kerr medium, liquid carbon disulfide, for ballistic imaging of the high-pressure fuel sprays. The probe pulse used to illuminate the object under study is extracted from the supercontinuum generated by tightly focusing intense femtosecond laser pulses inside water, thereby destroying their coherence. The optical imaging spatial resolution and gate timings are investigated and compared with a similar setup without supercontinuum generation, where the probe is still coherent. And finally, a few ballistic images of the fuel sprays using coherent and incoherent illumination with the proposed time-gate are presented and compared qualitatively.

  2. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    Science.gov (United States)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  3. Oxidation behavior of Fe40Al-xWC composite coatings obtained by high-velocity oxygen fuel thermal spray

    Institute of Scientific and Technical Information of China (English)

    XIANG Jun-huai; ZHU Xing-he; CHEN Gang; DUAN Zhi; LIN Yan; LIU Ying

    2009-01-01

    The Fe40Al-xWC (x=0,10,12,15) coatings with dense structure were successfully deposited by high-velocity oxygen fuel (HVOF) spraying of a mixture of Fe,Al and WC powders.The objective of the present work is to provide insight into the oxidation behavior of the as-deposited coatings at 650 ℃ under 0.1 Mpa flowing pure O_2.The present results show differences in the oxidation behavior of Fe40Al coating and Fe40Al-xWC composite coatings.The irregular Fe_2O_3 layer is seen on the top surface of the composite coatings.Fe40Al coating and Fe40Al-15WC composite coating both suffer a catastrophic corrosion due to the formation of a porous structure during 24 h of oxidation.However,Fe40Al-10WC and Fe40Al-12WC composite coatings show a good oxidation resistance behavior due to their dense structure.

  4. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  5. Spray structure of a pressure-swirl atomizer for combustion applications

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV and Phase-Doppler Particle Analyzer (P/DPA. The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  6. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  7. Experimental Investigation of Droplet Evaporation of Water with Ground Admixtures while Motion in a Flame of Liquid Fuel

    Directory of Open Access Journals (Sweden)

    Dmitriyenko Margarita A.

    2016-01-01

    Full Text Available The evaporation features for the atomized flow of suspension on the base of water with ground admixtures in an area of high-temperature combustion products of liquid flammable substance (acetone were investigated experimentally by the optical methods of gas flow diagnostic and the high-speed video recording. The scales of influence of clay and silt concentration in droplets of atomized flow on the intensity of its evaporation were determined. The approximation dependences describing a decrease in typical size of suspension droplets at various values of ground admixtures were obtained.

  8. Distribución volumétrica, simetría del chorro y diámetro de gotas de las boquillas TF-VS2 Spraying distribution, symmetry of fan and droplet size to spray nozzles TF-VS2

    Directory of Open Access Journals (Sweden)

    R.A.A Román

    2010-12-01

    Full Text Available El conocimiento de las características de las diferentes boquillas de pulverización tiene una importancia imprescindible para la adecuada y correcta recomendación de su uso. El objetivo de este trabajo fue determinar el espaciamiento máximo en la barra horizontal de pulverización, la simetría del chorro y el diámetro de gotas en boquillas de pulverización TF-VS2. El trabajo fue realizado en mesa de deposición, en donde fueron utilizadas las presiones de 100, 200 y 300 kPa en las alturas de trabajo de 40 y 50 cm. La simetría del chorro fue determinada en función de dos metodologías (empírica y trigonométrica. También se determinó el tamaño de las gotas, utilizando el método de difracción de rayos laser, en función de dos caldos de pulverización constituidos por agua y por agua con adyuvante en las tres presiones de trabajo ya descritas. Los espaciamientos máximos entre las boquillas en la barra de pulverización no pueden rebasar los 70 y 82 cm, admitiéndose el CV de un 10% para las alturas de 40 y de 50 cm respectivamente. La mayor presión proporcionó el menor diámetro mediano volumétrico (DMV y la peor uniformidad de gotas, además del mayor porcentaje de gotas susceptibles a deriva, así como también aumentó la simetría entre los chorros.The knowledge of spray distribution pattern and analysis of droplets size of spray hydraulic nozzles turbo Floodjet TF-VS2 to adapt the spacing on spray boom are very important for a proper and correct use and recommendations. The aim of this study was to determine the maximum spacing on the horizontal spraying boom held on a patternator to the tips TF-VS2, under pressures of 100, 200 and 300 kPa in heights of work of 40 and 50 cm. Symmetry of spraying fan was determined due empirical and trigonometric methodology. It was also determined the droplets size by means of laser diffraction, with two spray liquids consisting of water and water plus adjuvant under three work pressures

  9. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    Science.gov (United States)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  10. 基于超声雾化的碳氢燃料多液滴流制备系统%Multi-droplet stream creating system of hydrocarbon fuel based on ultrasonic atomization technology

    Institute of Scientific and Technical Information of China (English)

    胡宗杰; 肖春江; 李治龙; NilsHaneklaus; 龚慧峰; 吴志军

    2012-01-01

    An experimental fuel based on the ultrasoni equivalence ratio of the s mixing conditions of the d multi-droplet stream creating system was developed for the hydrocarbon c atomization tream could roplets at the and the carrier-gas transport techniques. The speed and global be controlled independently to simulate really the flow and spray fringes. The stream scattering light was photographed by a high-speed camera at 90~ angle using a high intensity LED light source under different air flow rates(10,20,30 and 40 L/min) and different n-heptane supply rates(150,200,250 and 300 mL/h). The pictures showed that there was a stable flow near the nozzle exit and its length increases firstly and then decreases with air flow increasing because of the combined effect of air entrainment and droplet vaporization. When the stream speed at nozzle exit was lower than 5. 2 m/s, appeared the obvious air entrainment eddies after the stable sector, and the lower the speed, the more eddy numberand the more regular the eddy form. droplet stream might not be shot by vaporization. When the stream its scattering at was far away from the n 90°angle because of the ozzle exit, the multi droplet diffusion and%基于超声雾化和载气输运技术,设计了速度、全局当量比可独立控制的碳氢燃料多液滴流制备系统。所生成的多液滴流能够更加真实地模拟内燃机喷雾外围液滴群的流动与混合状态。采用高亮度LED光源,并从90°角度拍摄多液滴流散射光,获得了不同空气流量(10、20、30、40L/rain)和正庚烷供给速度(150、200、250、300mL/h)下的多液滴流高速摄影图片。发现多液滴流离开喷嘴管出口后可保持一段时间的单向稳定流动。空气卷吸和液滴挥发的共同作用导致稳定段长度随出口速度升高而先增大后减小。当喷嘴管出口液滴流速度低于5.2m/s时,在稳定段之后将出现明显的空气卷吸漩涡,而且出口速

  11. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  12. Optimization of Seoul-Fluor-based lipid droplet bioprobes and their application in microalgae for bio-fuel study.

    Science.gov (United States)

    Lee, Youngjun; Na, Sangcheol; Lee, Sanghee; Jeon, Noo Li; Park, Seung Bum

    2013-05-01

    We synthesized a series of Seoul-Fluor-based lipid droplet bioprobes with a linear range of lipophilicity and identified SF44 and SF58 as SF-based LD bioprobes in microalgae for biofuel research as well as in mammalian cells. Unlike Nile Red, SF-based bioprobes can stain algal LDs with excellent efficiency under the non-invasive and non-cytotoxic conditions.

  13. Analysis of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; Harada, a.; Miyamoto, T.; Akagawa, H.; Tsujimura, K.

    1997-10-01

    Premixed lean diesel combustion (PREDIC) makes it possible to achieve low NOx emission. It is an important factor to make the homogeneous spray formation for PREDIC. In this paper presents I the effect of the spray dispersion on emission characteristic were analyzed with the spray observation and engine test. Pintle type nozzle, which has different feature from orifice type nozzle, are used to form the hollow cone spray. As a result, the pintle type nozzle having grooves to generate the swirl flow, makes the reduced penetration in comparison with the hole nozzle under low ambient gas pressure. And it could improve THC, CO emissions at low NOx emission condition. 7 refs., 12 figs., 1 tab.

  14. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities

    KAUST Repository

    Hoskins, Daniel L.

    2014-11-01

    © 2014 Elsevier Ltd. Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339 ± 29 mW/m2), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13 mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444 ± 8 mW/m2) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use.

  15. Hydrodynamics and PIV study in the impingement zone formed by a droplet train

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza; Zhang, Taolue; Muthusamy, Jayaveera; Alvarado, Jorge; Texas A; M University at Qatar Collaboration; Texas A; M University College Station Collaboration

    2016-11-01

    Droplet impingement is encountered in numerous technical applications, such as ink jet printing, spray cooling, and fuel injection in internal combustion engines. Even though many studies in droplet impingement were conducted in past, not many have measured the near-wall velocities in the droplet impingement zone. With the goal of gaining a better understanding of the hydrodynamics in the impingement zone, well-controlled experiments are performed in combination with micro-PIV measurements and numerical simulations. Hydrodynamics of HFE-7100 droplets generated using a piezoelectric droplet generator, impinging on a pre-wetted surface is investigated. Micro-PIV studies in the high-velocity impingement zone are performed using one-micron meter fluorescent particles dispersed in HFE-7100 along with the double exposed images. Three-dimensional and 2D-axisymmetric numerical modeling for a transient droplet crown development is performed. The interface between the gas and the liquid is modeled using a Volume of Fluid (VOF) method. Numerical simulation results obtained are observed to be in good agreement with that of the experimental observations. Supported by National Priority Research Program (NPRP) of Qatar National Research Fund (QNRF), Grant No.: NPRP 6-1304-2-525.

  16. An Interactive Excel Program for Tracking a Single Droplet in Crossflow Computation

    Science.gov (United States)

    Urip, E.; Yang, S. L.; Marek, C. J.

    2002-01-01

    Spray jet in crossflow has been a subject of research because of its wide application in systems involving pollutant dispersion, jet mixing in the dilution zone of combustors, and fuel injection strategies. The focus of this work is to investigate dispersion of a 2-dimensional atomized spray jet into a 2-dimensional crossflow. A quick computational method is developed using available software. The spreadsheet can be used for any 2D droplet trajectory problem where the drop is injected into the free stream eventually coming to the free stream conditions. During the transverse injection of a spray into high velocity airflow, the droplets (carried along and deflected by a gaseous stream of co-flowing air) are subjected to forces that affect their motion in the flow field. Based on the Newton's Second Law of motion, four ordinary differential equations were used. These equations were then solved by a fourth-order Runge-Kutta method using Excel software. Visual basic programming and Excel macrocode to produce the data facilitate Excel software to plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user's manual on how to use the program is also included in this report.

  17. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  18. Dispersion of finite size droplets and solid particles in isotropic turbulence

    Science.gov (United States)

    Rosso, Michele

    Turbulent disperse two-phase flows, of either fluid/fluid or fluid/solid type, are common in natural phenomena and engineering devices. Notable examples are atmospheric clouds, i.e. dispersed liquid water droplets and ice particles in a complex turbulent flow, and spray of fuel droplets in the combustion chamber of internal combustion engines. However, the physics of the interaction between a dispersed phase and turbulence is not yet fully understood. The objective of this study is to compare the dispersion of deformable finite size droplets with that of solid particles in a turbulent flow in the absence of gravity, by performing Direct Numerical Simulation (DNS). The droplets and the particles have the same diameter, of the order of the Taylor's microscale of turbulence, and the same density ratio to the carrier flow. The solid particle-laden turbulence is simulated by coupling a standard projection method with the Immersed Boundary Method (IBM). The solid particles are fully resolved in space and time without considering particle/particle collisions (two-way coupling). The liquid droplet-laden turbulence is simulated by coupling a variable-density projection method with the Accurate Conservative Level Set Method (ACLSM). The effect of the surface tension is accounted for by using the Ghost Fluid Method (GFM) in order to avoid any numerical smearing, while the discontinuities in the viscous term of the Navier-Stokes equation are smoothed out via the Continuum Surface Force approach. Droplet/droplet interactions are allowed (four-way coupling). The results presented here show that in isotropic turbulence the dispersion of liquid droplets in a given direction is larger than that of solid particles due to the reduced decay rate of turbulence kinetic energy via the four-way coupling effects of the droplets.

  19. The effects of turbulence on droplet drag and secondary droplet breakup

    Science.gov (United States)

    Song, Y.-H.; Coy, E.; Greenfield, S.; Ondas, M.; Prevish, T.; Spegar, T.; Santavicca, D.

    1994-01-01

    The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized.

  20. Spray algorithm without interface construction

    Science.gov (United States)

    Al-Kadhem Majhool, Ahmed Abed; Watkins, A. P.

    2012-05-01

    This research is aimed to create a new and robust family of convective schemes to capture the interface between the dispersed and the carrier phases in a spray without the need to build up the interface boundary. The selection of the Weighted Average Flux (WAF) scheme is due to this scheme being designed to deal with random flux scheme which is second-order accurate in space and time. The convective flux in each cell face utilizes the WAF scheme blended with Switching Technique for Advection and Capturing of Surfaces (STACS) scheme for high resolution flux limiters. In the next step, the high resolution scheme is blended with the WAF scheme to provide the sharpness and boundedness of the interface by using switching strategy. In this work, the Eulerian-Eulerian framework of non-reactive turbulent spray is set in terms of theoretical proposed methodology namely spray moments of drop size distribution, presented by Beck and Watkins [1]. The computational spray model avoids the need to segregate the local droplet number distribution into parcels of identical droplets. The proposed scheme is tested on capturing the spray edges in modelling hollow cone sprays without need to reconstruct two-phase interface. A test is made on simple comparison between TVD scheme and WAF scheme using the same flux limiter on convective flow hollow cone spray. Results show the WAF scheme gives a better prediction than TVD scheme. The only way to check the accuracy of the presented models is by evaluating the spray sheet thickness.

  1. Enhancing droplet deposition through in-situ precipitation

    Science.gov (United States)

    Damak, Maher; Mahmoudi, Seyed Reza; Hyder, Md Nasim; Varanasi, Kripa K.

    2016-08-01

    Retention of agricultural sprays on plant surfaces is an important challenge. Bouncing of sprayed pesticide droplets from leaves is a major source of soil and groundwater pollution and pesticide overuse. Here we report a method to increase droplet deposition through in-situ formation of hydrophilic surface defects that can arrest droplets during impact. Defects are created by simultaneously spraying oppositely charged polyelectrolytes that induce surface precipitation when two droplets come into contact. Using high-speed imaging, we study the coupled dynamics of drop impact and surface precipitate formation. We develop a physical model to estimate the energy dissipation by the defects and predict the transition from bouncing to sticking. We demonstrate macroscopic enhancements in spray retention and surface coverage for natural and synthetic non-wetting surfaces and provide insights into designing effective agricultural sprays.

  2. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    Science.gov (United States)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  3. HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application

    Science.gov (United States)

    Tarasi, F.; Mahdipoor, M. S.; Dolatabadi, A.; Medraj, M.; Moreau, C.

    2016-12-01

    Water droplet erosion (WDE) is a phenomenon caused by impingement of water droplets of several hundred microns to a few millimeters diameter at velocities of hundreds of meters per second on the edges and surfaces of the parts used in such services. The solution to this problem is sought especially for the moving compressor blades in gas turbines and those operating at the low-pressure end of steam turbines. Thermal-sprayed tungsten carbide-based coatings have been the focus of many studies and are industrially accepted for a multitude of wear and erosion resistance applications. In the present work, the microstructure, phase analysis and mechanical properties (micro-hardness and fracture toughness) of WC-Co coatings are studied in relation with their influence on the WDE resistance of such coatings. The coatings are deposited by high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes. The agglomerated tungsten carbide-cobalt powders were in either sintered or non-sintered conditions. The WDE tests were performed using 0.4 mm water droplets at 300 m/s impact velocity. The study shows promising results for this cermet as WDE-resistant coating when the coating can reach its optimum quality using the right thermal spray process and parameters.

  4. Simulation of heat and mass transfer in spray drying

    NARCIS (Netherlands)

    Lijn, van der J.

    1976-01-01

    A survey is given of heat and mass transfer around droplets in spray dryers and the diffusional transport inside them. A calculational model is developed which includes variable diffusion coefficients in the drying liquid and swelling or shrinking of droplets. Calculations for droplets containing so

  5. Significance of droplet-droplet interactions in droplet streams: Atmospheric to supercritical conditions

    Science.gov (United States)

    Connon, Corinne Shirley

    In an effort to optimize liquid fuel combustion a considerable amount of research has been directed towards the atomization of large liquid masses into small droplets to increase the surface area available for vaporization. The current work uses a single linear array of moving droplets of uniform size and spacing to investigate the behavior of interacting droplets. A series of experiments, over a range of ambient conditions, demonstrate how a lead droplet alters the environment experienced by its trailing neighbor. This behavior is of particular interest for droplet groups under high pressure and temperature, where experimental data has been limited. Gas phase velocity and vapor concentration measurements show that as the space between adjacent droplets decreases entrainment of fluid towards the axis of motion is reduced. Trapped gases create a gaseous cylinder, composed of ambient gas and fuel vapor, which surrounds and moves with the droplet stream. As ambient pressure increase, the oscillatory behavior of the lead droplet wake begins to interfere with its trailing neighbor. Loss of stream stability and enhanced droplet stripping in part result from these oscillating wakes. However, acceleration of droplet stripping is mainly produced by liquid and gas density similarity, which increases the centrifugal stress and the growth rate of capillary waves. Further, injection of subcritical droplets into an ambient environment at temperatures and pressures above the liquid droplet critical point shows behavior not greatly different from the results obtained at high ambient pressures. The similarity results from thermal heatup times exceeding the breakup times generated from the severe aerodynamics encountered at high ambient density and high liquid-gas relative velocities.

  6. Swimming Droplets

    Science.gov (United States)

    Maass, Corinna C.; Krüger, Carsten; Herminghaus, Stephan; Bahr, Christian

    2016-03-01

    Swimming droplets are artificial microswimmers based on liquid droplets that show self-propelled motion when immersed in a second liquid. These systems are of tremendous interest as experimental models for the study of collective dynamics far from thermal equilibrium. For biological systems, such as bacterial colonies, plankton, or fish swarms, swimming droplets can provide a vital link between simulations and real life. We review the experimental systems and discuss the mechanisms of self-propulsion. Most systems are based on surfactant-stabilized droplets, the surfactant layer of which is modified in a way that leads to a steady Marangoni stress resulting in an autonomous motion of the droplet. The modification of the surfactant layer is caused either by the advection of a chemical reactant or by a solubilization process. Some types of swimming droplets possess a very simple design and long active periods, rendering them promising model systems for future studies of collective behavior.

  7. Dancing Droplets

    Science.gov (United States)

    Cira, Nate; Prakash, Manu

    2013-11-01

    Inspired by the observation of intricate and beautifully dynamic patterns generated by food coloring on corona treated glass slides, we have investigated the behavior of propylene glycol and water droplets on clean glass surfaces. These droplets exhibit a range of interesting behaviors including long distance attraction or repulsion, and chasing/fleeing upon contact. We present explanations for each of these behaviors, and propose a detailed model for the long distance interactions based on vapor facilitated coupling. Finally we use our understanding to create several novel devices which: passively sort droplets by surface tension, spontaneously align droplets, drive droplets in circles, and cause droplets to bounce on a vertical surface. The simplicity of this system lends it particularly well to application as a toy model for physical systems with force fields and biological systems such as chemotaxis and motility.

  8. 基于NO2-显色反应的抗湿性喷雾雾滴密度和大小的检测体系%Humidity resistance test system for spray droplet density and size based on NO2- color reaction

    Institute of Scientific and Technical Information of China (English)

    郑琦琦; 吴坚

    2015-01-01

    喷雾质量在一定程度上影响着“农药有效利用率”。喷雾雾滴密度和大小是影响喷雾质量的2个重要参数。针对目前应用最多的喷雾雾滴测量方法——水敏纸法,水敏纸存在抗湿性能差的缺点,该研究在保证原有使用性能的同时,设计制作一种适合在潮湿环境中使用的喷雾雾滴密度和大小的检测体系。该检测体系由检测卡和检测液两部分组成。检测液中含有能与检测卡反应的 NO2-,综合考虑安全性和检测卡使用性能,检测液中 NaNO2浓度应尽量接近但不能超过150 mg/L,该文下述试验采用NaNO2质量浓度125 mg/L。研究对检测卡的扩散均匀性和不同卡之间的平行性进行了探究,结果显示在同一检测卡上的相对标准偏差小于等于5.37%,在随机3张检测卡之间的相对标准偏差小于等于12.66%,结果表明该检测卡的均匀性和平行性较好;雾滴实际直径与斑点直径的拟合方程对于该方法制作的检测卡检测雾滴大小时具有较好的通用性;并与市售水敏纸进行检测准确性比较,结果显示在3种不同喷雾压力下,该检测卡检测结果与水敏纸基本相同,且与市售水敏纸同时进行抗湿性检验,结果显示本检测系统的检测卡具有较好的抗湿性能。因此,该文设计的喷雾雾滴密度和大小的检测体系在干燥与潮湿环境中均能良好使用。%Agriculture sprayer is widely used in plant protecting. There are many factors affecting the effective utilization of pesticide, such as canopy structure, meteorological condition, machine performance. The quality of spray will also affect the effective utilization of pesticide to some extent. Spray droplet density and spray droplet size are two important parameters which will affect the quality of spray. There are many methods of detecting spray droplet density and spray droplet size, and water sensitive paper is the most

  9. High Power Diode Laser-Treated HP-HVOF and Twin Wire Arc-Sprayed Coatings for Fossil Fuel Power Plants

    Science.gov (United States)

    Mann, B. S.

    2013-08-01

    This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and

  10. Black Droplets

    CERN Document Server

    Santos, Jorge E

    2014-01-01

    Black droplets and black funnels are gravitational duals to states of a large N, strongly coupled CFT on a fixed black hole background. We numerically construct black droplets corresponding to a CFT on a Schwarzchild background with finite asymptotic temperature. We find two branches of such droplet solutions which meet at a turning point. Our results suggest that the equilibrium black droplet solution does not exist, which would imply that the Hartle-Hawking state in this system is dual to the black funnel constructed in \\cite{Santos:2012he}. We also compute the holographic stress energy tensor and match its asymptotic behaviour to perturbation theory.

  11. Development of an imaging system for single droplet characterization using a droplet generator.

    Science.gov (United States)

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  12. Computer modelling of the meteorological and spraying parameters that influence the aerial dispersion of agrochemical sprays

    Science.gov (United States)

    Mokeba, M. L.; Salt, D. W.; Lee, B. E.; Ford, M. G.

    An insight into the nature of prevailing meteorological conditions and the manner in which they interact with spraying parameters is an important prerequisite in the analysis of the dynamics of agrochemical sprays. Usually, when these sprays are projected from hydraulic nozzles, their initial velocity is greater than that of the ambient wind speed. The flowfield therefore experiences changes in speed and direction which are felt upstream as well as downstream of the spray droplets. The pattern of the droplet flow, i.e. the shape of the streamlines marking typical trajectories, will be determined by a balance of viscous forces related to wind speed, inertial forces resulting from the acceleration of the airstream and pressure forces which can be viewed in terms of the drag forces exerted on the spray droplets themselves. At a certain distance in the ensuing motion, when the initial velocity of the spray droplets has decreased sufficiently for there to be no acceleration, their trajectories will be controlled entirely by the random effects of turbulence. These two transport processes in the atmosphere can be modelled mathematically using computers. This paper presents a model that considers the velocity of spray droplets to consist of a ballistic velocity component superimposed by a random-walk velocity component. The model is used to study the influence of meteorological and spraying parameters on the three-dimensional dynamics of spray droplets projected in specified directions in neutral and unstable weather conditions. The ballistic and random-walk velocity components are scaled by factors of (1-ξ) and ξ respectively, where ξ is the ratio of the sedimentation velocity and the relative velocity between the spray droplets and the surrounding airstream. This ratio increases progressively as the initial velocity of the spray droplet decreases with air resistance and attains a maximum when the sedimentation velocity has been reached. As soon as this occurs, the

  13. Calculation and analysis of fuel concentration at the rear of spray injecting element%直射式喷孔后方燃油浓度场计算及其分析

    Institute of Scientific and Technical Information of China (English)

    王永卫; 朱永刚; 牛志刚; 王健

    2011-01-01

    Because of its simple structure,arrangement and convenient adjustment,spray injecting element is extensively applied to the combustion chamber of ramjet engine,and the rear concentration of spray injecting element has important influence on flame stability and combustion efficiency,thus the precognition of fuel concentration is very important to spray injecting element arrangement and the relative position between spray injecting element and flame holder is extremely important.According to test result,this paper deduced the formula of fuel concentration at the rear of spray injecting element,and developed the calculation procedure of fuel concentration,thus fuel concentration at the rear of spray injecting element is analyzed.%由于直射式喷油孔的结构简单、布置和调整方便,因此已被广泛地应用于冲压发动机的燃烧室中,而且喷孔后方的燃油浓度分布对火焰稳定及燃烧效率有很大影响,由此预知喷孔后方燃油浓度分布对喷孔布置、确定喷孔与稳定器的相对位置是十分重要的。根据试验结果,推导得到了直射式喷孔后方燃油浓度分布的计算公式,编制燃油浓度分布的计算程序,以分析直射式喷油孔后方的燃油浓度场分布。

  14. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    OpenAIRE

    Ivarsson, Anders; Schramm, Jesper

    2010-01-01

    This PhD dissertation was carried out at the Technical University of Denmark in Department of Mechanical Engineering and supervised by Associate Professor Jesper Schramm. The PhD project was funded by the Technical University of Denmark. Demands on reducing the fuel consumption and harmful emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the e...

  15. Yttrium doped BaCeO{sub 3} thin films by spray pyrolysis technique for application in solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, S.U.; Jamale, A.P.; Jadhav, S.T.; Patil, S.P.; Bhosale, C.H. [Department of Physics, Shivaji University, Kolhapur 416 004 (India); Jadhav, L.D., E-mail: ldjadhav.phy@gmail.com [Department of Physics, Rajaram College, Kolhapur 416 004 (India)

    2014-02-25

    Highlights: • BCY20 thin electrolyte was deposited by economical spray pyrolysis technique. • Solution concentration and annealing temperature affects structure and morphology. • Excellent agreement with XRD data of lattice parameter. • The dc conductivity in argon at 600 °C was 4.25 × 10{sup −3} S cm{sup −1}. -- Abstract: Yttrium doped barium cerate (BCY) a solid state ion conductor which exhibits proton conductivity under proper atmospheric conditions, is used as an electrolyte in a solid oxide fuel cell (SOFCs). In present work, nanocrystalline BaCe{sub 0.8}Y{sub 0.2}O{sub 2.9} (BCY20) thin films were successfully deposited onto alumina substrates by simple and economical spray pyrolysis technique (SPT) at 250 °C. The effect of solution concentration and annealing on physico-chemical properties of BCY20 thin film has been studied. The X-ray diffraction (XRD) studies of spray pyrolysed BCY20 films revealed polycrystalline (crystallite size 35 nm) orthorhombic structure with lattice parameters a = 8.77 Å, b = 6.234 Å and c = 6.223 Å. The scanning electron micrographs showed dense morphology which is very useful for electrolyte. The stoichiometry was confirmed by elemental analysis and the estimated atomic ratio was in good agreement with that of the precursor solution ratio. The most intense band at 353.26 cm{sup −1} observed in room temperature Raman spectrum of BCY20 film was due to vibrational mode of barium cerate. The FTIR spectra with heat treatment shows no carbon based vibration bonds, revealing absence of carbon based surface impurities in the sample. The dc conductivities measured in air and argon atmospheres at 600 °C were 1.7 × 10{sup −3} and 4.25 × 10{sup −3} S cm{sup −1}, respectively.

  16. Effects of thermoacoustic oscillations on spray combustion dynamics with implications for lean direct injection systems

    Science.gov (United States)

    Chishty, Wajid Ali

    between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.

  17. Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids.

    Science.gov (United States)

    Cabodevilla, Ainara G; Sánchez-Caballero, Laura; Nintou, Eleni; Boiadjieva, Violeta G; Picatoste, Fernando; Gubern, Albert; Claro, Enrique

    2013-09-27

    Cells exposed to stress of different origins synthesize triacylglycerols and generate lipid droplets (LD), but the physiological relevance of this response is uncertain. Using complete nutrient deprivation of cells in culture as a simple model of stress, we have addressed whether LD biogenesis has a protective role in cells committed to die. Complete nutrient deprivation induced the biogenesis of LD in human LN18 glioblastoma and HeLa cells and also in CHO and rat primary astrocytes. In all cell types, death was associated with LD depletion and was accelerated by blocking LD biogenesis after pharmacological inhibition of Group IVA phospholipase A2 (cPLA2α) or down-regulation of ceramide kinase. Nutrient deprivation also induced β-oxidation of fatty acids that was sensitive to cPLA2α inhibition, and cell survival in these conditions became strictly dependent on fatty acid catabolism. These results show that, during nutrient deprivation, cell viability is sustained by β-oxidation of fatty acids that requires biogenesis and mobilization of LD.

  18. Dancing Droplets

    CERN Document Server

    Cira, Nate J

    2013-01-01

    Inspired by the observation of intricate and beautifully dynamic patterns generated by food coloring on clean glass slides, we have investigated the behavior of propylene glycol and water droplets on high energy surfaces. In this fluid dynamics video we show a range of interesting behaviors including long distance attraction, and chasing/fleeing upon contact. We present explanations for each of these behaviors including a mechanism for the long distance interactions based on vapor facilitated coupling. Finally we use our understanding to create several novel devices which: spontaneously align droplets, drive droplets in circles, cause droplets to bounce on a vertical surface, and passively sort droplets by surface tension. The simplicity of this system lends it particularly well to application as a toy model for physical systems with force fields and biological systems such as chemotaxis and motility.

  19. High-Temperature Behavior of a High-Velocity Oxy-Fuel Sprayed Cr3C2-NiCr Coating

    Science.gov (United States)

    Kaur, Manpreet; Singh, Harpreet; Prakash, Satya

    2012-08-01

    High-velocity oxy-fuel (HVOF) sprayed coatings have the potential to enhance the high-temperature oxidation, corrosion, and erosion-corrosion resistance of boiler steels. In the current work, 75 pct chromium carbide-25 pct (nickel-20 pct chromium) [Cr3C2-NiCr] coating was deposited on ASTM SA213-T22 boiler steel using the HVOF thermal spray process. High-temperature oxidation, hot corrosion, and erosion-corrosion behavior of the coated and bare steel was evaluated in the air, molten salt [Na2SO4-82 pct Fe2(SO4)3], and actual boiler environments under cyclic conditions. Weight-change measurements were taken at the end of each cycle. Efforts were made to formulate the kinetics of the oxidation, corrosion, and erosion-corrosion. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM)/energy dispersive spectroscopy (EDS) techniques were used to analyze the oxidation products. The coating was found to be intact and spallation free in all the environments of the study in general, whereas the bare steel suffered extensive spallation and a relatively higher rate of degradation. The coating was found to be useful to enhance the high-temperature resistance of the steel in all the three environments in this study.

  20. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    Science.gov (United States)

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  1. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu; Liu, Meilin; Yang, Guan-Jun

    2016-08-01

    Porous metal-supported solid oxide fuel cells (SOFCs) have attracted much attention because their potential to dramatically reduce the cost while enhancing the robustness and manufacturability. In particular, 430 ferritic steel (430L) is one of the popular choice for SOFC support because of its superior performance and low cost. In this study, we investigate the oxidation and diffusion behavior of the interface between a Ni-based anode and porous 430L support exposed to a humidified (3% H2O) hydrogen atmosphere at 700 °C. The Ni-GDC (Ce0.8Gd0.2O2-δ) cermet anodes are deposited on the porous 430L support by atmospheric plasma spraying (APS). The effect of exposure time on the microstructure and phase structure of the anode and the supports is studied and the element diffusion across the support/anode interface is characterized. Results indicate that the main oxidation product of the 430L support is Cr2O3, and that Cr and Fe will diffuse to the anode and the diffusion thickness increases with the exposure time. The diffusion thickness of Cr and Fe reach about 5 and 2 μm, respectively, after 1000 h exposure. However, the element diffusion and oxidation has little influence on the area-specific resistance, indicating that the porous 430L steel and plasma sprayed Ni-GDC anode are promising for durable SOFCs.

  2. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  3. Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating

    Science.gov (United States)

    Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.

    2017-02-01

    WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.

  4. Performance of high-velocity oxy-fuel-sprayed chromium carbide-nickel chromium coating in an actual boiler environment of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, T.S.; Prakash, S.; Agrawal, R.D. [Industrial Technology Institute, Roorkee (India)

    2007-09-15

    The present study aims to evaluate the performance of a high-velocity oxy-fuel (HVOF)-sprayed Cr{sub 3}C{sub 2}-NiCr (chromium carbide-nickel chromium) coating on a nickel-based super-alloy in an actual industrial environment of a coal-fired boiler, with the objective to protect the boiler super-heater and reheater tubes from hot corrosion. The tests were performed in the platen super heater zone of a coal-fired boiler for 1,000 h at 900 degrees C under cyclic conditions. The Cr{sub 3}C{sub 2}-NiCr coating imparted the necessary protection to the nickel-based super alloy in the given environment. The dense and flat splat structure of the coating, and the formation of oxides of chromium and nickel and their spinels, might have protected the substrate super alloy from the inward permeation of corrosive species.

  5. An Interactive Microsoft(registered tm) Excel Program for Tracking a Single Evaporating Droplet in Crossflow

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Marek, C. J.

    2004-01-01

    Droplet interaction with a high temperature gaseous crossflow is important because of its wide application in systems involving two phase mixing such as in combustion requiring quick mixing of fuel and air with the reduction of pollutants and for jet mixing in the dilution zone of combustors. Therefore, the focus of this work is to investigate dispersion of a two-dimensional atomized and evaporating spray jet into a two-dimensional crossflow. An interactive Microsoft Excel program for tracking a single droplet in crossflow that has previously been developed will be modified to include droplet evaporation computation. In addition to the high velocity airflow, the injected droplets are also subjected to combustor temperature and pressure that affect their motion in the flow field. Six ordinary differential equations are then solved by 4th-order Runge-Kutta method using Microsoft Excel software. Microsoft Visual Basic programming and Microsoft Excel macrocode are used to produce the data and plot graphs describing the droplet's motion in the flow field. This program computes and plots the data sequentially without forcing the user to open other types of plotting programs. A user's manual on how to use the program is included.

  6. Spray characterization during vibration-induced drop atomization

    Science.gov (United States)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2004-02-01

    Vibration-induced drop atomization is a process of rapid droplet ejection from a larger liquid drop. This occurs when a liquid drop resting on a thin diaphragm is vibrated under the appropriate forcing conditions using an attached piezoelectric actuator. The resulting spray of small droplets is characterized in this work using high-speed imaging and particle-tracking techniques. The results show that the average spatial and velocity distributions of the spray droplets are fairly axisymmetric during all stages of the atomization. The mean diameter of the droplets depends on the forcing frequency to the -2/3 power. The ejection velocity of the spray droplets depends on both the magnitude and the rate of change of the forcing amplitude. Thus, controlling the characteristics of the forcing signal may lead to strategies for controlling the spray process in specific applications.

  7. Computer simulation to arc spraying

    Institute of Scientific and Technical Information of China (English)

    梁志芳; 李午申; 王迎娜

    2004-01-01

    The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.

  8. Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2016-04-05

    The US Department of Energy has formulated different gasoline fuels called \\'\\'Fuels for Advanced Combustion Engines (FACE)\\'\\' to standardize their compositions. FACE I is a low octane number gasoline fuel with research octane number (RON) of approximately 70. The detailed hydrocarbon analysis (DHA) of FACE I shows that it contains 33 components. This large number of components cannot be handled in fuel spray simulation where thousands of droplets are directly injected in combustion chamber. These droplets are to be heated, broken-up, collided and evaporated simultaneously. Heating and evaporation of single droplet FACE I fuel was investigated. The heating and evaporation model accounts for the effects of finite thermal conductivity, finite liquid diffusivity and recirculation inside the droplet, referred to as the effective thermal conductivity/effective diffusivity (ETC/ED) model. The temporal variations of the liquid mass fractions of the droplet components were used to characterize the evaporation process. Components with similar evaporation characteristics were merged together. A representative component was initially chosen based on the highest initial mass fraction. Three 6 components surrogates, Surrogate 1-3, that match evaporation characteristics of FACE I have been formulated without keeping same mass fractions of different hydrocarbon types. Another two surrogates (Surrogate 4 and 5) were considered keeping same hydrocarbon type concentrations. A distillation based surrogate that matches measured distillation profile was proposed. The calculated molar mass, hydrogen-to-carbon (H/C) ratio and RON of Surrogate 4 and distillation based one are close to those of FACE I.

  9. Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process

    Energy Technology Data Exchange (ETDEWEB)

    S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

    2005-02-01

    A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

  10. Analysis of Slurry Drying in a Spray Dryer

    Directory of Open Access Journals (Sweden)

    Wittaya Julklang

    2014-01-01

    Full Text Available Spray drying has recently been exploited to prepare a large variety of high-value particles. The aim of the present paper is to analyze the drying mechanism of slurry droplets consist of nanosized particles in an industrial-scale spray dryer. For this purpose, a mathematical model is developed comprising a comprehensive model for the heat and mass transfer for a single droplet and a model for the flow of droplets and gas, and the heat and mass transfer in the dryer. Using the developed model, the drying behaviour of slurry droplets in the spray dryer is investigated in the initial heating-up, constant rate and falling rate periods by analyzing the profiles of air temperature and humidity, and the droplet velocity, average temperature and moisture content in the dryer axial direction as well as the distributions of temperature and water vapor concentration in the droplet.

  11. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  12. Pressurized Water Reactor Nuclear Power Plant Spent Fuel Pool Spray System Design%压水堆核电站乏燃料池喷淋系统设计

    Institute of Scientific and Technical Information of China (English)

    苏夏

    2013-01-01

      第三代非能动压水堆核电站AP1000中首次为乏燃料池设置了喷淋系统,在超设计基准事故或恐怖袭击导致乏燃料池水排空时,为乏燃料提供冷却。喷淋系统设计中的两个重要指标是喷淋覆盖面积和单位面积有效喷淋流量。设计者应基于喷嘴性能试验结果,根据乏燃料池结构尺寸和乏燃料特性,确定喷淋流量、喷嘴数量和布置方式等参数,完成系统设计,提供足够冷却流量。%  Spray system of spent fuel pool is first designed in AP1000, it can provide spray water to cool the spent fuel in a beyond design basis event or a terror attack that drains the pool. The two most important factors of spray system are the coverage pattern and the effective flow density. The spray flowrate, the nozzle number and their location should be designed based on the spray nozzle test results, the spent fuel pool structure and the spent fuel character to achieve the intent of providing enough cooling.

  13. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G. M.; Genzale, C. L.

    2017-12-01

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Source are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.

  14. Evaporation and wetted area of single droplets on waxy and hairy leaf surfaces.

    Science.gov (United States)

    Zhu, H; Yu, Y; Ozkan, H E; Derksen, R C; Krause, C R

    2008-01-01

    Understanding the evaporation of pesticide droplets and wetting of Leaf surfaces can increase foliar application efficiency and reduce pesticide use. Evaporation time and wetted area of single pesticide droplets on hairy and waxy geranium leaf surfaces were measured under the controlled conditions for five droplet sizes and three relative humidities. The sprays used to form droplets included water, a nonionic colloidal polymer drift retardant, an alkyl polyoxyethylene surfactant, and an insecticide. Adding the surfactant into spray mixtures greatly increased droplet wetted area on the surfaces while droplet evaporation time was greatly reduced. Adding the drift retardant into spray mixture slightly increased the droplet evaporation time and the wetted area. Also, droplets had Longer evaporation times on waxy leaves than on hairy leaves for all droplet diameters and all relative humidity conditions. Increasing relative humidity could increase the droplet evaporation time greatly but did not change the the wetted area. The droplet evaporation time and wetted area increased exponentially as the droplet size increased. Therefore, droplet size, surface characteristics of the target, relative humidity, and chemical composition of the spray mixtures (water alone, pesticide, additives) should be included as important factors that affect the efficacy and efficiency of pesticide applications.

  15. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    Science.gov (United States)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-03-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

  16. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    Science.gov (United States)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  17. Agricultural sprays in cross-flow and drift

    DEFF Research Database (Denmark)

    Farooq, M.; Balachandar, R.; Wulfsohn, Dvoralai

    2001-01-01

    The droplet size and velocity characteristics of an agricultural spray were studied in a wind tunnel in the presence of a non-uniform cross-flow. The spray was generated at three nozzle-operating pressures. The droplet size and velocity was measured in both the cross-flow direction and the vertical...... ratio (x/z) of two. Here, x is the distance in the cross-flow direction and z is the vertical distance below the nozzle exit. The behaviour of droplets of two particular size classes ( similar to 38 and 70 mum) were also investigated and found that the smaller droplets were subjected to an increased...

  18. Numerical modeling for dilute and dense sprays

    Science.gov (United States)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  19. Development of multi-component diesel surrogate fuel models – Part II:Validation of the integrated mechanisms in 0-D kinetic and 2-D CFD spray combustion simulations

    DEFF Research Database (Denmark)

    Poon, Hiew Mun; Pang, Kar Mun; Ng, Hoon Kiat;

    2016-01-01

    The aim of this study is to develop compact yet comprehensive multi-component diesel surrogate fuel models for computational fluid dynamics (CFD) spray combustion modelling studies. The fuel constituent reduced mechanisms including n-hexadecane (HXN), 2,2,4,4,6,8,8-heptamethylnonane (HMN......), cyclohexane(CHX) and toluene developed in Part I are applied in this work. They are combined to produce two different versions of multi-component diesel surrogate models in the form of MCDS1 (HXN + HMN)and MCDS2 (HXN + HMN + toluene + CHX). The integrated mechanisms are then comprehensively validated in zero...... fuel model for diesel fuels with CN values ranging from 15 to100. It also shows that MCDS2 is a more appropriate surrogate model for fuels with aromatics and cyclo-paraffinic contents, particularly when soot calculation is of main interest....

  20. 燃油温度和喷射压力对葵花籽油与柴油喷雾特性的影响%Effect of fuel temperature and injection pressure on spray characteristics of sunflower oil and diesel

    Institute of Scientific and Technical Information of China (English)

    何旭; 刘海; 曾威霖; 余红东; Bohl Thomas; 田国弘; 李向荣; 刘福水

    2014-01-01

    To study the fuel atomization problem when raw vegetable oil is used as an alternative fuel of compression-ignition internal combustion engine, this paper investigated the differences in spray characteristics between raw sunflower oil and regular diesel under different experimental conditions using the Schlieren method. The focus of this study is the effects of fuel temperature and injection pressure on the spray penetration distance, the spray cone angle, and the air entrainment of fuels injected into the constant volume vessel. The results show that both the spray penetration distance and the spray cone angle of the sunflower oil increase with increasing the fuel injection pressure and fuel temperature, which are similar to those of regular diesel. When the fuel temperature is increased from 60℃ to 90℃, the average increases in the spray penetration distance and cone angle of the sunflower oil are 12.4%and 9.6%, respectively, at 60 MPa injection pressure. Such increases are 5%and 4.14%respectively at 120 MPa injection pressure. When the injection pressure is increased from 60 MPa to 120 MPa, the percentage increases in the mean spray penetration distance and cone angle are 39.7%and 16.7%respectively at the fuel temperature of 60℃ and 30.6% and 10.9% respectively at 90℃. When the injection pressure, background pressure, and fuel temperature are the same, the sunflower oil spray has a greater penetration distance but a smaller spray angle than that of diesel. The average increase of the spray penetration of the sunflower oil is 22.5%and the average decrease of spay cone angle is 60.3%. Elevating the fuel temperature or increasing the fuel injecting pressure can enhance the entrainment of air into the spray; However, the air entrainment of the sunflower oil spray is significantly weaker than that in the ordinary diesel spray. The results provide a valuable reference on the spray characteristics to help evaluate the feasibility of using raw vegetable oil as

  1. Heat transfer and phase change in an impinging droplet

    Science.gov (United States)

    Rangchian, Aysan; Shirazi, Nikki L.; Kavehpour, H. Pirouz

    2016-11-01

    Non isothermal droplet impact on solid surfaces has several industrial applications such as spray cooling and 3D printing. Impinging of a droplet on a surface involves an initial phase of spreading followed by a subsequent return to the equilibrium shape. Thermal energy exchanged within the droplet fluid as well as between liquid/solid during the impact has been studied using an ultra high speed infrared camera. Variable parameters in the experiment include droplet temperature and kinetic energy of the droplet during the impact. The evolution of droplet shape viewed by IR camera is similar to what previously observed by high speed photography. The thermal map of droplet over time in these experiments agrees with previously reported numerical simulation. In addition, spacial and temporal temperature variations of liquid droplets on a surface as they solidify are presented. IR camera provides an accurate temperature diagram as the phase change occurs, which is essential for understanding the physics of 3D printing.

  2. Single-jet Spray Mixing with a Confined Crossflow

    Institute of Scientific and Technical Information of China (English)

    SUN Huijuan; BAI Bofeng; YAN Junjie; ZHANG Haibin

    2013-01-01

    In order to achieve uniform mixing between spray droplets and crossflow,cold-model experiment of a hollow-cone water spray in an air crossflow is investigated via a numerical simulation.The simulation cases are designed by using the orthogonal design method.The Eulerian-Lagrangian formulation is employed for modeling the droplets-crossflow two-phase flow while the realizable k-ε turbulence model is used to describe the turbulence.A new index,mixedness quality,is proposed to assess the overall mixing of the droplets in the crossflow.The simulation results demonstrate that the counter-rotating vortex pair (CVP) imposes a more significant impact on the spatial distribution than on the size distribution of the droplets.Pairs of CVP with smaller scales are preferable for achieving a better mixing.The influencing factors are listed in the following order in terms of the degree of their impact from the greatest to the least: the Sauter diameter of the initial droplets,the mixing tube diameter,the spray angle,the velocity of the inlet crossflow,and the vertical velocity of the initial droplets.A moderate droplet diameter,a smaller tube diameter,a moderate spray angle,a greater crossflow velocity and a moderate vertical velocity of the droplet are favorable for achieving a higher mixedness quality of the jet spray in a confined crossflow.

  3. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  4. Cold Spray Coating Technique with FeCrAl Alloy Powder for Developing Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Jung, Yang Il; Park, Jung Hwan; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Various approaches to enhance safety have been suggested, replacing current Zr-based alloys for fuel cladding with advanced materials exhibiting lower oxidation rates can be a basic solution. Many advanced materials such as FeCrAl alloys; Mn+1AXn, (MAX) phases, where n = 1 to 3, M is an early transition metal, A is an A-group (mostly IIIA and IVA, or groups 13 and 14) element and X is either carbon or nitrogen; Mo; and SiC are being considered as possible candidates. Among the proposed fuel cladding substitutes, Fe-based alloys are one of the most promising candidates owing to their excellent formability, high strength, and oxidation resistance at high temperature. In this work, the ATF technology concept of Fe-based alloy coating on the existing Zr-alloy cladding was considered and results on the optimization study for fabrication of coated tube samples were described. Result obtained from high temperature oxidation test under steam environment at 1200 .deg. C indicates that FeCrAl alloy coated Zr metal matrix may maintain its integrity during LOCA. This means that accident tolerance of FeCrAl alloy coated Zr cladding sample had been greatly improved compared to that of existing Zr-based alloy fuel cladding.

  5. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-04-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  6. Current status of droplet evaporation in turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Birouk, Madjid [Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB (Canada); Goekalp, Iskender [Laboratoire de Combustion et Systemes Reactifs, Centre National de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2006-07-01

    This article reviews the available literature results concerning the effects of turbulence on the transport (heat and mass transfer) rates from a droplet. The survey emphasizes recent findings related specifically to physical models and correlations for predicting turbulence effects on the vaporization rate of a droplet. In addition, several research challenges on the vaporization of fuel droplets in turbulent flow environments are outlined. (author)

  7. Evaluation of the Eulerian-Lagrangian spray atomisation (ELSA) in spray simulations

    OpenAIRE

    Hoyas, S.; Pastor Enguídanos, José Manuel; KHUONG, ANH DUNG; MOMPÓ LABORDA, JUAN MANUEL; Ravet, Frederic

    2011-01-01

    Many approaches have been used to simulate the spray structure especially in modelling fuel sprays, i.e., Eulerian, Lagrangian, Lagrangian- Eulerian, Eulerian-Eulerian and Eulerian-Lagrangian approaches. The present study uses an Eulerian-Lagrangian spray atomisation (ELSA) method which is an integrated model for capturing the whole spray evolution starting directly from injector nozzle still the end. Our goal in this study is to evaluate the ELSA model which is implementing into the commerci...

  8. Laser diagnosis and plasma technology: fundamentals for reduction of emissions and fuel consumption in DI internal combustion engines. Spray/wall-interaction under diesel engine conditions. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Spray/Wand-Wechselwirkung bei der motorischen Einspritzung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Renz, U.; Meingast, U.

    2001-02-01

    Spray/wall-interaction under diesel engine conditions is not yet investigated extensively in detail with high spatial resolution and high time resolution as those experiments require extremely accurate techniques. Numerical modelling to predict fluiddynamic and heat transfer processes are validated mostly under non engine conditions. The processes during spray/wall interaction under internal combustion engine conditions were investigated experimentally in an injection chamber using enhanced laser optical methods. To enable validation and development of numerical spray/wall models the data was collected under well known and reproducible conditions. Microscopic visualisation tools, Phase-Doppler Anemometry (PDA) to measure droplet diameter and velocity as well as fluorescence based film measurement technique and high speed surface thermocouples to determine the wall heat flux were used. The numerical predictions of the spray wall interaction using Computational Fluid Dynamics (CFD) including two spray/wall models from the literature show qualitatively good agreement with the experiments. However, quantitatively some insufficiencies are observed because the models base on experiments under atmospheric conditions disregarding the influences of high pressure and high temperature. Here more detailed investigation is necessary in the future. The present results build up a comprehensive basis to validate future models and their interaction. Progress was done in using measurement techniques to investigate complex mechanisms under challenging conditions. (orig.) [German] Die Spray/Wand Wechselwirkung unter dieselmotorischen Bedingungen ist bisher nicht mit hoher Zeit- und Ortsaufloesung umfassend charakterisiert worden, weil deren Untersuchung hohe Anforderungen an die Messtechniken stellt. Numerische Modelle zur Vorhersage der Stroemungs- und Waermetransportvorgaenge sind nur teilweise unter reale Bedingungen verifiziert worden. Die Vorgaenge beim Auftreffen eines

  9. Quantification of sauter mean diameter in diesel sprays using scattering-absorption extinction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Gabrielle L; Magnotti, Gina M; Knox, Benjamin W; Genzale, Caroline L; Matusik, Katarzyna E; Duke, Daniel J; Powell, Christopher F; Kastengren, Alan L

    2017-05-18

    Quantitative measurements of the primary breakup process in diesel sprays are lacking due to a range of experimental and diagnostic challenges, including: high droplet number density environments, very small characteristic drop size scales (~1-10 μm), and high characteristic velocities in the primary breakup region (~600 m/s). Due to these challenges, existing measurement techniques have failed to resolve a sufficient range of the temporal and spatial scales involved and much remains unknown about the primary atomization process in practical diesel sprays. To gain a better insight into this process, we have developed a joint visible and x-ray extinction measurement technique to quantify axial and radial distributions of the path-integrated Sauter Mean Diameter (SMD) and Liquid Volume Fraction (LVF) for diesel-like sprays. This technique enables measurement of the SMD in regions of moderate droplet number density, enabling construction of the temporal history of drop size development within practical diesel sprays. The experimental campaign was conducted jointly at the Georgia Institute of Technology and Argonne National Laboratory using the Engine Combustion Network “Spray D” injector. X-ray radiography liquid absorption measurements, conducted at the Advanced Photon Source at Argonne, quantify the liquid-fuel mass and volume distribution in the spray. Diffused back-illumination liquid scattering measurements were conducted at Georgia Tech to quantify the optical thickness throughout the spray. By application of Mie-scatter equations, the ratio of the absorption and scattering extinction measurements is demonstrated to yield solutions for the SMD. This work introduces the newly developed scattering-absorption measurement technique and highlights the important considerations that must be taken into account when jointly processing these measurements to extract the SMD. These considerations include co-alignment of measurements taken at different institutions

  10. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...... model for droplet cooling and solidification. The model is tested and validated against results from literature and experiments. Subsequently, the model is used to simulate the complex flow fields in the spray forming process and the results are discussed. The presented model of the spray forming...

  11. Modeling the influence of nozzle-generated turbulence on diesel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Magnotti, G M; Matusik, K E; Duke, D J; Knox, B W; Martinez, G L; Powell, C F; Kastengren, A L; Genzale, C L

    2017-05-18

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potential atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased

  12. Suspension Plasma Sprayed Sr2Fe1.4Mo0.6O6- δ Electrodes for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhang, Shan-Lin; Zhang, Ai-Ping; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2017-02-01

    In this study, suspension plasma spraying (SPS) was applied to deposit double perovskite Sr2Fe1.4Mo0.6O6- δ (SFM) which can be used as both cathode and anode for solid oxide fuel cells. The effects of SFM concentration on the electrode phase composition, microstructure, and catalytic performance were investigated. The electrodes showed a dense structure when it was deposited at a concentration of 0.05 mol/L. The cathode performance was limited by the limited three-phase boundaries and poor gas diffusion. At 750 °C, cathode polarization ( R pc) was 0.19 Ω cm2. When the SFM concentration increased to 0.075 mol/L, the deposits revealed a porous microstructure with well-bonded fine particles. As a result, the Rpc decreased significantly to 0.078 Ω cm2 at 750 °C. However, when the SFM concentration was further increased to 0.1 mol/L, the R pc increased owing to the limited interface bonding between the non-molten particles. As a result, it was found that the SFM suspension concentration should be optimized to achieve a highly active SFM by SPS process. Moreover, when the optimized deposit was employed as an anode and tested in a hydrogen atmosphere, it showed anode polarization resistance (Rpa) of 1.5 Ω cm2 at 750 °C.

  13. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells

    Science.gov (United States)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Martín, F.; Ramos-Barrado, J. R.; Losilla, E. R.; Marrero-López, D.

    2016-07-01

    A novel electrode preparation method based on the spray-pyrolysis deposition of metal nitrate solutions onto a porous electrolyte scaffold is proposed. This method has been proved with different cathode materials, usually used in Solid Oxide Fuel Cells, such as La0.8Sr0.2MnO3-δ and La0.6Sr0.4Co1-xFexO3-δ (x = 0, 0.2, 0.8 and 1). The electrode microstructure is composed by two layers; the inner layer is a porous electrolyte scaffold homogeneously coated by cathode nanoparticles, providing an increased number of triple phase boundary sites for oxygen reduction, whereas, the top layer is formed by only cathode nanoparticles and acts mainly as a current collector. Polarization resistance values as low as 0.07 and 1.0 Ω cm2 at 600 and 450 °C, respectively, are obtained at open circuit voltage. This alternative approach has several advantages with respect to the traditional wet infiltration method for large area electrode fabrication, such as higher reproducibility, shorter preparation time in a single thermal deposition step, and easy implementation at industrial scale as a continuous process.

  14. Suspension Plasma Sprayed Sr2Fe1.4Mo0.6O6-δ Electrodes for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhang, Shan-Lin; Zhang, Ai-Ping; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2017-01-01

    In this study, suspension plasma spraying (SPS) was applied to deposit double perovskite Sr2Fe1.4Mo0.6O6-δ (SFM) which can be used as both cathode and anode for solid oxide fuel cells. The effects of SFM concentration on the electrode phase composition, microstructure, and catalytic performance were investigated. The electrodes showed a dense structure when it was deposited at a concentration of 0.05 mol/L. The cathode performance was limited by the limited three-phase boundaries and poor gas diffusion. At 750 °C, cathode polarization (R pc) was 0.19 Ω cm2. When the SFM concentration increased to 0.075 mol/L, the deposits revealed a porous microstructure with well-bonded fine particles. As a result, the Rpc decreased significantly to 0.078 Ω cm2 at 750 °C. However, when the SFM concentration was further increased to 0.1 mol/L, the R pc increased owing to the limited interface bonding between the non-molten particles. As a result, it was found that the SFM suspension concentration should be optimized to achieve a highly active SFM by SPS process. Moreover, when the optimized deposit was employed as an anode and tested in a hydrogen atmosphere, it showed anode polarization resistance (Rpa) of 1.5 Ω cm2 at 750 °C.

  15. Vibration-induced droplet atomization

    Science.gov (United States)

    Vukasinovic, Bojan

    The atomization of liquid drops is investigated experimentally using laser vibrometry, high-speed imaging, and particle tracking techniques. The spray is generated by a novel vibration-induced droplet atomization (VIDA) process in which a sessile drop is atomized by an underlying vibrating thin metal diaphragm, resulting in rapid ejection of small secondary droplets from the free surface of the primary drop. Under some conditions, the primary drop can be atomized extremely rapidly by a bursting-like mechanism (e.g., a 0.1 ml water drop can be atomized in 0.4 seconds). The present research has focused on four major areas: global characteristics of VIDA process, instability modes and free surface dynamics of the forced drop, mechanisms of the interface breakup, and parametric characterization of the ensuing spray. Prior to atomization, the drop free surface undergoes three transitions: from axisymmetric standing waves to azimuthal waves, to a newly-observed lattice mode, and to a disordered pre-ejection state. The droplet ejection results from localized collapse of surface troughs and initiation and ultimate breakup of momentary liquid spikes. Breakup begins with capillary pinch-off from spike tips and can be followed by additional pinching of liquid droplets. For a relatively low-viscosity liquid, e.g., water, a capillary-wave instability of the spike is observed in some cases, while for a very viscous liquid, e.g., a glycerin/water solution, the first breakup occurs near the stem of the spike, with or without subsequent breakup of the detached, elongated thread. Different mechanisms dominating the primary breakup of the spike are operative in the low- and high-viscosity ejection regimes. When ejection of the secondary droplets is triggered, the evolution and rate of atomization depend on the coupled dynamics of the primary drop and the vibrating diaphragm. Due to these dynamics, the process can be either self-intensifying or self-decaying. The resulting VIDA spray

  16. Studies on Ultrasonic Spray Dryer (1)

    OpenAIRE

    井上, 昌夫

    1981-01-01

    Author has initiated research and development activities for a epochal ultrasonic spray dryer in order to obtain large quantities of droplets in uniform diameters, from which a practically applicable ultrasonic spray dryer would possibly be developed. Since the time Wood, Loomis et al. reported their experiments on atomization of liquids by ultrasonic power, research in this field is now widely attempted in many countries. In Japan, this field is being investigated by Ohno et al. Chiba, and M...

  17. Non-equilibrium solidification of undercooled droplets during atomization process

    Indian Academy of Sciences (India)

    Prashant Shukla; R K Mandal; S N Ojha

    2001-10-01

    Thermal history of droplets associated with gas atomization of melt has been investigated. A mathematical model, based on classical theory of heterogeneous nucleation and volume separation of nucleants among droplets size distribution, is described to predict undercooling of droplets. Newtonian heat flow condition coupled with velocity dependent heat transfer coefficient is used to obtain cooling rate before and after nucleation of droplets. The results indicate that temperature profile of droplets in the spray during recalescence, segregated and eutectic solidification regimes is dependent on their size and related undercooling. The interface temperature during solidification of undercooled droplets rapidly approaches the liquidus temperature of the alloy with a subsequent decrease in solid–liquid interface velocity. A comparison in cooling rates of atomized powder particles estimated from secondary dendrite arm spacing measurements are observed to be closer to those predicted from the model during segregated solidification regime of large size droplets.

  18. Structure formation by nanosilica particles suspended in levitated droplet

    CERN Document Server

    Saha, Abhishek; Kumar, Ranganathan; Basu, Saptarshi

    2010-01-01

    Vaporization of liquid droplets containing particles has been studied extensively for its applications in combustion, thermal coating, ink-jet printing, spray cooling, drug delivery, and surface patterning. Droplets containing solid particles show a preferential solute-migration during drying process. Recently we carried out experiments with vaporizing droplet suspended in an acoustic levitator. In this work, we present detailed study of a laser irradiated droplet containing nanosilica particles. Infrared and High speed imaging of the heating process for different concentrations of nanosilica revealed an interesting solute migration pattern. Further investigation with Particle Image Velocimetry shows presence of strong recirculation within the levitated droplet. It also reveals that with increasing viscosity of the liquid the strength of this recirculation decreases. Due to the droplets rotation about the levitator axis, a centrifugal force also dominated the flow field within the droplet. High speed imaging ...

  19. Droplet organelles?

    Science.gov (United States)

    Courchaine, Edward M; Lu, Alice; Neugebauer, Karla M

    2016-08-01

    Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.

  20. Properties of Spray Dried Food and Spray Drying Characteristics

    Science.gov (United States)

    Katoh, Fumio

    The following conclusions are obtained, studying properties of spray dried food and drying characteristics. (a) Dried particles are similar to spray droplets in size distribution (y=2.5), and particle count distribution is arranged as (dn/dx = ae-bx). (b) The ratio of the particle diameters before and after drying is calculated with moisture before and after drying, and porosity is given as (εp = ww4). (c) The standard drying method is presented to evaluate accurately drying problems at a certain standard. (d) Equilibrium moisture at 20 up to 100°C are summarized in terms of adsorption potential. (e) It makes clear that calulation based on the theory of residence time and drying time represents well complex spray drying characteristics.

  1. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors

    Science.gov (United States)

    Rudin, Thomas; Wegner, Karsten; Pratsinis, Sotiris E.

    2011-07-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10-20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray.

  2. The combustion of fuel oil and the factors influencing pollutant formation

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Kurosh.

    1990-03-01

    This study presents in-flame and flue gas emission data with particular emphasis on the emission of NO{sub x} compounds arising from oil spray combustion. Experimental studies were carried out in a cylindrical ceramic-lined tunnel furnace using a pressure jet swirl oil burner. This burner was characterized in terms of the droplet size and spray pattern it produced in order to investigate the effect of these parameters on system performance with regard to NO formation. Six operating conditions were used and the NO and NO{sub x} emissions in the flame and post flame regions were reported. The majority of NO in the system was formed via the oxidation of nitrogenous species produced close to the burner. The effect of mean droplet size on the NO formation was investigated and the results showed that any factor which tended to produce smaller fuel droplets promoted an increase in the NO emission. In-flame radial and axial profiles were used to elucidate the mechanism of NO formation with regard to burner operation conditions. The burning rate of the fuel droplets was also modelled theoretically for the experimental conditions investigated. Predictions of NO formation chemistry were undertaken using a kinetic package. A post-processing NO model using the FLUENT computer code was also used. (Author).

  3. The effect of turbulent velocity fluctuations on the convective heat transfer to droplets subjected to evaporation and thermolysis

    Science.gov (United States)

    Guo, Ning; Finnerman, Oskar; Ström, Henrik

    2016-06-01

    The effect of turbulent velocity fluctuations on the convective heat transfer to single droplets in a turbulent channel flow are investigated numerically. It is found that for properties relevant to typical liquid spray applications, the convective heat transfer is enhanced with increasing droplet size and bulk Reynolds number. The combined effect of convective heat transfer enhancement and increased driving forces for heat and mass transfer due to droplet dispersion is thereafter investigated for a commercial spray application. The probability distribution functions of droplet properties in the spray are found to be significantly affected by the presence of turbulent velocity fluctuations in the carrier phase.

  4. CHARACTERIZATION OF DIESEL SPRAY IMAGES USING A SHAPE PROCESSING METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cecile Petit

    2011-05-01

    Full Text Available In Diesel engines, a key element in achieving a clean and efficient combustion process is a proper fuel-air mixing, which is a consequence of the fuel spray development and fuel-air interaction inside the engine combustion chamber. The spray structure and behavior are classically described by the length (penetration and width (angle of the spray plume but these parameters do not give any clue on the geometrical injection center and on the spray symmetry. The purpose of this paper is to find out original tools to characterize the Diesel spray: the virtual spray origin is the geometrical injection center, which may (or may not coincide with the injector axis. Another interesting point is the description of the Diesel spray in terms of symmetry: the spray plume internal and external symmetry characterize the spray and the injector performance. Our approach is first to find out the virtual spray origin: after the image segmentation, the spray is coded with the Freeman code and with an original shape coding from which the moments are derived. The symmetry axes are then computed and the spray plumes are discarded (or not for the virtual spray origin computation, which is derived from a Voronoi diagram. The last step is the internal and external spray plume symmetry characterization thanks to correlation and mathematical distances.

  5. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    Science.gov (United States)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  6. Use of an infrared detector to analyze the temperature evolution of a droplet impacting on a heating wall

    Science.gov (United States)

    Amiel, Clarisse; Le Clercq, Patrick; Ravel, Olivier; Lavergne, Gerard; Berthoumieu, Pierre; Farre, Jean A.

    2001-03-01

    The improvement of the combustion performance in combustor engines in terms of the reduction of the pollutant emissions is an important objective in Automotive and Aerospace Research and Development. Many phenomena occur during the spray injection in the combustor engine: droplet turbulent dispersion, droplet wall interaction, droplets interaction, droplet evaporation, primary and secondary breakup, auto- ignition, combustion, etc. To improve and to validate the heat exchange models between the droplet and a heated wall, an experimental set-up is developed at the ONERA Toulouse Centre on fundamental studies involving single droplets. An Infrared detector measures the temperature evolution of the surface droplet which impinges on a heated wall.

  7. Stabilization and structure of N-heptane flame on CWJ-spray burner with kHZ SPIV and OH-PLIF

    KAUST Repository

    Mansour, Morkous S.

    2015-08-31

    A curved wall-jet (CWJ) burner was employed to stabilize turbulent spray flames that utilized a Coanda effect by supplying air as annular-inward jet over a curved surface, surrounding an axisymmetric solid cone fuel spray. The stabilization characteristics and structure of n-heptane/air turbulent flames were investigated with varying fuel and air flow rates and the position of pressure atomizer (L). High-speed planar laser-induced fluorescence (PLIF) of OH radicals delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the flow field features, involving turbulent mixing within spray, ambient air entrainment and flame-turbulence interaction. High turbulent rms velocities were generated within the recirculation zone, which improved the flame stabilization. OH fluorescence signals revealed a double flame structure near the stabilization edge of lifted flame that consisted of inner partially premixed flame and outer diffusion flame front. The inner reaction zone is highly wrinkled and folded due to significant turbulent mixing between the annular-air jet and the fuel vapor generated from droplets along the contact interface of this air jet with the fuel spray. Larger droplets, having higher momentum are able to penetrate the inner reaction zone and then vaporized in the low-speed hot region bounded by these reaction zones; this supports the outer diffusion flame. Frequent local extinctions in the inner reaction zone were observed at low air flow rate. As flow rate increases, the inner zone is more resistant to local extinction despite of its high wrinkling and corrugation degree. However, the outer reaction zone exhibits stable and mildly wrinkled features irrespective of air flow rate. The liftoff height increases with the air mass flow rate but decreases with L.

  8. CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber

    Science.gov (United States)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.

    1993-01-01

    The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the

  9. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  10. Development and application of a high-speed planar laser-induced fluorescence imaging system to evaluate liquid and vapor phases of sprays from a multi-hole diesel fuel injector

    Science.gov (United States)

    Parrish, S. E.; Zink, R. J.

    2013-02-01

    A high-speed imaging system capable of acquiring elastic scattering images and planar laser-induced fluorescence (PLIF) images in a near-simultaneous fashion has been developed. Acquiring both elastic scattering and PLIF images enables the liquid phase to be discriminated from the vapor phase. High-speed imaging allows the temporal evolution of flow structures to be evaluated. Images of sprays from a multi-hole diesel fuel injector operating under engine-like conditions were acquired. The vapor phase images reveal intricate fluid dynamic structures that exhibit a high degree of variability, indicative of a turbulent gas jet.

  11. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan [School of Energy and Environment, Southeast University, Sipailou 2, Nanjing 210096 (China)

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)

  12. LES/FMDF of High Speed Spray Combustion

    Science.gov (United States)

    Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    High speed evaporating and combusting sprays are computed with the hybrid two-phase large eddy simulation (LES)/filtered mass density function (FMDF) methodology. In this methodology, the resolved fluid velocity is obtained by solving the filtered form of the compressible Navier-Stokes equations with high-order finite difference schemes. The scalar (temperature and species mass fractions) field is obtained by solving the FMDF transport equation with a Lagrangian stochastic method. The spray is simulated with the Lagrangian droplets together with stochastic breakup and finite rate heat and mass transfer models. The liquid volume fraction is included in the LES/FMDF for denser spray regions. Simulations of high speed evaporating sprays with and without combustion for a range of gas and spray conditions indicate that the two-phase LES/FMDF results are consistent and compare well with the experimental results for global spray variables such as the spray penetration and flame lift-off lengths. The gas velocity and turbulence generated by the spray are found to be very significant in all simulated cases. A broad spectrum of droplet sizes is also found to be generated by the complex and coupled effects of the gas flow turbulence, droplet breakup, evaporation and combustion.

  13. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  14. Experiments and Direct Numerical Simulations of binary collisions of miscible liquid droplets with different viscosities

    CERN Document Server

    Focke, C; Kuschel, M; Sommerfeld, M

    2012-01-01

    Binary droplet collisions are of importance in a variety of practical applications comprising dispersed two-phase flows. The background of our research is the prediction of properties of particulate products formed in spray processes. To gain a more thorough understanding of the elementary sub-processes inside a spray, experiments and direct numerical simulations of binary droplet collisions are used. The aim of these investigations is to develop semi-analytical descriptions for the outcome of droplet collisions. Such collision models can then be employed as closure terms for scale-reduced simulations. In the present work we focus on the collision of droplets of different liquids. These kinds of collisions take place in every spray drying process when droplets with different solids contents collide in recirculation zones. A new experimental method has been developed allowing for high spatial and time resolved recordings via Laser-induced fluorescence. The results obtained with the proposed method will be comp...

  15. Grating droplets with a mesh

    Science.gov (United States)

    Soto, Dan; Le Helloco, Antoine; Clanet, Cristophe; Quere, David; Varanasi, Kripa

    2016-11-01

    A drop thrown against a mesh can pass through its holes if impacting with enough inertia. As a result, although part of the droplet may remain on one side of the sieve, the rest will end up grated through the other side. This inexpensive method to break up millimetric droplets into micrometric ones may be of particular interest in a wide variety of applications: enhancing evaporation of droplets launched from the top of an evaporative cooling tower or preventing drift of pesticides sprayed above crops by increasing their initial size and atomizing them at the very last moment with a mesh. In order to understand how much liquid will be grated we propose in this presentation to start first by studying a simpler situation: a drop impacting a plate pierced with a single off centered hole. The study of the role of natural parameters such as the radius drop and speed or the hole position, size and thickness allows us to discuss then the more general situation of a plate pierced with multiple holes: the mesh.

  16. The effect of liquid film on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Saito, Kengo; Hayashi, Kanto [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan)

    2013-12-15

    Highlights: • Liquid droplet impingement erosion is studied experimentally using high-speed conical spray. • Erosion rate is increased with decreasing the liquid film thickness. • Erosion model is proposed considering the influence of liquid film thickness. -- Abstract: In the present paper, the pipe-wall thinning due to liquid droplet impingement erosion is studied experimentally by using a high-speed conical spray under the influences of liquid film on the target specimen. The size of the droplets considered is an order of tens of micrometers in diameter, which is the same order as those expected in the pipeline of nuclear/fossil power plants. In order to evaluate the erosion rate by the liquid droplet impingement under the influence of liquid film, the experiments are conducted by various combinations of the specimen diameters and the standoff distances of the spray from the nozzle. The experimental results show that the erosion depth increases linearly with the local flow volume, indicating the presence of terminal stage of erosion. The present results indicate that the erosion rate increases with decreasing the specimen diameter and increases slightly with increasing the standoff distance. This result combined with the theoretical consideration of the liquid film on the specimen leads to the conclusion that the erosion rate increases with decreasing the liquid film thickness, which supports the numerical result of liquid droplet impingement erosion in literature. Then, the erosion model for predicting the erosion rate by the liquid droplet impingement is proposed considering the influence of the liquid film.

  17. Sprinkler and water spray techniques in fires of combustible liquids. Sprinkleritekniikka nestepaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.

    1986-08-15

    The purpose of this review is to find out what is known scientifically about extinguishment and control of fires in combustible liquids by sprinkler and water spray techniques. Because no review on combustion is available in Finnish, the first part of the study deals extensively with principles and the most important parameters of combustion of liquids in different geometries. The theory of flames based on diffusion equations is outlined both for laminar and turbulent flow. Then the application of these theories on pool fire and droplet burning are described. The theoretical extinction criteria were studied to find out the essential factors controlling the extinguishment process. The movement of water droplets in and interactions with flames is approached theoretically and experimentally. The latter part of the study presents the most important sprinkler test series since the fifties. It gives a simple theory on sprinkler actuation time and describes test series designed to find out practical answers to the required water flux density. Most of the tests deal with pool fire of combustible liquids. The extinguishment of a gas blow out fire and a number of tests using solid fuels are also included. The fires and the protection by water spray cooling of the storage tanks and pressure vessels are reviewed. Finally, the development of early-suppression, fast-response (ESFR) and intelligent sprinkler systems is described briefly.

  18. Interaction effects on combustion of alcohol droplet pairs; Alcohol kei nenryo niekiteki no nensho ni okeru kansho koka

    Energy Technology Data Exchange (ETDEWEB)

    Okai, K.; Ono, Y.; Moriue, O.; Shiba, S.; Araki, M.; Tsue, M.; Kono, M. [The University of Tokyo, Tokyo (Japan); Nomura, H. [Nihon Univ., Chiba (Japan). Coll. of Industrial Technology; Shiga, S. [Gunma University, Gunma (Japan). Faculty of Engineering

    2000-02-25

    Experimental investigation was conducted on two droplet-array combustion of methanol and methanol/dodecanol mixture fuels in microgravity. For methanol, effects of ambient pressure and droplet spacing were examined. Results show that the droplet lifetime decreases with increasing spacing at relatively low pressure and the droplet lifetime becomes independent of spacing at higher-subcritical and supercritical pressures. For methanol/dodecanol mixture, effects of pressure, fuel composition were investigated in terms of occurrence of disruption. Disruption of droplet during combustion was demonstrated both for single droplet and droplet pairs. (author)

  19. Uranium droplet nuclear reactor core with MHD generator

    Science.gov (United States)

    Anghaie, Samim; Kumar, Ratan

    An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.

  20. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    Science.gov (United States)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2015-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 degrees is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  1. Influence of spraying distance and postcooling on cryogen spray cooling for dermatologic laser surgery

    Science.gov (United States)

    Aguilar, Guillermo; Majaron, Boris; Viator, John A.; Basinger, Brooke; Karapetian, Emil; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage in various laser dermatological procedures such as treatment of port wine stain birthmarks and hair removal. However, the spray characteristics and combination of CSC and heating (laser) to obtain optimal treatments have not yet been determined. The distance between the nozzle tip and the skin surface for commercial devices was apparently chosen based on the position at which the cryogen spray reached a minimum temperature, presumably with the expectation that such a minimum would correspond to maximal heat flux. We have systematically measured spray characteristics of various nozzles, such as mean droplet diameter, velocity, temperature, and heat transfer coefficient, as a function of distance from the nozzle tip. Among other interesting correlations between these spray characteristics, it is shown that, for nozzle-to-skin distances between 20 to 80 mm, variations in the heat transfer coefficient are larger than those in the spray temperature and, therefore, maximization of the heat flux should be better dictated by the distance at which the heat transfer coefficient is maximized rather than that at which the spray temperature is minimized. Also, the influence of droplet diameter appears to be more influential on the heat transfer coefficient value than that of droplet velocity. Based on spray characteristic correlations, different ranges for positioning the nozzles are recommended, depending on the clinical application. Also, a 2D finite-difference method has been developed to study the spatial and temporal thermal variations within the skin. Our results show that it is possible to decrease significantly the epidermal damage after laser irradiation provided the heat transfer coefficient is significantly increased. The influence of post-cooling has minimal effects for the cases studied.

  2. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  3. Experimental comparative study of doublet and triplet impinging atomization of gelled fuel based on PIV

    Science.gov (United States)

    Yang, Jian-lu; Li, Ning; Weng, Chun-sheng

    2016-10-01

    Gelled propellant is promising for future aerospace application because of its combination of the advantages of solid propellants and liquid propellants. An effort was made to reveal the atomization properties of gelled fuel by particle image velocimetry (PIV) system. The gelled fuel which was formed by gasoline and Nano-silica was atomized using a like-doublet impingement injector and an axisymmetric like-triplet impingement injector. The orifice diameter and length of the nozzle used in this work were of 0.8mm, 4.8mm, respectively. In the impinging spray process, the impingement angles were set at 90° and 120°, and the injection pressures were of 0.50MPa and 1.00MPa. The distance from the exit of the orifice to the impingement point was fixed at 9.6mm. In this study, high-speed visualization and temporal resolution particle image velocimetry techniques were employed to investigate the impingement atomization characteristics. The experimental investigation demonstrated that a long narrow high speed droplets belt formed around the axis of symmetry in the like-doublet impinging atomization area. However, there was no obvious high-speed belt with impingement angle 2θ = 90° and two high-speed belts appeared with impingement angle 2θ = 120° in the like-doublet impingement spray field. The high droplet velocity zone of the like-doublet impingement atomization symmetrically distributed around the central axis, and that of the like-triplet impingement spray deflected to the left of the central axis - opposite of injector. Although the droplets velocity distribution was asymmetry of like-triplet impingement atomization, the injectors were arranged like axisymmetric conical shape, and the cross section of spray area was similar to a circle rather than a narrow rectangle like the like-doublet impingement atomization.

  4. Caracterização do perfil de deposição e do diâmetro de gotas e otimização do espaçamento entre bicos na barra de pulverização Characterization of deposition pattern, droplet diameter and optimization of nozzles spacing in spray boom

    Directory of Open Access Journals (Sweden)

    Ana P. Fernandes

    2007-12-01

    Full Text Available A escolha e o uso adequado de pontas de pulverização são essenciais para a correta aplicação de produtos fitossanitários, sendo, portanto, indispensável o conhecimento de suas características. Este trabalho teve o objetivo de caracterizar o perfil de distribuição e o diâmetro de gotas, oferecendo dados para otimizar o espaçamento entre bicos na barra de pulverização. Foram avaliados os perfis de distribuição da ponta de jato plano Teejet XR 110015 VS, a 0,50 m da altura da mesa de deposição, nas pressões de 200 e 300 kPa, e o diâmetro das gotas pelo método de difração de raios laser. As distâncias máximas foram de 0,85 m, calculadas para um coeficiente de variação (C.V. aceitável para as pressões de 200 e 300 kPa , com os respectivos valores de 9,52 e 9,58%. A distância ótima foi de aproximadamente 0,70 m, para C.V. em torno de 5%. Comparando as pressões, houve diferença significativa para DV0,1 e DV0,5, não havendo diferença para o DV0,9. Embora o aumento da pressão tenha provocado diminuição do tamanho das gotas, não houve diferença significativa de uniformidade entre as duas pressões de trabalho avaliadas. Concluiu-se que o espaçamento máximo entre bicos na barra não deverá ser maior que 0,85 m e que o DV0,5 diminui com o aumento da pressão de 200 para 300 kPa, porém sem alteração significativa da uniformidade de diâmetro de gota.The choice and correct use of nozzles are essential for the best agrochemical deposition, which is indispensable. The aim of this work was characterize the spray pattern and the droplet diameter offering information to optimize the nozzles spaces in spray boom. Deposition pattern of flat fan nozzles Teejet XR 110015 VS were evaluated, in a patternator, with the nozzle placed 0.50 m above patternator under pressures of 200 and 300 kPa, and the droplet diameter by the laser diffraction method. The maximum distance calculated for an acceptable coefficient of variation (C

  5. Distribuição volumétrica e diâmetro de gotas de pontas de pulverização de energia hidráulica para controle de corda-de-viola Volumetric distribution and droplet size of hydraulic spraying nozzles for the control of scarlet morningglory

    Directory of Open Access Journals (Sweden)

    M.C Ferreira

    2011-09-01

    plants and dry weight of shoot and root growth were evaluated. Volumetric distribution profiles for a 40cm height were evaluated in a table deposition. Based on the distribution profiles, a deposition pattern was simulated along the spray boom. Droplet diameter spectrum was determined in a particle size analyzer by laser light diffraction. The herbicide mixture diuron + hexazinone was effective in controlling pre-emergence scarlet morningglory, and organo-modified polymethyl siloxane or mineral oil may be used as adjuvants, in association with nozzles AI 110015 or 110015 TTI. The use of adjuvants allowed the increase in volume median diameter and reduction in the percentage of droplets with diameter below 100 micrometers. The suggested spacing between nozzles on the spray bar was 70 cm for AI 110015 and 80 cm for the TTI 110015.

  6. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  7. Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge Mode

    Science.gov (United States)

    Endo, T.; Obayashi, R.; Tajiri, T.; Kimura, K.; Morohashi, Y.; Johzaki, T.; Matsuoka, K.; Hanafusa, T.; Mizunari, S.

    2016-02-01

    Experiments on thermal spray by pulsed detonations at 150 Hz were conducted. Two types of pulse detonation combustors were used, one operated in the inert gas purge (GAP) mode and the other in the liquid-purge (LIP) mode. In both modes, all gases were supplied in the valveless mode. The GAP mode is free of moving components, although the explosive mixture is unavoidably diluted with the inert gas used for the purge of the hot burned gas. In the LIP mode, pure fuel-oxygen combustion can be realized, although a liquid-droplet injector must be actuated cyclically. The objective of this work was to demonstrate a higher spraying temperature in the LIP mode. First, the temperature of CoNiCrAlY particles heated by pulsed detonations was measured. As a result, the spraying temperature in the LIP mode was higher than that in the GAP mode by about 1000 K. Second, the temperature of yttria-stabilized zirconia (YSZ) particles, whose melting point was almost 2800 °C, heated by pulsed detonations in the LIP mode was measured. As a result, the YSZ particles were heated up to about 2500 °C. Finally, a thermal spray experiment using YSZ particles was conducted, and a coating with low porosity was successfully deposited.

  8. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  9. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  10. High-speed camera observation of multi-component droplet coagulation in an ultrasonic standing wave field

    Science.gov (United States)

    Reißenweber, Marina; Krempel, Sandro; Lindner, Gerhard

    2013-12-01

    With an acoustic levitator small particles can be aggregated near the nodes of a standing pressure field. Furthermore it is possible to atomize liquids on a vibrating surface. We used a combination of both mechanisms and atomized several liquids simultaneously, consecutively and emulsified in the ultrasonic field. Using a high-speed camera we observed the coagulation of the spray droplets into single large levitated droplets resolved in space and time. In case of subsequent atomization of two components the spray droplets of the second component were deposited on the surface of the previously coagulated droplet of the first component without mixing.

  11. In-Situ Optical Diagnostics Of Diesel Spray Injection And Combustion For Engine-Like Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dreier, T.; Gerber, T.

    2005-03-01

    Serial imaging of spray propagation, soot blackbody radiation and flame chemiluminescence measurements were performed to characterize the propagation and combustion of Diesel fuel sprays in the PSI high temperature pressure vessel (HTDZ). (author)

  12. An Integrated Numerical Model of the Spray Forming Process

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper; Pedersen, Trine Bjerre;

    2002-01-01

    In this paper, an integrated approach for modelling the entire spray forming process is presented. The basis for the analysis is a recently developed model which extents previous studies and includes the interaction between an array of droplets and the enveloping gas. The formulation...... is in fact the summation of 'local' droplet size distributions along the r-axis. A key parameter, which determines the yield and the shape of the deposit material, is the sticking efficiency. The sticking phenomenon is therefore incorporated into the deposition model. (C) 2002 Acta Materialia Inc. Published...... of the deposition model is accomplished using a 2D cylindrical heat flow model. This model is now coupled with an atomization model via a log-normal droplet size distribution. The coupling between the atomization and the deposition is accomplished by ensuring that the total droplet size distribution of the spray...

  13. Optimizing cell viability in droplet-based cell deposition

    NARCIS (Netherlands)

    Hendriks, J.; Visser, C.W.; Henke, S.J.; Leijten, Jeroen Christianus Hermanus; Saris, Daniël B.F.; Sun, Chao; Lohse, Detlef; Karperien, Hermanus Bernardus Johannes

    2015-01-01

    Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here,

  14. Optimizing cell viability in droplet-based cell deposition

    NARCIS (Netherlands)

    Hendriks, Jan; Willem Visser, Claas; Henke, Sieger; Leijten, Jeroen; Saris, Daniël B F; Sun, Chao; Lohse, Detlef; Karperien, Marcel

    2015-01-01

    Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here, w

  15. Volumetric Collection Efficiency and Droplet Sizing Accuracy of Rotary Impactors

    Science.gov (United States)

    2011-02-01

    slide. The DropVision software returns results in the form of DV50, DV10, and DV90 as well as, the cu ‐ mulative droplet size distribution and coverage...field samplers for monitoring spray drift. Crop Prot. 15(3): 249‐257. Fox, R. D., R. C. Derksen, H. Zhu, R. A. Downer, and R. D. Brazee . 2004. Airborne

  16. 生物质热解燃油的精制与乳化燃料喷雾特性试验研究%Refining for Bio-pyrolysate Oil and Spray Characteristics of Emulsified Fuel

    Institute of Scientific and Technical Information of China (English)

    王振平; 曹建明; 李金晶; 陈静; 邓代俊; 包建; 董海琼

    2014-01-01

    通过蒸馏方法将生物质热解油(BPO )精制后与柴油配制成乳化燃料,研究了影响乳化燃料稳定性的因素,结果表明,乳化燃料的稳定性与复合乳化剂HLB值和乳化温度有关,乳化剂的最佳 HLB值在7左右,乳化燃料的稳定性随乳化温度的提高先增大再减小,40℃时乳化燃料的稳定性最好。理化分析表明乳化油的密度、运动黏度、凝点等物理性质基本能够达到车用燃料标准。采用激光衍射技术对乳化燃料喷雾特性进行了研究,结果表明,随着生物质热解油乳化比例的增加,喷雾锥角先减小后增大,Sauter平均直径 D32逐渐增大,雾化质量逐渐变差。%The emulsified fuel was prepared by mixing diesel with the refined bio-pyrolysate oil (BPO) with distilling method and the influencing factors of its stabilization were researched .It was found that the stabilization of emulsified fuel was relevant to HLB value of compound emulsifier and emulsified temperature .The optimal HLB value of emulsifier was about 7 .The sta-bilization of emulsion fuel first increased and then decreased with the increase of emulsified temperature and the optimal temper-ature for good stability is 40 ℃ .The physical and chemical analysis showed that the physical property such as density ,kine-matical viscosity ,condensation point and etc could meet the standards of vehicle fuel .In addition ,the spray characteristics of e-mulsified fuel were tested by the laser diffraction technology .The results showed that the spray cone angle first decreased and then increased ,the Sauter mean diameter D32 increased gradually and the atomization quality became worse with the increase of BPO proportion .

  17. Experimental research on spray and combustion characteristics of the third generation conical spray

    Institute of Scientific and Technical Information of China (English)

    FENG Li-yan; LONG Wu-qiang; DU Bao-guo; TIAN hua; OBOKATA Tomio

    2005-01-01

    A new generation conical spray system for conventional diesel engines or premixed combustion diesel engines is introduced. By means of oriented impingement method, flexible spray penetration in design is realized. High-speed photograph was used to investigate the spatial distribution characteristics of the new spray for cases of different impingement angles and needle valve opening pressures. The results show that, by applying spray impingement orientation, fuel jets spread along the cone surface as shape of sectors, so the dispersion of jets is increased obviously. Changing on impingement angle leads to variation of penetration, which is critical in homogeneous mixture preparation. Due to the flexibility of spray penetration in design, the spray impingement on liner is avoided in a great extent. The results also indicate that higher needle valve opening pressure results in longer penetration and larger spray angle after impingement. Combustion characteristics of the impinged conical spray were studied in the 1135 type diesel engine. The new impinged conical spray system work smoothly in full load range with better fuel economy and lower emissions of NOx and soot than the original test engine.

  18. JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

    2003-06-17

    The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

  19. Combustion Characteristics of Hydrocarbon Droplets Induced by Photoignition of Aluminum Nanoparticles (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-04-23

    Hydrocarbon Droplets Induced by Photoignition of Aluminum Nanoparticles (Conference Paper with Briefing Charts) John Bennewitz, Alireza Badakhshan, and...droplets has been achieved through photoignition (PI) utilizing sub milligram of aluminum nanoparticles (Al NPs). For diesel fuel, a reliable ignition...Droplets Induced by Photoignition of Aluminum Nanoparticles Alireza Badakhshan1,*, John W. Bennewitz2, Douglas G. Talley3 1Engineering Research

  20. Study on Electric field assisted low frequency (20 kHz) ultrasonic spray

    Science.gov (United States)

    Chae, Ilkyeong; Seong, Baekhoon; Marten, Darmawan; Byun, Doyoung

    2015-11-01

    Ultrasonic spray is one of the fabulous techniques to discharge small size of droplets because it utilizes ultrasonic vibration on nozzle. However, spray patterns and size of ejected droplet is hardly controlled in conventional ultrasonic spray method. Therefore, here we present electric field assisted ultrasonic spray, which combined conventional technique with electric field in order to control spray pattern and droplet size precisely. Six kinds of various liquid (D.I water, Ethanol, Acetone, Iso-propanol, Toluene, Hexane) with various dielectric constants were used to investigate the mechanism of this method. Also, PIV (Particle Image Velocimetry) was used and various variables were obtained including spray angle, amplitude of liquid vibration, current, and size distribution of ejected droplets. Our electric field assisted ultrasonic spray show that the standard deviation of atomized droplet was decreased up to 39.6%, and it shows the infinite possibility to be utilized in various applications which require precise control of high transfer efficiency. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014-023284).

  1. THE INTERACTION OF A COLD ATOMISED SPRAY WITH A CIRCULAR CYLINDER

    Directory of Open Access Journals (Sweden)

    A. AROUSSI

    2010-09-01

    Full Text Available The development of non-intrusive diagnostic techniques has significantly increased with the introduction of lasers. Laser based anemometry, such as Laser Doppler (LDA, Phase Doppler (PDA, and Particle Image Velocimetery (PIV can provide an accurate description of flows without interference. This study determines experimentally the fluid motion resulting from the interaction of a liquid spray with a circular cylinder. Two experimental settings were examined: the first is a discharging spray into free air and the second is a spray impinging on a circular cylinder placed 25 cylinder diameters downstream of the nozzle. These sprays were quantified using PIV. A non-intrusive droplet sizing technique was used to characterise the spray. This has shown that, within the spray, the average droplet diameter increases when the circular cylinder is introduced and so does the frequency of occurrence of these large droplets. In the wake behind the cylinder, the smaller droplets were quickly entrained and recirculated, while the larger droplets continued in the general direction of the spray cone.

  2. Self-healing atmospheric plasma sprayed Mn1.0Co1.9Fe0.1O4 protective interconnector coatings for solid oxide fuel cells

    Science.gov (United States)

    Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert

    2017-09-01

    Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.

  3. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry

    Directory of Open Access Journals (Sweden)

    J. A. Cabral-Miramontes

    2014-01-01

    Full Text Available The thermal spraying process is a surface treatment which does not adversely affect the base metal on which it is performed. The coatings obtained by HVOF thermal spray are employed in aeronautics, aerospace, and power generation industries. Alloys and coatings designed to resist oxidizing environments at high temperatures should be able to develop a surface oxide layer, which is thermodynamically stable, slowly growing, and adherent. MCrAlY type (M = Co, Ni or combination of both coatings are used in wear and corrosion applications but also provide protection against high temperature oxidation and corrosion attack in molten salts. In this investigation, CoNiCrAlY coatings were produced employing a HVOF DJH 2700 gun. The work presented here focuses on the influences of process parameters of a gas-drive HVOF system on the microstructure, adherence, wear, and oxygen content of CoNiCrAlY. The results showed that spray distance significantly affects the properties of CoNiCrAlY coatings.

  4. EFFECT OF NOZZLE FAN ANGLE ON SPRAYS IN GAS-SOLID RISER FLOW

    Institute of Scientific and Technical Information of China (English)

    Muhammad; M.; R.; Qureshi; Chao; Zhu; Chao-Hsin; Lin; Liang-Shih; Fan

    2006-01-01

    A three-dimensional simulation study is performed for investigating the hydrodynamic behaviors of a cross-flow liquid nitrogen spray injected into an air-fluidized catalytic cracking (FCC) riser of rectangular cross-section. Rectangular nozzles with a fixed aspect ratio but different fan angles are used for the spray feeding. While our numerical simulation reveals a generic three-phase flow structure with strong three-phase interactions under rapid vaporization of sprays, this paper tends to focus on the study of the effect of nozzle fan angle on the spray coverage as well as vapor flux distribution by spray vaporization inside the riser flow. The gas-solid (air-FCC) flow is simulated using the multi-fluid method while the evaporating sprays (liquid nitrogen) are calculated using the Lagrangian trajectory method, with a strong two-way coupling between the Eulerian gas-solid flow and the Lagrangian trajectories of spray. Our simulation shows that the spray coverage is basically dominated by the spray fan angle. The spray fan angle has a very minor effect on spray penetration. The spray vaporization flux per unit area of spray coverage is highly non-linearly distributed along the spray penetration. The convection of gas-solid flow in a riser leads to a significant downward deviation of vapor generated by droplet vaporization, causing a strong recirculating wake region in the immediate downstream area of the spray.

  5. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    Science.gov (United States)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  6. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  7. A Two-Continua Approach to Eulerian Simulation of Water Spray

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Østerby, Ole

    2013-01-01

    Physics based simulation of the dynamics of water spray - water droplets dispersed in air - is a means to increase the visual plausibility of computer graphics modeled phenomena such as waterfalls, water jets and stormy seas. Spray phenomena are frequently encountered by the visual effects industry...

  8. Large eddy simulation of fuel injection and mixing process in a diesel engine

    Institute of Scientific and Technical Information of China (English)

    Lei Zhou; Mao-Zhao Xie; Ming Jia; Jun-Rui Shi

    2011-01-01

    The large eddy simulation(LES) approach implemented in the KIVA-3V code and based on one-equation sub-grid turbulent kinetic energy model are employed for numerical computation of diesel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine.Computational results are compared with those obtained by an RANS(RNG k-ε) model as well as with experimental data. The sensitivity of the LES results to mesh resolution is also discussed. The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS; and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES. Furthermore,the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result,and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model. Finally,it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.

  9. Design of Control Circuits of Electronic Fuel Injection for Diesel Spray Characteristics%柴油机喷雾特性的电喷控制电路设计

    Institute of Scientific and Technical Information of China (English)

    齐放; 张乐超; 许沧粟

    2011-01-01

    介绍了一种柴油机电控喷油器喷射开启控制系统.为实现柴油机电控喷油器的开启、持续喷油、关闭功能,应用STC12系列单片机构成电控喷油器的控制系统.开启时为使喷油器开启迅速,应用单周期控制技术的IR1150S芯片,产生高压为112 V的高压电源为喷油器供电.试验结果表明,开发的柴油机电控喷油嚣控制系统符合X光相衬成像技术研究柴油机喷雾雾化机理的要求,喷油开启迅速、喷油持续稳定、关闭干脆.本系统根据设定可实现电控喷油器的单次及多次连续开启,进一步可以推广应用于柴油机喷油器相关环节教学实验中.%This paper described a control system of diesel electronic control fuel injector, which can achieve the opening, continuous injection and closing of electronic fuel injector with STC12 MCU control system. For the quick opening,one cycle control technique IR1150S chip was supplied to produce 1 12 V high voltages for injector. The experimental results show that the electronic controlled spray system can meet the requirements of diesel spray atomization research with X-ray phase contrast imaging technology. For the control system, the spray starts rapidly, injects steadily and closes immediately- According to the device sellings,this system can achieve single and multiple opening. This system also can be used in the. Diesel nozzle experimental teaching.

  10. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  11. An Experimental Investigation of Vibration-Induced Droplet Atomization.

    Science.gov (United States)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    1998-11-01

    The atomization process in a mm-scale liquid droplet placed on a vibrating membrane is investigated experimentally. When the wavelength of the Faraday surface waves is smaller than the characteristic dimension of the droplet, the waves grow in amplitude as the excitation amplitude increases and ultimately begin to eject small secondary droplets from the wave crests. The high membrane acceleration needed to attain ejection (typically 300g) is achieved by driving a light-weight membrane near its resonant frequencies (nominally 1000-6000 Hz). The evolution and rate of the droplet-ejection process depend on a coupled system dynamic between the liquid droplet and the vibrating membrane. Depending on the excitation frequency and amplitude, various types of droplet-ejection processes can occur. For example, when step forcing (with prescribed frequency and amplitude) is applied, rapid atomization occurs. This event is triggered along the circumference of the droplet near the contact line by a strong azimuthal instability. In the present experiments, the droplet-ejection process and the resulting spray characteristics are investigated using high-speed video and two-frame particle tracking velocimetry.

  12. An Experimental Investigation of Vibration Induced Droplet Atomization*

    Science.gov (United States)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    1999-11-01

    The atomization of a millimeter-scale liquid droplet placed on a vibrating diaphragm is investigated experimentally using high-speed imaging and particle-tracking techniques. Atomization is the result of the rapid ejection of small secondary droplets from the wave crests of a hierarchy of forced surface waves on the primary droplet. The evolution and rate of ejection depend on the coupled dynamics of the primary droplet and the vibrating diaphragm. The present data indicate that secondary droplet ejection results from the collapse of surface craters formed during the evolution of capillary surface waves on the primary droplet. The collapse of the crater and the ensuing ejection of a momentary liquid jet are similar to ejection processes at free surfaces that are induced by the bursting of gas bubbles or the impingement of liquid droplets. The spray characteristics of the ejected droplets are investigated over a broad range of vibrating frequencies (up to 14 kHz) using particle-tracking velocimetry. * Supported by NASA Microgravity Res. Div., Grant NAG3-1949.

  13. Spray drying technique. I: Hardware and process parameters.

    Science.gov (United States)

    Cal, Krzysztof; Sollohub, Krzysztof

    2010-02-01

    Spray drying is a transformation of feed from a fluid state into a dried particulate form by spraying the feed into a hot drying medium. The main aim of drying by this method in pharmaceutical technology is to obtain dry particles with desired properties. This review presents the hardware and process parameters that affect the properties of the dried product. The atomization devices, drying chambers, air-droplet contact systems, the collection of dried product, auxiliary devices, the conduct of the spray drying process, and the significance of the individual parameters in the drying process, as well as the obtained product, are described and discussed.

  14. A High-Speed All-Digital Technique for Agricultural Spray Measurement and Flow Visualization Image Analysis in Pesticide Application

    Directory of Open Access Journals (Sweden)

    Deyun Wei

    2013-01-01

    Full Text Available In order to solve the faults in usual measurements of droplet distribution and motion in agricultural spraying field, a new method is given for the analysis of droplets characteristics and motion with PDIA (Particle/ Droplet Image Analysis and digital image processing technique. During the analysis of the size of droplet and the velocity, images of droplets in spray field have been captured by using high-speed imager. The parameter of droplet such as size, perimeter, equivalent diameter, shape factor and position etc., have been calculated with digital image processing technology. The trace of droplet in different frames has been tracked with the method, which is based on flag tracking and droplet neighborhood matching probability technique. The results showed this method can both realize the motion trace of droplet in different image frames and analyses the velocity of droplet. This technique can detect the droplet parameters quickly and accurately for agricultural sprays and provide the basic way for research on flow visualization image analysis in pesticide application.

  15. SPRAY code user's report. [LMFBR sodium pipe leaks

    Energy Technology Data Exchange (ETDEWEB)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume.

  16. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    Science.gov (United States)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  17. A Two-Continua Approach to Eulerian Simulation of Water Spray

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Østerby, Ole

    2013-01-01

    Physics based simulation of the dynamics of water spray - water droplets dispersed in air - is a means to increase the visual plausibility of computer graphics modeled phenomena such as waterfalls, water jets and stormy seas. Spray phenomena are frequently encountered by the visual effects industry...... into the operator splitting methodology as well as (semi-)implicit discretizations of droplet diffusion and the drag force with improved stability properties. As shown by several examples, our approach allows us to more faithfully capture the dynamics of spray than previous Eulerian methods....

  18. Equations of two-phase flow in spray chamber

    Institute of Scientific and Technical Information of China (English)

    李新禹; 张志红; 金星; 徐杰

    2009-01-01

    The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.

  19. The role of drop velocity in statistical spray description

    Science.gov (United States)

    Groeneweg, J. F.; El-Wakil, M. M.; Myers, P. S.; Uyehara, O. A.

    1978-01-01

    The justification for describing a spray by treating drop velocity as a random variable on an equal statistical basis with drop size was studied experimentally. A double-exposure technique using fluorescent drop photography was used to make size and velocity measurements at selected locations in a steady ethanol spray formed by a swirl atomizer. The size-velocity data were categorized to construct bivariate spray density functions to describe the spray immediately after formation and during downstream propagation. It was found that a statistical treatment of drop velocity was supported by the data. Spray density function shapes and modal characteristics depended strongly on position and the amount of droplet-gas interaction that had occurred. Bimodal density functions were formed by environmental interaction during downstream propagation. Large differences were also found between spatial mass density and mass flux size distributions at the same location.

  20. Numerical Modeling of Spray Combustion with an Unstructured-Grid Method

    Science.gov (United States)

    Shang, H. M.; Chen, Y. S.; Liaw, P.; Shih, M. H.; Wang, T. S.

    1996-01-01

    The present unstructured-grid method follows strictly the basic finite volume forms of the conservation laws of the governing equations for the entire flow domain. High-order spatially accurate formulation has been employed for the numerical solutions of the Navier-Stokes equations. A two-equation k-epsilon turbulence model is also incorporated in the unstructured-grid solver. The convergence of the resulted linear algebraic equation is accelerated with preconditioned Conjugate Gradient method. A statistical spray combustion model has been incorporated into the present unstructured-grid solver. In this model, spray is represented by discrete particles, rather than by continuous distributions. A finite number of computational particles are used to predict a sample of total population of particles. Particle trajectories are integrated using their momentum and motion equations and particles exchange mass, momentum and energy with the gas within the computational cell in which they are located. The interaction calculations are performed simultaneously and eliminate global iteration for the two-phase momentum exchange. A transient spray flame in a high pressure combustion chamber is predicted and then the solution of liquid-fuel combusting flow with a rotating cup atomizer is presented and compared with the experimental data. The major conclusion of this investigation is that the unstructured-grid method can be employed to study very complicated flow fields of turbulent spray combustion. Grid adaptation can be easily achieved in any flow domain such as droplet evaporation and combustion zone. Future applications of the present model can be found in the full three-dimensional study of flow fields of gas turbine and liquid propulsion engine combustion chambers with multi-injectors.

  1. Sodium spray and jet fire model development within the CONTAIN-LMR code

    Energy Technology Data Exchange (ETDEWEB)

    Scholtyssek, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Murata, K.K. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    An assessment was made of the sodium spray fire model implemented in the CONTAIN code. The original droplet burn model, which was based on the NACOM code, was improved in several aspects, especially concerning evaluation of the droplet burning rate, reaction chemistry and heat balance, spray geometry and droplet motion, and consistency with CONTAIN standards of gas property evaluation. An additional droplet burning model based on a proposal by Krolikowski was made available to include the effect of the chemical equilibrium conditions at the flame temperature. The models were validated against single-droplet burn experiments as well as spray and jet fire experiments. Reasonable agreement was found between the two burn models and experimental data. When the gas temperature in the burning compartment reaches high values, the Krolikowski model seems to be preferable. Critical parameters for spray fire evaluation were found to be the spray characterization, especially the droplet size, which largely determines the burning efficiency, and heat transfer conditions at the interface between the atmosphere and structures, which controls the thermal hydraulic behavior in the burn compartment.

  2. Spray-coating route for highly aligned and large-scale arrays of nanowires.

    Science.gov (United States)

    Assad, Ossama; Leshansky, Alexander M; Wang, Bin; Stelzner, Thomas; Christiansen, Silke; Haick, Hossam

    2012-06-26

    Technological implementation of nanowires (NWs) requires these components to be organized with controlled orientation and density on various substrates. Here, we report on a simple and efficient route for the deposition of highly ordered and highly aligned NW arrays on a wide range of receiver substrates, including silicon, glass, metals, and flexible plastics with controlled density. The deposition approach is based on spray-coating of a NW suspension under controlled conditions of the nozzle flow rate, droplet size of the sprayed NWs suspension, spray angle, and the temperature of the receiver substrate. The dynamics of droplet generation is understood by a combined action of shear forces and capillary forces. Provided that the size of the generated droplet is comparable to the length of the single NW, the shear-driven elongation of the droplets results presumably in the alignment of the confined NW in the spraying direction. Flattening the droplets upon their impact with the substrate yields fast immobilization of the spray-aligned NWs on the surface due to van der Waals attraction. The availability of the spray-coating technique in the current microelectronics technology would ensure immediate implementation in production lines, with minimal changes in the fabrication design and/or auxiliary tools used for this purpose.

  3. Discrete element modelling of fluidised bed spray granulation

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Weijers, G.G.C.; Boerefijn, R.; Kuipers, J.A.M.

    2003-01-01

    A novel discrete element spray granulation model capturing the key features of fluidised bed hydrodynamics, liquid¿solid contacting and agglomeration is presented. The model computes the motion of every individual particle and droplet in the system, considering the gas phase as a continuum. Microsca

  4. Discrete element modelling of fluidised bed spray granulation

    NARCIS (Netherlands)

    Goldschmidt, M.J.V.; Weijers, G.G.C.; Boerefijn, R.; Kuipers, J.A.M.

    2002-01-01

    A novel discrete element spray granulation model capturing the key features of fluidised bed hydrodynamics, liquid-solid contacting and agglomeration is presented. The model computes the motion of every individual particle and droplet in the system, considering the gas phase as a continuum. Micro sc

  5. Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since Michael Faraday

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2014-01-01

    Full Text Available equations between predicted and experimentally measured droplet diameter. Correlation equations such as one by Rajan & Pandit and Avvaru et al. have been considered. Ultrasonic spray pyrolysis for materials processing and the theories that predict the final...

  6. Numerical and Experimental Investigation on the Spray Coating Process Using a Pneumatic Atomizer: Influences of Operating Conditions and Target Geometries

    Directory of Open Access Journals (Sweden)

    Qiaoyan Ye

    2017-01-01

    Full Text Available This paper presents a numerical simulation of the spray painting process using a pneumatic atomizer with the help of a computational fluid dynamics code. The droplet characteristics that are necessary for the droplet trajectory calculation were experimentally investigated using different shaping air flow rates. It was found that the droplet size distribution depends on both the atomizing and the shaping air flow rate. An injection model for creating the initial droplet conditions is necessary for the spray painting simulation. An approach for creating these initial conditions has been proposed, which takes different operating conditions into account and is suitable for practical applications of spray coating simulation using spray guns. Further, tests on complicated targets and complex alignments of the atomizer have been carried out to verify this numerical approach. The results confirm the applicability and reliability of the chosen method for the painting process.

  7. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    Science.gov (United States)

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (pspray drying may be a feasible option for erythrocyte biopreservation.

  8. Size distributions of sprays produced by violent wave impacts on vertical sea walls.

    Science.gov (United States)

    Watanabe, Y; Ingram, D M

    2016-10-01

    When a steep, breaking wave hits a vertical sea wall in shallow water, a flip-through event may occur, leading to the formation of an up-rushing planar jet. During such an event, a jet of water is ejected at a speed many times larger than the approaching wave's celerity. As the jet rises, the bounded fluid sheet ruptures to form vertical ligaments which subsequently break up to form droplets, creating a polydisperse spray. Experiments in the University of Hokkaido's 24 m flume measured the resulting droplet sizes using image analysis of high-speed video. Consideration of the mechanisms forming spray droplets shows that the number density of droplet sizes is directly proportional to a power p of the droplet radius: where p=-5/2 during the early break-up stage and p=-2 for the fully fragmented state. This was confirmed by experimental observations. Here, we show that the recorded droplet number density follows the lognormal probability distribution with parameters related to the elapsed time since the initial wave impact. This statistical model of polydisperse spray may provide a basis for modelling droplet advection during wave overtopping events, allowing atmospheric processes leading to enhanced fluxes of mass, moisture, heat and momentum in the spray-mediated marine boundary layer over coasts to be described.

  9. Investigation on Interface Structure and Wear-resistant Properties of HVOF Sprayed Carbides Coating onto Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    HOU Li-feng; ZHANG Heng-jin; WEI Ying-hui; YAN Kai; HU Lan-qing; XU Bing-she

    2004-01-01

    In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate,etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.

  10. Investigation on Interface Structure and Wear-resistant Properties of HVOF Sprayed Carbides Coating onto Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    HOULi-feng; ZHANGHeng-jin; WEIYing-hui; YANKai; HULan-qing; XUBing-she

    2004-01-01

    In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate, etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.

  11. The atomization and the flame structure in the combustion of residual fuel oils; La atomizacion y estructura de flama en la combustion de combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Bolado Estandia, Ramon [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    In this article a research on the combustion of heavy residual fuel oils is presented. The type of flames studied were obtained by means of the burning of sprays produced by an atomizer designed and calibrated specially for the research purpose. The flame characteristics that were analyzed are its length, its luminosity, the temperature, the distribution of the droplets size and mainly the burning regime of the droplets in the flame. The experimental techniques that were used for these studies were shadow micro-photography, suction pyrometry and of total radiation, laser diffraction, 35 mm photography, and impact push. The analysis of the experimental results, together with the results of the application of a mathematical model, permitted to establish two parameters, that quantitatively related determine the burning regime of the droplets in a flame of sprays of residual heavy fuel oil. [Espanol] En este articulo se presenta una investigacion sobre la combustion de combustibles residuales pesados. El tipo de flamas estudiadas se obtuvieron mediante el quemado de sprays producidos por un atomizador disenado y calibrado especialmente para el proposito de la investigacion. Las caracteristicas de flama que se analizaron son la longitud, la luminosidad, la temperatura, la distribucion de tamano de gotas y, principalmente, el regimen de quemado de gotas en la flama. Las tecnicas experimentales que se usaron para estos estudios fueron microfotografia de sombras, pirometria de succion y de radiacion total, difraccion laser, fotografia de 35 mm y empuje de impacto. El analisis de resultados experimentales, junto con los resultados de la aplicacion de un modelo matematico, permitio establecer dos parametros, que relacionados cuantitativamente, determinan el regimen de quemado de gotas en una flama de sprays de combustible residual pesado.

  12. An Integrated Approach for the Numerical Modelling of the Spray Forming Process

    DEFF Research Database (Denmark)

    Hattel, Jesper; Thorborg, Jesper; Pryds, Nini;

    2003-01-01

    In this paper, an integrated approach for modelling the entire spray forming process is presented. The basis for the analysis is a recently developed model which extents previous studies and includes the interaction between an array of droplets and the enveloping gas. The formulation...... of the deposition is accomplished using a 3-D cylindrical heat flow model. This model is now coupled with an atomization model via a log-normal droplet size distribution. The coupling between the atomization and the deposition model is accomplished by ensuring that the total droplet size distribution of the spray...... is in fact the summation of "local" droplet size distributions along the r-axis. Furthermore, the deposition model proposed in the paper involves both the sticking efficiency of the droplets to the substrate as well as a geometrical model involving the effects of shadowing for the production of billet...

  13. An Optical and Computational Investigation on the Effects of Transient Fuel Injections in Internal Combustion Engines

    Science.gov (United States)

    Neal, Nicholas

    The effects of transient rate-of-injection profiles on high-pressure fuel jets have been studied in an optically accessible internal combustion engine. High-speed optical imaging measurements were applied over a range of ambient conditions, fuel types, and injection parameters. The optical data demonstrate that during the early part of the injection, while the liquid core of the jet is disintegrating, penetration is functionally linked to the orifice exit velocity up until a downstream distance hypothesized to be the jet breakup length. The jets then transition to a mixing dominated penetration behavior further downstream. Therefore, for cases that exhibit transient rate-of-injection (ROI) profiles, quasi-steady correlations for penetration have poor agreement with the empirical data. The lack of agreement between models using quasi-steady approximations and the high-speed experimental data, and the experimental evidence of liquid core physics impacting the transient jet penetration, motivated the development of a new 1-D model that integrates liquid core penetration physics and eliminates quasi-steady approximations. The new 1-D modeling methodology couples the transport equations for the evolution of the liquid core of the jet and the surrounding sheath of droplets resulting from breakup. The results of the model are validated against the aforementioned optical transient jet measurements. Finally, experimental results for two jet fuels and a diesel fuel are studied with the aid of the model. Differences in fuel properties cause the diesel fuel jet to transition from an incomplete spray to a complete spray later than the jet fuels during the transient injection process. Increasing ambient density causes the transition to happen earlier during the injection transient for all three fuels. The ignition delay and liftoff length appeared to be relatively unaffected by the late transition from incomplete to complete spray at low ambient density and low injection

  14. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  15. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  16. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  17. Numerical studies of spray breakup in a gasoline direct injection (GDI engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar Samad

    2011-01-01

    Full Text Available The objective of this study is to investigate Spray Breakup process of sprays injected from single and two-hole nozzles for gasoline direct Injection (GDI engines by using three dimensional CFD code. Spray characteristics were examined for spray tip penetration and other characteristics including: the vapor phase concentration distribution and droplet spatial distribution, which were acquired using the computational fluid dynamics (CFD simulation. Results showed that as the hole-axis-angle (γ of the two-hole nozzle decreased, the droplet coalescence increased and vapor mass decreased. The spray with cone angle (θ0 5 deg for single hole nozzle has the longest spray tip penetration and the spray with the γ of 30 deg and spray cone angle θ0=30 deg for two hole nozzles had the shortest one. Also, when the spray cone angle (θ0 and hole-axis-angle (γ increased from 5 to 30 deg, the Sauter mean diameter (SMD decreased for both single-hole and two-hole nozzles used in this study. For a single-hole nozzle, when spray cone angle increased from 5 to 30 deg, the vaporization rate very much because of low level of coalescence. The result of model for tip penetration is good agreement with the corresponding experimental data in the literatures.

  18. Self-propelled droplets

    Science.gov (United States)

    Seemann, Ralf; Fleury, Jean-Baptiste; Maass, Corinna C.

    2016-11-01

    Self-propelled droplets are a special kind of self-propelled matter that are easily fabricated by standard microfluidic tools and locomote for a certain time without external sources of energy. The typical driving mechanism is a Marangoni flow due to gradients in the interfacial energy on the droplet interface. In this article we review the hydrodynamic prerequisites for self-sustained locomotion and present two examples to realize those conditions for emulsion droplets, i.e. droplets stabilized by a surfactant layer in a surrounding immiscible liquid. One possibility to achieve self-propelled motion relies on chemical reactions affecting the surface active properties of the surfactant molecules. The other relies on micellar solubilization of the droplet phase into the surrounding liquid phase. Remarkable cruising ranges can be achieved in both cases and the relative insensitivity to their own `exhausts' allows to additionally study collective phenomena.

  19. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    OpenAIRE

    Myles, Timothy D.; Siwon Kim; Radenka Maric; Mustain, William E.

    2015-01-01

    In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs) were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs) manufactu...

  20. RESEARCH ON THE RECONDITIONING METAL SPRAYING ULTRASONIC FIELDS

    Directory of Open Access Journals (Sweden)

    GHEORGHE AMZA

    2015-05-01

    Full Text Available The paper presents research on process optimization of metal spraying activated ultrasonic fields. In order to optimize process parameters are selected metal spraying flame and flame wire electrode with and without ultrasonic activation. It then makes an analysis of the chemical composition resulting filler material, line and base material for more couplers materials. It also presents the resulting the couple main functional properties for metal oxy-fuel flame spraying and wire electrode with and without activating ultrasonic wire electrode to highlight the advantages of metal spraying process in ultrasonic field.

  1. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  3. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight, a

  4. Ignition of the Soaring Droplet Sets of Waste-Derived Coal-Water Slurry With Petrochemicals

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2016-01-01

    Full Text Available We have analyzed the ignition of droplet sets of waste-derived coal-water slurry with petrochemicals for the case of their soaring inside special combustion chamber. The fuel composition consists of filter cake of bituminous coal type G, waste turbine oil, water and plasticizer. Features of the ignition process were emphasized for groups of three soaring droplets in comparison with single droplet ignition. The ignition delay times were registered for particles that were deformed or segregated due to the interaction of initial fuel droplets with walls of the combustion chamber.

  5. Large-eddy Simulation of Ethanol Spray-Air Combustion and Its Experimental Validation

    Institute of Scientific and Technical Information of China (English)

    李科; 周力行

    2014-01-01

    Large-eddy simulation of spray combustion is under its rapid development. Different combustion mod-els were used by different investigators. However, these models are less validated by detailed experimental data. In this paper, large-eddy simulation (LES) of ethanol spray-air combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a filtered finite-rate combustion model, neglecting the sub-grid scale reaction rate. The simulation results are compared with experimental dada in the literature and vali-dated in detail. The LES obtained statistically averaged gas temperature is in much better agreement with the ex-perimental results than Reynolds averaged (RANS) modeling using the most complex probability density function (PDF) equation combustion model. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating that the droplets are concen-trated in this shear region. The instantaneous temperature, oxygen and carbon dioxide concentration maps show the close interaction between the coherent structures and the combustion reaction.

  6. Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows

    Science.gov (United States)

    Ingebo, Robert D.

    1993-01-01

    Effects of gas properties on cryogenic liquid-jet atomization in high-velocity helium, nitrogen, and argon gas flows were investigated. Volume median diameter, D(sub v.5e), data were obtained with a scattered-light scanning instrument. By calculating the change in spray drop size, -Delta D(sub v.5)(exp 2), due to droplet vaporization, it was possible to calculate D(sub v.5C). D(sub v.5C) is the unvaporized characteristic drop size formed at the fuel-nozzle orifice. This drop size was normalized with respect to liquid-jet diameter, D(sub O). It was then correlated with several dimensionless groups to give an expression for the volume median diameter of cryogenic LN2 sprays. This expression correlates drop size D(sub v.5c) with aerodynamic and liquid-surface forces so that it can be readily determined in the design of multiphase-flow propellant injectors for rocket combustors.

  7. Modeling of the deformation of a liquid droplet impinging upon a flat surface

    Science.gov (United States)

    Fukai, J.; Zhao, Z.; Poulikakos, D.; Megaridis, C. M.; Miyatake, O.

    1993-11-01

    This article presents a theoretical study of the deformation of a spherical liquid droplet impinging upon a flat surface. The study accounts for the presence of surface tension during the spreading process. The theoretical model is solved numerically utilizing deforming finite elements and grid generation to simulate accurately the large deformations, as well as the domain nonuniformities characteristic of the spreading process. The results document the effects of impact velocity, droplet diameter, surface tension, and material properties on the fluid dynamics of the deforming droplet. Two liquids with markedly different thermophysical properties, water and liquid tin, are utilized in the numerical simulations because of their relevance in the industrial processes of spray cooling and spray deposition, respectively. The occurrence of droplet recoiling and mass accumulation around the splat periphery are standout features of the numerical simulations and yield a nonmonotonic dependence of the maximum splat radius on time.

  8. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  9. A low-cost ultrasonic spray dryer to produce spherical microparticles from polymeric matrices

    Directory of Open Access Journals (Sweden)

    Priscilla Paiva Luz

    2007-01-01

    Full Text Available The spray-drying technique has been widely used for drying heat-sensitive foods, pharmaceuticals, and other substances, because it leads to rapid solvent evaporation from droplets. This method involves the transformation of a feed from a fluid state into a dried particulate, by spraying the feed into a hot medium. Despite being most often considered a dehydration process, spray drying can also be used as an encapsulation method. Therefore, this work proposes the use of a simple and low-cost ultrasonic spray dryer system to produce spherical microparticles. This equipment was successfully applied to the preparation of dextrin microspheres on a laboratory scale and for academic purposes.

  10. Spray forming: A numerical investigation of the influence of the gas to melt ratio on the billet surface temperature

    DEFF Research Database (Denmark)

    Pryds, Nini; Hattel, Jesper

    2005-01-01

    The relationship between the Gas to Melt Ratio (GMR) and the surface temperature of an evolving billet surface in spray forming is investigated numerically. The basis for the analysis is an integrated approach for modelling the entire spray forming process. This model includes the droplet atomisa...

  11. Spray cone angle and air core diameter of hollow cone swirl rocket injector

    Directory of Open Access Journals (Sweden)

    Ahmad Hussein Abdul Hamid

    2011-12-01

    Full Text Available ABSTRACT : Fuel injector for liquid rocket is a very critical component since that small difference in its design can dramatically affect the combustion efficiency. The primary function of the injector is to break the fuel up into very small droplets. The smaller droplets are necessary for fast quiet ignition and to establish a flame front close to the injector head, thus shorter combustion chamber is possible to be utilized. This paper presents an experimetal investigation of a mono-propellant hollow cone swirl injector. Several injectors with different configuration were investigated under cold flow test, where water is used as simulation fluid. This investigation reveals that higher injection pressure leads to higher spray cone angle. The effect of injection pressure on spray cone angle is more prominent for injector with least number of tangential ports. Furthermore, it was found that injector with the most number of tangential ports and with the smallest tangential port diameter produces the widest resulting spray. Experimental data also tells that the diameter of an air core that forms inside the swirl chamber is largest for the injector with smallest tangential port diameter and least number of tangential ports.ABSTRAK : Injektor bahan api bagi roket cecair merupakan satu komponen yang amat kritikal memandangkan perbezaan kecil dalam reka bentuknya akan secara langsung mempengaruhi kecekapan pembakaran. Fungsi utama injektor adalah untuk memecahkan bahan api kepada titisan yang amat kecil. Titisan kecil penting untuk pembakaran pantas secara senyap dan untuk mewujudkan satu nyalaan di hadapan, berhampiran dengan kepala injektor, maka kebuk pembakaran yang lebih pendek berkemungkinan dapat digunakan. Kertas kerja ini mebentangkan satu penyelidikan eksperimental sebuah injektor ekabahan dorong geronggang kon pusar. Beberapa injektor dengan konfigurasi berbeza telah dikaji di bawah ujian aliran sejuk, di mana air digunakan sebagai bendalir

  12. A study of the wall/jet interaction on a transient spray. Application to diesel injection; Etude de l'interaction jet/paroi dans un spray transitoire. Application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Chale Gongora, H.G.

    1998-07-01

    The aim of this work is to better understand the mechanisms that govern the formation and development of the parietal flow occurring during the impact of a diesel fuel jet on a plate. In order to isolate the dynamical aspects of the phenomenon, a non-confined experimental configuration at ambient temperature and pressure has been used. The behaviour of the dispersed phase for different conditions of jet approach and different plate temperatures has been analyzed. Velocity and diameter fields of the free zone and of the parietal zone have been measured using a laser doppler apparatus up to a plate surface resolution of 0.2 mm. In a first step, an estimation of the average time value gives information about the global behaviour of the spray: the plate effect is sensible up to a very reduced distance but increases with the plate temperature, the momentum of the parietal jet is localized in a zone very close to the wall, an increase of the droplets size and of radial velocities in the parietal zone is observed when the nozzle is moved closer to the wall, and the increase of the plate temperature facilitates the jet penetration and leads to a reduction of the droplets size (increase of the shear stresses) and to a reduction of the liquid film thickness submitted to splashing. In order to examine the behaviour of velocity and droplets diameter with time, a processing has been defined which provides an average description of the phenomena. A laser tomography study in association with fast cinematography and CCD camera video recording has permitted to outline the main aspects of the evolution of the parietal spray with time: fast development of a swirl which drags most of the small droplets and limits their dispersion, effect of the temperature rise of the plate in the beginning of fuel injection, development of a more intense swirl which leads to an increase of velocity fluctuations, development of wavelet structures in the internal zone of the flow, near the wall, and

  13. The Explosive Ejection of Small Droplets From a Liquid-Gas Interface.

    Science.gov (United States)

    James, Ashley; Smith, Marc K.; Glezer, Ari

    1996-11-01

    Vibration-induced liquid atomization is a process that occurs when a liquid droplet is placed on a vibrating membrane. When the proper operating conditions are attained, the droplet resonates with the motion of the membrane and explosively bursts into a spray of very small droplets. The process occurs through an instability of the surface wave motion on the free surface of the large droplet set up by the vibration of the underlying surface. We present experimental data on this process that shows how the droplet ejection event depends on the frequency and amplitude of the vibrating surface and on the initial volume of the large liquid droplet. Video images are also presented that show the basic process and some interesting transient behaviors leading to the ejection event. Our current and future experimental and analytical work on this process is directed towards an understanding of the mechanism behind the atomization process, a full characterization of the free surface instability leading to the droplet ejection event, and a knowledge of the size and velocity distributions in the resulting spray. In addition, vibration-induced droplet atomization is the basis of a new design for an evaporative heat transfer cell that is currently under development for micro-gravity applications. Supported by NASA and Georgia Tech.

  14. Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines Progrès de la modélisation des sprays dans les moteurs Diesel et à essence

    OpenAIRE

    Kong S. C.; Senecal P. K.; Reitz R. D.

    2006-01-01

    In direct-injection engines, the fuel spray characteristics influence the combustion efficiency and exhaust emissions. The performance of available spray models for predicting liquid and vapor fuel distributions, and their influence on combustion is reviewed for both diesel and gasoline direct injection engines. A phenomenological nozzle flow model is described for simulating the effects of diesel injector nozzle internal geometry on the fuel injection and spray processes. The flow model prov...

  15. Study of the droplet size of sprays generated by swirl nozzles dedicated to gasoline direct injection: measurement and application of the maximum entropy formalism; Etude de la granulometrie des sprays produits par des injecteurs a swirl destines a l'injection directe essence: mesures et application du formalisme d'entropie maximum

    Energy Technology Data Exchange (ETDEWEB)

    Boyaval, S.

    2000-06-15

    This PhD presents a study on a series of high pressure swirl atomizers dedicated to Gasoline Direct Injection (GDI). Measurements are performed in stationary and pulsed working conditions. A great aspect of this thesis is the development of an original experimental set-up to correct multiple light scattering that biases the drop size distributions measurements obtained with a laser diffraction technique (Malvern 2600D). This technique allows to perform a study of drop size characteristics near the injector tip. Correction factors on drop size characteristics and on the diffracted intensities are defined from the developed procedure. Another point consists in applying the Maximum Entropy Formalism (MEF) to calculate drop size distributions. Comparisons between experimental distributions corrected with the correction factors and the calculated distributions show good agreement. This work points out that the mean diameter D{sub 43}, which is also the mean of the volume drop size distribution, and the relative volume span factor {delta}{sub v} are important characteristics of volume drop size distributions. The end of the thesis proposes to determine local drop size characteristics from a new development of deconvolution technique for line-of-sight scattering measurements. The first results show reliable behaviours of radial evolution of local characteristics. In GDI application, we notice that the critical point is the opening stage of the injection. This study shows clearly the effects of injection pressure and nozzle internal geometry on the working characteristics of these injectors, in particular, the influence of the pre-spray. This work points out important behaviours that the improvement of GDI principle ought to consider. (author)

  16. The Corrosion and Wear Performance of Microcrystalline WC-10Co-4Cr and Near-Nanocrystalline WC-17Co High Velocity Oxy-Fuel Sprayed Coatings on Steel Substrate

    Science.gov (United States)

    Saha, Gobinda C.; Khan, Tahir I.

    2010-11-01

    The study of near-nanocrystalline cermet composite coating was performed by depositing near-nanocrystalline WC-17Co powder using the high velocity oxy-fuel spraying technique. The WC-17Co powder consists of a core with an engineered near-nano-scale WC dispersion with a mean grain size 427 nm. The powder particle contains 6 wt pct of the ductile phase Co matrix mixed into the core to ensure that the reinforcing ceramic phase WC material is discontinuous to limit debridement during wear, while the remainder of the binding phase (11 wt pct) is applied as a coating on the powder particle to improve the ductility. The tribological properties of the coating, in terms of corrosion resistance, microhardness, and sliding abrasive wear, were studied and compared with those of an industrially standard microcrystalline WC-10Co-4Cr coating with a WC mean grain size 3 μm. Results indicated that the WC-17Co coating had superior wear and corrosion resistance compared to the WC-10Co-4Cr coating. The engineered WC-17Co powder with a duplex Co layer had prevented significant decarburization of the WC dispersion in the coating, thereby reducing the intersplat microporosity necessary for initiating microgalvanic cells. The improved wear resistance was attributed to the higher hardness value of the near-nanocrystalline WC-17Co coating.

  17. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  18. Waveguides for walking droplets

    CERN Document Server

    Filoux, Boris; Schlagheck, Peter; Vandewalle, Nicolas

    2015-01-01

    When gently placing a droplet onto a vertically vibrated bath, a drop can bounce permanently. Upon increasing the forcing acceleration, the droplet is propelled by the wave it generates and becomes a walker with a well defined speed. We investigate the confinement of a walker in different rectangular cavities, used as waveguides for the Faraday waves emitted by successive droplet bounces. By studying the walker velocities, we discover that 1d confinement is optimal for narrow channels. We also propose an analogy with waveguide models based on the observation of the Faraday instability within the channels.

  19. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  20. Development of a single droplet freezing apparatus for studying crystallisation in cocoa butter droplets

    OpenAIRE

    2014-01-01

    This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jfoodeng.2015.02.010 The single droplet freezing apparatus described by Pore et al. (J. Am. Oil. Chem. Soc., 86, 215-225), which allows crystallisation to be monitored in situ by X-ray diffraction, was modified to allow rapid switching of coolant gas and monitoring by video microscopy. The apparatus was used to study drops of cocoa butter undergoing simulated spray freezing at high coo...

  1. Electrostatic charging of jumping droplets

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  2. Bioprinting: Functional droplet networks

    Science.gov (United States)

    Durmus, Naside Gozde; Tasoglu, Savas; Demirci, Utkan

    2013-06-01

    Tissue-mimicking printed networks of droplets separated by lipid bilayers that can be functionalized with membrane proteins are able to spontaneously fold and transmit electrical currents along predefined paths.

  3. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    of a technology with living properties. Otto Butschli first described the system in 1898, when he used alkaline water droplets in olive oil to initiate a saponification reaction. This simple recipe produced structures that moved and exhibited characteristics that resembled, at least superficially, the amoeba. We......Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... to the oil phase), qualify this system as an example of living technology. The analysis of the Butschli droplets suggests that a set of conditions may precede the emergence of lifelike characteristics and exemplifies the richness of this rudimentary chemical system, not only for artificial life...

  4. Resonant and rolling droplet

    CERN Document Server

    Dorbolo, S; Vandewalle, N; Gilet, T

    2008-01-01

    When an oil droplet is placed on a quiescent oil bath, it eventually collapses into the bath due to gravity. The resulting coalescence may be eliminated when the bath is vertically vibrated. The droplet bounces periodically on the bath, and the air layer between the droplet and the bath is replenished at each bounce. This sustained bouncing motion is achieved when the forcing acceleration is higher than a threshold value. When the droplet has a sufficiently low viscosity, it significantly deforms : spherical harmonic \\boldmath{$Y_{\\ell}^m$} modes are excited, resulting in resonant effects on the threshold acceleration curve. Indeed, a lower acceleration is needed when $\\ell$ modes with $m=0$ are excited. Modes $m \

  5. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  6. Functions of the Coacervate Droplets

    Science.gov (United States)

    Okihana, Hiroyuki; Ponnamperuma, Cyril

    1982-12-01

    Functions of coacervate droplets as protocells are studied by using synthetic polymers. The coacervate droplets were made from PVA-A and PVA-S. When glycine or diglycine were in the surrounding medium, the coacervate droplets concentrated them. The concentration of glycine in the coacervate droplets was higher than that of diglycine. When this mixture was irradiated by UV light, the coacervate droplets protected them from the photochemical decomposition.

  7. Droplet impacts upon liquid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ching, B.; Golay, M.W.; Johnson, T.J.

    1984-11-02

    The absorption and rebounding of single droplets and streams of droplets (of diameter less than 1200 micrometers) impacting upon the surface of a deep liquid were examined experimentally. Conservation of mechanical energy and momentum were used to explain rebounding droplet interactions, and impaction criteria have been established regarding the absorption of droplet streams. Surface tension is the dominant mechanism governing the observed behavior. Single droplets were never observed to rebound.

  8. OCS in He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Grebenev, V.

    2000-06-01

    Phenomenon of superfluidity of para-hydrogen (pH{sub 2}){sub 1-17} and helium {sup 4}He{sub 1-7000} systems doped with an OCS chromophore molecule was investigated in this work. The study of such systems became possible after the development of the depletion spectroscopy technique in helium droplets. The droplets can be easily created and doped with up to 100 particles such as OCS, para-hydrogen or ortho-hydrogen molecules and {sup 4}He atoms. The measured infrared depletion spectra give the information about the temperature of the droplets and their aggregate state. The depletion spectrum of OCS in pure {sup 4}He droplets was comprehensively studied. The rovibrational OCS spectrum shows well resolved narrow lines. The spectrum is shifted to the red relative to the corresponding gas phase spectrum and the rotational constant of OCS in {sup 4}He droplet is three times smaller than that for free molecule. Different models of OCS rotation in the helium environment were discussed. It was shown that the shapes of the rovibrational lines are defined mainly by inhomogeneous broadening due to the droplet size distribution. The sub-rotational structure of the OCS rovibrational lines was revealed in microwave-infrared double resonance experiments. This structure arises due to the interaction of the OCS with the He environment. However, the information obtained in the experiments was not enough to understand the nature of this interaction. (orig.)

  9. Droplet based microfluidics.

    Science.gov (United States)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  10. Droplet based microfluidics

    Science.gov (United States)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  11. Numerical Study of Suspension Plasma Spraying

    CERN Document Server

    Farrokhpanah, Amirsaman; Mostaghimi, Javad

    2016-01-01

    A numerical study of suspension plasma spraying (SPS) is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for particles as they travel towards the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate are investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power are studied. Additionally, effect of injector parameters like injection location, flow rate, and angle are examined. The model used in current study takes high temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, s...

  12. NACOM code for analysis of postulated sodium spray fires in LMFBRs

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.S.

    1980-03-01

    An analysis of potential sodium spills and fires in liquid metal fast breeder reactors has been made to assess the maximum equipment cell loading conditions. A computer code called NACOM (sodium combustion) has been developed at Brookhaven National Laobratory (BNL) to analyze sodium spray fires. This report contains a detailed description of physical models used in this code as well as programming aspects. The single droplet combustion model and the model describing the droplets' motion are verified. Comparisons between NACOM predictions and SPRAY-3A predictions of the Atomics International (AI) LTV Jet Tests are made. Good agreement is found between the NACOM predictions and the experimental data. NACOM predictions of the pressure rise are more accurate than SPRAY-3A predictions for most of the cases studied. The code has been verified for oxygen concentrations ranging from 0 to 21%. NACOM utilizes more realistic single droplet and spray combustion models than SPRAY-3A. Moreover, NACOM does not utilize adjustable parameters for the burning rate equations, contrary to the approach taken with SPRAY-3A. Thus, the NACOM code is a more reliable code for use in the analysis of large-scale sodium spray fires in LMFBR containment cells. 24 refs., 32 figs.

  13. Combustion dynamics of low vapour pressure nanofuel droplets

    Science.gov (United States)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is

  14. Dynamics of a Water Droplet over a Sessile Oil Droplet: Compound Droplets Satisfying a Neumann Condition.

    Science.gov (United States)

    Iqbal, R; Dhiman, S; Sen, A K; Shen, Amy Q

    2017-06-13

    We report the dynamics of compound droplets with a denser liquid (water) droplet over a less dense sessile droplet (mineral oil) that satisfies the Neumann condition. For a fixed size of an oil droplet, depending on the size of the water droplet, either it attains the axisymmetric position or tends to migrate toward the edge of the oil droplet. For a water droplet-to-oil droplet at volume ratio Vw/Vo ≥ 0.05, stable axisymmetric configuration is achieved; for Vw/Vo droplet is observed. The stability and migration of water droplets of size above and below critical size, respectively, are explained using the force balance at the three-phase contact line and film tension. The larger and smaller droplets that initially attain the axisymmetric position or some radial position, respectively, evaporate continuously and thus migrate toward the edge of the oil droplet. The radial location and migration of the water droplets of different initial sizes with respect to time are studied. Experiments with water droplets on a flat oil-air interface did not show migration, which signified the role of the curved oil-air interface for droplet migration. Finally, coalescence of water droplets of size above the critical size at the axisymmetric position is demonstrated. Our compound droplet studies could be beneficial for applications involving droplet transport where contamination due to direct contact and pinning of droplets on solid surfaces is of concern. Migration and coalescence of water droplets on curved oil-air interfaces could open new frontiers in chemical and biological applications including multiphase processing and biological interaction of cells and atmospheric chemistry.

  15. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  16. Spray Droplets Source Function : From Laboratory to Open Sea

    NARCIS (Netherlands)

    Leeuw, G. de

    1990-01-01

    A comprehensive model for the fate and influence of the aerosol in the marine atmospheric boundary layer (MABL) requires, among others, a precise consideration of the sources and sinks. These include the exchange of aerosol at the air-sea interface and at the top of the boundary 1ayer, shrinking and

  17. Fundamental Studies on Droplet Interactions in Dense Sprays

    Science.gov (United States)

    1991-12-02

    high pressure conditions, the ideal gas equation of state is replaced by a Redlich - Kwong equation of state combined with mixing rules. The enthalpy of...Member, NASA Space Science and Applications Advisory Committee; Member, National Research Council Space Studies Board and Chairman, Committee on...Council for Microgravity Science and Applications . Dr. Sirignano has been involved in other research programs funded by AFWAL, AFAL, and ONR that have

  18. Characterization of the evaporation of interacting droplets using combined optical techniques

    Science.gov (United States)

    Perrin, Lionel; Castanet, Guillaume; Lemoine, Fabrice

    2015-02-01

    A monodisperse droplet stream is injected into a high-temperature enclosure supplied with air heated up to 540 °C. The two-color laser-induced fluorescence (2cLIF) is used for measuring the droplet temperature. The liquid fuel is seeded by pyrromethene 597-C8, which is a temperature-sensitive fluorescent dye. Calibration tests are performed for different types of fuels including ethanol and several alkanes and some of their mixtures. Morphology-dependent resonances (MDRs) are identified as a possible adverse effect for temperature measurements. Due to MDRs, lasing of pyrromethene 597-C8 may occur within fluorescent droplets and affect drastically the fluorescence signal upon which temperature measurement relies. The determination of the droplet size and velocity is achieved by means of quantitative shadow imaging. A double cavity PIV laser is focused on a piece of PMMA doped with a fluorescent dye to produce the background illumination of the droplets. A PIV camera is used to capture the drop motion between the pulses of the laser cavities. A large range of initial distance parameters (the ratio between the inter-droplet distance and the droplet diameter) is explored for different liquid fuels (ethanol, isohexane, n-heptane, n-decane, n-dodecane) and their mixtures. To put forward the effects of the interactions between the droplets, size and temperature measurements are compared to the isolated droplet whose evolution can be predicted with the use of classical models. Comparisons reveal that the inter-droplet spacing and also the fuel volatility play an important role in the reduction of the heat and mass transfers for these interacting droplets. Finally, the ability of the 2cLIF techniques to address the case of multicomponent droplet is also demonstrated.

  19. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    Science.gov (United States)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  20. Spray deposition for making large size billet with swing atomizer

    Institute of Scientific and Technical Information of China (English)

    LI Jian-ping; LIU Tao; TANG Qing-yun; HAN Lei; ZHONG Jue

    2008-01-01

    The movement mode of the atomizer is a very important parameter during spray deposition process, which has direct influence on the size and surface texture of the billets. To resolve the problem of manufacturing large size billets, a method of spray deposition by the atomizer with off-center swing was put forward. The atomizer was driven by the alternating current servomotor to swing within 7° at varying speed. The influence of the atomizer parameters, such as translation of the atomizer, swing angle of the atomizer, substrate falling speed and spraying pressure, on the spray deposition was studied. The optimized parameters of the spray deposition process were obtained. The results show that the large size billets with uniform surface quality can be made through adjusting swing frequency and angle of the atomizer, offset distance of the atomizer and inclined angle of the substrate; the valid spray area will decrease and the dimension of top surface will reduce when pressure is less than 0.4 MPa within certain spray distance; meantime, the moving time and cooling time of the droplets are extended, which will lead to loose structure and bad densification. When the pressure, the swing angle and the eccentric offset of the atomization equal 0.5MPa, 7° and 60mm,respectively, large size billets with fine texture and diameter of 500mm can be produced.

  1. Process optimization of ultrasonic spray coating of polymer films.

    Science.gov (United States)

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  2. Effect of State Equation on Numerical Simulation of Fuel Droplet Evaporation at High Temperature and High Pressure%状态方程对高温高压条件下燃料液滴蒸发计算的影响

    Institute of Scientific and Technical Information of China (English)

    李云清; 王宏楠; 王德福

    2009-01-01

    This paper proposed a high pressure evaporation model and numerical simulation method for a single droplet on the base of real gas equation of state (EOS). The evaporation process of n-heptane drop-let in nitrogen was simulated. The influence of Redlich-Kwong (RK) EOS, Soave-Redlich-Kwong (SRK) EOS and Peng-Robinson (PR) EOS on the calculation of fuel droplet's evaporation was discussed. PR EOS shows good agreement with experimental data in vapor-liquid phase equilibrium ( VLE), thermophys-ical properties and the variation of droplet diameter. SRK EOS is close to the results of PR EOS in VLE, critical state of binary mixture and n-heptane's enthalpies of evaporation. But SRK EOS's calculation re-suits are smaller than that of PR EOS in thermophysical properties and evaporation lifetime of droplet. RK EOS's calculation results are obviously different to that of SRK EOS and PR EOS. The highest accuracy of high pressure evaporation model for a single droplet is the PR EOS, flowing by SRK EOS and RK EOS.%以实际气体状态方程为基础,建立了单个液滴的高压蒸发模型和数值计算方法,并对庚烷液滴在氮气中的蒸发过程进行了模拟计算.重点研究了RK、SRK、PR三种状态方程对高温高压条件下燃料液滴蒸发计算的影响.结果表明,PR方程在气液相平衡、热物性参数以及液滴直径变化历程的计算上都与试验数据有很好的一致性;SRK方程在气液相平衡、二元混合物临界点以及庚烷相变焓的计算上与PR方程的计算结果十分接近,但在热物性参数和液滴蒸发寿命的计算上相比于PR方程的计算结果偏小;RK方程的计算结果与SRK方程和PR方程相比均存在较大偏差.因此,对于建立单个液滴高压蒸发模型而言,PR方程的精度最高,SRK方程次之,RK方程的精度最差.

  3. Theoretical and Experimental Investigations on Droplet Evaporation and Droplet Ignition at High Pressures

    Science.gov (United States)

    Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.

    1993-01-01

    The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.

  4. On the effects of isotropic turbulence on the evaporation rate of a liquid droplet

    Science.gov (United States)

    Dodd, Michael; Ferrante, Antonino

    2016-11-01

    Our objective is to explain the effects of isotropic turbulence on the vaporization rate of a liquid droplet in conditions that are relevant to spray combustion applications. To this end, we have performed direct numerical simulation (DNS) of a single droplet in homogeneous isotropic turbulence using the volume-of-fluid method for resolving fully the process of momentum, heat, and mass transfer between the liquid droplet and the gas. The simulations were performed using 10243 grid points. The effect of turbulence on the droplet vaporization rate is investigated by varying the gas-phase Reynolds number based on the Taylor microscale, Reλ. Reλ is increased from 0 to 75 by increasing the r.m.s. velocity of the gas phase while keeping all other physical properties constant. We will present the droplet evaporation rate as a function of turbulence Reynolds number and investigate the physical mechanisms.

  5. Numerical simulation of two-phase flow characteristics in spray drying tower

    Institute of Scientific and Technical Information of China (English)

    ZANG Rende

    2012-01-01

    To optimize the two-phase flow characteristics of flue gas and slurry droplets in spray drying tower,an equalizing plate was installed inside the tower.The Fluent software package,turbulence model and the stochastic model of droplet track were adopted in numerical simulation.Results showed that,the average speed of flue gas along the tower axis was the greatest;the temperature variation in the vicinity of spray nozzle was the largest;when the inlet flue gas speed v was 4 m/s,the temperature gradient variation inside the tower was the maximum,and the slurry droplets full filled the tower; with an increase in the diameter of hole area on equalizing plate,the resistance in tower was gradually decreased,and the viscosity to the wall of slurry droplets first increased and then reduced.

  6. Spray calcination of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m/sup 3//min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures. (DLC)

  7. Research on Abrasive Wear Resistance of Ni-Ti Coating Prepared by High Velocity Air-fuel Arc Spraying%超音速电弧喷涂Ni-Ti涂层的磨粒磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    张健; 周勇; 张志萍

    2012-01-01

    采用超音速电弧喷涂工艺在2Cr13马氏体不锈钢基体上制备了Ni-Ti涂层.用X射线衍射研究了涂层的相组成,用扫描电镜对涂层的显微结构和磨损后形貌进行了分析,测试了涂层的显微硬度,在橡胶轮磨粒磨损试验机上研究了涂层的耐磨粒磨损性能.结果表明,Ni-Ti涂层主要组织为NiTi(B2)相和一定量的TiO、NiO等氧化物,该涂层不仅有较高的硬度,而且较2Cr13基体有更加良好的耐磨粒磨损性能.%Ni-Ti coating was prepared on 2Crl3 martensitic stainless steel substrate by high velocity air-fuel arc spraying. The phase composition of the coating was investigated by XRD; the microstructure and the worn surface morphology of the coating were analyzed by SEM; the microhardness of the coating was determined; the abrasive resistance of the coating was studied by rubber wheel abrasion tester. The results show that Ni-Ti coating is mainly composed of NiTi (B2) phase and some oxides such as TiO and NiO. The coating is of higher hardness and has much better abrasive wear resistance than 2Crl3 substrate.

  8. Magnetic Resonance Imaging measurements of a water spray upstream and downstream of a spray nozzle exit orifice

    Science.gov (United States)

    Mastikhin, Igor; Arbabi, Aidin; Bade, Kyle M.

    2016-05-01

    Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics. There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the "far-nozzle" region (≫10 diameters of the nozzle). However, traditional methods are limited in their ability to characterize the "near-nozzle" region where the fluid may be inside the nozzle, optically dense, or incompletely atomized. Magnetic Resonance Imaging (MRI) presents potential as a non-invasive technique that is capable of measuring optically inaccessible fluid in a quantitative fashion. In this work, MRI measurements of the spray generated by ceramic flat-fan nozzles were performed. A wide range of flow speeds in the system (0.2 to >25 m/s) necessitated short encoding times. A 3D Conical SPRITE and motion-sensitized 3D Conical SPRITE were employed. The signal from water inside the nozzle was well-characterized, both via proton density and velocity measurements. The signal outside the nozzle, in the near-nozzle region, was detectable, corresponding to the expected flat-fan spray pattern up to 3 mm away. The results demonstrate the potential of MRI for measuring spray characteristics in areas inaccessible by other methods.

  9. Microfluidic devices for droplet injection

    Science.gov (United States)

    Aubrecht, Donald; Akartuna, Ilke; Weitz, David

    2012-02-01

    As picoliter-scale reaction vessels, microfluidic water-in-oil emulsions have found application for high-throughput, large-sample number analyses. Often, the biological or chemical system under investigation needs to be encapsulated into droplets to prevent cross contamination prior to the introduction of reaction reagents. Previous techniques of picoinjection or droplet synchronization and merging enable the addition of reagents to individual droplets, but present limitations on what can be added to each droplet. We present microfluidic devices that couple the strengths of picoinjection and droplet merging, allowing us to selectively add precise volume to our droplet reactions.

  10. An Integrated Approach for the Numerical Modelling of the Spray Forming Process

    DEFF Research Database (Denmark)

    Hattel, Jesper; Thorborg, Jesper; Pryds, Nini

    2003-01-01

    In this paper, an integrated approach for modelling the entire spray forming process is presented. The basis for the analysis is a recently developed model which extents previous studies and includes the interaction between an array of droplets and the enveloping gas. The formulation of the depos......In this paper, an integrated approach for modelling the entire spray forming process is presented. The basis for the analysis is a recently developed model which extents previous studies and includes the interaction between an array of droplets and the enveloping gas. The formulation...

  11. Motorized actuation system to perform droplet operations on printed plastic sheets.

    Science.gov (United States)

    Kong, Taejoon; Brien, Riley; Njus, Zach; Kalwa, Upender; Pandey, Santosh

    2016-05-21

    We developed an open microfluidic system to dispense and manipulate discrete droplets on planar plastic sheets. Here, a superhydrophobic material is spray-coated on commercially-available plastic sheets followed by the printing of hydrophilic symbols using an inkjet printer. The patterned plastic sheets are taped to a two-axis tilting platform, powered by stepper motors, that provides mechanical agitation for droplet transport. We demonstrate the following droplet operations: transport of droplets of different sizes, parallel transport of multiple droplets, merging and mixing of multiple droplets, dispensing of smaller droplets from a large droplet or a fluid reservoir, and one-directional transport of droplets. As a proof-of-concept, a colorimetric assay is implemented to measure the glucose concentration in sheep serum. Compared to silicon-based digital microfluidic devices, we believe that the presented system is appealing for various biological experiments because of the ease of altering design layouts of hydrophilic symbols, relatively faster turnaround time in printing plastic sheets, larger area to accommodate more tests, and lower operational costs by using off-the-shelf products.

  12. New model for light propagation in highly inhomogeneous polydisperse turbid media with applications in spray diagnostics

    OpenAIRE

    Berrocal, Edouard; Meglinski, I. V.; Jermy, Mark C.

    2005-01-01

    Modern optical diagnostics for quantitative characterization of polydisperse sprays and other aerosols which contain a wide range of droplet size encounter difficulties in the dense regions due to the multiple scattering of laser radiation with the surrounding droplets. The accuracy and efficiency of optical measurements can only be improved if the radiative transfer within such polydisperse turbid media is understood. A novel Monte Carlo code has been developed for modeling...

  13. Explosion of Leidenfrost Droplets

    Science.gov (United States)

    Moreau, Florian; Colinet, Pierre; Dorbolo, Stephane

    2012-11-01

    When a drop is released on a plate heated above a given temperature, a thin layer of vapour can isolate the droplet so that it levitates over the plate. This effect was first reported by Leidenfrost in 1756. However, this fascinating subject remains an active field of research in both fundamental and applied researches. In this work, we focus on what happens when surfactant is added to the drop. The aim is to study the influence of a decrease of the surface tension. Surprisingly, as the droplet evaporates, suddenly it explodes. The evolution of the droplet and the resulting explosion are followed using a high speed camera. We show that when a critical concentration of surfactant is reached inside the drop, a shell of surfactant is formed leading to the explosion. The authors would like to thank FNRS for financial support. This work is financially supported by ODILE project (Contract No. FRFC 2.4623.11).

  14. Spray cooling simulation implementing time scale analysis and the Monte Carlo method

    Science.gov (United States)

    Kreitzer, Paul Joseph

    Spray cooling research is advancing the field of heat transfer and heat rejection in high power electronics. Smaller and more capable electronics packages are producing higher amounts of waste heat, along with smaller external surface areas, and the use of active cooling is becoming a necessity. Spray cooling has shown extremely high levels of heat rejection, of up to 1000 W/cm 2 using water. Simulations of spray cooling are becoming more realistic, but this comes at a price. A previous researcher has used CFD to successfully model a single 3D droplet impact into a liquid film using the level set method. However, the complicated multiphysics occurring during spray impingement and surface interactions increases computation time to more than 30 days. Parallel processing on a 32 processor system has reduced this time tremendously, but still requires more than a day. The present work uses experimental and computational results in addition to numerical correlations representing the physics occurring on a heated impingement surface. The current model represents the spray behavior of a Spraying Systems FullJet 1/8-g spray nozzle. Typical spray characteristics are indicated as follows: flow rate of 1.05x10-5 m3/s, normal droplet velocity of 12 m/s, droplet Sauter mean diameter of 48 microm, and heat flux values ranging from approximately 50--100 W/cm2 . This produces non-dimensional numbers of: We 300--1350, Re 750--3500, Oh 0.01--0.025. Numerical and experimental correlations have been identified representing crater formation, splashing, film thickness, droplet size, and spatial flux distributions. A combination of these methods has resulted in a Monte Carlo spray impingement simulation model capable of simulating hundreds of thousands of droplet impingements or approximately one millisecond. A random sequence of droplet impingement locations and diameters is generated, with the proper radial spatial distribution and diameter distribution. Hence the impingement, lifetime

  15. There is no micro-explosion in the diesel engines fueled with emulsified fuel

    Institute of Scientific and Technical Information of China (English)

    LI Cheng; FU Weibiao; CHEN Xiao; GONG Jingsong; SUI Zhenming; HOU Lingyun; WANG Luyan; XU Limei; HAO Jingcheng

    2006-01-01

    According to the criterion of micro-explosion occurrence, a new viewpoint that micro-explosion may not occur in diesel engines is presented in this paper. The relationship among the diameter change of an emulsified fuel droplet, water and fuel evaporation rate is obtained from the multi-component control equations of the droplets. Because the evaporation rate of water is much more rapid than that of fuel, water will evaporate much quickly than fuel in this process, so the water is evaporated in advance, and at the same time large droplets change into small ones. This is in fact the main reason of combustion intensification for emulsified fuel. The investigators at home should notice that the fuel droplets used in the previous experiments were always droplets with big diameter (about d0≥250 μm), which might be owing to the restriction of the experimental conditions. Micro-explosion does happen on such fuel droplets with big diameters, which has caused all the authors to think that micro-explosion would happen on all the droplets without exception. However, it cannot be used to explain what really happens in diesel engines. In our research, we have found that micro-explosion will not occur when the size of droplets is too small, and the same is case with diesel engines.

  16. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  17. Experiments on the dynamics of droplet collisions in a vacuum

    Science.gov (United States)

    Willis, K. D.; Orme, M. E.

    Highly controlled experiments of binary droplet collisions in a vacuum environment are performed in order to study the collision dynamics devoid of aerodynamic effects that could otherwise obstruct the experimental observations by causing distortion or even disintegration of the coalesced mass. Pre-collision droplets are generated from capillary stream break-up at wavelengths much larger than those generated with the typical Rayleigh droplet formation in order to reduce the interactions among the collision products. Experimental results show that the range of droplet Weber number necessary to describe the boundaries between permanent coalescence and coalescence followed by separation is several orders of magnitude higher than has been reported in experiments conducted at standard atmospheric pressures with lower viscosity liquids (i.e. hydrocarbon fuels and water). Additionally, the time periods of both the oblate and prolate portions of the coalesced droplet oscillation have been measured and it is reported for the first time that the time period for the prolate portion of the oscillation grows exponentially with the Weber number. Finally, new pictorial results are presented for droplet collisions between non-spherical droplets.

  18. Droplets spectrum of air-assisted boom sprayers under different environmental and operational conditions

    Directory of Open Access Journals (Sweden)

    Robson S. Sasaki

    2016-01-01

    Full Text Available ABSTRACT During pesticide spraying, the psychrometric conditions of the air may cause evaporation of the droplets along their trajectory from the nozzle to the target. Thus, this study aimed to evaluate the effect of air psychrometric conditions and operating pressure on the droplet spectrum of air-assisted boom sprayers. The test was performed using a prototype equipped with an axial fan, a flow homogenizer, temperature and relative air humidity sensors, a spray nozzle and a gas-heating system to warm up the airflow. With the assembled system and the aid of a particle analyser, the JSF 11002 spray nozzle was evaluated with respect to droplet spectrum in four air psychrometric conditions (7, 14, 21 and 28 hPa and at four operating pressures (200, 300, 400 and 500 kPa. At the end, evaporation losses were observed during the sprayings. For a given operating pressure and for each increment of 1 hPa in vapor pressure deficit, there was a diameter reduction of approximately 0.0759, 0.518 and 1.514 μm for the parameters DV0.1, DV0.5 and DV0.9, respectively. The diameter of the droplets decreased as the operating pressure increased.

  19. Vaporization of synthetic fuels. Final report. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  20. Inhalational and dermal exposures during spray application of biocides.

    Science.gov (United States)

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  1. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  2. Directional motion of evaporating droplets on gradient surfaces

    Science.gov (United States)

    Yao, Shuhuai; Xu, Li; Li, Zhigang

    2012-11-01

    Droplet evaporation on surfaces has various applications in drying problems such as ink-jet printing, pesticide spraying, chemical or biological detection, and DNA microarray spotting technology. Controlling evaporating droplets via substrate morphology and/or wetting properties allows for efficient deposition of sample molecules in these applications. In this work, evaporation of sessile water droplets on surfaces with wettability gradients was studied. The wettability gradient was generated by fabricating non-uniformly distributed cylindrical micropillars on silicon surfaces. During the evaporation, it was found, along the wettability gradient, that the contact line on one side was strongly pinned, while the contact line on the other side depinned and gradually receded, making the center of mass of the droplet move either in or against the direction the wettability gradient, depending on the configuration of the micropillars. The theoretical criterion predicting the moving direction was derived based on the excess free energy and the energy barrier during the evaporation. The theoretical predications agreed well with the experimental observations. The results provide a parametric design basis to control the contact line dynamics and directional transport of evaporating droplets. This work was supported by the Research Grants Council of Hong Kong under General Research Fund (Grant No. 621110).

  3. Chip-based droplet sorting

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  4. Chip-based droplet sorting

    Science.gov (United States)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2014-07-01

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  5. Enhancing Throughput of Combinatorial Droplet Devices via Droplet Bifurcation, Parallelized Droplet Fusion, and Parallelized Detection

    Directory of Open Access Journals (Sweden)

    Kuangwen Hsieh

    2015-10-01

    Full Text Available Combinatorial droplet microfluidic devices with programmable microfluidic valves have recently emerged as a viable approach for performing multiplexed experiments in microfluidic droplets. However, the serial operation in these devices restricts their throughput. To address this limitation, we present a parallelized combinatorial droplet device that enhances device throughput via droplet bifurcation, parallelized droplet fusion, and parallelized droplet detection. In this device, sample droplets split evenly at bifurcating Y-junctions before multiple independent reagent droplets are injected directly into the split sample droplets for robust droplet fusion. Finally, the fused sample and reagent droplets can be imaged in parallel via microscopy. The combination of these approaches enabled us to improve the throughput over traditional, serially-operated combinatorial droplet devices by 16-fold—with ready potential for further enhancement. Given its current performance and prospect for future improvements, we believe the parallelized combinatorial droplet device has the potential to meet the demand as a flexible and cost-effective tool that can perform high throughput screening applications.

  6. Fundamental Study on the Effect of Spray Parameters on Characteristics of P3HT:PCBM Active Layers Made by Spray Coating

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2015-08-01

    Full Text Available This paper is an attempt to elucidate the effects of the important spray characteristics on the surface morphology and light absorbance of spray-on P3HT:PCBM thin-films, used as an active layer in polymer solar cells (PSCs. Spray coating or deposition is a viable scalable technique for the large-scale, fast, and low-cost fabrication of solution-processed solar cells, and has been widely used for device fabrication, although the fundamental understanding of the underlying and controlling parameters, such as spray characteristics, droplet dynamics, and surface wettability, is still limited, making the results on device fabrication not reproducible and unreliable. In this paper, following the conventional PSC architecture, a PEDOT:PSS layer is first spin-coated on glass substrates, followed by the deposition of P3HT:PCBM using an automatic ultrasonic spray coating system, with a movable nozzle tip, to mimic an industrial manufacturing process. To gain insight, the effects of the spray carrier air pressure, the number of spray passes, the precursor flow rate, and precursor concentration are studied on the surface topography and light absorbance spectra of the spray-on films. Among the results, it is found that despite the high roughness of spray-on films, the light absorbance of the film is satisfactory. It is also found that the absorbance of spray-on films is a linear function of the number of spray passes or deposition layers, based on which an effective film thickness is defined for rough spray-on films. The effective thickness of a rough spray-on P3HT:PCBM film was found to be one-quarter of that of a flat film predicted by a simple mass balance.

  7. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  8. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  9. Impact of blood droplets

    NARCIS (Netherlands)

    N. Laan

    2015-01-01

    Within Bloodstain Pattern Analysis, forensic experts commonly use the stringing method, based on a straight line approximation of the blood droplets trajectories to determine where the source of a bloodstain pattern was. However, by ignoring gravity, large errors may arise when inferring the 3D-loca

  10. Sessile nanofluid droplet drying.

    Science.gov (United States)

    Zhong, Xin; Crivoi, Alexandru; Duan, Fei

    2015-03-01

    Nanofluid droplet evaporation has gained much audience nowadays due to its wide applications in painting, coating, surface patterning, particle deposition, etc. This paper reviews the drying progress and deposition formation from the evaporative sessile droplets with the suspended insoluble solutes, especially nanoparticles. The main content covers the evaporation fundamental, the particle self-assembly, and deposition patterns in sessile nanofluid droplet. Both experimental and theoretical studies are presented. The effects of the type, concentration and size of nanoparticles on the spreading and evaporative dynamics are elucidated at first, serving the basis for the understanding of particle motion and deposition process which are introduced afterward. Stressing on particle assembly and production of desirable residue patterns, we express abundant experimental interventions, various types of deposits, and the effects on nanoparticle deposition. The review ends with the introduction of theoretical investigations, including the Navier-Stokes equations in terms of solutions, the Diffusion Limited Aggregation approach, the Kinetic Monte Carlo method, and the Dynamical Density Functional Theory. Nanoparticles have shown great influences in spreading, evaporation rate, evaporation regime, fluid flow and pattern formation of sessile droplets. Under different experimental conditions, various deposition patterns can be formed. The existing theoretical approaches are able to predict fluid dynamics, particle motion and deposition patterns in the particular cases. On the basis of further understanding of the effects of fluid dynamics and particle motion, the desirable patterns can be obtained with appropriate experimental regulations.

  11. Numerical Simulation on Head-On Binary Collision of Gel Propellant Droplets

    Directory of Open Access Journals (Sweden)

    Zejun Liu

    2013-01-01

    Full Text Available Binary collision of droplets is a fundamental form of droplet interaction in the spraying flow field. In order to reveal the central collision mechanism of two gel droplets with equal diameters, an axi-symmetric form of the Navier-Stokes equations are firstly solved and the method of VOF (volume of fluid is utilized to track the evolution of the gas-liquid free interface. Then, the numerical computation model is validated with Qian’s experimental results on Newtonian liquids. Phenomena of rebound, coalescence and reflexive separation of droplets after collision are investigated, and structures of the complicated flow fields during the collision process are also analyzed in detail. Results show that the maximum shear rate will appear at the point where the flow is redirected and accelerated. Rebound of droplets is determined by the Weber number and viscosity of the fluid together. It can be concluded that the gel droplets are easier to rebound in comparison with the base fluid droplets. The results also show that the alternant appearance along with the deformation of droplets in the radial and axial direction is the main characteristic of the droplet coalescence process, and the deformation amplitude attenuates gradually. Moreover, the reflexive separation process of droplets can be divided into three distinctive stages including the radial expansion, the recovery of the spherical shape, and the axial extension and reflexive separation. The variation trend of the kinetic energy is opposite to that of the surface energy. The maximum deformation of droplets appears in the radial expansion stage; in the case of a low Weber number, the minimum central thickness of a droplet appears later than its maximum deformation, however, this result is on the contrary in the case of a high Weber number.

  12. Characteristics of spray pattern on injection conditions using GDI injector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.H. [Hanyang University, Graduate School, Seoul (Korea); Lee, K.H.; Lee, C.S. [Hanyang University, Seoul (Korea); Kim, J.Y.; Baik, S.K. [Kefico (Korea)

    1999-11-01

    Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize these, it is essential to make both super-lean stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with piston cavity. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, system of spray visualization was built for coping with variable ambient pressures in high pressure chamber and the spray characteristics were investigated for a few sample GDI injectors. To make clear spray pattern, the images for vertical and horizontal sections were taken as fuel injection was processed. With an increase at the ambient pressure in chamber, the tip penetration and spray diameter is inclined to decrease due to rising resistance caused by the drag force of the ambient air. These results provide the information on macro spray structure and design factors for developing GDI injector. (author). 4 refs., 12 figs., 1 tab.