WorldWideScience

Sample records for fuel disposal wells

  1. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  2. Disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste.

  3. Spent fuel characteristics & disposal considerations

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, V.M.

    1996-06-01

    The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

  4. TMI Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Taylor

    2003-09-01

    This report documents the reported contents of the Three Mile Island Unit 2 (TMI-2) canisters. proposed packaging, and degradation scenarios expected in the repository. Most fuels within the U.S. Department of Energy spent nuclear fuel inventory deal with highly enriched uranium, that in most cases require some form of neutronic poisoning inside the fuel canister. The TMI-2 fuel represents a departure from these fuel forms due to its lower enrichment (2.96% max.) values and the disrupted nature of the fuel itself. Criticality analysis of these fuel canisters has been performed over the years to reflect conditions expected during transit from the reactor to the Idaho National Engineering and Environmental Laboratory, water pool storage,1 and transport/dry-pack storage at Idaho Nuclear Technology and Engineering Center.2,3 None of these prior analyses reflect the potential disposal conditions for this fuel inside a postclosure repository.

  5. Alternatives for nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Badillo A, V.; Palacios H, J.; Celis del Angel, L., E-mail: ramon.ramirez@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico)

    2010-10-15

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  6. Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)

    2015-05-15

    While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.

  7. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  8. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  9. Estimation of CANDU spent fuel disposal canister lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Kook, Dong Hak; Lee, Min Soo; Hwang, Yong Soo; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    Active nuclear energy utilization causes significant spent fuel accumulation problem. The cumulative amount of spent fuel is about 10,083 ton as of Dec. 2008, and is expected to increase up to 19,000 ton by 2020. Of those, CANDU spent fuels account for more than 60% of the total amounts. CANDU spent fuels had been stored in dry concrete silos since 1991 and during the past 15 years, 300 silos were constructed and {approx}3,200 ton of spent fuels are stored now. Another dry storage facility MACSTOR /KN-400 will store new-coming CANDU spent fuels from 2009. But, after intermediate storage ends, all CANDU spent fuels have to be disposed within multi-layer metallic canister which is composed of cast iron inside and copper outside. Canister lifetime estimation, therefore, is very important for the final disposal safety analysis. The most significant factor of lifetime is copper corrosion, and Y. S. Hwang developed a corrosion model in order to predict the general corrosion effect on copper canister lifetime during the final disposal period. This research applied his model to KURT1 where many disposal researches are being performed actively and the results shows safe margin of the copper canister for the very long-term disposal.

  10. Wastewater Disposal Wells, Fracking, and Environmental Injustice in Southern Texas.

    Science.gov (United States)

    Johnston, Jill E; Werder, Emily; Sebastian, Daniel

    2016-03-01

    To investigate race and poverty in areas where oil and gas wastewater disposal wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. With location data of oil and gas disposal wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a disposal well and those farther away, adjusting for rurality and poverty, using a Poisson regression. The proportion of people of color living less than 5 kilometers from a disposal well was 1.3 times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, disposal wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. Disposal wells are also disproportionately sited in high-poverty areas. Wastewater disposal wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as "environmental injustice."

  11. Wastewater Disposal Wells, Fracking, and Environmental Injustice in Southern Texas

    Science.gov (United States)

    Werder, Emily; Sebastian, Daniel

    2016-01-01

    Objectives. To investigate race and poverty in areas where oil and gas wastewater disposal wells, which are used to permanently inject wastewater from hydraulic fracturing (fracking) operations, are permitted. Methods. With location data of oil and gas disposal wells permitted between 2007 and 2014 in the Eagle Ford area, a region of intensive fracking in southern Texas, we analyzed the racial composition of residents living less than 5 kilometers from a disposal well and those farther away, adjusting for rurality and poverty, using a Poisson regression. Results. The proportion of people of color living less than 5 kilometers from a disposal well was 1.3 times higher than was the proportion of non-Hispanic Whites. Adjusting for rurality, disposal wells were 2.04 times (95% confidence interval = 2.02, 2.06) as common in areas with 80% people of color or more than in majority White areas. Disposal wells are also disproportionately sited in high-poverty areas. Conclusions. Wastewater disposal wells in southern Texas are disproportionately permitted in areas with higher proportions of people of color and residents living in poverty, a pattern known as “environmental injustice.” PMID:26794166

  12. The Swedish approach to spent fuel disposal - stepwise implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gustaffson, B. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1997-12-31

    This presentation describes the stepwise implementation of direct disposal of spent fuel in Sweden. The present status regarding the technical development of the Swedish concept will be discussed as well the local site work made in co-operation with the affected and concerned municipalities. In this respect it should be noted that the siting work in some cases has caused heavy opposition and negative opinions. A brief review will also be given regarding the Aspo Hard Rock Laboratory. The objectives of this laboratory as well as the ongoing demo-project will be discussed. In order to give the symposium organizer a more broad view of the Swedish programme a number of recent papers has been compiled. Theses papers will be summarized in the presentation. (author). 4 tabs., 22 figs.

  13. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  14. Nuclear fuels: Development, processing and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Allday, C.

    1982-08-01

    The successful development of the world's energy resources has enabled industries in the more advanced countries to provide the economic basis on which improved living standards are based. As the less well-developed countries seek to improve their standards of living the pressure on existing energy resources will increase. In this context it is essential not to allow the current industrial recession in the developed countries, with its associated apparent abundancy of coal, oil and gas, to mask the longer-term energy situation. It is not here proposed to discuss the role of nuclear power in the energy scene except to say that, with the continuing need to develop energy resources, nuclear as a proven safe and economic system - will have a vital role to fulfil in meeting the world's future energy demands. This paper is concerned with the development of nuclear fuel and the industry which has grown around it during the last 30 years. It shall concentrate on its development in this country and describe the history and activities of BNFL.

  15. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-07-11

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  16. Storage, transportation and disposal system for used nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  17. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Description of the disposal system 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Description of the Disposal System sits within Posiva Oy's Safety Case 'TURVA-2012' report portfolio and has the objective presenting the initial state of the disposal system for the safety case for the disposal of spent nuclear fuel at Olkiluoto, Finland. Disposal system is an entity composed of a repository system and surface environment. The repository system includes the spent nuclear fuel, canister, buffer, backfill, and closure components as well as the host rock. The repository system components have assigned safety functions (except for the spent nuclear fuel) and are subject to requirements. The initial state is presented for each component, and references to the main supporting reports are given to guide the reader for more details. Conditions for each component vary in time and space, due to the time of emplacement and due to the tolerances set for the compositions, geometries and other properties depending on the component. The disposal operation is foreseen to commence {approx} 2020. At the beginning of the postclosure period, around 2120, all the engineered components have been installed and the operation is finalised. The system evolution during the operational phase is discussed in detail in Performance Assessment. The initial state for the host rock is defined to be essentially equal to the baseline conditions prior to starting the construction of the underground characterisation facility ONKALO. For the surface environment, the initial state is the present conditions prevailing. For any other component of the disposal system, the initial state is defined as the state it has when the direct control over that specific part of the system ceases and only limited information can be made available on the subsequent development of conditions in that part of the system or its near field. (orig.)

  18. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and as a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.

  19. Disposal of saltwater during well construction--Problems and solutions

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.; Hull, John E.

    1977-01-01

    The recent interest in the disposal of treated sewage effluent by deep-well injection into salt-water-filled aquifers has increased the need for proper disposal of salt water as more wells are drilled and tested each year.The effects on an unconfined aquifer of the improper disposal of salt water associated with the construction of three wells in southeastern Florida emphasize this need. In two of the wells provisions to prevent and detect salt-water contamination of the unconfined aquifer were practically nonexistent, and in one well extensive provisions were made. Of the three drilling sites the one with proper provision for detection presented no serious problem, as the ground water contaminated by the salt water was easily located and removed. The provisions consisted of drilling a brine-injection well to dispose of salt water discharged in drilling and testing operations, using a closed drilling circulation system to reduce spillage, installing shallow observation wells to map the extent and depth of any salt-water contamination of the shallow aquifer, and installing a dewatering system to remove contaminated ground water.

  20. Direct disposal of spent fuel: developing solutions tailored to Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hideki [Obayashi Corporation, Tokyo (Japan); McKinley, Ian G [McKinley Consulting, Baden (Switzerland)

    2013-07-01

    With the past Government policy of 100% reprocessing in Japan now open to discussion, options for direct disposal of spent fuel (SF) are now being considered in Japan. The need to move rapidly ahead in developing spent fuel management concepts is closely related to the ongoing debate on the future of nuclear power in Japan and the desire to understand the true costs of the entire life cycle of different options. Different scenarios for future nuclear power - and associated decisions on extent of reprocessing - will give rise to quite different inventories of SF with different disposal challenges. Although much work has been carried out spent fuel disposal within other national programmes, the potential for mining the international knowledge base is limited by the boundary conditions for disposal in Japan. Indeed, with a volunteer approach to siting, no major salt deposits and few undisturbed sediments, high tectonic activity, relatively corrosive groundwater and no deserts, it is evident that a tailored solution is needed. Nevertheless, valuable lessons can be learned from projects carried out worldwide, if focus is placed on basic principles rather than implementation details. (authors)

  1. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  2. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Matteo, Edward N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).

  3. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  4. The psychosocial consequences of spent fuel disposal; Kaeytetyn ydinpolttoaineen loppusijoituksen psykososiaaliset vaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, J.; Eraenen, L. [Helsinki Univ. (Finland). Dept. of Social Psychology

    1999-03-01

    In this report the potential psychosocial consequences of spent fuel disposal to inhabitants of a community are assessed on the basis of earlier research. In studying the situation, different interpretations and meanings given to nuclear power are considered. First, spent fuel disposal is studied as fear-arousing and consequently stressful situation. Psychosomatic effects of stress and coping strategies used by an individual are presented. Stress as a collective phenomenon and coping mechanisms available for a community are also assessed. Stress reactions caused by natural disasters and technological disasters are compared. Consequences of nuclear power plant accidents are reviewed, e.g. research done on the accident at Three Mile Island power plant. Reasons for the disorganising effect on a community caused by a technological disaster are compared to the altruistic community often seen after natural disasters. The potential reactions that a spent fuel disposal plant can arouse in inhabitants are evaluated. Both short-term and long-term reactions are evaluated as well as reactions under normal functioning, after an incident and as a consequence of an accident. Finally an evaluation of how the decision-making system and citizens` opportunity to influence the decision-making affect the experience of threat is expressed. As a conclusion we see that spent fuel disposal can arouse fear and stress in people. However, the level of the stress is probably low. The stress is at strongest at the time of the starting of the spent fuel disposal plant. With time people get used to the presence of the plant and the threat experienced gets smaller. (orig.) 63 refs.

  5. Design report of the disposal canister for twelve fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.) 35 refs.

  6. Fort Calhoun Station disposal of spent fuel pool racks

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, T.W. [Omaha Public Power District, Fort Calhoun Station, NE (United States)

    1995-09-01

    The original plan was to have the racks pulled out of the pool, washed down and wrapped and placed in Sea/Lands to be sent to a vendor for free release and disposal. In the winter of 93 the proposed quotations on the Spent Fuel Rerack Processing were all rejected. With the rerack job starting in March of 94 and the closing of Barnwell in July we were faced with what to do with the racks. Processing of the existing racks were required since if the racks were sent to Barnwell for burial intact the cost would be prohibitive, that is, if Barnwell would have stayed open. If the racks were sent to a smelter, such as Scientific Ecology Group (SEG), there are restrictions on the length of the components that can go through the smelter. If SEG were to do the rack processing (sectioning) at their facility, the cost would also be prohibitive and they would not be in a position to receive the racks until June, 1995. Therefore, bid specifications were requested for on-site volume reduction processing of the existing spent fuel storage racks, with further ultimate disposal to be performed by SEG. The processing of the racks included piping and supports. Volume reduction (VR) was an issue in the evaluation since after this process the racks were to be shipped to SEG. If a low VR ratio option was chosen, OPPD would need a significant number of shipping containers and required more radwaste shipments versus if a high VR ratio option were chosen.

  7. Spent nuclear fuel for disposal in the KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Per; Moren, Lena; Wiborgh, Maria

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input to the assessment of the long-term safety, SR-Site as well as to the operational safety report, SR-Operation. The report presents the spent fuel to be deposited, and the requirements on the handling and selection of fuel assemblies for encapsulation that follows from that it shall be deposited in the KBS-3 repository. An overview of the handling and a simulation of the encapsulation and the resulting canisters to be deposited are presented. Finally, the initial state of the encapsulated spent nuclear fuel is given. The initial state comprises the radionuclide inventory and other data required for the assessment of the long-term safety

  8. Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.W.

    1998-11-06

    This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

  9. Challenges in spent nuclear fuel final disposal:conceptual design models

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed RANA

    2008-01-01

    The disposal of spent nuclear fuel is a long-standing issue in nuclear technology. Mainly, UO2 and metallic U are used as a fuel in nuclear reactors. Spent nuclear fuel contains fission products and transuranium elements, which would remain radioactive for 104 to 108 years. In this brief communication, essential concepts and engineering elements related to high-level nuclear waste disposal are described. Conceptual design models are described and discussed considering the long-time scale activity of spent nuclear fuel or high level waste. Notions of physical and chemical barriers to contain nuclear waste are highlightened. Concerns regarding integrity, self-irradiation induced decomposition and thermal effects of decay heat on the spent nuclear fuel are also discussed. The question of retrievability of spent nuclear fuel after disposal is considered.

  10. Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    This report describes the many fundamental issues relating to the strategy being proposed by Atomic Energy of Canada Limited for the long-term management of nuclear fuel waste. It discusses the need for a method for disposal of nuclear fuel waste that would permanently protect human health and the natural environment and that would not unfairly burden future generations. It also describes the background and mandate of the Nuclear Fuel Waste Management Program in Canada.

  11. Facts and issues of direct disposal of spent fuel; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Parks, P.B.

    1993-10-01

    This report reviews those facts and issues that affect the direct disposal of spent reactor fuels. It is intended as a resource document for those impacted by the current Department of Energy (DOE) guidance that calls for the cessation of fuel reprocessing. It is not intended as a study of the specific impacts (schedules and costs) to the Savannah River Site (SRS) alone. Commercial fuels, other low enriched fuels, highly enriched defense-production, research, and naval reactor fuels are included in this survey, except as prevented by rules on classification.

  12. Reference Spent Fuel and Its Source Terms for a Design of Deep Geological Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun

    2005-12-15

    In this study, current status and future trend of domestic spent fuels were analyzed to propose reference spent nuclear fuel. And then, source terms needed for design of a deep geological disposal system were calculated using ORIGEN-ARP. The reference spent fuels selected based on assembly physical dimension, inventory projection, trend of initial enrichment of 235U, discharge burnup are as follows; The 17x17 Korean Optimized Fuel Assembly with initial enrichment of 4.0 wt.% 235U and discharge burnup of 45 GWD/MTU was adopted as a low-burnup representative fuel. For the high-burnup representative fuel, 16x16 Korean Standard Fuel Assembly with initial enrichment of 4.5 wt.% 235U and discharge burnup of 55 GWD/MTU was chosen. CANDU fuel with initial enrichment of 0.711 wt.% 235U and discharge burnup of 7.5 GWD/MTU was also considered. For these reference fuels, decay heat, radiation intensity and spectrum, nuclide concentration, and individual nuclide radioactivity were calculated using ORIGEN-ARP for a disposal system design. It is expected that the source terms estimated in this study will be applied to the disposal system development in the future.

  13. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    Science.gov (United States)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  14. 'DIRECT DISPOSAL'. Comparative study of the radiological risk of the spent fuel and vitrified waste disposals in granite deep geological formation; 'STOCKAGE DIRECT'. Etude comparative du risque radiologique des stockages de combustibles uses et de dechets vitrifies en formation geologique profonde de type granitique

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, Patrick; Gay, Didier [Departement d' evaluation de surete, Inst. de Protection et de Surete Nucleaire, CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (France)

    1996-09-01

    In order to study the implications of a possibly 'direct disposal' of the spent fuel a working group has been created in 1991. This report gives an evaluation of the radiological impact as well as of the technical and economical characteristics of a generic disposal scenario for untreated spent fuel. The basic scheme implies a temporary storage and, then after an adequate preparation, the disposal in a deep geological formation. This document concerning the evaluation of the radiological impact associated to the geological disposal of the spent fuel constitutes the IPSN's contribution to the report of working group. The solution, as defined by the group, specifies the disposal of multifunctional TSD containers ensuring the Transport, Storage and final Disposal in mine drifts of granite formation. Two values for amounts to be stored were taken into account: one corresponds to 43,500 fuel assemblies of PWR UOX type irradiated at 33,000 MWd.t{sup -1}, while the other, corresponds to 20,400 assemblies of the same type. The radiological risk was evaluated for two distinct evolution scenarios, one supposing the preservation of initial characteristics of the disposal site, the other supposing alterations like those induced by drilling deep water wells in the disposal's vicinity. The individual effective dose were computed for each of these scenarios. Also, a comparison is made between the case of direct disposal of spent fuels and the case of disposal of reprocessed fuels of the same type.

  15. Safe conditioning of waste for final disposal. Vitrification of spent used fuel elements; Sichere Konditionierung zur Endlagerung. Verglasung von abgebrannten Brennelementen

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Stefan; Blanc, Eric [Areva GmbH, Erlangen (Germany)

    2016-08-15

    The strategy for disposal of spent nuclear fuel in Germany requires an interim storage over a longer period. The used fuel assemblies are stored in dry storage casks. An alternative method for storage is the conditioning of the fuel elements. This technology is proven on an industrial scale and is carried out at the La Hague plant. The know-how is currently available for both, the operators as well as in industry and science in Germany.

  16. Disposal Of Spent Fuel In Salt Using Borehole Technology: BSK 3 Concept

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Graf, Reinhold [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany); Filbert, Wolfgang [DBE TECHNOLOGY GmbH, Eschenstrasse 55, D-31224 Peine (Germany)

    2008-07-01

    The BSK 3 concept was developed for the direct disposal of spent fuel in rock salt. It is based on the conditioning of fuel assemblies and inserting fuel rods into a steel canister which can be placed in vertical boreholes. The BSK 3 canister is suitable for spent fuel rods from 3 PWR or 9 BWR fuel assemblies. The emplacement system developed for the handling and disposal of BSK 3 canisters comprises a transfer cask which provides appropriate shielding during the transport and emplacement process, a transport cart, and an emplacement device. Using the emplacement device the transfer cask will be positioned onto the top of the borehole lock. The presentation describes the development and the design of the transfer cask and the borehole lock. A technically feasible and safe design for the transfer cask and the borehole lock was found regarding the existing safety requirements for radiation shielding, heat dissipation and handling procedure. (authors)

  17. Geological aspects of the high level waste and spent fuel disposal programme in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Matej, Gedeon; Milos, Kovacik; Jozef, Hok [Geological Survey of Slovak Republic, Bratislava (Slovakia)

    2001-07-01

    An autonomous programme for development of a deep geological high level waste and spent fuel disposal began in 1996. One of the most important parts in the programme is siting of the future deep seated disposal. Geological conditions in Slovakia are complex due to the Alpine type tectonics that formed the geological environment during Tertiary. Prospective areas include both crystalline complexes (tonalites, granites, granodiorites) and Neogene (Miocene) argillaceous complexes. (author)

  18. National strategy for disposal of high level waste and spent fuel in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Borys Zlobenko; Emlen Sobotovich [IEG NASU, Ukraine (Ukraine)

    2006-07-01

    Full text of publication follows: Nuclear energy remains the most important component in the fuel energy system of Ukraine. As a result of the previous and ongoing nuclear power programmes, Ukraine accumulates substantial amounts of spent fuel and radioactive wastes. While these wastes will be stored in temporary facilities, it is envisaged that final disposal will take place in a deep geological repository. The Law of Ukraine 'On Radioactive Waste Management' provides for the ultimate disposal of high- and intermediate-level waste in deep geological formations. To solve the problem of radioactive waste disposal in geological repositories, the first-priority tasks are the following: implementation of regulatory and legal framework for managing radioactive waste to be disposed of in deep geological formations, and develop a regulation to govern the general provisions on safe disposal of radioactive waste in geological repositories. The regulation entitled 'General Provisions on Safe Disposal of Radioactive Waste in Geological Repositories' has been developed in compliance with the Comprehensive Programme of Radioactive Waste Management. The regulation establishes basic criteria, requirements and conditions for nuclear and radiation safety to be applied for radioactive waste disposal in stable geological formations (geological repositories) at all life stages of repositories with the purpose of protecting personnel, the public and the environment. The 'Programme on Management of NPP Spent Nuclear Fuel' does not identify measures on treatment of spent nuclear fuel for disposal up to 2010. Ukraine implements the so-called 'deferred decision', which means that the decision on spent fuel disposal or processing is deferred to future when it can be made with greater confidence taking into account relevant worldwide experience and progress of science and industry of the State. The concept and a programme for radioactive waste disposal

  19. AMNT 2014. Key Topic: Fuel, decommissioning and disposal - report. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Seipolt, Thomas [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany); Weber, Stefan [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Kock, Ingo [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) GmbH, Koeln (Germany)

    2015-02-15

    Summary report on the following Topical Sessions of the Key Topic 'Fuel, Decommissioning and Disposal' of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - From Pilot Project to an Industrial Service (Thomas Seipolt); - Radioactive Waste Management - Experiences with Interim and Final Storage (Stefan Weber and Ingo Kock). The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 and 12 (2014), 1 (2015) and will be covered in further issues of atw.

  20. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Douglas Alan [Univ. of Florida, Gainesville, FL (United States)

    1991-01-01

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas & Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States` utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste.

  1. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Larry Lorin

    2001-01-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  2. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  3. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gibb, F.G.F. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom)], E-mail: f.gibb@sheffield.ac.uk; McTaggart, N.A.; Travis, K.P.; Burley, D. [Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD (United Kingdom); Hesketh, K.W. [Nexia Solutions Ltd., B709 Springfields, Preston PR4 0XJ (United Kingdom)

    2008-03-15

    Deep (4-5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like {sup 129}I before the borehole is filled and sealed. This problem can be overcome by using novel high-density support matrices deployed as fine metal shot along with the containers. Temperature distributions in and around the disposal are modelled to show how decay heat from the fuel can melt the shot within weeks of disposal to give a dense liquid in which the containers are almost weightless. Finally, within a few decades, this liquid will cool and solidify, entombing the waste containers in a base metal sarcophagus sealed into the host rock.

  4. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  5. Case study : evaluation of oilfield and water well disposal well designs for oil sands facility in northern Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Champollion, Y.; Gleixner, M.R.; Wozniewicz, J. [Golder Associates Ltd., Calgary, AB (Canada); MacFarlane, W.D.; Skulski, L. [Nexen Canada Ltd., Calgary, AB (Canada)

    2003-07-01

    Large volumes of wastewater disposal capacity will be required for the production of bitumen at the Long Lake Project, located in northeastern Alberta. An unconsolidated sand aquifer is the target formation for disposal. An evaluation of two disposal well designs, perforated casing (standard oil and gas approach), and wire-wound telescopic screen (standard water well approach) was performed. Skin, transmissivity and storability were the hydraulic parameters quantified. Full superposition type curves were used to conduct the transient analysis, along with the use of pressure derivative data. The results from the injection tests revealed that the sand aquifer at the Long Lake Project had suitable aquifer disposal capacity. The test results also revealed that clogging takes place in the vicinity of the wellbore, probably because of suspended solids in the injection water and the degassing effects. The water well design, as opposed to the standard oilfields well, makes provision for less costly re-development during operations, something that might be required if clogging problems occur. 3 refs., 8 figs.

  6. Analog information and the Canadian concept for disposal of nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    AECL, with support from Ontario Hydro under auspices of the Candu Owners Group, has assessed a concept for the safe disposal of nuclear fuel waste in Canada. The disposal concept is to place nuclear fuel waste in corrosion-resistant containers and emplace the containers with sealing materials in an engineered vault at depths of 500 to 1000m in plutonic rock of the Canadian Shield. Humans and the environment would be protected from contaminants in the waste by several barriers; the waste itself, the container, the sealing materials, and the rock. This disposal concept permits a great deal of flexibility in its implementation, which means that a wide range of circumstances could be accommodated. Studies of natural analogues provide important information for evaluating and improving our knowledge and understanding of the disposal concept. Analogue information is used to develop the scenarios and conceptual models, to provide input to databases, and to test models, thereby enhancing the level of confidence in the safety predictions from the assessment models. In addition, natural analogues are valuable illustrative tools when presenting information on the disposal concept to the non-expert and the public.

  7. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  8. Radiological consequences of accidents during disposal of spent nuclear fuel in a deep borehole

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-07-15

    In this report, an analysis of the radiological consequences of potential accidents during disposal of spent nuclear fuel in deep boreholes is presented. The results presented should be seen as coarse estimates of possible radiological consequences of a canister being stuck in a borehole during disposal rather than being the results of a full safety analysis. In the concept for deep borehole disposal of spent nuclear fuel developed by Sandia National Laboratories, the fuel is assumed to be encapsulated in mild steel canisters and stacked between 3 and 5 km depth in boreholes that are cased with perforated mild steel casing tubes. The canisters are joined together by couplings to form strings of 40 canisters and lowered into the borehole. When a canister string has been emplaced in the borehole, a bridge plug is installed above the string and a 10 metres long concrete plug is cast on top of the bridge plug creating a floor for the disposal of the next sting. In total 10 canister strings, in all 400 canisters, are assumed to be disposed of at between 3 and 5 kilometres depth in one borehole. An analysis of potential accidents during the disposal operations shows that the potentially worst accident would be that a canister string is stuck above the disposal zone of a borehole and cannot be retrieved. In such a case, the borehole may have to be sealed in the best possible way and abandoned. The consequences of this could be that one or more leaking canisters are stuck in a borehole section with mobile groundwater. In the case of a leaking canister being stuck in a borehole section with mobile groundwater, the potential radiological consequences are likely to be dominated by the release of the so-called Instant Release Fraction (IRF) of the radionuclide inventory, i.e. the fraction of the radionuclides that as a consequence of the in-core conditions are present in the annulus between the fuel pellets and the cladding or on the grain boundaries of the UO{sub 2} matrix

  9. Geological Disposal Options for the Radioactive Wastes from a Recycling Process of Spent Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Lee, M. S.; Jeong, J. T.; Choi, J. W.; Kim, S. K.; Cho, D. K.; Kuk, D. H.; Cha, J. H

    2008-10-15

    The electricity from the nuclear power plants is around 40 % of total required electricity in Korea and according to the energy development plan, the proportion will be raised about 60 % in near future. To implement this plan, the most important factor is the back-end fuel cycle, namely the safe management of the spent fuel or high level radioactive wastes from the nuclear power plants. Various researches are being carried out to manage the spent fuel effectively in the world. In our country, as one of the management alternatives which is more effective and non-proliferation, pyro-processing method is being developed actively to retrieve reusable uranium and TRU, and to reduce the volume of high level waste from a Nuclear power plant. This is a new dry recycling process. In this report, the amount of various wastes and their characteristics are estimated in a Pyro-process. Based on these information, the geological disposal alternatives are developed. According to the amount and the characteristics of each waste, the concepts of waste packages and the disposal container are developed. And also from the characteristics of the radioactivity and the heat generation, multi-layer of the depth is considered to dispose these wastes. The proposed various alternatives in this report can be used as input data for design of the deep geological disposal system. And they will be improved through the application of the real site data and safety assessment in the future. After then, the final disposal concept will be selected with various assessment and the optimization will be carried out.

  10. Analysis of preliminary design concept of stainless steel container for disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chun, K.S.; Ku, J.H.; Park, J.H.; Choi, J.W. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    This report represents the structural, thermal and radiation shielding analysis of the basic concepts of the disposal container, that could accommodate PWR and CANDU fuels of which physical dimensions and shapes are quite different each other, with respect to the emplacement modes. Basic concepts of the disposal containers for the vertical horehole and the drift emplacement modes are proposed with their maximum allowable thermal loading. Appropriate thickness of the container to withstand the expected external pressure in the underground repository system was delivered by the structural analyses. The thermal analysis of the container containing spent fuels showed that the internal maximum temperatures of all container concepts did not reach the constraint values. Radiation dose rate from the container with 10cm thickness wall were also less than the established constraint value. (author). 9 refs., 33 figs., 12 tabs.

  11. Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, M.D.

    1999-08-01

    Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models.

  12. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  13. Current Status and Characterization of CANDU Spent Fuel for Geological Disposal System Design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Lee, Seung Woo; Cha, Jeong Hun; Choi, Jong Won; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Yang [SK Engineering and Construction, Seoul (Korea, Republic of)

    2008-06-15

    Inventories to be disposed of, reference turn up, and source terms for CANDU spent fuel were evaluated for geological disposal system design. The historical and projected inventory by 2040 is expected to be 14,600 MtU under the condition of 30-year lifetime for unit 1 and 40-year lifetime for other units in Wolsong site. As a result of statistical analysis for discharge burnup of the spent fuels generated by 2007, average and stand deviation revealed 6,987 MWD/MtU and 1,167, respectively. From this result, the reference burnup was determined as 8,100 MWD/MtU which covers 84% of spent fuels in total. Source terms such as nuclide concentration for a long-term safety analysis, decay heat, thermo-mechanical analysis, and radiation intensity and spectrum was characterized by using ORIGEN-ARP containing conservativeness in the aspect of decay heat up to several thousand years. The results from this study will be useful for the design of storage and disposal facilities.

  14. Choice of method - evaluation of strategies and systems for disposal of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-15

    This report deals with the question of how the Swedish spent nuclear fuel is to be disposed of. What are the requirements? What are the alternatives? In the main chapter of the report, an evaluation is made of the KBS-3 method compared with other strategies and systems for final disposal of spent nuclear fuel. An appendix to the report presents in general terms how the KBS-3 method has developed from the end of the 1970s up to today. The report is one of a number of supporting documents for SKB's applications for construction and operation of the final repository for spent nuclear fuel. In parallel with and as a basis for the present report, SKB has prepared the reports Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle ('Principles, strategies and systems for final disposal of spent nuclear fuel') /Grundfelt 2010a/, Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutlig foervaring av anvaent kaernbraensle ('Comparison between the KBS-3 method and deposition in deep boreholes for final disposal of spent nuclear fuel') /Grundfelt 2010b/ and Utvecklingen av KBS-3- metoden. Genomgaang av forskningsprogram, saekerhetsanalyser, myndighetsgranskningar samt SKB:s internationella forskningssamarbete ('Development of the KBS-3 method. Review of research programmes, safety assessments, regulatory reviews and SKB's international research cooperation') /SKB 2010a/. The reports are in Swedish, but contain summaries in English. The first report is an update of the comprehensive account of alternative methods presented by SKB in 2000. The second report presents a comparison between the KBS-3 method and the Deep Boreholes concept, plus a status report on research and development in the area of Deep Boreholes. The last report describes how the KBS-3 method has been developed from the end of the 1970s up to today. It further describes how the method has been further developed and

  15. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    Directory of Open Access Journals (Sweden)

    Herrero J.J.

    2017-01-01

    Full Text Available In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  16. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs

    1997-12-31

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs.

  17. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, Wolfgang; Herold, Philipp [DBE Technology GmbH, Peine (Germany)

    2015-07-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  18. Research on treatment and disposal of RI and Research Institute Waste. Progress in Department of Fuel Cycle Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Department of Fuel Cycle Safety Research, JAERI, has been carrying out research on safe and rational disposal systems of radioactive wastes arising from medical activities and research institutes (RI and Research Institute Waste). The research area includes a study on molten solidified waste form, a geological survey on Japan, a proposal on integrated disposal systems, data acquisition for safety evaluation, and a safety analysis of disposal systems. This report introduces progress and future works for the treatment and disposal of RI and Research Institute Waste. (author)

  19. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  20. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 1, Activation measurements and comparison with calculations for spent fuel assembly hardware

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1. 5 refs., 4 figs., 21 tabs.

  1. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  2. Limitation of the EIA Process for the assessment of nuclear fuel waste disposal in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Kuhn, R.G. [Guelph Univ., ON (Canada). Dept. of Geography

    1999-12-01

    The Canadian environmental impact assessment process for the Nuclear Fuel Waste Management and Disposal Concept was completed in 1994. Almost four years later, in February 1998, the Review Panel released its report. The viewpoints of those who participated in the assessment process is archived in the thousands of pages of hearing testimony, meeting transcripts and written briefs. One of the most contentious issues raised, and one that continues to plague management in Canada, is the debate surrounding how the problem of NFW waste management should be defined. The purpose of this paper is to critically assess the problem frame of the Canadian NFW management disposal concept EIS. This will be accomplished through an analysis of stakeholder participation and views, and through an evaluation of the range and nature of the information considered legitimate or constrained in the Canadian process.

  3. Modelling of thermally driven groundwater flow in a facility for disposal of spent nuclear fuel in deep boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report calculations are presented of buoyancy driven groundwater flow caused by the emission of residual heat from spent nuclear fuel deposited in deep boreholes from the ground surface in combination with the natural geothermal gradient. This work has been conducted within SKB's programme for evaluation of alternative methods for final disposal of spent nuclear fuel. The basic safety feature of disposal of spent nuclear fuel in deep boreholes is that the groundwater at great depth has a higher salinity, and hence a higher density, than more superficial groundwater. The result of this is that the deep groundwater becomes virtually stagnant. The study comprises analyses of the effects of different inter-borehole distances as well as the effect of different permeabilities in the backfill and sealing materials in the borehole and of different shapes of the interface between fresh and saline groundwater. The study is an update of a previous study published in 2006. In the present study, the facility design proposed by Sandia National Laboratories has been studied. In this design, steel canisters containing two BWR elements or one PWR element are stacked on top of each other between 3 and 5 kilometres depth. In order to host all spent fuel from the current Swedish nuclear programme, about 80 such holes are needed. The model used in this study comprises nine boreholes spaced 100 metres alternatively 50 metres apart in a 3{Chi}3 matrix. In one set of calculations the salinity in the groundwater was assumed to increase from zero above 700 metres depth to 10% by weight at 1500 metres depth and below. In another set, a sharper salinity gradient was applied in which the salinity increased from 0 to 10% between 1400 and 1500 metres depth. A geothermal gradient of 16 deg C/km was applied. The heat output from the spent fuel was assumed to decrease by time in manner consistent with the radioactive decay in the fuel. When the inter-borehole distance decreased from

  4. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Energy Technology Data Exchange (ETDEWEB)

    Bjarnadottir, H.; Hilding-Rydevik, T. [Nordregio, Stockholm (Sweden)

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented

  5. Disposal of irradiated fuel elements from German research reactors. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Thamm, G. [Central Research Reactor and Nuclear Operations Division, Research Centre Juelich, Forschungszentrum Juelich GmbH, Juelich (Germany)

    1999-07-01

    There will be a quantity of highly radioactive spent nuclear fuel (snf) from German research reactors amounting to about 9.1 t by the end of the next decade, which has to be disposed of. About 4.1 t of this quantity are intended to be returned to the USA. The remaining approximately 5 t can be loaded into approximately 30 CASTOR-2 casks and will be stored in a central German dry interim store for about 30 to 50 years (first step of the domestic disposal concept). Of course, snf arising from the operation of research reactors beyond 2010 has to be disposed of in the same way (3 MTR-2 casks every two years for BER-II and FRM-II). It is expected that snf from the zero-power facilities probably will be recycled for reusing the uranium. Due to the amendment of the German Atomic Energy Act intended by the new Federal German Government, the interim dry storage of snf from power reactors in central storage facilities like Ahaus or Gorleben will be stopped and the power reactors have to store snf at their own sites. Although the amendment only concerns nuclear power reactors, it could not be excluded that snf from research reactors, too, cannot be stored at Ahaus or Gorleben at present. (author)

  6. Safety assessment of spent fuel disposal in Haestholmen, Kivetty, Olkiluoto and Romuvaara - TILA-99

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T.; Nordman, H. [VTT Energy (Finland)

    1999-03-01

    The spent fuel from the Finnish nuclear power plants is planned to be disposed of in copper-iron canisters emplaced in a KBS-3 type repository constructed at a depth of about 500 metres at one of the four candidate sites investigated. The disposal concept aims at long-term isolation of the spent fuel assemblies from the biosphere and even from the geosphere. The evaluation of the normal evolution of the disposal system accords with the conclusions of the previous Finnish, Swedish and Canadian safety assessments of similar disposal concepts. Subject to the influence of the expected, normal evolution of the repository, initially intact copper-iron canisters will most likely preserve their integrity for more than one million years at any of the candidate sites. Consequently, the best-estimate assessment is that there never will be any significant releases of radionuclides from the repository into the geosphere. Consequences of potential canister failures have been evaluated using conservative assumptions, models and data. The results show that at any of the sites a large number of canisters could be assumed to be initially defective or to `disappear` simultaneously after some time without that the proposed constraints for release rates into the biosphere or dose rates were exceeded. In most cases this conclusion is valid for all canisters failing simultaneously, even if rather pessimistic flow and transport data is used. In the sensitivity and `what if` analyses where very high flow rates of saline groundwater are assumed, highest release and dose rates are caused by weakly-sorbing cations Sr-90 and Ra-226. The most important differences between the sites are related to the coastal location and brackish/saline groundwater of Haestholmen and Olkiluoto, and on the other hand to the inland location and fresh groundwater of Kivetty and Romuvaara. Because of the ongoing postglacial land uplift at the coast of the Baltic Sea, Olkiluoto and Haestholmen, too, may become

  7. Fusion solution to dispose of spent nuclear fuel, transuranic elements, and highly enriched uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry E-mail: gohar@anl.gov

    2001-11-01

    The disposal of the nuclear spent fuel, the transuranic elements, and the highly enriched uranium represents a major problem under investigation by the international scientific community to identify the most promising solutions. The investigation of this paper focused on achieving the top rated solution for the problem, the elimination goal, which requires complete elimination for the transuranic elements or the highly enriched uranium, and the long-lived fission products. To achieve this goal, fusion blankets with liquid carrier, molten salts or liquid metal eutectics, for the transuranic elements and the uranium isotopes are utilized. The generated energy from the fusion blankets is used to provide revenue for the system. The long-lived fission products are fabricated into fission product targets for transmutation utilizing the neutron leakage from the fusion blankets. This paper investigated the fusion blanket designs for small fusion devices and the system requirements for such application. The results show that 334 MW of fusion power from D-T plasma for 30 years with an availability factor of 0.75 can dispose of the 70,000 tons of the U.S. inventory of spent nuclear fuel generated up to the year 2015. In addition, this fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future.

  8. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Features, events and processes 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Features, Events and Processes sits within Posiva Oy's Safety Case 'TURVA-2012' portfolio and has the objective of presenting the main features, events and processes (FEPs) that are considered to be potentially significant for the long-term safety of the planned KBS-3V repository for spent nuclear fuel at Olkiluoto. The primary purpose of this report is to support Performance Assessment, Formulation of Radionuclide Release Scenarios, Assessment of the Radionuclide Release Scenarios for the Repository System and Biosphere Assessment by ensuring that the scenarios are comprehensive and take account of all significant FEPs. The main FEPs potentially affecting the disposal system are described for each relevant subsystem component or barrier (i.e. the spent nuclear fuel, the canister, the buffer and tunnel backfill, the auxiliary components, the geosphere and the surface environment). In addition, a small number of external FEPs that may potentially influence the evolution of the disposal system are described. The conceptual understanding and operation of each FEP is described, together with the main features (variables) of the disposal system that may affect its occurrence or significance. Olkiluoto-specific issues are considered when relevant. The main uncertainties (conceptual and parameter/data) associated with each FEP that may affect understanding are also documented. Indicative parameter values are provided, in some cases, to illustrate the magnitude or rate of a process, but it is not the intention of this report to provide the complete set of numerical values that are used in the quantitative safety assessment calculations. Many of the FEPs are interdependent and, therefore, the descriptions also identify the most important direct couplings between the FEPs. This information is used in the formulation of scenarios to ensure the conceptual models and calculational cases are both comprehensive and representative. (orig.)

  9. Expertise on the provision of evidence with respect to Nagra's disposal concept for spent fuel assemblies, vitrified high-level radioactive waste as well as for long-living intermediate-level wastes (Opalinus clay project); Gutachten zum Entsorgungsnachweis der Nagra fuer abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfaelle (Projekt Opalinuston)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-15

    Mankind has been living in a field of natural radiation; in Switzerland, the natural dose is around 3 mSv per year. It can be assumed that an artificial dose smaller than the natural one is harmless and can therefore be tolerated. However, nuclear power plants, medicine, industry and research produce radioactive wastes whose radioactivity is mostly higher than the natural level. These wastes must therefore be concentrated and enclosed until the decay reduces the dose rate to a harmless level. For this, it is foreseen that the radioactive wastes will be disposed of in deep-lying geological strata. The enclosure must be guarantied in such a way that, at any time, the radiation suffered by mankind and environment due to the radioactive wastes stays under the statutory limit of 1 mSv/a. The judgement of the quality of the deep underground repository is divided into 3 chapters: a) based on the geological and hydro-geological properties of the host rock, the proof of safety shows that the chosen repository site is safe for the long term; b) the proof of site guaranties that the repository needed can be built in the chosen host rock; c) the proof of implementation demonstrates that the repository can be built with the actual technical means proposed. The forecast for the development of the safety of the repository in the long term is fairly inaccurate, the most difficult factor being the developments in mankind's way of life. Therefore, conservative assumptions must be taken into account to cover even the most unlikely cases. The former project 'Gewaehr' presented by the National Co-operative for the Disposal of Nuclear Wastes (NAGRA) in 1978 was based on crystalline rock; it was rejected because it was not possible to find a sufficiently large area without geologic faults for the repository. In new investigations, NAGRA found a suitable layer of Opalinus clay in Zurich's Weinland. In the neighbourhood of the layer discovered, there are neither

  10. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    Energy Technology Data Exchange (ETDEWEB)

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the

  11. Health assessment of children and adolescents living in a residential area of production for the disposal of rocket fuel: according to the results of the medical examination

    Directory of Open Access Journals (Sweden)

    Uiba V.V.

    2014-12-01

    Full Text Available Aim: to determine the real prevalence separate nosological forms in the child population living in residential zone installations for the disposal of rocket fuel. Materials and methods. By mobile teams of pediatric physicians there was conducted a comprehensive medical examination of 1621 children in the area of the site location for disposal of rocket engines solid fuel. Results. The surveyed contingent of the most common diseases of the endocrine system, disorders of nutrition and metabolism (21.2% of diagnoses, diseases of the musculoskeletal and connective tissue (19.2 percent, as well as individual symptoms, signs and deviations from the norm by 14.4%. Conclusion. Data indicating the pronounced impact of adverse environmental factors, not identified.

  12. Mechanical performance of integrally bonded copper coatings for the long term disposal of used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Christopher H., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, 22 St. Clair Ave East, Toronto (Canada); Meguid, Shaker A. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto (Canada)

    2015-11-15

    Highlights: • A novel Used Fuel Container with an integrally bonded copper coating is proposed. • Two developed coating processes successfully produced prototype container components. • We created a validated finite element model to predict coating structural performance. • Mechanical testing confirms coating suitably for repository use. - Abstract: The preferred method for disposal of used nuclear fuel is underground emplacement in a Deep Geological Repository (DGR). Many countries have light water reactor fuels which require large Used Fuel Container or Canister (UFC) designs weighing up to 25 ton for containment. In contrast, Canada exclusively uses heavy water reactor fuel, which is substantially smaller. This has led the Nuclear Waste Management Organization (NWMO) to create a novel UFC, which uses standard pressure vessel grade steel for structural containment and a thick, integrally bonded copper coating applied to the exterior surface for corrosion protection. Currently, the coating is applied using two different methods: electrodeposition and gas dynamic cold spray. This novel copper coating needs to be fully validated to ensure adequate mechanical strength and chemical resistance for use under repository conditions. Detailed mechanical and corrosion testing programs were undertaken. Mechanical tests indicated that adhesion strengths exceeded 45 MPa and tensile properties were comparable to wrought copper. A Finite Element Model (FEM) of the copper–steel composite was created and validated using three point bend tests. This model accurately predicts the response of the composite, including large deformation and debonding failure mechanisms. Now validated, this model will be used to assess the performance of the coating on the full-scale UFC under simulated DGR loading conditions.

  13. Tests for manufacturing technology of disposal canisters for nuclear spent fuel; Loppusijoituskapselin valmistustekniset kokeet

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy (Finland); Salonen, T. [Outokumpu Poricopper Oy (Finland); Meuronen, I. [Suomen Teknohaus Oy (Finland); Lehto, K. [Valmet Oyj Rautpohja Foundry (Finland)

    1999-06-01

    The summary and status of the results of the manufacturing technology programmes concerning the disposal canister for spent nuclear fuel conducted by Posiva Oy are given in this report. Posiva has maintained a draft plan for a disposal canister design and an assessment of potential manufacturing technologies for about ten years in Finland. Now, during the year 1999, the first full scale demonstration canister is manufactured in Finland. The technology used for manufacturing of this prototype is developed by Posiva Oy mainly in co-operation with domestic industry. The main partner in developing the manufacturing technology for the copper shell has been Outokumpu Poricopper Oy, Pori, Finland, and the main partner in developing the technology for the iron insert of the canister has been Valmet Oyj Rautpohja Foundry, Jyvaeskylae, Finland. In both areas many subcontractors have been used, predominantly domestic engineering workshops, but also some foreign subcontractors, e.g. for EB-welding, who have had large enough welding equipment. This report describes the developing programmes for canister manufacturing, evaluates the results and presents some alternative methods, and tries to evaluate the pros and contras of them. In addition, the adequacy of the achieved technological know-how is assessed in respect of the required quality of the disposal canister. The following manufacturing technologies have been the concrete topics of the development programme: Electron beam welding technology development for thick-walled copper, Casting of massive copper billets, Hot rolling of thick-walled copper plates, Hot pressing and forging in lid manufacture, Extrusion and drawing of copper tubes, Bending of copper plates by roller or press, Machining of copper, Residual stress removal by heat treatment, Non-destructive testing, Long-term strength of EB-welds, Casting and machining of the iron insert of the canister The specialists from all the main developing partner companies have

  14. Corrosion of copper containers prior to saturation of a nuclear fuel waste disposal vault

    Energy Technology Data Exchange (ETDEWEB)

    King, F.; Kolar, M

    1997-12-01

    The buffer material surrounding the containers in a Canadian nuclear fuel waste disposal vault will partially desiccate as a result of the elevated temperature at the container surface. This will lead to a period of corrosion in a moist air atmosphere. Corrosion will either take the form of slow oxidation if the container surface remains dry or aqueous electrochemical corrosion if the surface is wetted by a thin liquid film. The relevant literature is reviewed, from which it is concluded that corrosion should be uniform in nature, except if the surface is wetted, in which case localized corrosion is a possibility. A quantitative analysis of the extent and rate of uniform corrosion during the unsaturated period is presented. Two bounding cases are considered: first, the case of slow oxidation in moist air following either logarithmic or parabolic oxide-growth kinetics and, second, the case of electrochemically based corrosion occurring in a thin liquid film uninhibited by the growth of corrosion products. (author)

  15. Interim report on safety assessment of spent fuel disposal TILA-96

    Energy Technology Data Exchange (ETDEWEB)

    Vieno, T.; Nordman, H. [VTT Energy, Espoo (Finland)

    1996-12-01

    The TILA-96 study, a continuation and update of the TVO-92 safety analysis for Finnish radioactive waste disposal, confirms that the planned system for spent fuel disposal fulfills the proposed safety criteria. Provided that no major disruptive event hits the repository, initially intact copper canisters preserve their integrity for millions of years and no significant amount of radioactive substances will ever escape from the repository. Impacts of potential canister failures have been analysed employing conservative assumptions, models and data. In the case of single canister failures, the results show that the margin to the proposed regulatory criteria is more than three orders of magnitude in the dose rate and more than four orders of magnitude in the release rates into the biosphere. Even in the extreme cases, where all 1500 canisters are assumed to be initially defective or to disappear simultaneously at 10 000 years in the worst possible location in the repository, all the proposed safety criteria would be passed. When realistic modelling and data are used in the consequence analyses, the results show negligible releases and doses. (refs.).

  16. A Preliminary Assessment of a Deep Borehole disposal of Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Younmyoung; Jeon, Jongtae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Deep borehole disposal (DBD) of such radioactive waste as spent nuclear fuels (SFs) and other waste forms has been investigating mainly at Sandia National Labs for the US DOE as an alternative option. DBD can give advantages over less deep geological disposal since the disposal of wastes at a great depth where a low degree of permeability in the potentially steady rock condition will be beneficial for nuclide movement. Groundwater in the deep basement rock can even have salinity and less chance to mix with groundwater above. The DBD concept is quite straightforward and even simple: Waste canisters are simply emplaced in the lower 2 km part of the borehole down to 5 km deep. Through this study, a conceptual DBD is assessed for a similar case as the US DOE's approach, in which 400 SF canisters are to be emplaced at a deep bottom between 3km and 5km depths, upon which an additional 1km-thick compacted bentonite is overbuffered, and the remaining upper part of the borehole is backfilled again with a mixture of crushed rock and bentonite. Then, the total 5km-deep borehole has three zones: a disposal zone at the bottom 2km, a buffer zone at the next 1km, and backfill zone at the rest top 2km, as illustrated conceptually in Fig. 1. To demonstrate the feasibility in view of long-term radiological safety, a rough model for a safety assessment of this conceptual deep borehole repository system, providing detailed models for nuclide transport in and around the geosphere and biosphere under normal nuclide release scenarios that can occur after a closure of the repository, has been developed using GoldSim. A simple preliminary result in terms of the dose exposure rate from a safety assessment of the DBD is also presented and compared to the case of direct disposal of SFs in a KBS-3V vertical type repository, carried out in previous studies. For different types and shapes of repositories at each different depth, direct comparison between a DBD and a KBS-3 type disposal of

  17. Cost estimations for deep disposal of spent nuclear fuels; Kostnadsberaekning av djupfoervaring av det anvanda kaernbraenslet

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, K.; Wallroth, T. [BERGAB - Berggeologiska Undersoekningar AB, Goeteborg (Sweden); Green, L.; Joensson, Lars [Peab Berg AB, Goeteborg (Sweden)

    1999-10-01

    According to the Act on the Financing of Future Expenses for Spent Nuclear Fuel etc. (Financing Act), the Swedish Nuclear Fuel and Waste Management Co. (SKB) must submit, every year, to the Swedish Nuclear Power Inspectorate (SKI), a cost estimate for the management of spent nuclear fuel and for the decommissioning and dismantling of the nuclear power plants. After SKI has examined and evaluated the cost estimates, SKI must submit a proposal to the Government concerning the fee which should be paid by the nuclear power companies per kWh of generated electricity. According to the Financing Act, the reactor owners must pledge collateral in the event that the accumulated fees should be found to be insufficient as a result of early closure of reactors or as a result of underestimating the future expenses of managing the spent nuclear fuel and of decommissioning and dismantling the reactors. The future total expenses resulting from the Financing Act are estimated at about SEK 48 billion at the January 1998 price level. Of this amount, the cost of the final disposal of spent nuclear fuel in SKB's programme is expected to amount to about SEK 12 billion. SKB's estimate comprises the cost of siting, construction and operation of a deep repository for spent nuclear fuel, based on the KBS-3 concept, and a rock cavern for other long-lived waste which SKB plans to locate next to the spent fuel repository. The cost estimate also includes the dismantling and closure of the facility once all of the fuel and the long-lived waste are deposited. The calculations are based on all of the fuel, which will be generated through the operation of the 12 Swedish reactors during a period of 25 years and for every additional year of operation. At the beginning of 1998, SKI commissioned BERGAB to evaluate the cost estimate for the deep disposal of the spent nuclear fuel. The task was divided into two stages, namely a study which was submitted in June 1998 concerning the technical

  18. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  19. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Overview and summary

    Energy Technology Data Exchange (ETDEWEB)

    Varanini, E.E. III; Maullin, R.L.

    1978-01-11

    With regard to the specific question embodied in California's nuclear statutes about the demonstrated and approved permanent terminal disposal of nuclear waste (assuming that the reprocessing question is now most for legislative purposes), the finding of the Energy Commission is that such a technology has not been demonstrated and that it is even questionable to assume that one will be demonstrated before the mid 1980s. Following upon this finding and addressing the broader question of continued implementation of the policy expressed by the nuclear fuel cycle statutes, the evidence indicates that it is not prudent to continue siting nuclear powerplants based on an optimistic assumption that waste management technologies to handle nuclear waste will be developed and scientifically demonstrated. The California Legislature has questioned that optimistic assumption by placing the burden of proof on the developers of a demonstrated, scientifically tested process for the permanent and terminal disposal of nuclear wastes. Such a process does not exist at this time. There are many who are optimistic that the development of such a technology will become a reality in the near future. This overview and the supporting report indicate that this optimism is not warranted. Weapons proliferation and degradation of the biosphere by radioactive waste have proved to be unanticipated, difficult and possibly intractable problems in spite of an overriding confidence that nuclear technology would not present such problems. On the basis of the evidence received by this Commission, there are substantial scientific gaps which preclude proceeding on the basis of faith that all the attendant risks and issues will be resolved.

  20. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  1. Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.

    2011-06-01

    For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

  2. Preliminary conceptual designs for advanced packages for the geologic disposal of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1979-04-01

    The present study assumes that the spent fuel will be disposed of in mined repositories in continental geologic formations, and that the post-emplacement control of the radioactive species will be accomplished independently by both the natural barrier, i.e., the geosphere, and the engineered barrier system, i.e., the package components consisting of the stabilizer, the canister, and the overpack; and the barrier components external to the package consisting of the hole sleeve and the backfill medium. The present document provides an overview of the nature of the spent fuel waste; the general approach to waste containment, using the defense-in-depth philosophy; material options, both metallic and nonmetallic, for the components of the engineered barrier system; a set of strawman criteria to guide the development of package/engineered barrier systems; and four preliminary concepts representing differing approaches to the solution of the containment problem. These concepts use: a corrosion-resistant meta canister in a special backfill (2 barriers); a mild steel canister in a corrosion-resistant metallic or nonmetallic hole sleeve, surrounded by a special backfill (2 barriers); a corrosion-resistant canister and a corrosion-resistant overpack (or hole sleeve) in a special backfill (3 barriers); and a mild steel canister in a massive corrosion-resistant bore sleeve surrounded by a polymer layer and a special backfill (3 barriers). The lack of definitive performance requirements makes it impossible to evaluate these concepts on a functional basis at the present time.

  3. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Complementary considerations 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    Complementary Considerations sits within Posiva Oy's Safety Case 'TURVA-2012' report portfolio and has the objective of enhancing confidence in the outcomes of the safety assessment for a spent nuclear fuel repository to be constructed at Olkiluoto, Finland. The main emphasis in this report is on the evidence and understanding that can be gained from observations at the site, including its regional geological environment, and from natural and anthropogenic analogues for the repository, its components and the processes that affect safety. In particular, the report addresses diverse and less quantifiable types of evidence and arguments that are enclosed to enhance confidence in the outcome of the safety assessment. These complementary considerations have been described as evaluations, evidence and qualitative supporting arguments that lie outside the scope of the other reports of the quantitative safety assessment. The experience with natural analogues for the long-term durability of the materials involved and the extent of processes provides high confidence in our understanding of the disposal system and its evolution. For each engineered barrier and key process, there is increasing analogue evidence to support the conceptual models and parameters. Regarding the suitability of the Olkiluoto site to host a spent fuel repository, a number of factors have been identified that indicate the suitability of crystalline host rock in general, and that of the Olkiluoto site in particular. The report also provides radiation background information for the use of complementary indicators, which aid in putting the results of the safety analysis presented in Assessment of Radionuclide Release Scenarios for the Repository System and Biosphere Assessment in a broader perspective to show that the radiation originating from a spent nuclear fuel repository remains in most cases much below natural background radiation or that caused by non-nuclear industries. (orig.)

  4. Safety case for the disposal of spent nuclear fuel at Olkiluoto - Synthesis 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    TURVA-2012 is Posiva's safety case in support of the Preliminary Safety Analysis Report (PSAR 2012) and application for a construction licence for a spent nuclear fuel repository. Consistent with the Government Decisions-in- Principle, this foresees a repository developed in bedrock at the Olkiluoto site according to the KBS-3 method, designed to accept spent nuclear fuel from the lifetime operations of the Olkiluoto and Loviisa reactors. Synthesis 2012 presents a synthesis of Posiva Oy's Safety Case 'TURVA-2012' portfolio. It summarises the design basis for the repository at the Olkiluoto site, the assessment methodology and key results of performance and safety assessments. It brings together all the lines of argument for safety, evaluation of compliance with the regulatory requirements, and statement of confidence in long-term safety and Posiva's safety analyses. The TURVA-2012 safety case demonstrates that the proposed repository design provides a safe solution for the disposal of spent nuclear fuel, and that the performance and safety assessments are fully consistent with all the legal and regulatory requirements related to long-term safety as set out in Government Decree 736/2008 and in guidance from the nuclear regulator - the STUK. Moreover, Posiva considers that the level of confidence in the demonstration of safety is appropriate and sufficient to submit the construction licence application to the authorities. The assessment of long-term safety includes uncertainties, but these do not affect the basic conclusions on the long-term safety of the repository. (orig.)

  5. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  6. Seismic activity during the 1968 test pumping at the Rocky Mountain Arsenal disposal well

    Science.gov (United States)

    Hoover, Donald B.; Dietrich, J.A.

    1969-01-01

    During the 1968 pumping tests at the Rocky Mountain Arsenal disposal welt, the U.S. Geological Survey was responsible for monitoring earthquakes occurring in the area of the arsenal and making chemical analysis of the fluids removed, three criteria were established to suspend the pumping if anomalous earthquake activity occurred during the pumping test. These criteria were based on the frequency, magnitude, and location of the local earthquakes. The pumping program consisted of four tests which occurred between September 3 and October 26, 1968. During periods of pumping, earthquake activity remained within acceptable limits and no suspensions of the pumping were required. After each of the two major pumping periods an increase in the frequency of small earthquakes occurred. During the first of these two periods of high seismic activity the Geological Survey recommended a delay in the start of the next phase of the pumping until the activity subsided. Most of the earthquakes during 1968 occurred northwest of the arsenal; however, in the 2? month period after the start of the test, a larger percent of the earthquakes occurred on the arsenal than in the previous 8-month period. The temperature in the cooled zone at the bottom of the well was 12?F warmer 2 weeks after pumping stopped than it was in January 1968. Preliminary chemical analyses indicate that very little mixing between waste fluids and connate water bas occurred.

  7. Spent fuel criticality and compositions evaluation for long-term disposal in a generic cask

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, C.E.; Sousa, R.V.; Fortini, A.; Pereira, C., E-mail: claubia@nuclear.ufmg.br; Costa, A.L.; Silva, C.A.M. da; Veloso, M.A.F.; Oliveira, A.H. de; Carvalho, F.R. de

    2014-08-15

    The Nuclear Energy Agency (NEA) Expert Group on Burn-up Credit Criticality Safety published a Benchmark with results obtained from simulations with some nuclear codes for a PWR-UO{sub 2} nuclear fuel disposed of in a cask. The same situations were simulated at the Departamento de Engenharia Nuclear/Universidade Federal de Minas Gerais (DEN/UFMG) with the SCALE 6.0 (KENOVI/ORIGENS), MCNPX 2.6.0/CINDER and Monteburns (MCNP5/ORIGEN2.1). Combinations of codes and nuclear data are slightly different from those used by the organizations who participate of the Benchmark. For k{sub eff} time evolution, the results are very similar to the values obtained by the benchmark participants. For decay time evolution, the results obtained for several nuclides presented the expected behavior. Nevertheless, differences in the composition increase during the time specially using the Monteburns code. These differences may be attributed to the libraries and methodology for choosing libraries to decay calculation and the number of days to a year considered to calculations.

  8. Suitability of Haestholmen Loviisa for final disposal of spent fuel. Preliminary study; Loviisan Haestholmenin soveltuvuus kaeytetyn polttoaineen loppusijoitukseen. Esiselvitys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Based on the amendment of the Nuclear Energy Act the spent nuclear fuel of Imatran Voima Oy (IVO) will be disposed of in Finland instead of returning it to Russia. After Teollisuuden Voima Oy (TVO) and IVO had founded a joint company Posiva Oy the work IVO started in 1995 was brought together with the ongoing research programme for final disposal of spent fuel and extended to a feasibility study. The feasibility study was launched in the beginning of 1996. The geological evaluation was mainly based on the previous investigations at the island. For this study the complementary geological mapping has been carried out at the Haestholmen and on the surrounding area with a radius of 20 km. (49 refs.).

  9. Assessment of subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast for applications to disposal of salt water from geopressured geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, C.K.; Boardman, C.R.

    1978-08-04

    A representative cross section of the literature on the disposal of geothermal brine was perused and some of the general information and concepts is summarized. The following sections are included: disposal statistics--Texas Railroad Commission; disposal statistics--Louisiana Office of Conservation; policies for administering salt water disposal operations; salt water disposal experience of Gulf Coast operators; and Federal Strategic Petroleum Reserve Program's brine disposal operations. The literature cited is listed in the appended list of references. Additional literature is listed in the bibliography. (MHR)

  10. 40 CFR 146.15 - Class I municipal disposal well alternative authorization in certain parts of Florida.

    Science.gov (United States)

    2010-07-01

    ... ground water monitoring data generated pursuant to regulatory requirements governing operation of Class I... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Class I municipal disposal well... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL...

  11. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  12. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  13. Geosphere transport of radionuclides in safety assessment of spent fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Jussila, P

    2000-07-01

    The study is associated with a research project of Radiation and Nuclear Safety Authority (STUK) to utilise analytical models in safety assessment for disposal of spent nuclear fuel. Geosphere constitutes a natural barrier for the possible escape of radionuclides from a geological repository of spent nuclear fuel. However, rock contains fractures in which flowing groundwater can transport material. Radionuclide transport in rock is complicated - the flow paths in the geosphere are difficult to characterise and there are various phenomena involved. In mathematical models, critical paths along which radionuclides can reach the biosphere are considered. The worst predictable cases and the effect of the essential parameters can be assessed with the help of such models although they simplify the reality considerably. Some of the main differences between the transport model used and the reality are the mathematical characterisation of the flow route in rock as a smooth and straight fracture and the modelling of the complicated chemical processes causing retardation with the help of a distribution coefficient that does not explain those phenomena. Radionuclide transport models via a heat transfer analogy and analytical solutions of them are derived in the study. The calculations are performed with a created Matlab program for a single nuclide model taking into account 1D advective transport along a fracture, 1D diffusion from the fracture into and within the porous rock matrices surrounding the fracture, retardation within the matrices, and radioactive decay. The results are compared to the results of the same calculation cases obtained by Technical Research Centre of Finland (VTT) and presented in TILA-99 safety assessment report. The model used by VTT is the same but the results have been calculated numerically in different geometry. The differences between the results of the present study and TILA-99 can to a large extent be explained by the different approaches to

  14. Monitoring the Restart of a High-Rate Wastewater Disposal Well in the Val d'Agri Oilfield (Italy)

    Science.gov (United States)

    De Gori, P.; Improta, L.; Moretti, M.; Colasanti, G.; Criscuoli, F.

    2015-12-01

    The Val d'Agri Quaternary basin in the Southern Apennine range of Italy hosts the largest inland oil field in Europe. Wastewater coming from the oil exploitation is re-injected by a high-rate disposal well into strongly fractured limestones of the hydrocarbon carbonate reservoir. Disposal activity has induced micro-seismicity since the beginning of injection in June 2006. Around 220 small magnitude events (ML Vulcanologia. The induced micro-seismicity illuminated a pre-existing high-angle fault located 1 km below the well. Since June 2006, wastewater has been re-injected with only short interruptions due acid stimulations. In January 2015 disposal activity was halted due to technical operations in the oil refinery and wastewater injection restarted after two weeks. We installed 5 short-period stations within 10 km of the disposal well to carefully monitor the re-start phase and the subsequent 3 months of disposal activity. This temporary network was complemented by stations of the National Seismic Network giving this final configuration:9 stations within 10 km of the well with the closest station 2 km apart, 13 stations within 20 km. Here we report on the preliminary analysis of the local earthquake recorded during the survey focusing on the events occurred in the injection area. The seismicity rate is compared with injection data.In spite of the dense network, we found that the rate of induced seismicity (both the number and energy of events) is very low when compared to the seismicity recorded during the first 5 years of injection activity carried out with comparable rate and pressure.

  15. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  16. The feasibility of modelling coupled processes in safety analysis of spent nuclear fuel disposal

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland); Luukkonen, A.; Niemi, A.; Poellae, J. [VTT Communities and Infrastructure, Espoo (Finland); Olin, M. [VTT Chemical Technology, Espoo (Finland)

    1999-07-01

    The potential of applying coupled modelling in the Finnish safety analysis programme has been reviewed. The study focused on the migration of radionuclides escaping from a spent fuel repository planned to be excavated in fractured bedrock. Two effects that can trigger various couplings in and around a spent fuel repository in Finland were studied in detail; namely heat generation in the spent fuel and the presence of deep, saline groundwaters. The latter have been observed in coastal areas. A systematic survey of the requirements of coupled modelling identified features that render such migration calculations a challenging task. In groundwater flow modelling there appears to be wide ranging uncertainty related to conceptualisation of flow systems and to the corresponding input data. In terms of migration related chemistry there appear to be large gaps in the underlying thermodynamic database for geochemical systems. Rock mechanical predictions are heavily dependent on knowing the location, structure and properties of dominant fractures; information which is extremely difficult to obtain. Conduction and convection of heat is understood well in principle. On the basis of this review, it appears that coupled migration modelling may not yet be at the stage of development that would allow its use as a standard modelling tool in performance assessments. However, a firmer basis for the conclusions reached can only be obtained after a systematic modelling exercise on a relevant and real migration problem has been carried out. (orig.)

  17. Radionuclide behaviour and geochemistry upon geological disposal of HLW glass and spent fuel in Boom Clay: overview and critical assessment

    Science.gov (United States)

    Iseghem, P. V.; Maes, N.; Lemmens, K.; Canniere, P. D.; Wang, L.; Marivoet, J.

    2006-05-01

    Belgium is actually pursuing large R&D efforts to evaluate the acceptability of geological disposal of candidate high-level waste forms. Both the closed (reprocessing of spent fuel followed by vitrification of the HLW) and the open (direct disposal of the spent nuclear fuel) fuel cycle are considered. The total amount of spent UOX fuel is about 4800 tHM over the 40 years total lifetime of the power plants. A candidate Boom Clay formation is considered, and an underground research laboratory in that clay formation has been constructed below the SCK-CEN site at ~220 m depth below surface. Performance assessment (PA) studies are a key element to guide the R&D. All PA studies perfomed thus far on either HLW glass or spent fuel indicate that the highest doses at the biosphere are due to some long living, non retarded radionuclides (Se-79, I-129, Cl-36, Sn-126, Tc-99, etc). The actinides (U, Pu, Np, Am) do only contribute to a minor extent to the dose-to-man at the surface, as they are solubility limited and strongly retarded by the Boom Clay. The related R&D performed includes various activities: - the leaching behaviour of radionuclides (Se, Sn, Tc, Np, Pu, U, etc) from HLW glass or UO2 matrix into clay media - the solubility and related complexation behaviour of these radionuclides in interstitial clay water - the migration behaviour of these radionuclides in Boom Clay, to determine sorption and retardation parameters The result of these R&D studies is that a strong underlying understanding has been obtained in support of the PA calculations. Recent decisions by the Belgian waste management agency (NIRAS/ONDRAF) on the disposal concept, and new approaches followed in the new EC projects (NF-PRO and FUNMIG) however affect our strategy of the R&D on radionuclides. The presentation will review the issues raised above, and will have critical recommendations as to pursue R&D on radionuclides in relation to the geological disposal of HLW glass or spent fuel. We will also

  18. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Energy Technology Data Exchange (ETDEWEB)

    Bjarnadottir, H.; Hilding-Rydevik, T. [Nordregio, Stockholm (Sweden)

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented

  19. N-Reactor (U-metal) Fuel Characteristics for Disposal Criticality Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Larry Lorin

    2000-05-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into nine characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments, and total fuel and fissile mass govern the selection of the representative or candidate fuel within that group. Additionally, the criticality analysis will also require data to support design of the canister internals, thermal, and radiation shielding. The purpose of this report is to consolidate and provide in a concise format, material and information/data needed to perform supporting analyses to qualify N-Reactor fuels for acceptance into the designated repository. The N Reactor fuels incorporate zirconium cladding and uranium metal with unique fabrication details in terms of physical size, and method of construction. The fuel construction and post-irradiation handling have created attendant issues relative to cladding failure in the underwater storage environment. These fuels were comprised of low-enriched metal (0.947 to 1.25 wt% 235U) that were originally intended to generate weapons-grade plutonium for national defense. Modifications in subsequent fuel design and changes in the mode of reactor operation in later years were focused more toward power production.

  20. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Energy Technology Data Exchange (ETDEWEB)

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  1. Final disposal of radioactive waste

    OpenAIRE

    Freiesleben H.

    2013-01-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of c...

  2. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

    1998-10-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  3. Continental glaciation and its potential impact on a used-fuel disposal vault in the Canadian Shield

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Y.; Bruneau, D.; Ridgway, W.R

    1997-09-01

    AECL has been assessing the concept of nuclear fuel waste disposal in a vault excavated at a depth ranging between 500 m and 1000 m in a plutonic rock mass of the Canadian Shield. Glaciation is a natural process that has occurred in the past, and is likely to occur in the future, thus causing changes in the loading conditions on the rock mass hosting the disposal vault. Because the rock mass is a natural barrier to the migration of radionuclides, it is important to evaluate its integrity under load changes caused by the glaciation process. Assuming that the magnitude and extent of the future glaciation will be similar to those of the past, we have reviewed published data pertaining to the last continental ice sheet that covered a large area of North America. Estimates have been madefor the magnitude of stresses due to ice sheet loading for a vault located at depths of 500 to 1000 m. These analyses have shown that the uniform loading of a continental ice sheet would reduce the deviatoric stresses in the Canadian Shield, creating more favourable conditions than those existing at the present time, namely, high horizontal stresses. The effects of surface erosion and increase in the in-situ shear stresses have also been examined. Based on the existing data and structural modelling studies, there would be no significant structural effect on a disposal vault located at 1000-m depth in a plutonic rock. At its maximum size, an ice sheet comparable to the Laurentide ice sheet could reactivate the faults and fracture zones along the perimeter areas. Our analyses have been based on fully drained conditions only. At a potential disposal site, it would be important also to consider the potential for excess pore pressure in the analyses. (author)

  4. Final disposal of radioactive waste

    Science.gov (United States)

    Freiesleben, H.

    2013-06-01

    In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste - LLW, intermediate-level waste - ILW, high-level waste - HLW) are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  5. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    Energy Technology Data Exchange (ETDEWEB)

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  6. The impact of a final disposal facility for spent nuclear fuel on a municipality`s image; Tutkimus loppusijoituslaitoksen vaikutuksista kuntien imagoon

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanpaeae, H.; Haapavaara, L.; Lampinen, T

    1999-02-01

    take care of nuclear waste and the advantages of final disposal compared with the present situation. On the other hand there are the fears and doubts: risks involved in the transportation of spent fuel, doubts about the fairness of the decision-making procedure, the risks involved in the operation of the facility and a fear for accidents. Regarding the municipalities` current images the results of the interview show that Eurajoki does not have any distinct profile. About fifty procent of Finns are not able to attach any ideas or characteristics to Eurajoki. About 15% of Finns associate Eurajoki with nuclear power. Kuhmo, on the contrary, has a distinct profile as a place with culture/music, nature and a customer-friendly atmosphere. Loviisa is a town which is spontaneously associated with nuclear power (64%). With a little help also the sea around and the historical background to the town, as well as qualified services and communications were mentioned. Aeaenekoski`s image is that of an industrial centre: industry in general, paper and pulp industry in particular, as well as certain famous firms are associated with the town. Also the adverse factors, such as the bad smell from paper and pulp industry, were mentioned. About one-third of Finns cannot associate Aeaenekoski with anything special. (orig.)

  7. Policies, strategies and systems for the disposal of spent nuclear fuel; Principer, strategier och system foer slutligt omhaendertagande av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil (Kemakta Konsult AB (Sweden))

    2010-12-15

    In this report an up-to-date account is made of the status of different principles, strategies and systems for the management and disposal of spent nuclear fuel. As large scale use of nuclear power for the production of electricity began in the 1960s and 1970s, studies of various principles and strategies for the management of the spent nuclear fuel were initialised. In particular in the USA, comprehensive studies were conducted of all strategies described in this report

  8. Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, K.J.; Miller, N.E.

    1982-11-01

    This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

  9. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  10. Desalination of brackish groundwater and concentrate disposal by deep well injection

    NARCIS (Netherlands)

    Wolthek, N.; Raat, K.; Ruijter, J.A.; Kemperman, A.J.B.; Oosterhof, A.

    2013-01-01

    In the province of Friesland (in the Northern part of The Netherlands), problems have arisen with the abstraction of fresh groundwater due to salinization of wells by upcoming of brackish water. A solution to this problem is to intercept (abstract) the upcoming brackish water, desalinate it with a b

  11. The social impacts of the final disposal of spent nuclear fuel from the point of view of the inhabitants. Interview research; Kaeytetyn ydinpolttoaineen loppusijoituksen sosiaaliset vaikutukset kuntalaisten naekoekulmasta. Haastattelututkimus

    Energy Technology Data Exchange (ETDEWEB)

    Viinikainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Centre for Urban and Regional Studies

    1998-12-01

    The research studied the social impacts of the final disposal of spent nuclear fuel by the means of qualitative methods. The principal research material consisted of 49 theme interviews carried out in four municipalities, Eurajoki, Kuhmo, Loviisa and Aeaenekoski, all of which have a candidate site for spent fuel disposal. The interviews covered residents living near the possible disposal site, local authorities from different sectors of the municipality, social workers, youth workers and teachers, local businesses, trade and other organisations as well as environmental and citizen movements. When considering the risk conceptions and worries over safety, a fairly consistent view on the safety of the different phases of the project can be identified in all the municipalities. The transportation of nuclear waste aroused definitely the most worries over safety, especially because of the danger of sabotage and traffic accidents. When considering the encapsulation stage` the interviews revealed that risks are associated with this stage because it entails a `human factor`: the treatment of a dangerous substance in a disposal site above ground is considered hazardous. When considering the time after the closing of the disposal system, an opinion could be formed on the basis of the interviews that a final disposal system in hard bedrock would probably perform adequately in the short term but there can be no certain knowledge of risks in the long term. Confidence or lack of confidence in the safety of the project appeared as the most important factor causing social impacts. As a summary of the results, it can be concluded that especially (1) familiarity of the risk and (2) the possibility that taking risks are advantageous to oneself increase the acceptability of the risk. These are also the factors which distinguish the municipalities with nuclear power plants (Loviisa and Eurajoki) from the other two municipalities. The fair allocation of risks as well as the division of

  12. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  13. Final disposal of spent nuclear fuel in the Finnish bedrock. Technical research and development in the period 1993-1996; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Tekniikkatutkimukset vuosina 1993-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Planning activity relating to the disposal of spent fuel from the Teollisuuden Voima Oy (TVO) and Imatran Voima Oy (IVO) nuclear power plants in Finland is targeted at selection of the site for final disposal in the year 2000, with final disposal actually beginning in 2020. The report describes the research and development work carried out in the years 1993-1996, the current revised concept for final disposal technology and the research and development programme for the period 1997-2000. (refs.).

  14. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    Directory of Open Access Journals (Sweden)

    Andrade C.

    2011-04-01

    Full Text Available The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW, which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  15. Fusion option to dispose of spent nuclear fuel and transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    2000-02-10

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k{sub eff} of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's.

  16. Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

    1996-05-01

    This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event (<10{sup 20} fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10{sup 20} fissions, the number of fissions equals about 10{sup 28}, which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada.

  17. Consideration of critically when directly disposing highly enriched spent nuclear fuel in unsaturated tuff: Bounding estimates

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.; Tierney, M.S.; Sanchez, L.C.; Martell, M.-A.

    1996-05-01

    This report presents one of 2 approaches (bounding calculations) which were used in a 1994 study to examine the possibility of a criticality in a repository. Bounding probabilities, although rough, point to the difficulty of creating conditions under which a critical mass could be assembled (container corrosion, separation of neutron absorbers from fissile material, collapse or precipitation of fissile material) and how significant the geochemical and hydrologic phenomena are. The study could not conceive of a mechanism consistent with conditions under which an atomic explosion could occur. Should a criticality occur in or near a container in the future, boundary consequence calculations showed that fissions from one critical event (<10{sup 20} fissions, if similar to aqueous and metal accidents and experiments) are quite small compared to the amount of fissions represented by the spent fuel itself. If it is assumed that the containers necessary to hold the highly enriched spent fuel went critical once per day for 1 million years, creating an energy release of about 10{sup 20} fissions, the number of fissions equals about 10{sup 28}, which corresponds to only 1% of the fission inventory in a repository containing 70,000 metric tons of heavy metal, the expected size for the proposed repository at Yucca Mountain, Nevada.

  18. Non-fuel assembly components: 10 CFR 61.55 classification for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, R.J.; Reid, B.D.; Fadeff, S.K.; Pauley, K.A.; Jenquin, U.P.

    1994-09-01

    This document reports the results of laboratory radionuclide measurements on a representative group of non-fuel assembly (NFA) components for the purposes of waste classification. This document also provides a methodology to estimate the radionuclide inventory of NFA components, including those located outside the fueled region of a nuclear reactor. These radionuclide estimates can then be used to determine the waste classification of NFA components for which there are no physical measurements. Previously, few radionuclide inventory measurements had been performed on NFA components. For this project, recommended scaling factors were selected for the ORIGEN2 computer code that result in conservative estimates of radionuclide concentrations in NFA components. These scaling factors were based upon experimental data obtained from the following NFA components: (1) a pressurized water reactor (PWR) burnable poison rod assembly, (2) a PVM rod cluster control assembly, and (3) a boiling water reactor cruciform control rod blade. As a whole, these components were found to be within Class C limits. Laboratory radionuclide measurements for these components are provided in detail.

  19. Review of geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Marsic, Nico; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden)

    2013-09-15

    In this report a compilation of recent geoscientific data of relevance to disposal of spent nuclear fuel in deep boreholes in Sweden is presented. The goal of the study has been limited to identifying and briefly describing such geoscientific information of relevance to disposal in deep boreholes that was not available at the time when previous compilations were made. Hence, the study is not to be regarded as a general up-date of new geoscientific information. Disposal of spent nuclear fuel in deep boreholes has been studied in Sweden since the second half of the 1980s. The currently studied concept has been proposed by Sandia National Laboratories in the USA. In this concept the spent fuel elements are encapsulated in cylindrical steel canisters that are joined together in strings of 40 canisters and lowered into five kilometres deep boreholes. Ten such strings are stacked between three and five kilometres depth separated from each other by concrete plugs. The study started with a review of boreholes that have been reported after the previous reviews that were published in 1998 and 2004. A total of 12 boreholes of potential relevance were identified. Further study showed that only four out of these holes penetrated into crystalline rock. Two of these were deemed to be less relevant because they were drilled in areas with much higher geothermal gradient than in the parts of the Fennoscandian shield that realistically could host a Swedish deep borehole repository. Of the two remaining boreholes, only one, a geoscientific hole drilled at Outokumpu in Finland, is associated with a reasonably complete geoscientific data set. It is worth mentioning that a large part of this hole is drilled through meta sedimentary rock (mica schist) rather than granitic rock. The information collected and reviewed has been gathered under the headings hydraulic conditions, geothermal conditions, hydrogeochemical conditions, bacteriological activity and rock mechanical properties. Only

  20. Disposal of spent fuel in Olkiluoto bedrock. Programme for research, development and technical design for the pre-construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The spent fuel from the nuclear power plants at Olkiluoto and Loviisa will be disposed of in Finnish bedrock. Posiva aims at starting the construction of the disposal facility in the 2010's and the actual disposal operations in 2020. In May 1999 Posiva submitted an application for the so-called Decision-in-Principle (DiP) on the facility to the Finnish Government. According to the application the repository would be based on a KBS-3 type concept and sited at Olkiluoto. The application was approved by the Government in December 2000 and will go next to the Parliament for final approval. However, Posiva has already started the planning for the next programme phase on the assumption that a positive decision will be made. The purpose of the present document is to describe the objectives and major items of research, development, technical planning and design work for the period preceding the construction license. According to the current official guidelines Posiva should prepare for submitting the application for the license in 2010. For the technical development and design work the main target for the starting programme phase is to reach the maturity of design and technical plans that allows the specification of work packages for bid calls and gives sufficient confidence in the technical feasibility of planned operations at the encapsulation facility and in the repository. The main objectives for the complementary characterisation work at Olkiluoto consist of the verification of the present conclusions on site suitability, the definition and identification of suitable rock volumes for repository space and the characterisation of the target host rock for repository design, safety assessment and planning of construction work. The technical design and demonstration work together with the results of complementary site characterisation will provide the basis of the safety case prepared as the support for the construction license application. An integrated safety

  1. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were

  2. The effects of the final disposal facility for spent nuclear fuel on regional economy; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen aluetaloudelliset vaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, S. [Seppo Laakso Urban Research (Finland)

    1999-03-01

    The study deals with the economic effects of the final disposal facility for spent nuclear fuel on the alternative location municipalities - Eurajoki, Kuhmo, Loviisa and Aeaenekoski - and their neighbouring areas (in Finland). The economic influence of the facility on industrials, employment, population, property markets, community structure and local public economics are analysed applying the approach of regional economics. The evaluation of the facility`s effects on employment is based on the input-output analysis. Both the direct and indirect effects of the construction and the functioning of the facility are taken into account in the analysis. According to the results the total increase in employment caused by the construction of the facility is about 350 persons annually, at national level. Some 150 persons of this are estimated to live in the wider region and 100-150 persons in the facility`s influence area consisting of the location municipality and neighbouring municipalities. This amount is reached at the top stage of construction (around the year 2018). At the production stage - after the year 2020 - the facility`s effects on employment will be concentrated significantly more on the location municipality and the rest of the influence area than on the rest of the country, compared with the construction stage. The estimated employment growth in the production stage is approximately 160 persons at national level of which 100-120 persons live in the candidate municipality and in the rest of the influence area. There is a direct link between local employment and population development. The growth of jobs attracts immigrants affecting the development of both the number and the structure of population. The facility`s effects on population development in the alternative location municipalities are analysed using comparative population forecasts based on demographic population projection methods. According to the results the job growth caused by the facility will

  3. The development of rock suitability classification strategies in the Finnish spent nuclear fuel disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Hellae, Pirjo; Hagros, Annika [Saanio and Riekkola Oy (Finland); Aaltonen, Ismo; Kosunen, Paula; Mattila, Jussi [Posiva Oy (Finland)

    2015-07-01

    This paper describes the development of the rock suitability classification strategies applied to locate the spent fuel repository in crystalline rock in Finland. Development of the classification procedure is motivated not only by the regulatory requirements, but also by the need to more closely integrate site characterization, repository design and long-term safety assessment. The classification procedure has been developed along with the increasing level of detail of the available site data and knowledge on the performance of the engineered barrier system (EBS). The classification system has also been adapted to the changes in the regulations. The present form of the classification system and experiences from testing the system at the site are described. Demonstration activities have shown that the criteria and the stepwise research, construction and decision making protocol can be applied successfully.

  4. A paper-based microbial fuel cell: instant battery for disposable diagnostic devices.

    Science.gov (United States)

    Fraiwan, Arwa; Mukherjee, Sayantika; Sundermier, Steven; Lee, Hyung-Sool; Choi, Seokheun

    2013-11-15

    We present a microfabricated paper-based microbial fuel cell (MFC) generating a maximum power of 5.5 μW/cm(2). The MFC features (1) a paper-based proton exchange membrane by infiltrating sulfonated sodium polystyrene sulfonate and (2) micro-fabricated paper chambers by patterning hydrophobic barriers of photoresist. Once inoculum and catholyte were added to the MFC, a current of 74 μA was generated immediately. This paper-based MFC has the advantages of ease of use, low production cost, and high portability. The voltage produced was increased by 1.9 × when two MFC devices were stacked in series, while operating lifetime was significantly enhanced in parallel.

  5. Performance evaluation testing of wells in the gradient control system at a federally operated Confined Disposal Facility using single well aquifer tests, East Chicago, Indiana

    Science.gov (United States)

    Lampe, David C.; Unthank, Michael D.

    2016-12-08

    The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity

  6. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H

    1997-12-01

    The siting, design, construction, operation, decommissioning, and closure of a geological facility for the disposal of nuclear fuel waste is a complex undertaking that will span many decades. Both technical and social issues must be taken into account simultaneously and many factors must be considered. Based on studies carried out in Canada and elsewhere, it appears that these factors can be accommodated and that geological disposal is both technically and socially feasible. But throughout the different stages of implementing disposal, technical and social issues will continue to arise and these will have to be dealt with successfully if progress is to continue. This paper discusses these issues and a proposed approach for dealing with them. (author)

  7. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  8. Deep disposal of spent fuel in Sweden is becoming a reality; Le stockage profond du combustible use en Suede est en vue de se realiser

    Energy Technology Data Exchange (ETDEWEB)

    Laarouchi Engstrom, S. [SKB, organisme en charge de la gestion des dechets radioactifs, Departement evaluation de l' impact environnemental et des affaires publiques, Stockholm (Sweden)

    2011-02-15

    Toward the end of the seventies, the first steps were taken in a process which has now, thirty years later, resulted in a comprehensive proposal regarding final disposal solutions for Sweden's used nuclear fuel. In March next year, Svensk Karnbranslehantering, SKB, will submit an official application for a permit to build Sweden's nuclear fuel repository in Forsmark, north of Stockholm. The road to defining the nuclear waste programme has been long and much can be learned from Sweden's experience. The design of the container will allow the nuclear fuel to be isolated from the geological surrounding for at least 100.000 years. Over the years, there has been a great deal of debate regarding the technological, geological and long-term safety aspects. Nonetheless, the process has also demonstrated that gaining the confidence of local communities is equally important in order to achieve results. (author)

  9. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  10. Posiva's application for a decision in principle concerning a disposal facility for spent nuclear fuel. STUK's statement and preliminary safety appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Ruokola, E. [ed.

    2000-03-01

    In May 1999, Posiva Ltd submitted to the Government an application, pursuant to the Nuclear Energy Act, for a Decision in Principle on a disposal facility for spent nuclear fuel from the Finnish nuclear power plants. The Ministry of Trade and Industry requested the Radiation and Nuclear Safety Authority (STUK) to draw up a preliminary safety appraisal concerning the proposed disposal facility. In the beginning of this report, STUK's statement to the Ministry and Industry concerning the proposed disposal facility is given. In that statement, STUK concludes that the Decision in Principle is currently justified from the standpoint of safety. The statement is followed by a safety appraisal, where STUK deems, how the proposed disposal concept, site and facility comply with the safety requirements included in the Government's Decision (478/1999). STUK's preliminary safety appraisal was supported by contributions from a number of outside experts. A collective opinion by an international group of ten distinguished experts is appended to this report. (orig.)

  11. Effects of fuel structure on emissions and stability in the well-stirred reactor

    Science.gov (United States)

    Blust, James W.

    The design and development of low-emissions aero and industrial gas turbine combustors is challenging because it entails satisfying emissions regulations without conflicting with performance improvements. Efforts to reduce emissions have typically ignored the variability in emissions that can result from change in fuel type. Consequently, it is desirable to investigate fuel effects on emissions and performance characteristics of the combustor under realistic operating conditions. The well stirred reactor (WSR) is a laboratory combustor with two uses: (a) it provides a laboratory idealization of a highly mixed gas turbine combustor; (b) it emulates the perfectly stirred reactor condition for use in measuring kinetics parameters and data to compare to kinetics models of gas turbine fuels. The WSR was used to study lean blow-out limits and emissions from a variety of fuels. In particular, effects of residence time and flame temperature on lean blow-out limits, NOsbx, CO, and unburned hydrocarbon (UHC) emissions were measured from normal and cyclic alkanes, aromatics and hydrocarbon mixes. It was found that CO and UHC emissions increase with increasing carbon number of the fuel, with methane being an exception. NOsbx emissions increase with increasing carbon to hydrogen ratio of the fuel. Results showed that hydrocarbon structure plays a significant role in determining lean blow-out limits, combustion efficiency, and pollutant emissions. From this study, the global activation energies of methane and ethane were measured during lean combustion. Also, empirical formulae to predict NOsbx formation and minimal production of CO as a function of fuel characteristics are given. Emissions data from the WSR were compared to simulations by detailed kinetic modeling of the combustion of methane, ethane, n-heptane, toluene, ethylbenzene, Jet A and cracked fuel simulant. Computations are generally in excellent qualitative agreement with experimental observation for all fuels

  12. Water-quality characteristics and trends for selected wells possibly influenced by wastewater disposal at the Idaho National Laboratory, Idaho, 1981-2012

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Fisher, Jason C.; Maimer, Neil V.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, analyzed water-quality data collected from 64 aquifer wells and 35 perched groundwater wells at the Idaho National Laboratory (INL) from 1981 through 2012. The wells selected for the study were wells that possibly were affected by wastewater disposal at the INL. The data analyzed included tritium, strontium-90, major cations, anions, nutrients, trace elements, total organic carbon, and volatile organic compounds. The analyses were performed to examine water-quality trends that might influence future management decisions about the number of wells to sample at the INL and the type of constituents to monitor.

  13. Burnt bone assemblages from El Esquilleu cave (Cantabria, Northern Spain): deliberate use for fuel or systematic disposal of organic waste?

    Science.gov (United States)

    Yravedra, J.; Uzquiano, P.

    2013-05-01

    Bones or fossil fuels associated with combustion structures have been widely discussed in several works related to Neanderthal lifestyles and subsistence patterns during the MIS 3. El Esquilleu cave (western Cantabria, Spain) can significantly contribute to this issue, particularly with the taphonomic study of layers 21 and 23, which are characterized by the presence of hearths containing abundant burnt and charred faunal remains of ibex. The fragmentation and burning rates as well as bone presence within hearths may suggest that they were used as a supplementary fuel resource. Following previous research on the suitability of bones as a supplement to firewood in hearth combustions, a series of experiments are here presented using goat bones, in consistency with the faunal record present at El Esquilleu. Our experiments proved that small-sized animal (Neanderthal groups at El Esquilleu or whether their combustion resulted from other behavioural practises. In this sense, we compare our results with different proxy data from this site as well as with the palaeoenvironmental information available for the MIS 3 chronological period in Western Europe.

  14. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  15. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    Science.gov (United States)

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  16. Leaching of spent fuel in simulated disposal condition and separation of plutonium species as a function of oxidation state

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Chun, Kwan Sik; Kang, Chul Hyung

    2000-11-01

    The influences of compacted bentonite on the leaching of spent fuel in bentonite-saturated ground water at room temperature were investigated by analyzing the components of leachates as well as the alterated surface of them. And the plutonium species was separated by ion exchangers. The amounts of Cs, Sb, Sr, Am, Ru, Pu and U released from spent fuel by bentonite-saturated solution for the initial 165 days were 2.0, 0.2, 0.2, 0.02, 0.005, 5x10{sup -}4, 0.05 % of inventory, respectively. These values correspond to several {approx} several tens times as much as those through bentonite block which were compacted to 1.4 g/cm{sup 3}. The comparison of the cesium released in groundwater and bentonite-saturated solution through bentonite block is simular values, whose lower concentration in leachant indicates that most of radionuclides are retained by compacted bentonite, even though alkali metal such as Cs. The separation of plutonium species as a function of oxidation state by ion exchanger was succeed by two columns' method with packing materials as SiO{sup -}, SiO-SO{sub 3}{sup -}.

  17. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  18. LOAD-CHECK, program supported optimization of the fuel element disposal in cask CASTOR {sup registered} V casks; LOAD-CHECK, programmunterstuetzte Optimierung der Brennelemententsorgung in CASTOR {sup registered} V-Behaeltern

    Energy Technology Data Exchange (ETDEWEB)

    Amian, D.; Braun, A. [WTI Wissenschaftlich-Technische Ingenieurberatung GmbH, Juelich (Germany); Graf, R.; Hoffmann, V. [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2010-05-15

    LOAD-CHECK is an interactive program module for the systematic and strategic spent fuel disposal planning. Using physical fuel element data the loading scenarios for the routine operation and the post-closure operation phase can be simulated for free selectable time periods. The basis for the loading license application are the available spent fuel casks according to the regulations of the interim storage facility. LOAD-CHECK allows the optimization of the loading campaigns with respect to the time schedule and the number of casks including the planning of optimized disposal of special spent fuel (MOX fuel elements or high-burnup fuel elements). Possibilities for a reduced post-closure operating phase of nuclear power plants might be the consequence.

  19. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 1: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.Z.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  20. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 2: Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  1. Comparison between the KBS-3 method and the deep borehole for final disposal of spent nuclear fuel; Jaemfoerelse mellan KBS-3-metoden och deponering i djupa borrhaal foer slutligt omhaendertagande av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Grundfelt, Bertil (Kemakta Konsult AB (Sweden))

    2010-09-15

    In this report a comparison is made between disposal of spent nuclear fuel according to the KBS-3 method with disposal in very deep boreholes. The objective has been to make a broad comparison between the two methods, and by doing so to pinpoint factors that distinguish them from each other. The ambition has been to make an as fair comparison as possible despite that the quality of the data of relevance is very different between the methods

  2. On the Impact of the Fuel Dissolution Rate Upon Near-Field Releases From Nuclear Waste Disposal

    Directory of Open Access Journals (Sweden)

    A Pereira

    2016-09-01

    Full Text Available Calculations of the impact of the dissolution of spent nuclear fuel on the release from a damaged canister in a KBS-3 repository are presented. The dissolution of the fuel matrix is a complex process and the dissolution rate is known to be one of the most important parameters in performance assessment models of the near-field of a geological repository. A variability study has been made to estimate the uncertainties associated with the process of fuel dissolution. The model considered in this work is a 3D model of a KBS-3 copper canister. The nuclide used in the calculations is Cs-135. Our results confirm that the fuel degradation rate is an important parameter, however there are considerable uncertainties associated with the data and the conceptual models. Consequently, in the interests of safety one should reduce, as far as possible, the uncertainties coupled to fuel degradation.

  3. Vision and framework for technical and management support to facilitate foreign spent fuel storage and geologic disposal in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, W G; Jardine, L J; Smith, C F

    1999-07-01

    This ''Technical and Management Support'' program would facilitate the transfer of spent fuel from commercial power plants in Taiwan to a storage and geologic repository site near Krasnoyarsk, Russia. This program resolves issues of disposition of Taiwan spent fuel (including US origin fuel) and provides revenue for Russia to develop an integrated spent fuel storage and radioactive waste management system including a geologic repository. LLNL has ongoing contracts and collaborations with all the principal parties and is uniquely positioned to facilitate the development of such a program. A three-phase approach over 20 years is proposed: namely, an initial feasibility investigation followed by an engineering development phase, and then implementation.

  4. Specific outcomes of the research on the spent fuel long-term evolution in interim dry storage and deep geological disposal

    Science.gov (United States)

    Ferry, C.; Poinssot, C.; Cappelaere, C.; Desgranges, L.; Jegou, C.; Miserque, F.; Piron, J. P.; Roudil, D.; Gras, J. M.

    2006-06-01

    This paper presents an overview of the main results of the French research on the long-term evolution of spent fuel. The behavior of the spent fuel rods in the various conditions likely to be encountered during dry storage and deep geological disposal, i.e., in a closed system, in air and in water were investigated. It appears that in a closed system the effects of helium production on the mechanical stability of grain boundaries remain the major unanswered question. In air, microscopic characterization of the UO2 oxidation leads to introduce a new phase in the classical oxidation scheme. The limiting step assumption on which the oxidation kinetics are based is only partially valid. In water, the effect of the alpha radiolysis which accelerates UO2 dissolution was demonstrated for anoxic conditions. However this effect could be counteracted by the environmental conditions, such as the presence of H2 produced by the container corrosion. The effects of the environmental parameters on the fuel matrix dissolution still need to be assessed.

  5. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 4. Alternatives for waste isolation and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume IV of the five-volume report contains information on alternatives for final storage and disposal of radioactive wastes. Section titles include: basic concepts for geologic isolation; geologic storage alternatives; geologic disposal alternatives; extraterrestrial disposal; and, transmutation. (JGB)

  6. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  7. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality.

  8. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Paikkakohtaisen turvallisuusanalyysin edellytykset ja mahdollisuudet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.).

  9. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  10. Comparison of Coal-Based Dimethyl Ether and Diesel as Vehicle Fuels from Well to Wheel in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liang; HUANG Zhen

    2009-01-01

    With life cycle assessment (LCA) methodology, a life cycle model of coal-based vehicle fuels (CBVFs) including coal-based dimethyl ether (CBDME) and coal-based diesel (CBD) is established. Their primary energy consumption (PEC) and global warming potential (GWP) from well to wheel including feedstock extraction, fuel production, fuel consumption in vehicle and energy transportation are calculated and compared. Results show that the life cycle PEC and GWP of CBD pathway are 1.17 and 1.34 times as CBDME pathway. Based on the above results, CBDME will become a choice with great potential to replace conventional petroleum-based diesel (CPBD) in China.

  11. Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    P. D. Wheatley (INEEL POC); R. P. Rechard (SNL)

    1998-09-01

    The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

  12. A detailed analysis of micro-seismicity induced by a high-rate wastewater disposal well in the Val d'Agri oilfield (Italy)

    Science.gov (United States)

    Improta, L.; Valoroso, L.; Piccinini, D.; Buttinelli, M.; Chiarabba, C.

    2015-12-01

    The Val d'Agri basin in the Apennines extensional belt hosts the largest oilfield in onshore Europe. High-quality recordings from a temporary dense network unravel a swarm of 111 small-magnitude events (ML ≤ 1.8) occurred in June 2006 during the first stage of wastewater injection into a high-rate well. 3D absolute locations and high-precision relative locations define a high-angle fault located 1 km below the well inside fractured and saturated carbonates where wastewater is re-injected. Seismicity begins 3 hours after the initiation of injection. The seismicity rate strictly correlates with injection curves and temporal variations of elastic and anisotropic parameters. Seismicity is induced by rapid communication of pore pressure perturbations along a high permeability fault-zone favorably oriented with respect to the extensional stress field. The spatiotemporal distribution of events agrees with an isotropic hydraulic diffusivity of 0.8 m2/s, which corresponds to high permeability values on the order of 10-13 m2/s. Such high permeability values are coherent with hydraulic well-tests in the very productive hydrocarbon reservoir and with the presence of a widespread system of open and conductive fractures in the carbonates that strike NW-SE parallel to the maximum horizontal stress of the extensional stress regime. Over the following 8 years, 235 events (ML ≤ 2.2) were recorded within 5 km of the disposal well by permanent stations of the local operator network and of Istituto Nazionale di Geofisica e Vulcanologia. Accurate 3D locations concentrate on the fault and unravel that after June 2006 micro-seismicity migrated upwards and downwards along the fault measuring 5-km along dip. Subsurface data show that the fault is a pre-existing blind back-thrust of an inherited fold-thrust system developed in the carbonate reservoir during Pliocene-Early Pleistocene. The seismicity rate correlates with short-term increases in injection pressure of the disposal well.

  13. Coal from the waste disposal site of the Siersza mine (Trzebinia, Poland and its properties as a possible alternative fuel

    Directory of Open Access Journals (Sweden)

    Kosa Beata

    2016-01-01

    Full Text Available The authors recovered bituminous coal from the dump of the closed down Siersza mine in Trzebinia, determined its properties and evaluated a possibility of applying it as an alternative fuel for the cement industry. The dump material was enriched in a laboratory using the gravity (jigs, shaking tables and flotation methods of coal cleaning. The gross calorific value of the processing products, measured with a calorimetric bomb, ranges from 13.588 to 22.543 MJ·kg−1. The contents of heavy metals, determined with XRF, are as follows: Fe 3.76–5.25 mg·kg−1, Mn 0.037–0.132 mg·kg−1, Ti 0.325–0.493 mg·kg−1 and Zn 0.113–0.329 mg·kg−1, while of Hg (determined with ASA from 0.02689 to 0.21870 mg·kg−1. The content of sulphur is 0.7349–1.0484 wt.% and of chlorine Cl 0.131–0.135 wt.%, the net calorific value of 13.446–22.538 MJ·kg−1. The results indicate that the laboratory jigging and flotation provide products that meet the parameters of the solid fuels selected by applicable to the needs of cement plants.

  14. Deep boreholes. An alternative for final disposal of spent nuclear fuel? Report from KASAM's question-and-answer session on 14-15 March 2007

    Energy Technology Data Exchange (ETDEWEB)

    2009-03-15

    On 14-15 March 2007, KASAM held a hearing for the purpose of thoroughly examining deep boreholes as a method for the final disposal of spent nuclear fuel. Some of the questions that were raised were: What are the technical, geological and hydrological premises and possibilities? What are the risks from different viewpoints and what values underlie different views of the potential and suitability of deep boreholes? This report is a summary of the seminar. KASAM has made a selection of contributions and questions from the debate that took place on the basis of their relevance to the purpose of the seminar. The report generally follows the chronological lecture-and debate format of the seminar, but has been edited according to different issues rather than according to when different persons spoke. Chapter 2 describes a number of premises and criteria in the Environmental Code's and the Nuclear Activities Act's requirements on alternatives reporting. The chapter also contains a description of what the deep borehole concept entails and a discussion of the geoscientific premises. In addition, the chapter describes how different values can influence the choice of final disposal method. Chapters 3-6 describe and discuss technology and long-term safety, the viewpoints of the supervisory authorities on deep boreholes and safety philosophy via lectures followed by questions by KASAM's questioners and the audience. On the evening of 14 March, representatives of the seven parliamentary parties discussed their preparations and standpoints for an upcoming national debate on the final disposal of nuclear waste. This discussion is also reproduced in the report as Chapter 7. The main points from a concluding panel debate and discussion are presented in Chapter 8. In conclusion, Chapter 9 contains some reflections on various arguments proffered during the question-and-answer session, questions on which agreement seems to exist, and where there are differences of

  15. Safety case for the disposal of spent nuclear fuel at Olkiluoto. Surface and near-surface hydrological modelling in the biosphere assessment BSA-2012

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-05-15

    The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. This study is part of the biosphere assessment (BSA-2012) within the safety case for the repository. The surface hydrological modelling described in this report is aimed at providing link between radionuclide transport in the geosphere and in the biosphere systems. The SVAT-model and Olkiluoto site scale surface hydrological model were calibrated and validated in the present day conditions using the input data provided by the Olkiluoto Monitoring Programme (OMO). During the next 10 000 years the terrain and ecosystem development is to a large extent driven by the postglacial crustal uplift. UNTAMO is a GIS toolbox developed for simulating land-uplift driven or other changes in the biosphere. All the spatial and temporal input data (excluding meteorological data) needed in the surface hydrological modelling were provided by the UNTAMO toolbox. The specific outputs given by UNTAMO toolbox are time-dependent evolution of the biosphere objects. They are continuous and sufficiently homogeneous sub-areas of the modelled area that could potentially receive radionuclides released from the repository. Possible ecosystem types for biosphere objects are coast, lake, river, forest, cropland, pasture and wetland. The primary goal of this study was to compute vertical and horizontal water fluxes in the biosphere objects. These data will be used in the biosphere radionuclide transport calculations. The method adopted here is based on calculating average vertical and horizontal fluxes for biosphere objects from the results of the full 3D-model. It was not necessary to develop any simplified hydrological model for the biosphere objects. This report includes modelling results from for the Reference Case (present day climate) and Terr{sub M}axAgri Case (maximum extent of agricultural areas

  16. Disposable Diapers Are OK.

    Science.gov (United States)

    Poore, Patricia

    1992-01-01

    A personal account of measuring the pros and cons of disposable diaper usage leads the author to differentiate between a garbage problem and environmental problem. Concludes the disposable diaper issue is a political and economic issue with a local environmental impact and well within our abilities to manage. (MCO)

  17. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.W. (ed.)

    1982-06-01

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

  18. Final disposal of spent fuel in the Finnish bedrock. Detailed site investigations 1993-1996; Kaeytetyn polttoaineen loppusijoitus Suomen kallioperaeaen. Yksityiskohtaiset sijoituspaikkatutkimukset 1993-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    Posiva Oy, jointly owned company of Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (TVO), studies the Finnish bedrock for the final disposal of the spent nuclear fuel. The study is in accordance with the decision in principle by Finnish government in 1983 and aims at site selection. The report is the summary of the first stage of the detailed site investigations carried out during the years 1993-1996. The three sites in question, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki were selected for the detailed characterization on the basis of the preliminary site investigations at five areas. The interim reporting in 1996 is comprehensive and comprises a series of reports covering different disciplines and sites. The programme for 1993-1996 was divided into three sub-programs: (1) the baseline investigations describing the present conditions in the bedrock, (2) the additional characterization for the acquisition of complementary data, and (3) the investigations for testing the earlier results and hypotheses to build confidence in existing understanding. (refs.).

  19. Assessment of a spent fuel disposal canister. Assessment studies for a copper canister with cast steel inner component

    Energy Technology Data Exchange (ETDEWEB)

    Bond, A.E.; Hoch, A.R.; Jones, G.D.; Tomczyk, A.J.; Wiggin, R.M.; Worraker, W.J. [AEA Technology, Harwell (United Kingdom)

    1997-05-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden, is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in vertical storage holes drilled in a series of caverns excavated from the granite bedrock at a depth of about 500 m. Each canister will be surrounded by compacted bentonite clay. In this report, a simple model of the behaviour of the canister subsequent to a first breach in its copper overpack is developed. This model is used to predict: -the ingress of water to the canister (as a function of the size and the shape of the initial defect, the buffer conductivity, the corrosion rate and the pressure inside the canister); -the build-up of corrosion products in the canister (as a function of the available water in the canister, the corrosion rate and the properties of the corrosion products); -the effect of corrosion on the structural integrity of the canister. A number of different scenarios for the location of the breach in the copper overpack are considered.

  20. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Norman [General Moters Corporation, Flint, MI (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Weber, Trudy [General Moters Corporation, Flint, MI (United States); Darlington, Thomas [Air Improvement Resource, Inc., Novi, MI (United States)

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  1. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  2. Well-to-wheel analysis of renewable transport fuels: synthetic natural gas from wood gasification and hydrogen from concentrated solar energy[Dissertation 17437

    Energy Technology Data Exchange (ETDEWEB)

    Felder, R.

    2007-07-01

    In order to deal with problems such as climate change, an increasing energy demand and the finiteness of fossil resources, alternative CO{sub 2}-low technologies have to be found for a sustainable growing future. Laboratories at PSI are conducting research on two pathways delivering such car fuels: synthetic natural gas from wood gasification (SNG) and hydrogen from solar thermochemical ZnO dissociation (STD). The biofuel SNG is produced using wood in an auto-thermal gasification reactor. It can be supplied to the natural-gas grid and be used in a compressed natural gas (CNG) vehicle. STD is a long-term option, using concentrated solar radiation in a thermochemical reactor, producing zinc as solar energy carrier. Zinc can be used for hydrolysis, in order to produce hydrogen as a locally low-polluting future car fuel. In the frame of the thesis, both fuels are assessed using a life cycle assessment, i.e. investigating all environmental interactions from the extraction of resources over the processing and usage steps to the final disposal. Different methodologies are applied for a rating, compared to alternatives and standard fuels of today. In addition, costs of the technologies are calculated in order to assess economic competitiveness. The thesis is structured as follows: After an introduction giving an overview (chapter A), the methodology is presented (chapter B). It includes various life cycle impact assessment methods such as greenhouse gas emissions, the cumulative energy demand or comprehensive rating approaches. Calculations of the production and supply costs of the assessed fuels are included as well as the eco-efficiency, a combination of environmental with economic indicators. In addition, external costs caused by the emissions are quantified. Sensitivity studies investigate the importance of different parameters and substantiate conclusions. In chapter C, the production, supply and use of the assessed fuels is discussed, following the well

  3. Assessment of LWR spent fuel disposal options. Volume 3. Study bases and system design considerations (Appendices). Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Volume 3 (Appendices) provides a tabulation of the bases and assumptions used in the study as well as preconceptual design description and cost estimates of the facilities and transportation systems necessary to implement the various study cases.

  4. A comparative radiological assessment of five European biosphere systems in the context of potential contamination of well water from the hypothetical disposal of radioactive waste.

    Science.gov (United States)

    Olyslaegers, G; Zeevaert, T; Pinedo, P; Simon, I; Pröhl, G; Kowe, R; Chen, Q; Mobbs, S; Bergström, U; Hallberg, B; Katona, T; Eged, K; Kanyar, B

    2005-12-01

    In the framework of the BioMoSA project for the development of biosphere assessment models for radioactive waste disposal the Reference Biosphere Methodology developed in the IAEA programme BIOMASS was applied to five locations, situated in different European countries. Specific biosphere models were applied to assess the hypothetical contamination of a range of agricultural and environmental pathways and the dose to individuals, following contamination of well water. The results of these site-specific models developed by the different BioMoSA partners, and the individual normalised dose to the exposure groups were compared against each other. Ingestion of drinking water, fruit and vegetables were found to be among the most important pathways for almost all radionuclides. Stochastic calculations revealed that consumption habits, transfer factors, irrigation rates and distribution coefficients (Kd(s)) were the most important parameters that influence the end results. Variations in the confidence intervals were found to be higher for sorbing elements (e.g. (36)Cl, (237)Np, (99)Tc, (238)U, (129)I) than for mobile elements (e.g. (226)Ra, (79)Se, (135)Cs, (231)Pa, (239)Pu). The influence of daughter products, for which the distribution into the biosphere was calculated individually, was also shown to be important. This paper gives a brief overview of the deterministic and stochastic modelling results and the parameter sensitivity. A screening methodology was introduced to identify the most important pathways, simplify a generic biosphere tool and refine the existing models.

  5. Total versus urban: Well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems

    Science.gov (United States)

    Huo, Hong; Wu, Ye; Wang, Michael

    The potential impact on the environment of alternative vehicle/fuel systems needs to be evaluated, especially with respect to human health effects resulting from air pollution. We used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to examine the well-to-wheels (WTW) emissions of five criteria pollutants (VOCs, NO x, PM 10, PM 2.5, and CO) for nine vehicle/fuel systems: (1) conventional gasoline vehicles; (2) conventional diesel vehicles; (3) ethanol (E85) flexible-fuel vehicles (FFVs) fueled with corn-based ethanol; (4) E85 FFVs fueled with switchgrass-based ethanol; (5) gasoline hybrid vehicles (HEVs); (6) diesel HEVs; (7) electric vehicles (EVs) charged using the average U.S. generation mix; (8) EVs charged using the California generation mix; and (9) hydrogen fuel cell vehicles (FCVs). Pollutant emissions were separated into total and urban emissions to differentiate the locations of emissions, and emissions were presented by sources. The results show that WTW emissions of the vehicle/fuel systems differ significantly, in terms of not only the amounts but also with respect to locations and sources, both of which are important in evaluating alternative vehicle/fuel systems. E85 FFVs increase total emissions but reduce urban emissions by up to 30% because the majority of emissions are released from farming equipment, fertilizer manufacture, and ethanol plants, all of which are located in rural areas. HEVs reduce both total and urban emissions because of the improved fuel economy and lower emissions. While EVs significantly reduce total emissions of VOCs and CO by more than 90%, they increase total emissions of PM 10 and PM 2.5 by 35-325%. However, EVs can reduce urban PM emissions by more than 40%. FCVs reduce VOCs, CO, and NO x emissions, but they increase both total and urban PM emissions because of the high process emissions that occur during hydrogen production. This study emphasizes the importance of specifying a

  6. Measuring of Traction and Speed Characteristics as Well as of Fuel Economy of a Car in Road Conditions

    Science.gov (United States)

    Krivtsov, Sergey N.; Syrbakov, Andrey P.; Korchuganova, Marina A.

    2016-08-01

    This article is devoted to the identification of traction and speed characteristics as well as of fuel economy of motor vehicles in road conditions. Among common variants of measuring of the above stated values, the preference was given to the immediate gaining of factors by means of a computer-aided measuring system. There is a theoretical justification given to the suggested approach as well as methods and results allowing to provide a practically sufficient solution accuracy of the problem.

  7. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  8. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal

    Science.gov (United States)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  9. Albitization and quartz dissolution in Paleoproterozoic metagranite, central Sweden — Implications for the disposal of spent nuclear fuel in a deep geological repository

    Science.gov (United States)

    Petersson, Jesper; Stephens, Michael B.; Mattsson, Håkan; Möller, Charlotte

    2012-09-01

    Hydrothermal alteration resulting in albitization and quartz dissolution has been identified in Paleoproterozoic metagranites down to - 1000 m elevation at Forsmark, Sweden. The alteration features were discovered during investigations to locate a site for the disposal of spent nuclear fuel in a deep geological repository. In general, albitization occurs extensively, but it is also observed locally adjacent to minor intrusive bodies of amphibolite. The altered rocks show a marked decrease in K-feldspar and an increase in quartz relative to the unaltered equivalents, resulting in an epitonalitic composition. Plagioclase is metamorphic in character and generally richer in albite than in the unaltered rocks. It is inferred that albitization was triggered by the input of basic or intermediate melts into the crust during igneous activity close to the peak of regional metamorphism at 1.87-1.86 Ga. The mineralogy of the epitonalites gives rise to an increased thermal conductivity and, thereby, a positive influence for the design and safety of a deep geological repository for spent nuclear fuel. However, the increased frequency of low conductive amphibolite in the albitized volumes, consistent with the proposed mechanism for alteration, gives a negative influence. In sharp contrast to the albitization, a majority of the occurrences of quartz dissolution, which resulted in the formation of episyenite, are located along fracture zones. Quartz dissolution took place between or after 1.8-1.7 Ga, when the bedrock was able to respond to deformation in a brittle manner. Most of the vugs left after the removal of quartz are, to a variable extent, refilled by hydrothermal assemblages, including quartz, albite, K-feldspar, hematite, chlorite and calcite. The geometry and spatial distribution of episyenite argue against an extreme fluid/rock ratio and it is inferred that the fluids had at least a moderate salinity with a temperature in excess of 300 °C. The dissolution process was

  10. A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal.

    Science.gov (United States)

    Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker

    2015-11-01

    Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to

  11. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando [Politecnico di Milano, Department of Energy, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2009-01-15

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal

  12. Applications of polymer coatings for the fabrication of copper-based containers for the ultimate disposal of Canada's spent nuclear fuel

    Science.gov (United States)

    Mortley, Aba

    Oxygen-free, phosphorous doped copper containers have been proposed for the storage of the used nuclear fuel bundles as a part of Canada's multi-barrier, adaptive phased management procedure for long term storage of spent nuclear fuel bundles. The spent nuclear fuel disposal system proposed for Canada has been engineered based on the multi-barrier approach intended to minimize the risk that the radioactive materials enter the biosphere. Copper is known to be susceptible to corrosion and it is thought that the simultaneous exposure to aggressive ionizing radiation field and residual heat produced by the spent nuclear fuel and the surrounding groundwater would all challenge the container's integrity. The goal of the present work is to reduce the impact of corrosion in the early stages of emplacement with the addition of a protective coating. Specifically, castor oil based polyurethanes were assessed as coatings and their ability to act as an additional physical barrier in the multi-barrier system mentioned previously. The novelty of this work stems from the use of a naturally derived non-petroleum based material in the form of castor oil as the polyol component. Two types of castor oil polyurethanes were investigated, one based on an aliphatic hexamethylene diisocyanate (HMDI), and the other based on an aromatic 2,4-toluene diisocyanate (TDI). Radiation and saturation tests were conducted using varying conditions. Mixed field ionizing radiation was provided by a SLOWPOKE-2 pool-type nuclear research reactor, up to accumulated doses of 6 MGy at dose rates of 37 kGy h-1 and 55.5 kGy h-1. Weight gain immersion studies, at temperatures of 25° C, 50° C, 70° C, were used to determine the mass uptake of several different solutions. The solutions utilized in the present work included hydrochloric acids of varying pHs, distilled water, and buffered solutions, which simulated chloride and sulphide rich calcium-sodium bicarbonate waters. After being exposed to radiation and

  13. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass

  14. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  15. Disposable rabbit

    Science.gov (United States)

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  16. Disposal rabbit

    Science.gov (United States)

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  17. International Atomic Energy Agency's advisory group meeting on safeguards related to the final disposal of waste and spent fuel, Vienna, Austria, September 12-16, 1988: Foreign trip report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, B.W.

    1988-10-01

    B.W. Moran traveled to Vienna, Austria, during the period of September 12--16, 1988, to serve as the technical advisor to the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) representatives to the International Atomic Energy Agency's Advisory Group Meeting on ''Safeguards Related to the Final Disposal of Nuclear Material in Waste and Spent Fuel.'' The goal of the US representatives to this meeting was to ensure that the advisory group's recommendations established (1) an effective IAEA safeguards approach for all radioactive waste and spent fuel management facilities and (2) a safeguards approach that is appropriate for the US Federal Waste Management System. The principal concerns of the United States on entering the advisory group meeting were: criteria for the termination of safeguards on waste should not be established, but should be referred for further study, safeguards on spent fuel should not be terminated, and safeguards studies are required before IAEA safeguards approaches for spent fuel are established. The US representatives generally recommended that consultant meetings be convened to address the technical issues after the requisite safeguards related research and development tasks have been performed. These objectives of the US representatives were achieved, and the recommendations of the advisory group generally coincided with and extended the recommendations presented in the US position paper.

  18. International Atomic Energy Agency's advisory group meeting on safeguards related to the final disposal of waste and spent fuel, Vienna, Austria, September 12-16, 1988: Foreign trip report

    Energy Technology Data Exchange (ETDEWEB)

    Moran, B.W.

    1988-10-01

    B.W. Moran traveled to Vienna, Austria, during the period of September 12--16, 1988, to serve as the technical advisor to the US Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) representatives to the International Atomic Energy Agency's Advisory Group Meeting on ''Safeguards Related to the Final Disposal of Nuclear Material in Waste and Spent Fuel.'' The goal of the US representatives to this meeting was to ensure that the advisory group's recommendations established (1) an effective IAEA safeguards approach for all radioactive waste and spent fuel management facilities and (2) a safeguards approach that is appropriate for the US Federal Waste Management System. The principal concerns of the United States on entering the advisory group meeting were: criteria for the termination of safeguards on waste should not be established, but should be referred for further study, safeguards on spent fuel should not be terminated, and safeguards studies are required before IAEA safeguards approaches for spent fuel are established. The US representatives generally recommended that consultant meetings be convened to address the technical issues after the requisite safeguards related research and development tasks have been performed. These objectives of the US representatives were achieved, and the recommendations of the advisory group generally coincided with and extended the recommendations presented in the US position paper.

  19. International Collaboration Activities in Different Geologic Disposal Environments

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  20. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  1. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  2. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  3. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  4. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  5. Radioactive waste disposal fees-Methodology for calculation

    Science.gov (United States)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  6. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.

    Science.gov (United States)

    Cai, Hao; Brandt, Adam R; Yeh, Sonia; Englander, Jacob G; Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael Q

    2015-07-07

    Greenhouse gas (GHG) regulations affecting U.S. transportation fuels require holistic examination of the life-cycle emissions of U.S. petroleum feedstocks. With an expanded system boundary that included land disturbance-induced GHG emissions, we estimated well-to-wheels (WTW) GHG emissions of U.S. production of gasoline and diesel sourced from Canadian oil sands. Our analysis was based on detailed characterization of the energy intensities of 27 oil sands projects, representing industrial practices and technological advances since 2008. Four major oil sands production pathways were examined, including bitumen and synthetic crude oil (SCO) from both surface mining and in situ projects. Pathway-average GHG emissions from oil sands extraction, separation, and upgrading ranged from ∼6.1 to ∼27.3 g CO2 equivalents per megajoule (in lower heating value, CO2e/MJ). This range can be compared to ∼4.4 g CO2e/MJ for U.S. conventional crude oil recovery. Depending on the extraction technology and product type output of oil sands projects, the WTW GHG emissions for gasoline and diesel produced from bitumen and SCO in U.S. refineries were in the range of 100-115 and 99-117 g CO2e/MJ, respectively, representing, on average, about 18% and 21% higher emissions than those derived from U.S. conventional crudes. WTW GHG emissions of gasoline and diesel derived from diluted bitumen ranged from 97 to 103 and 96 to 104 g CO2e/MJ, respectively, showing the effect of diluent use on fuel emissions.

  7. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  8. Reduction of motor fuel consumption - Which recipes does the state have at its disposal?; Absenkung des Treibstoffverbrauchs: Welche Rezepte hat der Staat?

    Energy Technology Data Exchange (ETDEWEB)

    Volken, T.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Thomas Volken from the Energy Policy Section of the Swiss Federal Office of Energy SFOE takes a look at how motor-fuel consumption can be reduced. First of all, the present situation with regard to heating oil and motor fuels is examined and the gap between actual CO{sub 2} emissions from motor fuels and the target aimed for is discussed. Various legal and economical measures available are examined as are the promotion of technical innovation and motivational measures. The federal energy efficiency action plan and bonus/malus schemes are discussed and the environment label for cars is examined. Further, the situation in the European Union is discussed.

  9. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

  10. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  11. Depleted uranium disposal options evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  12. TECHNOLOGICAL WASTE DISPOSAL BY SUBSURFACE INJECTION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Janković Branimir

    2002-12-01

    Full Text Available The application of oilfield and solution mining technology to subsurface disposal of technological wastes has proven to be an environmentally, technically and economically suitable method for the disposal of the waste generated in petroleum industry as well as other industrial branches. This paper describes the subsurface injection technology, the disposal formation characteristics, the waste disposal well design, evaluates the environmental impact of above mentioned technology and proposes a solutions for disposing of technological wastes in Croatia or nerby region by implementing underground injection technology according to the world experience (the paper is published in Croatian.

  13. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  14. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    Science.gov (United States)

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm(-3), a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol(-1), and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m(-2) was generated. The MFC ran continuously up to 120 days without maintenance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cavern/Vault Disposal Concepts and Thermal Calculations for Direct Disposal of 37-PWR Size DPCs

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Clayton, Daniel James [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report provides two sets of calculations not presented in previous reports on the technical feasibility of spent nuclear fuel (SNF) disposal directly in dual-purpose canisters (DPCs): 1) thermal calculations for reference disposal concepts using larger 37-PWR size DPC-based waste packages, and 2) analysis and thermal calculations for underground vault-type storage and eventual disposal of DPCs. The reader is referred to the earlier reports (Hardin et al. 2011, 2012, 2013; Hardin and Voegele 2013) for contextual information on DPC direct disposal alternatives.

  16. The Influence of Drainage Wells Barrier on Reducing the Amount of Major Contaminants Migrating from a Very Large Mine Tailings Disposal Site

    Directory of Open Access Journals (Sweden)

    Duda Robert

    2014-12-01

    its foreground. The efficiency of groundwater protection was determined on the basis of a new approach. In applied method the loads of characteristic and commonly recognizable compounds, i.e. salt (NaCl and gypsum (CaSO4 were calculated, instead their chemical components. The temporal and spatial variability of captured main contaminants loads as well as its causes are discussed. The paper ends with the results of efficiency analyses of the barrier and with respect to the predicted increase in contaminant concentrations in the pulp poured out to the tailings site.

  17. Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.R.

    1979-05-01

    The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents are weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.

  18. Fuel injection and mixing systems and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  19. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  20. 2005 dossier: granite. Tome: architecture and management of the geologic disposal; Dossier 2005: granite. Tome architecture et gestion du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  1. Disposal frequencies of selected recyclable wastes in Dar es Salaam.

    Science.gov (United States)

    Mgaya, Prosper; Nondek, Lubomir

    2004-01-01

    A statistical survey of households based upon questionnaires distributed via primary schools has been carried out in five wards of Dar es Salaam, Tanzania, to estimate disposal frequencies (number of items disposed per week) for newsprint, metal cans, glass and plastic containers and plastic shopping bags. Plastic shopping bags are disposed most frequently while glass containers are disposed least frequently. The statistical distribution of disposal frequencies, which seems to be influenced by household income, is well described by Poisson distribution. Disposal frequencies are mutually correlated at 95% level of probability despite the differences in disposal patterns of individual households.

  2. Recycling as an option of used nuclear fuel management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Zagar, Tomaz, E-mail: tomaz.zagar@gen-energija.s [GEN energija, d.o.o., Cesta 4. julija 42, 8270 Krsko (Slovenia); Institute Jozef Stefan, Jamova 39, 1000 Ljubljana (Slovenia); Bursic, Ales; Spiler, Joze [GEN energija, d.o.o., Cesta 4. julija 42, 8270 Krsko (Slovenia); Kim, Dana; Chiguer, Mustapha; David, Gilles; Gillet, Philippe [AREVA, 33 rue La Fayette, 75009 Paris (France)

    2011-04-15

    The paper presents recycling as an option of used nuclear fuel management strategy with specific focus on the Slovenia. GEN energija is an independent supplier of integral and competitive electricity for Slovenia. In response to growing energy needs, GEN has conducted several feasibility and installation studies of a new nuclear power plant in Slovenia. With sustainable development, the environment, and public acceptance in mind, GEN conducted a study with AREVA concerning the options for the management of its' new plant's used nuclear fuel. After a brief reminder of global political and economic context, solutions for used nuclear fuel management using current technologies are presented in the study as well as an economic assessment of a closed nuclear fuel cycle. The paper evaluates and proposes practical solutions for mid-term issues on used nuclear fuel management strategies. Different scenarios for used nuclear fuel management are presented, where used nuclear fuel recycling (as MOX, for mixed oxide fuel, and ERU, for enriched reprocessed uranium) are considered. The study concludes that closing the nuclear fuel cycle will allow Slovenia to have a supplementary fuel supply for its new reactor via recycling, while reducing the radiotoxicity, thermal output, and volume of its wastes for final disposal, reducing uncertainties, gaining public acceptance, and allowing time for capitalization on investments for final disposal.

  3. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gomberg, Steve [USDOE, Washington, DC (United States)

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.

  4. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  5. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  6. Bio-MTBE. How to reduce CO{sub 2} footprint in fuels with a well known premium gasoline component

    Energy Technology Data Exchange (ETDEWEB)

    Busch, O.; Schade, A.; Rasch, H.; Schulte-Koerne, E. [Evonik Industries AG, Marl (Germany)

    2012-07-01

    With the revision of Renewable Energy Directive (RED) and Fuels Quality Directive (FQD) in 2009 the EU Commission promoted the use of biofuels, especially of those made from residues and waste because of their favourable CO{sub 2} footprint. Crude glycerol is an inevitable residue of conventional biodiesel production and can therefore be used to make 2{sup nd} generation biofuels, in this case bio-methanol. Methanol itself has several application issues as a fuel and can only be blended into gasoline at low quantities (max. 3 vol.-% according to European gasoline specification EN 228). However, today methanol is virtually absent in European gasoline due to its detrimental properties (e.g. corrosivity, water miscibility, etc.). In contrast to this, MTBE (methyl tertiary butyl ether) made from methanol and isobutylene is a high value gasoline component that can be blended into gasoline at high quantities without any application issues. Current European gasoline specification allows up to 15 vol.-%% and the revised FQD has enabled the specification to be expanded to up to 22 vol.-% MTBE in gasoline. Thus, bio-methanol converted into bio-MTBE is an appropriate pathway to get a 2{sup nd} generation biofuel into the blending pool with perfect compatibility with infrastructure and the existing car fleet. (orig.)

  7. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  8. Composite nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dollard, W.J.; Ferrari, H.M.

    1982-04-27

    An open lattice elongated nuclear fuel assembly including small diameter fuel rods disposed in an array spaced a selected distance above an array of larger diameter fuel rods for use in a nuclear reactor having liquid coolant flowing in an upward direction. Plenums are preferably provided in the upper portion of the upper smaller diameter fuel rods and in the lower portion of the lower larger diameter fuel rods. Lattice grid structures provide lateral support for the fuel rods and preferably the lowest grid about the upper rods is directly and rigidly affixed to the highest grid about the lower rods.

  9. Used fuel disposition in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.

  10. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. (1)H- and (31)P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  11. NSNFP Activities in Support of Repository Licensing for Disposal of DOE SNF

    Energy Technology Data Exchange (ETDEWEB)

    Henry H. Loo; Brett W.. Carlsen; Sheryl L. Morton; Larry L. Taylor; Gregg W. Wachs

    2004-09-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management is in the process of preparing the Yucca Mountain license application for submission to the Nuclear Regulatory Commission as the nation’s first geologic repository for spent nuclear fuel (SNF) and high-level waste. Because the DOE SNF will be part of the license application, there are various components of the license application that will require information relative to the DOE SNF. The National Spent Nuclear Fuel Program (NSNFP) is the organization that directs the research, development, and testing of treatment, shipment, and disposal technologies for all DOE SNF. This report documents the work activities conducted by the NSNFP and discusses the relationship between these NSNFP technical activities and the license application. A number of the NSNFP activities were performed to provide risk insights and understanding of DOE SNF disposal as well as to prepare for anticipated questions from the regulatory agency.

  12. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  13. Argillite And Crystalline Disposal Research: Accomplishments And Path-Forward.

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Kevin A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jove-Colon, Carlos F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    The intention of this document is to provide a path-forward for research and development (R&D) for two host rock media-specific (argillite and crystalline) disposal research work packages within the Used Fuel Disposition Campaign (UFDC). The two work packages, Argillite Disposal R&D and Crystalline Disposal R&D, support the achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program. These two work packages cover many of the fundamental technical issues that will have multiple implications to other disposal research work packages by bridging knowledge gaps to support the development of the safety case. The path-forward begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-levelradioactive- waste). The path-forward will be maintained as a living document and will be updated as needed in response to available funding and the progress of multiple R&D tasks in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program. This path forward is developed based on the report of “Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED- 2011-000065 REV0)” (DOE, 2011). This document delineates the goals and objectives of the UFDC R&D program, needs for generic disposal concept design, and summarizes the prioritization of R&D issues.

  14. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  15. Further Considerations for Development of the Comprehensive Fuel Services

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghoon; Ryu, Jaesoo; Jun, Eunju; Lee, Hanmyung; Lee, Kwangseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The front-end fuel cycle services are reliably provided by commercial suppliers, and some multilateral approaches related on front-end fuel cycle including fuel bank are implemented as well. However in case of the back-end fuel cycle services, reprocessing services are provided by limited number of companies and disposal services are not currently provided in commercial market. In addition, multilateral fuel cycle mechanisms focused on the back-end fuel cycle are not being actively discussed. Recently, multilateral mechanism related to the back-end fuel cycle, called 'Comprehensive Fuel Service (CFS)' was suggested by United States in the International Framework for Nuclear Energy Cooperation (IFNEC). This study provides an overview of the CFS, opportunities and challenges for its implementation. It also provides considerations to encourage development of the multilateral and commercial-based CFS for the back-end fuel cycle. CFS suggested by U. S in IFNEC is commercially-based new nuclear fuel management system and expected to provide an economic alternative to development of long-term storage and disposal facilities and sensitive nuclear facilities. However, the CFS approach is faced with several challenges such as the development of multinational disposal facility. Above all, confidence building among the IFNEC member states based on common understanding is crucial to overcome these challenges. To achieve this, international communities should continually cooperate with stakeholders and discuss the consideration that suggested by this study. And we need to monitor progress of CFS concept that remains under development, and to prepare for multilateral discussion on CFS.

  16. AFCI Storage & Disposal FY-06 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, W G; Wigeland, R; Dixon, B

    2006-09-27

    AFCI Storage and Disposal participants at LLNL, ANL and INL provide assessment of how AFCI technology can optimize the future evolution of the fuel cycle, including optimization of waste management. Evaluation of material storage and repository disposal technical issues provides feedback on criteria and metrics for AFCI, and evaluation of AFCI waste streams provides technical alternatives for future repository optimization. LLNL coordinates this effort that includes repository analysis at ANL and incorporation of repository impacts into AFCI criteria at INL. Cooperative evaluation with YMP staff is pursued to provide a mutually agreed technical base. Cooperation with select international programs is supported.

  17. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  18. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    Science.gov (United States)

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  19. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    Science.gov (United States)

    Sapcariu, Sean C; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the

  20. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel.

    Directory of Open Access Journals (Sweden)

    Sean C Sapcariu

    Full Text Available Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO and diesel fuel (DF, two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase, or the gas phase only (with particles filtered out. Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular

  1. Effective Disposal of Fuel Cell Polyurethane Foam

    Science.gov (United States)

    1987-01-01

    lost 1.11, 61.1% and 90.31 of its weight upon tesperature increases to 500, 780 and ll’,0 deqrees Farenheit respectively. The Igniton tact indicater...Ml) (-Ib) ’- ( 451 -•,6)(100(0g) 15. .00857L ( min-lbs ) - (grains)(ft 3)(60 min)( lbs (hr-grains) (f-tJY (MZn() (7000 -grains) 16. .000132 (lb-min

  2. 14 CFR 25.343 - Design fuel and oil loads.

    Science.gov (United States)

    2010-01-01

    ... Design fuel and oil loads. (a) The disposable load combinations must include each fuel and oil load in the range from zero fuel and oil to the selected maximum fuel and oil load. A structural reserve fuel... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Design fuel and oil loads. 25.343...

  3. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  4. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 2. Engineering technology for geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the deep geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, part 2 of the progress report, concerns engineering aspect with reference to Japanese geological disposal plan, according to which the vitrified HLW will be disposed of into a deep, stable rock mass with thick containers and surrounding buffer materials at the depth of several hundred meters. It discusses on multi-barrier systems consisting of a series of engineered and natural barriers that will isolate radioactive nuclides effectively and retard their migrations to the biosphere environment. Performance of repository components, including specifications of containers for vitrified HLW and their overpacks under design as well as buffer material such as Japanese bentonite to be placed in between are described referring also to such possible problems as corrosion arising from the supposed system. It also presents plans and designs for underground disposal facilities, and the presumed management of the underground facilities. (Ohno, S.)

  5. Generic Crystalline Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott Leroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harp, Dylan Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-20

    A generic reference case for disposal of spent nuclear fuel and high-level radioactive waste in crystalline rock is outlined. The generic cases are intended to support development of disposal system modeling capability by establishing relevant baseline conditions and parameters. Establishment of a generic reference case requires that the emplacement concept, waste inventory, waste form, waste package, backfill/buffer properties, EBS failure scenarios, host rock properties, and biosphere be specified. The focus in this report is on those elements that are unique to crystalline disposal, especially the geosphere representation. Three emplacement concepts are suggested for further analyses: a waste packages containing 4 PWR assemblies emplaced in boreholes in the floors of tunnels (KBS-3 concept), a 12-assembly waste package emplaced in tunnels, and a 32-assembly dual purpose canister emplaced in tunnels. In addition, three failure scenarios were suggested for future use: a nominal scenario involving corrosion of the waste package in the tunnel emplacement concepts, a manufacturing defect scenario applicable to the KBS-3 concept, and a disruptive glaciation scenario applicable to both emplacement concepts. The computational approaches required to analyze EBS failure and transport processes in a crystalline rock repository are similar to those of argillite/shale, with the most significant difference being that the EBS in a crystalline rock repository will likely experience highly heterogeneous flow rates, which should be represented in the model. The computational approaches required to analyze radionuclide transport in the natural system are very different because of the highly channelized nature of fracture flow. Computational workflows tailored to crystalline rock based on discrete transport pathways extracted from discrete fracture network models are recommended.

  6. Disposal of medical waste: a legal perspective.

    Science.gov (United States)

    Du Toit, Karen; Bodenstein, Johannes

    2013-09-03

    The Constitution of the Republic of South Africa provides that everyone has the right to an environment that is not harmful to their health and well-being. The illegal dumping of hazardous waste poses a danger to the environment when pollutants migrate into water sources and ultimately cause widespread infection or toxicity, endangering the health of humans who might become exposed to infection and toxins. To give effect to the Constitution, the safe disposal of hazardous waste is governed by legislation in South Africa. Reports of the illegal disposal of waste suggest a general lack of awareness and training in regard to the safe disposal of medical waste. 

  7. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...... as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...... of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode....

  8. Conceptual design requirements for Korean Reference HLW disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Son; Lee, Jong Youl; Kim, Kyung Soo; Kim, Sung Ki; Cho, Dong Keun; Lee, Yang

    2005-05-15

    This report outlined the requirements for the conceptual design of KRS(Korean Reference HLW disposal System). The site for the disposal of high-level radioactive wastes has not yet been selected in Korea. Since the KRS should be designed under these circumstances, the necessary requirements which should be determined are studied in the report. The amounts of spent fuels from the nuclear power plants in the long-term national power development plan are projected. With this estimation the disposal rates of CANDU and PWR spent fuels are analyzed and determined. The national and international regulations regarding the disposal of HLW are summarized. The functions of the underground facilities are defined. The representative geological conditions are determined since no site is yet decided in Korea.

  9. '05 Safety Case in a Potential HLW Disposal in ROK for Better Communication among Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Y.S. [Korea Atomic Energy Research Inst., Daejeon (Korea)

    2006-09-15

    The national effort to secure a site to dispose of LLW In Korea has been successfully completed when Gyeongjoo was finally selected through its local referendum on Nov 2 in 2005. The focus has been shifted to the future of spent nuclear fuels generated by 20 reactors in four nuclear complexes. Korea has a solid plan to raise its nuclear share, with 28 reactors in operation, in the electricity generation to 46.7% by 2017.The total amount of spent nuclear fuel from these reactors will be 36,000 MT. To dispose of 36,000 MT, at least a four square kilometer underground layer is required. The characteristics of Korean disposal conditions are rather unique. Korea has a mixture of CANDU and PWR whose inventories and decay heats are quits different. The spent nuclear fuel is assumed to be emplaced into stainless steel containers filled with cast iron. Calcium bentonite is used as a buffer material between a waste container and a surrounding rock. Radionuclides passing through barriers will eventually reach the biosphere. Two pathways are identified as major ones; one following the stream of ground and surface waters to the ground surface, a river and a marine environment, the other intersecting a small well whose extracted water is consumed by local residents. To safely dispose of spent nuclear fuels KAERI has developed the Korean Reference Disposal System (KRS). To assess the long term post closure radiological safety, KAERI has developed the following products: (1) The KAERI FEP Encyclopedia; (2) Reference and alternative scenarios in association with the corresponding rock engineering system matrices, assessment method context and flow charts; (3) Assessment codes MASCOT-K and MDPSA; (4) PAID, the input datahabe for total system performance assessment; (5) Safety assessment on two reference and other selected scenarios; (6) Korean biosphere modeling. and (7) Quality assurance systems in association with the CYPRUS, the cyber RandD platform system; and (8) The flow

  10. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  11. Macstor dry spent fuel storage system

    Energy Technology Data Exchange (ETDEWEB)

    Pare, F. E. [Atomic Energy of Canada Limited, Montreal (Canada)

    1996-04-15

    AECL, a Canadian Grown Corporation established since 1952, is unique among the world's nuclear organizations. It is both supplier of research reactors and heavy water moderated CANDU power reactors as well as operator of extensive nuclear research facilities. As part of its mandate, AECL has developed products and conceptual designs for the short, intermediate and long term storage and disposal of spent nuclear fuel. AECL has also assumed leadership in the area of dry storage of spent fuel. This Canadian Crown Corporation first started to look into dry storage for the management of its spent nuclear fuel in the early 1970's. After developing silo-like structures called concrete canisters for the storage of its research reactor enriched uranium fuel, AECL went on to perfect that technology for spent CANDU natural uranium fuel. In 1989 AECL teamed up with Trans nuclear, Inc.,(TN), a US based member of the international Trans nuclear Group, to extend its dry storage technology to LWR spent fuel. This association combines AECL's expertise and many years experience in the design of spent fuel storage facilities with TN's proven capabilities of processing, transportation, storage and handling of LWR spent fuel. From the early AECL-designed unventilated concrete canisters to the advanced MACSTOR concept - Modular Air-Cooled Canister Storage - now available also for LWR fuel - dry storage is proving to be safe, economical, practical and, most of all, well accepted by the general public. AECL's experience with different fuels and circumstances has been conclusive.

  12. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  13. Impact of eccentricity build-up and graveyard disposal Strategies on MEO navigation constellations

    Science.gov (United States)

    Radtke, Jonas; Domínguez-González, Raúl; Flegel, Sven K.; Sánchez-Ortiz, Noelia; Merz, Klaus

    2015-12-01

    With currently two constellations being in or close to the build-up phase, in a few years the Medium Earth Orbit (MEO) region will be populated with four complete navigation systems in relatively close orbital altitudes: The American GPS, Russian GLONASS, European Galileo, and Chinese BeiDou. To guarantee an appropriate visibility of constellation satellites from Earth, these constellations rely on certain defined orbits. For this, both the repeat pattern, which is basically defined by the semimajor axis and inclination, as well as the orbital planes, which are defined by the right ascension of ascending node, are determining values. To avoid an overcrowding of the region of interest, the disposal of satellites after their end-of-life is recommended. However, for the MEO region, no internationally agreed mitigation guidelines exist. Because of their distances to Earth, ordinary disposal manoeuvres leading to a direct or delayed re-entry due to atmospheric drag are not feasible: The needed fuel masses for such manoeuvres are by far above the reasonable limits and available fuel budgets. Thus, additional approaches have to be applied. For this, in general two options exist: disposal to graveyard orbits or the disposal to eccentricity build-up orbits. In the study performed, the key criterion for the graveyard strategy is that the disposed spacecraft must keep a safe minimum distance to the altitude of the active constellation on a long-term time scale of up to 200 years. This constraint imposes stringent requirements on the stability of the graveyard orbit. Similar disposals are also performed for high LEO satellites and disposed GEO payloads. The eccentricity build-up strategy on the other hand uses resonant effects between the Earth's geopotential, the Sun and the Moon. Depending on the initial conditions, these can cause a large eccentricity build-up, which finally can lead to a re-entry of the satellite. In this paper, the effects of applying either the first or

  14. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  15. Solid Oxide Fuel Cell Modeling at the Cell Scale - Focusing on Species, Heat, Charge and Momentum Transport as well as the Reaction Kinetics and Effects

    OpenAIRE

    Andersson, Martin

    2011-01-01

    Fuel cells are electrochemical devices that directly transform chemical energy into electricity. They are promising for future energy systems, since they are energy efficient, able to use renewable fuels and, when hydrogen is used as fuel, there are no direct emissions of greenhouse gases. Various improvements are made during the recent years, however the technology is still in the early phases of commercialisation. Fully coupled computational fluid dynamics (CFD) approaches based on t...

  16. The Economy-wide Impact of Fuel Oil, Gas and Electricity Pricing and Subsidy Policies as well as Their Consumption Improvement Efficiency in Indonesia

    OpenAIRE

    Djoni Hartono; Budy P. Resosudarmo

    2006-01-01

    In Indonesia, the government determines the domestic prices of energy; namely fuel oil, such as gasoline, automotive diesel oil (ADO) and kerosene, gas and electricity. In response to the weakening of rupiah during the 1997/1998 economic crisis and the increasing of the world price of crude oil, the government tends to increase the energy subsidy on domestic prices of fuel oil, gas and electricity, rather than letting these domestic prices follows the world prices of fuel oil, gas and electri...

  17. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel; Evaluacion de los costos del reciclado como una forma de disposicion del combustible nuclear gastado

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2006-07-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  18. Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area.

    Science.gov (United States)

    Kovacs, Helga; Szemmelveisz, Katalin; Palotas, Arpad Bence

    2013-11-01

    Biomass, as a renewable energy source, is an excellent alternative for the partial replacement of fossil fuels in thermal and electric energy production. A new fuel type as biomass for energy utilisation includes ligneous plants with considerable heavy metal content. The combustion process must be controlled during the firing of significant quantities of contaminated biomass grown on brownfield lands. By implementing these measures, air pollution and further soil contamination caused by the disposal of the solid burning residue, the ash, can be prevented. For the test samples from ligneous plants grown on heavy metal-contaminated fields, an ore mine (already closed for 25 years) was chosen. With our focus on the determination of the heavy metal content, we have examined the composition of the soil, the biomass and the combustion by-products (ash, fly ash). Our results confirm that ash resulting from the combustion must be treated as toxic waste and its deposition must take place on hazardous waste disposal sites. Biomass of these characteristics can be burnt in special combustion facility that was equipped with means for the disposal of solid burning residues as well as air pollutants.

  19. Disposal of radioactive waste

    Science.gov (United States)

    Van Dorp, Frits; Grogan, Helen; McCombie, Charles

    The aim of radioactive and non-radioactive waste management is to protect man and the environment from unacceptable risks. Protection criteria for both should therefore be based on similar considerations. From overall protection criteria, performance criteria for subsystems in waste management can be derived, for example for waste disposal. International developments in this field are summarized. A brief overview of radioactive waste sorts and disposal concepts is given. Currently being implemented are trench disposal and engineered near-surface facilities for low-level wastes. For low-and intermediate-level waste underground facilities are under construction. For high-level waste site selection and investigation is being carried out in several countries. In all countries with nuclear programmes, the predicted performance of waste disposal systems is being assessed in scenario and consequence analyses. The influences of variability and uncertainty of parameter values are increasingly being treated by probabilistic methods. Results of selected performance assessments show that radioactive waste disposal sites can be found and suitable repositories can be designed so that defined radioprotection limits are not exceeded.

  20. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  1. Uranium market as well as production and processing of reactor fuel, 1995/1996; Rynek uranu oraz produkcji i przerobu paliw reaktorowych, 1995/1996

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, W. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-12-01

    The worldwide uranium market has been analysed in period of 1995/1996. The uranium reserves, production of reactor fuel from natural ores and from fuel recycling have been presented.The worldwide price tendency have been discussed on that background. 3 refs, 1 fig., 3 tabs.

  2. Synthesis on the spent fuel long term evolution

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C.; Poinssot, Ch.; Lovera, P.; Poulesquen, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC), 91 - Gif sur Yvette (France); Broudic, V. [CEA Cadarache, Direction des Reacteurs Nucleaires (DRN), 13 - Saint Paul lez Durance (France); Cappelaere, Ch. [CEA Saclay, Dept. des Materiaux pour le Nucleaire(DMN), 91 - Gif-sur-Yvette (France); Desgranges, L. [CEA Cadarache, Direction des Reacteurs Nucleaires (DRN), 13 - Saint-Paul-lez-Durance (France); Garcia, Ph. [CEA Cadarache, Dept. d' Etudes des Combustibles (DEC), 13 - Saint Paul lez Durance (France); Jegou, Ch.; Roudil, D. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN), 30 - Marcoule (France); Lovera, P.; Poulesquen, A. [CEA Saclay, Dept. de Physico-Chimie (DPC), 91 - Gif sur Yvette (France); Marimbeau, P. [CEA Cadarache, Dir. de l' Energie Nucleaire (DEN), 13 - Saint-Paul-lez-Durance (France); Gras, J.M.; Bouffioux, P. [Electricite de France (EDF), 75 - Paris (France)

    2005-07-01

    The French research on spent fuel long term evolution has been performed by CEA (Commissariat a l'Energie Atomique) since 1999 in the PRECCI project with the support of EDF (Electricite de France). These studies focused on the spent fuel behaviour under various conditions encountered in dry storage or in deep geological disposal. Three main types of conditions were discerned: - The evolution in a closed system which corresponds to the normal scenario in storage and to the first confinement phase in disposal; - The evolution in air which corresponds to an incidental loss of confinement during storage or to a rupture of the canister before the site re-saturation in geological disposal; - The evolution in water which corresponds to the normal scenario after the breaching of the canister in repository conditions. This document produced in the frame of the PRECCI project is an overview of the state of knowledge in 2004 concerning the long-term behavior of spent fuel under these various conditions. The state of the art was derived from the results obtained under the PRECCI project as well as from a review of the literature and of data acquired under the European project on Spent Fuel Stability under Repository Conditions. The main results issued from the French research are underlined. (authors)

  3. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  4. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  5. Microbial issues pertaining to the canadian concept for the disposal of nuclear fuel waste. Questions a examiner quant aux microbes lors du developpement du concept canadien de stockage permanent des dechets de combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; West, J.M.

    1994-01-01

    This report formulates a number of views and positions on microbiological factors that could influence the performance of a disposal vault in plutonic rock. Microbiological factors discussed include the presence and survival of microbes, biofilms, corrosion, biodegradation (of emplaced materials), gas production, geochemical changes, radionuclide migration, colloid formation, mutation, pathogens and methylation. Not all issues can be fully resolved with the current state of knowledge. Studies being performed to underscore and strengthen current knowledge are briefly discussed.

  6. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  7. Well-to-wheels analysis of large-scale bus diesel fuels%大型客车柴油燃料生命周期分析

    Institute of Scientific and Technical Information of China (English)

    高有山; 李兴虎

    2009-01-01

    以实施第1及第2阶段限值后的大型客车为对象,对车用燃油从原油开采、运输、炼油WTT(Well-to-Tank)到车辆使用TTw(Tank-to-Wheel)等多个环节,即燃料生命周期WTW(Well-to-Wheel)内的能量消耗和温室气体排放进行了定量分析,WTT阶段的分析使用了有关统计数据,TTW阶段的分析采用了试验数据.结果表明:WTW阶段的能量消耗和温室气体分别是TTW阶段的1.151倍和1.153倍;WTT阶段各环节的能量消耗占总能量消耗的比例分别为6.7%,0.42%,6.1%,温室气体排放占总排放的比例分别为1.92%,1.42%,9.97%;大型客车第1阶段燃料消耗量限值的实施可降低12%的能量消耗和11.8%的温室气体排放;第2阶段燃料消耗量限值的实施可降低16.93%的能量消耗和17.67%的温室气体排放.%Well-to-wheel assessment was used to evaluate the energy utilization and greenhouse gas emissions from crude oil extraction, transport, refining, namely well-to-tank (WTT) , to vehicle operation, tank-to-wheel ( TTW) for large-scale bus conformed to first and second phase of the fuel consumption limits. Statistical data was analyzed in WTT, test data was analyzed in TTW. Results shows that the energy consumption and greenhouse gas emissions in WTW were respectively 1. 151 and 1. 153 times that in TTW. Energy consumption proportion of crude oil extraction, transport, refining was respectively 6. 7% , 0.42% and 6. 1%. Greenhouse gas emissions proportion of crude oil production, transport and refining was respectively 1.92% , 1.42% and 9. 97% . The first phase of the fuel consumption limits can reduce energy consumption and greenhouse gas emissions by 12% and 11.81% respectively; while the second phase can reduce energy consumption and greenhouse gas emissions by 16.91% and 17.67% respectively.

  8. Well-to-Wheels Greenhouse Gas Emission Analysis of High-Octane Fuels with Ethanol Blending: Phase II Analysis with Refinery Investment Options

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; DiVita, Vincent [Jacobs Consultancy Inc., Houston, TX (United States)

    2016-08-01

    Higher-octane gasoline can enable increases in an internal combustion engine’s energy efficiency and a vehicle’s fuel economy by allowing an increase in the engine compression ratio and/or by enabling downspeeding and downsizing. Producing high-octane fuel (HOF) with the current level of ethanol blending (E10) could increase the energy and greenhouse gas (GHG) emissions intensity of the fuel product from refinery operations. Alternatively, increasing the ethanol blending level in final gasoline products could be a promising solution to HOF production because of the high octane rating and potentially low blended Reid vapor pressure (RVP) of ethanol at 25% and higher of the ethanol blending level by volume. In our previous HOF well-to-wheels (WTW) report (the so-called phase I report of the HOF WTW analysis), we conducted WTW analysis of HOF with different ethanol blending levels (i.e., E10, E25, and E40) and a range of vehicle efficiency gains with detailed petroleum refinery linear programming (LP) modeling by Jacobs Consultancy and showed that the overall WTW GHG emission changes associated with HOFVs were dominated by the positive impact associated with vehicle efficiency gains and ethanol blending levels, while the refining operations to produce gasoline blendstock for oxygenate blending (BOB) for various HOF blend levels had a much smaller impact on WTW GHG emissions (Han et al. 2015). The scope of the previous phase I study, however, was limited to evaluating PADDs 2 and 3 operation changes with various HOF market share scenarios and ethanol blending levels. Also, the study used three typical configuration models of refineries (cracking, light coking, and heavy coking) in each PADD, which may not be representative of the aggregate response of all refineries in each PADD to various ethanol blending levels and HOF market scenarios. Lastly, the phase I study assumed no new refinery expansion in the existing refineries, which limited E10 HOF production to the

  9. Investigation of Performance Analysis and Emission Characteristics of Waste Plastic Fuel

    Science.gov (United States)

    Ruban, M.; Ramasubramanian, S.; Pugazhenthi, R.; Sivaganesan

    2017-03-01

    Today the world is confronted with the twin crisis of fossil fuel depletion and stringent emission norms, because of the environmental awareness. The disposal and degradation of waste plastic is a major issue and scarcities of fuel were major focus area of the researchers. In this virtue the waste plastic fuel extraction makes more attention to the researchers. In this research work focused to find the performance of the waste plastic fuel and compared to diesel. The waste plastic fuel extract from thermal cracking method this process the polymer chains were breakdown into useful lower molecular weight compounds and it becomes plastic pyrolysis it can be utilized as a fuel. The properties of the waste plastic fuel is obtained by various testing process and which is analyze and compare with the fossil fuel diesel. It is found that almost it has similar properties to the diesel and almost all properties of the pyrolysis is closer to that of diesel. The characteristics of the pyrolysis were tested in the engine test bed. The pyrolysis / waste plastic fuel can be directly used in diesel engines over the entire load spectrum smoothly without any major modification. The performance of the waste plastic fuel / pyrolysis is evidenced that it is one of the best alternative fuel as well as the waste plastic can be converted into a useful fuel

  10. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  11. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  12. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  13. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Pine Bluff Arsenal (PBA) in Arkansas. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the PBA and by recommending the scope and content of a more detailed site- specific study. This dependent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at PBA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources, and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 13 refs., 1 fig.

  14. A prospective fuel cycle for long lived radionuclide transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Shim, Joon Bo; Ahn, Byung Gil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-07-01

    This study is aimed at outlining a prospective fuel cycle applicable to the nuclear transmutation of long lived radionuclides. Recycling the uranium and plutonium of spent fuels by Purex reprocessing is known to be far from an economical way at present. In addition, it generates high-level rad waste containing long-lived radionuclides, which would be a great burden to the subsequent final disposal in terms of cost, safety, and risks of environmental impact. As an alternative way to overcome this problem while still recycling the valuable fissionable materials as energy resources, transmutation is being taken into account by scientists in many countries. The concept of P{center_dot}T cycle suggested in this study is based on the technological requirements in relation with the transmutation system, while lowering the burden of waste disposal as well as risks of nuclear proliferation. (author)

  15. LMFBR fuel assembly design for HCDA fuel dispersal

    Science.gov (United States)

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  16. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  17. Fracking, wastewater disposal, and earthquakes

    Science.gov (United States)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  18. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    Energy Technology Data Exchange (ETDEWEB)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  19. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  20. Locational conflict and the siting of nuclear waste disposal repositories: an international appraisal

    OpenAIRE

    F M Shelley; B D Solomon; M J Pasqualetti; G T Murauskas

    1988-01-01

    The industrialized nations of the world have begun to plan for the storage and eventual disposal of their increasing volumes of nuclear wastes. In this paper the authors inventory the progress made by these nations in planning for nuclear waste disposal. A typology based on the adoption of spent-fuel reprocessing programs and of progress toward selection of permanent disposal sites is developed, and the world's nuclear nations are located within this typology. However, those countries which h...

  1. Report on the Status of the UFD Campaign International Activities in Disposal Research at SNL.

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Kevin A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-25

    The following summaries are provided as fulfillment of milestone M4FT-15SN0811021 and represent international collaboration activities in disposal research funded by the US DOE Used Fuel Disposition (UFD) Campaign during Fiscal Year 2015.

  2. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  3. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fascitelli, D. G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-22

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  4. Final disposal of spent nuclear fuels - regulations and the roles of different stakeholders during the decision making process; Slutfoervaring av anvaent kaernbraensle. Regelsystem och olika aktoerers roller under beslutsprocessen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process.

  5. Diaper area and disposable diapers.

    Science.gov (United States)

    Erasala, G N; Romain, C; Merlay, I

    2011-01-01

    Since the 1960s, cloth diapers have been replaced by disposable diapers. The evolution of healthier skin in the diaper area has been demonstrated in parallel to that of disposable diapers. The improvements of disposable diapers--fit, dryness, comfort--have been based on the understanding of factors playing a role in the development of diaper dermatitis.

  6. Geological disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed. (AT)

  7. Impact assessment of the effect of natural values of interim storage, encapsulation and disposal of spent nuclear fuel in Oskarshamn. Laxemar; Konsekvensbedoemning av paaverkan paa naturvaerden vid mellanlagring, inkapsling och slutfoervaring av anvaent kaernbraensle i Oskarshamn. Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Magnus (Ekologigruppen AB, Stockholm (Sweden))

    2011-03-15

    The report describes the natural environment and its natural values in Laxemar Simpevarp, the final disposal facility's impacts on the natural environment and measures that can be taken to reduce these. Both terrestrial and aquatic environments are described. Impact on the natural environments of groundwater reduction is not discussed here but described in a separate report, together with consequences of radiation. The report shall serve as a basis for the Environmental Impact Assessment for the application according to the Environment Act.

  8. Confinement and migration of radionuclides in deep geological disposal; Confinement et migration des radionucleides en stockage geologique profond

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch

    2007-07-15

    Disposing high level nuclear waste in deep disposal repository requires to understand and to model the evolution of the different repository components as well as radionuclides migration on time-frame which are well beyond the time accessible to experiments. In particular, robust and predictive models are a key element to assess the long term safety and their reliability must rely on a accurate description of the actual processes. Within this framework, this report synthesizes the work performed by Ch. Poinssot and has been prepared for the defense of his HDR (French university degree to Manage Research). These works are focused on two main areas which are (i) the long term evolution of spent nuclear fuel and the development of radionuclide source terms models, and (ii) the migration of radionuclides in natural environment. (author)

  9. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  10. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  11. Development of a Computer Program (CAVE) for the Analysis of an Excavation Volume of a Underground Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, Jong Youl; Kim, Seong Ki; Cha, Jeong Hoon

    2007-07-15

    Regarding the cost estimation of the disposal of spent fuels, we have been asked to analyze the unit disposal cost for the scenarios related to the nuclear power generation. One of the important factors affecting the investment cost of the underground facility is the amount of the excavation volume. In this report we outlined the development on a computer program called CAVE (Calculation and Analysis of the Volume of Excavation in an underground disposal system). With the help of the CAVE program, it is thought that the systematic analysis of the investment cost could be performed. This program is developed based on the current conceptual design of the KRS. With the CAVE program, we can analyze the amount of buffer material as well as the excavation volume and the area of a disposal system. The CAVE program is composed of two parts, one for the calculation and another for the user interface such as input and output control. The calculation part is prepared by using MS EXCEL spread sheet and the user interface is developed by using Visual Basic language. By analyzing the key parameters influencing the excavation amount, the program is developed for the user to easily select the input parameters. We tested the program by using simple examples and introduced how to use the program. The illustration shows that the analysis of the excavation volume could be attained with ease. We have developed the CAVE version 1.0 so far, and will improve its functions the way it can calculate and analyze the excavation volumes of the various disposal systems such as a horizontal disposal system and a mixed disposal system. Also, we will incorporate it to the program which is used for the projection of spent fuels from the nuclear power plants. Finally, it is hoped that the CAVE program could be a part of the cost estimation tools which are under development at KAERI. Then, it is believed that the program will be a very useful tool for the analysis of the unit disposal cost in Korean

  12. Fully ceramic nuclear fuel and related methods

    Science.gov (United States)

    Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis

    2016-03-29

    Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.

  13. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  14. Water Activities in Laxemar Simpevarp. The final disposal facility for spent nuclear fuel - removal of groundwater and water activities above ground; Vattenverksamhet i Laxemar-Simpevarp. Slutfoervarsanlaeggning foer anvaent kaernbraensle - bortledande av grundvatten samt vattenverksamheter ovan mark

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    This report concerns water operations (Chapter 11 in the Environmental Code) below and above ground associated with construction, operation, and decommissioning of a repository for spent nuclear fuel in Laxemar in the municipality of Oskarshamn. SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository, and the report hence describes a non-chosen alternative. The report provides a comprehensive description of how the water operations would be executed, their hydrogeological and hydrological effects and the resulting consequences. The description is a background material for comparisons between the two sites in terms of water operations. The underground part of a repository in Laxemar would, among other things, consist of an access ramp and a repository area at a depth of approximately 500 metres. The construction, operation, and decommissioning phases would in total comprise a time period of 60-70 years. Inflowing groundwater would be diverted during construction and operation. The modelling tool MIKE SHE has been used to assess the effects of the groundwater diversion, for instance in terms of groundwater levels and stream discharges. According to MIKE SHE calculations for a hypothetical case with a fully open repository, the total groundwater inflow would be in the order of 55-90 litres per second depending on the permeability of the grouted zone around ramp, shafts and tunnels. In reality, the whole repository would not be open simultaneously, and the inflow would therefore be less. The groundwater diversion would cause groundwater- level drawdown in the rock, which in turn would lead to drawdown of the groundwater table in relatively large areas above and around the repository. According to model calculations, there would be an insignificant drawdown of the water level in Lake Frisksjoen, the largest lake in the area. The discharge in the most important stream of the area (Laxemaraan) would be reduced by less than ten percent

  15. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  16. Implementing geological disposal. A long-term governance challenge

    Energy Technology Data Exchange (ETDEWEB)

    Bergmans, Anne [Antwerp Univ. (Belgium). Faculty of Political and Social Sciences and Faculty of Law

    2015-07-01

    Calling geological disposal (GD) a technical and societal challenge and arguing that democratic decision-making on GD requires public and stakeholder engagement (PSE), are statements that will not meet much opposition. A process of 'governance' consists of engaging stakeholder groups in decision making processes and contrasts with more traditional, often technocratic forms of government. As will be argued in other papers in this conference (e.g. Grunwald; Kallenbach-Herbert et al.; Roehlig et al.) it is of fairly recent date, that concerned actors increasingly recognize that PSE should relate to both the societal and technical questions concerning GD. While most people would agree in theory, putting 'technical democracy' (Callon et al. 2001) in practice, often proofs to be less obvious. Opening up the technical 'black box' remains a crucial challenge in discussing the implications of GD for society and for the environment. As findings from the InSOTEC project show, this can be explained because different types of problematization occur, often considered as sequential, rather than intertwined (Barthe et al. 2014). Social problematization of GD, i.e. considering the remaining obstacles for implementation to be in essence social in nature, is often associated with the siting stage, when the technological project meets its social environment (ibidem). Formal participatory processes are often aimed mainly at dealing with socio-economic impacts and adapting life on the surface to the underground technology project, rather than the other way around (Bergmans et al. forthcoming). Still such interactions can, and have indeed proven to, lead to technical problematization, i.e. putting into question the technical project or certain aspects of it (cf. Barthe et al. 2014), by concerned stakeholders. As can be observed in the case of Sweden - for GD of spent fuel, and Belgium - for surface disposal of low- and intermediate level waste, this does not

  17. Evaluation of underground water contamination of tubular wells, by fuels oil in Santo Andre City, Sao Paulo state: a contribution to the environmental management; Avaliacao da contaminacao da agua subterranea de pocos tubulares, por combustiveis fosseis, no municipio de Santo Andre, Sao Paulo: uma contribuicao a gestao ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Mindrisz, Ana Copat

    2006-07-01

    The contamination of underground waters by hydrocarbons originated from gas stations has been object of increasing preoccupation in environmental organization all over the world. The organic compounds Benzene, Toluene, Ethylbenzene and Xylene (BTEX), present in these fuels, are extremely toxic to human health and could make impracticable the exploration of these contaminated waters by these kinds of pollutants and consequently the gasoline wells used for this purpose. In this work, it was carried out a diagnosis of the water quality with information and analyses, with the goals to snap shot the situation of the wells destined to domestic and commercial supply of water in the urban area of Santo Andre city, Sao Paulo state. There have been evaluated the presence of micron pollutants BTEX, after contamination due to leaks in fuel storage tanks close to the wells, in different places of the city. The physical chemistry parameters like color, turbidity and residual chlorine were also evaluated as well as trace elements, metals, anions like fluorine, sulphates, chlorine, nitrates and phosphates and bacteriological (total coliforms, thermo stable coliforms, heterotrophic bacteria). On definition of the sampling area, it was sought, at first, the evaluation of environmental contaminations historical series by gas stations, evaluating the set of information available at government environmental organizations and spatial representatively of the problem. For administration of the underground water quality it was adopted the methodology used by Companhia de Tecnologia de Saneamento Ambiental (CETESB), being accomplished a previous identification of contaminated potential areas and organizing a data base on landfills disposal and neglected places; registration of gas station services and, wells used by the population, industrial inventory with active and neglected maps taking into consideration the size and residues generation (such as SEMASA), prioritizing in this way the

  18. Fuel reprocessing tank

    Energy Technology Data Exchange (ETDEWEB)

    Gonda, Sumitora

    1998-10-09

    A tank of the present invention for spent fuels comprises a stainless steel tank main body for storing a highly corrosive dissolving solution, a steam jet pump disposed to the inside of the tank main body for transferring the dissolving solution to the outside of the tank main body and pipelines connecting them. With such a constitution, abnormal abrasion and drag of mechanical parts are less caused. In addition, a cleaning nozzle and a cleaning liquid pipeline which eliminates clogging of a sucking port of the steam jet pump if clogging is caused by sludges are disposed thereby enabling to avoid possibility of clogging. (T.M.)

  19. Characterization plan for Fort St. Vrain and Peach Bottom graphite fuels

    Energy Technology Data Exchange (ETDEWEB)

    Maarschman, S.C.; Berting, F.M.; Clemmer, R.G.; Gilbert, E.R.; Guenther, R.J.; Morgan, W.C.; Sliva, P.

    1993-09-01

    Part of Fort St. Vrain (FSV) and most of the Peach Bottom (PB) reactor spent fuels are currently stored at INEL and may remain in storage for many years before disposal. Three disposal pathways have been proposed: intact disposal, fuels partially disassembled and the high-level waste fraction conditioned prior to disposal, and fuels completed disassembled and conditioned prior to disposal. Many options exist within each of these pathways. PNL evaluated the literature and other reference to develop a fuels characterization plan for these fuels. This plan provides guidance for the characteristics of the fuel which will be needed to pursue any of the storage or disposal pathways. It also provides a suggested fuels monitoring program for the current storage facilities. This report recommends a minimum of 7 fuel elements be characterized: PB Core 1 fuel: one Type II nonfailed element, one Type II failed element, and one Type III nonfailed element; PB Core 2 fuel: two Type II nonfailed fuel elements; and FSV fuel: at least two fuel blocks from regions of high temperature and fluence and long in-reactor performance (preferably at reactor end-of- life). Selection of PB fuel elements should focus on these between radial core position 8 and 14 and on compacts between compact numbers 10 and 20. Selection of FSV fuel elements should focus on these from Fuel Zones II and III, located in Core Layers 6, 7, and possibly 8.

  20. Crystalline and Crystalline International Disposal Activities

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.

  1. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  2. LIFE vs. LWR: End of the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of

  3. NEP processing, operations, and disposal

    Science.gov (United States)

    Stancati, Mike

    Several recent studies by ASAO/NPO staff members at LeRC and by other organizations have highlighted the potential benefits of using Nuclear Electric Propulsion (NEP) as the primary transportation means for some of the proposed missions of the Space Exploration Initiative. These include the potential to reduce initial mass in orbit and Mars transit time. Modular NEP configurations also introduce fully redundant main propulsion to Mars flight systems adding several abort or fall back options not otherwise available. Recent studies have also identified mission operations, such as on orbital assembly, refurbishment, and reactor disposal, as important discriminators for propulsion system evaluation. This study is intended to identify and assess 'end-to-end' operational issues associated with using NEP for transporting crews and cargo between Earth and Mars. We also include some consideration of lunar cargo transfer as well.

  4. Water Activities in Laxemar Simpevarp. The final disposal facility for spent nuclear fuel - removal of groundwater and water activities above ground; Vattenverksamhet i Laxemar-Simpevarp. Slutfoervarsanlaeggning foer anvaent kaernbraensle - bortledande av grundvatten samt vattenverksamheter ovan mark

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    This report concerns water operations (Chapter 11 in the Environmental Code) below and above ground associated with construction, operation, and decommissioning of a repository for spent nuclear fuel in Laxemar in the municipality of Oskarshamn. SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository, and the report hence describes a non-chosen alternative. The report provides a comprehensive description of how the water operations would be executed, their hydrogeological and hydrological effects and the resulting consequences. The description is a background material for comparisons between the two sites in terms of water operations. The underground part of a repository in Laxemar would, among other things, consist of an access ramp and a repository area at a depth of approximately 500 metres. The construction, operation, and decommissioning phases would in total comprise a time period of 60-70 years. Inflowing groundwater would be diverted during construction and operation. The modelling tool MIKE SHE has been used to assess the effects of the groundwater diversion, for instance in terms of groundwater levels and stream discharges. According to MIKE SHE calculations for a hypothetical case with a fully open repository, the total groundwater inflow would be in the order of 55-90 litres per second depending on the permeability of the grouted zone around ramp, shafts and tunnels. In reality, the whole repository would not be open simultaneously, and the inflow would therefore be less. The groundwater diversion would cause groundwater- level drawdown in the rock, which in turn would lead to drawdown of the groundwater table in relatively large areas above and around the repository. According to model calculations, there would be an insignificant drawdown of the water level in Lake Frisksjoen, the largest lake in the area. The discharge in the most important stream of the area (Laxemaraan) would be reduced by less than ten percent

  5. 75 FR 65465 - Blue Ribbon Commission on America's Nuclear Future, Disposal Subcommittee

    Science.gov (United States)

    2010-10-25

    ... back end of the nuclear fuel cycle. The Commission will provide advice and make recommendations on... nuclear fuel and nuclear waste. The Co-chairs of the Commission requested the formation of the Disposal... beginning at 8 a.m. on November 4, 2010, at the St. Regis Hotel. Registration to speak will close at...

  6. Geochemical modelling of the weathering zone of the 'Mina Fe' U deposit (Spain): A natural analogue for nuclear spent fuel alteration and stability processes in radwaste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D. [AMPHOS XXI Consulting S.L., Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)], E-mail: david.arcos@amphos21.com; Perez del Villar, L. [CIEMAT, Dpto.de Medio Ambiente, Avda, Complutense 22, 28040 Madrid (Spain); Bruno, J.; Domenech, C. [AMPHOS XXI Consulting S.L., Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)

    2008-04-15

    The 'Mina Fe' U deposit (Salamanca, Spain) has been studied in the context of Enresa's programme for U-mine sites restoration and also as a natural analogue for processes in high-level nuclear waste (HLNW) geological disposal. The investigations encompassed an array of geoscience disciplines, such as structural geology, mineralogy, hydrogeology and elemental and isotopic geochemistry and hydrogeochemistry of the site. Based on the obtained results, a conceptual mineralogical and geochemical model was performed integrating the main geochemical processes occurring at the site: the interaction between oxidised and slightly acidic water with pyrite, pitchblende, calcite and dolomite, as essential minerals of the U fracture-filling mineralisation, and hydroxyapatite from the host rock, as the main source of P. This conceptual model has been tested in a systematic numerical model, which includes the main kinetic (pyrite and pitchblende dissolution) and equilibrium processes (carbonate mineral dissolution, and goethite, schoepite and autunite secondary precipitation). The results obtained from the reactive-transport model satisfactorily agree with the conceptual model previously established. The assumption of the precipitation of coffinite as a secondary mineral in the system cannot be correctly evaluated due to the lack of hydrochemical data from the reducing zone of the site and valid thermodynamic and kinetic data for this hydrated U(IV)-silicate. This precipitation can also be hampered by the probable existence of dissolved U(IV)-organic matter and/or uranyl carbonate complexes, which are thermodynamically stable under the alkaline and reducing conditions that prevail in the reducing zone of the system. Finally, the intense downwards oxic and acidic alteration in the upper part of the system is of no relevance for the performance assessment of a HLNW disposal. However, the acidic and oxidised conditions are quickly buffered to neutral-alkaline and

  7. Marine disposal of radioactive wastes

    Science.gov (United States)

    Woodhead, D. S.

    1980-03-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the absorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strengths and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area.

  8. Acceptance-criteria for the bedrock for deep geologic disposal of spent nuclear fuel. Proceedings from a seminar at Gothenburg University; Acceptanskriterier foer berggrunden vid djup geologisk slutfoervaring av anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The seminar was directed to Nordic participants, and discussed disposal in the Nordic crystalline bedrock. Criteria for the bedrock should include: It should give durable mechanical protection for the engineered barriers; give a stable and favorable chemical environment for these barriers; have a low turnover of ground water in the near field; be easy to characterize; give favorable recipient-conditions; not have valuable minerals in workable quantities. These general criteria raise several questions coupled to the safety analysis: e.g. the need for geological, hydrological and geochemical parameters. Which data are missing, which are most difficult to find? What should the site characterization program look like to focus on factors that are of the highest importance according to the safety analysis. The demands on the conditions at a site need to be translated into quantitative criteria, which should be expressed as values that can be measured at the site or deduced from such measurements. These questions were discussed at the seminar, and 21 contributions from Finnish, Norwegian and Swedish participants are reported in these proceedings under the chapters: Coupling to the safety analysis; Methodology and criteria for site selection in a regional geoscientific perspective; Rock as a building material - prognosis and result; Geoscientific criteria for the bedrock at the repository - Mechanical protection; Geoscientific criteria for the bedrock at the repository - Low ground water turnover, chemically favorable and stable environment in the near field; Geoscientific criteria for the bedrock at the repository - Demands on the bedrock concerning the migration of radionuclides.

  9. Lakeview, Oregon, Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Linard, Joshua [USDOE Office of Legacy Management (LM), Washington, DC (United States); Hall, Steve [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-03-01

    9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprap was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability

  10. Update on cavern disposal of NORM-contaminated oil field wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  11. CASTOR {sup ®} and CONSTOR {sup ®}. A well established system for the dry storage of spent fuel and high level waste

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Hannes; Skrzyppek, Juergen; Koebl, Michael [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2015-06-01

    The German company GNS Gesellschaft fuer Nuklear-Service mbH today looks back on more than 30 years of operational experience with dual-purpose casks for the transport and storage of spent nuclear fuel (SNF) from nuclear power plants and high level waste (HLW) from reprocessing. Following customer demands, GNS developed two different cask types for SNF. By now, almost 1,300 GNS-casks are in operation worldwide. This article gives an overview over several national and international projects and shows the bandwidth of customised solutions by GNS.

  12. 程潮铁矿井区变形监测分析及处置建议%Monitoring Analysis of Well Area Deformation and Disposal Propose in Chengchao Iron Mine

    Institute of Scientific and Technical Information of China (English)

    陈维维; 陈从新; 肖国锋

    2012-01-01

    程潮铁矿东主井和西风井区相继出现地表裂缝和井筒开裂现象,且地表裂缝范围在不断扩大,已经对东主井和西风井的结构安全构成威胁.为此,主要依据井筒开裂和地表裂缝的现场调查以及在变形监测的基础上,对井筒结构及地基变形开裂的岩体力学机理进行分析,探讨了东主井和西风井井区地表变形和井筒开裂的成因,得出地下水疏干和地下采矿是引起地表变形和地面塌陷现象的直接原因,而矿区工程地质构造和水文地质条件等对地表变形特征产生影响,并提出了相应的减缓井区地表变形的措施.%The surface cracks and wellbore cracking phenomenon have appeared successively in the area of the east and west air shaft well of Chengchao iron mine, and the surface cracks scope is also in the unceasing expansion. It has already threatened the safely of the east and west air wellbore structure. Based on the deformation monitor situation of the wellbore cracking and the surface fissures as well as the scene investigation, the mechanics mechanism of the wellbore structure and foundation deformation was studied. It analyses the causes which results in the surface deformation and the wellbore cracking in the east and west air shaft well area,and obtains the drainage of underground water and underground mining are the direct causes of the surface deformation and the ground subsidence phenomenon, moreover the engineering geology structure and the hydro - geological conditions in the mining area also have influence to the surface deformation characteristic, and some corresponding measures to slow down the surface deformation in the wellbore areas is proposed.

  13. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  14. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field.

    Science.gov (United States)

    Henshaw, Ian; Fransson, Thord; Jakobsson, Sven; Lind, Johan; Vallin, Adrian; Kullberg, Cecilia

    2008-03-01

    Recent studies have shown that migratory thrush nightingales (Luscinia luscinia) experimentally treated with multiple changes of the magnetic field simulating a journey to their target stopover area in northern Egypt, increased fuel deposition as expected in preparation to cross the Sahara desert. To investigate the significance of food intake on the body mass changes observed, in the work described here we analysed food intake of the nightingales under study in those earlier experiments. Furthermore, to study whether a single change in the magnetic field directly to northern Egypt is sufficient to provide information for fuelling decisions, we performed a new experiment, exposing thrush nightingales trapped in Sweden, directly to a magnetic field of northern Egypt. Our results show that an experimentally induced magnetic field of northern Egypt, close to the barrier crossing, triggers the same response in fuel deposition as experiments with multiple changes of the magnetic field simulating a migratory journey from Sweden to Egypt, suggesting that migratory birds do not require successive changes in field parameters to incorporate magnetic information into their migratory program. Furthermore, irrespective of experimental set up (single or multiple changes of the magnetic field parameters) increase in food intake seems to be the major reason for the observed increase in fuelling rate compared with control birds, suggesting that geomagnetic information might trigger hormonal changes in migratory birds enabling appropriate fuelling behaviour during migration.

  15. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    SKB has submitted RDandD Programme 2004 to SKI for review in accordance with the Act (1984:3) on Nuclear Activities. Based on SKI's review and the review statements received, SKI considers that: - SKB, and thereby the reactor owners, have fulfilled their obligations in accordance with paragraph 12 of the Act (1984:3) on Nuclear Activities, - Disposal in accordance with the KBS-3 concept seems to still be the most suitable way of disposing of spent nuclear fuel from the Swedish nuclear power programme. SKI would like to draw the Government's attention to the following evaluations and comments: - The question of who is responsible after the closure of a repository for spent nuclear fuel needs to be clarified. - SKB's plan of action is incomplete and its structure needs to be improved. The revised plan of action needs a more detailed account of the content of the basis for decision-making that SKB intends to present on different decision-making occasions. - As soon as possible, SKB should develop design premises for the canister and verify these premises in the next safety assessment which is planned for 2006. A clear and logical link between the detailed design premises for the canister and the requirements on long-term safety of the repository is still lacking. - SKB should specify the limits for different parameters that are of importance for the canister function. The account must be based on an identification of defects that can occur and their consequences for canister integrity and repository function. - SKB should clarify how the work on KBS-3H (horizontal deposition of the canisters) is to be developed. An estimate of how much time and resources will be required is needed in order to prepare a body of material corresponding to that for KBS-3V (vertical deposition which is, so far, the most studied concept). - SKB should continue to participate in and contribute to the development of methodology for safeguards in connection with the disposal

  16. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  17. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  18. Disposable diapers: safe and effective.

    Science.gov (United States)

    Singh, Namita; Purthi, P K; Sachdev, Anupam; Gupta, Suresh

    2003-09-01

    Nappy rash is a common problem in infants due to their thinner skin, wetness, heat and friction under cloth nappy, fecal enzymes and alkaline urine. The disposable diapers containing Super Absorbent Material (SAM) reduce the incidence of nappy rash. SAM quickly absorbs urine and keeps the skin dry. Also disposable diapers prevent fecal contamination by absorbing the urine and containing stools.

  19. Integrated Disposal Facility Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  20. Options and cost for disposal of NORM waste.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-10-22

    Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

  1. Engineering geology of waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, S.P. [ed.] [University of Wales, Cardiff (United Kingdom). School of Engineering

    1996-12-31

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK).

  2. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  3. Corrosion free phosphoric acid fuel cell

    Science.gov (United States)

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  4. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  5. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  6. Strategic environmental audit for the national waste disposal program; Strategische Umweltpruefung zum Nationalen Entsorgungsprogramm. Umweltbericht fuer die Oeffentlichkeitsbeteiligung

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Mathias; Kallenbach-Herbert, Beate; Claus, Manuel [Oeko-Institut e.V., Darmstadt (Germany); and others

    2015-03-27

    The report on the strategic environmental audit for the national waste disposal program covers the following issues: aim of the study, active factors, environmental objectives; description and evaluation of environmental impact including site selection criteria for final repositories of heat generating radioactive waste, intermediate storage of spent fuel elements and waste from reprocessing plants, disposal of wastes retrieved from Asse II; hypothetical zero variants.

  7. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  8. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    Energy Technology Data Exchange (ETDEWEB)

    C.A Kouts

    2006-11-22

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

  9. Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)

    Science.gov (United States)

    Murphy, W. M.

    2009-12-01

    For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository

  10. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  11. A geographic information system and multi criteria analysis method for site selection of spent nuclear fuel disposal; Metodologia baseada em sistemas de informacao geografica e analise multicriterio para a selecao de areas para a construcao de um repositorio para o combustivel nuclear usado

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Vivian Borges

    2009-07-01

    This thesis aims to develop a site selection methodology for the construction of final repository for the spent nuclear fuel disposal, by using geographic information systems (GIS) and multi-criteria decision analysis. Decision making processes of this kind are often complex, given the great number of space parameters to consider and also the typically conflicting opinions of the diverse stake holders. By using GIS, data from different space parameters can be quickly and reliably stored, treated and analyzed. Multi-criteria techniques allow for the incorporation of different stake holders' opinions. These tools, when jointly used, allow for the decision process to be more transparent, quick and reliable. The method developed was applied to the particular case of the state of Rio de Janeiro. Weights obtained from an expert panel and also by using the Hierarchical Analysis Method and cartographic data were combined in the GIS. The application showed that it is possible not only to select and classify areas as to their aptness for the proposed objective, but also to exclude those clearly inadequate areas, thus optimizing the selection process by reducing the search space and consequently minimizing costs and the time spent in the search. (author)

  12. Case for retrievable high-level nuclear waste disposal

    Science.gov (United States)

    Roseboom, Eugene H.

    1994-01-01

    Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.

  13. Nuclear reactor high-level waste: origin and safe disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chua, C.; Tsipis, K. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    High-level waste (HLW) is a natural component of the nuclear fuel cycle. Because of its radioactivity, HLW needs to be handled with great care. Different alternatives for permanently storing HLW are evaluated. Studies have shown that the disposal of HLW is safest when the waste is first vitrified before storage. Simple calculations show that vitrified HLW that is properly buried in deep, carefully chosen crystalline rock structures poses insignificant health risks. (author).

  14. Safety evaluation for packaging (onsite) disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, B.D., Westinghouse Hanford

    1996-12-20

    This safety evaluation for packaging (SEP) evaluates and documents the ability of the Disposable Solid Waste Cask (DSWC) to meet the packaging requirements of HNF-CM-2-14, Hazardous Material Packaging and Shipping, for the onsite transfer of special form, highway route controlled quantity, Type B fissile radioactive material. This SEP evaluates five shipments of DSWCs used for the transport and storage of Fast Flux Test Facility unirradiated fuel to the Plutonium Finishing Plant Protected Area.

  15. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  16. Disposable diapers: a hygienic alternative.

    Science.gov (United States)

    Kamat, Maithili; Malkani, Ram

    2003-11-01

    The use of disposable diapers has offered improved health care benefits. Urine and fecal matter leakage from the cloth nappies and the hand-to-mouth behavior in infants leads to many illnesses with a feco-oral mode of transmission. Also, the tender skin of the infant is more prone to nappy rash. The modern age disposable diapers, when compared to cloth nappy, have displayed a superior ability in containment of urine and feces, thereby reducing contamination and transmission of infection. Also disposable diapers contain Super Absorbent Material (SAM) that successfully reduces the incidence of nappy rash.

  17. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hertzler, T. [Science Applications International Corp., Idaho Falls, ID (United States)

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository.

  18. Present status of research and development on underground disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Power Reactor and Nuclear Fuel Development Corporation published the technical report `Research and development of the formation disposal of high level radioactive waste` 1991 in 1992, summarizing the results of the research and development of the formation disposal which have been advanced by dividing into three parts, that is, the investigation and research of geological environment conditions, the research and development of disposal technologies, and the research on the performance evaluation. Based on the subjects pointed out during the process of making the technical report, the results of evaluation by the state, and the opinions of those concerned, the efforts are exerted toward the second summarization expected in about 2000. By informing the present state of the research and development, in order to accept the criticism and advice, this book was published. The way of thinking and the method of advancing of the research and development of formation disposal, the present state of the research on geological environment conditions, disposal technologies and the performance evaluation are described. Also the present state of the research on stratum science in Tono and Kamaishi mines and others is reported. (K.I.).

  19. Treatment and final disposal of nuclear waste. Programme for encapsulation, deep geological disposal, and research, development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Programs for RD and D concerning disposal of radioactive waste are presented. Main topics include: Design, testing and manufacture of canisters for the spent fuels; Design of equipment for deposition of waste canisters; Material and process for backfilling rock caverns; Evaluation of accuracy and validation of methods for safety analyses; Development of methods for defining scenarios for the safety analyses. 471 refs, 67 figs, 21 tabs.

  20. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Divita, Vincent [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  1. The reapplication of energetic materials as boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, S.G.; Sclippa, G.C.; Ross, J.R. [and others

    1997-02-01

    Decommissioning of weapons stockpiles, off-specification production, and upgrading of weapons systems results in a large amount of energetic materials (EM) such as rocket propellant and primary explosives that need to be recycled or disposed of each year. Presently, large quantities of EM are disposed of in a process known as open-burn/open-detonation (OB/OD), which not only wastes their energy content, but may release large quantities of hazardous material into the environment. Here the authors investigate the combustion properties of several types of EM to determine the feasibility of reapplication of these materials as boiler fuels, a process that could salvage the energy content of the EM as well as mitigate any potential adverse environmental impact. Reapplication requires pretreatment of the fuels to make them safe to handle and to feed. Double-base nitrocellulose and nitroglycerin, trinitrotoluene (TNT), nitroguanidine, and a rocket propellant binder primarily composed of polybutidiene impregnated with aluminum flakes have been burned in a 100-kW downfired flow reactor. Most of these fuels have high levels of fuel-bound nitrogen, much of it bound in the form of nitrate groups, resulting in high NO{sub x} emissions during combustion. The authors have measured fuel-bound nitrate conversion efficiencies to NO{sub x} of up to 80%, suggesting that the nitrate groups do not follow the typical path of fuel nitrogen through HCN leading to NO{sub x}, but rather form NO{sub x} directly. They show that staged combustion is effective in reducing NO{sub x} concentrations in the postcombustion gases by nearly a factor of 3. In the rocket binder, measured aluminum particle temperatures in excess of 1700{degrees}C create high levels of thermal NO{sub x}, and also generate concern that molten aluminum particles could potentially damage boiler equipment. Judicious selection of the firing method is thus required for aluminum-containing materials.

  2. Status of UFD Campaign International Activities in Disposal Research

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    While the United States research program for geologic disposal of high-level radioactive waste over the past decades focused solely on an open tunnel emplacement in unsaturated densely fractured tuff, several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics, most of which were very different from those studied in the U.S. As a result, areas of direct collaboration between the U.S. Department of Energy’s (DOE) and international geologic disposal programs were quite limited during that time. Recently, the decision by DOE to no longer pursue the geologic disposal of high-level radioactive waste and spent fuel at the Yucca Mountain site has shifted the nation’s focus to disposal design options and geologic environments similar to those being investigated by other nations. DOE started to recognize that close international collaboration is a beneficial and costeffective strategy for advancing disposal science and, in FY12, embarked on a comprehensive effort to identify international collaboration opportunities, to interact with international organizations and advance promising collaborations, and to plan/develop specific R&D activities in cooperation with international partners. This report describes the active collaboration opportunities available to U.S. researchers as a result of this effort, and presents specific cooperative research activities that have been recently initiated within DOE’s disposal research program. The focus in this report is on those opportunities that provide access to field data (and respective interpretation/modeling), and/or may allow participation in ongoing and planned field experiments.

  3. Review Statement and Evaluation of the Swedish Nuclear Fuel and Waste Management Co's RDandD Programme 2004. Programme for Research, Development and Demonstration of Methods for the Management and Disposal of Nuclear Waste, including Social Science Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    SKB has submitted RDandD Programme 2004 to SKI for review in accordance with the Act (1984:3) on Nuclear Activities. Based on SKI's review and the review statements received, SKI considers that: - SKB, and thereby the reactor owners, have fulfilled their obligations in accordance with paragraph 12 of the Act (1984:3) on Nuclear Activities, - Disposal in accordance with the KBS-3 concept seems to still be the most suitable way of disposing of spent nuclear fuel from the Swedish nuclear power programme. SKI would like to draw the Government's attention to the following evaluations and comments: - The question of who is responsible after the closure of a repository for spent nuclear fuel needs to be clarified. - SKB's plan of action is incomplete and its structure needs to be improved. The revised plan of action needs a more detailed account of the content of the basis for decision-making that SKB intends to present on different decision-making occasions. - As soon as possible, SKB should develop design premises for the canister and verify these premises in the next safety assessment which is planned for 2006. A clear and logical link between the detailed design premises for the canister and the requirements on long-term safety of the repository is still lacking. - SKB should specify the limits for different parameters that are of importance for the canister function. The account must be based on an identification of defects that can occur and their consequences for canister integrity and repository function. - SKB should clarify how the work on KBS-3H (horizontal deposition of the canisters) is to be developed. An estimate of how much time and resources will be required is needed in order to prepare a body of material corresponding to that for KBS-3V (vertical deposition which is, so far, the most studied concept). - SKB should continue to participate in and contribute to the development of methodology for safeguards in connection with the disposal

  4. Clays in radioactive waste disposal

    OpenAIRE

    Delage, Pierre; Cui, Yu-Jun; Tang, Anh-Minh

    2010-01-01

    Clays and argillites are considered in some countries as possible host rocks for nuclear waste disposal at great depth. The use of compacted swelling clays as engineered barriers is also considered within the framework of the multi-barrier concept. In relation to these concepts, various research programs have been conducted to assess the thermo-hydro-mechanical properties of radioactive waste disposal at great depth. After introducing the concepts of waste isolation developed in Belgium, Fran...

  5. 2008 State-of-the-art: Development of the Geological Disposal System for High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, Jong Youl; Jung, Jong Tae; Kim, Sung Ki; Lee, Min Soo; Kook, Dong Hak

    2008-11-15

    This report is for grasping the current status of the time of high level radioactive waste(HLW) disposal and being useful for our conceptual repository design. We performed the analyses for the HLW disposal design of preceding countries. This analyses include design principles, and comparisons for the all characteristics of HLW source, disposal canister, buffer specification, and disposal systems. During the past 10 years, retrievability concept are getting more important with perceiving the waste as new resources and almost countries planning the disposal are concerning more complex designs including this new concept. According to this trend, our country also should investigate the compliance of retrievability with our own disposal design concept. Most countries applies 'Cost Estimation base on conceptual design' method on disposal cost estimation in compliance with their own situation. Even though several estimation conditions, e.g. disposal scale and estimation time, are different, our rough estimation values for the unit disposal cost of PWR and CANDU spent fuels are analogous to other countries' values.

  6. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-02-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  7. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Mike Lehto

    2010-10-01

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  8. Korean efforts towards an environment friendly back-end nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.S.; Hwang, Y.S. [Korea Atomic Energy Research Inst., Daejon (Korea, Republic of)

    2001-07-01

    In Korea, sixteen nuclear reactors are in operation and by 2015, a total of twenty-six nuclear reactors will be in operation. The current nuclear share occupies about 29.2 % of the total generating capacity of electricity and 43.1 % of the total production of electricity. The active nuclear program causes an inevitable increase in the build-up of radioactive waste, including spent fuel. Therefore, reliable and effective management of radioactive waste and spent fuel has become a key to the continuous growth of the nuclear power program. By the end of 2000, a total of 57,270 drums of LILW were generated from the nuclear power plants (NPPs) and the total amount of LILW from NPPs, RI applications from more than 1,500 users, and decommissioning shall increase to around a quarter of a million drums by 2020. Also, the cumulative amount of spent fuel reached 4,760 MTU by the end of 2000 and will jump to 18,615 MTU by 2020. According to the new national planning, AFR storage facilities for spent fuels shall be built by 2016 and a repository for LILW radioactive disposal shall be in operation by 2008. Even though Korea has a ''wait and see policy'' for spent fuel management, several alternative studies on spent fuel management such as DUPIC have been carried out. In parallel, R and D activities to develop the needed technologies for the permanent disposal of spent fuel and HLW have been implemented. In addition, active R and D on the treatment of radioactive waste from the various nuclear fuel cycles as well as the decontamination and decommissioning of nuclear facilities are in progress. Many of these studies are pursued in the form of regional as well as international cooperation. (author)

  9. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  10. Application of Generic Disposal System Models

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  11. U.S. program assessing nuclear waste disposal in space - A 1981 status report

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.

    1982-01-01

    Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.

  12. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  13. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  14. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  15. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  16. Refractoriless liquid fuel burner

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.

    1986-07-15

    A liquid fuel burner head is described which consists of: A. a generally annular burner head housing spacedly enveloping a generally cylindrical primary air assembly, the head and assembly each having corresponding forward and rearward ends, (a) the primary air assembly having a plurality of internal primary air supply passage means extending in a generally forwardly direction in the assembly and emerging through annularly disposed primary air port means at the forward end of the primary air assembly, (b) means effective to produce a swirl of primary air in one direction about the axis of the primary air assembly as the air emerges from the primary air port means, (c) means associated with the primary air port means for adjusting the location of flame origin forward of and relative to the primary air port means, (d) the primary air assembly including a liquid fuel supply passage and a nozzle, the nozzle being centrally disposed at the forward end of the primary air assembly and encompassed by the primary air port means, the liquid fuel nozzle being effective to discharge a substantially fan-like spray of liquid fuel just forward of and across the primary air port means, (e) the primary air assembly and the nozzle together being axially movable relative to the housing between forwardmost and rearwardmost positions respectively responsive to change in burner firing rate between minimum and maximum; B. secondary air supply passage means disposed in the space between the housing and the primary air assembly; C. means rearwardly of the secondary air directional means and port means effective to meter the amount of secondary air supplied air port means from a lesser quantity when the primary air assembly and nozzle are in their forwardmost position to a greater quantity when the primary air assembly and nozzle are in their rearwardmost position.

  17. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Avolahti, J.; Vira, J. [Posiva Oy, Helsinki (Finland)

    1999-12-01

    Preparations for the final disposal of spent nuclear fuel in Finland started about twenty years ago. At present the work is carried out by Posiva Oy, which in 1996 took over the programme managed earlier by Teollisuuden Voima Oy, one of the country's nuclear power companies. From 1996 on the preparations have been made for all the spent fuel from Finnish nuclear power stations. The site for the final disposal facility will be selected among four alternatives by the end of 2000 and - assuming that the technical approach proposed by Posiva is accepted by the Government and the Parliament - the construction of the repository will start in the 2010s. The disposal operations are planned to be started in 2020. The alternative four sites have gone through a systematic site selection process based on geologic siting criteria and on environmental and cultural considerations. One of the objectives of the process was to avoid inhabited areas, agricultural fields, valuable groundwater or preservation areas as well as areas which might draw interest as regards the potential for ore deposits. The idea was that the field investigations and later the possible disposal facility should not cause any harm to local people. Two of the candidate sites are at present nuclear power plant sites situated at the coast, the two other candidates are inland sites with no nuclear activities. The geologic siting investigations were started in 1987. Interim assessments of the results so far have been made in 1992 and 1996 and a final report of all the investigations will be published before the end of 2000. The present view is that all four candidates are geologically suitable for siting the repository. Posiva's EIA for the final disposal of spent fuel in Finland is nearing completion. A considerable effort was made to involve local groups and individuals in the assessment process. Yet the participation remained limited and consisted mainly of active opponents of the project and of those

  18. Tale taming radioactive fears: Linking nuclear waste disposal to the "continuum of the good".

    Science.gov (United States)

    Yli-Kauhaluoma, Sari; Hänninen, Hannu

    2014-04-01

    We examine how the constructor of the world's first repository for the final disposal of spent nuclear fuel in Eurajoki, Finland, aims to shape lay understanding of the facility's risks and to tame the nuclear fears of the local community by producing positive associations, imagery and tales. Our empirical material consists of the constructor's newsletters targeted mainly at the local residents. In the narrative analysis, we identified a storyline where the construction of the repository is linked into the "continuum of the good" in the municipality of the construction site and the surrounding areas. The storyline consists of five different themes all emphasizing the "continuum of the good" in the area: cultural heritage, well-being, developing expertise, natural environment, and local families. Our study contributes to the literature on pro-nuclear storytelling by showing how the inclination is towards narratives that are constructed around local symbols, cultural landmarks, and institutions.

  19. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  20. Galileo disposal strategy: stability, chaos and predictability

    Science.gov (United States)

    Rosengren, Aaron J.; Daquin, Jérôme; Tsiganis, Kleomenis; Alessi, Elisa Maria; Deleflie, Florent; Rossi, Alessandro; Valsecchi, Giovanni B.

    2017-02-01

    Recent studies have shown that the medium-Earth orbit (MEO) region of the global navigation satellite systems is permeated by a devious network of lunisolar secular resonances, which can interact to produce chaotic and diffusive motions. The precarious state of the four navigation constellations, perched on the threshold of instability, makes it understandable why all past efforts to define stable graveyard orbits, especially in the case of Galileo, were bound to fail; the region is far too complex to allow for an adoption of the simple geosynchronous disposal strategy. We retrace one such recent attempt, funded by ESA's General Studies Programme in the frame of the GreenOPS initiative, that uses a systematic parametric approach and the straightforward maximum-eccentricity method to identify long-term-stable regions, suitable for graveyards, as well as large-scale excursions in eccentricity, which can be used for post-mission deorbiting of constellation satellites. We then apply our new results on the stunningly rich dynamical structure of the MEO region towards the analysis of these disposal strategies for Galileo, and discuss the practical implications of resonances and chaos in this regime. We outline how the identification of the hyperbolic and elliptic fixed points of the resonances near Galileo can lead to explicit criteria for defining optimal disposal strategies.

  1. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-05

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  2. Bioethanol fuel production from rambutan fruit biomass as reducing ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Full Length Research Paper. Bioethanol fuel production from ... in waste disposal management and reducing global warming. The aim of the study of ... When burning gasoline, there are some emissions produced like carbon ...

  3. Hydrogen as a fuel in the German transport sector; Wasserstoff als Kraftstoff im Deutschen Verkehrssektor

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, Christina; Kaltschmitt, Martin [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft

    2013-06-15

    Hydrogen is a basic product of the (petro-)chemical industry. Furthermore it can be used as a fuel for vehicles. One main advantage of hydrogen as a fuel for drive trains is the possibility to reduce greenhouse gas emissions significantly compared to fossil fuels and avoid other local emissions. Against this background, the goal of this paper is to compare fuel cells driven by hydrogen in respect of environmental parameters. The emissions of these options are not only produced during driving and therefore this paper applies a cradle to grave approach (i.e. life cycle assessment). Greenhouse gas emissions and acidification as well as nitrogen oxides are analysed. To allow a fair comparison in total ten different systems including fossil fuels are analysed (five with hydrogen and five alternatives). That includes the entire life cycle of the car (i.e. production, use, and disposal) assuming a defined amount of kilometres to be driven during the technical lifetime. For a full assessment the energy needed to produce and run the car, the fuel production as well as the fuel distribution are considered. The results show that electrical drive trains could reduce specific greenhouse gas emissions significantly if renewable sources of energy are used. For the acidification some fossil options were better than options powered by renewable energies. (orig.)

  4. Coaxial fuel and air premixer for a gas turbine combustor

    Science.gov (United States)

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  5. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  6. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    Energy Technology Data Exchange (ETDEWEB)

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  7. Flue gas wells to minimize dust and acidic components in small-scale burning of field fuel, further development; Roekgasbrunn foer minimering av stoft och sura komponenter vid smaaskalig foerbraenning av aakerbraenslen, vidareutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Yngvesson, Johan; Roennbaeck, Marie; Arkeloev, Olof

    2011-01-15

    Agricultural derived solid fuels are more problematic to combust in small-scale heating plants than conventional wood fuels. Their high content of ash, chlorine and sulphur leads to increased emissions of dust, sulphur dioxide and hydrogen chloride in the flue gases. By transporting the flue gases to a flue gas well where it condenses, and separates dust and sour components, enables a cost effective flue gas purification for small-scale heating plants (50 kW - 10 MW) of agricultural derived solid fuels. This project have studied two heating plants using flue gas wells with the aim to add to the knowledge about how a flue gas wells may look like and to quantify how much emissions of dust, chlorine and sulphur in the flue gases are reduced. The project also aimed to summon regulations and laws regarding the handling of the condensate that develop in the flue gas well. In the project measures were conducted on two different heating plants with mounted flue gas wells: a 60 kW biofuels boiler combusting grains and red canary grass and a 1 MW batch fired boiler combusting wheat straw. Measurements on flue gases were conducted with and without water injection in the flue gases. The flue gas wells reduced dust emissions of up to 80 %. The best reduction was achieved at the 60 kW heating plant when firing red canary grass. Firing grains in the same plant lead to 7 % reduction of the dust emissions. In the 1 MW heating plant firing wheat straw the flue gas well accomplished 40 % reduction of dust emissions. The boiler ability to achieve complete combustion, hence minimize the content of volatile and semi-volatile components in the flue gas, is largely affecting the flue gas well ability to reduce dust emissions. This did not, however, affect the reduction of dust in the flue. Chlorine emissions was reduced by up to 88 % by a flue gas well. Water injection made a big difference on reduction of chlorine emission from grain combustion. Sulphur emissions was reduced by 50

  8. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  9. Assessment of alternative disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Saanio, T.; Tolppanen, P. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Raiko, H.; Vieno, T. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.).

  10. Physicochemical state of the spent fuel leaving the reactors; Le combustible nucleaire et son etat physico-chimique a la sortie des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Dehaut, Ph

    2000-07-01

    This report focuses on the current knowledge, updated at the end of 1999, about the physicochemical state of the fuels leaving light water reactors, and particularly pressurized water reactors. Lessons are withdrawn from it making it possible to determine the points which require a necessary deepening of the data and coherence of interpretations. Lastly, evolution of the sailed fuel rod as well as the potential availability of gases and volatile fission products, during a secular storage or of a multi-millennium disposal, are the subject of an attempt at forecast. Accessible data in the scientific literature, or those acquired at the CEA, are particularly numerous. Their analysis and their synthesis are joined together to constitute a collection of references intended to the specialists in nuclear fuel and for all those which contribute to the reflexion on the storage or final disposal of the irradiated fuel. This memory is structured in ten chapters. The last chapter makes it possible to retain on some pages, the essential lessons of this study. Chapter I: Introduction; Chapter II: Characteristics of assemblies and fuels before irradiation; Chapter III: Transformations in reactor; Chapter IV: State of rods leaving the reactor; Chapter V: State of pellets; Chapter VI: Chemical and structural composition of the fuel; Chapter VII: Fuel fragmentation and density; Chapter VIII: Phenomena at the pellet periphery. Formation, characteristics and structure of the rim.Chemical interaction between pellet and cladding; Chapter IX: Location of fission gases and volatile fission products; Chapter X: Review, lessons and predictions. (authors)

  11. Deep desulfurization of hydrocarbon fuels

    Science.gov (United States)

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  12. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  13. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2010-02-01

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  14. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    Energy Technology Data Exchange (ETDEWEB)

    Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freeze, Geoffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  15. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA)); Weiss, H. (Lawrence Livermore National Lab., CA (USA))

    1988-06-01

    Three copper-based alloys, CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni), are being considered along with three austenitic candidates as possible materials for fabrication of containers for disposal of high-level radioactive waste. The waste will include spent fuel assemblies from reactors as well as high-level reprocessing wastes in borosilicate glass and will be sent to the prospective repository at Yucca Mountain, Nevada, for disposal. The containers must maintain mechanical integrity for 50 yr after emplacement to allow for retrieval of waste during the preclosure phase of repository operation. Containment is required to be substantially complete for up to 300 to 1000 yr. During the early period, the containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. The final closure joint will be critical to the integrity of the containers. This volume surveys the available data on the metallurgy of the copper-based candidate alloys and the welding techniques employed to join these materials. The focus of this volume is on the methods applicable to remote-handling procedures in a hot-cell environment with limited possibility of postweld heat treatment. The three copper-based candidates are ranked on the basis of the various closure techniques. On the basis of considerations regarding welding, the following ranking is proposed for the copper-based alloys: CDA 715 (best) > CDA 102 > CDA 613 (worst). 49 refs., 15 figs., 1 tab.

  16. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  17. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of containers for disposal of high-level radioactive waste. This waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, they must be retrievable from the disposal site. Shortly after the containers are emplaced in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of the high-level waste. This volume surveys the available data on oxidation and corrosion of the iron- to nickel-based austenitic materials (Types 304L and 316L stainless steels and Alloy 825) and the copper-based alloy materials (CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni)), which are the present candidates for fabrication of the containers. Studies that provided a large amount of data are highlighted, and those areas in which little data exists are identified. Examples of successful applications of these materials are given. On the basis of resistance to oxidation and general corrosion, the austenitic materials are ranked as follows: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is as follows: CDA 715 and CDA 613 (both best), and CDA 102 (worst). 110 refs., 30 figs., 13 tabs.

  18. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Bullen, D.B.; Gdowski, G.E. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Three copper-based alloys and three iron- to nickel-based austenitic alloys are being considered as possible materials for fabrication of high-level radioactive-waste disposal containers. The waste will include spent fuel assemblies from reactors as well as high-level waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The copper-based alloy materials are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The austenitic materials are Types 304L and 316L stainless steels and Alloy 825. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr, and they must be retrievable from the disposal site during the first 50 yr after emplacement. The containers will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This volume surveys the available data on the phase stability of both groups of candidate alloys. The austenitic alloys are reviewed in terms of the physical metallurgy of the iron-chromium-nickel system, martensite transformations, carbide formation, and intermetallic-phase precipitation. The copper-based alloys are reviewed in terms of their phase equilibria and the possibility of precipitation of the minor alloying constituents. For the austenitic materials, the ranking based on phase stability is: Alloy 825 (best), Type 316L stainless steel, and then Type 304L stainless steel (worst). For the copper-based materials, the ranking is: CDA 102 (oxygen-free copper) (best), and then both CDA 715 and CDA 613. 75 refs., 24 figs., 6 tabs.

  19. General Instructions for Disposable Respirators

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    This podcast, intended for the general public, demonstrates how to put on and take off disposable respirators that are to be used in areas affected by the influenza outbreak.  Created: 4/9/2009 by CDC, National Institute for Occupational Safety and Health (NIOSH).   Date Released: 4/29/2009.

  20. Disposables: saving by throwing away.

    Science.gov (United States)

    Wilton, G

    1980-07-18

    The demand for health care facilities and services will remain insatiable, concludes a report by Frost and Sullivan due to be published shortly. The report on trends in the European clinical soft goods market says growth is guaranteed but that the market penetration of disposables is not.

  1. Ocean Disposal of Dredged Material

    Science.gov (United States)

    Permits and authorizations for the ocean dumping of dredged material is issued by U.S. Army Corps of Engineers. Information is provided about where to dispose dredged material and the process for obtaining an ocean dumping permit for dredged material.

  2. System-Level Logistics for Dual Purpose Canister Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, Elena A.

    2014-06-03

    The analysis presented in this report investigated how the direct disposal of dual purpose canisters (DPCs) may be affected by the use of standard transportation aging and disposal canisters (STADs), early or late start of the repository, and the repository emplacement thermal power limits. The impacts were evaluated with regard to the availability of the DPCs for emplacement, achievable repository acceptance rates, additional storage required at an interim storage facility (ISF) and additional emplacement time compared to the corresponding repackaging scenarios, and fuel age at emplacement. The result of this analysis demonstrated that the biggest difference in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario is for a repository start date of 2036 with a 6 kW thermal power limit. The differences are also seen in the availability of UNF for emplacement between the DPC-only loading scenario and the DPCs and STADs loading scenario for the alternative with a 6 kW thermal limit and a 2048 start date, and for the alternatives with a 10 kW thermal limit and 2036 and 2048 start dates. The alternatives with disposal of UNF in both DPCs and STADs did not require additional storage, regardless of the repository acceptance rate, as compared to the reference repackaging case. In comparison to the reference repackaging case, alternatives with the 18 kW emplacement thermal limit required little to no additional emplacement time, regardless of the repository start time, the fuel loading scenario, or the repository acceptance rate. Alternatives with the 10 kW emplacement thermal limit and the DPCs and STADs fuel loading scenario required some additional emplacement time. The most significant decrease in additional emplacement time occurred in the alternative with the 6 kW thermal limit and the 2036 repository starting date. The average fuel age at emplacement ranges from 46 to 88 years. The maximum fuel age at

  3. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of

  4. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  5. Invert muds : cost and disposal roadblocks

    Energy Technology Data Exchange (ETDEWEB)

    Garritty, N. [Engineered Drilling Solutions Inc., Calgary, AB (Canada)

    2008-07-01

    Since its inception, Engineered Drilling Solutions Incorporated (EDSI) has been focused on increasing drilling performance, increasing customer satisfaction, and decreasing drilling costs. Drilling fluid accounts for only 5 per cent of the cost to drill a well. It is necessary to look at how drilling fluid affects other aspects of drilling costs. Historically, the two main barriers to drilling with invert drilling fluids have been cost and disposal. EDSI's goal was to create an economical invert drilling fluid and develop an innovative way to dispose of the cuttings created while drilling it. This presentation discussed the costs and disposal roadblocks of invert muds. It provided a brief history of oil muds and the need for a new solution to the problem. Invert issues were identified. The presentation also discussed the removal of damaging components from the system and replacement of these materials with non-damaging alternatives which have allowed for the creation of a novel oil based drilling fluid formulation. The presentation discussed the development of 4G which was prepared with the use of a patent pending process using a colloid mill. The device achieved high levels of shear and, as a result, the fluid could be prepared to the consistency of paint. The 4G formulation was modified to 4GM in order to have a fluid that provided shear thinning at the bit for faster drilling, but that would gel up to provide for great hole cleaning. Shear thinning fluid also results in less fluid being lost over the shale shakers. 4GM was shown to enhance organophilic clay performance; significantly decrease maintenance; and decrease losses over the shaker. EDSI has also patented a solution that combines recycled tires and invert drill cuttings to create a product that replaces a portion of traditional aggregate in roads in order to offset the stresses on gravel road infrastructure as well as eliminating the waste going into landfills. figs.

  6. Portable Fuel Quality Analyzer

    Science.gov (United States)

    2014-01-27

    other transportation industries, such as trucking. The PFQA could also be used in fuel blending operations performed at petroleum, ethanol and biodiesel plants. ...used to identify fuel type and determine performance properties. The Phase I measurements identified the best spectral resolution, spectral region and...identified the best spectral resolution, spectral region and sample path length to differentiate between diesel and jet fuels, as well as to determine

  7. Pre-Conceptual Design of Korean Reference HLW Vertical Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Lee, Yang; Cho, Dong Geun; Kim, Seong Ki; Choi, Heui Joo; Choi, Jong Won; Hahn, Phil Soo

    2005-06-15

    Spent nuclear fuel from Korean nuclear power plants can be disposed in the underground repository. In this report, pre-conceptual design of Korean Reference HLW Vertical disposal System (KRS-V1) is presented. Though no site for the underground repository has been specified in Korea, but a generic site with granitic rock is considered for reference HLW repository design. Depth of the repository is assumed to be 500 meters. The repository consists of the disposal area, technical rooms and connections to the ground level in the controlled area and technical rooms and connections to the ground level in the uncontrolled area. Disposal area consists of disposal tunnels, panel tunnels and central tunnel. Panel tunnels connect disposal tunnels and the central tunnel. Central tunnel leads from controlled area to uncontrolled area and connects panel tunnels to each other. Technical rooms in the controlled area includes also four shafts: canister shaft, personnel shaft and two ventilation shafts. Technical rooms in the uncontrolled area includes correspondingly access tunnel, personnel shaft and two ventilation shafts. The repository will be excavated in seven phases. Construction of the repository will begin in 2020's when Underground Research Laboratory (URL) is constructed. Next step of the construction is taken in 2030's when first part of the repository is constructed. After this phase in 2040 all the disposal tunnels for CANDU canisters are excavated and disposal of CANDU canisters will begin. Disposal of PWR canisters will begin 2066 when all CANDU canisters are disposed. Disposal tunnels and panel tunnels will be backfilled during the operation of the repository also concurrent with the disposal of the canisters. All the canisters will be disposed in 2096 and the repository will be closed. This design report for Korean reference HLW disposal system can be used to evaluate feasibility of designed high-level waste disposal system, to formulate data for long

  8. 48 CFR 245.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Disposal methods. 245.603 Section 245.603 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractor Inventory 245.603 Disposal methods....

  9. The need and options available for permanent CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, H.J.; Butt, D.P.; Lackner, K.S.; Wendt, C.H.

    1999-04-01

    Inexpensive, readily available energy is the cornerstone of modern society and the basis of a decent standard of living. The high probability of future restrictions on CO{sub 2} emissions has put in question the use of fossil fuels, the largest, most convenient, and most cost-effective energy resource available. The rapidly growing world population, the need for an improved standard of living worldwide, and the nearly linear dependence of the standard of living on energy consumption, all coupled with the magnitude of today`s CO{sub 2} emissions point to an impending crisis. The authors briefly review the problem and look at the available options. They conclude that for the foreseeable future, fossil fuels will continue to dominate the world energy market, but that CO{sub 2} disposal will be required. Of the possible disposal options, mineral sequestration of CO{sub 2} appears as an extremely promising, permanent, and environmentally benign disposal option.

  10. Seabed disposal program. Annual report, January--December 1977. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Talbert, D.M. (ed.)

    1979-01-01

    At the conclusion of the fourth year of the program, it can again be stated that no technological or environmental reasons have been identified that would preclude the possibility of successful disposal of HLW or spent fuel in stable, sedimentary formations beneath the abyssal floors of the deep oceans.

  11. Phytoextraction crop disposal--an unsolved problem.

    Science.gov (United States)

    Sas-Nowosielska, A; Kucharski, R; Małkowski, E; Pogrzeba, M; Kuperberg, J M; Kryński, K

    2004-01-01

    Several methods of contaminated crop disposal after phytoextraction process (composting, compaction, incineration, ashing, pyrolysis, direct disposal, liquid extraction) have been described. Advantages and disadvantages of methods are presented and discussed. Composting, compaction and pyrolysis are the pretreatment steps, since significant amount of contaminated biomass will still exist after each of the process. Four methods of final disposal were distinguished: incineration, direct disposal, ashing and liquid extraction. Among them, incineration (smelting) is proposed as the most feasible, economically acceptable and environmentally sound.

  12. Ukraine biosolids incineration project generates electricity while solving disposal problems

    Energy Technology Data Exchange (ETDEWEB)

    Kosanke, J. [Quality Recycling Ltd., Henderson, NC (United States)

    2008-07-15

    This article described an innovative Waste-to-Energy (WtE) system that is currently being installed in the city of Odessa in the Ukraine. The city has a population of 1 million and is a major seaport on the Black Sea. Sewage sludge will be used as a biomass fuel to power an electrical generation plant. The system includes a clean-burning rotary cascading bed combustor (RCBC) linked to a boiler and an electricity-generating steam turbine. The RCBC spins in order to keep fuel cascading for maximum combustion, and is expected to burn over 50,000 tons of dewatered sewage sludge per year while generating 33,507,000 kWh of electricity per individual location. Eleven systems will be installed at major sewage processing modules in the Ukraine. A pilot program is also being conducted to test and monitor the system under United States emissions and operational standards. The RCBC is also being used to combust fuels derived from municipal solid waste (MSW) at a site in Kansas. Other fuels that can be cleanly burned using the RCBC system included high sulfur bituminous coal; anthracite coal waste; carpet and carpet scrap, and tires and rubber wastes. Studies have demonstrated that some toxic wastes can be removed using the RCBC system. It was concluded that burning negative value fuels can allow some power plants to earn revenues from disposal fees. 3 figs.

  13. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  14. 48 CFR 2845.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Disposal methods. 2845.603 Section 2845.603 Federal Acquisition Regulations System DEPARTMENT OF JUSTICE Contract Management GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 2845.603 Disposal...

  15. 48 CFR 945.603 - Disposal methods.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Disposal methods. 945.603 Section 945.603 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 945.603 Disposal methods....

  16. The possibilities and the feasibility of the use of Bioethanol as well as Biodiesel as fuels for the Mexican transport; Potenciales y Viabilidad del Uso de Bioetanol y Biodiesel para el Transporte en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Masera Cerutti, Omar [Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Rodriguez Martinez, Nicolas [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico); Ignacio Lazcano Martinez (and others)

    2006-07-01

    It is contained in this report a thorough study about the possibilities of the use of bioethanol or biodiesel as fuels for the Mexican transport. Such study was coordinated by the Mexican Secretary of Energy (SENER) and it was sponsored by both the Inter-American Development Bank (project ME-T1007 - ATN/DO-9375-ME) and the GTZ (German Technical Cooperation) (Project PN 04.21487.7-001.00) commissioned by the Federal Ministry for Economic Cooperation and Development (BMZ). Having hired a group of Mexican and International consultants, in order to carry out the different activities of this study. Following, it will be presented the major results of the study of each of the analyzed fuels: bioethanol and biodiesel. As a result of the individual analysis that was carried out, the problems and the technological alternatives as well as those concerning the policies are quiet specifics for each of the fuels, despite the common properties they have. It is found on the final document of the project (Final report), the detailed reports of each of these activities for both ethanol and biodiesel. [Spanish] Este reporte contiene un estudio exhaustivo sobre las posibilidades del bioetanol y el biodiesel como combustibles para el transporte en Mexico. El estudio fue coordinado por la Secretaria de Energia de Mexico (SENER) y patrocinado por el Banco Interamericano de Desarrollo (Proyecto ME-T1007 - ATN/DO-9375-ME) y la GTZ (Cooperacion Tecnica Alemana) (Proyecto PN 04.2148.7-001.00) por encargo del Ministerio de Cooperacion Economica y de Desarrollo (BMZ). Para la realizacion de las diferentes actividades de este estudio se contrato un grupo de consultores mexicanos e internacionales. A continuacion se presentan los principales resultados del estudio para cada uno de los combustibles analizados: bioetanol y biodiesel. Aunque existen aspectos comunes a estos combustibles, la problematica y las opciones tecnologicas y de politica son muy especificas a cada uno de ellos, lo que

  17. Moisture monitoring in waste disposal surface barriers.

    Science.gov (United States)

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries.

  18. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  19. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean &apos

  20. Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493

    Energy Technology Data Exchange (ETDEWEB)

    Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

    2012-07-01

    A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site

  1. Disposal of infective waste: demonstrated information and actions taken by nursing and medical students

    Directory of Open Access Journals (Sweden)

    Adenícia Custodia Silva Souza

    2015-03-01

    Full Text Available The inappropriate disposal of infectious waste generates occupational and environmental risks, representing the main cause of accidents with biological material. The aim of the present study was to verify the knowledge and the practice regarding the disposal of infectious waste among nursing and medical undergraduate students at a public university in the state of Goiás. Data were collected with the application of a questionnaire. The respondent students were observed in their practice and data were recorded in a checklist. Nursing students presented greater knowledge than medical students on the disposal of contaminated gloves (x²; p<0.001, as well as on the disposal of sharp cutting instruments (p=0.001. Contaminated gloves were disposed of into bags for common waste both by the nursing and the medical students. Results evidenced that the knowledge of students on the disposal of infectious waste was poor and insufficient to ensure its application to practice.

  2. Waste disposal conditions at the Incel thermal power plant at Banja Luka

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, P.; Knezevic, D. (Rudarski Institut, Belgrade (Yugoslavia). Zavod za Pripremu Mineralnih Sirovina)

    1990-01-01

    Proposes variants of a modernized ash disposal system at the Banja Luka coal power plant in Yugoslavia (Bosnia Herzegovina). The plant combusts coal from the Gracanica, Kreka, Stanari and Kamengrad mines, as well as wood wastes and spent liquor from the paper industry of the area. Possibilities for disposal include dry ash disposal by dump truck transportation after ash pelletizing, or wet ash disposal by hydraulic pipeline transport (over 1 km) to the disposal site. Chemical properties of the ash are given. Optimum ash and water mixture for hydraulic transport was found to have a 50% solids content. Pelletizing of ash without additional binders is regarded as feasible due to chemical properties of the ash. Ground insulation of the disposal site is required due to the high alkaline content of the ash. 4 refs.

  3. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  4. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  5. Evaluation of Codisposal Viability for Melt and Dilute DOE-Owned Fuel

    Energy Technology Data Exchange (ETDEWEB)

    H. Radulescu

    2001-07-31

    There are more than 250 forms of U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment (DOE 2000b, Section 6.6.8). The Melt and Dilute (MD) SNF has been designated as the representative fuel for the high-enriched U-Al fuel group. The MD SNF consists of homogeneous cylindrical ingots with 16.5 in. (419.1 mm) maximum diameter. Two general ingot compositions are considered in the criticality and geochemistry analyses. The first composition consists of 8.2 to 18.2 wt% uranium, enriched at less than 20 wt% U-235 and 0.5 wt% gadolinium, with the balance of the ingot being aluminum. The second composition is identical to the first for uranium and gadolinium, but in this case 2.5 wt% of the ingot is hafnium, with the balance of the ingot being aluminum. The results of the analyses performed will be used to develop waste acceptance criteria. The items that are important to criticality control are identified based on the analysis needs and result sensitivities. Prior to acceptance of fuel from the high-enriched U-Al fuel group for disposal, the important items for the fuel types that are being considered for disposal under the high-enriched U-Al fuel group must be demonstrated to satisfy the conditions determined in this report. The analyses have been performed by following the disposal criticality analysis methodology, which was documented in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000) submitted to the U.S. Nuclear Regulatory Commission. The methodology includes analyzing the geochemical and physical processes that can breach the waste package and degrade the waste forms and other internal components, as well as the structural, thermal, and shielding analyses, and intact and degraded

  6. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  7. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  8. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  9. Assessment of automotive fuels

    Science.gov (United States)

    Isenberg, G.

    Energy demand all over the world increases steadily and, within the next decades, is almost completely met by fossil fuels. This poses increasing pressure on oil supply and reserves. Concomitant is the concern about environmental pollution, especially by carbon dioxide from fossil fuel combustion, with the risk of global warming. Environmental well-being requires a modified mix of energy sources to emit less carbon dioxide, starting with a move to natural gas and ending with the market penetration of renewable energies. Efforts should focus on advanced oil and gas production and processing technologies and on regeneratively produced fuels like hydrogen or bio-fuels as well. Within the framework of an industrial initiative in Germany, a process of defining one or two alternative fuels was started, to bring them into the market within the next years.

  10. 基于物联网技术的油井输油泵测控系统的设计%Design of Measurement & Control System for Oil Well Fuel Pumps Based on Internet of Things Technology

    Institute of Scientific and Technical Information of China (English)

    杨盛泉; 巩万福; 孟栋轩; 刘白林

    2014-01-01

    为实现原油生产企业分布在不同地区的油井输油泵远程自动测量与控制,研究与设计了一种基于物联网技术的油井输油泵测控系统。本测控系统采用了三层(感知层、网络层和控制应用层)物联网结构组成,文中分析了各层的功能与特点,重点论述了测控系统的传感器节点与汇聚节点的硬件组成与控制原理,讨论了节点单片机程序设计流程图以及物联网中心机软件设计主要模块内容。企业实验结果表明,较传统的人工巡井方式,本系统具有操作维护方便、劳动强度低、测量与控制时效性与精度高等优点。%In order for the crude oil production enterprises to realize remote automatic measurement and control of their oil well fuel pumps which are located in different regions ,this paper first designs a measurement & control system for oil well fuel pumps based on the internet of things technology .The system consists of three layer ,in chiding perception layer ,network layer and application control layers , forming the IOT (Internet of Things) structure . Then the functions and features of all layers are analyzed with emphasis on the hardware components and the control theory of the sensor instrument node and the aggreqation instrument node and the aggregation intrument node in the system .Finally , the programming flow chart of the node microcontroller and the main module content of the software for the IOT center computer are described .The experimental results in enterprises show that the system has the advantages of easy operation and maintenance ,low labor intensity ,high time efficiency and high precision over the traditional manual inspection methods .

  11. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  12. Reconstitution of fuel assemblies and core components

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, Wolfgang; Langenberger, Jan [AREVA NP GmbH (Germany)

    2012-11-01

    Due to AREVA's experience and big portfolio of techniques, reconstitution of fuel assemblies and core components at light water reactors is possible within a reasonable timeframe and with interesting cost benefit. Customer feedback indicates the sustainability of such reconstitutions. As a result, a long-term maintenance of value can be assured and early waste disposal can be avoided. (orig.)

  13. MOX fuel arrangement for nuclear core

    Science.gov (United States)

    Kantrowitz, Mark L.; Rosenstein, Richard G.

    1998-01-01

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  14. Mined Geologic Disposal System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS.

  15. Present state on research and development of underground disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    In September, 1996, Power Reactor and Nuclear Fuel Development Corp. (PNC) arranged her old research and development (R and D) results to issue as a shape of `Technical report on R and D of high level radioactive waste underground disposal`. On the other hand, Radioactive waste special party in Committee of Atomic Energy at that time evaluated that technical possibility for safety establishment of underground disposal in Japan was elucidated and showed future problems in the technical development. Therefore, PNC proceeded further R and D for the second arrangement under consideration of such comments. As a result, in investigation of geological environment condition, main points were laid at study on rear-field feature and its long-term stability. In development of disposal technique, main points were laid at elucidation of design requirements confirmable to the near-field evaluation, main points were laid at upgrading validity of evaluation model to analytically evaluate the near-field feature using data with high reliability. (G.K.)

  16. Update of the used fuel disposition Campaign Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MacKinnon, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McMahon, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  17. Update of the Used Fuel Dispositon Campaign Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Kevin A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mackinnon, Robert James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    This Update to the Used Fuel Disposition Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program, building on work completed in this area since 2009. This implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclearfuel- and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to available funding and progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  18. Safety assesment on radioactive waste from the partitioning and transmutation fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Kim, Sung Gi; Park, Won Suk

    2000-12-01

    A preliminary study on the quantitative effect of the partition and transmutation on the permanent disposal of HLW, which means the spent fuel in view of current Korean situation, was carried out. Two approaches in quantitative way are considered to be available for evaluating the deterministic influence of P and T strategy on the long-term disposal of this HLW are assessments of waste toxicity indices (TIs) and the repository performance assessments (PAs). TI is measures of the intrinsic radiotoxicity of the wastes and does not incorporate any detailed consideration of the feature, event and processes (FEPs) which might be lead to the release of the nuclides from the waste disposed of in the repository and the transport to and through the biosphere. Whereas, PA, which treated as main topic of present study, does include consideration of such FEPs even though it could not fully comprehensive at the current stage of R andD on geological disposal. Through the study, after reviewing the PA approaches which considered by some countries, relative advantages in case P and T will be performed before disposal over direct permanent disposal. Even though P and T could be an ideal solution to reduce the inventory which eventually decreases the release time as well as the peaks in the annual dose and even minimize the repository area through the proper handling of nuclides whose decay heat is significant and further produce the electricity, it should overcome the such major disadvantages as problems technically exposed during developing and improving the P and T system, economic point of view, and public acceptance in view of environment-friendly issues. In this regard some relevant issues are also discussed to show the direction for further studies.

  19. A Multi-Layered Ceramic Composite for Impermeable Fuel Cladding for COmmercial Wate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Feinroth, Herbert

    2008-03-03

    A triplex nuclear fuel cladding is developed to further improve the passive safety of commercial nuclear plants, to increase the burnup and durablity of nuclear fuel, to improve the power density and economics of nuclear power, and to reduce the amount of spent fuel requiring disposal or recycle.

  20. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  1. Clay Generic Disposal System Model - Sensitivity Analysis for 32 PWR Assembly Canisters (+2 associated model files).

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Edgar [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The Used Fuel Disposition Campaign (UFDC), as part of the DOE Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technology program (FCT) is investigating the disposal of high level radioactive waste (HLW) and spent nuclear fuela (SNF) in a variety of geologic media. The feasibility of disposing SNF and HLW in clay media has been investigated and has been shown to be promising [Ref. 1]. In addition the disposal of these wastes in clay media is being investigated in Belgium, France, and Switzerland. Thus, Argillaceous media is one of the environments being considered by UFDC. As identified by researchers at Sandia National Laboratory, potentially suitable formations that may exist in the U.S. include mudstone, clay, shale, and argillite formations [Ref. 1]. These formations encompass a broad range of material properties. In this report, reference to clay media is intended to cover the full range of material properties. This report presents the status of the development of a simulation model for evaluating the performance of generic clay media. The clay Generic Disposal System Model (GDSM) repository performance simulation tool has been developed with the flexibility to evaluate not only different properties, but different waste streams/forms and different repository designs and engineered barrier configurations/ materials that could be used to dispose of these wastes.

  2. Waste Disposal: The PRACLAY Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, D

    2000-07-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation.

  3. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  4. Perspectives on the closed fuel cycle Implications for high-level waste matrices

    Science.gov (United States)

    Gras, Jean-Marie; Quang, Richard Do; Masson, Hervé; Lieven, Thierry; Ferry, Cécile; Poinssot, Christophe; Debes, Michel; Delbecq, Jean-Michel

    2007-05-01

    Nuclear energy accounts for 80% of electricity production in France, generating approximately 1150 t of spent fuel for an electrical output of 420 TWh. Based on a reprocessing-conditioning-recycling strategy, the orientations taken by Électricité de France (EDF) for the mid-term and the far-future are to keep the fleet performances at the highest level, and to maintain the nuclear option fully open by the replacement of present pressurized water reactor (PWR) by new light water reactor (LWR), such as the evolutionary pressurized reactor (EPR) and future Generation IV designs. Adaptations of waste materials to new requirements will come with these orientations in order to meet long-term energy sustainability. In particular, waste materials and spent fuels are expected to meet increased requirements in comparison with the present situation. So the treatment of higher burn-up UO2 spent fuel and MOX fuel requires determining the performances of glass and other matrices according to several criteria: chemical 'digestibility' (i.e. capacity of glass to incorporate fission products and minor actinides without loss of quality), resistance to alpha self-irradiation, residual power in view of disposal. Considering the long-term evolution of spent MOX fuel in storage, the helium production, the influence of irradiation damages accumulation and the evolution of the microstructure of the fuel pellet need to be known, as well as for the future fuels. Further, the eventual transmutation of minor actinides in fast neutron reactors (FR) of Generation IV, if its interest in optimising high-level waste management is proven, may also raise new challenges about the materials and fuel design. Some major questions in terms of waste materials and spent fuel are discussed in this paper.

  5. Sewage sludge disposal strategies for sustainable development.

    Science.gov (United States)

    Kacprzak, Małgorzata; Neczaj, Ewa; Fijałkowski, Krzysztof; Grobelak, Anna; Grosser, Anna; Worwag, Małgorzata; Rorat, Agnieszka; Brattebo, Helge; Almås, Åsgeir; Singh, Bal Ram

    2017-03-14

    The main objective of the present review is to compare the existing sewage sludge management solutions in terms of their environmental sustainability. The most commonly used strategies, that include treatment and disposal has been favored within the present state-of-art, considering existing legislation (at European and national level), characterization, ecotoxicology, waste management and actual routs used currently in particular European countries. Selected decision making tools, namely End-of-waste criteria and Life Cycle Assessment has been proposed in order to appropriately assess the possible environmental, economic and technical evaluation of different systems. Therefore, some basic criteria for the best suitable option selection has been described, in the circular economy "from waste to resources" sense. The importance of sewage sludge as a valuable source of matter and energy has been appreciated, as well as a potential risk related to the application of those strategies.

  6. Investigation of novel spent fuel verification system for safeguard application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Radioactive waste, especially spent fuel, is generated from the operation of nuclear power plants. The final stage of radioactive waste management is disposal which isolates radioactive waste from the accessible environment and allows it to decay. The safety, security, and safeguard of a spent fuel repository have to be evaluated before its operation. Many researchers have evaluated the safety of a repository. These researchers calculated dose to public after the repository is closed depending on their scenario. Because most spent fuel repositories are non-retrievable, research on security or safeguards of spent fuel repositories have to be performed. Design based security or safeguard have to be developed for future repository designs. This study summarizes the requirements of future spent fuel repositories especially safeguards, and suggests a novel system which meets the safeguard requirements. Applying safeguards to a spent fuel repository is becoming increasingly important. The future requirements for a spent fuel repository are suggested by several expert groups, such as ASTOR in IAEA. The requirements emphasizes surveillance and verification. The surveillance and verification of spent fuel is currently accomplished by using the Cerenkov radiation detector while spent fuel is being stored in a fuel pool. This research investigated an advanced spent fuel verification system using a system which converts spent fuel radiation into electricity. The system generates electricity while it is conveyed from a transportation cask to a disposal cask. The electricity conversion system was verified in a lab scale experiment using an 8.51GBq Cs-137 gamma source.

  7. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  8. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  9. A Disposable Blood Cyanide Sensor

    Science.gov (United States)

    Tian, Yong; Dasgupta, Purnendu K.; Mahon, Sari B.; Ma, Jian; Brenner, Matthew; Wang, Jian-Hua; Boss, Gerry R.

    2013-01-01

    Deaths due to smoke inhalation in fires are often due to poisoning by HCN. Rapid administration of antidotes can result in complete resuscitation of the patient but judicious dosing requires the knowledge of the level of cyanide exposure. Rapid sensitive means for blood cyanide quantitation are needed. Hydroxocyanocobinamide (OH(CN)Cbi) reacts with cyanide rapidly; this is accompanied by a large spectral change. The disposable device consists of a pair of nested petri dish bottoms and a single top that fits the outer bottom dish. The top cover has a diametrically strung porous polypropylene membrane tube filled with aqueous OH(CN)Cbi. One end of the tube terminates in an amber (583 nm) light emitting diode; the other end in a photodiode via an acrylic optical fiber. An aliquot of the blood sample is put in the inner dish, the assembly covered and acid is added through a port in the cover. Evolved HCN diffuses into the OH(CN)Cbi solution and the absorbance in the long path porous membrane tube cell is measured within 160s. The LOD was 0.047, 1.0, 0.15, 5.0 and 2.2 μM, respectively, for water (1 mL), bovine blood (100 μL, 1 mL), and rabbit blood (20μL, 50 μL). RSDs were cyanide in rabbit and human blood. The disposable device permits field measurement of blood cyanide in < 4 min. PMID:23473259

  10. Disposable optics for microscopy diagnostics.

    Science.gov (United States)

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-20

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  11. Disposable optics for microscopy diagnostics

    Science.gov (United States)

    Vilmi, Pauliina; Varjo, Sami; Sliz, Rafal; Hannuksela, Jari; Fabritius, Tapio

    2015-11-01

    The point-of-care testing (POCT) is having increasing role on modern health care systems due to a possibility to perform tests for patients conveniently and immediately. POCT includes lot of disposable devices because of the environment they are often used. For a disposable system to be reasonably utilized, it needs to be high in quality but low in price. Optics based POCT systems are interesting approach to be developed, and here we describe a low-cost fabrication process for microlens arrays for microscopy. Lens arrays having average lens diameter of 222 μm with 300 μm lens pitch were fabricated. The lenses were characterized to have standard deviation of 0.06 μm in height and 4.61 μm in diameter. The resolution limit of 3.9μm is demonstrated with real images, and the images were compared with ones made with glass and polycarbonate lens arrays. The image quality is at the same level than with the glass lenses and the manufacturing costs are very low, thus making them suitable for POCT applications.

  12. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  13. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the

  14. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  15. Thirteenth annual report of the Technical Advisory Committee on the Nuclear Fuel Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-15

    This report details activities since the last reporting period by the Technical Advisory Committee (TAC). The emphasis of the work in the Canadian Nuclear Fuel Waste Management Program (CNFWMP) has been on the writing of the Environmental Impact Statement (EIS) and the associated set of the primary reference document as well as supporting documents. These are in preparation for submission to the Environmental Assessment Review Panel who will lead the national evaluation of the disposal concept under the auspices of the Federal Environmental Assessment Review Office (FEARO).

  16. Towards implementation of spent nuclear fuel management in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Eero, Patrakka

    2007-07-01

    The final disposal of spent fuel from the Finnish nuclear power plants will be implemented by Posiva Oy, a company owned jointly by the two nuclear power producers Fortum Oyj and Teollisuuden Voima Oy. Preparations for nuclear waste management were started already in the 1970s. Potential sites for the disposal of spent fuel were screened in the 1980s, followed by detailed site investigations in the 1990s. In May 2001, the Finnish Parliament ratified the Decision-in-Principle that was a prerequisite for the selection of Olkiluoto as the site of the final disposal facility. The disposal project has progressed to the next stage -- constructing an underground characterization facility, known as ONKALO, at Olkiluoto, which has also been designed to serve as an access route to the repository when constructed. Work on the entire final disposal project is progressing so that disposal can commence in 2020. ONKALO will be used to obtain further information for the repository design, and it will also enable final disposal technology to be tested under actual conditions. Once ONKALO has been completed, work will start on building the encapsulation plant and final disposal repository in the 2010s. (auth)

  17. Advanced waste forms from spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; McPheeters, C.C.

    1995-12-31

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed.

  18. Strategy for Used Fuel Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Marschman; Chris Rusch

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation staffs within the UFDC are responsible for addressing issues regarding the extended or long-term storage of UNF and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While both wet and dry storage have been shown to be safe options for storing UNF, the focus of the program is on dry storage at reactor or centralized locations. Because limited information is available on the properties of high burnup fuel (exceeding 45 gigawatt-days per metric tonne of uranium [GWd/MTU]), and because much of the fuel currently discharged from today’s reactors exceeds this burnup threshold, a particular emphasis of this program is on high burnup fuels. Since high burnup used fuels have only been loaded into dry storage systems in the past decade or so, these materials are available to the UFDC for testing in only very limited quantities. Much of what is available has come via NRC testing programs. Some of these fuels may have achieved "high burnup," but that does not mean they were designed for high burnup use (e.g. lower enrichments, smaller plenum spaces, extra reactor cycles). The handling and transfer of these materials from utility to laboratory has not always been

  19. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  20. Optimization of Deep Borehole Systems for HLW Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Baglietto, Emilio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lester, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Brady, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, B. W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  1. DR Argillite Disposal R&D at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Kunhwi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Hao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-12

    Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at the Department of Energy’s (DOE) Office of Nuclear Energy LBNL’s research activities have focused on understanding and modeling EDZ evolution and the associated coupled processes and impacts of high temperature on parameters and processes relevant to performance of a clay repository to establish the technical base for the maximum allowable temperature. This report documents results from some of these activities. These activities address key Features, Events, and Processes (FEPs), which have been ranked in importance from medium to high, as listed in Table 7 of the Used Fuel Disposition Campaign Disposal Research and Development Roadmap (FCR&D-USED-2011-000065 REV0) (Nutt, 2011). Specifically, they address FEP 2.2.01, Excavation Disturbed Zone, for clay/shale, by investigating how coupled processes affect EDZ evolution; FEP 2.2.05, Flow and Transport Pathways; and FEP 2.2.08, Hydrologic Processes, and FEP 2.2.07, Mechanical Processes, and FEP 2.2.09, Chemical Process—Transport, by studying near-field coupled THMC processes in clay/shale repositories. The activities documented in this report also address a number of research topics identified in Research & Development (R&D) Plan for Used Fuel Disposition Campaign (UFDC) Natural System Evaluation and Tool Development (Wang 2011), including Topics S3, Disposal system modeling – Natural System; P1, Development of discrete fracture network (DFN) model; P14, Technical basis for thermal loading limits; and P15 Modeling of disturbed rock zone (DRZ) evolution (clay repository).

  2. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  3. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sassani, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swift, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-26

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included in the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.

  4. Data Validation Package August 2015 Groundwater Sampling at the Grand Junction, Colorado, Disposal Site October 2015

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [U.S. Dept. of Energy, Washington, DC (United States). Office of Legacy Management; Baur, Gary [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2015-11-03

    Sampling Period: August 4, 2015. The 1998 Interim Long-Term Surveillance Plan for the Cheney Disposal Site Near Grand Junction, Colorado, requires annual monitoring to assess the performance of the disposal cell. Monitoring wells 0731, 0732, and 0733 were sampled as specified in the plan. Sampling and analyses were conducted in accordance with Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). The water level was measured at each sampled well. The water level in well 0733, located in the disposal cell, is lower than water levels in adjacent wells 0731 and 0732, indicating a hydraulic gradient toward the disposal cell. Results from this sampling event were generally consistent with results from the past as shown in the attached concentration-versus-time graphs. There have been no large changes in contaminant concentration observed over the last several years with the following exception. The uranium concentration in well 0733 has been trending upward since 2003. High uranium concentrations are expected in this well because it is located in the disposal cell. The selenium concentrations observed in wells 0731 and 0732 are elevated when compared to the disposal cell 0733. Wells 0731 and 0732 are completed at the alluvium/Mancos contact; here, elevated selenium concentrations are expected due to contributions from the Mancos shale.

  5. Synthesis on the long term behavior of spent nuclear fuel. Vol.1,2; Synthese sur l'evolution a long terme des colis de combustibles irradies. Tome 1,2

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch.; Toulhoat, P.; Grouiller, J.P.; Pavageau, J.; Piron, J.P.; Pelletier, M.; Dehaudt, Ph.; Cappelaere, Ch.; Limon, R.; Desgranges, L.; Jegou, Ch.; Corbel, C.; Maillard, S.; Faure, M.H.; Cicariello, J.C.; Masson, M. [CEA Saclay, DEN/DDIN/DPRGD, 91 - Gif sur Yvette (France)

    2001-07-01

    The aim of this report is to present the major objectives, the key scientific issues, and the preliminary results of the research conducted in France in the framework of the third line of the 1991 Law, on the topic of the long term behavior of spent nuclear fuel in view of long term storage or geological disposal. Indeed, CEA launched in 1998 the Research Program on the Long Term Behavior of Spent Nuclear Fuel (abbreviated and referred to as PRECCI in French; Poinssot, 1998) the aim of which is to study and assess the ability of spent nuclear fuel packages to keep their initially allocated functions in interim storage and geological disposal: total containment and recovery functions for duration up to hundreds of years (long term or short-term interim storage and/or first reversible stages of geological disposal) and partial confinement function (controlled fluxes of RN) for thousands of years in geological disposal. This program has to allow to obtain relevant and reliable data concerning the long term behavior of the spent fuel packages so that feasibility of interim storage and/or geological disposal can be assessed and demonstrated as well as optimized. Within this framework, this report presents for every possible scenario of evolution (closed system, in Presence of water in presence of gases) what are estimated to be the most relevant evolution mechanism. For the most relevant scientific issues hence defined, a complete scientific review of the best state of knowledge is subsequently here given thus allowing to draw a clear guideline of the major R and D issues for the next years. (authors)

  6. Method of treating wells

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.A.; Lasater, R.M.

    1966-11-22

    Chemical compositions and methods are provided for treating underground formations to render their surfaces water-repellent or preferentially oil-wettable. Previous methods have provided only temporary water-repellency because they do not actually act chemically with the reservoir rock. This improvement is obtained by using a treating agent which does not form a precipitate upon hydrolysis with water, such as a liquid organo-halogen- silane or its ester. A water-soluble anhydrous solvent which is nonreactive with the silane is used as a carrier. This method may be used for treating non-oil-bearing aquifers for increasing the flow rate of water, such as in water supply wells, or in water input rate, such as in water disposal wells. (10 claims)

  7. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW-ACTIVITY WASTES IN RCRA-C DISPOSAL CELLS

    Science.gov (United States)

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology....

  8. Nuclear waste disposal educational forum

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-18

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base.

  9. Deep Borehole Disposal Safety Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stein, Emily [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); MacKinnon, Robert J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Tillman, Jack Bruce [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  10. An Assessment of the Disposal of Petroleum Industry NORM in Nonhazardous Landfills

    Energy Technology Data Exchange (ETDEWEB)

    Arnish, John J.; Blunt, Deborah, L.; Haffenden, Rebecca A.; Herbert, Jennifer; Pfingston, Manjula; Smith, Karen P.; Williams, Gustavious P.

    1999-10-12

    In this study, the disposal of radium-bearing NORM wastes in nonhazardous landfills in accordance with the MDEQ guidelines was modeled to evaluate potential radiological doses and resultant health risks to workers and the general public. In addition, the study included an evaluation of the potential doses and health risks associated with disposing of a separate NORM waste stream generated by the petroleum industry--wastes containing lead-210 (Pb-210) and its progeny. Both NORM waste streams are characterized in Section 3 of this report. The study also included reviews of (1) the regulatory constraints applicable to the disposal of NORM in nonhazardous landfills in several major oil and gas producing states (Section 2) and (2) the typical costs associated with disposing of NORM, covering disposal options currently permitted by most state regulations as well as the nonhazardous landfill option (Section 4).

  11. The road to Yucca Mountain—Evolution of nuclear waste disposal in the United States

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2016-01-01

    The generation of electricity by nuclear power and the manufacturing of atomic weapons have created a large amount of spent nuclear fuel and high-level radioactive waste. There is a world-wide consensus that the best way to protect mankind and the environment is to dispose of this waste in a deep geologic repository. Initial efforts focused on salt as the best medium for disposal, but the heat generated by the radioactive waste led many earth scientists to examine other rock types. In 1976, the director of the U.S. Geological Survey (USGS) wrote to the U.S. Energy Research and Development Administration (ERDA), predecessor agency of the U.S. Department of Energy (DOE), suggesting that there were several favorable environments at the Nevada Test Site (NTS), and that the USGS already had extensive background information on the NTS. Later, in a series of communications and one publication, the USGS espoused the favorability of the thick unsaturated zone. After the passage of the Nuclear Waste Policy Act (1982), the DOE compiled a list of nine favorable sites and settled on three to be characterized. In 1987, as the costs of characterizing three sites ballooned, Congress amended the Nuclear Waste Policy Act directing the DOE to focus only on Yucca Mountain in Nevada, with the proviso that if anything unfavorable was discovered, work would stop immediately. The U.S. DOE, the U.S. DOE national laboratories, and the USGS developed more than 100 detailed plans to study various earth-science aspects of Yucca Mountain and the surrounding area, as well as materials studies and engineering projects needed for a mined geologic repository. The work, which cost more than 10 billion dollars and required hundreds of man-years of work, culminated in a license application submitted to the U.S. Nuclear Regulatory Commission (NRC) in 2008.

  12. The use and disposal of greywater in the non-sewered areas of ...

    African Journals Online (AJOL)

    2007-02-09

    Feb 9, 2007 ... of South Africa: Part 2 – Greywater management options ... ing health and environmental risks as well as possibly providing benefits through controlled reuse. ...... greywater disposal and drainage issues in their business plan.

  13. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.; Damschen, D.W.

    1977-06-01

    The Hanford Site contains about 2200 wells constructed from pre-Hanford Works days to the present. As of June 1977, about 1900 wells still exist, and about 850 of these existing wells were drilled to the ground-water table. About 700 of these wells (including about 24 farm wells) still contain water. The others have become dry through infiltration of sediments or a general lowering of the water table in their vicinity. This report, providing the most complete documentation of wells in and adjacent to the Hanford Site, supersedes all previous compilations of Hanford wells.

  14. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, W

    2009-01-15

    This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team was expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the

  15. Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste

    National Research Council Canada - National Science Library

    Almeida, João R M; Fávaro, Léia C L; Quirino, Betania F

    2012-01-01

    ... and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated...

  16. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  17. Well Spacing for Horizontal Wells

    Directory of Open Access Journals (Sweden)

    C.D.S. Keuengoua

    2011-06-01

    Full Text Available In the developing phase of a hydrocarbon reservoir and planning for drilling the production wells, it is necessary to drill the wells in an appropriate spacing to achieve maximum economic revenues during the reservoir life span. Well spacing which is the real location and interrelationship between producing oil or gas wells in an oil field is an important parameter. It is determined for the maximum ultimate production of a given reservoir and should be taken in consideration during well planning to avoid drilling of unnecessary wells. This study presents the concept of drainage area on horizontal well and horizontal productivity indices with different equations and their applications. A user friendly Excel Spreadsheet program was developed to calculate the productivity values of horizontal wells using three major available productivity equations. Also, the developed spreadsheet program was used to evaluate the effect of well spacing on the productivities of horizontal wells using productivity index approach and drainage area concept. It also helps to review the comparison between vertical and horizontal wells spacing based on drainage area concept. This program was validated, and then was used to study the effect of horizontal well length on the ratio of horizontal well productivity to vertical well productivity. The results show that higher ratio of horizontal well productivity to vertical well productivity values are obtained with increase length of the horizontal well. It is a very useful tool for making decision about the application of well spacing for horizontal wells.

  18. ORIGINAL ARTICLES Sharps disposal practices among diabetic ...

    African Journals Online (AJOL)

    waste is generated daily in the form of used needles and syringes. Used sharps are a biomedical hazard as incorrect disposal could lead to needle-stick ... Treatment Guidelines (STG)10 do not provide recommendations on the safe disposal ...

  19. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  20. 10 CFR 850.32 - Waste disposal.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Waste disposal. 850.32 Section 850.32 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.32 Waste disposal. (a) The responsible employer must control the generation of beryllium-containing waste, and beryllium-contaminated equipment and other...

  1. Medications at School: Disposing of Pharmaceutical Waste

    Science.gov (United States)

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  2. Hydrologic implications of solid-water disposal

    Science.gov (United States)

    Schneider, William Joseph

    1970-01-01

    The disposal of more than 1,400 million pounds of solid wastes in the United States each day is a major problem. This disposal in turn often leads to serious health, esthetic, and environmental problems. Among these is the pollution of vital ground-water resources.

  3. MEDICATION DISPOSAL AS A SOURCE FOR DRUGS AS ...

    Science.gov (United States)

    The major routes by which pharmaceuticals enter the environment are excretion, bathing, anddisposal of leftover, unwanted medications. Pharmaceuticals designed for humans and animalsoften remain unused. Leftover, accumulated drugs represent potentially environmentallyunsound disposal and suboptimal delivery of health care. They also can pose acute exposurerisks for humans and wildlife. Active pharmaceutical ingredients (APIs) directly enter theenvironment primarily via sewage. Among the three routes of entry, the relative contributions ofeach are poorly understood. In contrast to excretion, which as a source comprises continual lowlevelcontributions from multitudes of people, drug disposal comprises acute but transient andepisodic contributions from fewer people. The only route that is subject most easily to pollutionprevention or source control measures is disposal.A major unknown with respect to drugs as pollutants is what fractions of drug residues occurringin the ambient environment result from discarding leftover drugs. No studies exist that provideobjective data from well-defined populations to support any type of conclusion. Given theimportance of environmental stewardship to sustainability, a means for assessing the relativecontributions of APIs resulting from disposal would be useful in justifying the resources thatmight be devoted to controlling this source - - for example, by way of consumer

  4. Justification Of The Use Of Boreholes For Disposal Of Sealed Radiological Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, John [Los Alamos National Laboratory; Johnson, Peter [Los Alamos National Laboratory

    2008-01-01

    Soon there will be only 14 states in two compacts that are able to dispose of Low Level Waste (LLW): the Northwest and Rocky Mountain compact with disposal options in Richland, Washington, and the Atlantic compact with disposal options in Barnwell, South Carolina. How do states not in one of the two compacts dispose of their LLW? The Off-Site Source Recovery Project can take possession and dispose of some of the unwanted transuranic sources at the Waste Isolation Pilot Plant (WIPP). However, there will be no path forward for states outside of the two compacts for disposal of their non-transuranic LLW. A solution that has been much discussed, debated and researched, but has not been put into wide scale practice, is the borehole disposal concept. It is the author's position that companies that drill and explore for oil have been disposing of sources in borehole-like structures for years. It should be noted that these companies are not purposely disposing of these sources, but the sources are irretrievable and must be abandoned. Additionally, there are Nuclear Regulatory Commission (NRC) regulations that must be followed to seal the well that contains the lost and abandoned source. According to the NRC Event Notification Reports database, there were a minimum of 29 reports of lost and abandoned sources in oil wells between December 1999 and October 2006. The sources were lost at depths between 2,018-18,887 feet, or 600-5,750 meters. The companies that are performing explorations with the aid of sealed radiological sources must follow regulation 10 CFR Part 39. Subsection 15 outlines the procedures that must be followed if sources are determined to be irretrievable and abandoned in place. If the NRC allows and has regulations in place for oil companies, why can't states and/or companies be allowed to dispose of LLW in a similar fashion?

  5. Comparative assessment of status and opportunities for carbon Dioxide Capture and storage and Radioactive Waste Disposal In North America

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.; Birkholzer, J.T.

    2011-07-22

    Aside from the target storage regions being underground, geologic carbon sequestration (GCS) and radioactive waste disposal (RWD) share little in common in North America. The large volume of carbon dioxide (CO{sub 2}) needed to be sequestered along with its relatively benign health effects present a sharp contrast to the limited volumes and hazardous nature of high-level radioactive waste (RW). There is well-documented capacity in North America for 100 years or more of sequestration of CO{sub 2} from coal-fired power plants. Aside from economics, the challenges of GCS include lack of fully established legal and regulatory framework for ownership of injected CO{sub 2}, the need for an expanded pipeline infrastructure, and public acceptance of the technology. As for RW, the USA had proposed the unsaturated tuffs of Yucca Mountain, Nevada, as the region's first high-level RWD site before removing it from consideration in early 2009. The Canadian RW program is currently evolving with options that range from geologic disposal to both decentralized and centralized permanent storage in surface facilities. Both the USA and Canada have established legal and regulatory frameworks for RWD. The most challenging technical issue for RWD is the need to predict repository performance on extremely long time scales (10{sup 4}-10{sup 6} years). While attitudes toward nuclear power are rapidly changing as fossil-fuel costs soar and changes in climate occur, public perception remains the most serious challenge to opening RW repositories. Because of the many significant differences between RWD and GCS, there is little that can be shared between them from regulatory, legal, transportation, or economic perspectives. As for public perception, there is currently an opportunity to engage the public on the benefits and risks of both GCS and RWD as they learn more about the urgent energy-climate crisis created by greenhouse gas emissions from current fossil-fuel combustion practices.

  6. TECHNO – ECONOMIC ACCEPTABILITY ANALISYS OF WASTE DISPOSAL BY INJECTION INTO APPROPRIATE FORMATION

    Directory of Open Access Journals (Sweden)

    Vladislav Brkić

    2013-12-01

    Full Text Available During exploration and production of oil and natural gas, various types of waste must be disposed in a permanent and safe way. There is a range of methods for processing and disposal of waste, such as disposal into landfills, solidification, namely chemical stabilization, thermal processing, appropriate formation injections uncovered by a deep well, disposal into salt domes and bioremediation. The method of waste disposal into appropriate formations is a method where strict geological and technical criteria must be satisfied when applied. A fundamental scientific hypothesis has been formulated whereby economic acceptability of the waste injection method, as a main method for waste disposal, is to be shown by an economic evaluation. The results of this research are relevant since there has been an intention in Croatia and worldwide to abandon wells permanently due to oil and gas reservoirs depletion and therefore it is essential to estimate economic impacts of the waste injection method application. In that way, profitability of using existing wells for waste disposal in oil industry has been increased, leading to the improvement of petroleum company’s business activities (the paper is published in Croatian.

  7. The legislation of nuclear disposal. Text booklet with an introduction; Das Recht der Atomentsorgung. Textsammlung mit Einfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Smeddinck, Ulrich (ed.)

    2014-07-01

    The book on the legislation of nuclear waste disposal covers the following issues: Part A: Introduction in the site selection law. Part B: Set of regulations: Constitutional law of the Federal Republic of Germany (extract), Guideline 2011/70 EURATOM on the responsible and safe disposal of spent fuel elements, common agreement on the safety of spent fuel treatment and on the safety of radioactive waste conditioning, law on search and selection of final repository site for heat generating radioactive wastes (site selection law), law on the civil use of nuclear energy and the protection against its hazards (Atomic Law AtG), federal mining act (BBergG), law on environmental impact assessment (UVPG), Law on supplementary regulations and legal remedies in environmental matters according EU guideline 2003/35EG, law on the construction of a Federal authority for nuclear disposal (BfkEEG), regulation on the protection against ionizing radiation hazards (Strahlenschutzverordnung), regulation on the transport of radioactive wastes or spent fuel elements. Regulation on the commissioning processes of facilities according paragraph 7 Atomic law, regulation on the definition of a development freeze for site protection for a final disposal, regulation on the warranty of nuclear safety and radiation protection, implementing rule for the nuclear safety warranty, regulation on the advance financing for the construction of Federal facilities for safeguarding and final disposal of radioactive wastes. Cost regulation for the Atomic Law.

  8. Responding to change - The evolution of operator training for the PFR liquid metals disposal project

    Energy Technology Data Exchange (ETDEWEB)

    Cashmore, Stephen [RWE NUKEM Limited, Kelburn Court, Daten Park, Risley, Warrington, Cheshire, WA3 6TW (United Kingdom)

    2006-07-01

    On March 31, 1994 the Prototype Fast Reactor (PFR) at Dounreay on the north coast of Scotland, shut down for the last time. Eight years under construction; an operating life of 20 years; and now PFR had entered what was potentially the longest phase of its career - decommissioning. The initial decommissioning phase started immediately after the reactor shut down. All fuel was removed from the core, conditioned and sent to interim storage pending on-site reprocessing. Likewise the strip out of the turbine hall was a conventional operation, completed, like defueling, within budget and time-scale, leaving a large empty building together with some 1500 te of liquid metals which had to be disposed of. Of the total PFR liquid metals inventory, 900 te were active sodium, 585 te non-active sodium, and the remainder was the sodium/potassium mixture, NaK. Early disposal of this potentially dangerous legacy was clearly a high priority. Experience gained at DFR, the famous Dounreay Fast Reactor, had shown that reacting sodium with a high molarity caustic solution, then neutralizing the resulting effluent with acid to form a salt solution suitable for discharge to sea was the safest and most efficient disposal method. In 1993, a proposal was put forward for a sodium disposal plant. For the whole of its operational life, PFR had been managed and run by the UKAEA, a Government body that had been set up in 1954 and which embodied many of the UK civil service traditions and practices. The management and staffing requirements for the proposed PFR sodium disposal plant initially reflected the civil service background of its designers. The plant was to be operated continuously by 5 shift teams working a 3-shift system. Since its inception UKAEA had been involved in commercial ventures, especially in the fields of isotope production, the hiring out of irradiation facilities, and the fabrication and reprocessing of research reactor fuels; all these being lucrative income streams that

  9. Thermoacoustic enhancements for nuclear fuel rods and other high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Steven L.; Smith, James A.; Kotter, Dale K.

    2017-05-09

    A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.

  10. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  11. Waste Disposal and Pollution Management in Urban Areas: A Workable Remedy for the Environment in Developing Countries

    OpenAIRE

    Awomeso, J. A.; A. M. Taiwo; A. M. Gbadebo; A. O. Arimoro

    2010-01-01

    Problem statement: Both wastes and the crude disposal techniques have created subtle and yet serious environmental pollution havoc in many developing countries. This has lead to the degradation of abiotic and biotic components of these nations ecological systems. Poor industrial waste disposal systems as well as the indiscriminate and inappropriate domestic litter disposal habit have been identified and proved to be basic features in rural settlements, semi-urban areas and urban centers of th...

  12. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  13. Simulation of alpha dose for predicting radiolytic species at the surface of spent nuclear fuel pellets

    OpenAIRE

    Becker Frank; Kienzler Bernhard

    2014-01-01

    In many countries, spent nuclear fuel is considered as a waste form to be disposed of in underground disposal. Under deep host rock conditions, a reducing environment prevails. In the case of water contact, long-term radionuclide release from the fuel depends on dissolution processes of the UO2 matrix. The dissolution rate of irradiated UO2 is controlled by oxidizing processes facilitated by dissolved species formed by alpharadiolysis of water in contact with spent nuc...

  14. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada`s radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M. [Atomic Energy of Canada Ltd. , Pinawa, MB (Canada). Whiteshell Labs.

    1998-09-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada`s nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro`s used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  15. Fuel cells and the city of the future — a Japanese view

    Science.gov (United States)

    Satomi, Tomohide

    The development and practical application of fuel cells have been promoted aggressively in Japan, and the on-site phosphoric acid fuel cell (PAFC) has been attained with the prospect for practical market enery in commercial buildings by the middle of the 1990s. Fuel cells have features of less environmental impact and high energy efficiency which meet the requirements of the utility system for the future city. In Japan, the recent concentration of social functions and population to the city have begun to cause many serious problems. To resolve these environmental and resource related problems and to move towards developing and constructing a new city, one answer offered is the concept of CAN (community amenity network). CAN is a sophisticated utility system which integrates fuel cells as well as a system for effective use of unused energy and recycling of waste disposal and water. For solving the housing shortage problem in the next century, the concept of skyscraper building cities is currently proposed. Fuel cell systems can also be applied to these cities as a major element of the integrated zone energy supply network facility.

  16. Disposal Systems Evaluation Framework (DSEF) Version 1.0 - Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blink, James A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, Massimiliano [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greenberg, Harris R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Halsey, William G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, Thomas J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-03

    The Disposal Systems Evaluation Framework (DSEF) is being developed at Lawrence Livermore National Laboratory to formalize the development and documentation of repository conceptual design options for each waste form and environment combination. This report summarizes current status and plans for the remainder of FY11 and for FY12. This progress report defines the architecture and interface parameters of the DSEF Excel workbook, which contains worksheets that link to each other to provide input and document output from external codes such that concise comparisons between fuel cycles, disposal environments, repository designs and engineered barrier system materials can be performed. Collaborations between other Used Fuel Disposition Campaign work packages and US Department of Energy / Nuclear Energy campaigns are clearly identified. File naming and configuration management is recommended to allow automated abstraction of data from multiple DSEF runs.

  17. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  18. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

  19. TWRS retrieval and storage mission, immobilized low-activity waste disposal plan

    Energy Technology Data Exchange (ETDEWEB)

    Shade, J.W.

    1998-01-07

    The TWRS mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the encapsulated cesium and strontium) in a safe, environmentally sound, and cost-effective manner (TWRS JMN Justification for mission need). The mission includes retrieval, pretreatment, immobilization, interim storage and disposal, and tank closure. As part of this mission, DOE has established the TWRS Office to manage all Hanford Site tank waste activities. The TWRS program has identified the need to store, treat, immobilize, and dispose of the highly radioactive Hanford Site tank waste and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost-effective manner. To support environmental remediation and restoration at the Hanford Site a two-phase approach to using private contractors to treat and immobilize the low-activity and high-level waste currently stored in underground tanks is planned. The request for proposals (RFP) for the first phase of waste treatment and immobilization was issued in February 1996 (Wagoner 1996) and initial contracts for two private contractor teams led by British Nuclear Fuels Ltd. and Lockheed-Martin Advanced Environmental Services were signed in September 1996. Phase 1 is a proof-of-concept and commercial demonstration effort to demonstrate the technical and business feasibility of using private facilities to treat Hanford Site waste, maintain radiological, nuclear, process, and occupational safety; and maintain environmental protection and compliance while reducing lifecycle costs and waste treatment times. Phase 1 production of ILAW is planned to begin in June 2002 and could treat up to about 13 percent of the waste. Phase 1 production is expected to be completed in 2007 for minimum order quantities or 2011 for maximum order quantities. Phase 2 is a full-scale production effort that will begin after Phase 1 and treat and immobilize most of the waste. Phase 2 production is

  20. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  1. Confidence improvement of disosal safety bydevelopement of a safety case for high-level radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Ko, Nak Youl; Jeong, Jong Tae; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Many countries have developed a safety case suitable to their own countries in order to improve the confidence of disposal safety in deep geological disposal of high-level radioactive waste as well as to develop a disposal program and obtain its license. This study introduces and summarizes the meaning, necessity, and development process of the safety case for radioactive waste disposal. The disposal safety is also discussed in various aspects of the safety case. In addition, the status of safety case development in the foreign countries is briefly introduced for Switzerland, Japan, the United States of America, Sweden, and Finland. The strategy for the safety case development that is being developed by KAERI is also briefly introduced. Based on the safety case, we analyze the efforts necessary to improve confidence in disposal safety for high-level radioactive waste. Considering domestic situations, we propose and discuss some implementing methods for the improvement of disposal safety, such as construction of a reliable information database, understanding of processes related to safety, reduction of uncertainties in safety assessment, communication with stakeholders, and ensuring justice and transparency. This study will contribute to the understanding of the safety case for deep geological disposal and to improving confidence in disposal safety through the development of the safety case in Korea for the disposal of high-level radioactive waste.

  2. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    1999-06-04

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined.

  3. Report on the Status of the SFWST Campaign International Activities in Disposal Research at SNL

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Kevin A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Waste Disposal Research and Analysis. New Mexico Energy and Geoscience Center

    2017-08-22

    The following summaries are provided as fulfillment of milestone M4SF-17SN080305022 and represent international coordination activities in disposal research funded by the US DOE Spent Fuel and Waste Storage and Technologies (SFWST) Campaign during Fiscal Year 2017: SFWST funded bi-lateral interactions with Taiwan, OECD-NEA Repository Metadata (RepMet) project, SFWST funded bi-lateral interactions with the Republic of Korea.

  4. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    Energy Technology Data Exchange (ETDEWEB)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer

  5. Mine waste disposal and managements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Young Wook; Min, Jeong Sik; Kwon, Kwang Soo; Kim, Ok Hwan; Kim, In Kee; Song, Won Kyong; Lee, Hyun Joo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Acid Rock Drainage (ARD) is the product formed by the atmospheric oxidation of the relatively common pyrite and pyrrhotite. Waste rock dumps and tailings containing sulfide mineral have been reported at toxic materials producing ARD. Mining in sulphide bearing rock is one of activity which may lead to generation and release of ARD. ARD has had some major detrimental affects on mining areas. The purpose of this study was carried out to develop disposal method for preventing contamination of water and soil environment by waste rocks dump and tailings, which could discharge the acid drainage with high level of metals. Scope of this study was as following: environmental impacts by mine wastes, geochemical characteristics such as metal speciation, acid potential and paste pH of mine wastes, interpretation of occurrence of ARD underneath tailings impoundment, analysis of slope stability of tailings dam etc. The following procedures were used as part of ARD evaluation and prediction to determine the nature and quantities of soluble constituents that may be washed from mine wastes under natural precipitation: analysis of water and mine wastes, Acid-Base accounting, sequential extraction technique and measurement of lime requirement etc. In addition, computer modelling was applied for interpretation of slope stability od tailings dam. (author). 44 refs., 33 tabs., 86 figs.

  6. Recovery of Trace and Heavy Metals from Coal Combustion Residues for Reuse and Safe Disposal: A Review

    Science.gov (United States)

    Kumar, Ashvani; Samadder, Sukha Ranjan; Elumalai, Suresh Pandian

    2016-09-01

    The safe disposal of coal combustion residues (CCRs) will remain a major public issue as long as coal is used as a fuel for energy production. Both dry and wet disposal methods of CCRs create serious environmental problems. The dry disposal method creates air pollution initially, and the wet disposal method creates water pollution as a result of the presence of trace and heavy metals. These leached heavy metals from fly ash may become more hazardous when they form toxic compounds such as arsenic sulfite (As2S3) and lead nitrate (N2O6Pb). The available studies on trace and heavy metals present in CCRs cannot ensure environmentally safe utilization. In this work, a novel approach has been offered for the retrieval of trace and heavy metals from CCRs. If the proposed method becomes successful, then the recovered trace and heavy metals may become a resource and environmentally safe use of CCRs may be possible.

  7. DUPIC fuel fabrication in shielded facilities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.W.; Kim, W.K.; Kim, S.S.; Yang, M.S.; Park, H.S. [Korea Atomic Energy Research Institute, Yusong-ku, Taejon City (Korea, Republic of)

    2001-07-01

    The DUPIC(Direct use of spent PWR fuel in CANDU reactors) fuel cycle is to directly refabricate the CANDU fuel from spent PWR fuel materials by thermal and mechanical processes without wet reprocessing process. The concept was proposed and termed DUPIC in joint research program between the Korea Atomic Energy Research Institute (KAERI), Atomic Energy of Canada Limited (AECL) and the US Departments of State in 1992. The DUPIC fuel cycle has many advantages over direct disposal or wet reprocessing and MOX fuel cycle in terms of proliferation resistance, reduction of spent fuel accumulation and uranium resource utilization, etc. Since the material in the DUPIC fuel fabrication process is highly radioactive due to no separation of uranium, plutonium and fission products, which is an intrinsic characteristic of the DUPIC process, all fabrication and characterization processes should be performed remotely in highly shielded hot cell facilities. KAERI has developed the remote fuel fabrication equipment and has successfully completed the installation of them in the shielded facilities, called DFDF (DUPIC Fuel Development Facility), at KAERI in early 2000. Based on the fuel fabrication technologies, including powder treatment, pelletizing and laser welding, KAERI has successfully fabricated DUPIC fuel pellets and elements with various design specifications to evaluate the performance of DUPIC fuel through irradiation tests at the HANARO research reactor. This paper describes KAERI's progress in DUPIC fuel fabrication. (author)

  8. Eddy Current Examination of Spent Nuclear Fuel Canister Closure Welds

    Energy Technology Data Exchange (ETDEWEB)

    Arthur D. Watkins; Dennis C. Kunerth; Timothy R. McJunkin

    2006-04-01

    The National Spent Nuclear Fuel Program (NSNFP) has developed standardized DOE SNF canisters for handling and interim storage of SNF at various DOE sites as well as SNF transport to and SNF handling and disposal at the repository. The final closure weld of the canister will be produced remotely in a hot cell after loading and must meet American Society of Mechanical Engineers (ASME) Section III, Division 3 code requirements thereby requiring volumetric and surface nondestructive evaluation to verify integrity. This paper discusses the use of eddy current testing (ET) to perform surface examination of the completed welds and repair cavities. Descriptions of integrated remote welding/inspection system and how the equipment is intended function will also be discussed.

  9. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  10. FUNCTION K - AS A LINK BETWEEN FUEL FLOW VELOCITY AND FUEL PRESSURE, DEPENDING ON THE TYPE OF FUEL

    Directory of Open Access Journals (Sweden)

    Boban Nikolić

    2017-04-01

    Full Text Available Regarding the application of vegetable oil based fuels in diesel engines, it is necessary to fully examine and understand the processes which take place in fuel delivery systems, namely, the processes of injection, mixture formation and combustion as well as emission characteristics. The paper provides an analysis of fuel flow in high pressure tubes of the fuel injection system, with the aim of determining function K as a link between fuel flow velocity and fuel pressure, and observing the influence of certain physical characteristics of the fuel upon the given function. The analysis presents the speed of sound and density, as fuel characteristics which affect the K function. The paper determines the speed of sound, density and bulk modulus for four fuels (pure rapeseed oil RO, biodiesel B100, a mixture of biodiesel and diesel B50, and diesel D, and forms appropriate K functions for each fuel in the pressure range from the atmospheric one to 1600 bar.

  11. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  12. Hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

  13. Physics Features of TRU-Fueled VHTRs

    Directory of Open Access Journals (Sweden)

    Tom G. Lewis

    2009-01-01

    Full Text Available The current waste management strategy for spent nuclear fuel (SNF mandated by the US Congress is the disposal of high-level waste (HLW in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (via fertile additives on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs and their Generation IV (GEN IV extensions, very-high-temperature reactors (VHTRs, have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.

  14. Hanford wells

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.