WorldWideScience

Sample records for fuel development activities

  1. Recent development in safety regulation of nuclear fuel cycle activities

    International Nuclear Information System (INIS)

    Kato, S.

    2001-01-01

    Through the effort of deliberation and legislation over five years, Japanese government structure was reformed this January, with the aim of realizing simple, efficient and transparent administration. Under the reform, the Agency for Nuclear and Industrial Safety (ANIS) was founded in the Ministry of Economy, Trade and Industry (METI) to be responsible for safety regulation of energy-related nuclear activities, including nuclear fuel cycle activities, and industrial activities, including explosives, high-pressure gasses and mining. As one of the lessons learned from the JCO criticality accident of September 1999, it was pointed out that the government's inspection function was not enough for fuel fabrication facilities. Accordingly, new statutory regulatory activities were introduced, namely, inspection of observance of safety rules and procedures for all kinds of nuclear operators and periodic inspection of fuel fabrication facilities. In addition, in order to cope with insufficient safety education and training of workers in nuclear facilities, licensees of nuclear facilities are required by law to specify safety education and training for their workers. ANIS is committed to enforce these new regulatory activities effectively and efficiently. In addition, it is going to be prepared, in its capacity as safety regulatory authority, for future development of Japanese fuel cycle activities, including commissioning of JNFL Rokkasho reprocessing plant and possible application for licenses for JNFL MOX fabrication plant and for spent fuel interim storage facilities. (author)

  2. Recent development of active nanoparticle catalysts for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Vismadeb; Lee, Youngmin; Sun, Shouheng [Department of Chemistry Brown University Providence, RI (United States)

    2010-04-23

    This review focuses on the recent advances in the synthesis of nanoparticle (NP) catalysts of Pt-, Pd- and Au-based NPs as well as composite NPs. First, new developments in the synthesis of single-component Pt, Pd and Au NPs are summarized. Then the chemistry used to make alloy and composite NP catalysts aiming to enhance their activity and durability for fuel cell reactions is outlined. The review next introduces the exciting new research push in developing CoN/C and FeN/C as non-Pt catalysts. Examples of size-, shape- and composition-dependent catalyses for oxygen reduction at cathode and formic acid oxidation at anode are highlighted to illustrate the potentials of the newly developed NP catalysts for fuel cell applications. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Nuclear fuel activities in Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Bairiot, H

    1997-12-01

    In his presentation on nuclear fuel activities in belgium the author considers the following directions of this work: fuel fabrication, NPP operation, fuel performance, research and development programmes.

  4. Nuclear fuel activities in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D S [Fuel Development Branch, Chalk River Labs., AECL (Canada)

    1997-12-01

    Nuclear fuel activities in Canada are considered in the presentation on the following directions: Canadian utility fuel performance; CANDU owner`s group fuel programs; AECL advanced fuel program (high burnup fuel behaviour and development); Pu dispositioning (MOX) activities. 1 tab.

  5. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  6. RERTR program activities related to the development and application of new LEU fuels

    International Nuclear Information System (INIS)

    Travelli, A.

    1983-01-01

    The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U 3 Si 2 -Al and U 3 Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm 3 each year, from the current 1.7 g U/cm 3 to the 7.0 g U/cm 3 which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years

  7. Canadian fuel development program

    International Nuclear Information System (INIS)

    Gacesa, M.; Young, E.G.

    1992-11-01

    CANDU power reactor fuel has demonstrated an enviable operational record. More than 99.9% of the bundles irradiated have provided defect-free service. Defect excursions are responsible for the majority of reported defects. In some cases research and development effort is necessary to resolve these problems. In addition, development initiatives are also directed at improvements of the current design or reduction of fueling cost. The majority of the funding for this effort has been provided by COG (CANDU Owners' Group) over the past 10 to 15 years. This paper contains an overview of some key fuel technology programs within COG. The CANDU reactor is unique among the world's power reactors in its flexibility and its ability to use a number of different fuel cycles. An active program of analysis and development, to demonstrate the viability of different fuel cycles in CANDU, has been funded by AECL in parallel with the work on the natural uranium cycle. Market forces and advances in technology have obliged us to reassess and refocus some parts of our effort in this area, and significant success has been achieved in integrating all the Canadian efforts in this area. This paper contains a brief summary of some key components of the advanced fuel cycle program. (Author) 4 figs., tab., 18 refs

  8. Project fuel development

    International Nuclear Information System (INIS)

    Stratton, R.W.

    1981-05-01

    The activities continued on lab-scale production of uranium-plutonium carbide fuel for the fast reactor using gelation methods, irradiation testing and performance evaluation. Whereas in earlier years a balance was maintained between research and development or with emphasis on research, 1980 was marked by a concentrated equipment development effort for an increased throughput with improved process control and product reproducability and installation of new equipment for large pin fabrication. (Auth.)

  9. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  10. Development of CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan

    1991-12-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle(so-called CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactors for 1996 and 1997, and consequently will be used in the existing and future reactors in Korea. The research activities during this year include the basic design of CANFLEX fuel with slightly enriched uranium(CANFLEX-SEU), with emphasis on the extension of fuel operation limit. Based on this basic design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel. (Author)

  11. Development of a Liquid Scintillator-Based Active Interrogation System for LEU Fuel Assemblies

    International Nuclear Information System (INIS)

    Lavietes, Anthony D.; Plenteda, Romano; Mascahrenas, Nicholas; Cronholm, L. Marie; Aspinall, Michael; Joyce, Malcolm; Tomanin, Alice; Peerani, Paolo

    2013-06-01

    The IAEA, in collaboration with the Joint Research Center (Ispra, IT) and Hybrid Instruments (Lancaster, UK), has developed a full scale, liquid scintillator-based active interrogation system to determine uranium (U) mass in fresh fuel assemblies. The system implements an array of moderate volume (∼1000 ml) liquid scintillator detectors, a multichannel pulse shape discrimination (PSD) system, and a high-speed data acquisition and signal processing system to assess the U content of fresh fuel assemblies. Extensive MCNPX-PoliMi modelling has been carried out to refine the system design and optimize the detector performance. These measurements, traditionally performed with 3 He-based assay systems (e.g., Uranium Neutron Coincidence Collar [UNCL], Active Well Coincidence Collar [AWCC]), can now be performed with higher precision in a fraction of the acquisition time. The system uses a high-flash point, non-hazardous scintillating fluid (EJ309) enabling their use in commercial nuclear facilities and achieves significantly enhanced performance and capabilities through the combination of extremely short gate times, adjustable energy detection threshold, real-time PSD electronics, and high-speed, FPGA-based data acquisition. Given the possible applications, this technology is also an excellent candidate for the replacement of select 3 He-based systems. Comparisons to existing 3 He-based active interrogation systems are presented where possible to provide a baseline performance reference. This paper will describe the laboratory experiments and associated modelling activities undertaken to develop and initially test the prototype detection system. (authors)

  12. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    ... to light gases then steam reform the light gases into hydrogen rich stream. This report documents the efforts in developing a fuel processor capable of providing hydrogen to a 3kW fuel cell stack...

  13. Metallic fuel development

    International Nuclear Information System (INIS)

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising

  14. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    Science.gov (United States)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  15. FY2015 ceramic fuels development annual highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  16. FY2016 Ceramic Fuels Development Annual Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2016 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY16 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  17. The Physics of Plutonium Fuels - A Review of Organization for Economic Cooperation and Development/Nuclear Energy Agency Activities

    International Nuclear Information System (INIS)

    Hesketh, Kevin; Delpech, Marc; Sartori, Enrico

    2000-01-01

    In 1993, the Organization for Economic Cooperation and Development/Nuclear Energy Agency first convened the Working Group on the Physics of Plutonium Recycle (WPPR) (now renamed the Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles). Since its inception, the WPPR (whose task has now been expanded to include innovative fuel cycles) has published six volumes of detailed results from analyses of plutonium fuel in pressurized water reactors and fast reactors. A seventh volume on the physics of plutonium fuel in boiling water reactors is in preparation. The analyses have been mostly in the form of theoretical benchmark exercises for situations beyond current experience, for which multinational contributions provide a basis for comparison of diverse calculational methods and nuclear data libraries. The overall activities of the WPPR are reviewed and summarized

  18. Outline of Swedish activities on LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [Studsvik Nuclear, Nykoeping (Sweden); Roennberg, G [OKG AB (Sweden)

    1997-12-01

    The presentation outlines the Swedish activities on LWR fuel and considers the following issues: electricity production; performance of operating nuclear power plants; nuclear fuel cycle and waste management; research and development in nuclear field. 4 refs, 4 tabs.

  19. The current uranium exploration activities of the Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan

    International Nuclear Information System (INIS)

    Miyada, H.

    2001-01-01

    As of November 1996, Japan's total installed commercial nuclear power generation capacity was 42 GW(e), accounting for 34% of total electric energy generation. By 2010, Japan intends to have an installed electricity generation capacity of 70.5 GW(e). This will increase the country's demand for nat Ural uranium from 7,700 t U in 1994 (13% of the world consumption) to 13,800 t U in 2010 (17%-19% of the world projected consumption). However, Japan's known uranium resources at Ningyo-Toge and Tono deposits, are estimated at roughly only 6,600 t U. The Long-term Programme for Research, Development and Utilization of Nuclear Energy (adopted in 1994) calls for diversification through long-term purchasing contracts, independent exploration and involvement in mining vent Ures, with the objective of ensuring independence and stability in Japan's development and utilization of nuclear energy. The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been commissioned to carry out the task of independent exploration. PNC is carrying out exploration projects in Canada, Australia, USA and China targeting unconformity related type deposits with an eye to privatizing them. Currently about 40,000 t U of uranium resources are held by PNC. PNC has been carrying out the following related activities: (1) Reference surveys on uranium resources to delineate the promising areas; (2) Development of uranium exploration technology; (3) Information surveys on the nuclear industries to project long-term supply and demand; (4) International Cooperation programme on uranium exploration with Asian countries. (author)

  20. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Williams, T.

    1997-01-01

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  1. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  2. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Ion, S.E.; Harrop, G.; Maricalva Gonzalez, J.

    1995-01-01

    The status of the investment and R and D programmes in the UK and Spanish fuel fabrication facilities is outlined. Due to a number of circumstances, BNFL and ENUSA have been in the forefront of capital investment, with associated commitment to engineering and scientific research and development. Carrying through this investment has allowed the embodiment of proven state of the art technologies in the design of fuel fabrication plants, with particular emphasis on meeting the future challenge of health and safety, and product quality, at an acceptable cost. ENUSA and BNFL currently supply fuel, not only to their respective 'home' markets but also to France, Belgium, Sweden, and Germany. Both organisations employ an International Business outlook and partake in focused and speculative R and D projects for the design and manufacture of nuclear fuel. (orig./HP)

  3. Fuel development studies

    International Nuclear Information System (INIS)

    Michel, F.

    1986-12-01

    This paper describes the main lines of the studies carried out to develop the Fast Neutron Fuel Element, from the ''SPX1-first load'' version, to progress to high performance which will be required for the project 1500 and for the fast neutron series [fr

  4. Argentine activities related to the development of low enriched fuel elements

    International Nuclear Information System (INIS)

    Giorsetti, Domingo R.; Perez, Edmundo E.

    1983-01-01

    Within the framework of the RERTR Program and supported by the technical cooperation work agreed upon between the U.S.A. and Argentina in May 1979, the CNEA Nuclear Fuel Department - Low Enriched Fuel Elements Project (ECBE Project), has carried on its own program for developing fuels with low enrichment for research and test reactors. Up to the present, its main objective has been to replace the highly enriched fuel used in its only reactor (RA-3) for research, development and radioisotopes production. The basic stages of the Argentine Program are shown in Table 1. At a meeting held in Vienna in March, 1980, the CNEA stated that its development of fuels with low enrichment would be in two fuel lines: UAl x -Al and U 3 O 8 -Al, and that its aim would be to reach uranium densities of 18-2.2 g/cm 3 for the UAI x -Al line and 2.4-3.0 g/cm 3 for the U 3 O 8 line. At the international meeting held at ANL in November, 1980, and after having received depleted uranium and uranium with 20% and 45% enrichment (purchased from the U.S.A. for manufacturing miniplates and possible standard fuels) to carry on the proposed development, CNEA anticipated -- after its first tests -- that the conditions were satisfactory for reaching uranium densities of 2.4-3.0 g/cm 3 in U 3 O 8 -Al fuel and of 2.4 g/cm 3 in UAI x -Al fuel. In February 1981, after Argentina accepted the obligation of paying for the irradiation service, authorization was obtained for irradiating miniplates in the Oak Ridge Reactor within the RERTR Program. In June 1981, the first set of miniplates was sent to Oak Ridge National Laboratory (ORNL). The maximum actual densities reached at that time were 3.12 g/cm 3 with U 3 O 8 -Al and 2.52 g/cm 3 with UAl x -Al. During a visit of the CNEA Project Technical Manager to the Argonne National Laboratory (ANL) in July 1981, and after exchanging ideas with ANL professional staff, the CNEA decided to incorporate a new line of development, that of U 3 Si-Al. Three months later

  5. Brief summary of water reactor fuel activities in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhongyue, Zhang [China Inst. of Atomic Energy (CIAE), Beijing (China)

    1997-12-01

    The presentation briefly reviews the water reactor fuel activities in China describing: nuclear power development program and growth forecast; fuel performance;fuel performance code improvement; research and development plans. 1 ref., 3 figs, 2 tabs.

  6. Metallic fuel design development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual

  7. Metallic fuel design development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Lee, B. O. and others

    1999-04-01

    This report describes the R and D results of the ''Metallic Fuel Design Development'' project that performed as a part of 'Nuclear Research and Development Program' during the '97 - '98 project years. The objectives of this project are to perform the analysis of thermo-mechanical and irradiation behaviors, and preliminary conceptual design for the fuel system of the KALIMER liquid metal reactor. The following are the major results that obtained through the project. The preliminary design requirements and design criteria which are necessary in conceptual design stage, are set up. In the field of fuel pin design, the pin behavior analysis, failure probability prediction, and sensitivity analysis are performed under the operation conditions of steady-state and transient accidents. In the area of assembly duct analysis; 1) KAFACON-2D program is developed to calculate an array configuration of inner shape of assembly duct, 2) Stress-strain analysis are performed for the components of assembly such as, handling socket, mounting rail and wire wrap, 3) The BDI program is developed to analyze mechanical interaction between pin bundle and duct, 4) a vibration analysis is performed to understand flow-induced vibration of assembly duct, 5) The NUBOW-2D, which is bowing and deformation analysis code for assembly duct, is modified to be operated in KALIMER circumstance, and integrity evaluation of KALIMER core assembly is carried out using the modified NUBOW-2D and the CRAMP code in U.K., and 6) The KALIMER assembly duct is manufactured to be used in flow test. In the area of non-fuel assembly, such as control, reflector, shielding, GEM and USS, the states-of-the-arts and the major considerations in designing are evaluated, and the design concepts are derived. The preliminary design description and their design drawing of KALIMER fuel system are prepared based upon the above mentioned evaluation and analysis. The achievement of conceptual design technology on metallic fuel

  8. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  9. Develop high activity, low cost non-PGM fuel cell electrocatalyst and stable supports

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Gaillard, J. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-09-28

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFC. Iron based functionalities have been engineered into Metallic Organic Framework (MOF) catalysts to evaluate their impact on activity for the ORR. A series of FePhen@MOF catalysts have been synthesized with varying [Fe] to investigate the effect on electrochemical and electrocatalytic properties. The magnitude of the FeII/III redox couple and the electrochemical surface area are analyzed to determine if there is a correlation between [Fe] and the ORR onset potential and/or the relative number of active sites.

  10. Alcohol fuels for developing countries

    International Nuclear Information System (INIS)

    Bhattacharya, Partha

    1993-01-01

    The importance of alcohol as an alternative fuel has been slowly established. In countries such as Brazil, they are already used in transport and other sectors of economy. Other developing countries are also trying out experiments with alcohol fuels. Chances of improving the economy of many developing nations depends to a large extent on the application of this fuel. The potential for alcohol fuels in developing countries should be considered as part of a general biomass-use strategy. The final strategies for the development of alcohol fuel will necessarily reflect the needs, values, and conditions of the individual nations, regions, and societies that develop them. (author). 5 refs

  11. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  12. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  13. State-of-the-art and perspectives of the fuel rod and material development activities in Russia

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.

    1994-01-01

    A review of experimental, design and pilot work made in Russia to improve nuclear fuel operational reliability and technical-economical parameters of fuel cycles is presented. A reliable operation of WWER-1000 in a three year mode and WWER-440 in a four year mode is promoted at the mean discharge fuel burnup of about 42-43 Mwd/kg U. The operational experience shows that in 1991-93 in Russia and Ukraine the frequency of fuel rod leakage did not exceed on the average 2.10 -5 . The comparison made between the individual characteristics of Russian WWER fuel performance and those of standard PWR fuel shows the superiority of the Russian fuel in the whole series of features important for further increase in lifetime. The new programme is aimed at higher fuel utilization and at further improvement of technical and economical parameters of fuel cycles through extension of lifetime of structural materials and fuel rods to promote the mean fuel burnup up to 55-60 Mwd/kg U and higher. The behaviour of prototype fuels in research reactors up to burnup significantly higher (a factor of 1.5-2.0) than the design burnup of commercial reactor fuel has been studied. The investigations show that the design and technological solutions on fuels developed for commercial reactors are optimal. A new structural material is reported that compared to Zr-1%Nb alloy should have a higher irradiation resistance to higher cladding wall temperature and low coolant boiling as well as a low corrosion sensitivity to water chemistry variations, including free oxygen in the coolant. This alloy, Zr-1.2%Sn-1%Nb(0.3-0.4)%Fe, is already commercially available in Russia. 6 tabs., 14 figs., 5 refs

  14. State-of-the-art and perspectives of the fuel rod and material development activities in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu K [Vsesoyuznyj Nauchno-Issledovatel` skij Inst. Neorganicheskikh Materialov, Moscow (Russian Federation)

    1994-12-31

    A review of experimental, design and pilot work made in Russia to improve nuclear fuel operational reliability and technical-economical parameters of fuel cycles is presented. A reliable operation of WWER-1000 in a three year mode and WWER-440 in a four year mode is promoted at the mean discharge fuel burnup of about 42-43 Mwd/kg U. The operational experience shows that in 1991-93 in Russia and Ukraine the frequency of fuel rod leakage did not exceed on the average 2.10{sup -5}. The comparison made between the individual characteristics of Russian WWER fuel performance and those of standard PWR fuel shows the superiority of the Russian fuel in the whole series of features important for further increase in lifetime. The new programme is aimed at higher fuel utilization and at further improvement of technical and economical parameters of fuel cycles through extension of lifetime of structural materials and fuel rods to promote the mean fuel burnup up to 55-60 Mwd/kg U and higher. The behaviour of prototype fuels in research reactors up to burnup significantly higher (a factor of 1.5-2.0) than the design burnup of commercial reactor fuel has been studied. The investigations show that the design and technological solutions on fuels developed for commercial reactors are optimal. A new structural material is reported that compared to Zr-1%Nb alloy should have a higher irradiation resistance to higher cladding wall temperature and low coolant boiling as well as a low corrosion sensitivity to water chemistry variations, including free oxygen in the coolant. This alloy, Zr-1.2%Sn-1%Nb(0.3-0.4)%Fe, is already commercially available in Russia. 6 tabs., 14 figs., 5 refs.

  15. Advanced Research Reactor Fuel Development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Park, H. D.; Kim, K. H. (and others)

    2006-04-15

    RERTR program for non-proliferation has propelled to develop high-density U-Mo dispersion fuels, reprocessable and available as nuclear fuel for high performance research reactors in the world. As the centrifugal atomization technology, invented in KAERI, is optimum to fabricate high-density U-Mo fuel powders, it has a great possibility to be applied in commercialization if the atomized fuel shows an acceptable in-reactor performance in irradiation test for qualification. In addition, if rod-type U-Mo dispersion fuel is developed for qualification, it is a great possibility to export the HANARO technology and the U-Mo dispersion fuel to the research reactors supplied in foreign countries in future. In this project, reprocessable rod-type U-Mo test fuel was fabricated, and irradiated in HANARO. New U-Mo fuel to suppress the interaction between U-Mo and Al matrix was designed and evaluated for in-reactor irradiation test. The fabrication process of new U-Mo fuel developed, and the irradiation test fuel was fabricated. In-reactor irradiation data for practical use of U-Mo fuel was collected and evaluated. Application plan of atomized U-Mo powder to the commercialization of U-Mo fuel was investigated.

  16. Thorium fuel cycle development activities in India (a decade of progress: 1981-1990)

    International Nuclear Information System (INIS)

    Basu, T.K.; Srinivasan, M.

    1990-01-01

    The report comprises of 72 papers on various aspects of thorium fuel cycle. These papers report the research work carried out at the Bhabha Atomic Research Centre, Bombay and other units of the Department of Atomic Energy during the decade 1981-1990. figs., tabs

  17. Canadian fuel development program in 1997/98

    International Nuclear Information System (INIS)

    Lau, J.H.; Kohn, E.; Sejnoha, R.; Cox, D.S.; Macici, N.N.; Steed, R.G.

    1997-01-01

    This paper describes the CANDU fuel development activities in Canada during 1997 through 1998. The activities include those of the Fuel Technology Program sponsored by the CANDU Owners Group. The goal of the Fuel Technology Program is to maintain and improve the reliability, economics and safety of CANDU fuel in operating reactors. These activities, therefore, concentrate on the present designs of 28-element and 37-element fuel bundles. The Canadian fuel development activities also include those of the Advanced Fuel and Fuel Cycle Technology Program at AECL. These activities concentrate on the development of advanced fuel designs and advanced fuel cycles, which among other advantages, can reduce the capital and fuelling costs, maintain operating margins in aging reactors, improve natural-uranium utilization, and reduce the amount of spent fuel. (author)

  18. Breeder reactor fuel fabrication system development

    International Nuclear Information System (INIS)

    Bennett, D.W.; Fritz, R.L.; McLemore, D.R.; Yatabe, J.M.

    1981-01-01

    Significant progress has been made in the design and development of remotely operated breeder reactor fuel fabrication and support systems (e.g., analytical chemistry). These activities are focused by the Secure Automated Fabrication (SAF) Program sponsored by the Department of Energy to provide: a reliable supply of fuel pins to support US liquid metal cooled breeder reactors and at the same time demonstrate the fabrication of mixed uranium/plutonium fuel by remotely operated and automated methods

  19. Molybdenum-base cermet fuel development

    International Nuclear Information System (INIS)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (≥95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (∼25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities

  20. Fueling and Imaging Brain Activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-05-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  1. Fueling and imaging brain activation

    Science.gov (United States)

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  2. The fuel cell; development and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Van Rijnsoever, J.W.M.

    Activities on fuel cells and fuel cell development in the USA and Japan are surveyed. Possibilities for large scale application are mentioned. Attention is given to efficiency and environmental aspects. There are no problems about hazardous emissions. Besides electric power some heat is generated, which is not always a disadvantage. In many cases both are useful products. (A.V.)

  3. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  4. Nuclear fuel in water reactors: manufacturing technology operational experience and development activities in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Holzer, R.; Knoedler, D.

    1977-01-01

    The nuclear fuel industry in the F.R. Germany comprises the full range of manufacturing capabilities for pressurized - boiling- and heavy water reactor technology. The existing manufacturing companies are RBU and Alkem. RBU makes natural and enriched UO 2 -fuel assemblies, starting with powder preparation. Facilites to produce UO 2 -Gadolinia and UO 2 -ThO 2 fuel are also available. Alkem is manufacturing mixed oxide UO 2 /PuO 2 -fuel and -rods. Zircaloy cladding tubes are produced by NRG and MRW. This constitutes the largest single nuclear fuel manufacturing capacity outside the USA. The companies are interested in export and current capacity trends indicate some overcapacity caused by delays in plant schedules. Construction of a new fuel manufacturing plant in the FRG has been announced by Exxon. Supplementary to quality control in manufacturing an integrated quality assurance-system has been established between the reactor vendor KWU, fuel design and -engineering division, and the existing manufacturing companies for fuel and tubing. The operating experience with LWR and HWR fuel dates back to 1964/65 and proves good performance. No generic problems like densification or rod bow were encountered. Possible reasons for the small fraction of defective rods could be quickly identified by a fast feedback system incorporating a close cooperation between KWU and the utilities. KWU combines fuel development, hot-cell and poolside service facilities as well as fuel technology linking to manufacturing in one hand. The common responsibility of KWU for core- and fuel design which enabled an integral optimization was also an important reason for the successful operation and flexibility in design. Development efforts will be concentrated on tests to improve the understanding of power ramping capability under extreme operational and postulated abnormal conditions, on statistical evaluation of safety aspects and on improved economy. The LWR fuel development was sponsored by the

  5. Advanced Hydrocarbon Fuel Development

    Science.gov (United States)

    Bai, S. Don; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    As a part of a high energy density materials (HEDM) development, the hot fire tests for Quadricyclane, 1,7 Octadiyne, AFRL-1, Biclopropylidene, and CINCH (Dimethyl amino ethyl azide) have been conducted at NASA/MSFC. The first 4 materials for this task are provided from Air Force Research Laboratory at Edward Air Force Base and US Army provided CINCH. The performance of these fuels is compared with RP-1. The preliminary results of these tests are presented. The preliminary results of Quadricyclane tests indicate that the specific impulse and c-star efficiency for quadricyclane at the mixture ratio 1.94 are approximately 5 sec and 105 ft/sec better than the RP-1 at mixture ratio 1.9. The 1,7 Octadiyne test indicate that the specific impulse and c-star efficiency at the mixture ratio 2.1 are approximately -1 sec and 89 ft/sec differ than the RP-1 at mixture ratio 2.04. The Quadricyclane soot buildup at the combustor is a little more than RP-1, but detail study of soot formation is not considered at this time. There was no visual soot buildup for the 1,7 Octadiyne and AFRL-1.

  6. Romanian concern for advanced fuels development

    International Nuclear Information System (INIS)

    Ohai, Dumitru

    2001-01-01

    The Institute for Nuclear Research (ICN), a subsidiary of Romanian Authority for Nuclear Activities, at Pitesti - Romania, has developed a preliminary design of a fuel bundle with 43 elements named SEU 43 for high burnup in CANDU Reactor. A very high experience in nuclear fuels manufacturing and control has also been accumulated. Additionally, on the nuclear site Pitesti there is the Nuclear Fuel Plant (NFP) qualified to manufacturing CANDU 6 type fuel, the main fuel supplier for NPP Cernavoda. A very good collaboration of ICN with NFP can lead to a low cost upgrading the facilities which ensure at present the CANDU standard fuel fabrication to be able of manufacturing also SEU 43 fuel for extended burnup. The financial founds are allocated by Romanian Authority for Nuclear Activities of the Ministry of Industry and Resources to sustain the departmental R and D program 'Nuclear Fuel'. This Program has the main objective to establish a technology for manufacturing a new CANDU fuel type destined for extended burnup. It is studied the possibility to use the Recovered Uranium (RU) resulted from LWR spent fuel reprocessing facility existing in stockpiles. The International Agency for Atomic Energy (IAEA) sustains also this program. By ROM/4/025/ Model Project, IAEA helps ICN to solve the problems regarding materials (RU, Zircaloy 4 tubes) purchasing, devices' upgrading and personnel training. The paper presents the main actions needing to be create the technical base for SEU 43 fuel bundle manufacturing. First step, the technological experiments and experimental fuel element manufacturing, will be accomplished in ICN installations. Second step, the industrial scale, need thorough studies for each installation from NFP to determine tools and technology modification imposed by the new CANDU fuel bundle manufacturing. All modifications must be done such as to the NFP, standard CANDU and SEU fuel bundles to be manufactured alternatively. (author)

  7. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  8. Fuel cycle developments

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a review of the end-of-1994 status of world uranium production and fuels processing. The major producing areas/countries of the world are discussed and the production figures for each area/country are provided. The conversion services market is also discussed, as is the enrichment services market. Each of the major enrichment services provider organizations is noted

  9. Development of nuclear fuel. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Hwang, Woan; Jeong, Young Hwan; Jung, Sung Hoon

    1991-07-01

    In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)

  10. Development of MOX fuel database

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2007-03-01

    We developed MOX Fuel Database, which included valuable data from several irradiation tests in FUGEN and Halden reactor, for help of LWR MOX use. This database includes the data of fabrication and irradiation, and the results of post-irradiation examinations for seven fuel assemblies, i.e. P06, P2R, E03, E06, E07, E08 and E09, irradiated in FUGEN. The highest pellet peak burn-up reached ∼48GWd/t in MOX fuels, of which the maximum plutonium content was ∼6 wt%, irradiated in E09 fuel assembly without any failure. Also the data from the instrumented MOX fuels irradiated in HBWR to study the irradiation behavior of BWR MOX fuels under the steady state condition (IFA-514/565 and IFA-529), under the load-follow operation condition (IFA-554/555) and under the transit condition (IFA-591) are included in this database. The highest assembly burn-up reached ∼56 GWd/t in IFA-565 steady state irradiation test, and the maximum linear power of MOX fuel rods was 58.3-68.4 kW/m without any failure in IFA-591 ramp test. In addition, valuable instrument data, i.e. cladding elongation, fuel stack elongation, fuel center temperature and rod inner pressure were obtained from IFA-554/555 load-follow test. (author)

  11. Fuel Cell Manufacturing Research and Development | Hydrogen and Fuel Cells

    Science.gov (United States)

    | NREL Fuel Cell Manufacturing Research and Development Fuel Cell Manufacturing Research and Development NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high costs. A researcher monitoring web-line equipment in the Manufacturing Laboratory Many fuel cell

  12. Fast breeder fuel element development

    International Nuclear Information System (INIS)

    Marth, W.; Muehling, G.

    1983-08-01

    This report is a compilation of the papers which have been presented during a seminar ''Fast Breeder Fuel Element Development'' held on November 15/16, 1982 at KfK. The papers give a survey of the status, of the obtained results and of the necessary work, which still has to be done in the frame of various development programmes for fast breeder fuel elements. In detail the following items were covered by the presentations: - the requirements and boundary conditions for the design of fuel pins and elements both for the reference concept of the SNR 300 core and for the large, commercial breeder type of the future (presentation 1,2 and 6); - the fabrication, properties and characterization of various mixed oxide fuel types (presentations 3,4 and 5); - the operational fuel pin behaviour, limits of different design concepts and possible mechanism for fuel pin failures (presentations (7 and 8); - the situation of cladding- and wrapper materials development especially with respect to the high burn-up values of commercial reactors (presentations 9 and 10); - the results of the irradiation experiments performed under steady-state and non-stationary operational conditions and with failed fuel pins (presentations 11, 12, 13 and 14). (orig./RW) [de

  13. Pellet fueling development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foster, C.A.; Schuresko, D.D.; Foust, C.R.; Simmons, D.W.; Beard, D.S.

    1986-09-01

    Advanced plasma fueling systems for magnetic confinement devices are being developed at the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets at speeds in the range of 1-2 km/s and higher. Two specific concepts are under development: (1) high-speed pneumatic acceleration; and (2) mechanical (centrifugal) acceleration. Both approaches are being pursued to meet the projected pellet size and delivery rates for major near-term plasma confinement devices, such as the Tokamak Fusion Test Reactor (TFTR), Tore Supra, the Joint European Torus (JET), JT-60, and Doublet III-D (DIII-D), as well as future applications. In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of the 2-km/s range already attained with pneumatic injectors and has embarked on a development program designed to explore the feasibility of fabricating and accelerating tritium pellets. This paper describes these ongoing activities

  14. The DUPIC fuel development program in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M S; Park, H S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    This study describes the DUPIC fuel development program in KAERI as follows; Burning spent PWR fuel again in CANDU by DUPIC, Compatibility with existing CANDU system, Feasibility of DUPIC fuel fabrication, Waste reduction, Safeguard ability, Economics of DUPIC fuel cycle, The DUPIC fuel development program, and International prospective. 5 refs., 10 figs.

  15. US activities on fuel cycle transition scenarios

    International Nuclear Information System (INIS)

    McCarthy, Kathryn A.

    2010-01-01

    Countries with active nuclear programmes typically have as a goal transition to a closed fuel cycle. A closed fuel cycle enables long-term sustainability, provides waste management benefits, and as a system, can reduce overall proliferation risk. This transition will take many decades, thus the study of the actual transition is an important topic. The United States systems analysis activities as part of the Advanced Fuel Cycle Initiative (AFCI) provide the integrating analyses for the fuel cycle programme, and recent activities are focusing on transition options, and specifically, the dynamics of the transition. The United States is still studying both one-tier (recycling in fast reactors only) and two-tier (recycling in both thermal and fast reactors) systems, and the systems analysis activities provide insight into the trade-offs associated with the systems, and variations of each. Most recently, a series of sensitivity studies have been completed which provide insight into the behaviour of a transition system. These studies evaluate the impact of changing various parameters in the fuel cycle system, and provide insight into how the system will change as parameters change. Because these deployment analyses look at the development of nuclear energy systems over a long period of time, it is very unlikely that we will accurately predict the system's characteristics over time (for example, growth in electricity demand, how quickly nuclear reactors will be deployed, how many fast rectors versus thermal reactors, the conversion ratio of the fast reactors, etc.). How the system will develop will depend on a variety of factors, ranging from political to technical, rational to irrational. Because we cannot accurately predict the future, we need to understand how things could change, and what impact those changes have. Analyses of future fuel cycle systems require a number of assumptions. These include growth rates for nuclear energy, general architecture of fuel cycle

  16. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, Y. H.

    2001-03-01

    Since the amount of the spent fuel rapidly increases, the current R and D activities are focused on the technology development related with the storage and utilization of the spent fuel. In this research, to provide such a technology, the mechanical head-end process has been developed. In detail, the swing and shock-free crane and the RCGLUD(Remote Cask Grappling and Lid Unbolting Device) were developed for the safe transportation of the spent fuel assembly, the LLW drum and the transportation cask. Also, the disassembly devices required for the head-end process were developed. This process consists of an assembly downender, a rod extractor, a rod cutter, a fuel decladding device, a skeleton compactor, a force-rectifiable manipulator for the abnormal spent fuel disassembly, and the gantry type telescopic transporter, etc. To provide reliability and safety of these devices, the 3 dimensional graphic design system is developed. In this system, the mechanical devices are modelled and their operation is simulated in the virtual environment using the graphic simulation tools. So that the performance and the operational mal-function can be investigated prior to the fabrication of the devices. All the devices are tested and verified by using the fuel prototype at the mockup facility

  17. The low-enrichment fuel development program

    International Nuclear Information System (INIS)

    Stahl, D.

    1993-01-01

    In the 1950s and 1960s, low-power research reactors were built around the world utilized MTR-type fuel elements containing 20% enriched uranium. However, the demand for higher specific power created a need for greater uranium-235 concentrations. Early difficulties in increasing uranium content led to the substitution of highly enriched uranium in place of the 20% enriched fuel previously utilized. The highly enriched material also yielded other benefits including longer core residence time, higher specific reactivity, and somewhat lower cost. Highly enriched material then became readily available and was used for high-power reactors as well as in low-power reactors where 20% enriched material would have sufficed. The trend toward higher and higher specific power also led to the development of the dispersion-type fuels which utilized highly enriched uranium at a concentration of about 40 wt%. In the 1970's, however, concerns were raised about the proliferation resistance of fuels and fuel cycles. As a consequence, the U.S. Department of State has recently prohibited the foreign shipment of highly enriched material, except where prior contractual obligation or special merit exists. This will impact on the availability and utilization of highly enriched uranium for research and test reactor fuel. It has also stimulated development programs on fuels with higher uranium content which would allow the use of uranium of lower enrichment. The purpose of this report is to briefly describe the overall fuel-development program which is coordinated by Argonne National Laboratory for the Department of Energy, and to indicate the current and potential uranium loadings. Other reports will address the individual fuel-development activities in greater detail

  18. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  19. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  20. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  1. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  2. Development of Metallic Fuels for Actinide Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Steven Lowe [Idaho National Laboratory; Fielding, Randall Sidney [Idaho National Laboratory; Benson, Michael Timothy [Idaho National Laboratory; Chichester, Heather Jean MacLean [Idaho National Laboratory; Carmack, William Jonathan [Idaho National Laboratory

    2015-09-01

    Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimized for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10

  3. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  4. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  5. Fuel element database: developer handbook

    International Nuclear Information System (INIS)

    Dragicevic, M.

    2004-09-01

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  6. Alternative Fuels and Sustainable Development

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars Henrik

    1996-01-01

    The main report of the project on Transportation Fuels based on Renewable Energy. The report contains a review of potential technologies for electric, hybrid and hydrogen propulsion in the Danish transport sector, including an assessment of their development status. In addition, the energy...

  7. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  8. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  9. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  10. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    International Nuclear Information System (INIS)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D.

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs

  11. CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others

    1999-04-01

    A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.

  12. Water reactor fuel activities in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N [State Scientific Centre of Russian Federation, A.A Bochvar All-Russian Research Inst. of Inorganic Materials, Moscow (Russian Federation)

    1997-12-01

    The presentation reviews the following issues: some specific features of Russian WWER type fuel assemblies and fuel rods; WWER fuel performance; fuel status after irradiation; main directions of programme towards high burnup; development of absorber element. 8 refs, 13 figs, 3 tabs.

  13. Water reactor fuel activities in Russia

    International Nuclear Information System (INIS)

    Sokolov, N.

    1997-01-01

    The presentation reviews the following issues: some specific features of Russian WWER type fuel assemblies and fuel rods; WWER fuel performance; fuel status after irradiation; main directions of programme towards high burnup; development of absorber element. 8 refs, 13 figs, 3 tabs

  14. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  15. Unified fuel elements development for research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Stetsky, Y.; Dobrikova, I.

    1998-01-01

    Square cross-section rod type fuel elements have been developed for russian pool-type research reactors. new fuel elements can replace the large nomenclature of tubular fuel elements with around, square and hexahedral cross-sections and to solve a problem of enrichment reduction. the fuel assembly designs with rod type fuel elements have been developed. The overall dimensions of existing the assemblies are preserved in this one. the experimental-industrial fabricating process of fuel elements, based on a joint extrusion method has been developed. The fabricating process has been tested in laboratory conditions, 150 experimental fuel element samples of the various sizes were produced. (author)

  16. Fuel performance, design and development

    International Nuclear Information System (INIS)

    Prasad, P.N.; Tripathi, Rahul Mani; Soni, Rakesh; Ravi, M.; Vijay Kumar, S.; Dwivedi, K.P.; Pandarinathan, P.R.; Neema, L.K.

    2006-01-01

    The normal fuel configurations for operating 220 MWe and 540 MWe PHWRs are natural uranium dioxide 19-element and 37- element fuel bundle types respectively. The fuel configuration for BWRs is 6 x 6 fuel. So far, about 330 thousand PHWR fuel bundles and 3500 number of BWR bundles have been irradiated in the 14 PHWRs and 2 BWRs. Improvements in fuel design, fabrication, quality control and operating practices are continuously carried out towards improving fuel utilization as well as reducing fuel failure rate. Efforts have been put to improve the fuel bundle utilization by increasing the fuel discharge burnup of the natural uranium bundles The overall fuel failure rate currently is less than 0.1 % . Presently the core discharge burnups in different reactors are around 7500 MWD/TeU. The paper gives the fuel performance experience over the years in the different power reactors and actions taken to improve fuel performance over the years. (author)

  17. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  18. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  19. Fuel performance evaluation through iodine activity monitoring

    International Nuclear Information System (INIS)

    Anantharaman, K.; Chandra, R.

    1995-01-01

    The objective of the failed fuel detection system is to keep a watch on fuel behaviour during operation. This paper describes the evaluation of fuel behaviour by monitoring the activities of various isotopes of iodine both during steady state and during a reactor shutdown. The limitations of this approach also has been explained. The monitoring of tramp uranium for different types of release, namely fixed contamination and continuous release from fuel, is also presented. (author)

  20. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  1. Development of portable fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakatou, K.; Sumi, S.; Nishizawa, N. [Sanyo Electric Co., Ltd., Osaka (Japan)

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  2. Dry process fuel performance technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K. (and others)

    2006-06-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  3. Dry process fuel performance technology development

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K.

    2006-06-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  4. Development of high burnup nuclear fuel technology

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Kang, Young Hwan; Jung, Jin Gone; Hwang, Won; Park, Zoo Hwan; Ryu, Woo Seog; Kim, Bong Goo; Kim, Il Gone

    1987-04-01

    The objectives of the project are mainly to develope both design and manufacturing technologies for 600 MWe-CANDU-PHWR-type high burnup nuclear fuel, and secondly to build up the foundation of PWR high burnup nuclear fuel technology on the basis of KAERI technology localized upon the standard 600 MWe-CANDU- PHWR nuclear fuel. So, as in the first stage, the goal of the program in the last one year was set up mainly to establish the concept of the nuclear fuel pellet design and manufacturing. The economic incentives for high burnup nuclear fuel technology development are improvement of fuel utilization, backend costs plant operation, etc. Forming the most important incentives of fuel cycle costs reduction and improvement of power operation, etc., the development of high burnup nuclear fuel technology and also the research on the incore fuel management and safety and technologies are necessary in this country

  5. Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the 2-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These 2 programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  6. Trend of fuel for light water reactors and development hereafter

    International Nuclear Information System (INIS)

    Ichikawa, Michio; Maru, Akira; Shimoshige, Takanori

    1993-01-01

    Recently, the heightening of fuel burnup has been actively advanced internationally. Its degree is different according to the policy and the economical factors in respective countries. The extension of the period of operation cycle urges high burnup in view of economy. The circumstances in USA, Europe and Japan are explained. The corrosion of zircaloy cladding is the factor of limiting fuel life. The state of corrosion in reactors is different in BWRs and PWRs, and both cases are explained. The emission of FP gas from pellets to fuel rods raises the internal pressure of the fuel rods, and affects the gap conductance between pellets and cladding tubes. In the fuel for LWRs, plutonium is formed locally and burns in pellet rim part. This rim effect is discussed. The irradiation growth of fuel rods, creep down and pellet-cladding interaction are explained. The MOX fuel for LWRs and the trend of development of new type fuel are reported. The fuel for BWRs of Hitachi Ltd. and Toshiba Corp. and Nuclear Fuel Industries Ltd., the fuel for PWRs of Mitsubishi Heavy Industries Ltd. and Nuclear fuel Industries Ltd., and the recent development of the fuel cladding tubes for LWRs are described. (K.I.)

  7. A study of fuel cell patenting activity in Canada

    International Nuclear Information System (INIS)

    Lee, B.Y.; Sajewycz, M.

    2004-01-01

    'Full text:' A patent application is generally filed shortly after completion of research and development; therefore, patent filing statistics provide insight into the state of innovation of a technology. A study has been conducted on fuel cell patenting activity in Canada. This study examines fuel cell patenting trends between 1989-2003 and specific activity in 2001, identifies the major players in the Canadian fuel cell industry, and examines the patent landscape by fuel cell technology. Our results show that historically, Canadians have been leaders at home and abroad in fuel cell innovation. However, Canadians have recently fallen behind in protecting their patent rights at home, and now rank fourth behind German, American and Japanese fuel cell patent filers in the Canadian patent office. However, our data also shows that a significant number of new Canadian entities have emerged and have been very active filing new patent applications. These new entities as well as established Canadian companies are examined in detail. (author)

  8. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  9. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  10. Development of nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Matsumoto, Takashi; Suzuki, Kazumichi; Kawamura, Fumio

    1995-01-01

    In the long term plan for atomic energy that the Atomic Energy Commission decided the other day, the necessity of the technical development for establishing full scale fuel cycle for future was emphasized. Hitachi Ltd. has engaged in technical development and facility construction in the fields of uranium enrichment, MOX fuel fabrication, spent fuel reprocessing and so on. In uranium enrichment, it took part in the development of centrifuge process centering around Power Reactor and Nuclear Fuel Development Corporation (PNC), and took its share in the construction of the Rokkasho uranium enrichment plant of Japan Nuclear Fuel Service Co., Ltd. Also it cooperates with Laser Enrichment Technology Research Association. In Mox fuel fabrication, it took part in the construction of the facilities for Monju plutonium fuel production of PNC, for pellet production, fabrication and assembling processes. In spent fuel reprocessing, it cooperated with the technical development of maintenance and repair of Tokai reprocessing plant of PNC, and the construction of spent fuel stores in Rokkasho reprocessing plant is advanced. The centrifuge process and the atomic laser process of uranium enrichment are explained. The high reliability of spent fuel reprocessing plants and the advancement of spent fuel reprocessing process are reported. Hitachi Ltd. Intends to exert efforts for the technical development to establish nuclear fuel cycle which increases the importance hereafter. (K.I.)

  11. Spent fuel: prediction model development

    International Nuclear Information System (INIS)

    Almassy, M.Y.; Bosi, D.M.; Cantley, D.A.

    1979-07-01

    The need for spent fuel disposal performance modeling stems from a requirement to assess the risks involved with deep geologic disposal of spent fuel, and to support licensing and public acceptance of spent fuel repositories. Through the balanced program of analysis, diagnostic testing, and disposal demonstration tests, highlighted in this presentation, the goal of defining risks and of quantifying fuel performance during long-term disposal can be attained

  12. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  13. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  14. Development of An Advanced JP-8 Fuel

    Science.gov (United States)

    1993-12-01

    included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally

  15. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  16. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  17. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  18. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  19. Hydrogen Fuel Cell development in Columbia (SC)

    Energy Technology Data Exchange (ETDEWEB)

    Reifsnider, Kenneth [Univ. of South Carolina, Columbia, SC (United States); Chen, Fanglin [Univ. of South Carolina, Columbia, SC (United States); Popov, Branko [Univ. of South Carolina, Columbia, SC (United States); Chao, Yuh [Univ. of South Carolina, Columbia, SC (United States); Xue, Xingjian [Univ. of South Carolina, Columbia, SC (United States)

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  20. Development of Nuclear Fuel Remote Fabrication Technology

    International Nuclear Information System (INIS)

    Lee, Jung Won; Yang, M. S.; Kim, S. S. and others

    2005-04-01

    The aim of this study is to develop the essential technology of dry refabrication using spent fuel materials in a laboratory scale on the basis of proliferation resistance policy. The emphasis is placed on the assessment and the development of the essential technology of dry refabrication using spent fuel materials. In this study, the remote fuel fabrication technology to make a dry refabricated fuel with an enhanced quality was established. And the instrumented fuel pellets and mini-elements were manufactured for the irradiation testing in HANARO. The design and development technology of the remote fabrication equipment and the remote operating and maintenance technology of the equipment in hot cell were also achieved. These achievements will be used in and applied to the future back-end fuel cycle and GEN-IV fuel cycle and be a milestone for Korea to be an advanced nuclear country in the world

  1. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  2. LEU fuel development at CERCA

    International Nuclear Information System (INIS)

    Durand, Jean Pierre; Ottone, J.C.; Mahe, M.; Ferraz, G.

    1998-01-01

    The aim of this paper is to detail the recent progress on both U 3 Si 2 high loaded fuels and new γ phase fuels. Concerning high density density silicide plates up to 6 g Ut/cm 3 , the CEA irradiation programme is completed. Data are still under analysis but one can state that the behaviour was globally similar to conventional fuels known in SILOE and OSIRIS reactors. From the new γ fuel point of view, after demonstration feasibility in 1997 of U Mo thermally stable plates loaded up to 8.3 g Ut/cm3, CERCA has analysed the technical ability of quality inspection means assuming that is of an utmost interest for the insurance of a proper use of high performances fuel in reactors. There are mainly two differences between U Mo fuels (and more generally γ fuels) and conventional ones. Firstly, X-ray diffraction analysis on the fuel powder are needed because the chemical analysis is not sufficient to characterise the γ structure requested. Secondly, the physical limits of the Ultrasonic inspection have been reached due to transitory effect between the meat and the edges. Therefore this technic can not applied in the transitory areas. From that knowledge, the manufacture specifications for a plate dedicated to an irradiation plan can be discussed with a clearer view of the main differences with the U 3 Si 2 fuel reference. (author)

  3. CANDU type fuel activities in Argentina

    International Nuclear Information System (INIS)

    Lavarez, L.; Casario, J.A.; Moreno, C.

    2003-01-01

    Domestic fuel performance in Embalse NPP during the last two years has been excellent without a significant occurrence of fuel failures. The defect rate level was reasonably low with a lowest value of 0.02 % in 2002. The implementation of fuel design optimizations to increase uranium content was fully completed by the end of year 2000. The in-reactor performance was not affected and shows the high degree of maturity reached for both the design and the manufacturing procedures and capabilities. A feasibility study for the utilization of SEU in Embalse NPP mainly conducted by NA-SA and AECL is almost completed. Some fuel related activities are still in progress. As part of them fuel behavior simulations using simplified power histories were performed to assess the influence of SEU fuel burnup extension. (author)

  4. Development of Spent Fuel Examination Technology

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Park, K. J.; Shin, H. S.

    2007-04-01

    For the official operation of ACPF Facility Attachment based on facility declared DIQ was issued by IAEA and officialized upon ROK government approval. This procedure gives an essential ground to negotiate Joint Determination between governments of ROK and US. For ACPF process material accountability a neutron coincidence counting system was developed and calibrated with Cf-252 source. Its performance test demonstrated that over-all counting efficiency was about 21% with random error, 1.5% against calibration source, which found to be satisfactory to the expected design specification. A calibration curve derived by MCNP code with relationship between ASNC doublet counts vs. neutron activity of Cm-244 showed calibration constant to be 2.78x10E5 counts/s.g which would be used for initial ACP hot operation test. Nuclear material transportation and temporary storage system was established for active demonstration of advanced spent fuel management process line and would be directly applied to the effective management of wastes arising from active demonstration and would later contribute as a base data to development of inter hot-cell movement system in pyro-processing line. In addition, an optimal spent fuel for the ACP demonstration was selected and a computer code was developed as a tool to estimate the expected source term at each key measurement point of ACP

  5. Development of Spent Fuel Examination Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Dong; Park, K. J.; Shin, H. S. (and others)

    2007-04-15

    For the official operation of ACPF Facility Attachment based on facility declared DIQ was issued by IAEA and officialized upon ROK government approval. This procedure gives an essential ground to negotiate Joint Determination between governments of ROK and US. For ACPF process material accountability a neutron coincidence counting system was developed and calibrated with Cf-252 source. Its performance test demonstrated that over-all counting efficiency was about 21% with random error, 1.5% against calibration source, which found to be satisfactory to the expected design specification. A calibration curve derived by MCNP code with relationship between ASNC doublet counts vs. neutron activity of Cm-244 showed calibration constant to be 2.78x10E5 counts/s.g which would be used for initial ACP hot operation test. Nuclear material transportation and temporary storage system was established for active demonstration of advanced spent fuel management process line and would be directly applied to the effective management of wastes arising from active demonstration and would later contribute as a base data to development of inter hot-cell movement system in pyro-processing line. In addition, an optimal spent fuel for the ACP demonstration was selected and a computer code was developed as a tool to estimate the expected source term at each key measurement point of ACP.

  6. Fuel Fabrication Capability Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  7. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-09-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, post-irradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  8. Prospects for development of fuel cells

    Directory of Open Access Journals (Sweden)

    В. М. Шабер

    2017-10-01

    Full Text Available The article is devoted to the solution of a complex of problems that arise in small and medium-scale treatment complexes, gas production plants and small and medium-capacity power plants associated with the processing of crude methane and the possibility of reducing the greenhouse effect.The economic feasibility of the development of fuel cells (FC on raw biomethane was demonstrated by the authors in previous publications.The specificity of the solution of problems is focused on small and medium-scale treatment complexes, gas production plants and small and medium power plants.The aim of the study is to show the possibility of solving a multicomponent task of developing fuel cells, including the experimental determination of the actual use of sodium formate as a reducing agent for the production of electricity in a fuel cell (FC.Results are the following: the possibility of solving the issues of reducing greenhouse gas emissions into the atmosphere during processing of waste products of human vital activity is proved. A method for converting methane and carbon dioxide emissions into useful products is shown.

  9. Research reactor fuel development at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.; Wang, N.

    2000-01-01

    This paper reviews recent U 3 Si 2 and U-Mo dispersion fuel development activities at AECL. The scope of work includes fabrication development, irradiation testing, postirradiation examination and performance qualification. U-Mo alloys with a variety of compositions, ranging from 6 to 10 wt % Mo, have been fabricated with high purity and homogeneity in the product. The alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, and X-ray diffraction and neutron diffraction analysis. U-Mo powder samples have been supplied to the Argonne National Laboratory for irradiation testing in the ATR reactor. Low-enriched uranium fuel elements containing U-7 wt % Mo and U-10 wt % Mo with loadings up to 4.5 gU/cm 3 have been fabricated at CRL for irradiation testing in the NRU reactor. The U-Mo fuel elements will be tested in NRU at linear powers up to 145 kW/m, and to 85 atom % 235 U burnup. (author)

  10. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  11. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  12. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  13. Fast reactor fuel design and development

    International Nuclear Information System (INIS)

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  14. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  15. Development of metallic fuel materials

    International Nuclear Information System (INIS)

    Kang, Young Ho; Lee, Chong Tak; Yang, Yeoung Seok; Kim, Ki Hwan; Hwang, Sung Chan; Joo, Keun Sik; Ann, Hyun Suk; Chang, Sae Jung.

    1997-09-01

    Through the control of melting and casting parameters, the sound and homogenous U-10wt.%Zr alloy could be fabricated. The yield and segregation of Zr elements were 85% and ±0.1wt.%, and the density of the alloy was about 16.6 g/cm 3 . The major phase were α-U and δ-UZr 2 . The microstructure showed the laminar structure with fiber morphology which was arranged alternatively with uranium and Zr-rich phase. This alloy will be used for KALIMER fuel material through developing the fabrication technology and the characteristics analysis. And electrorefining study was performed to separate uranium from uranium-neodymium and uranium-zirconium alloy by their different free energy for chloride formation. The liquid cadmium phase becomes the anode of the electrorefining cell. Uranium is electrolytically transported through a molten salt electrolyte to a low carbon steel cathode. The electrolyte is composed of KCl-LiCl eutectic and some UCl 3 , which are installed in the salt to facilitate the electrotransport of uranium. In pyrochemical process the reaction condition of chlorination and the maintenance its purity in preparing UCl 4 by chlorination of UO 2 is strongly dependent on the reaction temperature and time. (author).52 refs., 40 tabs., 129 figs

  16. Nuclear Fuel Design Technology Development for the Future Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Cheon, Jin Sik; Oh, Je Yong; Yim, Jeong Sik; Sohn, Dong Seong; Lee, Byung Uk; Ko, Han Suk; So, Dong Sup; Koo, Dae Seo

    2006-04-15

    The test MOX fuels have been irradiated in the Halden reactor, and their burnup attained 40 GWd/t as of October 2005. The fuel temperature and internal pressure were measured by the sensors installed in the fuels and test rig. The COSMOS code, which was developed by KAERI, well predicted in-reactor behavior of MOX fuel. The COSMOS code was verified by OECD-NEA benchmarks, and the result confirmed the superiority of COSMOS code. MOX in-pile database (IFA-629.3, IFA-610.2 and 4) in Halden was also used for the verification of code. The COSMOS code was improved by introducing Graphic User Interface (GUI) and batch mode. The PCMI analysis module was developed and introduced by the new fission gas behavior model. The irradiation test performed under the arbitrary rod internal pressure could also be analyzed with the COSMOS code. Several presentations were made for the preparation to transfer MOX fuel performance analysis code to the industry, and the transfer of COSMOS code to the industry is being discussed. The user manual and COSMOS program (executive file) were provided for the industry to test the performance of COSMOS code. To envisage the direction of research, the MOX fuel research trend of foreign countries, specially focused on USA's GENP policy, was analyzed.

  17. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  18. Regulatory activities in the area of fuel safety and performance

    International Nuclear Information System (INIS)

    Viktorov, A.; Couture, M.

    2005-01-01

    Generic Action Item 94G02 'Impact of Fuel Bundle Condition on Reactor Safety' in many ways determined the present priorities in regulatory activities related to fuel performance. As one of the closure criteria it required that all licensees establish 'an effective formal and systematic process for integrating fuel design, fuel and channel inspection, laboratory examination, research, operating limits and safety analysis'. To date, such a process has been, to a large extent, put in place by all licensees. To assure that such processes remain operational and effective after the GAI closure, CNSC required, through S-99, to report annually on fuel performance and major activities in the fuel safety area. The scope of reported information has been defined to allow CNSC staff evaluation of key events and trends in fuel performance. To compliment reporting by the industry, CNSC staff has conducted targeted inspections of fuel compliance programs at all sites. Combined together, these activities provide the regulator with the confidence that CANDU fuel is robust and operates with safety margins. The scrutiny, to which fuel performance has been subjected lately, has allowed identification of certain programmatic weaknesses and gaps in the knowledge concerning the fuel behaviour under various conditions. It has become apparent that top-level strategies for assessment of fuel performance may have been inadequate and far from systematic; fuel inspection practices and capabilities have varied significantly from site to site; certain issues were identified but remained unaddressed for significant time; priorities in experimental or design support activities were not assigned consistently. The presentation gives examples of areas where, in the opinion of the CNSC staff, further work is required to support fuel design and safety envelopes. The implementation of new CANFLEX fuel designs is currently being considered by the industry and CNSC staff has been engaged in the review

  19. Nuclear fuel fabrication - developing indigenous capability

    International Nuclear Information System (INIS)

    Gupta, U.C.; Jayaraj, R.N.; Meena, R.; Sastry, V.S.; Radhakrishna, C.; Rao, S.M.; Sinha, K.K.

    1997-01-01

    Nuclear Fuel Complex (NFC), established in early 70's for production of fuel for PHWRs and BWRs in India, has made several improvements in different areas of fuel manufacturing. Starting with wire-wrap type of fuel bundles, NFC had switched over to split spacer type fuel bundle production in mid 80's. On the upstream side slurry extraction was introduced to prepare the pure uranyl nitrate solution directly from the MDU cake. Applying a thin layer of graphite to the inside of the tube was another modification. The Complex has developed cost effective and innovative techniques for these processes, especially for resistance welding of appendages on the fuel elements which has been a unique feature of the Indian PHWR fuel assemblies. Initially, the fuel fabrication plants were set-up with imported process equipment for most of the pelletisation and assembly operations. Gradually with design and development of indigenous equipment both for production and quality control, NFC has demonstrated total self reliance in fuel production by getting these special purpose machines manufactured indigenously. With the expertise gained in different areas of process development and equipment manufacturing, today NFC is in a position to offer know-how and process equipment at very attractive prices. The paper discusses some of the new processes that are developed/introduced in this field and describes different features of a few PLC based automatic equipment developed. Salient features of innovative techniques being adopted in the area Of UO 2 powder production are also briefly indicated. (author)

  20. Flowsheet development for HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Baxter, B.; Benedict, G.E.; Zimmerman, R.D.

    1976-01-01

    Development studies to date indicate that the HTGR fuel blocks can be effectively crushed with two stages of eccentric jaw crushing, followed by a double-roll crusher, a screener and an eccentrically mounted single-roll crusher for oversize particles. Burner development results indicate successful long-term operation of both the primary and secondary fluidized-bed combustion systems can be performed with the equipment developed in this program. Aqueous separation development activities have centered on adapting known Acid-Thorex processing technology to the HTGR reprocessing task. Significant progress has been made on dissolution of burner ash, solvent extraction feed preparation, slurry transfer, solids drying and solvent extraction equipment and flowsheet requirements

  1. Conceptual framework for using 'Best Estimate plus Uncertainty' as a basis for licensing activities for fuels developed for an advanced reactor

    International Nuclear Information System (INIS)

    McClure, P.; Unal, C.; Boyack, B.

    2010-01-01

    Closing the fuel cycle is one of the major technical challenges to expanding the use of nuclear energy to meet the world's need for benign, environmentally safe electrical power. 'Closing the fuel cycle ' means getting the maximum amount of energy possible out of uranium fuel while minimizing the amount of high-level waste that must be stored. The U.S. Dept. of Energy's Fuel Cycle Research and Development (FCRD) program is investigating the recycling of transuranic isotopes contained in spent nuclear fuel. Recycling minimizes the amount of high-level waste that would require storage in repositories. Developing new fuels and the advanced reactors that burn them is a long process typically spanning two decades from concept to final licensing. A unique challenge to meeting the FCRD objectives in this area is the fact that the experimental database is incomplete. Thus, using a traditional, heavily empirical approach to develop and qualify fuels for an advanced reactor plant will be very challenging. To address this concern, FCRD has launched an advanced modeling and simulation (M and S) approach to revolutionize fuel development and advanced reactor design. This new approach depends on transferring recent advances in the computational sciences and computer technologies into the development of these program elements. The licensing process that historically has been used by the U.S. Nuclear Regulatory Commission (NRC) for fuels qualification is based on using a large body of experimental work to qualify and license a new fuel. If an M and S approach with more directed experimentation is to be considered as an alternative approach for licensing, a framework needs to be developed early in the process. Using M and S with limited experiments as a basis for demonstrating that a design can meet NRC requirements is not new and has precedence in the NRC. The method is generically referred to as a 'Best Estimate plus Uncertainty' (BE+U) approach because the goal of the

  2. Cost analysis of electrical power from an ethanol reformer and the fuel cell in the development of productive activities in the community Pico do Amor, MT, Brazil

    International Nuclear Information System (INIS)

    Lopes, Davi Gabriel; Teixeira, Andre Frazao; Lopes, Daniel Gabriel; Cavaliero, Carla Kazue Nakao

    2010-01-01

    This work has the objective to analyze the impact of the cost of from an ethane reformer / fuel cell in the family income considering the development of two productive activities selected by the community itself: the production and marketing of cassava flour and 'rapadura', a typical brazilian candy. The community energy demand was analyzed to achieve the results; estimated the energy cost from the implemented system and the money from the selling of the cassava flour and 'rapadura' produced with this electricity; the study of sensibility of the ethanol price in the electrical energy cost was done too, and the cassava flour and 'rapadura' in the family funds. From the results, it was verified that the electrical energy cost has a 16,4% impact in the family gross income and a net value around R$ 260,85/family, indicating that the community will have enough funds to pay for the energy and also will rise the amount of money for each family. Besides, the comparative analyze of the cost of the electricity from the ethanol/fuel cell reformer and photovoltaic systems shows that, considering only the maintenance and operation costs, the first one should be more attractive than the second one. (author)

  3. Development of TVSA VVER-1000 fuel

    International Nuclear Information System (INIS)

    Samoilov, O.; Kaydalov, V.; Romanov, A.; Falkov, A.; Morozkin, O.; Sholin, E.

    2013-01-01

    The TVSA fuel assemblies with a rigid angle-piece skeleton operate at 21 VVER-1000 units of Kalinin NPP, and Ukrainian, and Czech and Bulgarian NPPs. The total of more than 6,000 TVSA fuel assemblies have been fabricated. High lifetime performance has been achieved, namely, the maximum FA burnup is 65 MW∙day/kgU; maximum fuel rod burnup is 72 MW∙day/kgU; the lifetime is 50,000 EFPH. The TVSA fuel assembly is being improved to enhance its technical and economic performance and competitiveness of the Russian fuel for the VVER-1000 reactor: 1) Reliability and safety are being enhanced; repairability is being ensured. 2) High burnup levels in fuel are being ensured. 3) The uranium content in FAs is being increased. 4) The operational life is being extended. 5) Thermal-technical characteristics of FAs are being improved. The basic TVSA fuel assembly design evolved into the TVSA-PLUS with the fuel column elongated by 150 mm. The TVSA-PLUS fuel assembly has been in operation since 2010 at Kalinin NPP power units; an eighteen-month cycle is implemented at the uprated power of 104%. The TVSA-12PLUS fuel assembly has been developed with an elongated fuel column, optimized spacer grid positions (the spacer grid pitch is 340 mm) and with ensuring higher rigidity for the skeleton. It is provided for that fuel rods with the elevated uranium content and mixing intensifier grids will be used. The TVSA-T is developed for VVER-1000 reactor cores at the Temelin NPP. The TVSA-T is characterized by a load-carrying skeleton formed with angle-pieces and combined spacer grids that incorporate mixer grids. The TVSA-T design won the international tender to supply fuel to the Temelin NPP in the Czech Republic, and currently Temelin NPP Unit 1 and 2 are operating with the cores fully loaded with TVSA-Ts

  4. IFR fuel cycle--pyroprocess development

    International Nuclear Information System (INIS)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ''pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs

  5. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  6. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  7. French development program on fuel cycle

    International Nuclear Information System (INIS)

    Viala, M.; Bourgeois, M.

    1991-01-01

    The need to close the fuel cycle of fast reactors makes the development of the cycle installations (fuel fabrication, irradiated assembly conditioning before reprocessing, reprocessing and waste management) especially independent with the development of the reactor. French experience with the integrated cycle over a period of about 25 years, the tonnage of fuels fabricated (more than 100 t of mixed oxides) for the Rapsodie, Phoenix and SuperPhoenix reactors, and the tonnage of reprocessed fuel (nearly 30 t of plutonium fuel) demonstrate the control of the cycle operations. The capacities of the cycle installations in existence and under construction are largely adequate for presents needs, even including a new European EFR reactor. They include the Cadarache fuel fabrication complex, the La Hague UP2-800 reprocessing plant, and the Marcoule pilot facility. Short- and medium-term R and D programs are connected with fuel developments, with the primary objective of very high burnups. For the longer term and for a specific plant to reprocess fast reactor fuels, the programs could concern new fabrication and reprocessing systems and the study of the consequences of the reduction in fuel out-of-core time

  8. In-core fuel management activities in China

    International Nuclear Information System (INIS)

    Ruan Keqiang; Chen Renji; Hu Chuanwen

    1990-01-01

    The development of nuclear power in China has reached such a stage that PWR in-core fuel management becomes an urgent problem. At present the main effort is concentrated on solving the Qinshan nuclear power plant and Daya Bay nuclear power plant fuel management problems. For the Qinshan PWR (300 MWe) two packages of in-core fuel management code were developed, one with simplified nodal diffusion method and the other uses advanced Green's function nodal method. Both were used in the PWR core design. With the help of the two code packages first two cycles of the Qinshan PWR core burn-up were calculated. Besides, several research works are under way in the following areas: improvement of the nodal diffusion method and other coarse mesh method in terms of computing speed and accuracy; backward diffusion technique for fuel management application; optimization technique in the fuel loading pattern searching. As for the Daya Bay PWR plant (twin 900 MWe unit), the problem about using what kind of code package for in-core fuel management is still under discussion. In principle the above mentioned code packages are also applicable to it. Besides PWR, in-core fuel management research works are also under way for research reactors, for example, heavy water research reactor and high flux research reactor in some institutes in China. China also takes active participation in international in-core fuel management activities. (author). 19 refs

  9. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  10. Space reactor fuels performance and development issues

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  11. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  12. The conditions of gaseous fuels development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Face to the actual situation of petrol and gas oil in France, the situation of gaseous fuels appears to be rather modest. However, the aim of gaseous fuels is not to totally supersede the liquid fuels. Such a situation would imply a complete overturn which has not been seriously considered yet. This short paper describes the essential conditions to promote the wider use of gaseous fuels: the intervention of public authorities to adopt a more advantageous tax policy in agreement with the ''Clean Air''law project, a suitable distribution network for gaseous fuels, a choice of vehicles consistent with the urban demand, the development of transformation kits of quality and of dual-fuel vehicles by the car manufacturers. (J.S.)

  13. Full size U-10Mo monolithic fuel foil and fuel plate fabrication-technology development

    International Nuclear Information System (INIS)

    Moore, G.A.; Jue, J-F.; Rabin, B.H.; Nilles, M.J.

    2010-01-01

    Full-size U-10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer to the foil is performed using a hot co-rolling process. Aluminium clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy. (author)

  14. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  15. Strategic Partnerships in Fuel Cell Development

    Science.gov (United States)

    Diab, Dorey

    2006-01-01

    This article describes how forming strategic alliances with universities, emerging technology companies, the state of Ohio, the federal government, and the National Science Foundation, has enabled Stark State College to develop a $5.5 million Fuel Cell Prototyping Center and establish a Fuel Cell Technology program to promote economic development…

  16. Fuel Fabrication Capability Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  17. CANDU fuel performance and development

    International Nuclear Information System (INIS)

    Hardy, D.G.; Wood, J.C.; Bain, A.S.

    1978-12-01

    The fuel defect rate in CANDU (Canada Deuterium Uranium) reactors continues to be very low, 0.06% since 1972. The power ramp defects, which constituted the majority of the early defects, have been virtually eliminated by changed fuelling schemes and through the introduction of graphite CANLUB coatings on the inside of the sheath. Laboratory and loop irradiations have demonstrated that the graphite CANLUB layers increase the tolerance to power ramps, but to obtain the maximum benefit, coating parameters such as thickness, adhesion and wear resistance must be optimized. Siloxane CANLUB coated fuel offers greater tolerance to power ramps than most graphite coatings; quality control appears simpler and no instance of localized sheath hydriding has been seen with cured and irradiated coatings. Limited testing has shown that fuel with graphite discs between fuel pellets also has high tolerance to power ramps, but it is more costly and has lower burnup. The number of defects due to faulty components has been extremely small (0.00014%), but improved quality control and welding procedures can lower this number even further. Defects from causes external to the bundle have also been very few. (author)

  18. Development of nuclear fuel cycle technology

    International Nuclear Information System (INIS)

    Kawahara, Akira; Sugimoto, Yoshikazu; Shibata, Satoshi; Ikeda, Takashi; Suzuki, Kazumichi; Miki, Atsushi.

    1990-01-01

    In order to establish the stable supply of nuclear fuel as an important energy source, Hitachi ltd. has advanced the technical development aiming at the heightening of reliability, the increase of capacity, upgrading and the heightening of performance of the facilities related to nuclear fuel cycle. As for fuel reprocessing, Japan Nuclear Fuel Service Ltd. is promoting the construction of a commercial fuel reprocessing plant which is the first in Japan. The verification of the process performance, the ensuring of high reliability accompanying large capacity and the technical development for recovering effective resources from spent fuel are advanced. Moreover, as for uranium enrichment, Laser Enrichment Technology Research Association was founded mainly by electric power companies, and the development of the next generation enrichment technology using laser is promoted. The development of spent fuel reprocessing technology, the development of the basic technology of atomic process laser enrichment and so on are reported. In addition to the above technologies recently developed by Hitachi Ltd., the technology of reducing harm and solidification of radioactive wastes, the molecular process laser enrichment and others are developed. (K.I.)

  19. Review of the IAEA Nuclear Fuel Cycle Materials Section activities related to WWER fuel

    International Nuclear Information System (INIS)

    Killeen, J.

    2003-01-01

    The IAEA Nuclear Fuel Cycle Programme, designated as Programme B, has the main objective of supporting Member States in policy making, strategic planning, developing technology and addressing issues with respect to safe, reliable, economically efficient, proliferation resistant and environmentally sound nuclear fuel cycle. This paper is concentrated on describing the work within Sub-programme B.2 'Fuel Performance and Technology'. Two Technical Working Groups assist in the preparation of the IAEA programme in the nuclear fuel cycle area - Technical Working Group on Water Reactor Fuel Performance and Technology and Technical Working Group on Nuclear Fuel Cycle Options. The activities of the Unit within the Nuclear Fuel Cycle and Materials Section working on Fuel Performance and Technology are given, based on the sub-programme structure of the Agency programme and budget for 2002-2003. Within the framework of Co-ordinated Research Projects a study of the delayed hydride cracking (DHC) of the zirconium alloys used in pressurised heavy water reactors (PHWR) involving 10 countries has been completed. It achieved very effective transfer of know-how at the laboratory level in three technologically important areas: 1) Controlled hydriding of samples to predetermined levels; 2) Accurate measurement of hydrogen concentrations at the relatively low levels found in pressure tubes and RBMK channel tubes; and 3) In the determination of DHC rates under various conditions of temperature and stress. A new project has been started on the 'Improvement of Models used for Fuel Behaviour Simulation' (FUMEX II) to assist Member States in improving the predictive capabilities of computer codes used in modelling fuel behaviour for extended burnup. The IAEA also collaborates with organisations in the Member States to support activities and meetings on nuclear fuel cycle related topics

  20. Development of fuel and energy storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development of fuel cell power plants is intended of high-efficiency power generation using such fuels with less air pollution as natural gas, methanol and coal gas. The closest to commercialization is phosphoric acid fuel cells, and the high in efficiency and rich in fuel diversity is molten carbonate fuel cells. The development is intended to cover a wide scope from solid electrolyte fuel cells to solid polymer electrolyte fuel cells. For new battery power storage systems, development is focused on discrete battery energy storage technologies of fixed type and mobile type (such as electric vehicles). The ceramic gas turbine technology development is purposed for improving thermal efficiency and reducing pollutants. Small-scale gas turbines for cogeneration will also be developed. Development of superconduction power application technologies is intended to serve for efficient and stable power supply by dealing with capacity increase and increase in power distribution distance due to increase in power demand. In the operations to improve the spread and general promotion systems for electric vehicles, load leveling is expected by utilizing and storing nighttime electric power. Descriptions are given also on economical city systems which utilize wide-area energy. 30 figs., 7 tabs.

  1. Safety analysis of DUPIC fuel development facility

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Baek, S. Y.; Ahn, J. Y.

    2001-01-01

    Various experimental facilities are necessary in order to perform experimental verification for development of DUPIC fuel fabrication technology. In special, since highly radioactive material such as spent PWR fuel is used for this experiment, DUPIC fuel fabrication has to be performed in hot cell by remote handling. Therefore, it should be provided with proper engineering requirement and safety. M6 hot cell of IMEF which is to used for DUPIC fuel fabrication experiment was constructed as an α-γ hot cell for material examination of small amount of high-burnup fuel. The characteristics and amount of spent fuel for DUPIC fuel fabrication experiment will be different from the original design criteria. Therefore, the increased amount of spent fuel and different characteristics of experiment result in not only change of shielding and enviornmental evaluation results but new requirement of nuclear criticality evaluation. Therefore, this study includes evaluation of shielding, environmental effect and nuclear criticality in case that IMEF M6 hot cell is used for DUPIC fuel fabrication

  2. Development of FR fuel cycle in japan (1) development scope of fuel cycle technology

    International Nuclear Information System (INIS)

    Nakamura, H.; Funasaka, H.; Namekawa, T.

    2008-01-01

    A fast reactor (FR) cycle has a potential to realize a sustainable energy supply system that is harmonized with environment by fully recycling both uranium (U) and transuranium (TRU) elements. In Japan, a Feasibility Study on Commercialized FR Cycle Systems (FS) was launched in July 1999, and through two different study phases, a final report was presented in 2006. As a result of FS, a combined system of sodium-cooled FR with mixed-oxide (MOX) fuel, advanced aqueous reprocessing and simplified pelletizing fuel fabrication was considered to be most promising for commercialization. The advanced aqueous reprocessing system, which is called the New Extraction system for TRU recovery (NEXT), consists of a U crystallization process for the bulk of U recovery, a simplified solvent extraction process for residual U, plutonium (Pu) and neptunium (Np) without Pu partitioning and purification, and a process for recovering americium (Am) and curium (Cm) from the raffinate. The ratio of Pu/U concentration in the mother solution after crystallization is adequate for MOX fuel fabrication, and thus complicated powder mixing processes for adjusting Pu content in MOX fuel can be eliminated in the subsequent simplified fuel fabrication system. In this system, lubricant-mixing process can also be eliminated by adopting the advanced technology in which lubricant is coated on the inner surface of a die before fuel powder supply. Such a simplification could help us overcoming the difficulty to treat MA bearing fuel powders in a hot cell. Ministry of Education, Culture, Sports, Science and Technology (MEXT) reviewed these results of FS in 2006 and identified the most promising FR cycle concept proposed in the FS phase II study as a mainline choice for commercialization. According to such a governmental assessment, R and D activities of FR cycle systems were decided to be concentrated mainly to the innovative technology development for the mainline concept. The stage of R and D project was

  3. Development, Fabrication and Characterization of Fuels for Indian Fast Reactor Programme

    International Nuclear Information System (INIS)

    Kumar, Arun

    2013-01-01

    Development of Fast Reactor fuels in India started in early Seventies. The successful development of Mixed Carbide fuels for FBTR and MOX fuel for PFBR have given confidence in manufacture of fuels for Fast Reactors. Effort is being put to develop high Breeding Ratio Metallic fuel (binary/ternary). Few fuel pins have been fabricated and is under test irradiation. However, this is only a beginning and complete fuel cycle activities are under development. Metal fuelled Fast Reactors will provide high growth rate in Indian Fast Reactor programme

  4. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  5. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  6. Development of PHWR fuel fabrication in Korea

    International Nuclear Information System (INIS)

    Suh, K.S.; Yang, M.S.; Kim, D.H.; Rim, C.S.

    1988-01-01

    Korea Advanced Energy Research Institute (KAERI) started a research project to develop the PHWR (CANDU) nuclear fuel fabrication technology in 1981. Based on the results of the intensive developmental work, several prototype fuel bundles were fabricated and tested in the Hot Test Loop at KAERI continuously in 1983 and 1984. After that, irradiation test and post-irradiation examination were carried out for two KAERI-made fuel bundles at Chalk River Nuclear Laboratories in Canada in 1984. Since the results of in-pile and out-of-pile tests with prototype fuel bundles proved to be satisfactory, 48 additional fuel bundles were loaded in Wolsung reactor (CANDU) in 1984 and 1985, and all of them were discharged without a defect after excellent performance in the power reactor. In 1985, the Korean government decided that KAERI supplies all the fuel necessary for the Wolsung reactor. For the mass production of nuclear fuel bundle, several process equipment, facilities and automation methods have been improved making use of experience accumulated during research. A quality assurance program was also established, and quality inspection technology was reviewed and improved to fit the mass production. This paper deals with the development experience so far obtained with the design and fabrication of the Korean PHWR fuel

  7. Deep-Burn Modular Helium Reactor Fuel Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    McEachern, D

    2002-12-02

    the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  8. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  9. Phosphoric acid fuel cell R and D activities at KACST

    International Nuclear Information System (INIS)

    Ghouse, M.; Aba-Oud, H.; Ba-Junaid, M.; Al-Garni, M.; Quadri, M.I.

    1993-01-01

    The PAFC (Phosphoric Acid Fuel Cell) activities are directed towards the development of components of single cell and experimental stacks at KACST. The main aim of the present task is to design and construct a 1 kW PAFC Stack and demonstrate it by integrating with an electrolyser using a DC current generated by a photovoltaic power source. This paper describes the preparation of porous teflon bonded gas diffusion carbon electrodes and their evaluation as single phosphoric acid fuel cells using hydrogen as a fuel and oxygen/air as an oxidant. 6 figs., 2 tabs., 15 refs

  10. LOFT advanced fuel rod instrumentation development

    International Nuclear Information System (INIS)

    Billeter, T.R.; Brown, R.L.; Chan, A.I.Y.; Day, C.K.; Meyers, S.C.; Sheen, E.M.; Stringer, J.L.

    1978-01-01

    Advanced fuel rod instrumentation for the Loss of Fluid Test (LOFT) reactor is being developed by the Hanford Engineering Development Laboratory for the Nuclear Regulatory Commission. This effort calls for development of sensors to measure fuel rod axial motion, fuel centerline temperature (to 2200 0 C), fuel rod plenum gas pressure (to 2500 psig), and plenum gas temperature (to 1500 0 F). A parallel test and evaluation of several modified commercial sensors was undertaken and will result in commercial availability of the final qualified sensors. Necessary test facilities were prepared for the development and evaluation effort. Tests to date indicate a three coil Linear Variable Differential Transformer (LVDT), operated from temperature compensating signal source and processing electronics, will meet the desired requirements

  11. VVER fuel cycle development at Slovakia

    International Nuclear Information System (INIS)

    Darilek, P.; Chrapiak, V.; Majerik, J.

    1995-01-01

    Four VVER-440 units are now under exploitation at Bohunice-site in Slovakia. Fuel cycle development of Unit No.3 and No.4 (type 213) is discussed and compared with equilibrium cycles in this paper. (author)

  12. Development of a diesel substitute fuel

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Anton; Mair-Zelenka, Philipp [Graz Univ. of Technology (Austria). Inst. of Chemical Engineering and Environmental Technology; Zeymer, Marc [OMV Refining and Marketing GmbH, Vienna (Austria). MRDI-D Product Development and Innovation

    2013-06-01

    Substitute fuels composed of few real chemical compounds are an alternative characterisation approach for conventional fuels as opposed to the traditional pseudo-component method. With the algorithm proposed in this paper the generation of such substitutes will be facilitated and well-established thermodynamic methods can be applied for physical property-data prediction. Based on some quality criteria like true boiling-point curve, liquid density, C/H ratio, or cloud point of a target fuel a surrogate which meets these properties is determined by fitting its composition. The application and capabilities of the algorithm developed are demonstrated by means of an exemplary diesel substitute fuel. The substitute mixture obtained can be generated and used for evaluation of property-prediction methods. Furthermore this approach can help to understand the effects of mixing fossil fuels with biogenic compounds. (orig.)

  13. Developments of fuel performance analysis codes in KEPCO NF

    International Nuclear Information System (INIS)

    Han, H. T.; Choi, J. M.; Jung, C. D.; Yoo, J. S.

    2012-01-01

    The KEPCO NF has developed fuel performance analysis and design code named as ROPER, and utility codes of XGCOL and XDNB in order to perform fuel rod design evaluation for Korean nuclear power plants. The ROPER code intends to cover full range of fuel performance evaluation. The XGCOL code is for the clad flattening evaluation and the XDNB code is for the extensive DNB propagation evaluation. In addition to these, the KEPCO NF is now in the developing stage for 3-dimensional fuel performance analysis code, named as OPER3D, using 3-dimensional FEM for the nest generation within the joint project CANDU ENERGY in order to analyze PCMI behavior and fuel performance under load following operation. Of these, the ROPER code is now in the stage of licensing activities by Korean regulatory body and the other two are almost in the final developing stage. After finishing the developing, licensing activities are to be performed. These activities are intending to acquire competitiveness, originality, vendor-free ownership of fuel performance codes in the KEPCO NF

  14. Training development in Juzbado's Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Perez, A.; Cunado, E.; Ortiz, D.

    2003-01-01

    In Juzbado's fuel cycle facility, because of the special activities developed, training is a very important issues. Training has been evolved, due to changes on the standards applicable each moment, and also due to the technological resources available. Both aspects have resulted in an evolution of the documents referred to training, such as training programs procedures, Radiation Protection Manual as well as the teaching methods. In the report we are going to present, we will show more precisely the changes that take place, referring to the different training methods used, present training sanitations, and the improvements already planned in training subjects as well as tools used, accomplishing with the legislation and improving in our effort of a better assimilation of the necessary knowledge. (Author)

  15. Research and development long term prospects for advanced thermal and fast breeder reactors and fuel cycle activities

    International Nuclear Information System (INIS)

    Rapin, M.

    1987-01-01

    Despite the present slowing down of most of the national nuclear programmes due to various conjunctural causes, nuclear energy is presumably to have in term an increasing role worldwide for electricity production, both in industrialized countries already equipped with nuclear power stations and in countries which intent to enter the nuclear energy route in a short or mid-term perspective. Nuclear energy development will have notably to take into account the following requirements: from a strategic point of view, the major concern is to optimize the use of world available natural uranium appears abundant and inexpensive, it must not be forgotten that in a longer time perspective a growing scarcity of this material will occur unavoidably; from the technical and economical standpoints, future reactors will have to be more reliable, more available, and even more safe, with lower KWh generating costs, than units presently constructed or operated. The paper presents the approach which is followed by France to meet these goals. (author)

  16. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  17. Development of nuclear fuel for integrated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO{sub 2}-based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO{sub 2}-based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method.

  18. Development of nuclear fuel for integrated reactor

    International Nuclear Information System (INIS)

    Song, Kee Nam; Kim, H. K.; Kang, H. S.; Yoon, K. H.; Chun, T. H.; In, W. K.; Oh, D. S.; Kim, D. W.; Woo, Y. M.

    1999-04-01

    The spacer grid assembly which provides both lateral and vertical support for the fuel rods and also provides a flow channel between the fuel rods to afford the heat transfer from the fuel pellet into the coolant in a reactor, is one of the major structural components of nuclear fuel for LWR. Therefore, the spacer grid assembly is a highly ranked component when the improvement of hardware is pursued for promoting fuel performance. Main objective of this project is to develop the inherent spacer grid assembly and to research relevant technologies on the spacer grid assembly. And, the UO 2 -based SMART fuel is preliminarily designed for the 330MWt class SMART, which is planned to produce heat as well as electricity. Results from this project are listed as follows. 1. Three kinds of spacer grid candidates have been invented and applied for domestic and US patents. In addition, the demo SG(3x3 array) were fabricated, which the mechanical/structural test was carried out with. 2. The mechanical/structural technologies related to the spacer grid development are studied and relevant test requirements were established. 3. Preliminary design data of the UO 2 -based SMART fuel have been produced. The structural characteristics of several components such as the top/bottom end piece and the holddown spring assembly were analysed by consulting the numerical method

  19. HTR fuel development for advanced application

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.; Graham, L.W.; Hick, H.

    1975-01-01

    The advantages of the HTR for nuclear steam supply systems are briefly outlined. Due to its great design flexibility a number of different designs have evolved and the main characteristics of existing experimental prototype and power reactor HTR designs are summarized. The present state of coated particle fuel, particularly with regard to performance, is considered. Some implications of producing higher temperatures are discussed. Finally some of the developments in progress such as minimising the temperature drop between fuel and coolant, and of improving fuel performance by better fission product retention, better chemical stability, and the use of alternative coated materials, are discussed. (U.K.)

  20. Research and development long term prospects for advanced thermal and fast breeder reactors and fuel cycle activities

    International Nuclear Information System (INIS)

    Rapin, M.

    1988-01-01

    Despite the present slowing down of most of the national nuclear programmes due to various conjunctural causes, nuclear energy is presumably to have in term an increasing role worldwide for electricity production, both in industrialized countries already equipped with nuclear power stations and in countries which intent to enter the nuclear energy route in a short or mid-term perspective. Nuclear energy development will have notably to take into account the following requirements: (1) From a strategic point of view, the major concern is to optimize the use of the world available natural uranium resources. Indeed, even if presently natural uranium appears abundant and inexpensive, it must not be forgotten that in a longer time perspective a growing scarcity of this material will occur unavoidably. (2) From the technical and economical standpoints, future reactors will have to be more reliable, more available, and even more safe, with lower kWh generating costs, than units presently constructed or operated. The paper presents the approach which is followed by France to meet these goals

  1. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  2. Development of CANFLEX fuel fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, M. S.; Choi, C. B.; Park, C. H.; Kwon, W. J.; Kim, C. H.; Kim, B. J.; Koo, C. H.; Cho, D. S.; So, D. Y.; Suh, S. W.; Park, C. J.; Chang, D. H.; Yun, S. H. [KEPCO Nuclear Fuel Company, Taejeon (Korea)

    2000-04-01

    Wolsong Unit 1 as the first heavy water reactor in Korea has been in service for 17 years since 1983. It would be about the time to prepare a plan for the solution of problems due to aging of the reactor. The aging of CANDU reactor could lead especially to the steam generator cruding and pressure tube sagging and creep and then decreases the operation margin to make some problems on reactor operations and safety. The counterplan could be made in two ways. One is to repair or modify reactor itself. The other is to develop new advanced fuel to increase of CANDU operation margin effectively, so as to compensate the reduced operation margin. Therefore, the first objectives in the present R and D is to develop the CANFLEX-NU(CANDU Flexible fuelling-Natural Uranium) fuel as a CANDU advanced fuel. One of the improvements in CANDU fuel fabrication technology, and advanced method of Zr-Be brazing was developed. For the formation of Zr-Be alloy, preheating and main heating temperature in the furnace is 700 deg C, 1200 deg C respectively. In order to find an appropriate material for the brazing joints in the CANDU fuel, the composition of Zr based amorphous metals were designed. And, the effect of hydrogen on the mechanical properties of cladding sheath and feasibility of the eddy current test to evaluate quality of end cap weld were also studied for the fundamental research purpose. As a preliminary study to suggest optimal way for the mass production of CANFLEX-NU fuel at KNFC the existing CANDU fuel facilities and fabrication/inspection processes were reviewed. The best way is that the current CANDU facility shall be modified to produce small diametrial CANFLEX elements and a new facility shall be constructed to produce large diametrial CANFLEX fuel elements. 46 refs., 99 figs., 10 tabs. (Author)

  3. GCRA review and appraisal of fuel material development programs

    International Nuclear Information System (INIS)

    1980-09-01

    The Fuel material Development Program has as its principal objective and responsibility the development of a fuel that is both economical and licensable and that, at the same time, will fulfill the required performance criteria. To accomplish this, the program is broken down into the following major fuel development task areas: development of the experimental and analytical data base for selecting, qualifying, and verifying the reference fuel design; providing the data base and developing models for evaluating fuel performance under upset and accident conditions; and developing and justifying fuel fabrication specifications which are consistent with the overall fuel performance criteria and with the fuel fabrication process capabilities

  4. Nuclear fuel manufacturing. Current activities and prospects at INR Pitesti

    International Nuclear Information System (INIS)

    Horhoianu, Grigore

    2001-01-01

    enriched uranium were developed. The principal advantages of using SEU43 in CANDU reactors are presented. This activity was developed in the frame of a research project, ROM/6197/RB, developed with IAEA Vienna. A new original probabilistic analysis was worked out particularly useful in designing and evaluating advanced fuel of high burnup degree. Fuel bundles with 43 elements were manufactured and partially tested off-reactor. An IAEA technical assistance project, ROM/4/025/B1, will allow finalizing both the design and manufacturing technology as well as the irradiation test in reactor. Parallel preparations are under way to study in the future the behaviour of fuel in normal and accident regime. In cooperation with AECL Canada irradiation tests will be effected with the C9 devices of the TRIGA reactor. The test has the goal of analyzing the behaviour of CANDU type fuel in power cycling conditions, resulting from NPP operation in a load followup regime. The test will be performed by means of a device designed and entirely executed in INR, a pioneering work for characterizing the CANDU fuel performances

  5. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, J. S.; Hong, H. D.; Kim, S. H.

    2004-02-01

    In this research, the remote handling technology is developed for the advanced spent fuel conditioning process which gives a possible solution to deal with the rapidly increasing spent fuels. In detail, a fuel rod slitting device is developed for the decladding of the spent fuel. A series of experiments has been performed to find out the optimal condition of the spent fuel voloxidation which converts the UO 2 pellet into U 3 O 8 powder. The design requirements of the ACP equipment for hot test is established by analysing the modular requirement, radiation hardening and thermal protection of the process equipment, etc. The prototype of the servo manipulator is developed. The manipulator has an excellent performance in terms of the payload to weight ratio that is 30 % higher than that of existing manipulators. To provide reliability and safety of the ACP, the 3 dimensional graphic simulator is developed. Using the simulator the remote handling operation is simulated and as a result, the optimal layout of ACP is obtained. The supervisory control system is designed to control and monitor the several different unit processes. Also the failure monitoring system is developed to detect the possible accidents of the reduction reactor

  6. Design and development of PWR fuel

    International Nuclear Information System (INIS)

    Dehon, C.; Leclercq, J.; Watteau, M.

    1982-06-01

    After a brief description of the FRAGEMA fuel assembly which equips at the present time the pressurized water reactors of EdF (Electricite de France), and a presentation of the experience obtained on this fuel, one reviews the main aims and trends of the research and development program carried out by FRAGEMA to improve the design of fuels and to propose to the national customer, but also on the foreign markets, new products adapted to the demands of operators. One insists more particularly on new products that are on one hand the AFA fuel and on the other hand the burnable poison UO 2 -Gd 2 O 3 ; their description is presented and their advantages are given. To conclude, one insists on the importance of the collaboration that have to be kept between the designer and the operator, the manufacturer, the R and D groups and the boiler specialist [fr

  7. BR-100 spent fuel shipping cask development

    International Nuclear Information System (INIS)

    McGuinn, E.J.; Childress, P.C.

    1990-01-01

    Continued public acceptance of commercial nuclear power is contingent to a large degree on the US Department of Energy (DOE) establishing an integrated waste management system for spent nuclear fuel. As part of the from-reactor transportation segment of this system, the B ampersand W Fuel Company (BWFC) is under contract to the DOE to develop a spent-fuel cask that is compatible with both rail and barge modes of transportation. Innovative design approaches were the keys to achieving a cask design that maximizes payload capacity and cask performance. The result is the BR-100, a 100-ton rail/barge cask with a capacity of 21 PWR or 52 BWR ten-year cooled, intact fuel assemblies. 3 figs

  8. IAEA activities related to research reactor fuel conversion and spent fuel return programs

    International Nuclear Information System (INIS)

    Goldman, Ira N.; Adelfang, Pablo; Ritchie, Iain G.

    2005-01-01

    The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programs have supported research reactor fuel conversion from HEU to low enriched uranium (LEU), and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. (author)

  9. IAEA activities related to research reactor fuel conversion and spent fuel return programmes

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Adelfang, P.; Goldman, I.N.

    2004-01-01

    Full text: The IAEA has been involved for more than twenty years in supporting international nuclear non-proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly associated efforts to return research reactor fuel to the country of origin where it was originally enriched. IAEA efforts have included the development and maintenance of several data bases with information related to research reactors and research reactor spent fuel inventories that have been essential in planning and managing both RERTR and spent fuel return programmes. Other IAEA regular budget programmes have supported research reactor fuel conversion from HEU to low enriched uranium, and in addressing issues common to many member states with spent fuel management problems and concerns. The paper briefly describes IAEA involvement since the early 1980's in these areas, including regular budget and Technical Co-operation programme activities, and focuses on efforts in the past five years to continue to support and accelerate U.S. and Russian research reactor spent fuel return programmes. It is hoped that an announcement of the extension of the U.S. Acceptance Programme, which is expected in the very near future, will facilitate the life extensions of many productive TRIGA reactors around the world. (author)

  10. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Uruma, Y.; Osato, T.; Yamazaki, K.

    2002-01-01

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m 2 . Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58 Co and 60 Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  11. Nuclear Fuel Cycle Strategy For Developing Countries

    International Nuclear Information System (INIS)

    Kim, Chang Hyo

    1987-01-01

    The world's uranium market is very uncertain at the moment while other front-end fuel cycle services including enrichment show a surplus of supply. Therefore, a current concern of developing countries is how to assure a long-term stable supply of uranium, so far as front-end fuel cycle operation is concerned. So, as for the front-end fuel cycle strategy, I would like to comment only on uranium procurement strategy. I imagine that you are familiar with, yet let me begin my talk by having a look at, the nuclear power development program and current status of fuel cycle technology of developing countries. It is a nice thing to achieve the full domestic control of fuel cycle operation. The surest way to do so is localization of related technology. Nevertheless, developing at a time due to enormous capital requirements, not to mention the non-proliferation restrictions. Therefore, the important which technology to localize prior to other technology and how to implement. The non-proliferation restriction excludes the enrichment and reprocessing technology for the time being. As for the remaining technology the balance between the capital costs and benefits must dictate the determination of the priority as mentioned previously. As a means to reduce the commercial risk and heavy financial burdens, the multi-national joint venture of concerned countries is desirable in implementing the localization projects

  12. Competitive strength by rearrangement of fuel element activities

    International Nuclear Information System (INIS)

    Pekarek, H.

    1993-01-01

    The fuel element activities of Siemens AG and Siemens Power Corporation (SPC) were merged, in particular by creation of a world-wide manufacturing network; establishment of priorities in research and development; intensified standardization of products and processes; continued quality improvement by TQM (Total Quality Management), and by fusion of European marketing systems. (orig./DG) [de

  13. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  14. The development of fuel cell systems for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Van den Oosterkamp, P.F.; Kraaij, G.J.; Van der Laag, P.C.; Stobbe, E.R.; Wouters, D.A.J.

    2006-09-15

    The ECN fuel cell related R and D program on fuel cells is linked to the stationary market and the automotive market. This paper will summarize our R and D activities for the automotive market. The role of fuels cells in two transport application area's will be described: the development of dedicated hydrogen based platforms in combination with advanced electricity storage for special logistic applications and the APU (auxiliary power unit) market for passenger cars and trucks, as well as for ships and airplanes. The associated aspects of hydrogen transport and storage, as well as the reforming of logistic fuels and bio-fuels to hydrogen will be described with some illustrative examples. These examples show that an integrated approach using applied catalysis, chemical reactor design and engineering, process simulation, control modelling and electrical engineering is required to address all aspects of the development of fuel cell technology for automotive applications. The paper concludes with a summary of the important environmental and economic drivers that influence the fuel cell market application.

  15. Coordinated irradiation plan for the Fuel Refabrication and Development Program

    International Nuclear Information System (INIS)

    Barner, J.O.

    1979-04-01

    The Department of Energy's Fuel Refabrication and Development (FRAD) Program is developing a number of proliferation-resistant fuel systems and forms for alternative use in nuclear reactors. A major portion of the program is the development of irradiation behavioral information for the fuel system/forms with the ultimate objective of qualifying the design for licensing and commercial utilization. The nuclear fuel systems under development include denatured thoria--urania fuels and spiked urania--plutonia or thoria--plutonia fuels. The fuel forms being considered include pellet fuel produced from mechanically mixed or coprecipitated feed materials, pellet fuel fabricated from partially calcined gel-derived or freeze-dried spheres (hybrid fuel) and packed-particle fuel produced from sintered gel-derived spheres (sphere-pac). This document describes the coordinated development program that will be used to test and demonstrate the irradiation performance of alternative fuels

  16. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  17. Status of spent fuel shipping cask development

    International Nuclear Information System (INIS)

    Hall, I.K.; Hinschberger, S.T.

    1989-01-01

    This paper discusses how several new-generation shopping cask systems are being developed for safe and economical transport of commercial spent nuclear fuel and other radioactive wastes for the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. Primary objectives of the from-reactor spent fuel cask development work are: to increase cask payloads by taking advantage of the increased at-reactor storage time under the current spent fuel management scenario, to facilitate more efficient cask handling operations with reduced occupational radiation exposure, and to promote standardization of the physical interfaces between casks and the shipping and receiving facilities. Increased cask payloads will significantly reduce the numbers of shipments, with corresponding reductions in transportation costs and risks to transportation workers, cask handling personnel, and the general public

  18. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  19. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  20. Strategies for fuel cell product development. Developing fuel cell products in the technology supply chain

    International Nuclear Information System (INIS)

    Hellman, H.L.

    2004-01-01

    Due to the high cost of research and development and the broad spectrum of knowledge and competences required to develop fuel cell products, many product-developing firms outsource fuel cell technology, either partly or completely. This article addresses the inter-firm process of fuel cell product development from an Industrial Design Engineering perspective. The fuel cell product development can currently be characterised by a high degree of economic and technical uncertainty. Regarding the technology uncertainty: product-developing firms are more often then not unfamiliar with fuel cell technology technology. Yet there is a high interface complexity between the technology supplied and the product in which it is to be incorporated. In this paper the information exchange in three current fuel cell product development projects is analysed to determine the information required by a product designer to develop a fuel cell product. Technology transfer literature suggests that transfer effectiveness is greatest when the type of technology (technology uncertainty) and the type of relationship between the technology supplier and the recipient are carefully matched. In this line of thinking this paper proposes that the information required by a designer, determined by the design strategy and product/system volume, should be met by an appropriate level of communication interactivity with a technology specialist. (author)

  1. Technical development of fuel alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    Research and development of a technology for biologically manufacturing alcohol from agricultural and forestry wastes has been conducted according to an eight year-program beginning in 1983. This paper presents the findings in FY 1987 and the future schedule. Exploration and breeding of superior bacteria are the basic subject through the eight years. In FY 1987, preparation and evaluation of hybrid plasmids into which Zymomonas, BETA-glucosidase gene and CM case gene are inserted, improvement of variation to enhance the salt resistance of Zymomonas and screening of Cm-and Sm-resistant bacteria to develop thermophilic, anaerobic cellulose were made. In addition, the total process combining the cell adhesion method as the immobilization technique with the flash technique is continuously studied. Improvement of the salt-resistance of Zymomonas by increasing the density with photosetting resin, the upper concentration of alcohol and effect of pulverzing treatment in a small apparatus were investigated. A test plant was designed and constructed. (3 photos.)

  2. An overview to development of fuel cell technology in Iran

    International Nuclear Information System (INIS)

    Amirinejad, M.; Rowshanzamir, S.; Eikani, M.H.

    2005-01-01

    The fuel cell has been known as a modern technology for conversion of chemical energy into electrical energy in the worldwide. Some factors of adaptation to environment targets and high efficiency production of energy are two main reasons that motivated several governments to be active in supporting developments of the fuel cells sector through integrated strategies. The rapid population growth in Iran in recent years is a significant agent of consuming more energy that is satisfied with the fossil resources resulting in environmental problems. The demand for environmental quality and balance in fuel consumption are two main drivers behind the development of fuel cell vehicle in Iran. In order to have sustainable economy and independent on the oil revenue, it is required to make use of oil and natural gas resources in a better manner. Fuel cells are the best candidates to fulfill this requirement. Iran's potential application for this technology in different sectors, design and construction it and fuel system based on natural gas is high. In this paper, current status, potential application, and future research and development of this technology in Iran are investigated

  3. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  4. Nuclear fuel cycle: research and development and push technologies

    International Nuclear Information System (INIS)

    Oliveira, Wagner dos Santos

    2002-01-01

    The scope of this work is to show the importance of 'push technologies in the development of the Nuclear Fuel Cycle more specifically the so called 'Projeto Conversao' PROCON. This R and D activities lead to the design of special equipment, new metallic and polymer materials. (author)

  5. FuelPHP application development blueprints

    CERN Document Server

    Drouyer, Sébastien

    2015-01-01

    This book is for intermediary to seasoned web developers who want to learn how to use the FuelPHP framework and build complex projects using it. You should be familiar with PHP, HTML, CSS, and JavaScript, but no prior knowledge about MVC frameworks is required.

  6. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. S.; Yoon, J. S.; Hong, H. D. (and others)

    2007-02-15

    In this research, the remote handling technology was developed for the ACP application. The ACP gives a possible solution to reduce the rapidly cumulative amount of spent fuels generated from the nuclear power plants in Korea. The remote technologies developed in this work are a slitting device, a voloxidizer, a modified telescopic servo manipulator and a digital mock-up. A slitting device was developed to declad the spent fuel rod-cuts and collect the spent fuel UO{sub 2} pellets. A voloxidizer was developed to convert the spent fuel UO{sub 2} pellets obtained from the slitting process in to U{sub 3}O{sub 8} powder. Experiments were performed to test the capabilities and remote operation of the developed slitting device and voloxidizer by using simulated rod-cuts and fuel in the ACP hot cell. A telescopic servo manipulator was redesigned and manufactured improving the structure of the prototype. This servo manipulator was installed in the ACP hot cell, and the target module for maintenance of the process equipment was selected. The optimal procedures for remote operation were made through the maintenance tests by using the servo manipulator. The ACP digital mockup in a virtual environment was established to secure a reliability and safety of remote operation and maintenance. The simulation for the remote operation and maintenance was implemented and the operability was analyzed. A digital mockup about the preliminary conceptual design of an enginnering-scale ACP was established, and an analysis about a scale of facility and remote handling was accomplished. The real-time diagnostic technique was developed to detect the possible fault accidents of the slitting device. An assessment of radiation effect for various sensors was also conducted in the radiation environment.

  7. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  8. Development and application of an actively controlled hybrid proton exchange membrane fuel cell - Lithium-ion battery laboratory test-bed based on off-the-shelf components

    Energy Technology Data Exchange (ETDEWEB)

    Yufit, V.; Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College, London SW7 2AZ (United Kingdom)

    2011-01-15

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system. (author)

  9. Low enrichment fuel development at INEL

    International Nuclear Information System (INIS)

    Newton, D.G.

    1993-01-01

    EG and G Idaho, Inc. is under contract to the Department of Energy to operate the Idaho National Engineering Laboratory (INEL). The INEL is located in southeastern Idaho. This facility has been operating since 1949 and was originally called the National Reactor Testing Station. Several contractors manage projects on this facility. Most projects at INEL are concerned with either reactor safety or irradiation testing. At Test Area North, for example, experiments are being conducted on the effects of loss of coolant. At the Test Reactor Area the ATR (Advanced Test Reactor) and ETR (Engineering Test Reactor) are used for irradiation testing and, of course, those of you working at Argonne will recognize the Experimental Breeder Reactors I and II. SPERT is an acronym for Special Power Excursion Reactor Test. A part of this former reactor facility has been converted into a fuel fabrication laboratory facility. At SPERT IV a miniature fabrication facility has been set up to duplicate the aluminide plate fuel processing line at Atomics International. In other words, a model of the supplier's processing has been created, so that what process changes are developed here can then be scaled up to production. The process is described showing: making UAI x powder, making compact for fuel core, making experimental fuel plate and compact assembly, inspection and testing the fuel plate. Main concern was related to possible swelling

  10. MOX fuel fabrication: Technical and industrial developments

    International Nuclear Information System (INIS)

    Lebastard, G.; Bairiot, H.

    1990-01-01

    The plutonium available in the near future is generally estimated rather precisely on the basis of the reprocessing contracts and the performance of the reprocessing plants. A few years ago, decision makers were convinced that a significant share of this fissile material would be used as the feed material for fast breeder reactors (FBRs) or other advanced reactors. The facts today are that large reprocessing plants are coming into commercial operations: UP3 and soon UP2-800 and THORP, but that FBR deployment is delayed worldwide. As a consequence, large quantities of plutonium will be recycled in light water reactors as mixed oxide (MOX) fuels. MOX fuel technology has been properly demonstrated in the past 25 years. All specific problems have been addressed, efficient fabrication processes and engineering background have been implemented to a level of maturity which makes MOX fuel behaving as well as Uranium fuel. The paper concentrates on todays MOX fabrication expertise and presents the technical and industrial developments prepared by the MOX fuel fabrication industry for this last decade of the century

  11. Fuel development at CERCA. Status of development - September 1984

    International Nuclear Information System (INIS)

    Fanjas, Y.; Dewez, Ph.; Savornin, B.

    1985-01-01

    Since 1978, CERCA has developed high density aluminide (UAl x ), oxide (U 3 O 8 ) and silicides (U 3 Si 2 , U 3 Si) fuels allowing the use of 19.75 enriched uranium in research and test reactors. An extensive irradiation program has been carried out to test the full size fuel plates and fuel elements fabricated by CERCA. So far, all the irradiation tests have given satisfactory results whatever the uranium density, the burn-up level and the type of fuel. In particular, silicides which cover the whole density range from 1 to 7 g U/cm 3 appear more and more as the standard fuels for the future. (author)

  12. Progress of the Russian RERTR program: Development of new-type fuel elements for Russian-built research reactors

    International Nuclear Information System (INIS)

    Vatulin, A. V.; Stetskiy, Y.A.; Mishunin, V.A.; Suprun, V.B.; Dobrikova, I.V.

    2002-01-01

    The new design of pin-type fuel elements and fuel assembly on their basis for Russian research reactors has been developed. The number of following activities has been performed: computational and experimental substantiation of fuel element design; development of fabrication process of fuel elements; manufacturing of experimental assembly for lifetime in-pile tests. The relevant fuel assemblies are considered to be perspective for usage as low-enriched fuel for Russian research reactors. (author)

  13. Technical Issues in the development of high burnup and long cycle fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  14. Technical Issues in the development of high burnup and long cycle fuel pellets

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui

    2012-01-01

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  15. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  16. Past and future IAEA spent fuel management activities

    International Nuclear Information System (INIS)

    Grigoriev, A.

    1993-01-01

    The main objectives and strategies of the Agency's activities in the area of spent fuel management are to promote the exchange of information between Member States on technical, safety, environmental and economic aspects of spent fuel management technology, including storage, transport and treatment of spent fuel, and to provide assistance to Member States in the planning, implementation and operation of nuclear fuel cycle facilities. This paper give a list of the meetings held since the last issue of the Spent Fuel Management Newsletter

  17. Strategic alliances for the development of fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Maruo, Kanehira [Goeteborg Univ. (Sweden). Section of Science and Technology Studies

    1998-12-01

    The aim of this paper is to explore and describe the current stage of fuel cell vehicle development in the world. One can write three possible future scenarios - an optimistic, a realistic, and a pessimistic scenario: - The optimistic scenario -- The Daimler/Ballard/Ford alliance continues to develop fuel cell stacks and fuel cell vehicle systems as eagerly as they have been doing in recent years. Daimler(/Chrysler)-Benz continues to present its Necar 4, Necar 5, and so on, as planned, and thus keeps Toyota and Honda under severe pressure. Toyota`s and Honda`s real motivation seems to be not to allow Daimler-Benz to be the first to market. Their investment in fuel cell technology will be very large. At the same time, governments and other stake-holders will quickly and in a timely fashion build up infrastructures. We will then see many fuel cell vehicles by 2004. A paradigm shift in automotive technology will have taken place. - The realistic scenario -- Fuel cell vehicles will reach the same level of development by 2004/2005 as pure electric vehicles were at in 1997/1998. This means that fuel cell vehicles will be produced at the rate of several hundred vehicles per year per manufacturer and cost about $40,000 or more, which is still considerably more expensive than ordinary gasoline cars. These fuel cell vehicles will have a performance similar to today`s advanced electric vehicles, e.g., Toyota`s RAV4/EV and Honda`s EV Plus. To go further from this stage to the mass-production stage strong government incentives will be needed. - The pessimistic scenario -- It turns out that fuel cells are not as pure or efficient as in theory and in laboratory experiments. Prices of gasoline and diesel gas continue to be very low. The Californian 10% ZEV Requirement that has been meant to be valid at least ten years from 2003 through 2012 will be suspended or greatly modified. Daimler-Benz, Toyota, and Honda slow down their fuel cell vehicle development activities. No one is

  18. Irradiated fuel performance evaluation technology development

    International Nuclear Information System (INIS)

    Koo, Yang Hyun; Bang, J. G.; Kim, D. H.

    2012-01-01

    Alpha version performance code for dual-cooled annular fuel under steady state operation, so called 'DUOS', has been developed applying performance models and proposed methodology. Furthermore, nonlinear finite element module which could be integrated into transient/accident fuel performance code was also developed and evaluated using commercial FE code. The first/second irradiation and PIE test of annular pellet for dual-cooled annular fuel in the world have been completed. In-pile irradiation test DB of annular pellet up to burnup of 10,000 MWd/MTU through the 1st test was established and cracking behavior of annular pellet and swelling rate at low temperature were studied. To do irradiation test of dual-cooled annular fuel under PWR's simulating steady-state conditions, irradiation test rig/rod design/manufacture of mock-up/performance test have been completed through international collaboration program with Halden reactor project. The irradiation test of large grain pellets has been continued from 2002 to 2011 and completed successfully. Burnup of 70,000 MWd/MTU which is the highest burnup among irradiation test pellets in domestic was achieved

  19. The synchronous active neutron detection system for spent fuel assay

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed open-quotes lock-inclose quotes amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound

  20. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  1. The activities of COGEMA in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Galaud, G.

    1981-02-01

    COGEMA (Compagnie Generale des Matieres Nucleaires) is a private company entirely owned by the C.E.A. Its activity covers the whole of the fuel cycle: uranium mining, production of concentrates from the extracted ore, conversion into hexafluoride, enrichment, fabrication of fuel assemblies, reprocessing of spent fuel, and packaging of waste. These different types of activity are reviewed [fr

  2. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, B. G.; Kim, S. H.

    2007-06-01

    Uranium kernel fabrication technology using a wet chemical so-gel method, a key technology in the coated particle fuel area, is established up to the calcination step and the first sintering of UO2 kernel was attempted. Experiments on the parametric study of the coating process using the surrogate ZrO2 kernel give the optimum conditions for the PyC and SiC coating layer and ZrC coating conditions were obtained for the vaporization of the ZrCl4 precursor and coating condition from ZrC coating experiments using plate-type graphite substrate. In addition, by development of fuel performance analysis code a part of the code system is completed which enables the participation to the benchmark calculation and comparison in the IAEA collaborated research program. The technologies for irradiation and post irradiation examination, which are important in developing the HTGR fuel technology of its first kind in Korea was started to develop and, through a feasibility study and preliminary analysis, the technologies required to be developed are identified for further development as well as the QC-related basic technologies are reviewed, analyzed and identified for the own technology development. Development of kernel fabrication technology can be enhanced for the remaining sintering technology and completed based on the technologies developed in this phase. In the coating technology, the optimum conditions obtained using a surrogate ZrO2 kernel material can be applied for the uranium kernel coating process development. Also, after completion of the code development in the next phase, more extended participation to the international collaboration for benchmark calculation can be anticipated which will enable an improvement of the whole code system. Technology development started in this phase will be more extended and further focused on the detailed technology development to be required for the related technology establishment

  3. Development Status of Accident Tolerant Fuels for Light Water Reactors in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Ho; Kim, Hyun Gil; In, Wang Kee; Kim, Weon Ju; Koo, Yang Hyum [KAERI, Daejeon (Korea, Republic of); Lee, Seung Jae [KEPCONF, Daejeon (Korea, Republic of)

    2016-05-15

    Research on accident tolerant fuels (ATFs) is aimed at developing innovative fuels, which can mitigate or prevent the consequences of accidents. In Korea, innovative concepts are being developed to improve fuel safety and reliability of LWRs during accident events and normal operations. ATF technologies will be developed and commercialized through a sequence of long-lead and extensive activities. The interim milestone for new fuel program is that we would be ready for an irradiation test in commercial reactor by 2021. This presentation deals with the status of ATF development in KOREA and plan to implement new fuel technology successfully in commercial nuclear power plants.

  4. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management.

  5. ENVI Model Development for Korean Nuclear Spent Fuel Options Analysis

    International Nuclear Information System (INIS)

    Chang, Sunyoung; Jeong, Yon Hong; Han, Jae-Jun; Lee, Aeri; Hwang, Yong-Soo

    2015-01-01

    The disposal facility of the spent nuclear fuel will be operated from 2051. This paper presents the ENVI code developed by GoldSim Software to simulate options for managing spent nuclear fuel (SNF) in South Korea. The ENVI is a simulator to allow decision-makers to assist to evaluate the performance for spent nuclear fuel management. The multiple options for managing the spent nuclear fuel including the storage and transportation are investigated into interim storage, permanent disposal in geological repositories and overseas and domestic reprocessing. The ENVI code uses the GoldSim software to simulate the logistics of the associated activities. The result by the ENVI model not only produces the total cost to compare among the multiple options but also predict the sizes and timings of different facilities required. In order to decide the policy for spent nuclear management this purpose of this paper is to draw the optimum management plan to solve the nuclear spent fuel issue in the economical aspects. This paper is focused on the development of the ENVI's logic and calculations to simulate four options(No Reprocessing, Overseas Reprocessing, Domestic Reprocessing, and Overseas and Domestic Reprocessing) for managing the spent nuclear fuel in South Korea. The time history of the spent nuclear fuel produced from both the existing and future NPP's can be predicted, based on the Goldsim software made available very user friendly model. The simulation result will be used to suggest the strategic plans for the spent nuclear fuel management

  6. Summary of nuclear fuel reprocessing activities around the world

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied

  7. Development of coated particle fuel technology

    International Nuclear Information System (INIS)

    Cho, Moonsung; Kim, B. G.; Kim, D. J.

    2011-06-01

    Ammonia contacting method for prehardenning the surfaces of ADU liquid droplets and the ageing/washing/drying method and equipment for spherical dried-ADU particles were improved and tested with laboratory sacle. After the improvement of fabrication process, the sphericity of UO 2 kernel obtained to 1.1, and the sintered density and O/U ratio of final UO 2 kernel were above 10.60g/cm 3 . 2.01 respectively. Defects of SiC coating layer could be minimized by optimization of gas flow rate. The fracture strength of SiC layer increased from 450 MPa to 530 MPa by controlling the coating defects. An effort was made to develop the fundamental technology for the fuel element compact for use in High Temperature Gas-cooled Reactor(HTGR) through an establishment of fabrication process, required materials and process equipment as well as performing experiments to identify the basic process conditions and optimize them. Thermal load simulation and verification experiments were carried out for an assesment of the design feasibility of the irradiation rod. Out-of-pile testing of irradiation device such as measurement of pressure drop and vibration, endurance test was performed and the validity of its design was confirmed. A fuel performance analysis code, COPA has been developed to calculate the fuel temperature, the failure fractions of coated fuel particles, the release of fission products. The COPA code can be used to evaluate the performance of the high temperature reactor fuel under the reactor operation, irradiation, heating conditions. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. QC technology was established for TRISO-coated fuel particle. A method for accurate measurement of the optical anisotropy factor for PyC layers of coated particles was developed. Technology and inspection procedures for density

  8. Development of cutting device for irradiated fuel rod

    International Nuclear Information System (INIS)

    Lee, E. P.; Jun, Y. B.; Hong, K. P.; Min, D. K.; Lee, H. K.; Su, H. S.; Kim, K. S.; Kwon, H. M.; Joo, Y. S.; Yoo, K. S.; Joo, J. S.; Kim, E. K.

    2004-01-01

    Post Irradiation Examination(PIE) on irradiated fuel rods is essential for the evaluation of integrity and irradiation performance of fuel rods of commercial reactor fuel. For PIE, fuel rods should be cut very precisely. The cutting positions selected from NDT data are very important for further destructive examination and analysis. A fuel rod cutting device was developed witch can cut fuel rods longitudinal very precisely and can also cut the fuels into the same length rod cuts repeatedly. It is also easy to remove the fuel cutting powder after cutting works and it can extend the life time of cutting device and lower the contamination level of hot cell

  9. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Shin, Young Joon; Cho, S. H.; You, G. S.

    2001-04-01

    Currently, the economic advantage of any known approach to the back end fuel cycle of a nuclear power reactor has not been well established. Thus the long term storage of the spent fuel in a safe manner is one of the important issues to be resolved in countries where the nuclear power has a relatively heavy weight in power production of that country. At KAERI, as a solution to this particular issue midterm storage of the spent fuel, an alternative approach has been developed. This approach includes the decladding and pulverization process of the spent PWR fuel rod, the reducing process from the uranium oxide to a metallic uranium powder using Li metal in a LiCl salt, the continuous casting process of the reduced metal, and the recovery process of Li from mixed salts by the electrolysis. We conducted the laboratory scale tests of each processes for the technical feasibility and determination for the operational conditions for this approach. Also, we performed the theoretical safety analysis and conducted integral tests for the equipment integration through the Mock-up facility with non-radioactive samples. There were no major issues in the approach, however, material incompatibility of the alkaline metal and oxide in a salt at a high temperature and the reactor that contains the salt became a show stopper of the process. Also the difficulty of the clear separation of the salt with metals reduced from the oxide became a major issue

  10. Analysis and classification of physical and chemical methods of fuel activation

    Directory of Open Access Journals (Sweden)

    Fedorchak Viktoriya

    2015-12-01

    Full Text Available The offered article explores various research studies, developed patents in terms of physical and chemical approaches to the activation of fuel. In this regard, national and foreign researches in the field of fuels activators with different principles of action were analysed, evaluating their pros and cons. The article also intends to classify these methods and compare them regarding diverse desired results and types of fuels used. In terms of physical and chemical influences on fuels and the necessity of making constructive changes in the fuel system of internal combustion engines, an optimal approach was outlined.

  11. Development of CANDU high-burnup fuel fabrication technology

    International Nuclear Information System (INIS)

    Sim, Ki Seob; Suk, H. C.; Kwon, H. I.; Ji, C. G.; Cho, M. S.; Chang, H. I.

    1997-07-01

    This study is focused on the achievement of the fabrication process improvement of CANFLEX-NU and for this purpose, following two areas of basic research were executed this year. 1) development of amorphous alloy for use in brazing of nuclear materials. 2) development of ECT techniques for the end-cap weld inspection. Also, preliminary feasibility analyses on the characteristics and handling techniques of CANFLEX-RU fuel were executed this year. - Selection of optimum conversion process of RU power -Characterization of the composition of RU power - Radiological characterization of RU power and sintered pellets - Compaction and sintering characteristics of RU power - Required special process for the production of CANFLEX-RU fuel - Development of technical specification for RU powder and pellets. In addition, technical support activities were performed for in-pile and out-pile fuel performance tests such as precision measurement of out-pile test fuel dimensions, establishment of quality control technique on fuel bundle by providing bundle kits to AECL for use in-pile irradiation tests in the NRU research reactor. (author). 57 refs., 16 tabs.,40 figs

  12. Highlights of 50 years of nuclear fuel development

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel-cycle costs and reliable performance in the fuel elements are discussed in the historical context. 10 refs

  13. Highlights of 50 years of nuclear fuels developments

    International Nuclear Information System (INIS)

    Simnad, M.T.

    1989-01-01

    The development of nuclear fuels since the discovery of nuclear fission is briefly surveyed in this paper. The fabrication of the uranium fuel for the first nuclear pile, CP-1, is described. The research and development studies and fabrication of the different types of nuclear fuels for the variety of research and power reactors are reviewed. The important factors involved to achieve low fuel cycle costs and reliable performance in the fuel elements are discussed in the historical context

  14. Nuclear fuels and development of nuclear fuel elements

    International Nuclear Information System (INIS)

    Sundaram, C.V.; Mannan, S.L.

    1989-01-01

    Safe, reliable and economic operation of nuclear fission reactors, the source of nuclear power at present, requires judicious choice, careful preparation and specialised fabrication procedures for fuels and fuel element structural materials. These aspects of nuclear fuels (uranium, plutonium and their oxides and carbides), fuel element technology and structural materials (aluminium, zircaloy, stainless steel etc.) are discussed with particular reference to research and power reactors in India, e.g. the DHRUVA research reactor at BARC, Trombay, the pressurised heavy water reactors (PHWR) at Rajasthan and Kalpakkam, and the Fast Breeder Test Reactor (FBTR) at Kalpakkam. Other reactors like the gas-cooled reactors operating in UK are also mentioned. Because of the limited uranium resources, India has opted for a three-stage nuclear power programme aimed at the ultimate utilization of her abundant thorium resources. The first phase consists of natural uranium dioxide-fuelled, heavy water-moderated and cooled PHWR. The second phase was initiated with the attainment of criticality in the FBTR at Kalpakkam. Fast Breeder Reactors (FBR) utilize the plutonium and uranium by-products of phase 1. Moreover, FBR can convert thorium into fissile 233 U. They produce more fuel than is consumed - hence, the name breeders. The fuel parameters of some of the operating or proposed fast reactors in the world are compared. FBTR is unique in the choice of mixed carbides of plutonium and uranium as fuel. Factors affecting the fuel element performance and life in various reactors e.g. hydriding of zircaloys, fuel pellet-cladding interaction etc. in PHWR and void swelling; irradiation creep and helium embrittlement of fuel element structural materials in FBR are discussed along with measures to overcome some of these problems. (author). 15 refs., 9 tabs., 23 figs

  15. Status of LEU fuel development and conversion of NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Herbert, L.N.; Vaillancourt, K.D.

    1991-01-01

    This paper reviews the status of the LEU conversion program and the progress made in the fuel development program over the last year. The results from post-irradiation examinations of prototype NRU fuel rods containing Al-U 3 Si dispersion fuel, and of mini-elements containing Al-U 3 Si 2 dispersion fuel, are presented. (orig.)

  16. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  17. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  18. Nuclear fuel cycle activities with an utility

    International Nuclear Information System (INIS)

    Schwarz, E.

    1977-01-01

    The lecture will deal with the following topics: Fuel requirements: establishing fuel requirements - first core - reloads. Calculation of required uranium and separation work: reload planning - long term - short term - during refuelling; exactness of calculations: contracts: 1) Uranium and conversion; 2) Enrichment services; 3) Fuel elements; 4) Ownership; 5) Accidential loss of material; 6) Flexibility in time and amounts; 7) Specifications, surcharges; 8) Terms of payment; 9) Fuel containers, ownership, retransport; fuel reserves: 1) Natural uranium (concentrates or reserves in the ground); 2) Enriched uranium; 3) Fuel elements; 4) Cost of reserves; 5) Exchange in case of need. Handling of contracts: 1) Schedule for deliveries; Notes for deliveries; 3) Fuel accounting and balance; 4) Formalities (export and import licenses, customs etc.). Fuel cost: 1) Prices; 2) Fuel cost calculations for comparison of bids and cost forecast. (orig.) [de

  19. Quarterly Progress Report Fuels Development Operation: October - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1960-01-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  20. Quarterly Progress Report Fuels Development Operation: January - March 1958

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation; Tobin, J. C. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1958-04-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  1. Quarterly Progress Report Fuels Development Operation: July - September 1957

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S. H. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Physical Metallurgy; Minor, J. E. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuel Element Design; Evans, E. A. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Ceramic Fuels Development; Wallace, W. P. [Hanford Site (HNF), Richland, WA (United States). Fuels Development Operation. Fuels Fabrication Development

    1957-10-15

    The present Quarterly Report is the continuation of a series issued by the new Fuels Development operation. Reports in this series combine portions of the quarterly reports by the former Metallurgy Research and Fuel Technology Sub-Sections. Work reported includes research conducted by the Physical Metallurgy Operation, and research and development conducted by Fuel Design, Fuels Fabrication Development and Ceramic Fuels Development Operations. Studies formerly reported by the Radiometallurgy, Metallography, and Welding and Corrosion Units, in addition to portions of the Fuels Technology work, are reported elsewhere.

  2. Development of dynamic simulation code for fuel cycle of fusion reactor

    International Nuclear Information System (INIS)

    Aoki, Isao; Seki, Yasushi; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  3. Development of dynamic simulation code for fuel cycle of fusion reactor. 1. Single pulse operation simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1997-11-01

    A dynamic simulation code for the fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during a single pulse operation. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the function of fuel burn, exhaust, purification, and supply. The processing constants of subsystem for the steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using the code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  4. Canadian Fusion Fuels Technology Project activities report

    International Nuclear Information System (INIS)

    1985-01-01

    The Canadian Fusion Fuels Technology Project was formally established in 1982. The project is directed toward the further development of Canadian capabilities in five major areas: tritium technology, breeder technology, materials technology, equipment development and safety and the environment. The project is funded by three partners - Government of Canada (50%), Ontario Provincial Government (25%) and Ontario Hydro (25%). The fiscal year 1984/85 represents the third year of operation of the project. In 1984/85, 108 contracts were awarded totalling $4 million. Supplementary funding by subcontractors added approximately $1.9 million to the total project value. More than 200 people participated in the technical work involved in the project. Sixteen people were on attachment to foreign facilities for terms ranging from 1 month to 2.5 years. Five patents were applied for including a tritium discrimination monitor, a new radio-chemical tritium separation method, a new variation of fuel cleanup by gas chromatography, a passive tritium permeation system using bimetallic membranes, and a new breeder process using lithium salts dissolved in heavy water

  5. Subchannel analysis code development for CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.

    1998-07-01

    Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs

  6. Development of Coated Particle Fuel Technology

    International Nuclear Information System (INIS)

    Cho, Moon Sung; Kim, B. G.; Kim, Y. K.

    2009-04-01

    UO 2 kernel fabrication technology was developed at the lab sacle(20∼30g-UO 2 /batch). The GSP technique, modified method of sol-gel process, was used in the preparation of spherical ADU gel particle and these particles were converted to UO 3 and UO 2 phases in calcination furnace and sintering furnace respectively. Based on the process variables optimized using simulant kernels in 1-2 inch beds, SiC TRISO-coated particles were fabricated using UO 2 kernel. Power densities of TRISO coated particle fuels and gamma heat of the tubes are calculated as functions of vertical location of the fuel specimen in the irradiation holes by using core physics codes, MCNP and Helios. A finite model was developed for the calculations of temperatures and stresses of the specimen and the irradiation tubes. Dimensions of the test tubes are determined based on the temperatures and stresses as well as the gamma heat generated at the given condition. 9 modules of the COPA code (MECH, FAIL, TEMTR, TEMBL, TEMPEB, FPREL, MPRO, BURN, ABAQ), the MECH, FAIL, TEMTR, TEMBL, TEMPEB, and FPREL were developed. The COPA-FPREL was verified through IAEA CRP-6 accident benchmarking problems. KAERI participated in the round robin test of IAEA CRP-6 program to characterize the diameter, sphericity, coating thickness, density and anisotropy of coated particles provided by Korea, USA and South Africa. The inspection and test plan describing specifications and inspection method of coated particles was developed to confirm the quality standard of coated particles. The quality inspection instructions were developed for the inspection of coated particles by particle size analyzer, density inspection of coating layers by density gradient column, coating thickness inspection by X-ray, and inspection of optical anistropy factor of PyC layer. The quality control system for the TRISO-coated particle fuel was derived based on the status of quality control systems of other countries

  7. Overview of expert systems applications in Westinghouse Nuclear Fuel Activities

    International Nuclear Information System (INIS)

    Leech, W.J.

    1989-01-01

    Expert system applications have been introduced in several nuclear fuel activities, including engineering and manufacturing. This technology has been successfully implemented on the manufacturing floors to provide on-line process control at zirconium tubing and fuel fabrication plants. This paper provides an overview of current applications at Westinghouse with respect to fuel fabrication, zirconium tubing, zirconium production, and core design

  8. Development of the advanced CANDU technology -Development of CANDU advanced fuel fabrication technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Bum; Park, Choon Hoh; Park, Chul Joo; Kwon, Woo Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This project is carrying out jointly with AECL to develop CANFLEX fuel which can enhance reactor safety, fuel economy and can be used with various fuel cycles (natural U, slightly enriched U, other advanced fuel). The final goal of this research is to load the CANFLEX fuel in commercial CANDU reactor for demonstration irradiation. The annual portion of research activities performed during this year are followings ; The detail design of CANFLEX-NU fuel was determined. Based on this design, various fabrication drawings and process specifications were revised. The seventeen CANFLEX-NU fuel bundles for reactivity test in ZED-2 and out-pile test, two CANFLEX-SEU fuel bundles for demo-irradiation in NRU were fabricated. Advanced tack welding machine was designed and sequence control software of automatic assembly welder was developed. The basic researches related to fabrication processes, such as weld evaluation by ECT, effect of additives in UO{sub 2}, thermal stabilities of Zr based metallic glasses, were curried out. 51 figs, 22 tabs, 42 refs. (Author).

  9. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  10. Status of SFR Metal Fuel Development

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Lee, Byoung Oon; Kim, Ki Hwan; Kim, Sung Ho

    2013-01-01

    Conclusion: • Metal fuel recycling in SFR: - Enhanced utilization of uranium resource; - Efficient transmutation of minor actinides; - Inherent passive reactor safety; - Proliferation resistance with pyro-electrochemical fuel recycling. • Demonstration of technical feasibility of recycling TRU metal fuel by 2020: - Remote fuel fabrication; - Irradiation performance up to high burnup

  11. MOX fuel development: Experience in Argentina

    International Nuclear Information System (INIS)

    Marchi, D.E.; Adelfang, P.; Menghini, J.E.

    1999-01-01

    Since 1973, when a laboratory conceived for the safe manipulation of a few hundred grams of plutonium was built, the CNEA (Argentinean Atomic Energy Commission) has been involved in the small-scale development of MOX fuel technology. The plutonium laboratory consists in a glove box facility (α Facility) featuring the necessary equipment to prepare MOX fuel rods for experimental irradiations and to carry out studies on preparative processes development and chemical and physical characterization. The irradiation of the first prototypes of (U,Pu)O 2 fuels fabricated in Argentina began in 1986. These experiments were carried out in the HFR (High Flux Reactor)- Petten , Holland. The rods were prepared and controlled in the CNEA's a Facility. The post-irradiation examinations (PIE) were performed in the KFK (Kernforschungszentrum Karlsruhe), Germany and the JRC (Joint Research Center), Petten. In the period 1991-1995, the development of new laboratory methods of co-conversion of uranium and plutonium were carried out: reverse strike co-precipitation of ADU-Pu(OH) 4 and direct denitration using microwaves. The reverse strike process produced pellets with a high sintered density, excellent micro-homogeneity and good solubility in nitric acid. Liquid wastes showed a very low content of actinides and the process is easy to operate in a glove box environment. The microwave direct denitration was optimized with uranium alone and the conditions to obtain high density pellets, with a good microstructure, without using a milling step, have been developed. At present, new experiments are being carried out to improve the reverse strike co-precipitation process and direct microwave denitration. A new glove box is being installed at the plutonium laboratory, this glove box has process equipment designed to recover scrap from previous fabrication campaigns, and to co-convert mixed U-Pu solutions by direct microwave denitration. (author)

  12. Recent developments in biodesulfurization of fossil fuels.

    Science.gov (United States)

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  13. MOX fuel design and development consideration

    International Nuclear Information System (INIS)

    Yamate, K.; Abeta, S.; Suzuki, K.; Doi, S.

    1997-01-01

    Pu thermal utilization in Japan will be realized in several plants in late 1990's, and will be expanded gradually. For this target, adequacy of methods for MOX fuel design, nuclear design, and safety analysis has been evaluated by the committee of competent authorities organized by government in advance of the licensing application. There is no big difference of physical properties and irradiation behaviors between MOX fuel and UO 2 fuel, because Pu content of MOX fuel for Pu thermal utilization is low. The fuel design code for UO 2 fuel will be applied with some modifications, taking into account of characteristic of MOX fuel. For nuclear design, new code system is to be applied to treat the heterogeneity in MOX fuel assembly and the neutron spectrum interaction with UO 2 fuel more accurately. For 1/3 MOX fueled core in three loop plant, it was confirmed that the fuel rod mechanical design could meet the design criteria, with slight reduction of initial back-fitting pressure, and with appropriate fuel loading patterns in the core to match power with UO 2 fuel. With the increase of MOX fuel fraction in the core, control rod worth and boron worth decrease. Compensating the decrease by adding control rod and utilizing enriched B-10 in safety injection system, 100% MOX fueled core could be possible. Up to 1/3 MOX fueled core in three loop plant, no such modifications of the plant is necessary. The fraction of MOX fuel in PWR is designed to less than 1/3 in the present program. In order to improve Pu thermal utilization in future, various R and D program on fuel design and nuclear design are being performed, such as the irradiation program of MOX fuel manufactured through new process to the extent of high burnup. (author). 8 refs, 9 figs, 2 tabs

  14. The Plutonium Fuel Laboratory at Studsvik and Its Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hultgren, A.; Berggren, G.; Brown, A.; Eng, H. U.; Forsyth, R. S. [AB Atomenergi, Studsvik (Sweden)

    1967-09-15

    The plutonium fuel laboratory at Studsvik is engaged in development work on plutonium-enriched fuel. At present, low enriched fuel for thermal reactors is being studied: work on fuel with a higher plutonium content for fast reactors is foreseen at a later date. So far only the pellet technique is under consideration, and a number of pellet rod specimens will be produced and irradiated in the reactor R2. These specimens include pellets from both co-precipitated uranium-plutonium salts and from physically mixed oxides. Comparison of these two materials will be extended to different density levels and different heat ratings. The methods and techniques used and studied include wet chemical work for powder preparation (continuous precipitation of Pu(IV)-oxalate with oxalic acid, continuous co-precipitation of plutonium and uranium with ammonia, optimization of.precipitation conditions using U(IV) and U(VI) respectively) ; powder preparation (drying, calcination, reduction, mixing, milling, binder addition, granulation); pellet preparation (pressing, debonding, sintering, inspection): encapsulation (charging, welding of end plug, helium filling, end sealing by welding, leak detection, decontamination); metallography (specimen preparation (moulding, polishing), etching, microscopy); structure investigations (thermal analysis (TG, DTA), X-ray diffraction, neutron diffraction, data handling by computer analysis); radiometric methods (direct plutonium determination by gamma spectrometry, non-destructive burn-up analysis by high resolution gamma spectrometry, using a Ge(Li) detector) ; rework of waste (recovery of plutonium from fuel waste by extraction with trilauryl amine and anion exchange). The plutonium fuel laboratory forms part of the Active Central Laboratory. The equipment is contained in four adjacent 10 x 15 m rooms; .for diffraction work and inactive uranium work additional space is available. All the forty glove boxes in operation except two are of AB Atomenergi

  15. Status of research reactor fuel development in KAERI

    International Nuclear Information System (INIS)

    Kim, Chang-Kyu; Ryu, Woo-Seok; Park, Jong-Man; Lee, Don-Bae; Kim, Ki-Hwan; Kuk, Il-Hyun

    1996-01-01

    The development of uranium silicide dispersion fuel fabrication technology has been carried out in KAERI. LEU fuel bundle was prepared for irradiation test. In order to compare the performance of atomized and comminuted U 3 Si dispersed fuels, the bundle of two kinds of fuel elements were prepared. Irradiation test will be performed in the OR-hole of HANARO in the near future. U 3 Si 2 atomization technology has been improved by using ceramic crucible and nozzle. Irradiation test for atomized U 3 Si 2 plate type fuel will be carried out in cooperation with ANL by using HANARO in connection with RERTR advanced fuel development. (author)

  16. Strategies in development of advanced fuels for LMFBR

    International Nuclear Information System (INIS)

    Handa, Muneo

    1976-12-01

    Overseas strategies in development of advanced fuels for LMFBR are reviewed. Recent irradiation experiment and out-of-pile test data of the fuels are given in detail. The present status of development of oxide fueled LMFBR is also treated. (auth.)

  17. Development of on-site spent fuel transfer system designs

    International Nuclear Information System (INIS)

    Lambert, R.W.; Pennington, C.W.; Guerra, G.V.

    1993-01-01

    The Electric Power Research Institute (EPRI) of the United States has sponsored development of conceptual designs for accomplishing spent fuel transfer from spent fuel pools to casks and from one cask to another. Under an EPRI research contract, transnuclear has developed several concepts for spent fuel transfer systems. (J.P.N.)

  18. Development of molten carbonate fuel cells for power generation

    Science.gov (United States)

    1980-04-01

    The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.

  19. Development of quality assurance methods for low enriched fuel assemblies

    International Nuclear Information System (INIS)

    Woolstenhulme, N.E.; Moore, G.A.; Perez, D.M.; Wachs, D.M.

    2010-01-01

    As the Reduced Enrichment for Research and Test Reactors (RERTR) fuel development program has furthered the technology of low enriched uranium fuels, much effort has been expended to specify requirements, perform appropriate inspections, and to qualify experimental fuel plates and assemblies for irradiation. A great deal of consideration has been given to generate examinations and criteria that are both applicable to the unique fuel types being developed and consistent with industry practices for inspecting plate-type reactor fuel. Recent developments in quality assurance (QA) methodologies have given a heightened confidence in satisfactory fuel plate performance. At the same time, recommendations are given to further develop a system suitable for the testing and acceptance of production fuel elements containing low enriched uranium fuels. (author)

  20. International development within the spent nuclear fuel cycle

    International Nuclear Information System (INIS)

    Aggeryd, I.; Broden, K.; Gelin, R.

    1990-06-01

    The report gives a survey of the newest international development of the fuel processing and the spent nuclear fuel cycle. The transmutation technology of long lived nuclides is discussed in more details. (K.A.E)

  1. CDBG Economic Development Activity

    Data.gov (United States)

    Department of Housing and Urban Development — CDBG activity related to economic development, including commercial or industrial rehab, commercial or industrial land acquisition, commercial or industrial...

  2. Fuel development for reactors of new generation in Ukraine

    International Nuclear Information System (INIS)

    Odeychuk, N.P.

    2006-01-01

    Full text: On the background of critical situation in traditional power engineering due to deficiency of organic fuel, physical and moral ageing of the of thermal power stations equipment and their harmful influence on the ecology of environment, the nuclear engineering works stably enough and, by keeping all safety measures, is the most non-polluting energy source. In Ukraine the atomic engineering became one of main sources of energy production and is the important factor of guarantee the power engineering independence of the state. The main center on development of the components of nuclear reactors active zones is the National scientific center K harkov institute of Physics and Technology . The significant place in institutes' investigations was occupied with works on creation the constructional materials and nuclear fuel for heavy water reactors E-circumflexS-150, OR-1000, OR-2000, light water reactors WWER-1000 and RBMK-1500, high-temperature gas cooled reactors ABTU and HTGR, gas reactors on fast neutrons BGR and BRGD, and also the reactor - converter ROMASHKA and other special reactors of special assignment. Radiation tests and post-irradiation research confirm intended material-study, technological and design decisions and fuel elements capacity work on the whole. Nevertheless, by the present conditions, it is necessary to pay special attention to development of the new, safe guaranteed nuclear energy sources. In Ukraine proceed works on research and development of new safe nuclear reactors: basing the underground nuclear thermal power stations; development the reactors with managed chain reaction of nucleus division in an active zone with the help of an external source of neutrons; power thermonuclear installations; high-temperature helium reactors which are especially actual now from the point of view of the hydrogen production; the advanced pressure water reactors, heavy water reactors. In the paper also discussed the state of works in Ukraine on fuel

  3. Lean Gasoline System Development for Fuel Efficient Small Cars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Stuart R. [General Motors LLC, Pontiac, MI (United States)

    2013-11-25

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  4. Contemporary strategy for external nuclear fuel cycle development: An analysis of the work of the IAEA NMFCTS

    International Nuclear Information System (INIS)

    Nechaev, A.F.

    1989-01-01

    The section's program includes four basic areas of activity: (1) nuclear fuel ore resources; (2) processing nuclear and reactor materials; (3) reactor fuel design, fabrication and behavior; and (4) spent nuclear fuel handling. The paper discusses the present-day condition and tendencies in the development of the nuclear fuel cycle and characteristics of international collaboration, including initial stages of the reactor fuel cycle, reactor fuel technology, and spent nuclear fuel handling. In recent years, the IAEA has made active efforts to improve international collaboration in accord with contemporary needs, and the purpose of this survey consists of showing a few concrete results achieved by the NMFCTS in this regard

  5. Status and development of the thorium fuel cycle

    International Nuclear Information System (INIS)

    Yi Weijing; Wei Renjie

    2003-01-01

    A perspective view of the thorium fuel cycle is provided in this paper. The advantages and disadvantages of the thorium fuel cycle are given and the development of thorium fuel cycle in several types of reactors is introduced. The main difficulties in developing the thorium fuel cycle lie in the reprocessing and disposal of the waste and its economy, and the ways tried by foreign countries to solve the problems are presented in the paper

  6. Activities promoting the achievement of high nuclear fuel performance indicators

    International Nuclear Information System (INIS)

    Naev, I.; Tomov, A.

    2011-01-01

    This presentation begins with brief general information about Kozloduy Nuclear Power Plant and organization activities about fresh fuel delivery assurance. The TVSA implementation, fuel cycle, fresh fuel standard entrance inspection and additional fresh fuel inspection are briefly described. Activities concerning core refueling, radiochemistry analysis, control rods drop time, measurement of the distance between the reactor flange and PTU flange, specific items for core unloading and a comparison between the two variants for operations scope with full and without full core unloading are presented. The core unloading - results and next steps, final core design (Unit 6, 2010), preparing for core loading (Unit 6, 2010) , core loading (Unit 6, 2010), after loading core inspection (Unit 6, 2010), core inspection, reactor assembling (Unit 6, 2010), fuel control during reactor startup, fuel control during operation period and fuel assembly data base are also discussed

  7. Spent fuel shipping cask development status

    International Nuclear Information System (INIS)

    Henry, K.H.; Lattin, W.C.

    1989-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) authorized the US Department of Energy (DOE) to establish a national system for the disposal of spent nuclear fuel and high-level radioactive waste from commercial power generation, and established the Office of Civilian Radioactive Waste Management (OCRWM) within the DOE-Headquarters (DOE-HQ) to carry out these duties. A 1985 presidential decision added the disposal of high-level radioactive waste generated by defense programs to the national disposal system. A primary element of the disposal program is the development and operation of a transportation system to move the waste from its present locations to the facilities that will be included in the waste management system. The primary type of disposal facility to be established is a geologic repository; a Monitored Retrievable Storage (MRS) facility may also be included as an intermediate step in the nuclear waste disposal process. This paper focuses on the progress and status of one facet of the transportation program--the development of a family of shipping casks for transporting spent fuel from nuclear power reactor sites to the repository of MRS facility

  8. The Storage of Power Development and Research Reactor Fuel at Sellafield

    International Nuclear Information System (INIS)

    Standring, P.N.; Callaghan, A.H.C.

    2009-01-01

    Sellafield Limited has extensive experience of building and operating spent nuclear fuel storage facilities on the Sellafield site. Since the first operation in 1952, a total of six storage facilities have been built in support of reprocessing spent fuel. Currently, four of these facilities are operational and two are undergoing decommissioning activities. Whilst the routine spent fuel operations are primarily associated with managing Magnox, Advanced Gas Reactor and LWR fuel from power generation reactors, management services to other fuel types are offered. Examples of these services include the storage of British naval training reactor fuel; the reprocessing of two skips of aluminium clad uranium metal fuel from Swedish AB SVAFO and the management of fuel from the UK Power Development Programme. The current paper provides an account of the management of the UK's Power Development Programme fuel stored on the Sellafield site. The fuel has been pond stored for up to 42 years and periodic inspection during this time has revealed no significant deterioration of the fuel, particularly that which has been containerised during its storage period. The paper also outlines some of the issues associated with the recovery and transfer of long stored fuel and assessment of the fuel storage can longevity if the material is not reprocessed. (author)

  9. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    Science.gov (United States)

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  10. High Performance Fuel Technology Development(I)

    International Nuclear Information System (INIS)

    Song, Kun Woo; Kim, Keon Sik; Bang, Jeong Yong; Park, Je Keon; Chen, Tae Hyun; Kim, Hyung Kyu

    2010-04-01

    The dual-cooled annular fuel has been investigated for the purpose of achieving the power uprate of 20% and decreasing pellet temperature by 30%. The 12x12 rod array and basic design was developed, which is mechanically compatible with the OPR-1000. The reactor core analysis has been performed using this design, and the results have shown that the criteria of nuclear, thermohydraulic and safety design are satisfied and pellet temperature can be lowered by 40% even in 120% power. The basic design of fuel component was developed and the cladding thickness was designed through analysis and experiments. The solutions have been proposed and analyzed to the technical issues such as 'inner channel blockage' and 'imbalance between inner and outer coolant'. The annular pellet was fabricated with good control of shape and size, and especially, a new sintering technique has been developed to control the deviation of inner diameter within ±5μm. The irradiation test of annular pellets has been conducted up to 10 MWD/kgU to find out the densification and swelling behaviors. The 11 types of materials candidates have developed for the PCI-endurance pellet, and the material containing the Mn-Al additive showed its creep performance of much better than UO2 material. The HANA cladding has been irradiated up to 61 MWD/kgU, and the results have shown that its oxidation resistance is better by 40% than that of Zircaloy. The 30 types of candidate materials for next generation have been developed through alloy design and property tests

  11. Cell module and fuel conditioner development

    Science.gov (United States)

    Hoover, D. Q., Jr.

    1980-01-01

    Components for the first 5 cell stack (no cooling plates) of the MK-2 design were fabricated. Preliminary specfications and designs for the components of a 23 cell MK-1 stack with four DIGAS cooling plates were developed. The MK-2 was selected as a bench mark design and a preliminary design of the facilities required for high rate manufacture of fuel cell modules was developed. Two stands for testing 5 cell stacks were built and design work for modifying existing stands and building new stands for 23 and 80 cell stacks was initiated. Design and procurement of components and materials for the catalyst test stand were completed and construction initiated. Work on the specifications of pipeline gas, tap water and recovered water and definition of equipment required for treatment was initiated. An innovative geometry for the reformer was conceived and modifications of the computer program to be used in its design were stated.

  12. Planning developments in British Nuclear Fuels Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Roper, D A [British Nuclear Fuels Ltd., Risley

    1978-10-01

    The state of the corporate planning art in British Nuclear Fuels Ltd. was described by N.R.Geary (Long Range Planning, September (1973)) just 2 years after Company formation. This article discusses more recent planning developments over the period to date during which the Company adopted a Divisionalized structure (from October 1974) and has been required to submit an annual Company plan to the Department of Energy (from November 1975). Background information on the origin and nature of the BNFL and its business, and the particular features of the Company which reflect into the nature and method of its planning were given in the 1973 article and only a brief introductory updating of the Company position is included here. Subsequently the features and problems of BNFL's operating and development planning system are described. Finally, messages arising from BNFL's planning experience to date which may be of general application and therefore of value to other practitioners of planning are listed.

  13. The development of microfabricated biocatalytic fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi; Karube, Isao [University of Tokyo (Japan). Research Center for Advanced Science and Technology

    1999-02-01

    The production of electricity by biocatalytic fuel cells has been feasible for almost two decades and can produce electric power at a practical level. These fuel cells use immobilized microorganisms or enzymes as catalysts, and glucose as a fuel. A microfabricated enzyme battery has recently been made that is designed to function as a power supply for microsurgery robots or artificial organs. (author)

  14. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  15. Development of anti-debris filter for WWER-440 working fuel assembly

    International Nuclear Information System (INIS)

    Kolosovsky, V.; Aksyonov, P.; Kukushkin, Y.; Molchanov, V.; Kolobaev, A.

    2006-01-01

    Mechanical damaging of the fuel rod claddings caused by debris is one of the main reasons for fuel assembly failures. The paper focuses on the program and results of experimental and design activities carried out by Russian organizations relating to the development and investigation of operational characteristics of anti-debris filters for WWER-440 working fuel assemblies. Lead working fuel assemblies equipped with anti-debris filters have been loaded in the core of Kola-2 NPP. The results obtained can be used for making the decision concerning the application of anti-debris filter for WWER-440 working fuel assemblies with the purpose of enhancing their debris-resistance properties. (authors)

  16. Development of a nuclear fuel cycle transparency framework

    International Nuclear Information System (INIS)

    Love, Tracia L.

    2005-01-01

    Nuclear fuel cycle transparency can be defined as a confidence building approach among political entities to ensure civilian nuclear facilities are not being used for the development of nuclear weapons. Transparency concepts facilitate the transfer of nuclear technology, as the current international political climate indicates a need for increased methods of assuring non-proliferation. This research develops a system which will augment current non-proliferation assessment activities undertaken by U.S. and international regulatory agencies. It will support the export of nuclear technologies, as well as the design and construction of Gen. IV energy systems. Additionally, the framework developed by this research will provide feedback to cooperating parties, thus ensuring full transparency of a nuclear fuel cycle. As fuel handling activities become increasingly automated, proliferation or diversion potential of nuclear material still needs to be assessed. However, with increased automation, there exists a vast amount of process data to be monitored. By designing a system that monitors process data continuously, and compares this data to declared process information and plant designs, a faster and more efficient assessment of proliferation risk can be made. Figure 1 provides an illustration of the transparency framework that has been developed. As shown in the figure, real-time process data is collected at the fuel cycle facility; a reactor, a fabrication plant, or a recycle facility, etc. Data is sent to the monitoring organization and is assessed for proliferation risk. Analysis and recommendations are made to cooperating parties, and feedback is provided to the facility. The analysis of proliferation risk is based on the following factors: (1) Material attractiveness: the quantification of factors relevant to the proliferation risk of a certain material (e.g., highly enriched Pu-239 is more attractive than that of lower enrichment) (2) The static (baseline) risk: the

  17. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  18. Hydrogen and fuel cell activity report, France 2009

    International Nuclear Information System (INIS)

    2009-01-01

    This report gathers the main highlights of 2009 in the field of hydrogen and fuel cells in France. It presents the political context (priority to a sustainable development and to renewable energies) and the main initiatives (official commitment, projects and programmes launched by different public bodies and organizations). It briefly presents the projects and programmes concerning the hydrogen: ANR programmes, national structures dedicated to hydrogen and fuel cells, fundamental research, demonstrator project (the H2E project), applications in transport (a project by Peugeot, the Althytude project coordinated by GDF, the Hychain European project, and other airborne or maritime projects), stationary applications (MYRTE). It also briefly describes the activities of some small companies (CETH, McPHY, RAIGI, PRAGMA Industries, N-GHY, SAGIM), and regional initiatives. Colloquiums, congresses and meetings are mentioned

  19. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  20. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  1. Definition of Technology Readiness Levels for Transmutation Fuel Development

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    To quantitatively assess the maturity of a given technology, the Technology Readiness Level (TRL) process is used. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Transmutation fuel development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the transmutation fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Transuranic Fuel Development Campaign

  2. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  3. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.

    2009-01-01

    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  4. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  5. Status and development of RBMK fuel rods and reactor materials

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Reshetnikov, F.G.; Ioltukhovsky, A.G.

    1998-01-01

    The paper presents current status and development of RBMK fuel rods and reactor materials. With regard to fuel rod cladding the following issues have been discussed: corrosion, tensile properties, welding technology and testing of an alternative cladding alloy with a composition of Zr-Nb-Sn-Fe. Erbium doped fuel has been suggested for safety improvement. Also analysis of fuel reliability is presented in the paper. (author)

  6. Interim development report: engineering-scale HTGR fuel particle crusher

    International Nuclear Information System (INIS)

    Baer, J.W.; Strand, J.B.

    1978-09-01

    During the reprocessing of HTGR fuel, a double-roll crusher is used to fracture the silicon carbide coatings on the fuel particles. This report describes the development of the roll crusher used for crushing Fort-St.Vrain type fissile and fertile fuel particles, and large high-temperature gas-cooled reactor (LHTGR) fissile fuel particles. Recommendations are made for design improvements and further testing

  7. Development of an advanced 16x165 Westinghouse type PWR fuel assembly for Slovenia

    International Nuclear Information System (INIS)

    Boone, M. L.; King, S. J.; Pulver, E. F.; Jeon, K.-L.; Esteves, R.; Kurincic, B.

    2004-01-01

    Industrias Nucleares do Brasil (INB), KEPCO Nuclear Fuel Company, Ltd. (KNFC), and Westinghouse Electric Company (Westinghouse) have jointly designed an advanced 16x16 Westinghouse type PWR fuel assembly. This advanced 16x16 Westinghouse type PWR fuel assembly, which will be implemented in both Kori Unit 2 (in Korea) and Angra Unit 1 (in Brazil) in January and March 2005, respectively, is an integral part of the utilities fuel management strategy. This same fuel design has also been developed for future use in Krsko Unit 1 (in Slovenia). In this paper we will describe the front-end nuclear fuel management activities utilized by the joint development team and describe how these activities played an integral part in defining the direction of the advanced 16x16 Westinghouse type PWR fuel assembly design. Additionally, this paper will describe how this design demonstrates improved margins under high duty plant operating conditions. The major reason for initiating this joint development program was to update the current 16x16 fuel assembly, which is also called 16STD. The current 16STD fuel assembly contains a non-optimized fuel rod diameter for the fuel rod pitch (i.e. 9.5 mm OD fuel rods at a 0.485 inch pitch), non-neutronic efficient components (i.e. Inconel Mid grids), no Intermediate Flow Mixer (IFM) grids, and other mechanical features. The advanced 16x16 fuel assembly is being designed for peak rod average burnups of up to 75 MWd/kgU and will use an optimized fuel rod diameter (i.e. 9.14 mm OD ZIRLO TM fuel rods), neutronic efficient components (i.e. ZIRLO TM Mid grids), ZIRLO TM Intermediate Flow Mixer (IFM) grids to improve Departure from Nucleate Boiling (DNB) margin, and many other mechanical features that improve design margins. Nuclear design activities in the areas of fuel cycle cost and fuel management were performed in parallel to the fuel assembly design efforts. As the change in reactivity due to the change in the fuel rod diameter influences directly

  8. Development of nanosized electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedi, M. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Centre de l' Energie, Materiaux et Telecommunications

    2008-07-01

    Fuel cells have been touted as a promising power supply for automotive, portable or stationary use. Although methanol is a strong contender as an alternative fuel, the extensive use of this toxic compound is not practical due to environmental hazards. Ethanol is a good substitute because it has a very positive environmental, health, and safety footprint with no major uncertainties or hazards. Ethanol is a hydrogen-rich liquid which has more energy density than methanol. The C-C bond has a determining effect on fuel cell efficiency and the theoretical energy yield. Therefore, a good electrocatalyst towards the complete oxidation of ethanol must activate the C-C bond breaking while avoiding the poisoning of the catalytic surface by carbon monoxide species that occurs with methanol oxidation. The objective of this study was to develop new catalyst nanoparticles of well-controlled shape, size, and composition with excellent stability and better electrocatalytic activity. This paper described the recent achievements regarding the development of a series of PtxSn100-x catalysts prepared by pulsed laser deposition (PLD). It reported on the effect of several deposition parameters on the structure and properties of the deposited catalysts. It also described how these deposition conditions affect the electrocatalytic response of the resulting materials toward ethanol oxidation. Some interesting periodic oscillations were observed at some catalysts during ethanol electrooxidation. 7 refs., 1 fig.

  9. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  10. Further developments of PWR and BWR fuel elements

    International Nuclear Information System (INIS)

    Sofer, G.A.; Busselman, G.J.; Federico, L.J.

    1988-01-01

    The performance, safety, and economy of nuclear power plants in inluenced very decisively by the quality of their fuel elements. This is why quality assurance in fuel fabrication has been a factor of great importance from the outset. Operating experince and more stringent performance requirements have resulted in a continuous process of further development of fuel elements, which has been reflected also in lower and lower failure rates and increasingly higher burn-ups. Next to further development also innovation has been an important factor contributing to the present high quality level of fuel elements, which also has allowed fuel cycle costs to be decreased quite considerably. (orig.) [de

  11. Development on nuclear fuel cycle business in Japan

    International Nuclear Information System (INIS)

    Usami, Kogo

    2002-01-01

    The Japan Nuclear Fuel Co., Ltd. (JNF) develops five businesses on nuclear fuel cycle such as uranium concentration, storage and administration of high level radioactive wastes, disposition of low level radioactive wastes, used fuel reprocessing, MOX fuel, at Rokkasho-mura in Aomori prefecture. Here were introduced on outline, construction and operation in reprocessing and MOX fuel works, outline, present state and future subjects on technical development of uranium concentration, outline and safety of disposition center on low level radioactive wastes, and storage and administration of high level radioactive wastes. (G.K.)

  12. Current status of IAEA activities in spent fuel management

    International Nuclear Information System (INIS)

    Danker, W.J.

    2003-01-01

    Spent fuel storage is a common issue in all IAEA Member States with nuclear reactors. Whatever strategy is selected for the back-end of the nuclear fuel cycle, the storage of spent fuel will be an increasingly significant consideration. Notwithstanding considerable efforts to increase the efficient use of nuclear fuel and to optimize storage capacity, delays in plans for geological repositories or in implementing reprocessing result in increased spent fuel storage capacity needs in combination with longer storage durations over the foreseeable future. As storage inventories and durations increase, issues associated with long term storage compel more attention...monitoring for potential degradation mechanisms, records retention, maintenance, efficiencies through burnup credit. Since the IAEA contribution to ICNC'99 focused exclusively on IAEA burnup credit activities including requirements and methods, this paper provides a broader perspective on IAEA activities in response to the above trends in spent fuel management, while also describing efforts to disseminate information regarding burnup credit applications. (author)

  13. H2 and Fuel cell annual activity report - France 2011

    International Nuclear Information System (INIS)

    Lucchese, Paul; Julien, Marianne

    2012-01-01

    This report aims making better known the hydrogen and fuel cell technologies in France and their main actors (large groups, small and medium-sized enterprises, start-ups, research centres). After a presentation of the French energy context, it presents the national programme and strategic actions, and local programmes and initiatives. The next chapter presents the main results and events for the different fields of application: leading edge markets, transports, decentralized or residential stationary applications, hydrogen and renewable energies, portable applications, transverse domains. The annual activity and main results of the different actors are then presented: research and development, small or medium sized enterprises and start-ups, large groups

  14. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  15. Ecological effects of fuel cycle activities

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L; Cada, G; Kroodsma, R; Shriner, D; Tolbert, V; Turner, R

    1994-07-01

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO{sub 2}-induced global climate change are beyond the scope of this paper and are not discussed.

  16. Ecological effects of fuel cycle activities

    International Nuclear Information System (INIS)

    Barnthouse, L.; Cada, G.; Kroodsma, R.; Shriner, D.; Tolbert, V.; Turner, R.

    1994-01-01

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO 2 -induced global climate change are beyond the scope of this paper and are not discussed

  17. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  18. Development of the Fuel Element Database of PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Naim Syauqi Hamzah; Nurfazila Husain; Yahya Ismail; Mat Zin Mat Husin; Mohd Fairus Abd Farid

    2015-01-01

    Since June 28th, 1982, the PUSPATI TRIGA Reactor (RTP) operates safely with an accumulated energy release of about 17,200 MWhr, which corresponds to about 882 g of uranium burn-up. The reactor core has been reconfigured 15th times. Presently, there are 111 TRIGA fuel elements in the core, which 66 of the fuel elements are from the initial criticality while the rest of the fuel elements have been added to compensate the uranium consumption. As 59 % of the fuel elements are older than 30 years old, it is necessary to put the history of every fuel element in a database for easy access of the fuel element movement, inspection results history and integrity status. This paper intends to describe how the fuel element database is developed and related formulae used in determining the RTP fuel element elongation. (author)

  19. Development of High Performance Hybrid Fuels

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's strategic goals call for innovation in space technology for our nation's explorative future. Early phase paraffin fuel technology could enable practical...

  20. Review of fuel element development for nuclear rocket engines

    International Nuclear Information System (INIS)

    Taub, J.M.

    1975-06-01

    The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program involving uranium-loaded graphite fuels, hydrogen propellant, and a target exhaust temperature of approximately 2500 0 C. A very extensive uranium-loaded graphite fuel element technology evolved from the program. Selection and composition of raw materials for the extrusion mix had to be coupled with heat treatment studies to give optimum element properties. The highly enriched uranium in the element was incorporated as UO 2 , pyrocarbon-coated UC 2 , or solid solution UC . ZrC particles. An extensive development program resulted in successful NbC or ZrC coatings on elements to withstand hydrogen corrosion at elevated temperatures. Hot gas, thermal shock, thermal stress, and NDT evaluation procedures were developed to monitor progress in preparation of elements with optimum properties. Final evaluation was made in reactor tests at NRDS. Aerojet-General, Westinghouse Astronuclear Laboratory, and the Oak Ridge Y-12 Plant of Union Carbide Nuclear Company entered the program in the early 1960's, and their activities paralleled those of LASL in fuel element development. (U.S.)

  1. C A R A fuel element for Atucha nuclear power plants and development plan

    International Nuclear Information System (INIS)

    Brasnarof, D. O; Marino, A. C; Bianchi, D; Giorgis M A; Orlando, O; Munoz, C; Taboada, H; Florido, P. C

    2006-01-01

    This paper presents the current state and the development plan of the C A R A fuel element.Main activities were carried out towards to welding of the end plates of the C A R A fuel element by a new process, and the assembling and hanging of the C A R A fuel element in its Atucha configuration, by using an external basket [es

  2. Development of fuel number reader by ultrasonic imaging techniques

    International Nuclear Information System (INIS)

    Omote, T.; Yoshida, T.

    1991-01-01

    This paper reports on a spent fuel ID number reader using ultrasonic imaging techniques that has been developed to realize efficient and automatic verification of fuel numbers, thereby to reduce mental load and radiation exposure for operators engaged in the verification task. The ultrasonic imaging techniques for automatic fuel number recognition are described. High-speed and high reliability imaging of the spent fuel ID number are obtained by using linear array type ultrasonic probe. The ultrasonic wave is scanned by switching array probe in vertical direction, and scanned mechanically in horizontal direction. Time for imaging of spent fuel ID number on assembly was confirmed less than three seconds by these techniques. And it can recognize spent fuel ID number even if spent fuel ID number can not be visualized by an optical method because of depositing fuel number regions by soft card. In order to recognize spent fuel ID number more rapidly and more reliably, coded fuel number expressed by plural separate recesses form is developed. Every coded fuel number consists of six small holes (about 1 mm dia.) and can be marked adjacent to the existing fuel number expressed by letters and numbers

  3. Developing clean fuels: Novel techniques for desulfurization

    Science.gov (United States)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  4. The German fast breeder programme and fuel cycle activities

    International Nuclear Information System (INIS)

    Marth, W.; Lahr, H.

    1982-01-01

    After a review of the German experimental power plant KNK II, the present status of the prototype SNR 300 project is described, including its political and licensing aspects. Breeder cooperation with France is gaining momentum. Research and development in core physics and fuel development and implications for the reprocessing of spent fuel are discussed. (author)

  5. R and D activities on CANDU-type fuel in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Badruzzaman, M.; Latief, A.

    1997-01-01

    The status of R and D activities in Indonesia with respect of CANDU-type fuel development is presented. The activities have been started since the first feasibility study to introduce nuclear power plants was carried out in 1970s. The early research comprised the in-situ pilot production of yellow-cake in Kalimantan (Borneo) experimental mining site, uranium purification and pellet preparation. This program continued to gain a full support from the Government which culminated in the realisation of the construction by BATAN of a large fuel development laboratory in Serpong, starting from 1984 in co-operation with NIRA Ansaldo of Italy. The laboratory, which is called the Power Reactor Experimental Fuel Element Installation (EFEI) was originally designed as an experimental facility to integrate the acquired domestic R and D results gained so far on the CANDU-type fuel technology and the additional know-how received from NIRA Ansaldo which at that time was engaged, in developing a CANDU-type fuel, called the CIRENE fuel design. In the present days the facility houses the power reactor fuel development activities carried out to build up the national capability on power reactor fuel fabrication technology in anticipation to embark upon the nuclear energy era in the near future. (author)

  6. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  7. Development of nuclear fuel materials for research reactor

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Park, H. D.; Kim, K. H.; Lee, J. T.; Ryu, W. S.; Hwang, W.; Kim, H. N.; Kim, H. I.; Kwon, H. I.; Park, C.; Lee, B. C.; Park, J. M.; Lee, C. S.; Chae, H. T.; Im, N. J.; Cho, M. S.; Im, I. C.; Nam, C.; Lee, D. B.; Goh, Y. M.; Kim, J. D.; Ahn, H. S.; Woo, Y. M.; Chang, S. J.; Cho, H. D.

    1997-09-01

    This project has aimed at the development of U 3 Si dispersion fuel for the localization of HANARO fuel and the application of atomization process to advanced RERTR fuel development. The design criteria were established through the modified computer codes. Design documents were prepared and issued. The acceptable co-extrusion cladding was achieved. The electron beam welding technology has been developed and the sealing of the end plug and cladding was accomplished without defects. The atomization fuel meats have about 200% higher elongation and about 20% higher than comminution fuel meats. The thermal compatibility test showed that atomization fuel have about 30% higher stability that the comminution fuel. The pressure drops of 18 rods fuel assembly and 36 rods fuel assembly were measured to have 213 kPa and 205 kPa respectively. Apparent wear was not found in endurance test. The irradiation fuel was designed and fabricated by using low enriched uranium metal following the developed Q/A system. The safety analysis of irradiation fuel assembly was performed through linear power calculation by using MCNP4A code and centerline temperature calculation by using DIFAIR code. The quality assurance system has been established. The quality inspection technologies were developed. By acquiring the license, low enriched uranium of 100 kg as well as depleted uranium can be used. U 3 Si 2 -Al fuel swelled less than comminution fuel irrespective of temperature and fuel fraction in a compatibility test. The atomized U-10wt.%Mo powder were found to have gamma phase of isotropic structure. Gamma structure remained with a little swelling without any structure change at 400 deg C for 100 hours. Irradiation miniplate and test rig were designed preliminary manufactured. Thermal hydraulic and linear power calculations were performed by using PLTEMP and MCNP4A computer codes respectively. The hydraulic test showed that the pressure drop met the HANARO requirement. The vibration

  8. RU fuel development program for an advanced fuel cycle in Korea

    International Nuclear Information System (INIS)

    Suk, Hochum; Sim, Kiseob; Kim, Bongghi; Inch, W.W.; Page, R.

    1998-01-01

    reactors in Korea. The RU fuel development is an international collaboration between KAERI, AECL and BNFL. It is expected that the work will be completed before 2005, and there should be no impediment to the use of RU fuel in the CANDU 6 reactors on the Wolsong site in Korea, if RU is available and competitive in price with NU and SEU. (author)

  9. The further development of WWER-440 fuel design performance

    International Nuclear Information System (INIS)

    Lushin, V.; Vasilchenko, I.; Ananjev, J.; Abashina, G.

    2011-01-01

    The most distinguished stages in VVER-440 fuel development of the latest ten years are: designing of second generation FA complex; and designing of sheathless working fuel assembly of the third generation (RK-3) which are presented in this report. Designing of fuel assemblies of the second generation and RK-3 is characterized by the tendency to power increase of VVER-440 operating units with V-213-type reactor, that, in turn, has given a stimulus to further design enhancement of fuel assemblies specified. The further development of the second generation fuel assembly design and the change-over to the third generation working assemblies will allow for fuel utilization to be considerably increased under the conditions of application the more long-term fuel cycles for VVER-440 reactors and operation of the Units at the increased power

  10. Development of LWR fuel performance code FEMAXI-6

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2006-01-01

    LWR fuel performance code: FEMAXI-6 (Finite Element Method in AXIs-symmetric system) is a representative fuel analysis code in Japan. Development history, background, design idea, features of model, and future are stated. Characteristic performance of LWR fuel and analysis code, what is model, development history of FEMAXI, use of FEMAXI code, fuel model, and a special feature of FEMAXI model is described. As examples of analysis, PCMI (Pellet-Clad Mechanical Interaction), fission gas release, gap bonding, and fission gas bubble swelling are reported. Thermal analysis and dynamic analysis system of FEMAXI-6, function block at one time step of FEMAXI-6, analytical example of PCMI in the output increase test by FEMAXI-III, analysis of fission gas release in Halden reactor by FEMAXI-V, comparison of the center temperature of fuel in Halden reactor, and analysis of change of diameter of fuel rod in high burn up BWR fuel are shown. (S.Y.)

  11. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  12. Wastes from selected activities in two light-water reactor fuel cycles

    International Nuclear Information System (INIS)

    Palmer, C.R.; Hill, O.F.

    1980-07-01

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume

  13. Recent developments in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wunderer, A.

    1984-01-01

    There is a description of the present situation in each individual area of the nuclear fuel cycle. Further topics are: risk and safety factors and emissions from the fuel cycle, availability and disruptions, waste disposal and the storage of radioactive waste. (UA) [de

  14. Development of an engineered safeguards system concept for a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Chapman, L.D.; de Montmollin, J.M.; Deveney, J.E.; Fienning, W.C.; Hickman, J.W.; Watkins, L.D.; Winblad, A.E.

    1976-08-01

    An initial concept of an Engineered Safeguards System for a representative commercial mixed-oxide fuel fabrication facility is presented. Computer simulation techniques for evaluation and further development of the concept are described. An outline of future activity is included

  15. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  16. Siemens fuel gasification technology - solutions and developments

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, F.; Schingnitz, M.; Schmid, C. [Siemens Fuel Gasification Technology GmbH, Freiberg (Germany)

    2007-07-01

    In 2006, Siemens Power Generation Group acquired the GSP Gasification technology, and renamed it SFGT. The presentation reviews the technology and provides an update on current projects. The future plans for the development of the technology based on extensive experience and comprehensive development work gathered over many years and proven in a number of gasification plants is covered. SFGT operates, at its Freiberg facility, a 5 MWth pilot plant which was built to test prototype designs and to determine process conditions for various feed streams. An overview is given of the results of tests completed on a wide range of carbonaceous materials including all types of solid fuels from lignite to anthracite, as well as brown coal, oil, sludge or biomass, and low-temperature coke or petcoke. The technical focus of the paper is on the unique design features such as the cooling screen and alternative refractory lining, as well as the dense flow feeding system that allows the preferable use of lignite applications.

  17. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  18. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  19. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    International Nuclear Information System (INIS)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment

  20. CANFLEX-RU fuel development programs as one option of advanced fuel cycles in Korea

    International Nuclear Information System (INIS)

    Suk, Ho Chun; Sim, Ki-Seob; Chung, Jang Hwan

    1999-01-01

    development is an international collaboration between KAERI, AECL and BNFL. It is expected that the work will be completed before 2005, and there should be no impediment to the use of RU fuel in the CANDU-6 reactors in Korea, if the RU in the world is available and competitive with NU and SEU on price. (author)

  1. Progress in the development of very high density research and test reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, Idaho 83415 (United States)

    2009-06-15

    New nuclear fuels are being developed to enable many of the most important research and test reactors worldwide to convert from high enriched uranium (HEU) fuels to low enriched uranium (LEU) fuels without significant loss in performance. The last decade of work has focused on the development of uranium-molybdenum alloy (U-Mo) based fuels and is an international effort that includes the active participation of more than ten national programs. The US RERTR program, under the NNSA's Global Threat Reduction Initiative (GTRI), is in the process of developing both dispersion and monolithic U-Mo fuel designs. While the U-Mo fuel alloy has behaved extremely well under irradiation, initial testing (circa 2003) revealed that the U-Mo fuels dispersed in aluminum had an unexpected tendency toward unstable swelling (pillowing) under high-power conditions. Technical investigations were initiated worldwide at this time by the partner programs to understand this behavior as well as to develop and test remedies. The behavior was corrected by modifying the chemistry of the U-Mo/Al interfaces in both fuel designs. In the dispersion fuel design, this was accomplished by the addition of small amounts of silicon to the aluminum matrix material. Two methods are under development for the monolithic fuel design, which include the application of a thin layer of silicon or a thin zirconium based diffusion barrier at the fuel/clad interface. This paper gives an overview of the current status of U-Mo fuel development, including basic research results, manufacturing aspects, results of the latest irradiations and post irradiation examinations, the approach to fuel performance qualification, and the scale-up and commercialization of fabrication technology. (authors)

  2. A Development of Ethanol/Percarbonate Membraneless Fuel Cell

    Directory of Open Access Journals (Sweden)

    M. Priya

    2014-01-01

    Full Text Available The electrocatalytic oxidation of ethanol on membraneless sodium percarbonate fuel cell using platinum electrodes in alkaline-acidic media is investigated. In this cell, ethanol is used as the fuel and sodium percarbonate is used as an oxidant for the first time in an alkaline-acidic media. Sodium percarbonate generates hydrogen peroxide in aqueous medium. At room temperature, the laminar-flow-based microfluidic membraneless fuel cell can reach a maximum power density of 18.96 mW cm−2 with a fuel mixture flow rate of 0.3 mL min−2. The developed fuel cell features no proton exchange membrane. The simple planar structured membraneless ethanol fuel cell presents with high design flexibility and enables easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

  3. Development of solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author).

  4. Development of solid oxide fuel cell technology

    International Nuclear Information System (INIS)

    Kang, Dae Kab; Kim, Sun Jae; Jung, Choong Hwan; Kim, Kyung Hoh; Park, Ji Yun; Oh, Suk Jin

    1995-01-01

    Solid Oxide Fuel Cell (SOFC) technologies that use zirconium oxide as the electrolyte material were studied in this present report. SOFC exhibits a very high power generation efficiency of over 50 %, and does not discharge pollution materials such as dusts, sulfur dioxide, and nitrogen oxide. Zirconia, Ni/YSZ (yttria stabilized zirconia), and La-Sr-Mn-Oxide materials were developed for the electrolyte material, for the anode, and for the cathode, respectively. After making thin zirconia plate using tape casting process, anode and cathode powders were screen printed on the zirconia plate for fabricating unit cells. A test system composed of a vertical tube furnace, digital multimeter, DC current supplier, and measuring circuit was constructed for testing the unit cell performance. This system was controlled by a home-made computer program. Founded on this unit cell technology and system, a multi-stack SOFC system was studied. This system was composed of 10 unit cells each of them had an electrode area of 40 x 40 mm. Based on this system design, large and thin zirconia plates of 70 x 70 mm in area was fabricated for the electrolyte. Different from in the unit cell system, interconnectors are needed in the multi-stack system for connecting unit cells electrically. For this interconnectors, Inconel 750 alloy was selected, sliced into wafers, machined, surface finished, and then Pt-plated. 55 figs, 8 tabs, 51 refs. (Author)

  5. Innovative membrane development for fuel cells

    CSIR Research Space (South Africa)

    Vaivars, G

    2011-10-01

    Full Text Available The innovative membranes for alternative energy devices will be presented. An electrical car is long waited solution to environmental and fuel supply problems in transport. Most probably, the shift from a combustion engine to an electrical car...

  6. Indoor fuel exposure and the lung in both developing and developed countries: An update

    OpenAIRE

    Sood, Akshay

    2012-01-01

    Almost 3 billion people worldwide burn solid fuels indoors. These fuels include biomass and coal. Although indoor solid fuel smoke is likely a greater problem in developing countries, wood burning populations in developed countries may also be at risk from these exposures. Despite the large population at risk worldwide, the effect of exposure to indoor solid fuel smoke has not been adequately studied. Indoor air pollution from solid fuel use is strongly associated with COPD (both emphysema an...

  7. Interfuel: development of fuel fabrication techniques

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    On July 5 1972, an understanding was reached between Rijn-Schelde-Verolme NV(RSV), Shell Kernenergie NV, Gemeenschappelijke Kernenergiecentrale Nederland NV (GKN), Comprimo BV and Stichting Reactor Centrum Nederland (RCN), regarding the formation of a company to co-operate concerning the fuel cycle for nuclear reactors-special emphasis being given to the production of fuel elements for light water reactor systems. (Auth.)

  8. The Canadian CANDU fuel development program and recent fuel operating experience

    International Nuclear Information System (INIS)

    Lau, J.H.K.; Inch, W.W.R.; Cox, D.S.; Steed, R.G.; Kohn, E.; Macici, N.N.

    1999-01-01

    This paper reviews the performance of the CANDU fuel in the Canadian CANDU reactors in 1997 and 1998. The operating experience demonstrates that the CANDU fuel has performed very well. Over the two-year period, the fuel-bundle defect rate for all bundles irradiated in the Canadian CANDU reactors has remained very low, at between 0.006% to 0.016%. On a fuel element basis, this represents an element defect rate of less than about 0.0005%. One of the reasons for the good fuel performance is the support provided by the Canadian fuel research and development programs. These programs address operational issues and provide evolutionary improvements to the fuel products. The programs consist of the Fuel Technology Program, funded by the CANDU Owners Group, and the Advanced Fuel and Fuel Cycles Technology Program, funded by Atomic Energy of Canada Ltd. These two programs, which have been in place for many years, complement each other by sharing expert resources and experimental facilities. This paper describes the programs in 1999/2000, to provide an overview of the scope of the programs and the issues that these programs address. (author)

  9. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  10. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H.

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  11. Research report on development of spacer grid strap for AFA 3G fuel assembly

    International Nuclear Information System (INIS)

    Ye Yuandong

    2004-11-01

    The current development and tendency for fuel assemblies being of low leakage, high burn-up and long cycle fuel reload in the world are presented, and the necessity and feasibility to develop the spacer grid for high burn-up fuel assembly are elaborated. Considering all the activities in implementing of spacer grid and the technical difficulties in machining of tools, the major technological processes are introduced; the research program and the approaches to develop the spacer grid while research targets and overall schedule are defined and some key technical points and applicable practices are discussed. Finally the requirements and the conditions necessary for developing of spacer grid are proposed. (authors)

  12. Development of advanced fuels in the Swiss Federal Institute for Reactor Research (EIR)

    International Nuclear Information System (INIS)

    Stratton, R.W.

    1984-02-01

    The work of the project Fuel Development over the three years 1981-83 is reported. In this period virtually all of the development, demonstration and preparatory work for the fabrication of mixed carbide sphere-pac fuel pins for the FFTF experiment was completed. As well as describing the background to and the progress of the work, selected details are given of some of the results achieved in all areas of activity - fuel fabrication, pin manufacture, quality assurance, pin behaviour and modelling. Names of all principle contributers to each activity are given and in addition to references the complete list of publications over the period is provided. (Auth.)

  13. Advances in nuclear fuel technology. 3. Development of advanced nuclear fuel recycle systems

    International Nuclear Information System (INIS)

    Arie, Kazuo; Abe, Tomoyuki; Arai, Yasuo

    2002-01-01

    Fast breeder reactor (FBR) cycle technology has a technical characteristics flexibly easy to apply to diverse fuel compositions such as plutonium, minor actinides, and so on and fuel configurations. By using this characteristics, various feasibilities on effective application of uranium resources based on breeding of uranium of plutonium for original mission of FBR, contribution to radioactive wastes problems based on amounts reduction of transuranium elements (TRU) in high level radioactive wastes, upgrading of nuclear diffusion resistance, extremely upgrading of economical efficiency, and so on. In this paper, were introduced from these viewpoints, on practice strategy survey study on FBR cycle performed by cooperation of the Japan Nuclear Cycle Development Institute (JNC) with electric business companies and so on, and on technical development on advanced nuclear fuel recycle systems carried out at the Central Research Institute of Electric Power Industry, Japan Atomic Energy Research Institute, and so on. Here were explained under a vision on new type of fuels such as nitride fuels, metal fuels, and so on as well as oxide fuels, a new recycle system making possible to use actinides except uranium and plutonium, an 'advanced nuclear fuel cycle technology', containing improvement of conventional wet Purex method reprocessing technology, fuel manufacturing technology, and so on. (G.K.)

  14. Thermal fuel research and development facilities in BNFL

    International Nuclear Information System (INIS)

    Roberts, V.A.; Vickers, J.

    1996-01-01

    BNFL is committed to providing high quality, cost effective nuclear fuel cycle services to customers on a National and International level. BNFL's services, products and expertise span the complete fuel cycle; from fuel manufacture through to fuel reprocessing, transport, waste management and decommissioning and the Company maintains its technical and commercial lead by investment in continued research and development (R and D). This paper discusses BNFL's involvement in R and D and gives an account of the current facilities available together with a description of the advanced R and D facilities constructed or planned at Springfields and Sellafield. It outlines the work being carried out to support the company fuel technology business, to (1) develop more cost effective routes to existing fuel products; (2) maximize the use of recycled uranium, plutonium and tails uranium and (3) support a successful MOX business

  15. Development of on-board fuel metering and sensing system

    Science.gov (United States)

    Hemanth, Y.; Manikanta, B. S. S.; Thangaraja, J.; Bharanidaran, R.

    2017-11-01

    Usage of biodiesel fuels and their blends with diesel fuel has a potential to reduce the tailpipe emissions and reduce the dependence on crude oil imports. Further, biodiesel fuels exhibit favourable greenhouse gas emission and energy balance characteristics. While fossil fuel technology is well established, the technological implications of biofuels particularly biodiesel is not clearly laid out. Hence, the objective is to provide an on-board metering control in selecting the different proportions of diesel and bio-diesel blends. An on-board fuel metering system is being developed using PID controller, stepper motors and a capacitance sensor. The accuracy was tested with the blends of propanol-1, diesel and are found to be within 1.3% error. The developed unit was tested in a twin cylinder diesel engine with biodiesel blended diesel fuel. There was a marginal increase (5%) in nitric oxide and 14% increase in smoke emission with 10% biodiesel blended diesel at part load conditions.

  16. Neutron induced activity in fuel element components

    International Nuclear Information System (INIS)

    Kjellbert, N.

    1978-03-01

    A thorough investigation of the importance of various nuclides in neutron-induced radioactivity from fuel element construction materials has been carried out for both BWR and PWR fuel assemblies. The calculations were performed with the ORIGEN computer code. The investigation was directed towards the final storage of the assembly components and special emphasis was put to the examination of the sources of carbon-14, cobalt-60, nickel-59, nickel-63 and zirconium-93/niobium-93m. It is demonstrated that the nuclides nickel-59, in Inconel and stainless steel, and zirconium-93/niobium-93m, in Zircaloy, are the ones which constitute the very long term radiotoxic hazard of the irradiated materials. (author)

  17. Development of expert system for fuel monitoring and analysis in WWER-1000 units

    International Nuclear Information System (INIS)

    Likhanskii, V.; Evdokimov, I.; Sorokin, A.; Kanukova, V.; Zborovskii, V.; Aliev, T.; Sokolov, N.; Shishkin, A.

    2011-01-01

    At present, an expert system (software package) for fuel monitoring in WWER units is under development in Russia. It comprises several modules which cover analysis of coolant activity, detection of failures and estimation of failure parameters, predictions of activity level and some aspects of PCI analysis. This paper outlines the current version of the fuel monitoring system, its basic features and user interface. Advances in development of computer modules for PCI analysis are reported. At present two levels of PCI analysis are used. The first is estimation of probability for pellets to get in contact with cladding in fuel rods. Estimations are made with taking into account specifications and tolerances for fuel fabrication as well as fuel operation conditions. The second level of PCI analysis implies a simplified approach for on-line calculations of stresses in cladding depending on power ramping rates. The model for PCI calculations and its application within the computer system is demonstrated. (authors)

  18. The French development program for a UMo fuel

    International Nuclear Information System (INIS)

    Romano, R.; Nigon, J.L.; Languille, A.; Le Borgne, E.; Freslon, H.

    1999-01-01

    Until now high density U 3 Si 2 fuels were satisfactory for LEU conversion of certain reactors, but their use is limited because their density is physically limited to 5,8 gU/cm3 and they have very poor reprocessing capacities. After the end of the present US return policy in may 2006, the reactor operators will be indeed in a very difficult position with silicides. The international community is thus interested in a very high density fuel with good reprocessing capacities in order to convert most reactors and to find a back end solution. In France, CEA, CERCA, and COGEMA have thus launched an important program in order to sort potential candidates of uranium alloys. UMo is one of the most interesting candidates. After the selection of UMo alloys, France has pooled different skills to start an important program on UMo fuels: CEA has started an important project for a new reactor (Jules Horowitz); CERCA is the main manufacturer for MTR fuel; TECHNICATOME is the design expert for research reactors and associated cores; FRAMATOME is the parent company of CERCA and is interested in the development of new reactors; COGEMA is interested in reprocessing spent fuels. This new fuel has three aims: to allow reactors to benefit from a high performing fuel; to have a reprocessable fuel to limit the fuel storage period and the associate safety problem, and solve the back end issue; to support the international effort for non proliferation involving the end of the use of HEU. This high density fuel will decrease the number of fuel assemblies needed to run the reactors and decrease the global cost of the fuel cycle as the back end management cost is in proportion with the quantity of fuel. Reactor operators will thus derive an advantage from this new fuel, in terms of economy

  19. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan

    2013-01-01

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established

  20. Endplug Welding Techniques developed for SFR Metallic Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Kim, Soo Sung; Woo, Yoon Myeng; Kim, Hyung Tae; Lee, Ho Jin; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In Korea, the R and D on SFR has been begun since 1997, as one of the national long-term nuclear R and D programs. The international collaborative research is under way on fuel developments within Advanced Fuel Project for Gen-IV SFR with the closed fuel cycle of full actinide recycling, while TRU bearing metallic fuel, U-TRU-Zr alloy fuel, was selected and is being developed. For the fabrication of SFR metallic fuel elements, the endplug welding is a crucial process. The sealing of endplug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the welding technique, welding equipment, welding conditions and parameters were developed to make SFR metallic fuel elements. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established. In order to make SFR metallic fuel elements, the welding technique, welding equipment, welding conditions and parameters were developed. The TIG welding technique was adopted and the welding joint design was developed. And the optimal welding conditions and parameters were also established.

  1. Conceptual development of a test facility for spent fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs.

  2. Conceptual development of a test facility for spent fuel management

    International Nuclear Information System (INIS)

    Park, S.W.; Lee, H.H.; Lee, J.Y.; Lee, J.S.; Ro, S.G.

    1997-01-01

    Spent fuel management is an important issue for nuclear power program, requiring careful planning and implementation. With the wait-and-see policy on spent fuel management in Korea, research efforts are directed at KAERI to develop advanced technologies for safer and more efficient management of the accumulating spent fuels. In support of these research perspectives, a test facility of pilot scale is being developed with provisions for integral demonstration of a multitude of technical functions required for spent fuel management. The facility, baptized SMART (Spent fuel MAnagement technology Research and Test facility), is to be capable of handling full size assembly of spent PWR fuel (as well as CANDU fuel) with a maximum capacity of 10 MTU/y (about 24 assemblies of PWR type). Major functions of the facility are consolidation of spent PWR fuel assembly into a half-volume package and optionally transformation of the fuel rod into a fuel of CANDU type (called DUPIC). Objectives of these functions are to demonstrate volume reduction of spent fuel (for either longer-term dry storage or direct disposal ) in the former case and direct refabrication of the spent PWR fuel into CANDU-type DUPIC fuel for reuse in CANDU reactors in the latter case, respectively. In addition to these major functions, there are other associated technologies to be demonstrated : such as waste treatment, remote maintenance, safeguards, etc. As the facility is to demonstrate not only the functional processes but also the safety and efficiency of the test operations, engineering criteria equivalent to industrial standards are incorporated in the design concept. The hot cell structure enclosing the radioactive materials is configured in such way to maximize costs within the given functional and operational requirements. (author). 3 tabs., 4 figs

  3. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  4. A state of the art on metallic fuel technology development

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960's, the development of metallic fuels continued throughout the 1970's at ANL's experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980's, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab

  5. A state of the art on metallic fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Kang, Hee Young; Nam, Cheol; Kim, Jong Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Since worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved in the late 1960`s, the development of metallic fuels continued throughout the 1970`s at ANL`s experimental breeder reactor II (EBR-II) because EBR-II continued to be fueled with the metallic uranium-fissium alloy, U-5Fs. During this decade the performance limitations of metallic fuel were satisfactorily resolved resolved at EBR-II. The concept of the IFR developed at ANL since 1984. The technical feasibility had been demonstrated and the technology database had been established to support its practicality. One key features of the IFR is that the fuel is metallic, which brings pronounced benefits over oxide in improved inherent safety and lower processing costs. At the outset of the 1980`s, it appeared that metallic fuels are recognized as a professed viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last score and summarizes the state-of the art on metallic fuel technology development. (author). 29 refs., 1 tab.

  6. Globalization of the nuclear fuel cycle impact of developments on fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Durpel, L.; Bertel, E. [OCDE-NEA, Nuclear Development Div., 92 - Issy-les-Moulineaux (France)

    1999-07-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  7. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Durpel, L. van den; Bertel, E.

    2000-01-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.) [de

  8. Microbial biocatalyst developments to upgrade fossil fuels.

    Science.gov (United States)

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  9. Development of information management system on LWR spent fuel

    International Nuclear Information System (INIS)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S.

    2002-01-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility

  10. Status of LEU fuel development and conversion of NRU

    International Nuclear Information System (INIS)

    Sears, D.F.; Herbert, L.N.; Vaillancourt, K.D.

    1989-11-01

    The status of the low-enrichment uranium (LEU) fuel development and NRU conversion program at Chalk River Nuclear Laboratories is reviewed. Construction of a new fuel fabrication facility is essentially completed and installation of LEW fuel manufacturing equipment has begun. The irradiation of 31 prototype Al-61 wt% U 3 Si dispersion fuel rods, approximately one third of a full NRU core, is continuing without incident. Recent post-irradiation examination of spent fuel rods revealed that the prototype LEU fuel achieved the design burnup (80 at%) in excellent condition, confirming that the Al-U 3 Si 2 dispersion fuel to complement out Al-U 3 Si capability. Three full-size NRU rods containing Al-U 3 Si 2 dispersion fuel have been fabricated for a qualification irradiation in NRU. Post-irradiation examinations of mini-elements containing Al-U 3 Si 2 fuel revealed that the U 3 Si 2 behaved similarly to U 3 Si 2 fuel revealed that the U 3 Si 2 particles and the aluminum matrix, and fission gas bubbles up to 10 μm in diameter, could be seen in the particles after 60 at% and 80 at% burnup. The mini-elements contained a variety of silicide particle sizes; however, no significant swelling dependence on particle size distribution was observed

  11. Development of information management system on LWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Lee, S. H.; Song, D. Y.; Jeon, I.; Park, S. J.; Seo, D. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    LWRs in Korea should manage all the information of spent fuel to implement the obligations under Korea-IAEA safeguards agreement and to perform the nuclear material accountancy work at the facility level. The information management system on LWR spent fuel was developed to manage all movement records from receipt to shipment of LWR fuels, and to get the necessary information such as nuclear fuel inventory lists and status, maps of fresh fuel storage, reactor and spent fuel pool, receipt and shipment records and so on. This information management system has a function to setup the system environments to cover the various kinds of storage types for all LWRs ; reactor, spent fuel pool and fresh fuel storage. The movements of nuclear fuel between the storages can be easily done by double click of the mouse to the destination. It also has a several error checking routines for maintaining the correct accounting data. Using this information management system of LWR spent fuel, facility operators can perform efficiently and effectively the safeguards related works including nuclear material accountancy at each facility.

  12. Distributed H2 Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  13. Learning FuelPHP for effective PHP development

    CERN Document Server

    Tweedie, Ross

    2013-01-01

    The book follows a standard tutorial approach, which will enable readers to use the FuelPHP framework efficiently while developing PHP applications.If you are a PHP developer who is looking to learn more about using the FuelPHP framework for effective PHP development, this book is ideal for you. If you are interested in this book, you should already have a basic understanding of general PHP development.

  14. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  15. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  16. Selection and development of advanced nuclear fuel products

    International Nuclear Information System (INIS)

    Stucker, David L.; Miller, Richard S.; Arnsberger, Peter L.

    2004-01-01

    The highly competitive international marketplace requires a continuing product development commitment, short development cycle times and timely, on-target product development to assure customer satisfaction and continuing business. Westinghouse has maintained its leadership position within the nuclear fuel industry with continuous developments and improvements to fuel assembly materials and design. This paper presents a discussion of the processes used by Westinghouse in the selection and refinement of advanced concepts for deployment in the highly competitive US and international nuclear fuel fabrication marketplace. (author)

  17. Development of fabrication technology for CANDU advanced fuel -Development of the advanced CANDU technology-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Beom; Kim, Hyeong Soo; Kim, Sang Won; Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Jang, Ho Il; Kim, Sang Sik; Choi, Il Kwon; Cho, Dae Sik; Sheo, Seung Won; Lee, Soo Cheol; Kim, Yoon Hoi; Park, Choon Ho; Jeong, Seong Hoon; Kang, Myeong Soo; Park, Kwang Seok; Oh, Hee Kwan; Jang, Hong Seop; Kim, Yang Kon; Shin, Won Cheol; Lee, Do Yeon; Beon, Yeong Cheol; Lee, Sang Uh; Sho, Dal Yeong; Han, Eun Deok; Kim, Bong Soon; Park, Cheol Joo; Lee, Kyu Am; Yeon, Jin Yeong; Choi, Seok Mo; Shon, Jae Moon [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1994-07-01

    The present study is to develop the advanced CANDU fuel fabrication technologies by means of applying the R and D results and experiences gained from localization of mass production technologies of CANDU fuels. The annual portion of this year study includes following: 1. manufacturing of demo-fuel bundles for out-of-pile testing 2. development of technologies for the fabrication and inspection of advanced fuels 3. design and munufacturing of fuel fabrication facilities 4. performance of fundamental studies related to the development of advanced fuel fabrication technology.

  18. Development of a proton exchange membrane fuel cell cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang; Zou, Meng Lin [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-05-01

    A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. (author)

  19. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  20. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  1. Development of alternative fuel for pressurized water reactors

    International Nuclear Information System (INIS)

    Cardoso, P.E.; Ferreira, R.A.N.; Ferraz, W.B.; Lameiras, F.S.; Santos, A.; Assis, G. de; Doerr, W.O.; Wehner, E.L.

    1984-01-01

    The utilization of alternative fuel cycles in Pressurized Water Reactors (PWR) such as Th/U and Th/Pu cycles can permit a better utilization of uranium reserves without the necessity of developing new power reactor concepts. The development of the technology of alternative fuels for PWR is one of the objectives of the 'Program on Thorium Utilization in Pressurized Water Reactors' carried out jointly by Empresas Nucleares Brasileiras S.A. (NUCLEBRAS), through its Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) and by German institutions, the Julich Nuclear Research Center (KFA), the Kraftwerk Union A.G. (KWU) and NUKEM GmbH. This paper summarizes the results so far obtained in the fuel technology. The development of a fabrication process for PWR fuel pellets from gel-microspheres is reported as well as the design, the specification, and the fabrication of prototype fuel rods for irradiation tests. (Author) [pt

  2. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  3. Preliminary investigation study of code of developed country for developing Korean fuel cycle code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2012-01-01

    In order to develop Korean fuel cycle code, the analyses has been performed with the fuel cycle codes which are used in advanced country. Also, recommendations were proposed for future development. The fuel cycle codes are AS FLOOWS: VISTA which has been developed by IAEA, DANESS code which developed by ANL and LISTO, and VISION developed by INL for the Advanced Fuel Cycle Initiative (AFCI) system analysis. The recommended items were proposed for software, program scheme, material flow model, isotope decay model, environmental impact analysis model, and economics analysis model. The described things will be used for development of Korean nuclear fuel cycle code in future

  4. Development of fuel performance and thermal hydraulic technology

    International Nuclear Information System (INIS)

    Jung, Youn Ho; Song, K. N.; Kim, H. K. and others

    2000-03-01

    Space grid in LWR fuel assembly is a key structural component to support fuel rods and to enhance heat transfer from fuel rod to the coolant. Therefore, the original spacer grid has been developed. In addition, new phenomena in fuel behavior occurs at the high burnup, so that models to analyze those new phenomena were developed. Results of this project can be summarized as follows. - Seven different spacer grid candidates have been invented and submitted for domestic and US patents. Spacer grid test specimen(3x3 array and 5x5 array) were fabricated for each candidate and the mechanical tests were performed. - Basic technologies in the mechanical and thermal hydraulic behavior in the spacer grid development are studied and relevant test facilities were established - Fuel performance analysis models and programs were developed for the high burnup pellet and cladding, and fuel performance data base were compiled - Procedures of fuel characterization and in-/out of-pile tests were prepared - Conceptual design of fuel rod for integral PWR was carried out. (author)

  5. New developments in dry spent fuel storage

    International Nuclear Information System (INIS)

    Bonnet, C.; Chevalier, Ph.

    2001-01-01

    As shown in various new examples, HABOG facility (Netherlands), CERNAVODA (Candu - Romania), KOZLODUY (WWER - Bulgaria), CHERNOBYL ( RMBK - Ukraine), MAYAK (Spent Fuel from submarine and Icebreakers - Russia), recent studies allow to confirm the flexibility and performances of the CASCAD system proposed by SGN, both in safety and operability, for the dry storage of main kinds of spent fuel. The main features are: A multiple containment barrier system: as required by international regulation, 2 independent barriers are provided (tight canister and storage pit); Passive cooling, while the Fuel Assemblies are stored in an inert atmosphere and under conditions of temperature preventing from degradation of rod cladding; Sub-criticality controlled by adequate arrangements in any conditions; Safe facility meeting ICPR 60 Requirements as well as all applicable regulations (including severe weather conditions and earthquake); Safe handling operations; Retrievability of the spent fuel either during storage period or at the end of planned storage period (100 years); Future Decommissioning of the facility facilitated through design optimisation; Construction and operating cost-effectiveness. (author)

  6. Development of a methanol reformer for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Baard

    2003-03-01

    Vehicles powered by fuel cells are from an environmental aspect superior to the traditional automobile using internal combustion of gasoline. Power systems which are based upon fuel cell technology require hydrogen for operation. The ideal fuel cell vehicle would operate on pure hydrogen stored on-board. However, storing hydrogen on-board the vehicle is currently not feasible for technical reasons. The hydrogen can be generated on-board using a liquid hydrogen carrier such as methanol and gasoline. The objective of the work presented in this thesis was to develop a catalytic hydrogen generator for automotive applications using methanol as the hydrogen carrier. The first part of this work gives an introduction to the field of methanol reforming and the properties of a fuel cell based power system. Paper I reviews the catalytic materials and processes available for producing hydrogen from methanol. The second part of this thesis consists of an experimental investigation of the influence of the catalyst composition, materials and process parameters on the activity and selectivity for the production of hydrogen from methanol. In Papers II-IV the influence of the support, carrier and operational parameters is studied. In Paper V an investigation of the catalytic properties is performed in an attempt to correlate material properties with performance of different catalysts. In the third part of the thesis an investigation is performed to elucidate whether it is possible to utilize oxidation of liquid methanol as a heat source for an automotive reformer. In the study which is presented in Paper VI a large series of catalytic materials are tested and we were able to minimize the noble metal content making the system more cost efficient. In the final part of this thesis the reformer prototype developed in the project is evaluated. The reformer which was constructed for serving a 5 k W{sub e} fuel cell had a high performance with near 100 % methanol conversion and CO

  7. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  8. The miscibility and oxidation study of the simulated metallic spent fuel for the development of an advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. J.; You, G. S.; Ju, J. S.; Lee, E. P.; Seo, H. S.; Ahn, S. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-03-01

    The simulated metallic spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the immiscibility of the some elements with metal uranium. 2 refs., 45 figs. (Author)

  9. Development of DIPRES feed for the fabrication of mixed-oxide fuels for fast breeder reactors

    International Nuclear Information System (INIS)

    Griffin, C.W.; Rasmussen, D.E.; Lloyd, M.H.

    1983-01-01

    The DIrect PREss Spheroidized feed process combines the conversion of uranium-plutonium solutions into spheres by internal gelation with conventional pellet fabrication techniques. In this manner, gel spheres could replace conventional powders as the feed material for pellet fabrication of nuclear fuels. Objective of the DIPRES feed program is to develop and qualify a process to produce mixed-oxide fuel pellets from gel spheres for fast breeder reactors. This process development includes both conversion and fabrication activities

  10. Advances in carbide fuel element development for fast reactor application

    International Nuclear Information System (INIS)

    Dienst, W.; Kleykamp, H.; Muehling, G.; Reiser, H.; Steiner, H.; Thuemmler, F.; Wedermeyer, H.; Weimar, P.

    1977-01-01

    The features of the carbide fuel development programme are reviewed and evaluated. Single pin and bundle irradiations are carried out under thermal, epithermal and fast flux conditions, the latter in the DFR and KNK-II reactors. Several fuel concepts in the region of representative SNR clad temperatures are compared by parameter and performance tests. A conservative concept is based on He-bonded 8 mm pins with (U,Pu)C pellets and a smear density of 75% TD, operating at 800 W/cm rod power and burnup to 70 MWd/kg. The preparation of mixed carbide fuels is carried out by carbothermic reduction of the oxides in different methods supported by equivalent carbon content, grain size and phase distribution analysis. The fuel for subassembly performance tests is produced in a pilot plant of 0,5 t/year capacity. Compatibility studies reveal that cladding carburization is the only chemical interaction with carbide fuels. This effect leads to a reduction in ductility of the stainless steel. Fission products apparently play no role in the compatibility behaviour. Comprehensive studies lead to reliable information on the chemical and thermodynamic state of the fuel under irradiation. The swelling of carbide fuels and the fission gas release are examined and analysed. Cladding plastic strain by fuel swelling occurs during steady-state operation because the irradiation creep is rather slow compared to oxide fuels. The cladding strain observed depends on the fuel porosity and the cladding strength. The development of carbide fuel pins is complemented by the application of comprehensive computer models. In addition to the steady-state tests power cycling and safety tests are under performance. Up to 1980 the results are summarized for the final design and specification. The development target of the present program is to fabricate several subassemblies for test operation in the SNR 300 by 1981

  11. A study on KMRR utilization for fuel development

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Ryu, Woo Seog; Park, Ji Yeon; Joo, Kee Nam; Park, Jong Man; Park, Se Jin

    1991-01-01

    The most effective utilization scheme of the KMRR was studied in the field of nuclear fuel development through reviewing literatural documents on irradiation facilities and in-pile test. It is suggested that the KMRR should be used for verification tests of advanced fuels and for power ramping / cycling tests of fuel rods. In addition, the characterization tests for fuel development and the basic material research should be also performed. In-pile loops for fuel verification and/or power ramping / cycling tests are proposed to be installed in advance, and capsules are necessary for power ramping / cycling tests, fuel characterization tests and / or material tests. Instrumentation technologies for thermocouple, SPND (Self-Powered Neutron Detector) and pressure transducer, and the in-situ dimensional measuring systems have to be developed to obtain the useful and various results from irradiation tests in the KMRR. A mock-up test rod for characterizing fuel thermal response was manufactured and the related technologies as well as the design specification were set up. An equipment for microdrilling and grooving of fuel pellets and an apparatus for diffusion-bonding between zircaloy-4 and stainless steel were made. A study to verify the integrity of test rod weldments is presented using out-of pile corrosion test. (Author)

  12. Hydrogen and fuel cell activity report - France 2009

    International Nuclear Information System (INIS)

    2009-01-01

    The report gathers the main outstanding facts which occurred in France in the field of hydrogen and fuel cells in 2009. After having noticed some initiatives (French commitment in renewable energy production, new role for the CEA, cooperation between different research and industrial bodies, development of electric vehicles, research programs), the report presents several projects and programs regarding hydrogen: ANR programs, creation of a national structure, basic research by the CEA and CNRS, demonstration projects (H2E), transport applications (a hybrid 307 by Peugeot, the Althytude project by GDF and Suez, the Hychain European project by Air Liquide, a dirigible airship, an ultra-light aviation project, a submarine), some stationary applications (the Myrte project, a wind energy project), activity in small and medium-sized enterprises, regional initiatives, colloquiums and meetings.

  13. Development of a fissile particle for HTGR fuel recycle

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.; Lindemer, T.B.; Beatty, R.L.; Tiegs, T.N.

    1976-12-01

    Recycle fissile fuel particles for high-temperature gas-cooled reactors (HTGRs) have been under development since the mid-1960s. Irradiation performance on early UO 2 and Th 0 . 8 U 0 . 2 O 2 kernels is described in this report, and the performance limitations associated with the dense oxide kernels are presented. The development of the new reference fuel kernel, the weak-acid-resin-derived (WAR) UO 2 --UC 2 , is discussed in detail, including an extensive section on the irradiation performance of this fuel in HFIR removable beryllium capsules HRB-7 through -10. The conclusion is reached that the irradiation performance of the WAR fissile fuel kernel is better than that of any coated particle fuel yet tested. Further, the present fissile kernel is adequate for steam cycle HTGRs as well as for many advanced applications such as gas turbine and process heat HTGRs

  14. Development of probabilistic fast reactor fuel design method

    International Nuclear Information System (INIS)

    Ozawa, Takayuki

    1997-01-01

    Under the current method of evaluating fuel robustness in FBR fuel rod design, a variety of uncertain quantities including fuel production tolerance and power density are estimated conservatively. In the future, in order to proceed with improvements in the FBR core's performance and optimize the fuel's specifications, a rationalization of fuel design tolerance is required. Among the measures aimed at realizing this rationalization, the introduction of a probabilistic fast reactor fuel design method is currently under consideration. I have developed a probabilistic fast reactor fuel design code named BORNFREE, in order to make use of this method in FBR fuel design. At the same time, I have carried out a trial calculation of the cladding stress using this code and made a study and an evaluation of the possibility of employing tolerance rationalization in fuel rod design. In this paper, I provide an outline description of BORNFREE and report the results of the above study and evaluation. After performing cladding stress trial calculations using the probabilistic method, I was able to confirm that this method promises more rational design evaluation results than the conventional deterministic method. (author)

  15. The development and localization of nuclear fuel technology for KMRR

    International Nuclear Information System (INIS)

    Kim, Seong Yun; Lee, Ji Bok; Suk, Ho Chun; Kuk, Il Hyun; Hwang, Woan; Kim, Bong Goo; Park, Joo Hwan; Kim, Young Jin; Kang, Thae Khapp; Lee, Jae Choon

    1988-05-01

    This project was implemented aiming at localizing the fabrication of the KMRR fuel by october 1993. The contents of this project were divided into three parts: fuel design, fuel fabrication and process criticality analysis. In the fuel design, the radial power distribution in the fuel core was modeled and formulated taking account of the neutron flux depression in the radial direction. It was also performed to model and formulate the thermal characteristics such as the thermal conductivity and specific heat of the fuel core, U3Si-Al, the swelling and the film coefficient of heat transfer between the aluminum clad and light water coolant. The two dimensional heat transfer in the finned fuel element was equated based on the general equation governing the heat transfer in materials in order to develope a computer code, TEMP2D. TEMP2D solves finite differenced equations to calculate a two dimensional fuel temperature distribution under the steady and transient states. In the fuel fabrication, the technologies of fabricating uranium silicide fuel meat were tried by using depleted uranium as a raw material. These were extended to find the problems in technologies and to establish the ways of approach. The end product, so called fuel meat, was a metallic powder compound, U3Six(1≤x≤2), dispersed in Al matrix. The fuel meat was fabricated by the horizontal extrusion technique, and powder extrusion technique. Fabrication technologies comprise five different continuous processes: melting and casting of metallic uranium with silicon and aluminum, heat treatment, chipping and crushing, pulverizing, and extrusion. In the process criticality analysis, AMPX-KENO benchmark calculation was performed and calculational error of AMPX-KENO system was established. (Author)

  16. Manufacturing experience and perspectives of WWER nuclear fuel development

    International Nuclear Information System (INIS)

    Aksenov, P.; Kolosovskiy, V.

    2011-01-01

    The purposes of new shroudless working fuel assembly (PK-3) development, basic design peculiarities of working fuel assembly (PK-3) and the results of PK-3 implementation are presented in this paper. Values of 440.19.000-02 working fuel assembly with debris filter Burnup at Kola NPP unit 2 are given. The main issues settled in the course of TVSA-T implementation like: The development of the design and fabrication method of mixing grids; The development of the design and fabrication method of basic assemblies and components of TVSA-T, including fuel rods of new generation; and The obtainment of specified pellet microstructure with average grain size more than 25μm are listed. The development of the design and fabrication method of removable uprated headpiece of shortened length as well as the development of the design and fabrication method of a tailpiece equipped with a debris filter are also illustrated

  17. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  18. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  19. Used fuel disposition research and development roadmap - FY10 status.

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in

  20. Used fuel disposition research and development roadmap - FY10 status

    International Nuclear Information System (INIS)

    Nutt, W.M.

    2010-01-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R and D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R and D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been

  1. New developments in tire derived fuels (TDF)

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, G. [Portland Cement Association, Skokie, IL (United States)

    2006-07-01

    Portland cement is a mixture of finely ground raw materials that are processed in a rotary kiln heated to 1500 degrees C by various fuels. Cooled clinker from the kiln is ground into portland cement. This presentation provided an overview of the role that tire-derived fuels is now playing in cement manufacturing. Data on the extent of TDF use in cement manufacturing processes were presented, as well as the results of air emissions monitoring programs conducted to assess the environmental impacts of TDF. During the cement manufacturing process, shredded and chipped tires are blown into the kiln to provide fuel, while whole tires are placed in the midpoint of long dry or wet kilns. For preheater and precalciner kilns, whole tires are added to raw material entering the kiln. The kiln's controlled combustion environment ensures the complete destruction of scrap tires. Approximately 130 million scrap tires were recycled in Portland cement plants in 2003. Forty-four portland cement plants are currently using TDF in North America. The United States Department of Energy has estimated that TDF produces less carbon dioxide (CO{sub 2}) per unit of energy than coal. Monitoring programs at Portland cement plants have indicated that the use of TDF in place of coal has resulted in moderate reductions of nitrogen oxide (NO{sub x}) emissions, slightly lower sulfuric oxide (SO{sub 2}) emissions and moderate reductions in carbon monoxide (CO). Some plants have reported slight reductions in particulate matter (PM) emissions. It was concluded that the use of scrap tires as a fuel reduces a waste stream and contributes to energy and raw material requirements. Moreover, plant air emissions are either reduced or are not impacted by TDF use. refs., tabs., figs.

  2. Development of Techniques for Spent Fuel Assay - Differential Dieaway Final Report

    International Nuclear Information System (INIS)

    Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Desimone, David J.; Rael, Carlos D.; Henzl, Vladimir; Polk, Paul John

    2016-01-01

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  3. Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Desimone, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Polk, Paul John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  4. Development and verifications of fast reactor fuel design code ''Ceptar''

    International Nuclear Information System (INIS)

    Ozawa, T.; Nakazawa, H.; Abe, T.

    2001-01-01

    The annular fuel is very beneficial for fast reactors, because it is available for both high power and high burn-up. Concerning the irradiation behavior of the annular fuel, most of annular pellets irradiated up to high burn-up showed shrinkage of the central hole due to deformation and restructuring of the pellets. It is needed to predict precisely the shrinkage of the central hole during irradiation, because it has a great influence on power-to-melt. In this paper, outline of CEPTAR code (Calculation code to Evaluate fuel pin stability for annular fuel design) developed to meet this need is presented. In this code, the radial profile of fuel density can be computed by using the void migration model, and law of conservation of mass defines the inner diameter. For the mechanical analysis, the fuel and cladding deformation caused by the thermal expansion, swelling and creep is computed by the stress-strain analysis using the approximation of plane-strain. In addition, CEPTAR can also take into account the effect of Joint-Oxide-Gain (JOG) which is observed in fuel-cladding gap of high burn-up fuel. JOG has an effect to decrease the fuel swelling and to improve the gap conductance due to deposition of solid fission product. Based on post-irradiation data on PFR annular fuel, we developed an empirical model for JOG. For code verifications, the thermal and mechanical data obtained from various irradiation tests and post-irradiation examinations were compared with the predictions of this code. In this study, INTA (instrumented test assembly) test in JOYO, PTM (power-to-melt) test in JOYO, EBR-II, FFTF and MTR in Harwell laboratory, and post-irradiation examinations on a number of PFR fuels, were used as verification data. (author)

  5. Pilot-scale equipment development for lithium-based reduction of spent oxide fuel

    International Nuclear Information System (INIS)

    Herrmann, S. D.

    1998-01-01

    An integral function of the electrometallurgical conditioning of DOE spent nuclear fuel is the standardization of waste forms. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical conditioning of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in uranium, ceramic waste, and metal waste forms. Engineering studies are underway at ANL in support of pilot-scale equipment development, which would precondition irradiated oxide fuel and likewise demonstrate the application of electrometallurgical conditioning to such non-metallic fuels. This paper highlights the integration of proposed spent oxide fuel conditioning with existing electrometallurgical processes. Additionally, technical bases for engineering activities to support a scale up of an oxide reduction process are described

  6. Design of active-neutron fuel rod scanner

    International Nuclear Information System (INIS)

    Griffith, G.W.; Menlove, H.O.

    1996-01-01

    An active-neutron fuel rod scanner has been designed for the assay of fissile materials in mixed oxide fuel rods. A 252 Cf source is located at the center of the scanner very near the through hole for the fuel rods. Spontaneous fission neutrons from the californium are moderated and induce fissions within the passing fuel rod. The rod continues past a combined gamma-ray and neutron shield where delayed gamma rays above 1 MeV are detected. We used the Monte Carlo code MCNP to design the scanner and review optimum materials and geometries. An inhomogeneous beryllium, graphite, and polyethylene moderator has been designed that uses source neutrons much more efficiently than assay systems using polyethylene moderators. Layers of borated polyethylene and tungsten are used to shield the detectors. Large NaI(Tl) detectors were selected to measure the delayed gamma rays. The enrichment zones of a thermal reactor fuel pin could be measured to within 1% counting statistics for practical rod speeds. Applications of the rod scanner include accountability of fissile material for safeguards applications, quality control of the fissile content in a fuel rod, and the verification of reactivity potential for mixed oxide fuels. (orig.)

  7. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  8. Feasibility study on the development of advanced LWR fuel technology

    International Nuclear Information System (INIS)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others.

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO 2 pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO 2 -Gd 2 O 3 burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs

  9. Advanced PEFC development for fuel cell powered vehicles

    Science.gov (United States)

    Kawatsu, Shigeyuki

    Vehicles equipped with fuel cells have been developed with much progress. Outcomes of such development efforts include a Toyota fuel cell electric vehicle (FCEV) using hydrogen as the fuel which was developed and introduced in 1996, followed by another Toyota FCEV using methanol as the fuel, developed and introduced in 1997. In those Toyota FCEVs, a fuel cell system is installed under the floor of each RAV4L, to sports utility vehicle. It has been found that the CO concentration in the reformed gas of methanol reformer can be reduced to 100 ppm in wide ranges of catalyst temperature and gas flow rate, by using the ruthenium (Ru) catalyst as the CO selective oxidizer, instead of the platinum (Pt) catalyst known from some time ago. It has been also found that a fuel cell performance equivalent to that with pure hydrogen can be ensured even in the reformed gas with the carbon monoxide (CO) concentration of 100 ppm, by using the Pt-Ru (platinum ruthenium alloy) electrocatalyst as the anode electrocatalyst of a polymer electrolyte fuel cell (PEFC), instead of the Pt electrocatalyst known from some time ago.

  10. Development of Green Fuels From Algae - The University of Tulsa

    Energy Technology Data Exchange (ETDEWEB)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  11. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  12. Development of code SFINEL (Spent fuel integrity evaluator)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Min, Chin Young; Ohk, Young Kil; Yang, Yong Sik; Kim, Dong Ju; Kim, Nam Ku [Hanyang University, Seoul (Korea)

    1999-01-01

    SFINEL code, an integrated computer program for predicting the spent fuel rod integrity based on burn-up history and major degradation mechanisms, has been developed through this project. This code can sufficiently simulate the power history of a fuel rod during the reactor operation and estimate the degree of deterioration of spent fuel cladding using the recently-developed models on the degradation mechanisms. SFINEL code has been thoroughly benchmarked against the collected in-pile data and operating experiences: deformation and rupture, and cladding oxidation, rod internal pressure creep, then comprehensive whole degradation process. (author). 75 refs., 51 figs., 5 tabs.

  13. Development of machine vision system for PHWR fuel pellet inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kamalesh Kumar, B.; Reddy, K.S.; Lakshminarayana, A.; Sastry, V.S.; Ramana Rao, A.V. [Nuclear Fuel Complex, Hyderabad, Andhra Pradesh (India); Joshi, M.; Deshpande, P.; Navathe, C.P.; Jayaraj, R.N. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh (India)

    2008-07-01

    Nuclear Fuel Complex, a constituent of Department of Atomic Energy; India is responsible for manufacturing nuclear fuel in India . Over a million Uranium-di-oxide pellets fabricated per annum need visual inspection . In order to overcome the limitations of human based visual inspection, NFC has undertaken the development of machine vision system. The development involved designing various subsystems viz. mechanical and control subsystem for handling and rotation of fuel pellets, lighting subsystem for illumination, image acquisition system, and image processing system and integration. This paper brings out details of various subsystems and results obtained from the trials conducted. (author)

  14. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  15. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  16. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    Analytical chemistry is indispensable and plays a pivotal role in the entire gamut of nuclear fuel cycle activities starting from ore refining, conversion, nuclear fuel fabrication, reactor operation, nuclear fuel reprocessing to waste management. As the fuel is the most critical component of the reactor where the fissions take place to produce power, extreme care should be taken to qualify the fuel. For example, in nuclear fuel fabrication, depending upon the reactor system, selection of nuclear fuel has to be made. The fuel for thermal reactors is normally uranium oxide either natural or slightly enriched. For research reactors it can be uranium metal or alloy. The fuel for FBR can be metal, alloy, oxide, carbide or nitride. India is planning an advanced heavy water reactor for utilization of vast resources of thorium in the country. Also research is going on to identify suitable metallic/alloy fuels for our future fast reactors and possible use in fast breeder test reactor. Other advanced fuel materials are also being investigated for thermal reactors for realizing increased performance levels. For example, advanced fuels made from UO 2 doped with Cr 2 O 3 and Al 2 O 3 are being suggested in LWR applications. These have shown to facilitate pellet densification during sintering and enlarge the pellet grain size. The chemistry of these materials has to be understood during the preparation to the stringent specification. A number of analytical parameters need to be determined as a part of chemical quality control of nuclear materials. Myriad of analytical techniques starting from the classical to sophisticated instrumentation techniques are available for this purpose. Insatiable urge of the analytical chemist enables to devise and adopt new superior methodologies in terms of reduction in the time of analysis, improvement in the measurement precision and accuracy, simplicity of the technique itself etc. Chemical quality control provides a means to ensure that the

  17. Development of a solid oxide fuel cell (SOFC) automotive auxiliary power unit (APU) fueled by gasoline

    International Nuclear Information System (INIS)

    DeMinco, C.; Mukerjee, S.; Grieve, J.; Faville, M.; Noetzel, J.; Perry, M.; Horvath, A.; Prediger, D.; Pastula, M.; Boersma, R.; Ghosh, D.

    2000-01-01

    This paper describes the design and the development progress of a 3 to 5 auxiliary power unit (APU) based on a gasoline fueled solid oxide fuel cell (SOFC). This fuel cell was supplied reformate gas (reactant) by a partial oxidation (POx) catalytic reformer utilizing liquid gasoline and designed by Delphi Automotive Systems. This reformate gas consists mainly of hydrogen, carbon monoxide and nitrogen and was fed directly in to the SOFC stack without any additional fuel reformer processing. The SOFC stack was developed by Global Thermoelectric and operates around 700 o C. This automotive APU produces power to support future 42 volt vehicle electrical architectures and loads. The balance of the APU, designed by Delphi Automotive Systems, employs a packaging and insulation design to facilitate installation and operation on-board automobiles. (author)

  18. A gradient activation method for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Liu, Guicheng; Yang, Zhaoyi; Halim, Martin; Li, Xinyang; Wang, Manxiang; Kim, Ji Young; Mei, Qiwen; Wang, Xindong; Lee, Joong Kee

    2017-01-01

    Highlights: • A gradient activation method was reported firstly for direct methanol fuel cells. • The activity recovery of Pt-based catalyst was introduced into the novel activation process. • The new activation method led to prominent enhancement of DMFC performance. • DMFC performance was improved with the novel activation step by step within 7.5 h. - Abstract: To realize gradient activation effect and recover catalytic activity of catalyst in a short time, a gradient activation method has firstly been proposed for enhancing discharge performance and perfecting activation mechanism of the direct methanol fuel cell (DMFC). This method includes four steps, i.e. proton activation, activity recovery activation, H_2-O_2 mode activation and forced discharging activation. The results prove that the proposed method has gradually realized replenishment of water and protons, recovery of catalytic activity of catalyst, establishment of transfer channels for electrons, protons, and oxygen, and optimization of anode catalyst layer for methanol transfer in turn. Along with the novel activation process going on, the DMFC discharge performance has been improved, step by step, to more than 1.9 times higher than that of the original one within 7.5 h. This method provides a practicable activation way for the real application of single DMFCs and stacks.

  19. The development of lower enrichment fuels for Canadian research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Feraday, M A; Belanger, L; Grolway, C M [AECL, Atomic Energy of Canada Limited, Chalk River, ON (Canada); Foo, M T [CRNL, Combustion Engineering Superheater Ltd., Moncton, NB (Canada)

    1983-08-01

    As part of the world wide move to proliferation resistant fuels, new fuels which use reduced enrichment uranium are being developed for use in the NRX and NRU reactors. A fuel consisting of particles of a USiAl alloy dispersed in an Al matrix has been selected for development along with Al-37 wt% U alloy and Al-U{sub 3}O{sub 8} cermet as backup fuels. This report outlines the progress made in the development of the Al-USiAl and Al-37 wt% U. Results show that good quality extruded rods containing either fuel can be made with techniques similar to those used to fabricate the current NRX and NRU fuels. However, the new fuels will be more expensive to make. Although the oxidation behaviour of the Al-USiAl is not as good as that of the Al-U alloys, its corrosion behaviour in high temperature water does not seem much worse. The oxidation and aqueous corrosion of A-37 wt% U are not much different from those of the Al-U alloys currently used. (author)

  20. Development of compaction technique for spent fuel skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Kim, Young Hwan; Jung, Jae Hoo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    To increase the utilization of uranium resources contained in the spent fuel, the spent fuel is reused. For this, the spent fuel is dismantled or spent fuel rod is extracted from the spent fuel assembly. When the rod is extracted, the remaining components of spent fuel assembly, so called a NFBC(Non-Fuel Bearing Components), should be compacted for the final disposal. To this end, several companies developed the NFBC compactors. German company, named as GNS has developed the direct compression devices of the NFBCs for the rod consolidation and installed it at the PKA(2) of pilot conditioning plant. B and W (Babcock and Wilcox) in USA adopted cutting method rather than the compression method and developed the special cutting devices of NFBC which can be applied underwater environment. In this study the characteristics of these two methods was investigated, in terms of fabrication cost of devices, maintainability in a high radioactive environment, required power and work volume for operation. Also, the optimal power source is selected by comparing the maximum power versus the work volume for operation. In addition to these, the reduction ratio of the bulk volume is obtained while varying the cutting length of the NFBC through a series of experiments. Based on the results of analysis and experiments, the cutting method after compression is selected as an optimal volume reduction method and its design specification is obtained. 8 refs., 62 figs., 32 tabs. (Author)

  1. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-07-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel.

  2. LSDS Development for Isotopic Fissile Assay in Spent Fuel

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Park, Chang Je; Park, Geun Il; Lee, Jung Won; Song, Kee Chan

    2011-01-01

    As an option to reduce a spent fuel and reuse an existing fissile material in spent fuel, sodium fast reactor SFR program linked with pyro-processing is under development in KAERI. A uranium-TRU mixture through a pyro-process is used to fabricate SFR fuel. An assay of isotopic fissile content plays an important role in an optimum design of storage site and reuse of fissile materials of spent fuel. Lead slowing down spectrometer LSDS is being developed in KAERI to analyze isotopic fissile material content. LSDS has several features: direct fissile assay, near real time fissile assay, no influence from radiation background, fissile isotopic assay and applicable to spent fuel and recycled fuel. Based on the designed geometry, neutron energy resolution was investigated. The neutron energy spectrum was analyzed as well. Spent fuel emits large number of neutrons by spontaneous fission. Neutron generator must overcome the neutron background to get the pure fission signals from fissile materials. Neutron generator is planned to have compact system with one section electron linac which is easy maintenance, less cost and high neutron yield. The LSD has the power to resolve the fission characteristics from each fissile material. This feature can analyze the content of isotopic fissile. From 1keV to 0.1eV energy range, the energy resolution is enough to get the individual fissile fission signatures. The dominant fission signature is shown below 1eV for each fissile isotope. The neutron generation system with target was designed to get fission signals by fissile materials. The system was decided to overcome neutron backgrounds and to get good counting statistics. Finally, an accurate fissile material content will contribute to safety of spent fuel reuse in future nuclear energy system and optimum design of spent fuel storage site. Additionally, an accurate fissile material content will increase international transparence and credibility for the reuse of PWR spent fuel

  3. Development of long-life low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.J.; West, G.B.

    1978-01-01

    With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on non-proliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U. S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of this year, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  4. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  5. The J-2X Fuel Turbopump - Design, Development, and Test

    Science.gov (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  6. Development, irradiation testing and PIE of UMo fuel at AECL

    International Nuclear Information System (INIS)

    Sears, D.F.

    2005-01-01

    This paper reviews recent U-Mo dispersion fuel development, irradiation testing and postirradiation examination (PIE) activities at AECL. Low-enriched uranium fuel alloys and powders have been fabricated at Chalk River Labs, with compositions ranging from U-7Mo to U-10Mo. The bulk alloys and powders were characterized using optical and scanning electron microscopy, chemical analysis, X-ray diffraction and neutron diffraction analysis. The analyses confirmed that the powders were of high quality, and in the desired gamma phase. Subsequently, kilogram quantities of DU-Mo and LEU-Mo powder have been manufactured for commercial customers. Mini-elements have been fabricated with LEU-7Mo and LEU-10Mo dispersed in aluminum, with a nominal loading of 4.5 gU/cm 3 . These have been irradiated in the NRU reactor at linear powers up to 100 kW/m. The mini-elements achieved 60 atom% 235 U burnup in 2004 March, and the irradiation is continuing to a planned discharge burnup of 80 atom% 235 U. Interim PIE has been conducted on mini-elements that were removed after 20 atom% 235 U burnup. The PIE results are presented in this paper. (author)

  7. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    applicable as a starting material for the production of liquid fluoride fuel for Molten-Salt Transmutation Reactor. R and D on Electrochemical separation processes from fluoride melt media is aimed to the final chemical partitioning of selected actinides from lanthanides, passed from the Fluoride Volatility Process and to the 'on-line' reprocessing (partitioning) of the circulating fuel in Molten-Salt Reactors. Besides the two main experimental partitioning activities, the flow-sheeting research is in the focus of interest as well. Current progress in pyrochemical partitioning development allows us to design conceptual flow-sheets dedicated to MSR fresh transuranium fuel processing as well as the MSR spent fuel on-line reprocessing

  8. Current developments of fuel fabrication technologies at the plutonium fuel production facility, PFPF

    International Nuclear Information System (INIS)

    Asakura, K.; Aono, S.; Yamaguchi, T.; Deguchi, M.

    2000-01-01

    The Japan Nuclear Cycle Development Institute, JNC, designed, constructed and has operated the Plutonium Fuel Production Facility, PFPF, at the JNC Tokai Works to supply MOX fuels to the proto-type Fast Breeder Reactor, FBR, 'MONJU' and the experimental FBR 'JOYO' with 5 tonMOX/year of fabrication capability. Reduction of personal radiation exposure to a large amount of plutonium is one of the most important subjects in the development of MOX fabrication facility on a large scale. As the solution of this issue, the PFPF has introduced automated and/or remote controlled equipment in conjunction with computer controlled operation scheme. The PFPF started its operation in 1988 with JOYO reload fuel fabrication and has demonstrated MOX fuel fabrication on a large scale through JOYO and MONJU fuel fabrication for this decade. Through these operations, it has become obvious that several numbers of equipment initially installed in the PFPF need improvements in their performance and maintenance for commercial utilization of plutonium in the future. Furthermore, fuel fabrication of low density MOX pellets adopted in the MONJU fuel required a complete inspection because of difficulties in pellet fabrication compared with high density pellet for JOYO. This paper describes new pressing equipment with a powder recovery system, and pellet finishing and inspection equipment which has multiple functions, such as grinding measurements of outer diameter and density, and inspection of appearance to improve efficiency in the pellet finishing and inspection steps. Another development of technology concerning an annular pellet and an innovative process for MOX fuel fabrication are also described in this paper. (author)

  9. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  10. AGR fuel pin pellet-clad interaction failure limits and activity release fractions

    International Nuclear Information System (INIS)

    Hughes, H.; Hargreaves, R.

    1985-01-01

    The limiting conditions beyond which pellet-clad interaction can flail AGR fuel are described. They have been determined by many experiments involving post-irradiation examination and testing, loop experiments and cycling and up-rating of both individual fuel stringers and the whole WAGR core. The mechanisms causing this interaction are well understood and are quantitatively expressed in computer codes. Strain concentration effects over fuel cracks determine power cycling endurance while additional strain concentrations at clad ridges and from cross pin temperature gradients contribute to up-rating failures. An equation summarising tube burst test data so as to determine the ductility available at any transient is given. The hollow fuel and more ductile clad of the Civil AGR fuel pins leads to a much improved performance over the original fuel design. The Civil AGRs operate well within these limiting conditions and substantial increases beyond the design burn-up are confidently expected. The activity release on pin failure and its development during continued operation of failed fuel have also been investigated. A retention of radioiodine and caesium of 90-99% compared to the noble gases has been demonstrated. Measured fission gas releases into the free volume of Civil AGR fuel pins have been very low (< 0.1%)

  11. Development and validation of a fuel performance analysis code

    International Nuclear Information System (INIS)

    Majalee, Aaditya V.; Chaturvedi, S.

    2015-01-01

    CAD has been developing a computer code 'FRAVIZ' for calculation of steady-state thermomechanical behaviour of nuclear reactor fuel rods. It contains four major modules viz., Thermal module, Fission Gas Release module, Material Properties module and Mechanical module. All these four modules are coupled to each other and feedback from each module is fed back to others to get a self-consistent evolution in time. The computer code has been checked against two FUMEX benchmarks. Modelling fuel performance in Advance Heavy Water Reactor would require additional inputs related to the fuel and some modification in the code.(author)

  12. Basis for developing samarium AMS for fuel cycle analysis

    International Nuclear Information System (INIS)

    Buchholz, Bruce A.; Biegalski, Steven R.; Whitney, Scott M.; Tumey, Scott J.; Jordan Weaver, C.

    2010-01-01

    Modeling of nuclear reactor fuel burnup indicates that the production of samarium isotopes can vary significantly with reactor type and fuel cycle. The isotopic concentrations of 146 Sm, 149 Sm, and 151 Sm are potential signatures of fuel reprocessing, if analytical techniques can overcome the inherent challenges of lanthanide chemistry, isobaric interferences, and mass/charge interferences. We review the current limitations in measurement of the target samarium isotopes and describe potential approaches for developing Sm-AMS. AMS sample form and preparation chemistry will be discussed as well as possible spectrometer operating conditions.

  13. Development of equipment for fabricating DUPIC fuel powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs.

  14. Development of equipment for fabricating DUPIC fuel powder

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Yang, M. S.; Park, J. J.; Lee, J. W.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.; Na, S. H.

    1999-06-01

    The powder fabrication processes, as the first stage of manufacturing DUPIC (Direct Use of PWR spent fuel In CANDU) fuel, consist of the slitting of spent PWR fuel rods, REOX (Oxidation and REduction of Oxide Fuels) processing to produce the powder feedstock, the milling of the produced powder, the granulation of the milled powder, and the mixing of the granulated powder with pressing lubricants. All these processes should be conducted by remote means in a hot-cell environment where the direct human access is limited to the strictest minimum due to the high radioactivity. This report describe the development of the equipment for fabricating DUPIC fuel powder. These equipment are Slitting Machine, Oxidation and Reduction (OREOX) Furnace, Mill, Roll Compactor, and Mixer. Remote design concept was applied to all the equipment for use in the M6 hot-cell of the IMEF. Mechanical design considerations and capabilities of the equipment for remote operation and maintenance are presented. First prototypes were developed and installed in the DUPIC full scale mock-up and tested using a master-slave manipulator. Redesign and reconstruction were made on each equipment based on mock-up test results. The remote technology acquired through this research was utilized in developing other equipment for DUPIC fuel fabrication, thereby improving safety and increasing productivity. This technology could also be extended to the area of remote handling equipment development for use in hazardous environments. (author). 14 refs., 9 tabs., 21 figs

  15. FCI: remedy development for the fuel performance improvement program

    International Nuclear Information System (INIS)

    Buckman, F.W.; Crouthamel, C.E.; Freshley, M.D.

    1979-01-01

    Out-of-reactor experiments and irradiations are being utilized to develop and demonstrate the efficacy of specific advanced fuel designs to improve FCI behavior. The advanced light water reactor fuel designs being evaluated combine annular pellets, graphite coating on the inner surface of the cladding, and helium pressurization. A sphere-pac fuel design is also being developed. Characterization of the graphite coatings includes studies of composition, application methods, thickness control, moisture control, thermal conductivity, compatibility with the zircaloy cladding, strain-to-failure, and friction and wear characteristics. Rods of the different fuel designs, as well as reference rods, are being irradiated in the Halden Boiling Water Reactor and the Big Rock Point Reactor to accumulate burnup prior to ramping tests

  16. Research and development of nitride fuel cycle technology in Europe

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2004-01-01

    Research and development on nitride fuels for minor actinide burning in accelerator driven systems is performed in Europe in context of the CONFIRM project. Dry and wet methods for fabrication of uranium free nitride fuels have been developed with the assistance of thermo-chemical modelling. Four (Pu, Zr) pins have been fabricated by PSI and will be irradiated in Studsvik at a rating of 40-50 kW/m. The thermal conductivity of (Pu, Zr)N has been measured and was found to be in agreement with earlier theoretical assessments. Safety modeling indicates that americium bearing nitride fuels, in spite of their relatively poor high temperature stability under atmospheric pressure, can survive power transients as long as the fuel cladding remains intact. (author)

  17. The development of flow test technology for PWR fuel assembly

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Cha, Chong Hee; Chung, Chang Hwan; Chun, Se Young; Song, Chul Hwa; Chung, Heung Joon; Won, Soon Yeun; Cho, Yeong Rho; Kim, Bok Deuk

    1988-05-01

    KAERI has an extensive program to develope PWR fuel assembly. In relation to the program, development of flow test technology is needed to evaluate the thermal hydraulic compactibility and mechanical integrity of domestically fabricated nuclear fuels. A high-pressure and high-temperature flow test facility was designed to test domestically fabricated fuel assembly. The test section of the facility has capacity of a 6x6 full length PWR fuel assembly. A flow test rig was designed and installed at Cold Test Loop to carry out model experiments with 5x5 rod assembly under atmosphere pressure to get information about the characteristics of pressure loss of spacer grids and velocity distribution in the subchannels. LDV measuring technology was established using TSI's Laser Dopper Velocimeter 9100-3 System

  18. Development of a reference spent fuel library of 17x17 PWR fuel assemblies

    International Nuclear Information System (INIS)

    Rossa, Riccardo; Borella, Alessandro; Van der Meer, Klaas

    2013-01-01

    One of the most common ways to investigate new Non-Destructive Assays (NDA) for the spent fuel assemblies are Monte Carlo simulations. In order to build realistic models the user must define in an accurate way the material compositions and the source terms in the system. This information can be obtained using burnup codes such as ORIGEN-ARP and ALEPH2.2, developed at SCK-CEN. These software applications allow the user to select the irradiation history of the fuel assembly and to calculate the corresponding isotopic composition and neutron/gamma emissions as a function of time. In the framework of the development of an innovative NDA for spent fuel verifications, SCK•CEN built an extensive fuel library for 17x17 PWR assemblies, using both ORIGEN-ARP and ALEPH2.2. The parameters considered in the calculations were initial enrichment, discharge burnup, and cooling time. The combination of these variables allows to obtain more than 1500 test cases. Considering the broad range of the parameters, the fuel library can be used for other purposes apart from spent fuel verifications, for instance for the direct disposal in geological repositories. In addition to the isotopic composition of the spent fuel, the neutron and photon emissions were also calculated and compared between the two codes. The comparison of the isotopic composition showed a good agreement between the codes for most of the relevant isotopes in the spent fuel. However, specific isotopes as well as neutron and gamma spectra still need to be investigated in detail.

  19. Development of Vision System for Dimensional Measurement for Irradiated Fuel Assembly

    International Nuclear Information System (INIS)

    Shin, Jungcheol; Kwon, Yongbock; Park, Jongyoul; Woo, Sangkyun; Kim, Yonghwan; Jang, Youngki; Choi, Joonhyung; Lee, Kyuseog

    2006-01-01

    In order to develop an advanced nuclear fuel, a series of pool side examination (PSE) is performed to confirm in-pile behavior of the fuel for commercial production. For this purpose, a vision system was developed to measure for mechanical integrity, such as assembly bowing, twist and growth, of the loaded lead test assembly. Using this vision system, three(3) times of PSE were carried out at Uljin Unit 3 and Kori Unit 2 for the advanced fuels, PLUS7 TM and 16ACE7 TM , developed by KNFC. Among the main characteristics of the vision system is very simple structure and measuring principal. This feature enables the equipment installation and inspection time to reduce largely, and leads the PSE can be finished without disturbance on the fuel loading and unloading activities during utility overhaul periods. And another feature is high accuracy and repeatability achieved by this vision system

  20. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  1. Development of a new WWER-440 fuel design

    International Nuclear Information System (INIS)

    Coucil, D.; Totev, T.

    1998-01-01

    In March 1996 British Nuclear Fuel Limited signed a contract with Imatran Voima and Paks Nuclear Power Plant to design, develop, license and supply 5 Lead Test Assemblies to the WWER-440 reactor at Loviisa in Finland. In June 1998 the manufacture of these 5 assemblies (4 fixed assemblies and 1 follower assembly) was completed. The fuel is expected to be loaded into Loviisa Unit 2 reactor during the shutdown scheduled for September of this year. (Authors)

  2. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin; Tokash, Justin C.; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  3. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    Science.gov (United States)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  4. Development of Dynamic Spent Nuclear Fuel Environmental Effect Analysis Model

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2010-07-01

    The dynamic environmental effect evaluation model for spent nuclear fuel has been developed and incorporated into the system dynamic DANESS code. First, the spent nuclear fuel isotope decay model was modeled. Then, the environmental effects were modeled through short-term decay heat model, short-term radioactivity model, and long-term heat load model. By using the developed model, the Korean once-through nuclear fuel cycles was analyzed. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. If the disposal starts from 2060, the short-term decay heat of Cs-137 and Sr-90 isotopes are W and 1.8x10 6 W in 2100. Also, the total long-term heat load in 2100 will be 4415 MW-y. From the calculation results, it was found that the developed model is very convenient and simple for evaluation of the environmental effect of the spent nuclear fuel

  5. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  6. Effects of New Fossil Fuel Developments on the Possibilities of Meeting 2C Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meindertsma, W.; Blok, K.

    2012-12-15

    Recent years have seen an increasing activity in developing new fossil fuel production capacity. This includes unconventional fossil fuels, such as tar sands and shale gas, fossil fuels from remote locations, and fossil fuels with a very large increase in production in the near future. In this report, the impact of such developments on our ability to mitigate climate change is investigated. Our inventory shows that the new fossil fuel developments currently underway consist of 29,400 billion cubic meters of natural gas, 260,000 million barrels of oil and 49,600 million tonnes of coal. The development of these new fossil fuels would result in emissions of 300 billion tonnes of CO2 -equivalent (CO2e) from 2012 until 2050. Until 2050, a 'carbon budget' of 1550 billion tonnes CO2e is still available if we want to of keep global warming below 2C with a 50% probability. For a 75% probability to stay below 2C this budget is only 1050 billion tonnes CO2e. So, the new fossil fuel developments identified in this report consume 20-33% of the remaining carbon budget until 2050. In a scenario where the new fossil fuels are developed, we need to embark on a rapid emission reductions pathway at the latest in 2019 in order to meet the 50% probability carbon budget. Avoiding the development of new fossil fuels will give us until 2025 to start further rapid emission reductions. These calculations are based on the assumption that the maximum emission reduction rate is 4% per year and that the maximum change in emission trend is 0.5 percentage point per year. The starting year for rapid emission reductions depends on the choice of these parameters. A sensitivity analysis shows that, in all cases, refraining from new fossil fuel development allows for a delay of 5 to 8 years before we should embark on a rapid emission reduction pathway. The high investments required for developing new fossil fuels lead to a lock in effect; once developed, these fossil fuels need to be

  7. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  8. The French UMo group contribution to new LEU fuel development

    International Nuclear Information System (INIS)

    Hamy, J.M.; Lemoine, P.; Huet, F.; Jarousse, C.; Emin, J.L.

    2005-01-01

    The French UMo Group was based on a close collaboration between CEA and AREVA's companies strongly involved in the MTR field. The aim of this program was to deliver industrially a high performance LEU UMo fuel able to be reprocessed, and suitable for a wide range of Research Reactor, covering the expected needs for MTR next generation. Since 1999, the program has been focused on industrial aspects with the intention to deal with the whole fuel cycle: manufacturing, irradiation behaviour, fuel characterisation, code development and reprocessing validation. It has been based on the fabrication of full-sized U-7%Mo fuel plates with a density up to 8 gU/cm 3 . The dedicated and advanced R and D means provided by the CEA have been used intensively with the contribution of HFR and BR2 facilities in Europe. This paper presents a synthesis of the program and the corresponding significant results obtained. These results have played a major role as regards the UMo dispersion fuel qualification route by issuing, for the first time, evidence of severe performance limitations. Consequently, the global international effort to develop and qualify a high density LEU UMo fuel has been definitively re-routed and forced to overcome these discrepancies by exploring new technical solutions. A French extended program sustained by a CEA and CERCA collaboration has been launched in 2004 in order to develop a suitable UMo fuel solution. UMo dispersion and monolithic fuel are both investigated through three new full-sized plate irradiations planned in OSIRIS. (author)

  9. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  10. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  11. Fuel cell activities at the CSIR: Presentation

    CSIR Research Space (South Africa)

    Modibedi, M

    2013-03-01

    Full Text Available substrate Pt catalyst substrate ITO glass substrate Complete DSCs Solar tester Autolab system 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0 0.02 0.04 0.06 0.08 0.1 j / m A c m - 2 Voltage (V) ZnOCPc (OH)2SiOCPc (OH)GaOCPc (a) 0 0.002 0.004 0.../Ni foam -0.429 -0.590 Future Work © CSIR 2013 www.csir.co.za • Membrane work: incorporation of nanocomposites and FC testing including AE ionomer optimisation • Electrocatalysis: MEA fabrication and FC testing under active...

  12. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    International Nuclear Information System (INIS)

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-01-01

    U 3 Si 2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy's Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U 3 Si 2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  13. Development of materials for fuel cell application by radiation technology

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Junju; Lee, Gyoungja; Lee, Byung Cheol; Shin, Junhwa; Nho, Youngchang; Kang, Philhyun; Sohn, Joon Yong; Rang, Uhm Young

    2012-06-01

    The development of the single cell of SOFC with low operation temperature at and below 650 .deg. C(above 400 mW/cm 2 ) Ο The development of fabrication method for the single cell of solid oxide fuel cell (SOFC) by dip-coating of nanoparticles such as NiO, YSZ, Ag, and Ag/C, etc. Ο The optimization of the preparation and performance of SOFC by using nanoparticles. Ο The preparation of samples for SOFC with large dimension. The development of fluoropolymer-based fuel cell membranes with crosslinked structure by radiation grafting technique Ο The development of fuel cell membranes with low methanol permeability via the introduction of novel monomers (e. g. vinylbenzyl chloride and vinylether chloride) by radiation grafting technique Ο The development of hydrocarbon fuel cell membrane by radiation crosslinking technique Ο The structure analysis and the evaluations of the property, performance, and radiation effect of the prepared membranes Ο The optimization of the preparation and performance of DMFC fuel cell membrane via the structure-property analysis (power: above 130 mW/cm 2 /50 cm 2 at 5M methanol) Ο The preparation of samples for MEA stack assembly

  14. Argentine activities on fuels for nuclear generation stations

    International Nuclear Information System (INIS)

    Olezza, R.L.; Valesi, J.

    1995-01-01

    In the last six years, significant changes have taken place in the nuclear fuel activity field in Argentina, therefore all the areas of the nuclear fuel cycle have been strongly influenced by these. The strategies carried out by CNEA to give an initial answer to the modifications of the domestic and international context of the nuclear fuel cycle were described in the previous Conference. Three years later, it is possible to appreciate the first results of the application of those strategies, and also that the frame has continued not only evolving and requiring new answers, but adapting and accentuating some strategies as well. A brief review of those results is presented here, together with a summary of the condition of the current situation and of the proposals to face it. (author)

  15. Development of fast reactor metal fuels containing minor actinides

    International Nuclear Information System (INIS)

    Ohta, Hirokazu; Ogata, Takanari; Kurata, Masaki; Koyama, Tadafumi; Papaioannou, Dimitrios; Glatz, Jean-Paul; Rondinella, Vincenzo V.

    2011-01-01

    Fast reactor metal fuels containing minor actinides (MAs) Np, Am, and Cm and rare earths (REs) Y, Nd, Ce, and Gd are being developed by the Central Research Institute of Electric Power Industry (CRIEPI) in collaboration with the Institute for Transuranium Elements (ITU) in the METAPHIX project. The basic properties of U-Pu-Zr alloys containing MA (and RE) were characterized by performing ex-reactor experiments. On the basis of the results, test fuel pins including U-Pu-Zr-MA(-RE) alloy ingots in parts of the fuel stack were fabricated and irradiated up to a maximum burnup of ∼10 at% in the Phenix fast reactor (France). Nondestructive postirradiation tests confirmed that no significant damage to the fuel pins occurred. At present, detailed destructive postirradiation examinations are being carried out at ITU. (author)

  16. Development of MHI PWR fuel assembly with high thermal performance

    International Nuclear Information System (INIS)

    Yasushi Makino; Masaya Hoshi; Masaji Mori; Hidetoshi Kido; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been developing a PWR fuel assembly to meet the needs of Japanese fuel market with mainly improving its reliability such as a mechanical strength, a seismic strength and endurance. For burn-up extension of the fuel to 55 GWd/t, MHI has introduced a Zircaloy spacer grid with better neutron economics with retaining the reliability in an operating core. However, for a future power up-rating and a longer cycle operation, a higher thermal performance is required for PWR fuel assembly. To meet the needs of fuel market, MHI has developed an advanced type of Zircaloy spacer grid with a greater DNB performance while retaining the reliability of a fuel and a relatively low pressure drop. For the greater DNB performance, MHI optimized geometrical shape of mixing vane to promote a fluid mixing performance. In this report, higher DNB performance provided by the advanced Zircaloy spacer grid is presented. The results of 3D simulation for the flow behavior in 5 x 5 partial assembly, a mixing test and a water DNB test were compared between the current and the advanced spacer grids. Consequently, it was confirmed that a crossover vane enhanced a fluid mixing and the advanced spacer grid could significantly improve DNB performance compared with the current design of spacer grids. (authors)

  17. Construction and engineering report for advanced nuclear fuel development facility

    International Nuclear Information System (INIS)

    Cho, S. W.; Park, J. S.; Kwon, S.J.; Lee, K. W.; Kim, I. J.; Yu, C. H.

    2003-09-01

    The design and construction of the fuel technology development facility was aimed to accommodate general nuclear fuel research and development for the HANARO fuel fabrication and advanced fuel researches. 1. Building size and room function 1) Building total area : approx. 3,618m 2 , basement 1st floor, ground 3th floor 2) Room function : basement floor(machine room, electrical room, radioactive waste tank room), 1st floor(research reactor fuel fabrication facility, pyroprocess lab., metal fuel lab., nondestructive lab., pellet processing lab., access control room, sintering lab., etc), 2nd floor(thermal properties measurement lab., pellet characterization lab., powder analysis lab., microstructure analysis lab., etc), 3rd floor(AHU and ACU Room) 2. Special facility equipment 1) Environmental pollution protection equipment : ACU(2sets), 2) Emergency operating system : diesel generator(1set), 3) Nuclear material handle, storage and transport system : overhead crane(3sets), monorail hoist(1set), jib crane(2sets), tank(1set) 4) Air conditioning unit facility : AHU(3sets), packaged air conditioning unit(5sets), 5) Automatic control system and fire protection system : central control equipment(1set), lon device(1set), fire hose cabinet(3sets), fire pump(3sets) etc

  18. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  19. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  20. Pellet fueling development at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.; Schuresko, D.D.; Combs, S.K.; Lunsford, R.V.

    1982-01-01

    A pellet injector development program has been under way at the Oak Ridge National Laboratory (ORNL) since 1976 with the goals of developing D 2 , T 2 pellet fuel injectors capable of reliable repetitive fueling of reactors and of continued experimentation on contemporary plasma devices. The development has focused primarily on two types of injectors that show promise. One of these injectors is the centrifuge-type injector, which accelerates pellets in a high speed rotating track. The other is the gas or pneumatic gun, which accelerates pellets in a gun barrel using compressed helium of H 2 gas

  1. Feasibility study on the development of advanced LWR fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO{sub 2} pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO{sub 2}-Gd{sub 2}O{sub 3} burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs.

  2. Nuclear fuels technologies fiscal year 1998 research and development test plan

    International Nuclear Information System (INIS)

    Alberstein, D.; Blair, H.T.; Buksa, J.J.

    1998-06-01

    A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO 2 and UO 2 feed materials. Fuel fabrication development efforts include studies with a new UO 2 feed material, alternate sources of PuO 2 , and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities

  3. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  4. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  5. Advanced fuel cell development in the United States

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1984-01-01

    Both molten carbonate and solid oxide fuel cells are being developed in the United States to complement and/or supplant phosphoric acid cells for commercial and utility use. This paper described the two technologies and the programs for their development

  6. Status of LSDS Development for Isotopic Fissile Assay in Used Fuel

    International Nuclear Information System (INIS)

    Lee, Y.D.; Ahn, S.; Kim, H.-D.; Song, K.C.; Park, C.J.

    2015-01-01

    Because of the large amount accumulation of spent fuel, a research to solve the spent fuel problem is actively performed in Korea. One option is to develop the SFR linked with the pyro process to reuse the existing fissile materials in spent fuel. Therefore, an accurate isotopic fissile content assay becomes a key factor in the reuse of fissile material for safety and safeguards purpose. There are several commercial non-destructive technologies for nuclear material assay. However, technology for direct isotopic fissile content assay in spent fuel is not developed yet. Internationally, a verification of special nuclear material in spent fuel, mainly U-235, Pu239, Pu241, is very important for the safeguards objective. These fissile materials can be misused for nuclear weapon purpose, not for peaceful use. As a future nuclear system is developed,, improved safeguards technology must be developed for an approval of fissile materials. A direct measurement of fissile materials is very important to provide a continuous of knowledge on nuclear materials. LSDS (Lead Slowing Down Spectrometer) has an advantage to assay an isotopic fissile content directly, without any help of burnup code and history. LSDS system is under development in KAERI (Korea Atomic Energy Research Institute) for spent fuel and recycled fuel. A linear assay model was setup for U235, Pu239 and Pu241. The dominant individual fission characteristic is appeared between 0.1 eV and 1 keV range. An electron linear accelerator for compact and low cost is under development to produce high source neutron effectively and efficiently. The LSDS is also applicable for optimum design of spent fuel storage and management. The advanced fissile assay technology will contribute to increase the transparency and credibility internationally on a reuse of fissile materials in future nuclear energy system development. (author)

  7. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  8. Enhancing instruction in Fuels and Combustion Laboratory via a developed computer-assisted program for establishing efficient coal-diesel oil mixture (CDOM) fuel proportions

    Energy Technology Data Exchange (ETDEWEB)

    Maglaya, A.B. [La Salle University, Manila (Philippines). Dept. of Mechanical Engineering

    2004-07-01

    This paper discusses the relevance of digital computation in Fuels and Combustion Laboratory experiments used by the senior students of the Department of Mechanical Engineering, De La Salle University-Manila, Philippines. One of the students' experiments involved the determination of the most efficient CDOM fuel proportion as alternative fuel to diesel oil for steam generators and other industrial applications. Theoretical calculations show that it requires tedious and repetitive computations. A computer-assisted program was developed to lessen the time-consuming activities. The formulation of algorithms were based on the system of equations of the heat interaction between the CDOM fuel, combustion air and products of combustion and by applying the principles of mass and energy equations (or the First Law of Thermodynamics) for reacting systems were utilized. The developed computer-assisted program output verified alternative fuel selected through actual experimentation.

  9. Development of Voloxidation Process for Treatment of LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Jung, I. H.; Shin, J. M. (and others)

    2007-08-15

    The objective of the project is to develop a process which provides a means to recover fuel from the cladding, and to simplify downstream processes by recovering volatile fission products. This work focuses on the process development in three areas ; the measurement and assessment of the release behavior for the volatile and semi-volatile fission products from the voloxidation process, the assessment of techniques to trap and recover gaseous fission products, and the development of process cycles to optimize fuel cladding separation and fuel particle size. High temperature adsorption method of KAERI was adopted in the co-design of OTS for hot experiment in INL. KAERI supplied 6 sets of filter for hot experiment. Three hot experiment in INL hot cell from the 25th of November for two weeks with attaching 4 KAERI staffs had been carried out. The results were promising. For example, trapping efficiency of Cs was 95% and that of I was 99%, etc.

  10. Development of manufacturing equipment and QC equipment for DUPIC fuel

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J.J.; Lee, J.W.; Kim, S.S.; Yim, S.P.; Kim, J.H.; Kim, K.H.; Na, S.H.; Kim, W.K.; Shin, J.M.; Lee, D.Y.; Cho, K.H.; Lee, Y.S.; Sohn, J.S.; Kim, M.J.

    1999-05-01

    In this study, DUPIC powder and pellet fabrication equipment, welding system, QC equipment, and fission gas treatment are developed to fabricate DUPIC fuel at IMEF M6 hot cell. The systems are improved to be suitable for remote operation and maintenance with the manipulator at hot cell. Powder and pellet fabrication equipment have been recently developed. The systems are under performance test to check remote operation and maintenance. Welding chamber and jigs are designed and developed to remotely weld DUPIC fuel rod with manipulators at hot cell. Remote quality control equipment are being tested for analysis and inspection of DUPIC fuel characteristics at hot cell. And trapping characteristics is analyzed for cesium and ruthenium released under oxidation/reduction and sintering processes. The design criteria and process flow diagram of fission gas treatment system are prepared incorporating the experimental results. The fission gas treatment system has been successfully manufactured. (Author). 33 refs., 14 tabs., 91 figs

  11. A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria

    NARCIS (Netherlands)

    Luimstra, V.M.; Kennedy, S.J.; Güttler, J.; Wood, S.A.; Williams, D.E.; Packer, M.A.

    2014-01-01

    This work describes the development of an easily constructed, cost-effective photosynthetic microbial fuel cell design with highly reproducible electrochemical characteristics that can be used to screen algae and cyanobacteria for photosynthetic electrogenic activity. It is especially suitable for

  12. Conventional OTSG development for heavy liquid fuel firing in thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Setchfield, W.P. [Mitchell Engineers Ltd., Glasgow, Scotland (United Kingdom); Roset, J.N. [Total S.A., Paris (France); Schaffer, M. [Total E and P Canada Ltd., Calgary, AB (Canada); O' Connor, D. [MEG Energy Inc., Calgary, AB (Canada); Kense, K. [TIW Western Inc., Calgary, AB (Canada)

    2008-10-15

    The demand for natural gas is expected to increase as a result of future expansion in Canadian extra heavy oil in-situ thermal production, such as steam assisted gravity drainage or SAGD projects. Natural gas is the current predominant fuel utilized for the associated steam generation. Potential natural gas shortages and related price volatility require that operators consider alternative fuels for the projected growth of in-situ thermal production in Alberta. This paper targeted the use of bitumen from upstream sites and derivative residues from upgrading activities as the most convenient alternative fuel sources for thermal operators of established horizontal type gas fired once through steam generators (OTSGs). The paper presented the methodology, the issues associated with bitumen or residue burning and the related technical solutions in developing a multi-fuel OTSG product. The paper provided background information on conventional OTSG design development, conventional OTSG existing deign, and general description of conventional OTSG. The paper also described the configuration of a radiant furnace, convection module, and theories and definitions such as heavy liquid fuels. A description and application of the equipment and processes as well as a presentation of the data and results was then offered. The multi fuel OTSG design is considered to be a practical and workable product capable of firing heavy liquid fuels. However, the design changes have had a significant impact when compared with conventional OTSG boilers. 11 figs.

  13. Development of design technology for dual-cooled fuel

    International Nuclear Information System (INIS)

    Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho

    2010-03-01

    Primary purpose of the project is to complete a basic design of the power uprating dual-cooled fuel's structural components for an actual use in the existing nuclear power plants. It also includes a basic design of the components of a dual-cooled fuel rod. To this end, during the three years of the first stage (2007.03.∼2010.02.), concepts and technical issues of the structural components such as a supporting structure, guide thimbles and instrumentation tube and the top and bottom end pieces were derived in order to comply with the functional requirements and design criteria of them. Basic design was carried out to resolve the issues by using analytical methods as well as experiments, and observed finally is that a structural compatibility of the designed dual-cooled fuel to the Korean Standard Nuclear Power Plant (OPR-1000). As for the dual-cooled fuel rod's components such as a plenum spring, a spacer and end plugs, a concept of them was established by using the basic dimension and array produced by other sub-projects. In turn, the basic design was completed by using the finite element analysis and conventional mechanical design formulae. Additionally, a welding method and equipment for a dual-cooled fuel rod specimen was also successfully developed to prepare for the irradiation tests at the HANARO. It was shown that a dual-cooed fuel for the OPR-1000 can be designed after manufacturing the partial assembly with the designed components and their drawings. The first stage was completed with passing the Gate checks proposed at the beginning. During the second stage(2010.03.∼2012.02.), researches on the mechanical behavior and structural integrity of the designed dual-cooled fuel will be conducted for preparing a license of it, which should be done when the dual-cooled fuel is commercialized

  14. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  15. Hydrogen-bromine fuel cell advance component development

    Science.gov (United States)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  16. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  17. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    under glove box conditions. Pellets of different geometry, from simple cylindrical to chamfered, dished and annular pellets have been fabricated and irradiated in research reactors although plain cylindrical pellets with L/D less than 1.2 have been used for MOX fuel loading in power reactors. Fully automated wet centreless grinding of MOX pellets using composite diamond wheel and subsequent ultrasonic cleaning has been used in the fabrication flowsheet. The MOX pellets undergo vacuum degassing at 400 deg. C to ensure low hydrogen content prior to loading of pellets into zircaloy clad fuel tubes. A novel sol-gel microsphere pelletisation route (SGMP) combined with LTS has also been developed and is briefly discussed. (author)

  18. Current statuses of international cooperation activities, and research and development activities, based on IEA's Implementing Agreement for a Program on Research and Demonstration of Advanced Motor Fuels; EIA jidoshayo senshin nenryo jisshi kyotei ni motozuku kokusai kyoryoku katsudo oyobi kenkyu kaihatsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Described herein are current statuses of international cooperation activities, and R and D activities, based on IEA's Implementing Agreement for a Program on Research and Demonstration of Advanced Motor Fuels. This agreement is aimed at efficient implementation of researches, demonstration tests and information exchanges for advanced motor fuels by promoting international cooperation. It raises future environment-compatible diesel fuels and new fuels for new engines as the major R and D themes, which cover information exchanges for engines/vehicles of heavy- duty vehicles, motor fuel information services, toxicity assessments of bio-diesel fuels, feasibility studies on possibility of dimethyl ether as diesel fuel, surveys on barriers in alternative fuel markets, surveys on biodegradable lubricant oils, and effects of new heavy-duty vehicle techniques on the environments. Some of the results reported in FY 1997 are those for comparison between current motor fuels and dimethyl ether in toxicity, analysis of the failure mode effects of dimethyl ether tank in vehicles, and surveys on barriers in alternative fuel markets. (NEDO)

  19. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  20. Texas LPG fuel cell development and demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2004-07-26

    The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix's LPG fuel processor system integrated into Plug Power's residential-scale GenSys(TM) 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program's primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation's TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units

  1. Development of the Canadian used fuel repository engineered barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, C., E-mail: chatton@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for the safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. In implementing APM, the NWMO is committed to ensure consistency with international best practices in the development of its repository system, including any advances in technology. In 2012, the NWMO undertook an optimization study to look at both the design and manufacture of its engineered barriers. This study looked at current technologies for the design and manufacture of used fuel containers, placement technologies, repository design, and buffer and sealing systems, while taking into consideration the state of the art worldwide in repository design and acceptance. The result of that study is the current Canadian engineered barrier system, consisting of a 2.7 tonne used fuel container with a carbon-steel core, copper-coated surface and welded spherical heads. The used fuel container is encapsulated in a bentonite buffer box at the surface and then transferred underground. Once underground, the used fuel is placed into a repository room which is cut into the rock using traditional drill-and-blast technologies. This paper explains the logic for the selection of the container and sealing system design and the development of innovative technologies for their manufacture including the use of laser welding, cold spray and pulsed-electrodeposition copper coating for the manufacture of the used fuel container, isostatic presses for the production of the one-piece bentonite blocks, and slip-skid technologies for placement into the repository. (author)

  2. Development of the Canadian used fuel repository engineered barrier system

    International Nuclear Information System (INIS)

    Hatton, C.

    2015-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for the implementation of Adaptive Phased Management (APM), the federally-approved plan for the safe long-term management of Canada's used nuclear fuel. Under the APM plan, used nuclear fuel will ultimately be placed within a deep geological repository in a suitable rock formation. In implementing APM, the NWMO is committed to ensure consistency with international best practices in the development of its repository system, including any advances in technology. In 2012, the NWMO undertook an optimization study to look at both the design and manufacture of its engineered barriers. This study looked at current technologies for the design and manufacture of used fuel containers, placement technologies, repository design, and buffer and sealing systems, while taking into consideration the state of the art worldwide in repository design and acceptance. The result of that study is the current Canadian engineered barrier system, consisting of a 2.7 tonne used fuel container with a carbon-steel core, copper-coated surface and welded spherical heads. The used fuel container is encapsulated in a bentonite buffer box at the surface and then transferred underground. Once underground, the used fuel is placed into a repository room which is cut into the rock using traditional drill-and-blast technologies. This paper explains the logic for the selection of the container and sealing system design and the development of innovative technologies for their manufacture including the use of laser welding, cold spray and pulsed-electrodeposition copper coating for the manufacture of the used fuel container, isostatic presses for the production of the one-piece bentonite blocks, and slip-skid technologies for placement into the repository. (author)

  3. Technological development and prospect of alkaline fuel cells

    International Nuclear Information System (INIS)

    Meng Ni; Michael KH Leung; Dennis YC Leung

    2006-01-01

    This paper reviewed the technological development of alkaline fuel cell (AFC). Although the technology was popular in 1970's and 1980's, there has been a decline in AFC research over the past decade, mainly due to the poisoning of CO 2 . Continuous efforts have demonstrated that CO 2 concentration could be reduced to an acceptable level by a number of viable methods such as absorption, adsorption, electrochemical process, electrolyte circulation, use of liquid hydrogen, and use of solid anionic exchange membranes. Literature survey showed that AFC lifetime could achieve up to 5000 hours. In addition, the use of ammonia as a fuel for AFC was identified as a promising technology. Comparison between AFC and proton exchange membrane fuel cell (PEMFC) was presented to evaluate the AFC technology and its economics. The present review and assessment showed the promise of AFC for the coming hydrogen economy and sustainable development. (authors)

  4. Development of nuclear spent fuel Maritime transportation scenario

    International Nuclear Information System (INIS)

    Yoo, Min; Kang, Hyun Gook

    2014-01-01

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability

  5. Development of nuclear spent fuel Maritime transportation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Min; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of)

    2014-08-15

    Spent fuel transportation of South Korea is to be conducted through near sea because it is able to ship a large amount of the spent fuel far from the public comparing to overland transportation. The maritime transportation is expected to be increased and its risk has to be assessed. For the risk assessment, this study utilizes the probabilistic safety assessment (PSA) method and the notions of the combined event. Risk assessment of maritime transportation of spent fuel is not well developed in comparison with overland transportation. For the assessment, first, the transportation scenario should be developed and categorized. Categories are assorted into the locations, release aspects and exposure aspects. This study deals with accident that happens on voyage and concentrated on ship-ship collision. The collision accident scenario is generated with event tree analysis. The scenario will be exploited for the maritime transportation risk model which includes consequence and accident probability.

  6. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  7. Development of wood fuel delivery logistics; Puupolttoaineiden hankintalogistiikan kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, H

    1997-12-31

    The main aim of the project is to model the energy wood business and total logistics in a certain large region. First, wood utilisation locations inside this area are examined; the most important ones are the wood processing factories, and the heating- and power plants. After that, wood potentials in the forests of the area are evaluated in sub-areas suitable in size and sufficiently detailed for further evaluations. For that purpose, the most valuable source data are forest management plans, up to ten years forward, on which basis the wood fuel potentials can be evaluated following sustainable development. In Finland there are extensive and detailed data bases storing forest information and it is possible to collect necessary data for a data base applicable to our calculations. In logistical sense it is important to know, by which delivery chains the economically best and desired results are achieved. The software prototype based on data base is modelled and developed at VTT Energy, for facilitating these planning activities. The starting point of the planning system in delivery logistics is the implementation of an easy tool for versatile planning so that with this tool model different delivery chains can be flexiblyed, create usage scenarios, make alternative examinations, and calculate impacts of different factors on energy wood amounts yielded and delivery costs. With planning system in delivery logistics we calculate production costs and amounts delivered to different utilisation locations. The system offers tools for definitions of utilisation locations, calculation parameters, and delivery chains

  8. Development of wood fuel delivery logistics; Puupolttoaineiden hankintalogistiikan kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, H.

    1996-12-31

    The main aim of the project is to model the energy wood business and total logistics in a certain large region. First, wood utilisation locations inside this area are examined; the most important ones are the wood processing factories, and the heating- and power plants. After that, wood potentials in the forests of the area are evaluated in sub-areas suitable in size and sufficiently detailed for further evaluations. For that purpose, the most valuable source data are forest management plans, up to ten years forward, on which basis the wood fuel potentials can be evaluated following sustainable development. In Finland there are extensive and detailed data bases storing forest information and it is possible to collect necessary data for a data base applicable to our calculations. In logistical sense it is important to know, by which delivery chains the economically best and desired results are achieved. The software prototype based on data base is modelled and developed at VTT Energy, for facilitating these planning activities. The starting point of the planning system in delivery logistics is the implementation of an easy tool for versatile planning so that with this tool model different delivery chains can be flexiblyed, create usage scenarios, make alternative examinations, and calculate impacts of different factors on energy wood amounts yielded and delivery costs. With planning system in delivery logistics we calculate production costs and amounts delivered to different utilisation locations. The system offers tools for definitions of utilisation locations, calculation parameters, and delivery chains

  9. Science communication from women in nuclear fuel development

    International Nuclear Information System (INIS)

    Roy, S.B.

    2013-01-01

    In India, nuclear fuel is required for operating both nuclear research reactors and power reactors. Indian women are extensively involved in nuclear fuel research and production activities. However, the nature and extent of their involvement differs based only on the job required and not on any gender basis. Excluding a few specific safety and security issues, therefore, science and technology communication really does not change according to the gender of the scientist or technologist. Presently in India, nuclear grade uranium metal is required for fuelling research reactors and nuclear grade uranium oxide is being utilized as fuel for power reactors. Hydrometallurgical operations using specific solvents are being used for achieving 'nuclear grade' in both sectors. For production of uranium oxide, purified uranium compounds need to get calcined and reduced for obtaining uranium dioxide of various qualities

  10. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  11. Development for analysis system of rods enrichment of nuclear fuels

    International Nuclear Information System (INIS)

    Rojas C, E.L.

    1998-01-01

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  12. Household cooking fuels and technologies in developing economies

    International Nuclear Information System (INIS)

    Foell, Wesley; Pachauri, Shonali; Spreng, Daniel; Zerriffi, Hisham

    2011-01-01

    A major energy challenge of the 21st century is the health and welfare of 2.7 billion people worldwide, who currently rely on burning biomass in traditional household cooking systems. This Special Issue on Clean Cooking Fuels and Technologies in Developing Economies builds upon an IAEE workshop on this subject, held in Istanbul in 2008. It includes several papers from that workshop plus papers commissioned afterwards. The major themes of that workshop and this Special Issue are: •Analytical and decision frameworks for analysis and policy development for clean cooking fuels. •Making energy provisioning a central component of development strategies. •Strategies/business models of suppliers of modern fuels and technologies. •Analysis of successes/failures of past policies and programs to improve access to clean cooking. This introductory paper serves as a preamble to the 11 papers in this Special Issue. It provides a brief background on household cooking fuels and technologies, including: (1) their implications for sustainable development, health and welfare, gender impacts, and environment/climate issues; (2) options and scenarios for improved household cooling systems; and (3) discussions of institutions, programs and markets. It closes with “Research and Action Agendas”, initially developed during the 2008 workshop.

  13. Canadian biotechnological developments in fossil fuels

    International Nuclear Information System (INIS)

    McCready, R.G.L.

    1991-01-01

    CANMET recently initiated a Biotechnology program in cooperation with various oil companies and university personnel to develop biological processes and to determine various biological mechanisms associated with coal, oil and gas recovery. This presentation will give a brief overview of the ongoing projects including the microbial decomposition of refinery sludges and wastes, microbial internal and external corrosion of pipeline, the use of microbial exopolymers in secondary oil recovery and in the prevention of loss of drilling lubricants. (author)

  14. Development of database for spent fuel and special waste from the Spanish nuclear power plants

    International Nuclear Information System (INIS)

    Gonzalez Gandal, R.; Rodriguez Gomez, M. A.; Serrano, G.; Lopez Alvarez, G.

    2013-01-01

    GNF Engineering is developing together with ENRESA and with the UNESA participation, the spent fuel and high activity radioactive waste data base of Spanish nuclear power plants. In the article is detailed how this strategic project essential to carry out the CTS (centralized temporary storage) future management and other project which could be emerged is being dealing with, This data base will serve as mechanics of relationship between ENRESA and Spanish NPPS, covering the expected necessary information to deal with mentioned future management of spent fuel and high activity radioactive waste. (Author)

  15. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  16. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  17. Development of advanced LWR fuel pellet technology

    International Nuclear Information System (INIS)

    Song, Kun Woo; Kang, K.W.; Kim, K. S.; Yang, J. H.; Kim, Y. M.; Kim, J. H.; Bang, J. B.; Kim, D. H.; Bae, S. O.; Jung, Y. H.; Lee, Y. S.; Kim, B. G.; Kim, S. H.

    2000-03-01

    A UO 2 pellet was designed to have a grain size of larger than 12 μm, and a new duplex design that UO 2 -Gd 2 O 3 is in the core and UO 2 -Er 2 O 3 in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO 2 and additives. The open porosity of UO 2 pellet was reduced by only mixing AUC-UO 2 powder with ADU-UO 2 or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO 2 sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO 2 -U 3 O 8 powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U 3 O 8 single crystals were added to UO 2 powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 μm. In UO 2 -Gd 2 O 3 sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO 2 pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  18. Development of advanced LWR fuel pellet technology

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kun Woo; Kang, K.W.; Kim, K. S.; Yang, J. H.; Kim, Y. M.; Kim, J. H.; Bang, J. B.; Kim, D. H.; Bae, S. O.; Jung, Y. H.; Lee, Y. S.; Kim, B. G.; Kim, S. H

    2000-03-01

    A UO{sub 2} pellet was designed to have a grain size of larger than 12 {mu}m, and a new duplex design that UO{sub 2}-Gd{sub 2}O{sub 3} is in the core and UO{sub 2}-Er{sub 2}O{sub 3} in the periphery was proposed. A master mixing method was developed to make a uniform mixture of UO{sub 2} and additives. The open porosity of UO{sub 2} pellet was reduced by only mixing AUC-UO{sub 2} powder with ADU-UO{sub 2} or milled powder. Duplex compaction tools (die and punch) were designed and fabricated, and duplex compacting procedures were developed to fabricate the duplex BA pellet. In UO{sub 2} sintering, the relations between sintering variables (additive, sintering gas, sintering temperature) and pellet properties (density, grain size, pore size) were experimentally found. The UO{sub 2}-U{sub 3}O{sub 8} powder which is inherently not sinterable to high density could be sintered well with the aid of additives. U{sub 3}O{sub 8} single crystals were added to UO{sub 2} powder, and homogeneous powder mixture was pressed and sintered in a reducing atmosphere. This technology leads to a large-grained pellet of 12-20 {mu}m. In UO{sub 2}-Gd{sub 2}O{sub 3} sintering, the relations between sintering variables (additives, sintering gas) and pellet properties (density, grain size) were experimentally found. The developed technology of fabricating a large-grained UO{sub 2} pellet has been optimized in a lab scale. Pellet properties were investigated in the fields of (1) creep properties, (2) thermal properties, (3) O/M ratios and (4) unit cell lattice. (author)

  19. Progress on LEU very high density fuel and target development in Argentina

    International Nuclear Information System (INIS)

    Balart, S.; Cabot, P.; Calzetta, O.; Duran, A.; Garces, J.; Hermida, J.D.; Manzini, A.; Pasqualini, E.; Taboada, H.

    2006-01-01

    Since last RRFM meeting, CNEA has continued on new LEU fuel and target development activities. Main goals are the plan to convert our RA-6 reactor from HEU to a new LEU core, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, to optimize techniques to recover U from silicide scrap samples as cold test for radiowaste separation for final conditioning of silicide spent fuels. and to improve the diffusion of LEU target and radiochemical technology for radioisotope production. Future plans include: - Completion of the RA-6 reactor conversion to LEU; - Improvement on fuel development and production facilities to implement new technologies, including NDT techniques to assess bonding quality; - Irradiation of miniplates and full scale fuel assembly at RA-3 and plans to perform irradiation on higher power and temperature regime reactors; - Optimization of LEU target and radiochemical techniques for radioisotope production. (author)

  20. Development of a hot cell for post-irradiation analysis of nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Selma S.C.; Silva Junior, Silverio Ferreira da; Loureiro, Joao Roberto M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: selmasallam@yahoo.com.br, e-mail: silvasf@cdtn.br, e-mail: jrmattos@cdtn.br

    2009-07-01

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  1. Development of evaluation method of fuel failure fraction during the High Temperature Engineering Test Reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Yoshimuta, Shigeharu; Tobita, Tsutomu; Sato, Masashi [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-05-01

    The High Temperature Engineering Test Reactor (HTTR) uses coated particles as fuel. During normal operation, short-lived noble gases are mainly released by diffusion from fuel particles with defects in their coating layers (i.e., failed particle). Since noble gases do not plate out on the inner surfaces of primary cooling system, their activities in primary coolant reflect fuel failure fraction in the core. An evaluation method was developed to predict failure fraction of coated fuel particles during normal operation of the HTTR. The method predicts core-average and hot plenum regionwise failure fractions based on the fractional releases, (R/B)s, of noble gases. The (R/B)s are calculated by fission gas concentration measurements in the primary cooling system of the HTTR. Recent fabrication data show that through-coatings failure fraction is extremely low. Then, fractional release from matrix contamination uranium, which is background for accurate evaluation of the fuel failure fraction, should be precisely predicted. This report describes an evaluation method of fuel failure fraction from measurements in the HTTR together with a fission gas release model from fuel compact containing failed particles and matrix contamination uranium. (author)

  2. Development of a hot cell for post-irradiation analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Silva, Selma S.C.; Silva Junior, Silverio Ferreira da; Loureiro, Joao Roberto M.

    2009-01-01

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  3. Development and evaluation of the 5 kW fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Jose Geraldo de Melo; Silva Junior, Fernando Rodrigues da; Soares, Guilherme Fleury Wanderley; Lopes, Francisco da Costa; Gutierrez, Taisa Eva Fuziger; Serra, Eduardo Torres [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], Email: furtado@cepel.br; Codeceira Neto, Alcides [Companhia Hidroeletrica do Sao Francisco (CHESF), Recife, PE (Brazil)

    2010-07-01

    Power systems based on fuel cells have been considered for residential and commercial applications in electrical energy Distributed Generation (DG) markets. In this work we present an analysis of the main results obtained in a DG demonstration project developed by CEPEL, which consists in the implementation, operation and evaluation of a DG power generation system formed by a 5 k W proton exchange membrane fuel cell (PEMFC) unit electrical generation and a natural gas reformer (fuel processor) for local hydrogen production. This demonstration project aims to evaluate a fuel cell technology for stationary application in the Brazilian electric sector. Under this project the performance analysis developed simultaneously the energy and the economic viewpoints, allowing the determination of the best technical and economic conditions of this energy generation power plant, as well as the best operating strategies, enabling the optimization of the overall performance of the stationary cogeneration fuel cell system. It was determined the electrical performance and the overall and subsystems efficiencies of the cogeneration system as a function of the design and operational power plant parameters. Additionally, it was verified the influence of the activation conditions of the fuel cell electrocatalytic system on the system performance. It also appeared that the use of hydrogen produced from the natural gas catalytic steam reforming provided the system operation with excellent electrothermal stability conditions resulting in increase of the energy conversion efficiency and of the economicity of the cogeneration power plant. The results indicate that the fuel cell-based power generation system evaluated can operate with potential of 0.60 V per single fuel cell or higher throughout the power range of the system and the efficiency of the generation system is almost stable for electric power higher than 1.5 k W, with fuel cell electrical efficiency peak of 38%. (author)

  4. OECD Nuclear Energy Agency Activities Related to Fast Reactor Development

    International Nuclear Information System (INIS)

    Dujardin, Thierry; Gulliford, Jim

    2013-01-01

    • Despite impact of Fukushima, there remains a high level of interest in continued development of advanced nuclear systems and fuel cycles: – better use of natural resources; – minimisation of waste and reduction of constraints on deep geological repositories. • Ambitious R&D programmes on-going at national level in many countries, also through international projects: – expected to lead to development of advanced reactors and fuel cycle facilities. • OECD/NEA will continue to support member countries in field of fast reactor development and related advanced fuel cycles: – forum for exchange of information; – collaborative activities

  5. Fuel element database: developer handbook; Entwicklerhandbuch zur Brennelement-Datenbank

    Energy Technology Data Exchange (ETDEWEB)

    Dragicevic, M [Atominstitut der Oesterreichischen Universitaeten (Austria)

    2004-09-15

    The fuel elements database which was developed for Atomic Institute of the Austrian Universities is described. The software uses standards like HTML, PHP and SQL. For the standard installation freely available software packages such as MySQL database or the PHP interpreter from Apache Software Foundation and Java Script were used. (nevyjel)

  6. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  7. 77 FR 29751 - Agency Information Collection Activity Under OMB Review: Automotive Fuel Economy Reports

    Science.gov (United States)

    2012-05-18

    ...-0059] Agency Information Collection Activity Under OMB Review: Automotive Fuel Economy Reports AGENCY... Transportation on whether a manufacturer will comply with an applicable average fuel economy standard for the... R. Katz, Fuel Economy Division, Office of International Policy, Fuel Economy and Consumer Programs...

  8. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  9. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  10. The development of CVR coatings for PBR fuels

    Science.gov (United States)

    Barletta, R. E.; Vanier, P. E.; Dowell, M. B.; Lennartz, J. A.

    Particle bed reactors (PBR's) are being developed for both space power and propulsion applications. These reactors operate with exhaust gas temperatures of 2500 to 3000 K and fuel temperatures hundreds of degrees higher. One fuel design for these reactors consists of uranium carbide encapsulated in either carbon or graphite. This fuel kernel must be protected from the coolant gas, usually H2, both to prevent attack of the kernel and to limit fission product release. Refractory carbide coatings have been proposed for this purpose. The typical coating process used for this is a chemical vapor deposition. Testing of other components have indicated the superiority of refractory carbide coatings applied using a chemical vapor reaction (CVR) process, however technology to apply these coatings to large numbers of fuel particles with diameters on the order of 500 pm were not readily available. A process to deposit these CVR coatings on surrogate fuel consisting of graphite particles is described. Several types of coatings have been applied to the graphite substrate: NbC in various thicknesses and a bilayer coating consisting of NbC and TaC with a intermediate layer of pyrolytic graphite. These coated particles have been characterized prior to test; results are presented.

  11. Development of the nuclear ship MUTSU spent fuel shipping cask

    International Nuclear Information System (INIS)

    Ishizuka, M.; Umeda, M.; Nawata, Y.; Sato, H.; Honami, M.; Nomura, T.; Ohashi, M.; Higashino, A.

    1989-01-01

    After the planned trial voyage (4700 MWD/MTU) of the nuclear ship MUTSU in 1990, her spent fuel assemblies, initially made of two types of enriched UO 2 (3.2wt% and 4.4wt%), will be transferred to the reprocessing plant soon after cooling down in the ship reactor for more than one year. For transportation, the MUTSU spent fuel shipping casks will be used. Prior to transportation to the reprocessing plant, the cooled spent fuel assemblies will be removed from the reactor to the shipping casks and housed at the spent fuel storage facility on site. In designing the MUTSU spent fuel shipping cask, considerations were given to make the leak-tightness and integrity of the cask confirmable during storage. The development of the cask and the storage function demonstration test were performed by Japan Atomic Energy Research Institute (JAERI) and Mitsubishi Heavy Industries, Ltd. (MHI). One prototype cask for the storage demonstration test and licensed thirty-five casks were manufactured between 1987 and 1988

  12. Field to fuel: developing sustainable biorefineries.

    Science.gov (United States)

    Jenkins, Robin; Alles, Carina

    2011-06-01

    Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.

  13. Development of hold down plate of INGLE fuel assembly

    International Nuclear Information System (INIS)

    Kim, Hyeong Koo; Kim, Kyu Tae

    1996-07-01

    Hold down plate for the INGLE fuel which has been designed for high performance in the standpoints of thermal margin and structural integrity compared to current fuel for YGN 3/4 and UCN 3/4 has been developed and its structural integrity has been verified based on the eh stress analysis. The design feature of the developed hold down plate has not only perfect compatibility with the reactor internals of Korea standard reactor, but also brand-new locking mechanism between upper tie plate and guide tubes. This locking mechanism introduced to the INGLE fuel provides very simple and reliable reconstitutability. In this report, finite element stress analysis with the aid of the ANSYS code as a solver and the MSC/PATRAN code as a pre and post processor were performed to verify structural integrity of the hold down plate considering various load cases which seem to be applied to the hold down plate during its lifetime. Based on the analysis results, the developed hold down plate for INGLE fuel sustains structural integrity under considered load conditions. 3 tabs., 16 figs., 9 refs. (Author)

  14. Factors which could limit the nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Pecqueur, M.; Barre, B.

    1977-01-01

    The nuclear fuel cycle is a most important industry for the energy future of the world. It has also a leading part as regards the physical continuity of energy supply of the countries engaged in the nuclear field. The development of this industry is subject to the economic or political constraints involved by the availability of raw materials, technologies or production means. The various limiting factors which could affect the different stages of the fuel cycle are linked with the technical, economic and financial aspects, with the impact on the environment, nuclear safety, risks of non-pacific uses and proliferation of arms. Interesting to note is also the correlation between the fuel cycle development and the problems of energy independence and security of nuclear programs. As a conclusion, the nuclear fuel cycle industry is confronted to difficulties due to its extremely rapid growth (doubling time 5 years) which only few heavy industries have encountered for long periods. It is more over submitted to the political and safety constraints always linked with nuclear matters. The task is therefore a difficult one. But the objective is worth-while since it is a condition to the development of nuclear industry [fr

  15. Present status and further objectives of SNR fuel element development

    International Nuclear Information System (INIS)

    Karsten, G.

    Within the scope of the fuel element development program for the fast breeder reactor SNR 300, 500 fuel pins have been irradiated since 1964, 250 of them in fast flux. Results indicate that the maximum nominal target burnup of 90.000 MWd/t of the SNR 300 Mk Ia possibly can be reached. The main problems, which arise from clad swelling and internal corrosion, can be met by special pretreatments of the austenitic stainless steel 1.4970 and a fuel stoichiometry of 1.97. Beyond this target burnup either material property improvements have to be made or burnup reductions have to be accepted. The remaining questions can be answered by the use of the SNR 300 as a test reactor. A further target is the development of a carbide fuel element, which should be very effective in a high power breeder reactor because of its low fissile inventory and high breeding gain. This development program will also be finalized in the SNR 300. (U.S.)

  16. Robots in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Koizumi, Masumichi

    1984-01-01

    The Power Reactor and Nuclear Fuel Development Corp. has carried out the technical development concerning ATRs and FBRs, nuclear fuel cycle, the uranium enrichment by centrifugal separation, the reprocessing of spent fuel, and the treatment and disposal of wastes. For the purpose, the Corp. has operated diversified nuclear facilities, and for the operational management of these nuclear facilities, aiming at the reduction of radiation exposure of workers, the shortening of working time, or the rise of the capacity ratio of the facilities, the technical development related to robots has been advanced. Namely, the equipment for the remote maintenace and repair of facilities, the equipment for checkup and monitoring and the equipment for test and inspection are the main subjects of robot development. Hereafter, it is necessary to develop the equipment to which the function of high grade is given and to automate main processes and checkup and monitoring system as well as to improve the reliability and endurance of facilities. The development of the manipulator system for remote maintenance, the facility of handling high radioactive substances and a master-slave manipulator, a power manipulator and a remote transfer equipment, the development of a remote repair and checkup equipment in the reprocessing plant, a remote maintenance and checkup equipment for FBRs and a remote automatic inspection equipment for ATRs are reported. (Kako, I.)

  17. Actual Status of CAREM-25 Fuel Element Development

    International Nuclear Information System (INIS)

    Perez, Edmundo

    2000-01-01

    In the frame of the CAREM Project, under Cnea s Reactor and Nuclear Plants Program, the Nuclear Fuel Thematic Area is one among others on which the project is organized. In this area, the primary objective to reach is to actualize the mechanical fuel element and reactivity control designs, taking in account the recents conceptual and engineering modifications introduced in the reactor, and ending with a consolidated conceptual and basic development.In order to reach these objectives, it is presented the way on which the area was organized, the participating working groups, the task required, the personnel involucrated, the grade of global development reached in the areas of engineering, developments, fabrication and essays of design verification, and the found difficulties, the tasks under ejecution, just finished and necessaries to fulfill completely the objectives. Finally, it is possible to say that due to the work realized, the conceptual design of both components is finished and the basic design is under development

  18. Development of fresh fuel packaging for ATR demonstration reactor

    International Nuclear Information System (INIS)

    Kurakami, J.; Kurita, I.

    1993-01-01

    Related to development of the demonstration advanced thermal reactor, it is necessary and important to develop transport packaging which is used for transporting fresh fuel assemblies. Therefore, the packaging is now being developed in Power Reactor and Nuclear Fuel Development Corporation (PNC). Currently, PNC is fabricating two prototype packagings based on the final design, and land cruising and vibration tests, handling performance tests and prototype packaging tests will be executed with prototype packagings in order to experimentally confirm the soundness of packaging and its contents and the propriety of design technique. This paper describes the summary of general specifications and structures of this packaging and the summary of preliminary safety analysis of package. (J.P.N.)

  19. Design and development of a cathode processor for electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Brunsvold, A. R.; Roach, P. D.; Westphal, B. R.

    1999-01-01

    The electrometallurgical processing of spent fuel developed at Argonne National Laboratory produces a cathode which contains dendrites of heavy metal (principally U), salts, and residual cadmium. The cathode requires further treatment which is accomplished by loading it into a cathode processor to first purify and then consolidate the heavy metal. The principal steps in cathode processing are: the cathode is loaded into a crucible and both loaded into the cathode processor; the crucible is heated under vacuum to an intermediate temperature to distill the salt and cadmium from the crucible; the crucible is heated further to melt and consolidate the heavy metal; the crucible and charge are then cooled forming a heavy metal ingot in the crucible mold. The cathode processor development program has progressed through the design, fabrication, qualification, and demonstration phases. Two identical units were built. One (a prototype unit) has been installed at Argonne's site in Illinois and the other (the production unit) has been installed in the Fuel Conditioning Facility (FCF) at Argonne's Idaho site. Both units are presently in operation. The most recent activities completed in the FCF fuel processing project were the EBR-II driver fuel and blanket fuel demonstration phases. All of the cathode processor success criteria were met during these demonstration phases. These included finalizing the operation conditions applicable to irradiated fuel and process throughput criteria

  20. An approach for assessing development and deployment risks in the DOE fuel cycle options evaluation and screening study - 5267

    International Nuclear Information System (INIS)

    Gehin, J.C.; Worrall, A.; Oakley, B.; Jenni, K.; Taiwo, T.; Wigeland, R.

    2015-01-01

    One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy Research/development road-map is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (ES) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen fuel cycle systems in the ES study, nine criteria were used including Development and Deployment Risk (DDR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing nuclear fuel cycle infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the DDR criterion. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this DDR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U 233 recycle. (authors)

  1. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  2. Development of base technology for high burnup PWR fuel improvement Volume 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Eun; Lee, Sang Hee; Bae, Seong Man [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Chung, Jin Gon; Chung, Sun Kyo; Kim, Sun Du [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of); Kim, Jae Won; Chung, Sun Kyo; Kim, Sun Du [Korea Nuclear Fuel Development Inst., Seoul (Korea, Republic of)

    1995-12-31

    Development of base technology for high burnup nuclear fuel -Development of UO{sub 2} pellet manufacturing technology -Improvement of fuel rod performance code -Improvement of plenum spring design -Study on the mechanical characteristics of fuel cladding -Organization of fuel failure mechanism Establishment of next stage R and D program (author). 226 refs., 100 figs.

  3. Planar Solid-Oxide Fuel Cell Research and Development

    Science.gov (United States)

    2013-03-28

    electrodes and the electrolyte. The effect of the reduction in concentrations can be seen from the well-known Nernst potential equation , given by...reactions is modeled as a jump in the electric potential, which is determined using Nernst potential ( equation (18)) and activation polarization ( equation ...derivatives of structural cost functions. 2. Solution Methodology 2.1 Governing Equations (Fuel Cell) The three-dimensional SOFC model [30,31] utilized in

  4. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  5. Development of concrete cask storage technology for spent nuclear fuel

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Shirai, Koji; Takeda, Hirofumi

    2010-01-01

    Need of spent fuel storage in Japan is estimated as 10,000 to 25,000 t by 2050 depending on reprocessing. Concrete cask storage is expected due to its economy and risk hedge for procurement. The CRIEPI executed verification tests using full-scale concrete casks. Heat removal performances in normal and accidental conditions were verified and analytical method for the normal condition was established. Shielding performance focus on radiation streaming through the air outlet was tested and confirmed to meet the design requirements. Structural integrity was verified in terms of fracture toughness of stainless steel canister for the cask of accidental drop tests. Cracking of cylindrical concrete container due to thermal stress was confirmed to maintain its integrity. Seismic tests of concrete cask without tie-down using scale and full-scale model casks were carried out to confirm that the casks do not tip-over and the spent fuel assembly keeps its integrity under severe earthquake conditions. Long-term integrity of concrete cask for 40 to 60 years is required. It was confirmed using a real concrete cask storing real spent fuel for 15 years. Stress corrosion cracking is serious issue for concrete cask storage in the salty air environment. The material factor was improved by using highly corrosion resistant stainless steel. The environmental factor was mitigated by the development of salt reduction technology. Estimate of surface salt concentration as a function of time became possible. Monitoring technology to detect accidental loss of containment of the canister by the stress corrosion cracking was developed. Spent fuel integrity during storage was evaluated in terms of hydrogen movement using spent fuel claddings stored for 20 years. The effect of hydrogen on the integrity of the cladding was found negligible. With these results, information necessary for real service of concrete cask was almost prepared. Remaining subject is to develop more economical and rational

  6. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  7. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  8. Main results and status of the development of LEU fuel for Russian research reactors

    International Nuclear Information System (INIS)

    Vatulin, A.; Morozov, A.; Suprun, V.; Dobrikova, I.

    2005-01-01

    VNIINM develops low enrichment uranium (LEU) fuel on base U-Mo alloys and a novel design of pin-type fuel elements. The development is carried out both for existing reactors, and for new advanced designs of reactors. The work is carried on the following main directions: - irradiate LEU U-Mo dispersion fuel (the uranium density up to 6,0 g/cm 3 ) in two Russian research reactors: MIR (RIAR, Dimitrovgrad) as pin type fuel mini-elements and in WWR-M (PINP, Gatchina) within full-scaled fuel assembly (FA) with pin type fuel elements; - finalize development of design and fabrication process of IRT type FA with pin type fuel elements; - develop methods of reducing of U-Mo fuel --Al matrix interaction under irradiation; - develop fabricating methods of fuel elements on base of monolithic U-Mo fuel. The paper generally reviews the results of calculation, design and technology investigations accomplished by now. (author)

  9. Development of Chemical Technology in Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jee, Kwang Yong; Kim, W. H.; Kim, J. S.

    2007-06-01

    This project mainly concentrates on the development of technologies related to elemental analysis for the mass balance of pyro-chemical process, on the development of in-line measurement system for high temperature molten salt, and on the development of radiation shielded LA-ICP-MS and micro-XRD system to evaluate the integrity of nuclear fuel. Chemical analysis methods for the quantitative determination of fissile elements, minor actinide elements, fission products, chemical additive and corrosion products in Uranium Metal Ingots are established. It will be applied to the evaluation of mass balance in electrolytic reduction process for the optimization of the process. Optical fiber based UV-VIS spectrophotometer combined with reaction cell was developed for the measurement of reactions in high temperature molten salt. This system is applicable to in-line monitoring of electro-refining process and contribute to clarify the chemical reactions. Radiation shielded LA-ICP-MS and micro-XRD systems are planned to be used for the analysis of isotopic distribution and structural changes from core to rim of spent nuclear fuel pellet, respectively. The developed techniques can contribute to produce database needed for authorization and practical use of ultra high burn-up fuel. In addition, it can be applicable to the other industries such as microelectronics, nano material science and semiconductor to analyze micro region