WorldWideScience

Sample records for fuel demonstration plant

  1. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  2. Field Demonstration of Fuel Crud Filtration System at Ulchin Plant

    International Nuclear Information System (INIS)

    Kang, Duk-Won; Lee, Doo-Ho; Park, Jong-Youl; Choi, In-Kyu

    2007-01-01

    Crud deposited onto the fuel assemblies in nuclear power plants was not a serious problem until an upper core flux depression named Axial Offset Anomaly (AOA) was found at Callaway, USA in 1989. Though the mechanism of an AOA is not completely understood, crud is believed to be a key component of initiating AOA. After the sufficient amount of corrosion products in the reactor cooling system are deposited on the fuel clad by a sub-cooled nucleate boiling, boron is adsorbed in the crud. Thus a measurable reduction in the neutron flux occurs which causes an AOA problem. A filtration system has been developed to remove the fuel crud from irradiated fuel assemblies for mitigating the axial offset anomaly under a technical cooperation agreement with DEI (Dominion Engineering Inc.). This filtration system with a fuel cleaning fixture was successfully demonstrated at Ulchin plant unit 2. Within several minutes, detachable crud deposits were effectively removed from the clad surfaces of the fuel assembly. Also, to characterize the crud particles for each fuel assembly, a small crud sampling device and radiation monitor devices were connected to the filtration system during the cleaning operation. In this study, we completed a functional test and demonstration of an ultrasonic fuel cleaning system by using four spent fuel assemblies. It took only 5 minutes to remove the fuel crud from each fuel assembly. In addition, collective dose rates indicated an average of 8 R/Hr per assembly

  3. Industrial Fuel Gas Demonstration Plant Program: environmental permit compliance plan

    Energy Technology Data Exchange (ETDEWEB)

    Bodamer, Jr., James W.; Bocchino, Robert M.

    1979-11-01

    This Environmental Permit Compliance Plan is intended to assist the Memphis Light, Gas and Water Division in acquiring the necessary environmental permits for their proposed Industrial Fuel Gas Demonstration Plant in a time frame consistent with the construction schedule. Permits included are those required for installation and/or operation of gaseous, liquid and solid waste sources and disposal areas. Only those permits presently established by final regulations are described. The compliance plan describes procedures for obtaining each permit from identified federal, state and local agencies. The information needed for the permit application is presented, and the stepwise procedure to follow when filing the permit application is described. Information given in this plan was obtained by reviewing applicable laws and regulations and from telephone conversations with agency personnel on the federal, state and local levels. This Plan also presents a recommended schedule for beginning the work necessary to obtain the required environmental permits in order to begin dredging operations in October, 1980 and construction of the plant in September, 1981. Activity for several key permits should begin as soon as possible.

  4. Industrial Fuel Gas Demonstration Plant Program. Demonstration plant operation plan (Deliverable No. 38)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Demo Plant Operating Plan is composed of the following sequence of events starting with the training or personnel, familiarizing of the personnel with the plant and completing the long-term run in the following sequences: inspection during construction, plant completion, shakedown of equipment, process unit startup, shakedown of process units, variable run operation and a turnaround. During the construction period, technical personnel from DRC, MLGW and IGT will be at the plant site becoming familiar with the equipment, its installation and all of the auxiliaries so that on completion of construction they will be well grounded on the plant detail and its configuration. At the same time the supervisory operating personnel will have hands on training the gasifier operation at the IGT pilot plant to develop a field for gasifier operation. As a plant sections are completed, they will be checked out in accordance with the contractor and operator (client) procedure as outlined. Subsequent to this, various vendor designs and furnished equipment will be checked out operating-wise and a performance test run if feasible. The actual startup of the plant will be subsequential with the support areas as utilities, coal handling and waste treatment being placed in operation first. Subsequent to this the process units will be placed in operation starting from the rear of the process train and working forward. Thus the downstream units will be operating before the reactor is run on coal. The reactor will be checked out on coke operation.

  5. Safety demonstration test on solvent fire in fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji; Hashimoto, Kazuichiro

    1989-03-01

    This report summarizes a fundamental of results obtained in the Reprocessing Plant Safety Demonstration Test Program which was performed under the contract between the Science and Technology Agency of Japan and the Japan Atomic Energy Research Institute. In this test program, a solvent fire was hypothesized, and such data were obtained as fire behavior, smoke behavior and integrity of exhaust filters in the ventilation system. Through the test results, it was confirmed that under the fire condition in hypothetical accident, the integrity of the cell and the cell ventilation system were maintained, and the safety function of the exhaust filters was maintained against the smoke loading. Analytical results by EVENT code agreed well with the present test data on the thermofluid flow in a cell ventilation system. (author)

  6. Dry spent-fuel consolidation demonstration at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Townes, G.A.

    1982-08-01

    Equipment for disassembling and canning (or encapsulating) spent fuel to allow more efficient storage is being developed and demonstrated at the BNFP. The program is aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling the existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly has been demonstrated in the BNFP hot cells at rates of approx. 10 to 12 assemblies per day. 3 figures

  7. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  8. Power conversion and quality of the Santa Clara 2 MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); Abueg, R.Z. [Basic Measuring Instruments, Santa Clara, CA (United States); Schwartz, P. [Fluor Daniel, Inc., Irvine, CA (United States)] [and others

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is the first application of a commercial-scale carbonate fuel cell power plant on a US electric utility system. It is also the largest fuel cell power plant ever operated in the United States. The 2MW plant, located in Santa Clara, California, utilizes carbonate fuel cell technology developed by Energy Research Corporation (ERC) of Danbury, Connecticut. The ultimate goal of a fuel cell power plant is to deliver usable power into an electrical distribution system. The power conversion sub-system does this for the Santa Clara Demonstration Plant. A description of this sub-system and its capabilities follows. The sub-system has demonstrated the capability to deliver real power, reactive power and to absorb reactive power on a utility grid. The sub-system can be operated in the same manner as a conventional rotating generator except with enhanced capabilities for reactive power. Measurements demonstrated the power quality from the plant in various operating modes was high quality utility grade power.

  9. Startup, testing, and operation of the Santa Clara 2MW direct carbonate fuel cell demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Skok, A.J.; Leo, A.J. [Fuel Cell Engineering Corp., Danbury, CT (United States); O`Shea, T.P. [Santa Clara Demonstration Project, CA (United States)

    1996-12-31

    The Santa Clara Demonstration Project (SCDP) is a collaboration between several utility organizations, Fuel Cell Engineering Corporation (FCE), and the U.S. Dept. Of Energy aimed at the demonstration of Energy Research Corporation`s (ERC) direct carbonate fuel cell (DFC) technology. ERC has been pursuing the development of the DFC for commercialization near the end of this decade, and this project is an integral part of the ERC commercialization effort. The objective of the Santa Clara Demonstration Project is to provide the first full, commercial scale demonstration of this technology. The approach ERC has taken in the commercialization of the DFC is described in detail elsewhere. An aggressive core technology development program is in place which is focused by ongoing interaction with customers and vendors to optimize the design of the commercial power plant. ERC has selected a 2.85 MW power plant unit for initial market entry. Two ERC subsidiaries are supporting the commercialization effort: the Fuel Cell Manufacturing Corporation (FCMC) and the Fuel Cell Engineering Corporation (FCE). FCMC manufactures carbonate stacks and multi-stack modules, currently from its production facility in Torrington, CT. FCE is responsible for power plant design, integration of all subsystems, sales/marketing, and client services. FCE is serving as the prime contractor for the design, construction, and testing of the SCDP Plant. FCMC has manufactured the multi-stack submodules used in the DC power section of the plant. Fluor Daniel Inc. (FDI) served as the architect-engineer subcontractor for the design and construction of the plant and provided support to the design of the multi-stack submodules. FDI is also assisting the ERC companies in commercial power plant design.

  10. Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

  11. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  12. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  13. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J. [San Diego Gas & Electric, CA (United States)] [and others

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  14. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Junichi; Suzuki, Motoe; Tsukamoto, Michio; Koike, Tadao; Nishio, Gunji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  15. Fuel Gas Demonstration Plant Program: Small-Scale Industrial Project. Environmental assessment statement

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Solid, liquid, and gaseous by-products and wastes are generated during coal storage and processing, gasification, and gas cleanup. Recovery systems have been designed to collect and utilize by-products. Wastes will be placed in storage areas designed to prevent release of the materials to the environment. The coal gasification plant along with the solid waste disposal area will occupy approximately 115 acres. To prevent, to the fullest extent possible, degradation of groundwater and surface water resources, the coal stockpile, landfill, collection pond, settling basin, and drainage ditches will be constructed to prevent the seepage of potential contaminants into groundwater or the drainage of runoff into surface waters. Cooling water is the primary water requirement of the project. None of the water utilized in the gasification plant will be released into the area surface water system, but will be either recycled or directed into the settling basin. The gasification facility has the potential of emitting a broad spectrum of pollutants into the atmosphere. However, effective emission control procedures such as off-gas recycling, hydrogen sulfide removal, particulate removal, and flaring will be applied to minimize the plant's emissions. The necessity of monitoring the more exotic pollutants such as acid gases, trace elements, metal carbonyls, and a multitude of organic compounds, will be determined as the gasification facility becomes more of a reality and the latest literature and research developments can be surveyed to evaluate the emission rates, biological significance, and monitoring techniques for these pollutants.

  16. Industrial Fuel Gas Demonstration-Plant Program. Volume II. The environment (Deliverable No. 27). [Baseline environmental data

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The proposed site of the Industrial Fuel Gas Demonstration Plant (IFGDP) is located on a small peninsula extending eastward into Lake McKeller from the south shore. The peninsula is located west-southwest of the City of Memphis near the confluence of Lake McKeller and the Mississippi River. The environmental setting of this site and the region around this site is reported in terms of physical, biological, and human descriptions. Within the physical description, this report divides the environmental setting into sections on physiography, geology, hydrology, water quality, climatology, air quality, and ambient noise. The biological description is divided into sections on aquatic and terrestrial ecology. Finally, the human environment description is reported in sections on land use, demography, socioeconomics, culture, and visual features. This section concludes with a discussion of physical environmental constraints.

  17. Demonstration test on the safety of a cell ventilation system during a hypothetical explosive burning in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Nishio, Gunji; Takada, Junichi; Tsukamoto, Michio; Koike, Tadao

    1993-01-01

    To demonstrate the safety of an air ventilation system of cells in a fuel reprocessing plant under a postulated explosive burning caused by solvent fire or by thermal decomposition of nitrated solvent, four types of demonstration tests have been conducted using a large-scale facility simulating a cell ventilation system of an actual reprocessing plant, thus revealing effective mitigation by cell and duct structures on the pressure and temperature pulses generated by explosive burning. In boilover burning tests, solvent fire in a model cell was observed with various sizes of burning surface area as a main parameter, and analysis was performed on the factors dominating the magnitude of boilover burning, revealing that the magnitude strongly depends on accumulated amounts and their ratio of oxygen and solvent vapor present in the cell. In deflagration tests, solid rocket fuel was burned in the cell to simulate the explosive source. The generated pressure and temperature pulses were effectively declined by the cell and duct structures and the integrity of the ventilation system was kept. In blower tests, a centrifugal turbo blower was imposed by a lump of air with a larger flow rate than the rated one by about six times to observe the transient response of the blower fan and motor. It was found that integrity of the blower was kept. In pressure transient tests, compressed air was blown into the cell to induce a mild transient state of fluid dynamics inside the facility, and a variety of data were successfully obtained to be used for the verification and improvement of a computer code. In all the tests, transient overloading of gas caused no damage on HEPA filters, and overloading on the blower motor was avoided either by the slipping of transmission belt or by the acceleration of blower fan rotation during peak flow. (author)

  18. Navy fuel cell demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  19. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  20. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  1. Fuel Cell Power Plant Initiative. Volume 1; Solid Oxide Fuel Cell/Logistics Fuel Processor 27 kWe Power System Demonstration for ARPA

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report describes the successful testing of a 27 kWe Solid Oxide Fuel Cell (SOFC) generator fueled by natural gas and/or a fuel gas produced by a brassboard logistics fuel preprocessor (LFP). The test period began on May 24, 1995 and ended on February 26, 1996 with the successful completion of all program requirements and objectives. During this time period, this power system produced 118.2 MWh of electric power. No degradation of the generator's performance was measured after 5582 accumulated hours of operation on these fuels: local natural gas - 3261 hours, jet fuel reformate gas - 766 hours, and diesel fuel reformate gas - 1555 hours. This SOFC generator was thermally cycled from full operating temperature to room temperature and back to operating temperature six times, because of failures of support system components and the occasional loss of test site power, without measurable cell degradation. Numerous outages of the LFP did not interrupt the generator's operation because the fuel control system quickly switched to local natural gas when an alarm indicated that the LFP reformate fuel supply had been interrupted. The report presents the measured electrical performance of the generator on all three fuel types and notes the small differences due to fuel type. Operational difficulties due to component failures are well documented even though they did not affect the overall excellent performance of this SOFC power generator. The final two appendices describe in detail the LFP design and the operating history of the tested brassboard LFP.

  2. Safety demonstration tests of postulated solvent fire accidents in extraction process of a fuel reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Tukamoto, Michio; Takada, Junichi; Koike, Tadao; Nishio, Gunji; Uno, Seiichiro; Kamoshida, Atsusi; Watanabe, Hironori; Hashimoto, Kazuichiro; Kitani, Susumu.

    1992-03-01

    Demonstration tests of hypothetical solvent fire in an extraction process of the reprocessing plant were carried out from 1984 to 1985 in JAERI, focusing on the confinement of radioactive materials during the fire by a large-scale fire facility (FFF) to evaluate the safety of air-ventilation system in the plant. Fire data from the demonstration test were obtained by focusing on fire behavior at cells and ducts in the ventilation system, smoke generation during the fire, transport and deposition of smoke containing simulated radioactive species in the ventilation system, confinement of radioactive materials, and integrity of HEPA filters by using the FFF simulating an air-ventilation system of the reference reprocessing plant in Japan. The present report is published in a series of the report Phase I (JAERI-M 91-145) of the demonstration test. Test results in the report will be used for the verification of a computer code FACE to evaluate the safety of postulated fire accidents in the reprocessing plant. (author)

  3. Safety demonstration tests on thermal decomposition of nitrated solvent with nitric acid in nuclear fuel reprocessing plants. Contract research

    International Nuclear Information System (INIS)

    Tsukamoto, Michio; Takada, Junichi; Koike, Tadao; Watanabe, Koji; Uchiyama, Gunzou; Nishio, Gunji; Murata, Mikio

    2001-03-01

    The demonstration tests were conducted to investigate the safety of the ventilation system and integrity of the HEPA filters under the design basis accident (DBA) of the evaporator in the reprocessing plants. The tests were carried out by heating organic solvent (TBP/n- dodecane) mixed with nitric acid in a sealed vessel. It was possible to cause an explosive decomposition of TBP-complex formed by nitration of the solvent with nitric acid. The following was obtained by the analysis of the experimental results of the tests. From derivation by the experimental method, data on the maximum mass release rate and the maximum energy release rate in the explosion, as the solvent of 1 [kg] spouted out by the thermal decomposition, were obtained. They were 0.59 [kg/s] and 3240.3 [kJ/kg·s] respectively. The influence given on the cell ventilation system by this explosion was small and it was demonstrated that the safety of the HEPA filters could be secured. (author)

  4. Industrial Fuel Gas Demonstration Plant Program. Conceptual design and evaluation of commercial plant. Volume III. Economic analyses (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This report presents the results of Task I of Phase I in the form of a Conceptual Design and Evaluation of Commercial Plant report. The report is presented in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume III presents the economic analyses for the commercial plant and the supporting data. General cost and financing factors used in the analyses are tabulated. Three financing modes are considered. The product gas cost calculation procedure is identified and appendices present computer inputs and sample computer outputs for the MLGW, Utility, and Industry Base Cases. The results of the base case cost analyses for plant fenceline gas costs are as follows: Municipal Utility, (e.g. MLGW), $3.76/MM Btu; Investor Owned Utility, (25% equity), $4.48/MM Btu; and Investor Case, (100% equity), $5.21/MM Btu. The results of 47 IFG product cost sensitivity cases involving a dozen sensitivity variables are presented. Plant half size, coal cost, plant investment, and return on equity (industrial) are the most important sensitivity variables. Volume III also presents a summary discussion of the socioeconomic impact of the plant and a discussion of possible commercial incentives for development of IFG plants.

  5. Industrial Fuel Gas Demonstration Plant Program. Monthly, quarterly and annual progress report, December 1978 and Calender Year 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    A new pilot plant program developed by DOE and the team members, was started on September 20, 1978. Pilot plant success was achieved in obtaining an ash balanced condition for several days with ash agglomeration with a pure coal feed. This was the objective of the first three months of the approved program.

  6. US GCFR demonstration plant design

    International Nuclear Information System (INIS)

    Hunt, P.S.; Snyder, H.J.

    1980-05-01

    A general description of the US GCFR demonstration plant conceptual design is given to provide a context for more detailed papers to follow. The parameters selected for use in the design are presented and the basis for parameter selection is discussed. Nuclear steam supply system (NSSS) and balance of plant (BOP) component arrangements and systems are briefly discussed

  7. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  8. AAEC builds synroc demonstration plant

    International Nuclear Information System (INIS)

    O'Hagan, R.

    1986-01-01

    A demonstration plant to test the feasibility of an Australian-developed method of immobilising radioactive waste is being built at the Australian Atomic Energy Commission's Lucas Heights Research Laboratories. The plant will operate as if radioactive waste was actually being processed, but non-radioactive elements of a similar composition will be used. The process involves the simulated waste being mixed into a slurry with the main SYNROC ingredients and then converted to a powder. The powder is moved about the plant in bellows-type containers by robots

  9. Demonstration of an instrumental technique in the measurement of solution weight in the accountability vessels of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nakajima, K.

    1977-04-01

    Load cells were installed on the input accountability vessel of a commercial reactor fuel reprocessing facility to determine if this proven principle of mass measurement is in fact applicable in such a severe radiation environment over a long period of time. Two other locations selected were the plutonium product nitrate solution accountability vessel and the plutonium product nitrate solution storage vessel. The latter two environments, while not severely radio-active, require a high degree of contamination control. All three vessels are of different geometrical configuration and capacity. Each vessel was carefully calibrated for volume measurements by adding controlled pre-measured increments of water. Measurements were made using the conventional dip-tube manometer system and the load cell - digital voltmeter. Standard deviation of the measurements on the input vessel and the plutonium storage vessel were in both cases 0.3%; for the plutonium accountability vessel 1.9%. Measurements taken of the input vessel during the ''cold run'' over a six-month period using solutions of unirradiated uranium showed a standard deviation of 0.4% and a bias of 0.8% in the summer months and 0.7% and 0.6% respectively in the winter months FINAL STOP CODE

  10. Status of IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

    1993-01-01

    The next major step in Argonne's Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program

  11. Environmental impact assessment relating to the proposed siting of the European Demonstration Fast Reactor Fuel Reprocessing Plant (EDRP) at Dounreay, Caithness

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Report assesses the likely environmental impact of the European Demonstration Fast Reactor Fuel Reprocessing Plant (EDRP) which the United Kingdom Atomic Authority (UKAEA) and British Nuclear Fuels plc (BNFL) are proposing to build at the Dounreay Nuclear Power Development Establishment (DNE), Caithness and for which they have sought outline planning permission. The format of the report has been designed to meet the guidelines set out in the European Economic Community's Directive (85/337/EEC) concerning the assessment of the environmental effects of certain public and private projects. The Report is presented in four parts: Part A gives information on the present environment at DNE and explains in detail the environmental monitoring which has been carried out there since 1956. Part B describes the proposed development. Part C assesses the likely effects of the proposed development on the environment. Part D lists all the references quoted in this Report together with a bibliography of other sources of information relevant to the proposed development.

  12. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  13. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  14. Desalination demonstration plant using nuclear heat

    International Nuclear Information System (INIS)

    Hanra, M.S.; Misra, B.M.

    1998-01-01

    Most of the desalination plants which are operating throughout the world utilize the energy from thermal power station which has the main disadvantage of polluting the environment due to combustion of fossil fuel and with the inevitable rise in prices of fossil fuel, nuclear driven desalination plants will become more economical. So it is proposed to set up nuclear desalination demonstration plant at the location of Madras Atomic Power Station (MAPS), Kalpakkam. The desalination plant will be of a capacity 6300 m 3 /day and based on both Multi Stage Flash (MSF) and Sea Water Reverse Osmosis (SWRO) processes. The MSF plant with performance ratio of 9 will produce water total dissolved solids (TDS-25 ppm) at a rate of 4500 m 3 /day from seawater of 35000 ppm. A part of this water namely 1000 m 3 /day will be used as Demineralised (DM) water after passing it through a mixed bed polishing unit. The remaining 3500 m 3 /day water will be mixed with 1800 m 3 /day water produced from the SWRO plant of TDS of 400 ppm and the same be supplied to industrial/municipal use. The sea water required for MSF and SWRO plants will be drawn from the intake/outfall system of MAPS which will also supply the required electric power pumping. There will be net 4 MW loss of power of MAPS namely 3 MW for MSF and 1 MW for SWRO desalination plants. The salient features of the project as well as the technical details of the both MSF and SWRO processes and its present status are given in this paper. It also contains comparative cost parameters of water produced by both processes. (author)

  15. Kimberlina: a zero-emissions demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Pronske, K. [Clean Energy Systems Inc. (USA)

    2007-06-15

    FutureGen may be getting the headlines, but it is not the only superclean demonstration plant in town. In fact, you could argue that other technologies are further down the evolutionary timeline. Case in point: Clean Energy Systems' adaptation of rocket engine technology to radically change the way fuel is burned. The result is a true zero-emissions power plant. Its most distinctive element is an oxy-combustor, similar to one used in rocket engines, that generates steam by burning clean, gaseous fuel in the presence of gaseous oxygen and water. The clean fuel is prepared by processing a conventional fossil fuel such as coal-derived syngas, refinery residues, biomass or biodigester gas, or natural or landfill gas. Combustion takes place at near-stoichiometric conditions to produce a mixture of steam and CO{sub 2} at high temperature and pressure. The steam conditions are suitable for driving a conventional or advanced steam turbine-generator, or a gas turbine modified to be driven by high-temperature steam or to do work as an expansion unit at intermediate pressure. After pressure through the turbine(s), the steam/CO{sub 2} mixture is condensed, cooled, and separated into water and CO{sub 2}. The CO{sub 2} can be sequestered and/or purified and sold for commercial use. Durability and performance tests carried out between March 2005 and March 2006 produced excellent results. CO and NOx emissions are considerably low than those of combined-cycle power plants fuelled by natural gas and using selective catalytic reduction for NOx control. Work is continuing under an NETL grant. Progress and plans are reported in the article. 7 figs.

  16. Towards Multi Fuel SOFC Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Clausen, Lasse Røngaard; Bang-Møller, Christian

    2011-01-01

    Complete Solid Oxide Fuel Cell (SOFC) plants fed by several different fuels are suggested and analyzed. The plants sizes are about 10 kW which is suitable for single family house with needs for both electricity and heat. Alternative fuels such as, methanol, DME (Di-Methyl Ether) and ethanol...... are also considered and the results will be compared with the base plant fed by Natural Gas (NG). A single plant design will be suggested that can be fed with methanol, DME and ethanol whenever these fuels are available. It will be shown that the plant fed by ethanol will have slightly higher electrical...

  17. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  18. Southern Nevada Alternative Fuels Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  19. Diesel fueled ship propulsion fuel cell demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  20. Demonstration of a PC 25 Fuel Cell in Russia

    Energy Technology Data Exchange (ETDEWEB)

    John C. Trocciola; Thomas N. Pompa; Linda S. Boyd

    2004-09-01

    This project involved the installation of a 200kW PC25C{trademark} phosphoric-acid fuel cell power plant at Orgenergogaz, a Gazprom industrial site in Russia. In April 1997, a PC25C{trademark} was sold by ONSI Corporation to Orgenergogaz, a subsidiary of the Russian company ''Gazprom''. Due to instabilities in the Russian financial markets, at that time, the unit was never installed and started by Orgenergogaz. In October of 2001 International Fuel Cells (IFC), now known as UTC Fuel Cells (UTCFC), received a financial assistance award from the United States Department of Energy (DOE) entitled ''Demonstration of PC 25 Fuel Cell in Russia''. Three major tasks were part of this award: the inspection of the proposed site and system, start-up assistance, and installation and operation of the powerplant.

  1. Safety demonstration tests of air-ventilation system for the postulated explosive burning in a cell of fuel-reprocessing plant

    International Nuclear Information System (INIS)

    Takada, Junichi; Suzuki, Motoe; Tukamoto, Michio; Koike, Tadao; Nishio, Gunji

    1995-03-01

    Safety demonstration tests of an explosive burning in a cell in the reprocessing plant has been carried out in JAERI under the auspices of the Science and Technology Agency, to evaluate the safety of an air-ventilation system during the hypothetical explosion. The postulated explosive burning of organic solvent mixed with nitric acid was simulated by solid explosives. The demonstration test was performed using an industrial scale experimental facility simulating to the ventilation system of the large scale reprocessing plant in JAPAN. Propagations of pressure, temperature, and gas velocity through cells and ducts in the ventilation system were measured during the explosive burning under deflagration. Experimental data in this report can be used to evaluate the transport phenomena of radioactive materials in the ventilation system during the explosion, and also to verify computer code CELVA for the safety analysis of ventilation system in the event of explosion accidents. (author)

  2. Melvin Calvin: Fuels from Plants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  3. Coal demonstration plants. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Under the DOE program, contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Six of these demonstration plant projects are described and progress in the quarter is summarized. Several support and complementary projects are described (fuel feeding system development, performance testing and comparative evaluation, engineering support, coal grinding equipment development and a critical components test facility). (LTN)

  4. A cold demonstration of fuel consolidation. Part 1

    International Nuclear Information System (INIS)

    Matheson, J.E.

    1989-01-01

    Spent fuel consolidation is an option for increasing spent fuel storage capacities being considered by many utilities. The process of consolidating fuel involves separating the fuel rods from the structural frame which holds them in a square array. The rods are then repackaged into a tightly packed bundle which occupies about half the cross-sectional area of fuel assembly. Thus approximately twice as much fuel can be stored in the underwater racks at a spent fuel storage pool. There have been several demonstrations of fuel consolidation to date. The focus of this paper is the development and subsequent demonstration program of a shear/compactor

  5. Gamma irradiation plants using reactor fuel elements

    International Nuclear Information System (INIS)

    Suckow, W.

    1976-11-01

    Recent irradiation plants utilizing fuel elements are described. Criteria for optimizing such plants, evaluation of the plants realized so far, and applications for the facilities are discussed. (author)

  6. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  7. The future fuel cycle plants

    International Nuclear Information System (INIS)

    Paret, L.; Touron, E.

    2016-01-01

    The future fuel cycle plants will have to cope with both the fuel for PWR and the fuel for the new generation of fast reactors. Furthermore, the MOX fuel, that is not recycled in PWR reactors will have the possibility to be recycled in fast reactors of 4. generation. Recycling MOX fuels will imply to handle nuclear fuels with higher concentration of Pu than today. The design of the nuclear fuel for the future fast reactors will be similar to that of the Astrid prototype. In order to simplify the fabrication of UPuO_2 pellets, all the fabrication process will take place in a dedicated glove box. Enhanced reality and virtual reality technologies have been used to optimize the glove-box design in order to have a better recovery of radioactive dust and to ease routine operations and its future dismantling. As a fuel assembly will contain 120 kg of UPuO_2 fuel, it will no longer be possible to mount these assemblies by hand contrary to what was done for Superphenix reactor. A new shielded mounting line has to be designed. Another point is that additive manufacturing for the fabrication of very small parts with a complex design will be broadly used. (A.C.)

  8. Environmental analysis for pipeline gas demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, L.H.

    1978-09-01

    The Department of Energy (DOE) has implemented programs for encouraging the development and commercialization of coal-related technologies, which include coal gasification demonstration-scale activities. In support of commercialization activities the Environmental Analysis for Pipeline Gas Demonstration Plants has been prepared as a reference document to be used in evaluating potential environmental and socioeconomic effects from construction and operation of site- and process-specific projects. Effluents and associated impacts are identified for six coal gasification processes at three contrasting settings. In general, impacts from construction of a high-Btu gas demonstration plant are similar to those caused by the construction of any chemical plant of similar size. The operation of a high-Btu gas demonstration plant, however, has several unique aspects that differentiate it from other chemical plants. Offsite development (surface mining) and disposal of large quantities of waste solids constitute important sources of potential impact. In addition, air emissions require monitoring for trace metals, polycyclic aromatic hydrocarbons, phenols, and other emissions. Potential biological impacts from long-term exposure to these emissions are unknown, and additional research and data analysis may be necessary to determine such effects. Possible effects of pollutants on vegetation and human populations are discussed. The occurrence of chemical contaminants in liquid effluents and the bioaccumulation of these contaminants in aquatic organisms may lead to adverse ecological impact. Socioeconomic impacts are similar to those from a chemical plant of equivalent size and are summarized and contrasted for the three surrogate sites.

  9. Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

    2010-05-01

    Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

  10. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  11. Modifications to HFEF/S for IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Forrester, R.J.; Carnes, M.D.; Rigg, R.H.

    1988-01-01

    Modifications have begun to the Hot Fuel Examination Facility-South (HFEF/S) in order to demonstrate the technology of the integral fast reactor (IFR) fuel cycle. This paper describes the status of the modifications to the facility and briefly reviews the status of the development of the process equipment. The HFEF/S was the demonstration facility for the early Experimental Breeder Reactor II (EBR-II) melt refining/injection-casting fuel cycle. Then called the Fuel Cycle Facility, ∼400 EBR-II fuel assemblies were recycled in the two hot cells of the facility during the 1964-69 period. Since then it has been utilized as a fuels examination facility. The objective of the IFR fuel cycle program is to upgrade HFEF/S to current standards, install new process equipment, and demonstrate the commercial feasibility of the IFR pyroprocess fuel cycle

  12. Demonstration and development of safeguards techniques in the PNC reprocessing plant. Part of a coordinated programme on the use of installed instrumentation in fuel reprocessing facilities for safeguards purposes

    International Nuclear Information System (INIS)

    Kurihara, H.

    1979-04-01

    A hull-monitoring system in the Head-End facility and systems for surveillance and containment in the spent fuel receiving and storage facility at Tokai Reprocessing Plant are described. Operating experience on them is analyzed

  13. Prototypical consolidation demonstration project - Final fuel recommendation report

    International Nuclear Information System (INIS)

    Piscitella, R.R.; Paskey, W.R.

    1987-01-01

    The Prototypical Consolidation Demonstration (PCD) Project will, in its final phase, conduct a demonstration of the equipment's ability to consolidate actual spent commercial fuel. Since budget and schedule limitations do not allow this demonstration to include all types of fuel assemblies, a selection process was utilized to identify the fuel types that would represent predominate fuel inventories and that would demonstrate the equipment's abilities. The Pressurized Water Reactor (PWR) fuel assemblies that were suggested for use in the PCD Project Hot Demonstration were Babcock and Wilcox (B and W) 15 x 15's, and Westinghouse (WE) 15 x 15's. The Boiling Water Reactor (BWR) fuel suggested was the General Electric (GE) 8 x 8

  14. Preparations for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  15. Direct FuelCell/Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2008-09-30

    to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a

  16. Methanol supply issues for alternative fuels demonstration programs

    International Nuclear Information System (INIS)

    Teague, J.M.; Koyama, K.K.

    1995-01-01

    This paper surveys issues affecting the supply of fuel-grade methanol for the California Energy Commission's alternative fuels demonstration programs and operations by other public agencies such as transit and school districts. Establishing stable and reasonably priced sources of methanol (in particular) and of alternative fuels generally is essential to their demonstration and commercialization. Development both of vehicle technologies and of fuel supply and distribution are complementary and must proceed in parallel. However, the sequence of scaling up supply and distribution is not necessarily smooth; achievement of volume thresholds in demand and through-put of alternative fuels are marked by different kinds of challenges. Four basic conditions should be met in establishing a fuel supply: (1) it must be price competitive with petroleum-based fuels, at least when accounting for environmental and performance benefits; (2) bulk supply must meet volumes required at each phase; necessitating resilience among suppliers and a means of designating priority for high value users; (3) distribution systems must be reliable, comporting with end users' operational schedules; (4) volatility in prices to the end user for the fuel must be minimal. Current and projected fuel volumes appear to be insufficient to induce necessary economies of scale in production and distribution for fuel use. Despite their benefits, existing programs will suffer absent measures to secure economical fuel supplies. One solution is to develop sources that are dedicated to fuel markets and located within the end-use region

  17. Nuclear fuel control in fuel fabrication plants

    International Nuclear Information System (INIS)

    Seki, Yoshitatsu

    1976-01-01

    The basic control problems of measuring uranium and of the environment inside and outside nuclear fuel fabrication plants are reviewed, excluding criticality prevention in case of submergence. The occurrence of loss scraps in fabrication and scrap-recycling, the measuring error, the uranium going cut of the system, the confirmation of the presence of lost uranium and the requirement of the measurement control for safeguard make the measurement control very complicated. The establishment of MBA (material balance area) and ICA (item control area) can make clearer the control of inventories, the control of loss scraps and the control of measuring points. Besides the above basic points, the following points are to be taken into account: 1) the method of confirmation of inventories, 2) the introduction of reliable NDT instruments for the rapid check system for enrichment and amount of uranium, 3) the introduction of real time system, and 4) the clarification of MUF analysis and its application to the reliability check of measurement control system. The environment control includes the controls of the uranium concentration in factory atmosphere, the surface contamination, the space dose rate, the uranium concentration in air and water discharged from factories, and the uranium in liquid wastes. The future problems are the practical restudy of measurement control under NPT, the definite plan of burglary protection and the realization of the disposal of solid wastes. (Iwakiri, K.)

  18. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  19. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  20. Demonstration and evaluation of dual-fuel technology; Demonstration och utvaerdering av dual-fuel-tekniken

    Energy Technology Data Exchange (ETDEWEB)

    Staalhammar, Per; Erlandsson, Lennart; Willner, Kristina (AVL MTC Motortestcenter AB (Sweden)); Johannesson, Staffan (Ecoplan AB (Sweden))

    2011-06-15

    There is an increased interest for Dual Fuel (methane-Diesel) applications in Sweden since this technology is seen as one of the more interesting options for a fast and cost effective introduction of biomethane as fuel for HD engines. The Dual Fuel technology has been used for many years, mainly for stationary purpose (generators, pumps and ships) while the Spark Ignited (SI) 'Otto' technology has been used for trucks and busses. One obstacle for introducing Dual Fuel technology for busses and trucks is the EU legislation that don't allow for HD on road certification of Dual Fuel applications. Challenges with the Dual Fuel technology is to develop cost effective applications that is capable of reaching low emissions (especially CH{sub 4} and NO{sub x}) in combination with high Diesel replacement in the test cycles used for on road applications. AVL MTC Motortestcenter AB (hereinafter called AVL) has on commission by SGC (Swedish Gas technical Centre) carried out this project with the objectives to analyze the Dual Fuel (Diesel-methane) technology with focus on emissions, fuel consumption and technical challenges. One important part of this project was to carry out emission tests on selected Dual Fuel applications in Sweden and to compile experiences from existing Dual Fuel technology. This report also summarizes other commonly used technologies for methane engines and compares the Dual Fuel with conventional Diesel and Otto technologies. The major challenges with Dual Fuel applications for on road vehicles will be to develop robust and cost effective solutions that meet the emission legislations (with aged catalysts) and to increase the Diesel replacement to achieve reasonable reduction of green house gases (GHG). This is especially important when biomethane is available as fuel but not Bio-Diesel. It will probably be possible to reach EURO V emission limits with advanced Dual Fuel systems but none of the tested systems reached EURO V emission levels

  1. Fuel optimization of Qinshan nuclear power plant

    International Nuclear Information System (INIS)

    Liao Zejun; Li Zhuoqun; Kong Deping; Xue Xincai; Wang Shiwei

    2010-01-01

    Based on the design practice of the fuel replacement of Qin Shan nuclear power plant, this document effectively analyzes the shortcomings of current replacement design of Qin Shan. To address these shortcomings, this document successfully implements the 300 MW fuel optimization program from fuel replacement. fuel improvement and experimentation ,and achieves great economic results. (authors)

  2. Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

  3. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  4. The whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worth, cycle length, fuel discharge burn-up, gamma heating rate, β eff /l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed. Key issues being addressed in the safety assessment are fuel performance, radiological consequences, margin to burnout and transient behavior. The LEU core is comparable in all safety aspects to the HEU core and the transition core is only marginally worse owing to higher power seeking factors. (author)

  5. EBR-II spent fuel treatment demonstration project

    International Nuclear Information System (INIS)

    Benedict, R.W.; Henslee, S.P.

    1997-01-01

    For approximately 10 years, Argonne National Laboratory was developed a fast reactor fuel cycle based on dry processing. When the US fast reactor program was canceled in 1994, the fuel processing technology, called the electrometallurgical technique, was adapted for treating unstable spent nuclear fuel for disposal. While this technique, which involves electrorefining fuel in a molten salt bath, is being developed for several different fuel categories, its initial application is for sodium-bonded metallic spent fuel. In June 1996, the Department of Energy (DOE) approved a radiation demonstration program in which 100 spent driver assemblies and 25 spent blanket assemblies from the Experimental Breeder Reactor-II (EBR-II) will be treated over a three-year period. This demonstrated will provide data that address issues in the National Research Council's evaluation of the technology. The planned operations will neutralize the reactive component (elemental sodium) in the fuel and produce a low enriched uranium product, a ceramic waste and a metal waste. The fission products and transuranium elements, which accumulate in the electrorefining salt, will be stabilized in the glass-bonded ceramic waste form. The stainless steel cladding hulls, noble metal fission products, and insoluble residues from the process will be stabilized in a stainless steel/zirconium alloy. Upon completion of a successful demonstration and additional environmental evaluation, the current plans are to process the remainder of the DOE sodium bonded fuel

  6. National fuel cell bus program : proterra fuel cell hybrid bus report, Columbia demonstration.

    Science.gov (United States)

    2011-10-01

    This report summarizes the experience and early results from a fuel cell bus demonstration funded by the Federal Transit Administration (FTA) under the National Fuel Cell Bus Program. A team led by the Center for Transportation and the Environment an...

  7. Whole-core LEU fuel demonstration in the ORR

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Bretscher, M.M.; Cornella, R.J.; Hobbs, R.W.

    1985-01-01

    A whole-core demonstration of LEU fuel in the ORR is expected to begin during November 1985. Fuel elements will contain U 3 Si 2 at 4.8 Mg U/m 3 and shim rod fuel followers will contain U 3 Si 2 at 3.5 Mg U/m 3 . Fuel fabrication is underway at B and W, CERCA, and NUKEM, with shipments scheduled to commence in October. The primary objectives of the demonstration are to provide data for validation of LEU and mixed-core fuel cycle calculations and to provide a large-scale demonstration of the acceptable performance of production-line U 3 Si 2 fuel elements. It is planned to approach the full LEU core through a series of mixed cores. Measurements to be made include flux distribution, reactivity swing, control rod worths, cycle length, fuel discharge burnup, gamma heating rates, β/sub eff/l, and isothermal temperature coefficient. Measurements will also be made on fresh LEU and fresh HEU critical configurations. Preliminary safety approval has been received and the final safety assessment is being reviewed

  8. Demonstration tokamak-power-plant study (DEMO)

    International Nuclear Information System (INIS)

    1982-09-01

    A study of a Demonstration Tokamak Power Plant (DEMO) has been completed. The study's objective was to develop a conceptual design of a prototype reactor which would precede commercial units. Emphasis has been placed on defining and analyzing key design issues and R and D needs in five areas: noninductive current drivers, impurity control systems, tritium breeding blankets, radiation shielding, and reactor configuration and maintenance features. The noninductive current drive analysis surveyed a wide range of candidates and selected relativistic electron beams for the reference reactor. The impurity control analysis considered both a single-null poloidal divertor and a pumped limiter. A pumped limiter located at the outer midplane was selected for the reference design because of greater engineering simplicity. The blanket design activity focused on two concepts: a Li 2 O solid breeder with high pressure water cooling and a lead-rich Li-Pb eutectic liquid metal breeder (17Li-83Pb). The reference blanket concept is the Li 2 O option with a PCA structural material. The first wall concept is a beryllium-clad corrugated panel design. The radiation shielding effort concentrated on reducing the cost of bulk and penetration shielding; the relatively low-cost outborad shield is composed of concrete, B 4 C, lead, and FE 1422 structural material

  9. Demonstration of a transportable storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Shetler, J.R.; Miller, K.R.; Jones, R.E.

    1993-01-01

    The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds

  10. Hydrogen fueling demonstration projects using compact PSA purification

    International Nuclear Information System (INIS)

    Ng, E.; Smith, T.

    2004-01-01

    'Full text:' Hydrogen fueling demonstration projects are critical to the success of hydrogen as an automotive fuel by building public awareness and demonstrating the technology required to produce, store, and dispense hydrogen. Over 75 of these demonstration projects have been undertaken or are in the planning stages world-wide, sponsored by both the public and private sectors. Each of these projects represents a unique combination of sponsors, participants, geographic location, and hydrogen production pathway. QuestAir Technologies Inc., as the industry leader in compact pressure swing adsorption equipment for purifying hydrogen, has participated in four hydrogen fueling demonstration projects with a variety of partners and in North America and Japan. QuestAir's experiences as a participant in the planning, construction, and commissioning of these demonstration projects will be presented in this paper. The unique challenges of each project and the critical success factors that must to be considered for successful deployment of high-profile, international, and multi-vendor collaborations will also be discussed. The paper will also provide insights on the requirements for hydrogen fueling demonstration projects in the future. (author)

  11. Coal-fired CCS demonstration plants, 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The present report reviews activities taking place focused on the eventual large-scale deployment of carbon capture systems on coal-fired power plants. With this aim in mind, there are three main CO2 capture technology streams currently being developed and tested; these comprise pre-combustion capture, post-combustion capture, and systems based on oxyfuel technology. Although numerous other capture systems have been proposed, these three are currently the focus of most RD&D efforts and this report concentrates on these. More speculative technologies still at early stages in their development are not addressed. The overall aims of this report are to provide an update of recent technological developments in each of the main categories of CO2 capture, and to review the current state of development of each, primarily through an examination of larger-scale development activities taking place or proposed. However, where appropriate, data generated by smaller-scale testing is noted, especially where this is feeding directly into ongoing programmes aimed at developing further, or scaling-up the particular technology. Each is reviewed and the status of individual coal-based projects and proposals described. These are limited mainly to what are generally described as pilot and/or demonstration scale. Where available, learning experiences and operational data being generated by these projects is noted. Technology Readiness Levels (TRLs) of individual projects have been used to provide an indication of technology scale and maturity. For pre-combustion capture, post-combustion capture and oxyfuel systems, an attempt has been made to identify the technological challenges and gaps in the knowledge that remain, and to determine what technology developers are doing in terms of RD&D to address these. However, issues of commercial confidentiality have meant that in some cases, information in the public domain is limited, hence it has only been possible to identify overarching

  12. The ORR Whole-Core LEU Fuel Demonstration

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Snelgrove, J.L.

    1990-01-01

    The ORR Whole-Core LEU Fuel Demonstration, conducted as part of the US Reduced Enrichment Research and Test Reactor Program, has been successfully completed. Using commercially-fabricated U 3 Si 2 -Al 20%-enriched fuel elements (4.8 g U/cc) and fuel followers (3.5 g U/cc), the 30-MW Oak Ridge Research Reactor was safely converted from an all-HEU core, through a series of HEU/LEU mixed transition cores, to an all-LEU core. There were no fuel element failures and average discharge burnups were measured to be as high as 50% for the standard elements and 75% for the fuel followers. Experimental results for burnup-dependent critical configurations, cycle-averaged fuel element powers, and fuel-element-averaged 235 U burnups validated predictions based on three-dimensional depletion calculations. Calculated values for plutonium production and isotopic mass ratios as functions of 235 U burnup support the corresponding measured quantities. In general, calculations for reaction rate distributions, control rod worths, prompt neutron decay constants, and isothermal temperature coefficients were found to agree with corresponding measured values. Experimentally determined critical configurations for fresh HEU and LEU cores radially reflected with water and with beryllium are well-predicted by both Monte Carlo and diffusion calculations. 17 refs

  13. Demonstration of pyrometallurgical processing for metal fuel and HLW

    International Nuclear Information System (INIS)

    Tadafumi, Koyama; Kensuke, Kinoshita; Takatoshi, Hizikata; Tadashi, Inoue; Ougier, M.; Rikard, Malmbeck; Glatz, J.P.; Lothar, Koch

    2001-01-01

    CRIEPI and JRC-ITU have started a joint study on pyrometallurgical processing to demonstrate the capability of this type of process for separating actinide elements from spent fuel and HLW. The equipment dedicated for this experiments has been developed and installed in JRC-ITU. The stainless steel box equipped with tele-manipulators is operated under pure Ar atmosphere, and prepared for later installation in a hot cell. Experiments on pyro-processing of un-irradiated U-Pu-Zr metal alloy fuel by molten salt electrorefining has been carried out. Recovery of U and Pu from this type alloy fuel was first demonstrated with using solid iron cathode and liquid Cd cathode, respectively. (author)

  14. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the

  15. Texas LPG fuel cell development and demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2004-07-26

    The State Energy Conservation Office has executed its first Fuel Cell Project which was awarded under a Department of Energy competitive grant process. The Texas LPG Fuel Processor Development and Fuel Cell Demonstration Program is a broad-based public/private partnership led by the Texas State Energy Conservation Office (SECO). Partners include the Alternative Fuels Research and Education Division (AFRED) of the Railroad Commission of Texas; Plug Power, Inc., Latham, NY, UOP/HyRadix, Des Plaines, IL; Southwest Research Institute (SwRI), San Antonio, TX; the Texas Natural Resource Conservation Commission (TNRCC), and the Texas Department of Transportation (TxDOT). The team proposes to mount a development and demonstration program to field-test and evaluate markets for HyRadix's LPG fuel processor system integrated into Plug Power's residential-scale GenSys(TM) 5C (5 kW) PEM fuel cell system in a variety of building types and conditions of service. The program's primary goal is to develop, test, and install a prototype propane-fueled residential fuel cell power system supplied by Plug Power and HyRadix in Texas. The propane industry is currently funding development of an optimized propane fuel processor by project partner UOP/HyRadix through its national checkoff program, the Propane Education and Research Council (PERC). Following integration and independent verification of performance by Southwest Research Institute, Plug Power and HyRadix will produce a production-ready prototype unit for use in a field demonstration. The demonstration unit produced during this task will be delivered and installed at the Texas Department of Transportation's TransGuide headquarters in San Antonio, Texas. Simultaneously, the team will undertake a market study aimed at identifying and quantifying early-entry customers, technical and regulatory requirements, and other challenges and opportunities that need to be addressed in planning commercialization of the units

  16. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  17. Demonstrating the Effects of Light Quality on Plant Growth.

    Science.gov (United States)

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  18. Fuel cycle and waste management demonstration in the IFR Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Benedict, R.W.; Laidler, J.J.; Battles, J.E.; Miller, W.E.

    1992-01-01

    Argonne's National Laboratory's Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach

  19. Evaluation of the uranium enrichment demonstration plant project

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the organization system of the uranium enrichment business is evaluated, based on the operation of the uranium enrichment demonstration plant. As a result, in uranium enrichment technology development or business, it was acknowledged that maintenance of the organization which has the Trinity of a research/engineering/operation was necessary in an industrialization stage by exceptional R and D cycle. Japan Nuclear Fuel Ltd. (JNFL) set up the Rokkashomura Aomori Uranium Enrichment Research and Development Center in November 2000. As a result, the system that company directly engaged in engineering development was prepared. And results obtained in this place is expected toward certain establishment of the uranium enrichment business of Japan. (author)

  20. Fuel handling system of nuclear reactor plants

    International Nuclear Information System (INIS)

    Faulstich, D.L.

    1991-01-01

    This patent describes a fuel handing system for nuclear reactor plants comprising a reactor vessel having an openable top and removable cover for refueling and containing therein, submerged in coolant water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units. It comprises a fuel bundle handing platform moveable over the open top of the reactor vessel; a fuel bundle handing mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grappling hook means for attaching to and transporting fuel bundles into and out from the fuel core; and a camera with a prismatic viewing head surrounded by a radioactive resisting quartz cylinder and enclosed within the grapple head which is provided with at least three windows with at least two windows provided with an angled surface for aiming the camera prismatic viewing head in different directions and thereby viewing the fuel bundles of the fuel core from different perspectives, and having a cable connecting the camera with a viewing monitor located above the reactor vessel for observing the fuel bundles of the fuel core and for enabling aiming of the camera prismatic viewing head through the windows by an operator

  1. Introduction to Exxon nuclear fuel fabrication plant

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    The Exxon Nuclear low-enriched uranium fuel fabrication plant in Richland, Washington produces fuel assemblies for both pressurized water and boiling water reactors. The Richland plant was the first US bulk-handling facility selected by the IAEA for inspection under the US-IAEA Safeguards Agreement. The plant was under IAEA inspection from March 1981 through October 1983. This text provides a written description of the plant layout, operation and process. The text also includes a one ton-a-day model (or reference) plant which was adapted from the Exxon Nuclear plant. The Model Plant provides a generic example of a low-enriched uranium (LEU) bulk-handling facility. The Model Plant is used to illustrate in a more quantitative way some of the key safeguards requirements for a bulk-handling facility

  2. Demonstration of fleet trucks fueled with PV hydrogen

    International Nuclear Information System (INIS)

    Provenzano, J.; Scott, P.B.; Zweig, R.

    1998-01-01

    The Clean Air Now (CAN) Solar Hydrogen Project has been installed at the Xerox Corporation, El Segundo, California site. Three Ford Ranger trucks have been converted to use hydrogen fuel. The ''stand- alone'' electrolyzer and hydrogen dispensing system is powered by a photovoltaic array with no connection to the power grid. A variable frequency DC/AC converter steps up the voltage to drive the 15 hp motor for the hydrogen compressor. Up to 400 standard cubic meters (SCM) of solar hydrogen is stored, and storage of up to 2300 SCM of commercial hydrogen is collocated. As the hydrogen storage is within 5km of Los Angeles International Airport, pilot operation of a hydrogen fuel cell bus for airport shuttle service has been demonstrated with fueling at the CAN facility. The truck engine conversions are bored to 2.91 displacement, use a Roots type supercharger and CVI (constant volume injection) fuel induction to allow performance similar to that of the gasoline powered truck. Truck fuel storage is done with carbon composite tanks at pressures up to 24.8 MPa (3600 psi). Two tanks are located just behind the driver's cab, and take up nearly half of the truck bed space. The truck highway range is approximately 140 miles. The engine operates in lean burn mode, with nil emissions of CO and HC. NO x emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two Xerox fleet trucks have been converted, and one for the City of West Hollywood. The Clean Air Now Program demonstrates that hydrogen powered fleet development is an appropriate safe, and effective strategy for improvement of urban air quality. It further demonstrates that continued technological development and cost reduction will make such implementation competitive. (Author)

  3. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  4. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on

  5. Hydrogen fueling stations in Japan hydrogen and fuel cell demonstration project

    International Nuclear Information System (INIS)

    Koseki, K.; Tomuro, J.; Sato, H.; Maruyama, S.

    2004-01-01

    A new national demonstration project of fuel cell vehicles, which is called Japan Hydrogen and Fuel Cell Demonstration Project (JHFC Project), has started in FY2002 on a four-year plan. In this new project, ten hydrogen fueling stations have been constructed in Tokyo and Kanagawa area in FY2002-2003. The ten stations adopt the following different types of fuel and fueling methods: LPG reforming, methanol reforming, naphtha reforming, desulfurized-gasoline reforming, kerosene reforming, natural gas reforming, water electrolysis, liquid hydrogen, by-product hydrogen, and commercially available cylinder hydrogen. Approximately fifty fuel cell passenger cars and a fuel cell bus are running on public roads using these stations. In addition, two hydrogen stations will be constructed in FY2004 in Aichi prefecture where The 2005 World Exposition (EXPO 2005) will be held. The stations will service eight fuel cell buses used as pick-up buses for visitors. We, Engineering Advancement Association of Japan (ENAA), are commissioned to construct and operate a total of twelve stations by Ministry of Economy Trade and Industry (METI). We are executing to demonstrate or identify the energy-saving effect, reduction of the environmental footprint, and issues for facilitating the acceptance of hydrogen stations on the basis of the data obtained from the operation of the stations. (author)

  6. Coal demonstration plants. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    The objective of DOE's demonstration plant program is to establish the technical and financial feasibility of coal conversion technologies proven during pilot plant testing. Demonstration plants will minimize the technical and economic risks of commercialization by providing a near commercial size plant for testing and production. Thus, DOE is sponsoring the development of a series of demonstration plants, each of which will be a smaller version of commercial plants envisioned for the 1980's. These plants will be wholly integrated, self-sufficient in terms of heat generation, and dependent only on feedstock of coal, water, and air. Contracts for designing, constructing, and operating the demonstration plants will be awarded through competitive procedures and will be jointly funded. The conceptual design phase will be funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded, 50% from industry and 50% from the government. The cost involved in building and operating a demonstration plant will probably be between $200 million and $500 million, depending on the size of the plant. Twenty-two projects involving demonstration plants or support projects for such plants are reviewed, including a summary for each of progress in the quarter. (LTN)

  7. Development of fresh fuel packaging for ATR demonstration reactor

    International Nuclear Information System (INIS)

    Kurakami, J.; Kurita, I.

    1993-01-01

    Related to development of the demonstration advanced thermal reactor, it is necessary and important to develop transport packaging which is used for transporting fresh fuel assemblies. Therefore, the packaging is now being developed in Power Reactor and Nuclear Fuel Development Corporation (PNC). Currently, PNC is fabricating two prototype packagings based on the final design, and land cruising and vibration tests, handling performance tests and prototype packaging tests will be executed with prototype packagings in order to experimentally confirm the soundness of packaging and its contents and the propriety of design technique. This paper describes the summary of general specifications and structures of this packaging and the summary of preliminary safety analysis of package. (J.P.N.)

  8. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR (Integral Fast Reactor) program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. (author)

  9. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs

  10. Uranium Fuel Plant. Applicants environmental report

    International Nuclear Information System (INIS)

    1975-05-01

    The Uranium Fuel Plant, located at the Cimarron Facility, was constructed in 1964 with operations commencing in 1965 in accordance with License No. SNM-928, Docket No. 70-925. The plant has been in continuous operation since the issuance of the initial license and currently possesses contracts extending through 1978, for the production of nuclear fuels. The Uranium Plant is operated in conjunction with the Plutonium Facility, each sharing common utilities and sanitary wastes disposal systems. The operation has had little or no detrimental ecological impact on the area. For the operation of the Uranium Fuel Fabrication Plant, initial equipment provided for the production of UO 2 , UF 4 , uranium metal and recovery of scrap materials. In 1968, the plant was expanded by increasing the UO 2 and pellet facilities by the installation of another complete production line for the production of fuel pellets. In 1969, fabrication facilities were added for the production of fuel elements. Equipment initially installed for the recovery of fully enriched scrap has not been used since the last work was done in 1970. Economically, the plant has benefited the Logan County area, with approximately 104 new jobs with an annual payroll of approximately $1.3 million. In addition, $142,000 is annually paid in taxes to state, local and federal governments, and local purchases amount to approximately $1.3 million. This was all in land that was previously used for pasture land, with a maximum value of approximately 37,000 dollars. Environmental effects of plant operation have been minimal. A monitoring and measurement program is maintained in order to ensure that the ecology of the immediate area is not affected by plant operations

  11. Design, integration and demonstration of a 50 W JP8/kerosene fueled portable SOFC power generator

    Science.gov (United States)

    Cheekatamarla, Praveen K.; Finnerty, Caine M.; Robinson, Charles R.; Andrews, Stanley M.; Brodie, Jonathan A.; Lu, Y.; DeWald, Paul G.

    A man-portable solid oxide fuel cell (SOFC) system integrated with desulfurized JP8 partial oxidation (POX) reformer was demonstrated to supply a continuous power output of 50 W. This paper discusses some of the design paths chosen and challenges faced during the thermal integration of the stack and reformer in aiding the system startup and shutdown along with balance of plant and power management solutions. The package design, system capabilities, and test results of the prototype unit are presented.

  12. Holdup measurement for nuclear fuel manufacturing plants

    International Nuclear Information System (INIS)

    Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

    The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified

  13. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  14. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  15. Wood gasification demonstration plant in the Schwaebische Alb mountains; Demonstrationsprojekt zur Holzvergasung auf der Schwaebischen Alb

    Energy Technology Data Exchange (ETDEWEB)

    Naab, Peter; Bernhart, Martin [Energieversorgung Filstal GmbH und Co. KG, Goeppingen (Germany)

    2009-12-15

    From 2011, the demonstration plant ''Technologieplattform Bioenergie und Methan (TBM) will produce a hydrogen-rich fuel gas from wood, biomass residues and steam in the intercommunal industrial area ''Gewerbepark Schwaebische Alb'' near Geislingen-Tuerkheim in the German state of Baden-Wuerttemberg. (orig.)

  16. Opportunities for PEM fuel cell commercialization : fuel cell electric vehicle demonstration in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering

    2006-07-01

    The research and development activities devoted to the development of the proton exchange membrane fuel cell (PEMFC) were discussed with reference to its application in the fuel cell electric vehicle (FCEV). In the past decade, PEMFC technology has been successfully applied in both the automobile and residential sector worldwide. In China, more than one billion RMB yuan has been granted by the Chinese government to develop PEM fuel cell technology over the past 5 years, particularly for commercialization of the fuel cell electric vehicle (FCEV). The City of Shanghai has played a significant role in the FCEV demonstration with involvement by Shanghai Auto Industrial Company (SAIC), Tongji University, Shanghai Jiaotong University, and Shanghai Shenli High Tech Co. Ltd. These participants were involved in the development and integration of the following components into the FCEV: fuel cell engines, batteries, FCEV electric control systems, and primary materials for the fuel cell stack. During the course of the next five year-plan (2006-2010), Shanghai will promote the commercialization of FCEV. More than one thousand FCEVs will be manufactured and an FCEV fleet will be in operation throughout Shanghai City by 2010.

  17. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  18. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  19. Evaluation of economical at a uranium enrichment demonstration plant

    International Nuclear Information System (INIS)

    Sugitsue, Noritake

    2001-01-01

    In this report, the economy of technical achievement apply in the uranium enrichment demonstration plant is evaluated. From the evaluation, it can be concluded that the expected purpose was achieved because there was a definite economic prospect to commercial plant. The benefit analysis of thirteen years operation of the uranium enrichment demonstration plant also provides a financial aspect of the uranium enrichment business. Therefore, the performance, price and reliability of the centrifuge is an important factor in the uranium enrichment business. And the continuous development of a centrifuge while considering balance with the development cost is necessary for the business in the future. (author)

  20. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  1. Development of a 200kW multi-fuel type PAFC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu [NTT Integrated Information & Energy System Labs., Tokyo (Japan)

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  2. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCI far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2

  3. Demonstration of fuel resistant to pellet-cladding interaction. Second semiannual report, January--June 1978

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1978-09-01

    This program has as its ultimate objective the demonstration of an advanced fuel concept that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Since currently used fuel in the nuclear power industry is subject to the PCI failure mechanism, reactor operators limit the rates of power increases and thus reduce their capacity factors in order to protect the fuel. Two concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as ''barrier fuels'') have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress and reactive fission products during reactor service. The demonstration of one of these concepts in a commercial power reactor is planned for PHASE 2 of this program. The current plans for the demonstration will involve approximately 132 bundles of PCI-resistant fuel

  4. Coal demonstration plants. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    The objective of the US DOE demonstration program is to demonstrate and verify second-generation technologies and validate the economic, environmental and productive capacity of a near commercial-size plant by integrating and operating a modular unit using commercial size equipment. These facilities are the final stage in the RD and D process aimed at accelerating and reducing the risks of industrial process implementation. Under the DOE program, contracts for the design, construction, and operation of the demonstration plants are awarded through competitive procedures and are cost shared with the industrial partner. The conceptual design phase is funded by the government, with the detailed design, procurement, construction, and operation phases being co-funded between industry and the government. The government share of the cost involved for a demonstration plant depends on the plant size, location, and the desirability and risk of the process to be demonstrated. The various plants and programs are discussed: Description and status, funding, history, flowsheet and progress during the current quarter. (LTN)

  5. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the

  6. 1000kW on-site PAFC power plant development and demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Satomi, Tomohide; Koike, Shunichi [Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA), Osaka (Japan); Ishikawa, Ryou [New Energy and Industrial Technology Development Organization (NEDO), Tokyo (Japan)

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and New Energy and Industrial Technology Development Organization (NEDO) have been conducting a joint project on development of a 5000kW urban energy center type PAFC power plant (pressurized) and a 1000kW on-site PAFC power plant (non-pressurized). The objective of the technical development of 1000kW on-site PAFC power plant is to realize a medium size power plant with an overall efficiency of over 70% and an electrical efficiency of over 36%, that could be installed in a large building as a cogeneration system. The components and system integration development work and the plant design were performed in 1991 and 1992. Manufacturing of the plant and installation at the test site were completed in 1994. PAC test was carried out in 1994, and generation test was started in January 1995. Demonstration test is scheduled for 1995 and 1996.

  7. Early Site Permit Demonstration Program: Plant parameters envelope report

    International Nuclear Information System (INIS)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry's initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants

  8. Design and simulation of a plant control system for a GCFR demonstration plant

    International Nuclear Information System (INIS)

    Estrine, E.A.; Greiner, H.G.

    1980-02-01

    A plant control system is being designed for a 300 MW(e) Gas Cooled Fast Breeder Reactor (GCFR) demonstration plant. Control analysis is being performed as an integral part of the plant design process to ensure that control requirements are satisfied as the plant design evolves. Plant models and simulations are being developed to generate information necessary to further define control system requirements for subsequent plant design iterations

  9. Alternative Fuel Transportation Optimization Tool : Description, Methodology, and Demonstration Scenarios.

    Science.gov (United States)

    2015-09-01

    This report describes an Alternative Fuel Transportation Optimization Tool (AFTOT), developed by the U.S. Department of Transportation (DOT) Volpe National Transportation Systems Center (Volpe) in support of the Federal Aviation Administration (FAA)....

  10. Results from an in-plant demonstration of intelligent control

    International Nuclear Information System (INIS)

    Edwards, R.M.; Garcia, H.E.; Messick, N.

    1993-01-01

    A learning systems-based reconfigurable controller was demonstrated on the deaerating feedwater heater at the Experimental Breeder Reactor II (EBR-II) on April 1, 1993. Failures of the normal pressure regulating process were introduced by reducing the steam flow to the heater by as much as 10%. The controller maintained pressure in the heater at acceptable levels for several minutes, whereas operator intervention would have otherwise been required within a few seconds. This experiment demonstrates the potential of advanced control techniques for improving safety, reliability, and performance of power plant operations as well as the utility of EBR-II as an experimental power plant controls facility

  11. Operational method for demonstrating fuel loading integrity in a reactor having accessible 235U fuel

    International Nuclear Information System (INIS)

    Ward, D.R.

    1979-07-01

    The Health Physics Research Reactor is a small pulse reactor at the Oak Ridge National Laboratory. It is desirable for the operator to be able to demonstrate on a routine basis that all the fuel pieces are present in the reactor core. Accordingly, a technique has been devised wherein the control rod readings are recorded with the reactor at delayed critical and corrections are made to compensate for the effects of variations in reactor height above the floor, reactor power, core temperature, and the presence of any massive neutron reflectors. The operator then compares these readings with the values expected based on previous operating experience. If this routine operational check suggests that the core fuel loading might be deficient, a more rigorous follow-up may be made

  12. Shield requirement estimation for pin storage room in fuel fabrication plant

    International Nuclear Information System (INIS)

    Shanthi, M.M.; Keshavamurthy, R.S.; Sivashankaran, G.

    2012-01-01

    Fast Reactor Fuel Cycle Facility (FRFCF) is an upcoming project in Kalpakkam. It has the facility to recycle the fuel from PFBR. It is an integrated facility, consists of fuel reprocessing plant, fuel fabrication plant (FFP), core subassembly plant, Reprocessed Uranium plant (RUP) and waste management plant. The spent fuel from PFBR would be reprocessed in fuel reprocessing plant. The reprocessed fuel material would be sent to fuel fabrication plant. The main activity of fuel fabrication plant is the production of MOX fuel pins. The fuel fabrication plant has a fuel pin storage room. The shield requirement for the pin storage room has been estimated by Monte Carlo method. (author)

  13. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  14. Massachusetts Fuel Cell Bus Project: Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-22

    The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.

  15. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  16. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  17. MELOX fuel fabrication plant: Operational feedback and future prospects

    International Nuclear Information System (INIS)

    Hugelmann, D.; Greneche, D.

    2000-01-01

    inspection equipment). In such conditions, plant safety is not affected and operation remains the same. To cope with the growing MOX fuel demand, some countries have equipped themselves (or should equip themselves in the near future) with the state-of-art MOX industrial capabilities. This growing demand is obviously linked with a higher diversity in fuel designs requirements. The empowerment of the MELOX plant, the first high-throughput MOX fuel fabrication facility in operation in the world, is in keeping with this situation: the MELOX West Fitting Building (MWFB) resulting from an optimized design know-how, is the demonstration of the COGEMA Group high capability of adaptation. With the MWFB, the completion of a versatile fabrication plant adapted to the international fuel market is reached. (author)

  18. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  19. VANTAGE 5 PWR fuel assembly demonstration program at Virgil C. Summer nuclear station

    International Nuclear Information System (INIS)

    Warner, D.C.; Orr, W.L.

    1985-01-01

    VANTAGE 5 is an improved PWR fuel product designed and manufactured by Westinghouse Electric Corporation. The VANTAGE 5 fuel design features integral fuel burnable absorbers, intermediate flow mixer grids, axial blankets, high burnup capability, and a reconstitutable top nozzle. A demonstration program for this fuel design commenced in late 1984 in cycle 2 of the Virgil C. Summer Nuclear Station. Objectives for VANTAGE 5 fuel are reduced fuel cycle costs, better core operating margins, and increased design and operating flexibility. Inspections of the VANTAGE 5 demonstration assemblies are planned at each refueling outage

  20. The fuel reprocessing plant at Wackersdorf

    International Nuclear Information System (INIS)

    Held, M.

    1986-01-01

    For a more systematic discussion about the fuel reprocessing plant at Wackersdorf, the colloquium tried to cover the most important questions put forward in the controversies: economic efficiency and energy-political needs; safety and ecological repercussions; inner safety and consequences for basic rights and the regional economic structure; majority decisions and participation of the population of the region. Elements of evaluation are the conservation of resources, health, economic efficiency, and citizens' rights of liberty. The related basic ethical questions are considered. The 18 contributions are individually recorded in the data base. (DG) [de

  1. Demonstration of direct internal reforming for MCFC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Aasberg-Petersen, K.; Christensen, P.S.; Winther, S.K. [HALDOR TOPSOE A/S, Lynby (Denmark)] [and others

    1996-12-31

    The conversion of methane into hydrogen for an MCFC by steam reforming is accomplished either externally or internally in the stack. In the case of external reforming the plant electrical efficiency is 5% abs. lower mainly because more parasitic power is required for air compression for stack cooling. Furthermore, heat produced in the stack must be transferred to the external reformer to drive the endothermic steam reforming reaction giving a more complex plant lay-out. A more suitable and cost effective approach is to use internal steam reforming of methane. Internal reforming may be accomplished either by Indirect Internal Reforming (DIR) and Direct Internal Reforming (DIR) in series or by DIR-only as illustrated. To avoid carbon formation in the anode compartment higher hydrocarbons in the feedstock are converted into hydrogen, methane and carbon oxides by reaction with steam in ail adiabatic prereformer upstream the fuel cell stack. This paper discusses key elements of the desire of both types of internal reforming and presents data from pilot plants with a combined total of more than 10,000 operating hours. The project is being carried out as part of the activities of the European MCFC Consortium ARGE.

  2. Expanded spent fuel storage project at Yankee Atomic Electric Plant

    International Nuclear Information System (INIS)

    Chin, S.L.

    1980-01-01

    A detailed discussion on the project at the Yankee Rowe power reactor for expanding the capacity of the at-reactor storage pool by building double-tier storage racks. Various alternatives for providing additional capacity were examined by the operators. Away-from-reactor alternatives included shipment to existing privately owned facilities, a regional independent storage facility, and transshipments to other New England nuclear power plant pools. At-reactor alternatives evaluated included a new pool modification of the existing structure and finally, modification of the spent fuel pit. The establishment of a federal policy precluding transshipment of spent fuel prohibited the use of off-site alternatives. The addition of another pool was too expensive. The possibility of modifying an existing on-site structure required a new safety evaluation by the regulatory group with significant cost and time delays. Therefore, the final alternative - utilizing the existing spent fuel pool with some modification - was chosen due to cost, licensing possibility, no transport requirements, and the fact that the factors involved were mainly under the control of the operator. Modification of the pool was accomplished in phases. In the first phase, a dam was installed in the center of the pool (after the spent fuel was moved to one end). In the second phase, the empty end of the pool was drained and lined with stainless steel and the double-tier rack supports were added. In the third phase, the pool was refilled and the dam was removed. Then the spent fuel was moved into the completed end. In the fourth phase, the dam was replaced and the empty part of the pool was drained. The liner and double-tier rack supports were installed, the pool was refilled, and the dam was removed.The project demonstrated that the modification of existing spent fuel fuel pools for handling double-tier fuel racks is a viable solution for increasing the storage capacity at the reactor

  3. Roles of programmable logic controllers in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Mishra, Hrishikesh; Balakrishnan, V.P.; Pandya, G.J.

    1999-01-01

    Fuel charging facility is another application of Programmable Logic Controllers (PLC) in fuel reprocessing plants, that involves automatic operation of fuel cask dolly, charging motor, pneumatic doors, clutches, clamps, stepper motors and rod pushers in a pre-determined sequence. Block diagram of ACF system is given for underlining the scope of control and interlocks requirements involved for automation of the fuel charging system has been provided for the purpose at KARP Plant, Kalpakkam

  4. Waste water pilot plant research, development, and demonstration permit application

    International Nuclear Information System (INIS)

    1993-03-01

    This permit application has been prepared to obtain a research, development, and demonstration permit to perform pilot-scale treatability testing on the 242-A Evaporator process condensate waste water effluent stream. It provides the management framework, and controls all the testing conducted in the waste water pilot plant using dangerous waste. It also provides a waste acceptance envelope (upper limits for selected constituents) and details the safety and environmental protection requirements for waste water pilot plant testing. This permit application describes the overall approach to testing and the various components or requirements that are common to all tests. This permit application has been prepared at a sufficient level of detail to establish permit conditions for all waste water pilot plant tests to be conducted

  5. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  6. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  7. Demonstration of risk-based approaches to nuclear plant regulation

    International Nuclear Information System (INIS)

    Rahn, F.J.; Sursock, J.P.; Darling, S.S.; Oddo, J.M.

    1993-01-01

    This paper describes generic technical support EPRI is providing to the nuclear power industry relative to its recent initiatives in the area of risk-based regulations (RBR). A risk-based regulatory approach uses probabilistic risk assessment (PRA), or similar techniques, to allocate safety resources commensurate with the risk posed by nuclear plant operations. This approach will reduce O ampersand M costs, and also improve nuclear plant safety. In order to enhance industry, Nuclear Regulatory Commission (NRC) and public confidence in RBR, three things need to be shown: (1) manpower/resource savings are significant for both NRC and industry; (2) the process is doable in a reasonable amount of time; and (3) the process, if uniformly applied, results in demonstrably cheaper power and safer plants. In 1992, EPRI performed a qualitative study of the key RBR issues contributing to high O ampersand M costs. The results are given on Table 1. This study is being followed up by an in-depth quantitative cost/benefit study to focus technical work on producing guidelines/procedures for licensing submittals to NRC. The guidelines/procedures necessarily will be developed from successful demonstration projects such as the Fitzpatrick pilot plant study proposed by the New York Power Authority and other generic applications. This paper presents three examples: two motor operated valve projects performed by QUADREX Energy Services Corporation working with utilities in responding to NRC Generic Letter 89-10, and a third project working with Yankee Atomic Electric Company on service water systems at a plant in its service system. These demonstration projects aim to show the following: (1) the relative ease of putting together a technical case based on RBR concepts; (2) clarity in differentiating the various risk trade-offs, and in communicating overall reductions in risk with NRC; and (3) improved prioritization of NRC directives

  8. Sludge, garbage may fuel California sewage plant

    Energy Technology Data Exchange (ETDEWEB)

    Sieger, R B

    1977-01-01

    The combustion and pyrolysis of sewage sludge and refuse-derived fuel (RFD) in multiple-hearth furnaces were recommended as a means of generating energy to power the Central Contra Costa Sanitary District's 30 mgd wastewater treatment plant using an off-gas from the pyrolysis process. In a full-scale test, a furnace in Concord, once used for sewage sludge incineration, was operated under O/sub 2/-starved conditions by limiting air addition through the burners and air nozzles, resulting in partial combustion. Using temperature as the controlled variable, the process was regulated to form a fuel gas through composition of the organic feed matter. Just enough fuel gas was combusted to evaporate moisture in the feed solids and furnish heat for the decomposition process. During most of the testing the afterburner was maintained at a temperature > 1400/sup 0/F with pyrolysis gas. At this temperature, automatic ignition of the gas occurred. When the gas generated dropped to a low heat of combustion because of high feed moisture content, the afterburner burner was used to ignite the gas. Some test observations are discussed. Preparation of the solid waste for processing by the use of shredders, air classifiers, and magnetic separators is described.

  9. Fuel additive improves plant`s air quality

    Energy Technology Data Exchange (ETDEWEB)

    Kratch, K.

    1995-07-01

    Employees of a major pulp and paper manufacturer complained to the Michigan Department of Public Health that emissions from liquefied petroleum gas-powered fork-lifts used in one of the facility`s warehouses were making them ill. The new and tight building was locking in carbon monoxide emissions, according to the plant`s vehicle maintenance supervisor. Although LPG is a clean-burning fuel, it absorbs impurities from pipelines, resulting in emissions problems. After the company introduced a fuel additive to the LPG, employees` symptoms disappeared. According to the maintenance supervisor, there have been no complaints since the additive was introduced five years ago. A major US auto manufacturer also found the additive helpful in reducing carbon monoxide emissions from forklift trucks in a large parts warehouse to levels within OSHA limits. The carmaker conducted a test of 10 forklifts at its Toledo, Ohio, plant to determine the additive`s effectiveness. Trucks were equipped with new or rebuilt vaporizers, and their carburetors were adjusted for the lowest carbon monoxide and hydrocarbon emissions levels prior to the test. According to Advanced Technology, five trucks were filled with LPG and treated with CGX-4, and five used fuel from the same stock but without the additive. All were operated 16 hours a day, six days a week without further tuning or adjusting. Carbon monoxide and hydrocarbon emissions were measured at 30-, 45- and 65-day intervals. Test results show that all of the trucks using the additive maintained low levels of carbon monoxide and hydrocarbon emissions longer than trucks not using the additive.

  10. Experience gained with the Synroc demonstration plant at ANSTO and its relevance to plutonium immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Jostsons, A.; Ridal, A.; Mercer, D.J.; Vance, E.R.L. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1996-05-01

    The Synroc Demonstration Plant (SDP) was designed and constructed at Lucas Heights to demonstrate the feasibility of Synroc production on a commercial scale (10 kg/hr) with simulated Purex liquid HLW. Since commissioning of the SDP in 1987, over 6000 kg of Synroc has been fabricated with a range of feeds and waste loadings. The SDP utilises uniaxial hot-pressing to consolidate Synroc. Pressureless sintering and hot-isostatic pressing have also been studied at smaller scales. The results of this extensive process development have been incorporated in a conceptual design for a radioactive plant to condition HLW from a reprocessing plant with a capacity to treat 800 tpa of spent LWR fuel. Synroic containing TRU, including Pu, and fission products has been fabricated and characterised in a glove-box facility and hot cells, respectively. The extensive experience in processing of Synroc over the past 15 years is summarised and its relevance to immobilization of surplus plutonium is discussed.

  11. Power-up of Fugen reactor and development of demonstration plant

    International Nuclear Information System (INIS)

    Sawai, Sadamu; Akebi, Michio; Yazaki, Akira.

    1979-06-01

    The Fugen Nuclear Power Station is the 165 MWe prototype plant characterized by heavy water-moderated, boiling light water-cooled, pressure tube type, and was developed by the Power Reactor and Nuclear Fuel Development Corporation, Japan. The plant went into commercial operation on March 20, 1979, in Tsuruga, Fukui Prefecture. Some delay in the overall schedule occurred due to the shortage of cement caused by the oil crisis, more stringent regulations as the result of stress corrosion cracking experienced in BWRs, and design modifications. All functional tests, the final check-up of the whole plant, and remaining modifying works had been completed by March 10, 1978. The minimum criticality was achieved with 22 mixed oxide fuel assemblies on March 20, 1978. Thereafter, the tests on reactor physics, plant dynamics, the performances of components and systems, and radiation and water chemistry have been carried out. 5 MWe was sent to grid system for the first time on July 29, 1978. The commercial operation of the plant was licenced by the Government on March 30, 1979. The conceptual design of the 600 MWe demonstration plant was finished in early 1979, and the detailed design is to be carried out in 1979 and 1980. The main design principle was incorporated in the conceptual design, but some modifications are to be made to reduce the power cost and to facilitate the easy maintenance. (Kako, I.)

  12. Current status and technical description of Chinese 2 x 250 MWth HTR-PM demonstration plant

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Wu Zongxin; Wang Dazhong; Xu Yuanhui; Sun Yuliang; Li Fu; Dong Yujie

    2009-01-01

    After the nuclear accidents of Three Mile Island and Chernobyl the world nuclear community made great efforts to increase research on nuclear reactors and to develop advanced nuclear power plants with much improved safety features. Following the successful construction and a most gratifying operation of the 10 MW th high-temperature gas-cooled test reactor (HTR-10), the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University has developed and designed an HTR demonstration plant, called the HTR-PM (high-temperature-reactor pebble-bed module). The design, having jointly been carried out with industry partners from China and in collaboration of experts worldwide, closely follows the design principles of the HTR-10. Due to intensive engineering and R and D efforts since 2001, the basic design of the HTR-PM has been finished while all main technical features have been fixed. A Preliminary Safety Analysis Report (PSAR) has been compiled. The HTR-PM plant will consist of two nuclear steam supply system (NSSS), so called modules, each one comprising of a single zone 250 MW th pebble-bed modular reactor and a steam generator. The two NSSS modules feed one steam turbine and generate an electric power of 210 MW. A pilot fuel production line will be built to fabricate 300,000 pebble fuel elements per year. This line is closely based on the technology of the HTR-10 fuel production line. The main goals of the project are two-fold. Firstly, the economic competitiveness of commercial HTR-PM plants shall be demonstrated. Secondly, it shall be shown that HTR-PM plants do not need accident management procedures and will not require any need for offsite emergency measures. According to the current schedule of the project the completion date of the demonstration plant will be around 2013. The reactor site has been evaluated and approved; the procurement of long-lead components has already been started. After the successful operation of the demonstration plant

  13. Performance of candu-6 fuel bundles manufactured in romania nuclear fuel plant

    International Nuclear Information System (INIS)

    Bailescu, A.; Barbu, A.; Din, F.; Dinuta, G.; Dumitru, I.; Musetoiu, A.; Serban, G.; Tomescu, A.

    2013-01-01

    The purpose of this article is to present the performance of nuclear fuel produced by Nuclear Fuel Plant (N.F.P.) - Pitesti during 1995 - 2012 and irradiated in units U1 and U2 from Nuclear Power Plant (N.P.P.) Cernavoda and also present the Nuclear Fuel Plant (N.F.P.) - Pitesti concern for providing technology to prevent the failure causes of fuel bundles in the reactor. This article presents Nuclear Fuel Plant (N.F.P.) - Pitesti experience on tracking performance of nuclear fuel in reactor and strategy investigation of fuel bundles notified as suspicious and / or defectives both as fuel element and fuel bundle, it analyzes the possible defects that can occur at fuel bundle or fuel element and can lead to their failure in the reactor. Implementation of modern technologies has enabled optimization of manufacturing processes and hence better quality stability of achieving components (end caps, chamfered sheath), better verification of end cap - sheath welding. These technologies were qualified by Nuclear Fuel Plant (N.F.P.) - Pitesti on automatic and Computer Numerical Control (C.N.C.) programming machines. A post-irradiation conclusive analysis which will take place later this year (2013) in Institute for Nuclear Research Pitesti (the action was initiated earlier this year by bringing a fuel bundle which has been reported defective by pool visual inspection) will provide additional information concerning potential damage causes of fuel bundles due to manufacturing processes. (authors)

  14. Demonstration of fuel resistant to pellet-cladding interaction. First semiannual report, July-December 1977

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, H.S. (comp.)

    1978-02-01

    Objective is the demonstration od advanced fuel concepts that are resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Since currently used fuel in the nuclear power industry is subject to the PCI failure mechanism, reactor operators limit the rates of power increases and thus reduce their capacity factors in order to protect the fuel. Two barrier concepts are being prepared for demonstration: (a) Cu-Barrier fuel and (b) Zr-Liner fuel. The large-scale demonstration of the PCI-resistant fuel is being designed generically to show feasibility of such a demonstration in a commercial power reactor of type BWR/3 having a steady-state core. Using the core of Quad Cities-1 reactor at the beginning of Cycle 6, the insertion of the demonstration PCI-resistant fuel and the reactor operational plan are being designed. Support laboratory tests to date for the Demonstration have shown that these barrier fuels (both the Cu-Barrier and the Zr-Liner types) are resistant to PCI. Four lead test assemblies (LTA) of the advanced PCI-resistant fuel are being fabricated for insertion into the Quad Cities-1 Boiling Water Reactor at the beginning of Cycle 5 (January 1979).

  15. Safety problems in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Amaury, P.; Jouannaud, C.; Niezborala, F.

    1979-01-01

    The document first situates the reprocessing in the fuel cycle as a whole. It shows that a large reprocessing plant serves a significant number of reactors (50 for a plant of 1500 tonnes per annum). It then assesses the potential risks with respect to the environment as well as with respect to the operating personnel. The amounts of radioactive matter handled are very significant and their easily dispersible physical form represents very important risks. But the low potential energy likely to bring about this dispersion and the very severe and plentiful confinement arrangements are such that the radioactive risks are very small, both with respect to the environment and the operating personnel. The problems of the interventions for maintenance or repairs are mentioned. The intervention techniques in a radioactive environment are perfected, but they represent the main causes of operating personnel irradiation. The design principle applied in the new plants take this fact into account, involving a very significant effort to improve the reliability of the equipment and ensuring the provision of devices enabling the failing components to be replaced without causing irradiation of the personnel [fr

  16. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  17. The Evritania (Greece) demonstration plant of biomass pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zabaniotou, A.A.; Karabela, A.J. [Aristotle University of Thessaloniki (Greece). Dept. of Chemical Engineering and Chemical Process Engineering Research Institute

    1999-06-01

    This paper is focused on describing the Evritania demonstration plant for pyrolysis of forestry biomass. This plant was constructed in the village of Voulpi, district of Evritania, in central Greece, in 1995, with a threefold purpose; development of know-how, forest fire prevention and rural development. The products are charcoal and bio-oil. The plant capacity is 1200-1450 kg/h of wet biomass and the pyrolysis temperature is approx. 400 deg C. The raw material used is Arbutus unedo, which is an evergreen broad-leaf tree which covers the area. Other agricultural waste could also be used, such as olive pits and cuttings, almond shells and cotton kernels. The paper includes the conceptual process flow sheet, the changes and improvements made during the trial phase, data from the start-up phase, and product characteristics. Comparison of the process with the Alten process is presented. Additionally, comparisons are made of product characteristics with those from other pyrolysis processes. In general, the results obtained are encouraging even though several improvements of the pilot plant are required. (author)

  18. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  19. Fuel Cell Power Plants Renewable and Waste Fuels

    Science.gov (United States)

    2011-01-13

    logo, Direct FuelCell and “DFC” are all registered trademarks (®) of FuelCell Energy, Inc. Applications •On-site self generation of combined heat... of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency

  20. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report

    Science.gov (United States)

    2017-09-01

    This report presents results of a demonstration of fuel cell electric buses (FCEBs) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration that includes 13 advanced-d...

  1. Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations

    Science.gov (United States)

    2016-07-01

    ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use... Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of

  2. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  3. Savannah River Plant low-level waste incinerator demonstration

    International Nuclear Information System (INIS)

    Tallman, J.A.

    1984-01-01

    A two-year demonstration facility was constructed at the Savannah River Plant (SRP) to incinerate suspect contaminated solid and low-level solvent wastes. Since startup in January 1984, 4460 kilograms and 5300 liters of simulated (uncontaminated) solid and solvent waste have been incinerated to establish the technical and operating data base for the facility. Combustion safeguards have been enhanced, process controls and interlocks refined, some materials handling problems identified and operating experience gained as a result of the 6 month cold run-in. Volume reductions of 20:1 for solid and 25:1 for solvent waste have been demonstrated. Stack emissions (NO 2 , SO 2 , CO, and particulates) were only 0.5% of the South Carolina ambient air quality standards. Radioactive waste processing is scheduled to begin in July 1984. 2 figures, 2 tables

  4. Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

    1994-01-01

    Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described

  5. Fuel handling and storage systems in nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The scope of this Guide includes the design of handling and storage facilities for fuel assemblies from the receipt of fuel into the nuclear power plant until the fuel departs from that plant. The unirradiated fuel considered in this Guide is assumed not to exhibit any significant level of radiation so that it can be handled without shielding or cooling. This Guide also gives limited consideration to the handling and storage of certain core components. While the general design and safety principles are discussed in Section 2 of this Guide, more specific design requirements for the handling and storage of fuel are given in detailed sections which follow the general design and safety principles. Further useful information is to be found in the IAEA Technical Reports Series No. 189 ''Storage, Handling and Movement of Fuel and Related Components at Nuclear Power Plants'' and No. 198 ''Guide to the Safe Handling of Radioactive Wastes at Nuclear Power Plants''. However, the scope of the Guide does not include consideration of the following: (1) The various reactor physics questions associated with fuel and absorber loading and unloading into the core; (2) The design aspects of preparation of the reactor for fuel loading (such as the removal of the pressure vessel head for a light water reactor) and restoration after loading; (3) The design of shipping casks; (4) Fuel storage of a long-term nature exceeding the design lifetime of the nuclear power plant; (5) Unirradiated fuel containing plutonium

  6. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results. Fourth Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-02

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 12 advanced-design fuel cell buses and two hydrogen fueling stations. The FCEBs in service at AC Transit are 40-foot, low-floor buses built by Van Hool with a hybrid electric propulsion system that includes a US Hybrid fuel cell power system and EnerDel lithium-based energy storage system. The buses began revenue service in May 2010.

  7. Typical IAEA operations at a fuel fabrication plant

    International Nuclear Information System (INIS)

    Morsy, S.

    1984-01-01

    The IAEA operations performed at a typical Fuel Fabrication Plant are explained. To make the analysis less general the case of Low Enriched Uranium (LEU) Fuel Fabrication Plants is considered. Many of the conclusions drawn from this analysis could be extended to other types of fabrication plants. The safeguards objectives and goals at LEU Fuel Fabrication Plants are defined followed by a brief description of the fabrication process. The basic philosophy behind nuclear material stratification and the concept of Material Balance Areas (MBA's) and Key Measurement Points (KMP's) is explained. The Agency operations and verification methods used during physical inventory verifications are illustrated

  8. Postirradiation examination of Kori-1 nuclear power plant fuels

    International Nuclear Information System (INIS)

    Ro, S.G.; Kim, E.K.; Lee, K.S.; Min, D.K.

    1994-01-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institue. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity. (orig.)

  9. Postirradiation examination of Kori-1 nuclear power plant fuels

    Science.gov (United States)

    Seung-Gy, Ro; Eun-Ka, Kim; Key-Soon, Lee; Duck-Kee, Min

    1994-05-01

    Full size fuels discharged from Kori-1 PWR nuclear power plant have been subjected to postirradiation examination. The fuels under investigation were irradiated for one- to four-reactor cycles. Nondestructive examination and dismantling of the fuel assemblies have been conducted in the pool of the postirradiation examination facility (PIEF) of Korea Atomic Energy Research Institute. Subsequently nondestructive and destructive examinations of fuel rods have been performed in the hot cells of the PIEF. An evaluation of fuel burnup behaviors was based on the postirradiation examination data and the nominal design values. The results did not show any evidence of abnormalities in the fuel integrity.

  10. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  11. Demonstration of Hydrogen Energy Network and Fuel Cells in Residential Homes

    International Nuclear Information System (INIS)

    Hirohisa Aki; Tetsuhiko Maeda; Itaru Tamura; Akeshi Kegasa; Yoshiro Ishikawa; Ichiro Sugimoto; Itaru Ishii

    2006-01-01

    The authors proposed the setting up of an energy interchange system by establishing energy networks of electricity, hot water, and hydrogen in residential homes. In such networks, some homes are equipped with fuel cell stacks, fuel processors, hydrogen storage devices, and large storage tanks for hot water. The energy network enables the flexible operation of the fuel cell stacks and fuel processors. A demonstration project has been planned in existing residential homes to evaluate the proposal. The demonstration will be presented in a small apartment building. The building will be renovated and will be equipped with a hydrogen production facility, a hydrogen interchange pipe, and fuel cell stacks with a heat recovery device. The energy flow process from hydrogen production to consumption in the homes will be demonstrated. This paper presents the proposed energy interchange system and demonstration project. (authors)

  12. Feasibility study of fuel grade ethanol plant for Alcohol Fuels of Mississippi, Inc. , Vicksburg, Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The results are presented of a feasibility study performed to determine the technical and economic viability of constructing an alcohol plant utilizing the N.Y.U. continuous acid hydrolysis process to convert wood wastes to fuel grade alcohol. The following is a summary of the results: (1) The proposed site in the Vicksburg Industrial Foundation Corporation Industrial Park is adequate from all standpoints, for all plant capacities envisioned. (2) Local hardwood sawmills can provide adequate feedstock for the facility. The price per dry ton varies between $5 and $15. (3) Sale of fuel ethanol would be made primarily through local distributors and an adequate market exists for the plant output. (4) With minor modifications to the preparation facilities, other waste cellulose materials can also be utilized. (5) There are no anticipated major environmental, health, safety or socioeconomic risks related to the construction and operation of the proposed facility. (6) The discounted cash flow and rate of return analysis indicated that the smallest capacity unit which should be built is the 16 million gallon per year plant, utilizing cogeneration. This facility has a 3.24 year payback. (7) The 25 million gallon per year plant utilizing cogeneration is an extremely attractive venture, with a zero interest break-even point of 1.87 years, and with a discounted rate of return of 73.6%. (8) While the smaller plant capacities are unattractive from a budgetary viewpoint, a prudent policy would dictate that a one million gallon per year plant be built first, as a demonstration facility. This volume contains process flowsheets and maps of the proposed site.

  13. Viewpoint of utilities regarding fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    The engagement of utilities in nuclear power requires them to engage in an increasing amount of fuel management activities in order to carry out all the tasks involved. Essentially, these activities involve two main areas: The procurement of all steps of the fuel cycle from the head to the back end; and in-core fuel management. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be borne by the utilities. Today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The fuel management activities of the utilities are analysed with respect to organizational, technical, safeguarding, and financial aspects. The active participation of the utilities in fuel management helps to achieve high availability and flexibility of the nuclear power plant during its whole life as well as safe waste isolation. This can be ensured by continuous optimization of all fuel management aspects of the power plant or, on a larger scale, of a power plant system, i.e. activities by utilities to minimize fuel-cycle effects on the environment, which include optimization of fuel behaviour, and radiation exposure to the public and personnel; and technical and economic evaluations by utilities of out- and in-core fuel management. (author)

  14. Cost of transporting irradiated fuels and maintenance costs of a chemical treatment plant for irradiated fuels

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1964-01-01

    Numerous studies have been made of the cost of a fuel cycle, but many of them are based on a priori studies and are therefore to be treated with reserve. Thus, in the part dealing with the treatment of irradiated fuels, some important factors in the cost have only rarely been given on the basis of practical experience: the cost of transporting the fuels themselves and the plant maintenance costs. Investigations relating to transport costs are generally based on calculations made from somewhat arbitrary data. The studies carried out in France on the transport of irradiated uranium between the EDF reactors at Chinon and the retreatment plant at La Hague of the irradiated uranium from research reactors to foreign retreatment plants, are reported; they show that by a suitable choice of transport containers and details of expedition it has been possible to reduce the costs very considerably. This has been achieved either by combining rail and road transport or by increasing the writ capacities of the transport containers: an example is given of a container for swimming-pool pile elements which can transport a complete pile core at one time, thus substantially reducing the cost. Studies concerning the maintenance costs of retreatment plants are rarer still, although in direct maintenance plants these figures represent an appreciable fraction of the total treatment cost. An attempt has been made, on the basis of operational experience of a plant, to obtain some idea of these costs. Only maintenance proper has been considered, excluding subsidiary operations such as the final decontamination of apparatus, the burial of contaminated material and radioprotection operations Maintenance has been divided into three sections: mechanical maintenance, maintenance of electrical equipment and maintenance of control and adjustment apparatus. In each of these sections the distinction has been made between manpower and the material side. In order to allow comparisons to be made with

  15. Technical exercise and demonstration of the spent fuel attribute tester at the TVO NPS in Finland

    International Nuclear Information System (INIS)

    Tikkinen, J.; Tarvainen, M.

    1991-01-01

    A piece of new safeguards equipment, the Spent Fuel Attribute Tester (SFAT), is being developed for the verification of spent nuclear fuel in a standard storage geometry. Lifting of fuel assemblies from the storage position is not required for the verification. The SFAT can be handled like a fresh fuel assembly in the storage basin by the fuel handling machine. The feasibility of the SFAT-equipment for the verification of spent BWR fuel was demonstrated. A comparison of various types of gamma detectors, such as the Geiger-Mueller counter, NaI- and CdTe detectors was made for SFAT use. Measurements for optimizing the lead shielding, filtering, collimation and other geometrical parameters of SFAT were made. The precision of movements of the SFAT in the pond by the fuel handling machine and safety margins for these operations were estimated. (orig.)

  16. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.R.

    1987-01-01

    The new Fuel Handling Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both Magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for active commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  17. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.

    1987-01-01

    The new Fuel Handing Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for ''active'' commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  18. Chinese nuclear heating test reactor and demonstration plant

    International Nuclear Information System (INIS)

    Wang Dazhong; Ma Changwen; Dong Duo; Lin Jiagui

    1992-01-01

    In this report the importance of nuclear district heating is discussed. From the viewpoint of environmental protection, uses of energy resources and transport, the development of nuclear heating in China is necessary. The development program of district nuclear heating in China is given in the report. At the time being, commissioning of the 5 MW Test Heating Reactor is going on. A 200 MWt Demonstration Plant will be built. In this report, the main characteristics of these reactors are given. It shows this type of reactor has a high inherent safety. Further the report points out that for this type of reactor the stability is very important. Some experimental results of the driving facility are included in the report. (orig.)

  19. Generic demonstration plant study (A/E package)

    International Nuclear Information System (INIS)

    Molzen, D.F.

    1979-01-01

    Molzen--Corbin and Associates, Albuquerque, New Mexico, under contract to Sandia Laboratories, has prepared preliminary drawings, descriptive material and a scale model of the demonstration plant. This information will be made available to A/E firms to assist them in the preparation of proposals for complete construction plans and specifications. The four categories for which preliminary work has been prepared consist of structural work, mechanical work, electrical work, and cost estimates. In addition, preliminary specifications, including a written description of the facility consisting of mechanical electrical systems and operations, a description of the safety features, the basic design criteria, three-dimensional sketches, and a scale model of the design have been prepared. The preliminary drawings indicate the required minimum wall thicknesses, overall dimensions and the necessary layout of the removable concrete blocks and slabs required for radiation protection and control

  20. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  1. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    Science.gov (United States)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  2. Progress and prospects for phosphoric acid fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  3. Assessment of Startup Fuel Options for a Test or Demonstration Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, Jon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walters, L. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO2 and UO2-PuO2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availability are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.

  4. Plant Performance of Solid Oxide Fuel Cell Systems Fed by Alternative Fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2016-01-01

    Different plant design for several fuel types such as natural gas, methanol, ethanol, DME, ammonia and pure hydrogen are presented and analysed. Anode recirculation which is an important issue in SOFC plants are also explored and studied. It is shown that depending on type of the fuel whether fuel...... recycle increases plant efficiency only if fuel utilization factor is low. Other important issues such as why plant efficiency is lower when it is fed with hydrogen or biogas compared to when it is fed by other fuels such as methanol, ethanol, DME and ammonia will also be discussed and explained....... For example, plant efficiency of 45%, 54% and 50.5% can be achieved if the hydrogen, ethanol and methanol are used respectively....

  5. Controlling system for an experimental demonstration plant for energy conversion using PEMFCs

    International Nuclear Information System (INIS)

    Culcer, Mihail; Iliescu, Mariana; Stefanescu, Ioan; Raceanu, Mircea; Enache, Adrian; Patularu, Laurentiu

    2006-01-01

    Full text: In the last decades of the previous century, due to global environmental problems, energy security and supply issues, many studies were conducted to investigate the uses for hydrogen energy and facilitate its penetration as an energy carrier. Subsequently, many industries worldwide began developing and producing hydrogen, hydrogen-powered vehicles, hydrogen fuel cells, and other hydrogen-based technologies. In view of the substantial long-term public and private benefits arising from hydrogen and fuel cells, the European Union and national governments throughout Europe, including the Romanian one, are working towards developing a consistent policy framework preparing the transition to a hydrogen based economy. ICIT Rm Valcea developed a research program on energy conversion using fuel cells, a project supported by the Romanian Ministry of Education and Research within the National R and D Program. An experimental demonstration pilot plant of energy conversion using PEMFCs and hydrogen producing via steam methane reforming (SMR) was achieved in order to investigate the development of small-scale SMR technologies and to allow testing and developing of specific components. The paper deals with the dedicated controlling system that provides automated data acquisition, manual or 'on line' operational control, gas management, humidification, temperature and flow controls of the pilot plant. (authors)

  6. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schuetzle, Dennis [Renewable Energy Institute International, Sacramentao, CA (United States); Tamblyn, Greg [Renewable Energy Institute International, Sacramentao, CA (United States); Caldwell, Matt [Renewable Energy Institute International, Sacramentao, CA (United States); Hanbury, Orion [Renewable Energy Institute International, Sacramentao, CA (United States); Schuetzle, Robert [Greyrock Energy, Sacramento, CA (United States); Rodriguez, Ramer [Greyrock Energy, Sacramento, CA (United States); Johnson, Alex [Red Lion Bio-Energy, Toledo, OH (United States); Deichert, Fred [Red Lion Bio-Energy, Toledo, OH (United States); Jorgensen, Roger [Red Lion Bio-Energy, Toledo, OH (United States); Struble, Doug [Red Lion Bio-Energy, Toledo, OH (United States)

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  7. Utilities' view on the fuel management of nuclear power plants

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Utilities engagement in nuclear power requires an increasing amount of fuel management activities by the utilities in order to meet all tasks involved. These activities comprise essentially two main areas: - activities to secure the procurement of all steps of the fuel cycle from the head to the back end; - activities related to the incore fuel managment. A general survey of the different steps of the nuclear fuel cycle is presented together with the related activities and responsibilities which have to be realized by the utilities. Starting in the past, today's increasing utility involvement in the nuclear fuel management is shown, as well as future fuel management trends. The scope of utilities' fuel management activities is analyzed with respect to organizational aspects, technical aspects, safeguarding aspects, and financial aspects. Utilities taking active part in the fuel management serves to achieve high availability and flexibility of the nuclear power plant during the whole plant life as well as safe waste isolation. This can be assured by continuous optimization of all fuel management aspects of the power plant or on a larger scale of a power plant system, i.e., utility activities to minimize the effects of fuel cycle on the environment, which includes optimization of fuel behaviour, radiation exposure to public and personnel, and utility technical and economic evaluations of out- and incore fuel management. These activities of nuclear power producing utilities in the field of nuclear fuel cycle are together with a close cooperation with fuel industry as well as national and international authorities a necessary basis for the further utilization of nuclear power

  8. Fuel R and D international programmes, a way to demonstrate future fuel performances

    International Nuclear Information System (INIS)

    Vanderborck, Y.; Mertens, L.; Dekeyser, J.; Sannen, L.

    1997-01-01

    As a MOX fuel manufacturer, BELGONUCLEAIRE have spent more than 15 years promoting and managing International R and D Programmes, many of them in close cooperation with SCK''centrdot'' CEN. Such programmes dedicated to MOX versus UO 2 fuel behaviour are most of the time based on irradiation in research reactors in which the investigated fuel is submitted to power variations and to ramp testing or are performed in commercial reactors. This paper is focused on recent programmes concerned by high and medium burn-up in BWR and PWR conditions for MOX fuel. It will present also the new opportunities for new programmes. The goals, the programmes descriptions and the expected data being part of these R and D programmes is presented. (author)

  9. Demonstrating the benefits of fuel cells: further significant progress towards commercialisation

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-01-01

    The fourteenth Fuel Cell Seminar held in San Diego, California in 1994 is reported. The phosphoric acid fuel cell (PAFC) is the closest to widespread commercialization. PAFC cogeneration plants have to be shown to compare favourable in reliability with current mature natural gas-fuelled engine and turbine technologies. Although highly efficient, further development is necessary to produce cost effective generators. Progress is being made on proton exchange membrane fuel cell (PEMFC) stationary power plants, too, which may prove to be cost effective. In view of its lower operating temperature, at below 100[sup o]C compared with about 200[sup o]C for the PAFC, the principal use of the PEMFC has been identified as powering vehicles. Fuel cells have significant environmental advantages but further capital cost reductions are necessary if they are to compete with established technologies. (UK)

  10. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  11. Demonstration test for reliability of valves for atomic power plants

    International Nuclear Information System (INIS)

    Hosaka, Shiro

    1978-01-01

    The demonstration test on the reliability of valves for atomic power plants being carried out by the Nuclear Engineering Test Center is reported. This test series is conducted as six-year project from FY 1976 to FY 1981 at the Isogo Test Center. The demonstration test consists of (1) environmental test, (2) reaction force test, (3) vibration test, (4) stress measurement test, (5) operational characteristic test, (6) flow resistance coefficient measuring test, (7) leakage test and (8) safety valve and relief valve test. These contents are explained about the special requirements for nuclear use, for example, the enviornmental condition after the design base accident of PWRs and BWRs, the environmental test sequence for isolation valves of containment vessels under the emergency condition, the seismic test condition for valves of nuclear use, the various stress measurements under thermal transient conditions, the leak test after 500 cycles between the normal operating conditions for PWRs and BWRs and the start up conditions and so on. As for the testing facilities, the whole flow diagram is shown, in which the environmental test section, the vibration test section, the steam test section, the hot water test section, the safety valve test section and main components are included. The specifications of each test section and main components are presented. (Nakai, Y.)

  12. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  13. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  14. Considerations for handling failed fuel at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Cholister, R.J.

    1982-05-01

    The impact of failed fuel receipt on reprocessing operations is qualitatively described. It appears that extended storage of fuel, particularly with advanced storage techniques, will increase the quantity of failed fuel, the nature and possibly the configuration of the fuel. The receipt of failed fuel at the BNFP increases handling problems, waste volumes, and operator exposure. If it is necessary to impose special operating precautions to minimize this impact, a loss in plant throughput will result. Hence, ideally, the reprocessing plant operator would take every reasonable precaution so that no failed fuel is received. An alternative policy would be to require that failed fuel be placed in a sealed canister. In the latter case the canister must be compatible with the shipping cask and suitable for in-plant storage. A required inspection of bare fuel would be made at the reactor prior to shipping off-site. This would verify fuel integrity. These requirements are obviously idealistic. Due to the current uncertain status of reprocessing and the need to keep reactors operating, business or governmental policy may be enacted resulting in the receipt of a negotiated quantity of non-standard fuel (including failed fuel). In this situation, BNFP fuel receiving policy based soley on fuel cladding integrity would be difficult to enforce. There are certain areas where process incompatibility does exist and where a compromise would be virtually impossible, e.g., canned fuel for which material or dimensional conflicts exist. This fuel would have to be refused or the fuel would require recanning prior to shipment. In other cases, knowledge of the type and nature of the failure may be acceptable to the operator. A physical inspection of the fuel either before shipment or after the cask unloading operation would be warranted. In this manner, concerns with pool contamination can be identified and the assembly canned if deemed necessary

  15. Fuel performance experience at TVO nuclear power plant

    International Nuclear Information System (INIS)

    Patrakka, E.T.

    1985-01-01

    TVO nuclear power plant consists of two BWR units of ASEA-ATOM design. The fuel performance experience extending through six cycles at TVO I and four cycles at TVO II is reported. The experience obtained so far is mainly based on ASEA-ATOM 8 x 8 fuel and has been satisfactory. Until autumn 1984 one leaking fuel assembly had been identified at TVO I and none at TVO II. Most of the problems encountered have been related to leaf spring screws and channel screws. The experience indicates that satisfactory fuel performance can be achieved when utilizing strict operational rules and proper control of fuel design and manufacture. (author)

  16. Transuranic material recovery in the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Benedict, R.W.; Goff, K.M.

    1993-01-01

    The Integral Fast Reactor is an innovative liquid metal reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel cycle economics, environmental protection, and safeguards. The plans for demonstrating the IFR fuel cycle, including its waste processing options, by processing irradiated fuel from the Experimental Breeder Reactor-II fuel in its associated Fuel Cycle Facility have been developed for the first refining series. This series has been designed to provide the data needed for the further development of the IFR program. An important piece of the data needed is the recovery of TRU material during the reprocessing and waste operations

  17. A comprehensive fuel nuclide analysis at the reprocessing plant

    International Nuclear Information System (INIS)

    Arenz, H.J.; Koch, L.

    1983-01-01

    The composition of spent fuel can be determined by various methods. They rely partially on different information. Therefore the synopsis of the results of all methods permits a detection of systematic errors and their explanation. Methods for determining the masses of fuel nuclides at the reprocessing input point range from pure calculations (shipper data) to mere experimental determinations (volumetric analysis). In between, a mix of ''fresh'' experimental results and ''historical'' data is used to establish a material balance. Deviations in the results obtained by the individual methods can be attributed to the information source, which is unique for the method in question. The methodology of the approach consists of three steps: by paired comparison of the operator analysis (usually volumetric or gravimetric) with remeasurements the error components are determined on a batch-by-batch basis. Using the isotope correlation technique the operator data as well as the remeasurements are checked on an inter-batch basis for outliers, precision and bias. Systematic errors can be uncovered by inter-lab comparison of remeasurements and confirmed by using historical information. Experience collected during the reprocessing of LWR fuel at two reprocessing plants prove the flexibility and effectiveness of this approach. An example is presented to demonstrate its capability in detecting outliers and determining systematic errors. (author)

  18. Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information

    Science.gov (United States)

    1980-12-01

    The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.

  19. Demonstration of a 1 MWe biomass power plant at USMC Base Camp Lejeune

    International Nuclear Information System (INIS)

    Cleland, J.; Purvis, C.R.

    1997-01-01

    A biomass energy conversion project is being sponsored by the U.S. Environmental Protection Agency (EPA) to demonstrate an environmentally and economically sound electrical power option for government installations, industrial sites, rural cooperatives, small municipalities, and developing countries. Under a cooperative agreement with EPA, Research Triangle Institute is initiating operation of the Camp Lejeune Energy from Wood (CLEW) biomass plant. Wood gasification combined with internal combustion engines was chosen because of (1) recent improvements in gas cleaning, (2) simple, economical operation for units less than 10 MW, and (3) the option of a clean, cheap fuel for the many existing facilities generating expensive electricity from petroleum fuels with reciprocating engines. The plant incorporates a downdraft, moving bed gasifier utilizing hogged waste wood from the Marine Corps Base at Camp Lejeune, NC. A moving bed bulk wood dryer and both spark ignition and diesel engines are included. Unique process design features are briefly described relative to the gasifier, wood drying, tar separation, and process control. A test plan for process optimization and demonstration of reliability, economics, and environmental impact is outlined. (author)

  20. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Fifth Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published four previous reports describing operation of these buses. This report presents new and updated results covering data from January 2015 through December 2015.

  1. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jeffers, Matthew A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published five previous reports describing operation of these buses. This report presents new and updated results covering data from January 2016 through December 2016.

  2. Demonstration plant of smoke treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Kawamura, Keita

    1989-01-01

    The acid rain caused by sulfur oxides and nitrogen oxides has become the large social problem as it damages forests, lakes and agricultural crops and also buildings in Europe and America. In such circumstances, concern has been expressed in various countries on the smoke treatment technology, EBA process, which removes the sulfur oxides and nitrogen oxides contained in smoke simultaneously by irradiating electron beam on the smoke which is exhausted from power station boilers and industrial boilers and mainly causes acid rain. The research and development of this technology were begun in 1971 based on the original idea of Ebara Corp., and from 1972, those were advanced as the joint research with Japan Atomic Energy Research Institute. Thereafter, by the joint research with the technical research association on prevention of nitrogen oxides in iron and steel industry, by ammonia addition and irradiation process, the desulfurization and denitration performance was heightened, and the byproduct was successfully captured as powder, in this way, the continuous dry treatment process was established. The demonstration test plant was constructed in a coal-firing power station in Indiana, USA, and the trial operation was carried out from 1985 for two years. (K.I.)

  3. GCFR demonstration plant: conceptual design and status report

    International Nuclear Information System (INIS)

    1980-12-01

    Helium Breeder Associates (HBA), a non-profit corporation, has been the program manager and technical integrator of the Gas-Cooled Fast Reactor (GCFR) development effort since 1977. When DOE discontinued support of the GCFR in 1980, the HBA members undertook the task of providing for an orderly termination and documentation of the program. HBA does not agree with the government's rational for withdrawing support for this promising technology and has directed its termination and documentation toward preserving the current state of its development. Toward that end, HBA has compiled the following report which is a summary of the conceptual design of the demonstration plant and status of the program as of the end of 1980. It includes summaries of tasks that have not evolved to a final conclusion. Although the report has not been subjected to formal review and approval by the designers, it is intended to provide the reader with the design considerations that were current at the time of program termination. It is hoped that the report will be useful in restarting the program in the future by establishing the basis of the completed conceptual design and indicating a logical path for new design and development

  4. Possible futures for the development of a fusion demonstration plant

    International Nuclear Information System (INIS)

    Nichols, S.P.

    1976-01-01

    As indicated by the Fusion Planning Bulletins, the Division of Controlled Thermonuclear Research is becoming involved in planning with alternative scenarios. The Center for Energy Studies at the University of Texas at Austin has been involved with such planning for several years and has examined various scenarios for fusion power development using the Partitive Analytical Forecasting (PAF) technique. The most recent studies compare the long-term plan presented in WASH-1290, Fusion Power by Magnetic Confinement, with other plans that have been proposed, such as the plan proposed by Kulcinski and Conn of the University of Wisconsin. The study indicates that some of the alternative plans do have possibilities to shorten the required time for the completion of a demonstration fusion plant without increased costs or a decrease in the likelihood of success. The current efforts of the project are in the planning exercises recently completed by committees set up by the DCTR. Further comparisons of alternative scenarios will be performed as part of this effort

  5. Wind power plants the fuel savers

    International Nuclear Information System (INIS)

    Akbar, M.

    2006-01-01

    Wind is a converted from of solar energy. The Sun's radiation heats different parts of the earth at variable rates as the earth surfaces absorb or reflect at different rates. This in turn causes portions of the atmosphere to warm at varying levels. The hot air rises reducing atmospheric pressure at the earth's surface beneath, the cooler air rushes to replace it and in the process creates a momentum called wind. Air possesses mass and when it sets into motion, it contains the energy of that motion, called the Kinetic Energy. A part of the Kinetic Energy of the wind can be converted into other forms of energy i.e. mechanical force or electric power that can be used to perform work. The cost of electric energy from the wind system has dropped from the initial cost of 30 to 40 Cents per kWh to about 5 to 7 Cents/k Wh during the past 20 years. The costs are continually declining as the technology is advanced, the unit size is increased and larger plants are built. Wind power is now a viable, robust and fast growing industry. The cost of wind energy is expected to drop to 2 to 3 Cents / kWh during the next 5 to 10 years. Due to sky-rocketing prices of the fossil fuels, the competitive position of power generation technologies is rapidly changing. Wind energy is likely to emerge as the cheapest source of electric power generation in the global market in the near future. The current assessment of the global wind resources indicate that the wind energy potential is more than double the world's electricity needs. (author)

  6. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plantsPlants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  7. Barnwell Nuclear Fuels Plant applicability study. Volume III. Appendices

    International Nuclear Information System (INIS)

    1978-03-01

    Volume III suppliees supporting information to assist Congress in making a decision on the optimum utilization of the Barnwell Nuclear Fuels Plant. Included are applicable fuel cycle policies; properties of reference fuels; description and evaluation of alternative operational (flue cycle) modes; description and evaluation of safeguards systems and techniques; description and evaluation of spiking technology; waste and waste solidification evaluation; and Department of Energy programs relating to nonproliferation

  8. Description of a reference mixed oxide fuel fabrication plant (MOFFP)

    International Nuclear Information System (INIS)

    1978-01-01

    In order to evaluate the environment impact, due to the Mixed Oxide Fuel Fabrication Plants, work has been initiated to describe the general design and operating conditions of a reference Mixed Oxide Fuel Fabrication Plant (MOFFP) for the 1990 time frame. The various reference data and basic assumptions for the reference MOFFP plant have been defined after discussion with experts. The data reported in this document are only made available to allow an evaluation of the environmental impact due to a reference MOFFP plant. These data have therefore not to be used as recommandation, standards, regulatory guides or requirements

  9. It is now time to proceed with a gas-cooled breeder reactor (GBR) demonstration plant

    International Nuclear Information System (INIS)

    Chermanne, J.

    1976-01-01

    Since 1969, the GBRA has been making studies to provide evidence on questions which were not clear regarding the Gas-cooled Breeder Reactor: design feasibility and performance, safety, strategy and economics, and R and D necessary for a demonstration plant. Studies were carried out on a 1200-MW(e) commercial reference design with pin fuel, which was also used as a basis for a definition of the GBR demonstration plant. During the six years, a great deal of information has been generated at GBRA and it confirms the forecasts of the promoters of the Gas-cooled Breeder Reactor that the GBR is an excellent reactor from all points of view: design - the reactor can be engineered without major difficulty, using present techniques. As far as fuel is concerned, LMFBR fuel technology is applicable plus limited specific development effort. Performance - the GBR is the best breeder with oxide fuel and using conventional techniques. The strategy studies carried out at GBRA have clearly shown that a high performance breeder such as the GBR is absolutely required in large quantities by the turn of the century in order to avoid dependence on natural uranium resources. Regarding safety, a major step forward has been made when an ad hoc group on GBR safety, sponsored by the EEC, concluded that no major difficulties were anticipated which would prevent the GBR reaching adequate safety standards. Detailed economic assessments performed on an item-to-item basis have shown that the cost of a GBR with its high safety standard is about the same as that of an HTR. One can therefore conclude that, with the present cost of natural uranium, the GBR is competitive with the LWRs. Owing to the very limited R and D effort necessary and the obvious safety, economic and strategic advantages of the concept, it is concluded that the development and construction of a GBR demonstration plant must be started now if one wants to secure an adequate energy supply past the turn of the century. (author)

  10. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  11. Development of remote fuel pushing system in Reprocessing Plant, Tarapur

    International Nuclear Information System (INIS)

    Chandra, Munish; Coelho, G.; Kodilkar, S.S.; Mishra, A.K.; Bajpai, D.D.; Nair, M.K.T.

    1990-01-01

    Power Reactor Fuel Reprocessing Plant (PREFRE), Tarapur has been processing spent fuel arising from Pressurized Heavy Water Reactors for quite some time. The process adopted in the plant is purex process with chopleach head end treatment. The head end treatment involves loading of ten spent fuel bundles in the charging cask at a time in the fuel bay and aligning the cask with the transfer port and subsequently pushing all the ten bundles together into the fuel magazine. At present the fuel is pushed into the magazine manually. Since the ten bundles weigh approximately 200 Kg. and involves pushing of 9.4 meters length, the operation is carried out using stainless steel screwed pipes, in steps of five lengths. The entire operation requires a large number of trained skilled workers and is found to be tedious. To solve this problem a hydraulic cum pneumatic fuel pushing system has been designed, fabricated, tested and is in the process of installation in the fuel handling area. This paper describes various requirements, constraints and dimensional details arising in the incorporation of such a system to be back fitted in an existing plant, though many of these constraints can be avoided in future plants. Further, complete sequence of operations, technical specifications regarding the telescopic hydraulic power pack and associated controls incorporated in the system are highlighted. (author). 2 figs

  12. Hydrogen plant module (HPM) and vehicle fueled by same.

    Science.gov (United States)

    2011-09-29

    The goal / objective of the project was to design and fabricate hydrogen plant module (HPM) that is capable of producing : hydrogen fuel onboard a vehicle and that obviates one or more of the present issues related to compressed hydrogen fuel : stora...

  13. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  14. Demonstration of Subscale Cermet Fuel Specimen Fabrication Approach Using Spark Plasma Sintering and Diffusion Bonding

    Science.gov (United States)

    Barnes, Marvin W.; Tucker, Dennis S.; Benensky, Kelsa M.

    2018-01-01

    Nuclear thermal propulsion (NTP) has the potential to expand the limits of human space exploration by enabling crewed missions to Mars and beyond. The viability of NTP hinges on the development of a robust nuclear fuel material that can perform in the harsh operating environment (> or = 2500K, reactive hydrogen) of a nuclear thermal rocket (NTR) engine. Efforts are ongoing to develop fuel material and to assemble fuel elements that will be stable during the service life of an NTR. Ceramic-metal (cermet) fuels are being actively pursued by NASA Marshall Space Flight Center (MSFC) due to their demonstrated high-temperature stability and hydrogen compatibility. Building on past cermet fuel development research, experiments were conducted to investigate a modern fabrication approach for cermet fuel elements. The experiments used consolidated tungsten (W)-60vol%zirconia (ZrO2) compacts that were formed via spark plasma sintering (SPS). The consolidated compacts were stacked and diffusion bonded to assess the integrity of the bond lines and internal cooling channel cladding. The assessment included hot hydrogen testing of the manufactured surrogate fuel and pure W for 45 minutes at 2500 K in the compact fuel element environmental test (CFEET) system. Performance of bonded W-ZrO2 rods was compared to bonded pure W rods to access bond line integrity and composite stability. Bonded surrogate fuels retained structural integrity throughout testing and incurred minimal mass loss.

  15. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  16. Simulated first operating campaign for the Integral Fast Reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Park, K.H.; Ackerman, J.P.

    1993-01-01

    This report discusses the Integral Fast Reactor (IFR) which is an innovative liquid-metal-cooled reactor concept that is being developed by Argonne National Laboratory. It takes advantage of the properties of metallic fuel and liquid-metal cooling to offer significant improvements in reactor safety, operation, fuel cycle-economics, environmental protection, and safeguards. Over the next few years, the IFR fuel cycle will be demonstrated at Argonne-West in Idaho. Spent fuel from the Experimental Breeder Reactor II (EBR-II) win be processed in its associated Fuel Cycle Facility (FCF) using a pyrochemical method that employs molten salts and liquid metals in an electrorefining operation. As part of the preparation for the fuel cycle demonstration, a computer code, PYRO, was developed at Argonne to model the electrorefining operation using thermodynamic and empirical data. This code has been used extensively to evaluate various operating strategies for the fuel cycle demonstration. The modeled results from the first operating campaign are presented. This campaign is capable of processing more than enough material to refuel completely the EBR-II core

  17. Demonstration of IGCC features - plant integration and syngas combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, F.; Huth, M.; Karg, J.; Schiffers, U. [Siemens AG Power Generation (KWU), Erlanger/Muelheim (Germany)

    2000-07-01

    Siemens is involved in three IGCC plants in Europe that are currently in operation. Against the background of the Puertollano and Buggenum plants, some of the specific new features of fully integrated IGCC power plants are discussed, including: requirements and design features of the gas turbine syngas supply system; gas turbine operating experience with air extraction for the air separation unit from the gas turbine air compressor; and design requirements and operational features of the combustion system. 7 refs., 17 figs., 1 tab.

  18. Fuel reprocessing plant: No qualitative differences as compared to other sensitive process plants

    International Nuclear Information System (INIS)

    Schweinoch, J.

    1986-01-01

    Nuclear power plants like the fuel reprocessing plant belong to the highly sensitive installations in respect of safety, but involve the same risks qualitatively as liquid-gas plants or chemical plants. Therefore no consequences for basic rights are discernible. The police can take adequate preventive measures. The regulations governing police action provide proper and sufficient warrants. (DG) [de

  19. Remotex and servomanipulator needs in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Garin, J.

    1981-01-01

    Work on the conceptual design of a pilot-scale plant for reprocessing breeder reactor fuels is being performed at Oak Ridge National Laboratory. The plant design will meet all current federal regulations for repocessing plants and will serve as prototype for future production plants. A unique future of the concept is the incorporation of totally remote operation and maintenance of the process equipment within a large barn-like hot cell. This approach, caled Remotex, utilizes servomanipulators coupled with television viewing to extend man's capabilities into the hostile cell environment. The Remotex concept provides significant improvements for fuel reprocessing plants and other nuclear facilities in the areas of safeguarding nuclear materials, reducing radiation exposure, improving plant availability, recovering from unplanned events, and plant decommissioning

  20. Application of fluidized bed combustor for use of low grade and waste fuels in power plants

    International Nuclear Information System (INIS)

    Wert, D.A.

    1993-01-01

    In a span of less that 15 years, CFB combustion technology has progressed from a concept to a demonstrated capability of providing clean, reliable energy from low-cost, low-grade fuels. In fact, one of the major advantages of CFB technology is its ability to burn fuels with high moisture, high ash and high sulfur levels, allowing the users the option of using inexpensive open-quotes opportunityclose quotes fuels. CFB technology has demonstrated reliable operation while burning low-grade, easily available fuels which other combustion technologies, preclude or cannot easily accommodate (such as peat, waste coals, sludges, municipal wastes and lignite). The CFB units can be designed to burn a wide range of different fuels, alone or in combination. This capability allows the user to take advantage of various fuel supplies to lower operating costs while still complying with ever increasing environmental regulations. This paper will review the evolution and experience of CFB technology and discuss the operating history of the first culm-fired (anthracite mine tailings) power plant. The development of opportunity-fueled power plants has been associated with the establishment of the Independent Power Industry in the United States. Traditional utilities have relied on premium fuels (oil, natural gas, coal and nuclear) due to availability and the ability to pass fuel costs through to consumers. With the development of privatized power plants, more emphasis has been placed on fixing fuel costs over the life of the plant to minimize investor risk. An analogy can be drawn between the growth of the Independent Power Industry in the United States over the last ten years with the need for capacity in many Developing Countries today

  1. Express diagnostics of WWER fuel rods at nuclear power plants

    International Nuclear Information System (INIS)

    Pavlov, S.; Amosov, S.; Sagalov, S.; Kostyuchenko, A.

    2009-01-01

    Higher safety and economical efficiency of nuclear power plants (NPP) call for a continuous design modification and technological development of fuel assemblies and fuel rods as well as optimization of their operating conditions. In doing so the efficiency of new fuel introduction depends on the completeness of irradiated fuel data in many respects as well as on the rapidity and cost of such data obtaining. Standard examination techniques of fuel assemblies (FA) and fuel rods (FR) intended for their use in hot cell conditions do not satisfy these requirements in full extent because fuel assemblies require preliminary cooling at NPP to provide their shipment to the research center. Expenditures for FA transportation, capacity of hot cells and expenditures for the examined fuel handling do not make it possible to obtain important information about the condition of fuel assemblies and fuel rods after their operation. In order to increase the comprehensiveness of primary data on fuel assemblies and fuel rods immediately after their removal from the reactor, inspection test facilities are widely used for these purposes. The inspection test facilities make it possible to perform nondestructive inspection of fuel in the NPP cooling pools. Moreover these test facilities can be used to repair failed fuel assemblies. The ultrasonic testing of failed fuel rods inside the fuel assembly was developed for stands of inspection and repair of TVSA WWER-1000 for the Kalinin NPP and Temelin NPP. This method was tested for eight leaking fuel assemblies WWER-440 and WWER-1000 with a burnup of ∼14 up to 38 MW·day/kgU. The ultrasonic testing proved its high degree of reliability and efficiency. The defectoscopy by means of the pulsed eddy-current method was adapted for the stand of inspection and repair of TVSA WWER-1000 for the Kalinin NPP. This method has been used at RIAR as an express testing method of FR claddings during the post-irradiation examinations of fuel assemblies WWER

  2. Fuel performance of licensed nuclear power plants through 1974

    International Nuclear Information System (INIS)

    Bobe, P.E.

    1976-01-01

    General aspects of fuel element design and specific design data for typical Pressurized and Boiling Water Reactors are presented. Based on a literature search, failure modes and specific failures incurred through December 31, 1974 are described, together with a discussion of those problems which have had a significant impact upon plant operation. The relationship between fuel element failures and the resultant coolant activity/radioactive gaseous effluents upon radiation exposure, plant availability and capacity factors, economic impact, and waste management, are discussed. An assessment was made regarding the generation, availability, and use of fuel performance data

  3. Present status of fuel reprocessing plant in PNC

    International Nuclear Information System (INIS)

    Koyama, Kenji

    1981-01-01

    In the fuel reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation, its hot test has now been completed. For starting its full-scale operation duly, the data are being collected on the operation performance and safety. The construction was started in June, 1971, and completed in October, 1974. In July, 1977, spent fuel was accepted in the plant, and the hot test was started. In September, the same year, the first fuel shearing was made. So far, a total of about 31 t U from both BWR and PWR plants has been processed, thus the hot test was entirely completed. The following matters are described: hot test and its results, research on Pu and U mixed extraction, utilization of product plutonium, development of safeguard technology, and repair work on the acid recovery evaporation tank. (J.P.N.)

  4. General criteria for the project of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-01-01

    Recommendations are presented establishing the general criteria for the project of nuclear fuel reprocessing plants to be licensed according to the legislation in effect. They apply to all the plant's systems, components and structures which are important to operation safety and to the public's health and safety. (F.E.) [pt

  5. Fuel elements for LWR power plants

    International Nuclear Information System (INIS)

    Roepenack, H.

    1977-01-01

    About five times more expensive than the fabrication of a fuel element is the enriched uranium contained therein; soon the monthly interest charges for the uranium value of a fuel element reload will account for five percent of the fabrication costs, and much more expensive than all this together can it be if reactor operation has to be interrupted because of damaged elements. Thus, quality assurance comes first. (orig.) [de

  6. Conceptual designs parameters for MURR LEU U-Mo fuel conversion design demonstration experiment. Revision 1

    International Nuclear Information System (INIS)

    Stillman, J.; Feldman, E.; Stevens, J.

    2013-01-01

    The design parameters for the conceptual design of a fuel assembly containing U-10Mo fuel foils with low-enriched uranium (LEU) for the University of Missouri Research Reactor (MURR) are described. The Design Demonstration Experiment (MURR-DDE) will use a prototypic MURR-LEU element manufactured according to the parameters specified here. Also provided are calculated performance parameters for the LEU element in the MURR, and a set of goals for the MURR-DDE related to those parameters. The conversion objectives are to develop a fuel element design that will ensure safe reactor operations, as well as maintaining existing performance. The element was designed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. A set of manufacturing assumptions were provided by the Fuel Development (FD) and Fuel Fabrication Capability (FFC) pillars of the GTRI Reduced Enrichment for Research and Test Reactors (RERTR) program to reliably manufacture the fuel plates. The proposed LEU fuel element has an overall design and exterior dimensions that are similar to those of the current highly-enriched uranium (HEU) fuel elements. There are 23 fuel plates in the LEU design. The overall thickness of each plate is 44 mil, except for the exterior plate that is furthest from the center flux trap (plate 23), which is 49 mil thick. The proposed LEU fuel plates have U-10Mo monolithic fuel foils with a 235U enrichment of 19.75% varying from 9 mil to 20 mil thick, and clad with Al-6061 aluminum. A thin layer of zirconium exists between the fuel foils and the aluminum as a diffusion barrier. The thinnest nominal combined zirconium and aluminum clad thickness on each side of the fuel plates is 12 mil. The LEU U-10Mo monolithic fuel is not yet qualified as driver fuel in research reactors, but is under intense development under the auspices of the GTRI FD and FFC programs.

  7. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  8. Spent fuel characterization program in Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Lloret, M.; Canencia, R.; Blanco, J.; POMAR, C.

    2010-01-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles were

  9. Spent fuel characterization program in Jose Cabrera nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, M.; Canencia, R. [Product Engineering, Enusa Industrias Avanzadas S.A., Santiago Rusinol 12, 28040 Madrid (Spain); Blanco, J.; POMAR, C. [Direction of Nuclear Generation, Gas Natural SDG, Avda. San Luis 77, 28033 Madrid (Spain)

    2010-07-01

    Jose Cabrera Nuclear Power Plant (NPP) is a 14x14 PWR reactor built in 1964 in Spain (160 MWe). The commercial operation started in 1969 and finished in 2006. During year 2009, 377 fuel assemblies from cycles 11 to 29 have been stored in 12 containers HI-STORM 100, and positioned in an Interim Spent Fuel Storage Installation built near the NPP. The spent fuel characterization and classification is a critical and complex activity that could impact all the storage process. As every container has a number of positions for damaged fuel, the loading plans and the quantity of containers depends on the total fuels classified as damaged. The classification of the spent fuel in Jose Cabrera has been performed on the basis of the Interim Staff Guidance ISG-1 from USNRC, 'Damaged Fuel'. As the storage system should assure thermal limitations, criticality control, retrievability, confinement and shielding for radioactive protection, the criteria analyzed for every spent fuel have been the existence/non existence of fuel leaks; damage that could affect the criticality analysis (as missing fuel pins) and any situation that could affect the future retrievability, as defects on the top nozzle. The first classification was performed based upon existing core records. If there were no indication of operating leakers during the concerned cycles and the structural integrity was adequate, the fuel was classified as intact or undamaged. When operating records indicated a fuel leaker, an additional inspection by ultrasonic testing of all the fuel in the concerned cycle was performed to determine the fuel leakers. If the examination results indicated that the fuel has cladding cracks, it was classified as damaged fuel without considering if it was a gross breach or a hairline crack. Additionally, it was confirmed that the water chemistry specifications for spent fuel pool has been fulfilled. Finally, a visual inspection before dry cask storage was performed and foreign particles

  10. 40 CFR 63.1585 - How does an industrial POTW treatment plant demonstrate compliance?

    Science.gov (United States)

    2010-07-01

    ... Works Industrial Potw Treatment Plant Description and Requirements § 63.1585 How does an industrial POTW treatment plant demonstrate compliance? (a) An existing industrial POTW treatment plant demonstrates... §§ 63.1586 through 63.1590. Non-industrial POTW Treatment Plant Requirements ...

  11. British Nuclear Fuels plc's effluent plant services building

    International Nuclear Information System (INIS)

    Williams, L.

    1990-01-01

    The new Effluent Plant Services building (EPSB) on the Sellafield Nine Acre Site was built by Costain Engineering Limited for British Nuclear Fuels Limited. The EPSB is dedicated to a new generation of nuclear waste treatment plants, aimed at reducing discharges into the Irish Sea and other environmental impacts by removing actinides from liquid effluents and decontaminating waste solvents. This article describes the design, construction and operation of the plant. (UK)

  12. Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Steve Bergin

    2005-10-14

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

  13. Topfuel '95: Fuel for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In early 1995, 425 nuclear power stations with an installed capacity of 360 263 MW were in operation in 30 countries of the world, and a total of 60 units with a capacity of 53 580 MWe were being cnstructed in 18 countries. The supply of nuclear fuels to these nuclear power stations was the central issue of the Topfuel '95 - Topical Meeting on Nuclear Fuel. More than 350 experts from 23 countries had been invited to Wuerzburg by the Kerntechnische Gesellschaft (KTG) and the European Nuclear Society (ENS). The conference was accompanied by an exhibition at which twelve inernational fuel cycle enterprises presented their products, processes, and problem solutions. The poster session in the hall of the Cogress Center Wuerzburg exhibited 42 contributions which are be discussed in the second part of the conference report. (orig./UA) [de

  14. Quantifying Tc-99 contamination in a fuel fabrication plant - 59024

    International Nuclear Information System (INIS)

    Darbyshire, Carol; Burgess, Pete

    2012-01-01

    The Springfields facility manufactures nuclear fuel products for the UK's nuclear power stations and for international customers. Fuel manufacture is scheduled to continue into the future. In addition to fuel manufacture, Springfields is also undertaking decommissioning activities. Today it is run and operated by Springfields Fuels Limited, under the management of Westinghouse Electric UK Limited. The site has been operating since 1946 manufacturing nuclear fuel. As part of the decommissioning activities, there was a need was to quantify contamination in a large redundant building. This building had been used to process uranium derived from uranium ore concentrate but had also processed a limited quantity of recycled uranium. The major non-uranic contaminant was Tc-99. The aim was to be able to identify any areas where the bulk activity exceeded 0.4 Bq/g Tc-99 as this would preclude the demolition rubble being sent to the local disposal facility. The problems associated with this project were the presence of significant uranium contamination, the realisation that both the Tc-99 and the uranium had diffused into the brickwork to a significant depth and the relatively low beta energy of Tc-99. The uranium was accompanied by Pa-234m, an energetic beta emitter. The concentration/depth profile was determined for several areas on the plant for Tc-99 and for uranium. The radiochemical analysis was performed locally but the performance of the local laboratory was checked during the initial investigation by splitting samples three ways and having confirmation analyses performed by 2 other laboratories. The results showed surprisingly consistent concentration gradients for Tc-99 and for uranium across the samples. Using that information, the instrument response was calculated for Tc-99 using the observed diffusion gradient and averaged through the full 225 mm of brick wall, as agreed by the regulator. The Tc-99 and uranium contributions to the detector signal were separated

  15. Licensing experiences, risk assessment, demonstration test on nuclear fuel packages and design criteria for sea going vessel carrying spent fuel in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Ikeda, K.

    1978-01-01

    In Japan spent fuels from nuclear power plants shall be shipped to reprocessing plants by sea-going vessels. Atomic Energy Committee has initiated a board of experts to implement the assessment of environmental safety for sea transport. As a part of the assessment a study has been conducted by Central Research Institute of Electric Power Industry under sponsorship of Nuclear Safety Bureau, which is intended to guarantee the safety of sea transport. Nuclear Safety Bureau also has a program to carry out a long term demonstration test on spent fuel package using full scale package models. The test consists of drop, heat transfer, fire, collapse under high external pressure, immersion, shielding and subcritical test. The purpose of this test is to obtain the public acceptance and also to verify the adequacy of the safety analysis for nuclear fuel packages. In order to secure the safety of sea transport, the Ministry of Transportation has provided for the design criteria for sea-going vessel in the case of full load shipping, which aims to make minimum the probability of sinking at collision, grounding and other unforeseen accidents on the sea and also to retain the radiation exposure to crews as low as possible. The design criteria consists of the following items: (1) structural strength of vessel, (2) collision protective structure, (3) arrangement of holds, (4) stability after damage, (5) grounding protective structure, (6) cooling system, (7) tie-down equipment, (8) radiation inspection apparatus, (9) decontamination facilities, (10) emergency water flooding equipment for ship fire, (11) emergency electric sources, etc. Based on the design criteria a sea-going vessel names HINOURA-MARU has been reconstructed to transport spent fuel packages from nuclear power stations to the reprocessing plant

  16. Energy analysis of nuclear power plants and their fuel cycle

    International Nuclear Information System (INIS)

    Held, C.; Moraw, G.; Schneeberger, M.; Szeless, A.

    1977-01-01

    Energy analysis has become an increasingly feasible and practical additional method for evaluating the engineering, economic and environmental aspects of power producing systems. Energy analysis compares total direct and indirect energy investment into construction and operation of power plants with their lifetime energy output. Statically we have applied this method to nuclear power producing sytems and their fuel cycles. Results were adapted to countries with various levels of industrialization and resources. With dynamic energy analysis different scenarios have been investigated. For comparison purposes fossil fueled and solar power plants have also been analyzed. By static evaluation it has been shown that for all types of power plants the energy investment for construction is shortly after plant startup being repaid by energy output. Static analyses of nuclear and fossil fuels have indicated values of fuel concentrations below which more energy is required for their utilization than can be obtained from the plants they fuel. In a further step these global results were specifically modified to the economic situations of countries with various levels of industrialization. Also the influence of energy imports upon energy analysis has been discussed. By dynamic energy analyses the cumulative energy requirements for specific power plant construction programs have been compared with their total energy output. Investigations of this sort are extremely valuable not only for economic reasons but especially for their usefulness in showing the advantages and disadvantages of a specific power program with respect to its alternatives. Naturally the impact of these investigations on the fuel requirements is of importance especially because of the today so often cited ''valuable cumulated fossil fuel savings''

  17. Fuel cell power plants for automotive applications

    Science.gov (United States)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  18. Strategy for Fuel Rod Receipt, Characterization, Sample Allocation for the Demonstration Sister Rods

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, Steven C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Warmann, Stephan A. [Portage, Inc., Idaho Falls, ID (United States); Rusch, Chris [NAC International, Inc., Norcross, GA (United States)

    2014-03-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The UFDC Storage and Transportation staffs are responsible for addressing issues regarding the extended or long-term storage of UNF and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While low burnup fuel [that characterized as having a burnup of less than 45 gigawatt days per metric tonne uranium (GWD/MTU)] has been stored for nearly three decades, the storage of high burnup used fuels is more recent. The DOE has funded a demonstration project to confirm the behavior of used high burnup fuel under prototypic conditions. The Electric Power Research Institute (EPRI) is leading a project team to develop and implement the Test Plan to collect this data from a UNF dry storage system containing high burnup fuel. The Draft Test Plan for the demonstration outlines the data to be collected; the high burnup fuel to be included; the technical data gaps the data will address; and the storage system design, procedures, and licensing necessary to implement the Test Plan. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must closely mimic real conditions high burnup SNF experiences during all stages of dry storage: loading, cask drying

  19. Demonstration of near-real-time accounting at the AGNS Barnwell Plant

    International Nuclear Information System (INIS)

    Cobb, D.D.; Dayem, H.A.; Baker, A.L.

    1981-01-01

    Near-real-time nuclear materials accounting is being demonstrated in a series of experiments at the Allied-General Nuclear Services Barnwell Nuclear Fuels Plant. Each experiment consists of operating the second and third plutonium cycles continuously for 1 week using uranium solutions. Process data are collected in near-real time by the AGNS computerized nuclear materials control and accounting system, and the data are analyzed for diversion using decision analysis techniques developed and implemented by Los Alamos. Although the measurement system primarily consists of process control measurements that have not been optimized for near-real-time accounting, the results of a series of diversion tests show that diversion and unexpected losses from the process area can be detected

  20. Plant Design Nuclear Fuel Element Production Capacity Optimization to Support Nuclear Power Plant in Indonesia

    International Nuclear Information System (INIS)

    Bambang Galung Susanto

    2007-01-01

    The optimization production capacity for designing nuclear fuel element fabrication plant in Indonesia to support the nuclear power plant has been done. From calculation and by assuming that nuclear power plant to be built in Indonesia as much as 12 NPP and having capacity each 1000 MW, the optimum capacity for nuclear fuel element fabrication plant is 710 ton UO 2 /year. The optimum capacity production selected, has considered some aspects such as fraction batch (cycle, n = 3), length of cycle (18 months), discharge burn-up value (Bd) 35,000 up 50,000 MWD/ton U, enriched uranium to be used in the NPP (3.22 % to 4.51 %), future market development for fuel element, and the trend of capacity production selected by advances country to built nuclear fuel element fabrication plant type of PWR. (author)

  1. Fuel management for the Beznau nuclear power plant in Switzerland

    International Nuclear Information System (INIS)

    Clausen, A.

    1988-01-01

    The Beznau nuclear power plant consists of two 350 MW(e) PWRs of Westinghouse design. A number of special features characterize the nuclear industry in Switzerland: there is no fuel cycle industry; nuclear materials must be moved through several countries before they arrive in our country, it is therefore important that agreements are in place between those countries and Switzerland; nearly all of the materials and services required have to be paid in foreign currencies; the interest rate in Switzerland is traditionally low. Aspects of fuel management at the Beznau plant discussed against this background are: the procurement of natural uranium, its conversion and enrichment; fuel fabrication, in-core management, reprocessing and plutonium recycling; and fuel cycle costs. (author)

  2. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  3. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  4. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  5. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  6. Development of Demonstration Facility Design Technology for Advanced Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.

    2010-04-01

    The main objective of this R and D is to develop the PRIDE (PyRoprocess Integrated inactive DEmonstration) facility for engineering-scale inactive test using fresh uranium, and to establish the design requirements of the ESPF (Engineering Scale Pyroprocess Facility) for active demonstration of the pyroprocess. Pyroprocess technology, which is applicable to GEN-IV systems as one of the fuel cycle options, is a solution of the spent fuel accumulation problems. PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. The PRIDE evaluation data, such as performance evaluation data of equipment and operation experiences, will be directly utilized for the design of ESPF

  7. TMI-2 fuel-recovery plant. Feasibility study

    International Nuclear Information System (INIS)

    Evans, D.L.

    1982-12-01

    This project is a feasibility study for constructing a TMI-2 core Fuel Recovery Plant at the Idaho National Engineering Laboratory (INEL). The primary objectives of the Fuel Recovery Plant (FRP) are to recover and account for the fuel and to process, isolate, and package the waste material from the TMI-2 core. This feasibility study is predicated on a baseline plant and covers its design, fabrication, installation, testing and operation. Alternative methods for the disposal of the TMI-2 core have also been considered, but not examined in detail for their feasibility. The FRP will receive TMI-2 fuel in canisters. The fuel will vary from core debris to intact fuel assemblies and include some core structural materials. The canister contents will be shredded and subsequently fed to a dissolver. Uranium, plutonium, fission products, and some core structural material will be dissolved. The uranium will be separated by solvent extraction and solidified by calcination. The plutonium will also be separated by solvent extraction and routed to the Plutonium Extraction Facility. The wastes will be packaged for further treatment, temporary storage or permanent disposal

  8. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  9. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Second semiannual report, July-December 1979

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1980-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. In the current report period the nuclear design of the demonstration was begun. The design calls for 132 bundles of barrier fuel to be inserted into the core of Quad Cities Unit 2 at the beginning of Cycle 6. Laboratory and in-reactor tests were started to evaluate the stability of Zr-liner fuel which remains in service after a defect has occurred which allows water to enter the rod. Results to date on intentionally defected fuel indicate that the Zr-liner fuel is not rapidly degraded despite ingress of water

  10. Automatic fuel charging machine for nuclear power plants

    International Nuclear Information System (INIS)

    Neda, Toshikazu; Aoki, Shigeo.

    1978-01-01

    Purpose: To enable smooth, safety and rapid refueling by automatically conducting a series of fuel exchange steps through the combination of calculations for fuel control and refueling works. Constitution: Processing operations are conducted based on various data from the memory unit of a computer that processes and stores various data inputted from a nuclear power plant, calculation systems stored in the memory unit of another computer, peripheral units such as typewriters and process input units. A refueling platform is operated by way of a platform control device and a platform driving device, and fuel exchange is conducted by the operation of a channel mounting and demounting device. (Yoshino, Y.)

  11. Fuel saving type power plant for automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Endo, N; Katsumoto, T; Shimizu, T; Hiramatsu, T; Fujita, Y

    1982-10-01

    Mitsubishi Motors Corporation has developed a modulated displacement engine named ''Orion MD'' and an electronically controlled damper clutch automatic transmission named ''ELC Automatic'' and has installed them on the new ''Mirage'' series and ''Cordia'' series, respectively, which were put on sale in February, 1982. They improve fuel economy to a great extent especially at low vehicle speed, and provide good driveability and high reliability. An outline of the ''Orion MD'' and ''ELC Automatic'' is presented.

  12. Selection of criterions of fuels incineration on heat power plants

    International Nuclear Information System (INIS)

    Bubnov, V.P.; Minchenko, E.M.; Zelenukho, E.V.

    2006-01-01

    Fuel and energy complex takes first place in industry field of cities and defines in many respects environmental situation of cities. The products of combustion of fuel bring the greatest contribution in environmental contamination. This factor is ignored during calculation of technical and economics indexes. Ecological impact of heat power plants on the environment is determined separately from assessment of ecological damage. Determination of optimal conditions of functioning of heat power plants incineration with respect to technical, economics and ecological indexes with use of multicriterion mathematics model is proposed. (authors)

  13. Barnwell Nuclear Fuels Plant applicability study. Executive summary

    International Nuclear Information System (INIS)

    1978-04-01

    A study was conducted of the Barnwell Nuclear Fuels Plant in South Carolina to determine if that facility can be utilized in support of the nonproliferation objectives of the United States; and for activities contributing to the International Nuclear Fuel Cycle Evaluation to be carried out under contract at the Barnwell plant. One of the conclusions of this study is that there is nothing to support modification of the Presidential decision that the BNFP receive neither Federal encouragement nor funding for its completion on a reprocessing facility

  14. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    Science.gov (United States)

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  15. Demonstration tests for HTGR fuel elements and core components with test sections in HENDEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Hino, Ryutaro; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1995-03-01

    In the fuel stack test section (T{sub 1}) of the Helium Engineering Demonstration Loop (HENDEL), thermal and hydraulic performances of helium gas flows through a fuel rod channel and a fuel stack have been investigated for the High-Temperature Engineering Test Reactor (HTTR) core thermal design. The test data showed that the turbulent characteristics appearing in the Reynolds number above 2000: no typical behavior in the transition zone, and friction factors and heat transfer coefficients in the fuel channel were found to be higher than those in a smooth annular channel. Heat transfer behavior of gas flow in a fuel element channel with blockage and cross-flow through a gap between upper and lower fuel elements stacked was revealed using the mock-up models. On the other hand, demonstration tests have been performed to verify thermal and hydraulic characteristics and structural integrity related to the core bottom structure using a full-scale test facility named as the in-core structure test section (T{sub 2}). The sealing performance test revealed that the leakage of low-temperature helium gas through gaps between the permanent reflector blocks to the core was very low level compared with the HTTR design value and no change of the leakage flow rate were observed after a long term operation. The heat transfer tests including thermal transient at shutdown of gas circulators verified good insulating performance of core insulation structures in the core bottom structure and the hot gas duct; the temperature of the metal portion of these structure was below the design value. Examination of the thermal mixing characteristics indicated that the mixing of the hot helium gas started at a hot plenum and finished completely at downstream of the outlet hot gas duct. The present results obtained from these demonstration tests have been practically applied to the detailed design works and licensing procedures of the HTTR. (J.P.N.) 92 refs.

  16. Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico.

    Science.gov (United States)

    Browning, Louis; Hartley, Seth; Bandemehr, Angela; Gathright, Kenneth; Miller, Wayne

    2012-09-01

    Switching fuels from high-sulfur heavy fuel oils (HFO) to lower sulfur marine gas oils (MGO) on an oceangoing vessel (OGV) can substantially reduce both PM and SO(x) ship stack emissions, potentially resulting in significant human health and environmental benefits in Gulf of Mexico port communities. The International Maritime Organization (IMO) established an emission control area (ECA) within 200 nautical miles of the US. and Canadian coastlines and French territories off the coast of Canada with lower fuel sulfur standards effective beginning August 2012, where OGVs will need to switch from HFO to MGO. However some operators and other stakeholders, particularly in the Gulf of Mexico, may be unfamiliar with the benefits and requirements and ship operators may be concerned over potential implications for cost and operations. This first-ever US. Environmental Protection Agency (EPA)-sponsored fuel switching demonstration in the Gulf of Mexico was initiated to showcase the environmental and health benefits of as well as operational issues associated with, fuel switching through the following activities: (1) Fuel switching was conducted on typical container ships operating the Gulf of Mexico, as routine fuel switching has been demonstrated in California in recent years. Two vessels were employed in the demonstration: the Maersk Roubaix, which switched fuels entering Port of Houston, TX, and the Port of Progreso, Mexico, and the Hamburg Süd vessel Cap San Lorenzo, which switched fuels entering the Port of Houston and the Mexican Ports of Veracruz and Altamira. Operational and cost aspects were also noted. (2) Emissions reductions were quantified through both a calculation approach based on fuel use of the Maersk Line vessel Roubaix and in-stack monitoring of emissions from the Hamburg Süd Cap San Lorenzo. Pollutant emissions including PM, SO(x), NO(x), and PM component speciation were sampled during use of both fuels. These observations showed reductions (1-6%) in NO

  17. Experimental-demonstrative system for energy conversion using hydrogen fuel cell - preliminary results

    International Nuclear Information System (INIS)

    Stoenescu, D.; Stefanescu, I.; Patularu, I.; Culcer, M.; Lazar, R.E.; Carcadea, E.; Mirica, D. . E-mail address of corresponding author: daniela@icsi.ro; Stoenescu, D.)

    2005-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (natural gas, methane, biomass, etc.), it can be burned or chemically react having a high yield of energy conversion, being a non-polluted fuel. This paper presents the preliminary results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system made by a sequence of hydrogen purification units and a CO removing reactors until a CO level lower than 10ppm, that finally feeds a hydrogen fuel stack. (author)

  18. Assessment of ethanol-fueled IMHEX{reg_sign} fuel cell power plants in distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Woods, R. [M-C Power Corp., Burr Ridge, IL (United States); Lefeld, J. [PSI Energy, Plainfield, IN (United States)

    1993-12-31

    Ethanol-fueled cell power plants presents several significant opportunities for the power generation industry. The potential exists to reduce pollution, help the nation shift from its dependence on imported fuels, reduce global warming, and strengthen the economy. Two important developments can be merged to create a clean, high-technology, bio-based energy system: the production of ethanol fuels and the application of fuel cell power plants. Utilization of ethanol will be in dual-fueled applications initially, and evolve toward the primary fuel as the need for renewable energy sources increase and the economic competitiveness improves. This assessment addresses the major issues of this proposed concept and outlines the benefits anticipated to the environment, US agriculture, energy supplies, and electric power customers. Economic and technical aspects of the concept are also reviewed. One of PSI Energy`s primary interests is the utilization of renewable fuels supplied by their customer base. The IMHEX{reg_sign} fuel cell is an advanced electric power generation technology currently under development by M-C Power. Commercial applications within the power generation industry are scheduled to begin during the late 1990s.

  19. Demonstration test of the spent fuel rod cutting process with tube cutter mechanism

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Jung, Jae Hoo; Hong, Dong Hee; Yoon, Ji Sup; Lee, Eun Pyo

    2001-03-01

    In this paper, the verification by computer graphics technology for the spent fuel rod cutting devise which belongs to the spent fuel disassembly processes, the performance tests of the real device, and the demonstration tests with tube cutter mechanism are described. The graphical design system is used throughout the design stages from conceptual design to motion analysis like collision detection. By using this system, the device and the process are optimized. The performance test of the real device and the demonstration test using the tube cutter mechanism in the hot cell are carried out. From these results, the spent fuel rod cutting device is improved based on the considerations of circularity of the rod cross-section, debris generation, and fire risk etc. Also, this device is improved to be operated automatically via remote control system considering later use in closed environment like Hot-cell (radioactive area) and the modulization in the structure of this device makes maintenance easy. The result of the performance test and the demonstration in this report is expected to contribute to the optimization of the pre-treatment processes for the reuse of the spent fuel like DUPIC process and the final disposal

  20. Fuel management of mixed reactor type power plant systems

    International Nuclear Information System (INIS)

    Csom, Gyula

    1988-01-01

    In equilibrium symbiotic power plant system containing both thermal reactors and fast breeders, excess plutonium produced by the fast breeders is used to enrich the fuel of the thermal reactors. In plutonium deficient symbiotic power plant system plutonium is supplied both by thermal plants and fast breeders. Mathematical models were constructed and different equations solved to characterize the fuel utilization of both systems if they contain only a single thermal type and a single fast type reactor. The more plutonium is produced in the system, the higher output ratio of thermal to fast reactors is achieved in equilibrium symbiotic power plant system. Mathematical equations were derived to calculate the doubling time and the breeding gain of the equilibrium symbiotic system. (V.N.) 2 figs.; 2 tabs

  1. Safety aspects of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Donoghue, J.K.; Charlesworth, F.R.; Fairbairn, A.

    1977-01-01

    The establishment of the basic process must include the determination of the sensitivity of the process to operational errors or plant failures. The probability, and consequences of escapes of activity must be evaluated and emergency procedures set up to deal with accidents which might lead to such escapes. The administrative arrangements for safety should include a safety evaluation and advisory service independent of line management. A quality assurance strategy for the construction and commissioning stages is important. The design and construction of the plant must include: (i) Attention to plant reliability. Maintenance and inspection procedures to maintain reliability must be adopted and the design should include measures to facilitate in-service inspection of highly-active plant. (ii) Suitable and sufficient means of detection and prevention of malfunction, including criticality, bearing in mind both the timescale of development of the fault and its consequences. (iii) Measures for containment of activity. Penetrations from active into operating areas should be eliminated or minimised and maintenance should be separated from operational areas. Secondary containment beyond that provided for operations of a significant magnitude. A ventilation system with appropriate gas clean-up, monitoring and discharge facilities is required. (iv) Adequate shielding, with particular attention paid to multiple activities in a single operational area which might lead to an operator being exposed to radiation from operations which are beyond his control. (v) Means of accounting for active materials and for their recovery, transfer and disposal in the event of a forced shut down. (vi) Suitable methods for segregation and control of wastes within the plant and for their discharge. Solid or liquid wastes should be subject to delay and monitoring procedures before release. Facilities for storage of waste must be subject to the same safety principles as the plant itself. (vii) Final

  2. Plant overview of JNFL MOX fuel fabrication plant (J-MOX)

    International Nuclear Information System (INIS)

    Hiruta, Kazuhiko; Suzuki, Masataka; Shimizu, Junji; Suzuki, Kazumi; Yamamoto, Yutaka; Deguchi, Morimoto; Fujimaki, Kazunori

    2005-01-01

    In April 2005, JNFL submitted METI an application for the permission of MOX fuel fabrication business for JNFL MOX Fuel Fabrication Plant (J-MOX). Accordingly, safeguards formalities and discussion with the Agency have been also started for J-MOX as an official project. This report describes J-MOX plant overview and also presents outline of J-MOX by focusing on safeguards features and planned material accountancy method. (author)

  3. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Post, M.

    2014-05-01

    This report presents results of a demonstration of 12 fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published two previous reports, in August 2011 and July 2012, describing operation of these buses. New results in this report provide an update covering eight months through October 2013.

  4. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.

    2012-07-01

    This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

  5. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Michael [Technology Management Inc., Cleveland, OH (United States); Ruhl, Robert [Technology Management Inc., Cleveland, OH (United States)

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  6. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  7. Demonstration of cask transportation and dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Teer, B.R.; Clark, J.

    1984-01-01

    Nuclear Fuel Services, Inc. and the Department of Energy's Idaho Operations Office have signed a cost sharing contract to demonstrate dual purpose shipping and storage casks for spent nuclear fuel. Transnuclear, Inc. has been selected by NFS to design and supply two forged steel casks - one for 40 PWR assemblies from the Ginna reactor, the other for 85 BWR assemblies from the Big Rock Point reactor. The casks will be delivered to West Valley in mid-1985, loaded with the fuel assemblies and shipped by rail to the Idaho National Engineering Laboratory. The shipments will be made under a DOE Certificate of Compliance which will be issued based on reviews by Oak Ridge National Laboratory of Transnuclear's designs

  8. Demonstration of fuel resistant to pellet-cladding interaction. Phase 2. First semiannual report, January-June 1979

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-08-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress and reactive fission products during reactor service. This is the first semiannual progress report for Phase 2 of this program (January-June 1979). Progress in the irradiation testing of barrier fuel and of unfueled barrier cladding specimens is reported

  9. Reprocessing RTR fuel in the La Hague plants

    International Nuclear Information System (INIS)

    Thomasson, J.; Drain, F.; David, A.

    2001-01-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  10. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  11. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, F-78140 Velizy (France); Drain, F.; David, A. [SGN, F-78182 Saint Quentin en Yvelines (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  12. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, 78 - Velizy Villacoublay (France); Drain, F.; David, A. [SGN, 78 - Saint Quentin en Yveline (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for their research and testing reactors spent fuel back-end management. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  13. Scope and procedures of fuel management for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Yao Zenghua

    1997-01-01

    The fuel management scope of PWR nuclear power plant includes nuclear fuel purchase and spent fuel disposal, ex-core fuel management, in-core fuel management, core management and fuel assembly behavior follow up. A suit of complete and efficient fuel management procedures have to be created to ensure the quality and efficiency of fuel management work. The hierarchy of fuel management procedure is divided into four levels: main procedure, administration procedure, implement procedure and technic procedure. A brief introduction to the fuel management scope and procedures of PWR nuclear power plant are given

  14. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  15. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  16. Preliminary design report: Prototypical Spent Fuel Consolidation Equipment Demonstration Project: Phase 1

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Mitchell, J.L.; Winkler, C.J.

    1986-12-01

    This document describes the Westinghouse Preliminary Design for the Prototypical Consolidation Demonstration Project per Department of Energy (DOE) Contract No. DE-AC07-86ID12649 and under direction of the DOE Idaho Operations Office. The preliminary design is the first step to providing the Department of Energy with a fully qualified, licensable, cost-effective spent fuel rod consolidation system. The design was developed using proven technologies and equipment to create an innovative approach to previous rod consolidation concepts. These innovations will better enable the Westinghouse system to: consolidate fuel rods in a precise, fully-controlled, accountable manner; package all rods from two PWR fuel assemblies or from four BWR fuel assemblies in one 8.5 inch square consolidated rods canister; meet all functional requirements; operate with all fuel types common to the US commercial nuclear industry with minimal tooling changeouts; and meet consolidation production process rates, while maintaining operator and public health and safety. This Preliminary Design Report provides both detailed descriptions of the equipment required to perform the rod consolidation process and the supporting analyses to validate the design

  17. Cost estimation of the decommissioning of nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Barbe, A.; Pech, R.

    1991-01-01

    Most studies conducted to date on the cost of decommissioning nuclear facilities pertain to reactors. Few such studies have been performed on the cost of decommissioning nuclear fuel cycle plants, particularly spent fuel reprocessing plants. Present operators of these plants nevertheless need to assess such costs, at least in order to include the related expenses in their short-, medium- or long-term projections. They also need to determine now, for example, suitable production costs that the plant owners will have to propose to their customers. Unlike nuclear reactors for which a series effect is involved (PWRs, BWRs, etc.) and where radioactivity is relatively concentrated, industrial-scale reprocessing plants are large, complex installations for which decommissioning is a long and costly operation that requires a special approach. Faced with this problem, Cogema, the owner and operator of the La Hague and Marcoule reprocessing plants in France, called on SGN to assess the total decommissioning costs for its plants. This assessment led SGN to development by SGN engineers of a novel methodology and a computerized calculation model described below. The resulting methodology and model are applicable to other complex nuclear facilities besides reprocessing plants, such as laboratories and nuclear auxiliaries of reactor cores. (author)

  18. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  19. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  20. Cost and quality of fuels for electric utility plants, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  1. Compost in plant microbial fuel cell for bioelectricity generation

    NARCIS (Netherlands)

    Moqsud, M.A.; Yoshitake, J.; Bushra, Q.S.; Hyodo, M.; Omine, K.; Strik, D.P.B.T.B.

    2015-01-01

    Recycling of organic waste is an important topic in developing countries as well as developed countries. Compost from organic waste has been used for soil conditioner. In this study, an experiment has been carried out to produce green energy (bioelectricity) by using paddy plant microbial fuel cells

  2. Spent fuel cask handling at an operating nuclear power plant

    International Nuclear Information System (INIS)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices at all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant

  3. Analysis of alternative fuels for power plant usage

    Energy Technology Data Exchange (ETDEWEB)

    Szucs, I.; Szemmelveisz, K.; Palotas, A.B.; Winkler, L. [University of Miskolc, Miskolc-Egyetembaros (Hungary)

    2008-07-01

    Decision makers and researchers, mainly experts involved in energy production and environmental protection, are now in agreement that substitution of renewable energy sources for some portion of the fossil fuel usage is one of the potential solutions for mitigation of CO{sub 2} emissions. Current firing experience has shown that biomass utilisation in power plants still entails a number of difficulties that need to be addressed. Plant experience shows that one of the most critical parts of biomass firing is the moisture content of the fuel. The purpose of our research was to examine the combustion characteristics of several alterative fuels (wood-chips, energy-grass, sunflower seed shell, help, SRF, coal, DDGS). 11 figs., 2 tabs.

  4. The refurbishment of the D1206 fuel reprocessing plant

    International Nuclear Information System (INIS)

    Bailey, G.

    1988-01-01

    The term decommissioning can be applied not only to reactors but to any nuclear plant, laboratory, building or part of a building that may have been associated with radioactive material and needs to be restored to clean conditions. In this case the decommissioning and reconstruction of the Dounreay Fast Reactor fuel reprocessing plant, so that plutonium oxide could be reprocessed as well as enriched uranium fuel, is described. The work included improving containment and shielding, building a new head-end treatment cave for the more complex and larger fuel elements, improving the ventilation and constructing a new dissolver. In this paper the breakdown cave and dissolver cell are described and compared and the work done explained. (U.K.)

  5. The Role of Fuel Breaks in the Invasion of Nonnative Plants

    Science.gov (United States)

    Merriam, Kyle E.; Keeley, Jon E.; Beyers, Jan L.

    2007-01-01

    Executive Summary Fuel reduction projects have become an increasingly important component of state and federal fuels management programs. However, an unintended result of some pre-fire fuel manipulation projects may be the introduction of nonnative invasive plants. The establishment of nonnative plants within fuel breaks is a serious concern because the presence of invasive species in areas treated to reduce fuels could make adjacent wildland areas more susceptible to invasion, particularly following widespread disturbances such as fires. This report presents the results of a research project investigating the relationship between fuel reduction treatments and the invasion of nonnative plants. Throughout the rest of this document, we will collectively refer to these treatments as fuel breaks, although we sampled a range of fuel breaks described variously as fuel breaks, shaded fuel breaks, defensible fuel reduction zones, defensible fuel profile zones, fuel reduction projects, fuel management zones, wildfire protection zones, and community protection zones.

  6. Studies and research concerning BNFP: spent fuel dry storage studies at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1980-09-01

    Conceptual designs are presented utilizing the Barnwell Nuclear Fuel Plant for the dry interim storage of spent light water reactor fuel. Studies were conducted to determine feasible approaches to storing spent fuel by methods other than wet pool storage. Fuel that has had an opportunity to cool for several years, or more, after discharge from a reactor is especially adaptable to dry storage since its thermal load is greatly reduced compared to the thermal load immediately following discharge. A thermal analysis was performed to help in determining the feasibility of various spent fuel dry storage concepts. Methods to reject the heat from dry storage are briefly discussed, which include both active and passive cooling systems. The storage modes reviewed include above and below ground caisson-type storage facilities and numerous variations of vault, or hot cell-type, storage facilities

  7. BACA Project: geothermal demonstration power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  8. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  9. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  10. Experience with an ultrasonic sealing system for nuclear safeguards in irradiated fuel bay demonstrations

    International Nuclear Information System (INIS)

    White, B.F.; Smith, M.T.

    1985-07-01

    The development of the irradiated fuel safeguards containment assembly for CANDU nuclear generating stations has stimulated the development of the AECL Random Coil Sealing System. The ARC seal combines the identity and integrity elements in an ultrasonically-determined signature. This is verified in situ, in real time with the seal reading system. The maturation of this technology has been facilitated with demonstration trials in the NRU and NPD irradiated fuel bays. The NPD demonstration includes operation of the systems tooling by Ontario Hydro staff. It provides the opportunity for IAEA inspectors from Toronto and Vienna to direct the operational procedures and to perform the data acquisition. The procedures and systems developed in these trials are reviewed. The estimation of the system performance characteristics from the observations is presented. A minimum frequency of reading for individual seals is recommended to be once per annum following initial deployment

  11. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  12. Feasibility Demonstration of Exciplex Fluorescence Measurements in Evaporating Laminar Sprays of Diesel Fuel

    Science.gov (United States)

    2011-05-15

    code) 1 FEASIBILITY DEMONSTRATION OF EXCIPLEX FLUORESCENCE MEASUREMENTS IN EVAPORATING LAMINAR SPRAYS OF DIESEL FUEL Final Technical Report Grant...fluorescence is found to increase with temperature up to 538 K and then declines. Fluorescence from the liquid phase, i.e. the exciplex (Naphthalene+TMPD...to have as well characterized a description of the spray environment and assess conclusively the potential of the exciplex approach for more

  13. Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines

    Science.gov (United States)

    2017-05-01

    Engineering Chemistry Fundamentals, Vol. 5, No. 3, 1966, pp. 356–363. [14] Burns, R. A., Development of scalar and velocity imaging diagnostics...in an Aero- Engine Model Combustor at Elevated Pressure Using URANS and Finite- Rate Chemistry ,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference...FINAL REPORT Development of Demonstrably Predictive Models for Emissions from Alternative Fuels Based Aircraft Engines SERDP Project WP-2151

  14. Tritium supply assessment for ITER and DEMOnstration power plant

    International Nuclear Information System (INIS)

    Ni, Muyi; Wang, Yongliang; Yuan, Baoxin; Jiang, Jieqiong; Wu, Yican

    2013-01-01

    Highlights: • The tritium production rate in CANDU reactor was simulated and estimated. • Possible routes, including APT, CLWR and tritium production schemes of ADS, were evaluated in feasibility and economy. • The possible tritium consumption of ITER and initial supply for DEMO was assessed. • Result of supply and demand showed that after ITER retired in 2038, the tritium production in CANDU reactor might not be enough for a FDS-II scale DEMO reactor startup if without additional tritium resource. -- Abstract: The International Thermonuclear Experimental Reactor (ITER) and next generation DEMOnstration fusion reactor need amounts of tritium for test/initial startup and will consume kilograms tritium for operation per year. The available supply of tritium for fusion reactor is man-made sources. Now most of commercial tritium resource is extracted from moderator and coolant of CANada Deuterium Uranium (CANDU) type Heavy Water Reactor (HWR), in the Ontario Hydro Darlington facility of Canada and Wolsong facility of Korea. In this study, the tritium production rate in CANDU reactor was simulated and estimated. And other possible routes, including Accelerator Production of Tritium (APT), tritium production in Commercial Light Water Reactor (CLWR) and Accelerator Driven Subcritical system (ADS), were also evaluated in feasibility and economy. Based on the tritium requirement investigated according to ITER test schedule and startup inventory required for a FDS-II-scale DEMO calculated by TAS1.0, the assessment results showed that after ITER retired in 2038, the tritium inventory of CANDU reactor could not afford DEMO reactor startup without extra resource

  15. Tritium supply assessment for ITER and DEMOnstration power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Muyi, E-mail: muyi.ni@fds.org.cn; Wang, Yongliang; Yuan, Baoxin; Jiang, Jieqiong; Wu, Yican

    2013-10-15

    Highlights: • The tritium production rate in CANDU reactor was simulated and estimated. • Possible routes, including APT, CLWR and tritium production schemes of ADS, were evaluated in feasibility and economy. • The possible tritium consumption of ITER and initial supply for DEMO was assessed. • Result of supply and demand showed that after ITER retired in 2038, the tritium production in CANDU reactor might not be enough for a FDS-II scale DEMO reactor startup if without additional tritium resource. -- Abstract: The International Thermonuclear Experimental Reactor (ITER) and next generation DEMOnstration fusion reactor need amounts of tritium for test/initial startup and will consume kilograms tritium for operation per year. The available supply of tritium for fusion reactor is man-made sources. Now most of commercial tritium resource is extracted from moderator and coolant of CANada Deuterium Uranium (CANDU) type Heavy Water Reactor (HWR), in the Ontario Hydro Darlington facility of Canada and Wolsong facility of Korea. In this study, the tritium production rate in CANDU reactor was simulated and estimated. And other possible routes, including Accelerator Production of Tritium (APT), tritium production in Commercial Light Water Reactor (CLWR) and Accelerator Driven Subcritical system (ADS), were also evaluated in feasibility and economy. Based on the tritium requirement investigated according to ITER test schedule and startup inventory required for a FDS-II-scale DEMO calculated by TAS1.0, the assessment results showed that after ITER retired in 2038, the tritium inventory of CANDU reactor could not afford DEMO reactor startup without extra resource.

  16. Status of radioiodine control for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Burger, L.L.; Scheele, R.D.

    1983-07-01

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used

  17. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, K.; Eudy, L.

    2011-08-01

    This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

  18. Fuel staging tests at the Kymijaervi power plant

    International Nuclear Information System (INIS)

    Kivelae, M.; Rotter, H.; Virkki, J.

    1990-01-01

    The aim of this study was to measure nitrogen oxide (NO x ) emissions and find the methods to reduce them in plants using coal and natural gas as fuel. The tests involved were made at the Kymijaervi Power Plant, Lahti, Finland. Coal and natural gas was used alone or mixed. With natural gas when using flue gas recirculation, the NO x emission level dropped from 330 mg/m 3 down to 60 mg/m 3 . A negative side effect was that the flue gas temperature increased. At coal combustion and staged combustion, the flue gas recirculation had no significant effect on the NO x emission level. At coal combustion, the staging of combustion air halved the NO x emission but the combustibles increased strongly. With fuel staging, using coal as main fuel and gas as staging fuel, the NO x emission level was decreased from 340 mg/m 3 to 170 mg/m 3 . At the same time the combustibles increased 2 %- units. Also the flue gas temperature increased a little. At the tests, the proportion of natural gas was rather high, one third of the fuel energy input, but it could not be decreased, because the gas flow ratio was already too low to ensure good mixing

  19. The Effect of Wood Fuels on Power Plant Availability

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, Markku (Markku.Orjala@vtt.fi); Kaerki, Janne; Vainikka, Pasi [VTT Processes, Jyvaeskylae (Finland)

    2003-11-01

    There is a growing international interest in utilising renewable fuels, also in multifuel applications. Main reasons for this are the objective to reduce CO{sub 2} emissions and meet emission limits for NO{sub x} and SO{sub 2}. On one hand cofiring, defined as simultaneous combustion of different fuels in the same boiler, provides an alternative to achieve emission reductions. This is not only accomplished by replacing fossil fuel with biomass, but also as a result of the interaction of fuel reactants of different origin (e.g. biomass vs. coal). On the other hand, utilisation of solid biofuels and wastes sets new demands for process control and boiler design, as well as for combustion technologies, fuel blend control and fuel handling systems. In the case of wood-based fuels this is because of their high reactivity, high moisture content and combustion residues' high alkaline metal content. Combustion and cofiring properties of fuels have been studied both in VTT Processes' test facilities and in industrial-scale power plant boilers. The formation of alkaline and chlorine compounds in biomass combustion and their effect on boiler fouling and corrosion have been monitored by temperature controlled deposit formation and material monitoring probes. Deposit formation monitoring at full-scale boilers provides unique information on the rate of deposit formation, the effect of sootblowing and consequent changes in heat transfer. Additionally, the data from deposit formation monitoring has been shown to correlate with boiler performance, which gives basis for studying the interrelation of: fuel blend characteristics; deposit formation; boiler performance. If biomass fuels are blended with coal or peat, following implications may be expected: increased rate of deposit formation, shorter sootblowing interval, cleaning of heat transfer surfaces in revisions may be required, bed material agglomeration (in fluidised beds), increased risk of corrosion, higher in

  20. CRP on Demonstrating Performance of Spent Fuel and Related Storage Systems beyond the Long Term

    International Nuclear Information System (INIS)

    Bevilacqua, Arturo

    2014-01-01

    At the initial Coordinated Research Project (CRP) planning meeting held in August 2011, international experts in spent fuel performance confirmed the value of further coordination and development of international efforts to demonstrate the performance of spent fuel and related storage system components as durations extend. Furthermore, in recognition that the Extended Storage Collaboration Program (ESCP) managed by the Electric Power Research Institute (EPRI) in the USA, from now on ESCP, provided a broad context for the research and development work to be performed in the frame of this CRP, it was agreed that its objectives should target specific ESCP needs in order to make a relevant contribution. Accordingly, the experts examined on-going gap analyses - gaps between anticipated technical needs and existing technical data - for identify the specific research objectives. Additionally, during the planning meeting it was pointed out the need to coordinate and cooperate with the OECD/NEA counterparts involved in the organization of the International Workshop planned in autumn 2013 and with the on-going third phase of the CRP on Spent Fuel Performance Assessment and Research (SPAR-III). Given the importance to assess the performance of spent fuel and related important storage system components in order to confirm the viability of very long term storage for supporting the need to extend or renew licenses for storage facilities the CRP was approved by the IAEA in November 2011. While a full range of spent fuel types and storage conditions are deployed around the world, this CRP is focused on existing systems and, more specifically, water reactor fuel in dry storage with the overall research objective to support the technical basis for water reactor spent fuel management as dry storage durations extend. In March 2012 the group of international experts who participated at the initial CRP planning meeting in August 2011 evaluated and recommended for approval 9 research

  1. Lanthanide fission product separation from the transuranics in the integral fast reactor fuel cycle demonstration

    International Nuclear Information System (INIS)

    Goff, K.M.; Mariani, R.D.; Benedict, R.W.; Ackerman, J.P.

    1993-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed by Argonne National Laboratory. This reactor uses liquid-metal cooling and metallic fuel. Its spent fuel will be reprocessed using a pyrochemical method employing molten salts and liquid metals in an electrofining operation. The lanthanide fission products are a concern during reprocessing because of heating and fuel performance issues, so they must be removed periodically from the system to lessen their impact. The actinides must first be removed form the system before the lanthanides are removed as a waste stream. This operation requires a relatively good lanthanide-actinide separation to minimize both the amount of transuranic material lost in the waste stream and the amount of lanthanides collected when the actinides are first removed. A computer code, PYRO, that models these operations using thermodynamic and empirical data was developed at Argonne and has been used to model the removal of the lanthanides from the electrorefiner after a normal operating campaign. Data from this model are presented. The results demonstrate that greater that 75% of the lanthanides can be separated from the actinides at the end of the first fuel reprocessing campaign using only the electrorefiner vessel

  2. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  3. Permitting a tire-derived fuel system : a case study : Lafarge's Bath Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, R. [Lafarge North America, Herndon, VA (United States)

    2006-07-01

    Details of a proposed automated tire-derived fuel (TDF) system for an Ontario cement plant using mid-kiln technology were presented. The TDF system will replace approximately 20 per cent of the coal currently used by the cement plant. TDF is a proven technology that is gaining wider acceptance in both North America and Europe. Recent European Union (EU) rulings have placed energy recovery from waste high within the waste management hierarchy. In order to obtain a permit to operate the TDF system in Ontario, owners of the cement plant were obliged to hold preliminary engineering sessions in addition to informal sessions, comment periods and government reviews. The plant is required to meet emission and operational standards and the Industry Emission Reduction Program regardless of the fuel type it uses. Issues complicating the permitting process included the public perception that TDF will result in higher air emissions. However, statistics from other plants using TDF have demonstrated that TDF lowers nitrogen oxide (NO{sub x}) emissions compared to coal NO{sub x} emissions, and using TDF may result in fewer uncontained tire fires that pollute the atmosphere. The cement plant will use an electrostatic precipitator that is currently seen as the best available technology for controlling TDF emissions. Continuous emission monitoring will take place, and stack testing will be required when introducing alternative fuels. In order to engage with the public, the cement plant has promised to have a live, public display of emission levels, and has agreed to be monitored by a citizen's watch committee. A 2 year demonstration period will be established once TDF has been introduced, and annual reporting requirements will be fulfilled. It was concluded that the cement plant's emission standards will be stricter than any other cement plant in Ontario when TDF is introduced. refs., tabs., figs.

  4. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    1975-01-01

    A search of the literature through the Nuclear Safety Information Center revealed that 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 hours of orientation courses, followed by 60 to 80 hours of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use

  5. Recognition of the Environmental Costs of Fossil Fuel Plants

    Directory of Open Access Journals (Sweden)

    Hakkı FINDIK

    2015-12-01

    Full Text Available Environment that is the natural residential area of live life is among the interests of the various sciences. Within the scope of accounting science, the concept of social awareness requires a social responsibility based approach and this causes some additional environmental costs emerged when interaction of business with their environment considered. In the Uniform Accounting Plan there exists a special account relating with monitoring, controlling and managing of environmental costs. This study deals with environmental accounting for enterprises and introduces determination and recognition of the environmental costs of fossil fuel plants that use coal as a fuel

  6. Studies and research concerning BNFP: evaluation of spent-fuel-examination techniques for the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Gray, J.H.; Rogell, M.L.

    1982-09-01

    A study was made of various examinations which could be remotely performed on a production basis with spent fuel at the Barnwell Nuclear Fuel Plant (BNFP). These techniques could form an integral portion of fuel disassembly and canning operations. Their benefits accrue to either improved fuel storage, reprocessing, or both. In conjunctoin with these studies, evaluations have been made of the operational impact of receiving failed or canned fuel at the BNFP

  7. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  8. Fuel and power coproduction: The Liquid Phase Methanol (LPMEOH{trademark}) process demonstration at Kingsport

    Energy Technology Data Exchange (ETDEWEB)

    Drown, D.P.; Brown, W.R.; Heydorn, E.C.; Moore, R.B.; Schaub, E.S.; Brown, D.M.; Jones, W.C.; Kornosky, R.M.

    1997-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) process uses a slurry bubble column reactor to convert syngas (primarily a mixture of carbon monoxide and hydrogen) to methanol. Because of its superior heat management, the process is able to be designed to directly handle the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or of other hydrocarbon feedstocks. When added to an integrated gasification combined cycle (IGCC) power plant, the LPMEOH{trademark} process converts a portion of the CO-rich syngas produced by the gasifier to methanol, and the remainder of the unconverted gas is used to fuel the gas turbine combined-cycle power plant. The LPMEOH{trademark} process has the flexibility to operate in a daily electricity demand load-following manner. Coproduction of power and methanol via IGCC and the LPMEOH{trademark} process provides opportunities for energy storage for electrical demand peak shaving, clean fuel for export, and/or chemical methanol sales.

  9. Fuel combustion in thermal power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-11-01

    The position of black coal in the energy balance of Japan is discussed. About 75% of electric energy is produced by thermal power plants. Eighty-five per cent of electricity is produced by power plants fired with liquid fuels and 3% by coal fired plants. Coal production in Japan, the forecast coal import to the country by 1990 (132 Mt/year), proportion of coal imported from various countries, chemical and physical properties of coal from Australia, China and Japan are discussed. Coal classification used in Japan is evaluated. The following topics associated with coal combustion in fossil-fuel power plants in Japan are discussed: coal grindability, types of pulverizing systems, slagging properties of boiler fuel in Japan, systems for slag removal, main types of steam boilers and coal fired furnaces, burner arrangement and design, air pollution control from fly ash, sulfur oxides and nitrogen oxides, utilization of fly ash for cement production, methods for removal of nitrogen oxides from flue gas using ammonia and catalysts or ammonia without catalysts, efficiency of nitrogen oxide control, abatement of nitrogen oxide emission from boilers by flue gas recirculation and reducing combustion temperatures. The results of research into air pollution control carried out by the Nagasaki Technical Institute are reviewed.

  10. Fuel Cell Balance-of-Plant Reliability Testbed Project

    Energy Technology Data Exchange (ETDEWEB)

    Sproat, Vern [Stark State College of Technology, North Canton, OH (United States); LaHurd, Debbie [Lockheed Martin Corp., Oak Ridge, TN (United States)

    2016-10-29

    Reliability of the fuel cell system balance-of-plant (BoP) components is a critical factor that needs to be addressed prior to fuel cells becoming fully commercialized. Failure or performance degradation of BoP components has been identified as a life-limiting factor in fuel cell systems.1 The goal of this project is to develop a series of test beds that will test system components such as pumps, valves, sensors, fittings, etc., under operating conditions anticipated in real Polymer Electrolyte Membrane (PEM) fuel cell systems. Results will be made generally available to begin removing reliability as a roadblock to the growth of the PEM fuel cell industry. Stark State College students participating in the project, in conjunction with their coursework, have been exposed to technical knowledge and training in the handling and maintenance of hydrogen, fuel cells and system components as well as component failure modes and mechanisms. Three test beds were constructed. Testing was completed on gas flow pumps, tubing, and pressure and temperature sensors and valves.

  11. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    Exarhos, C.A.; Van Swam, L.F.; Wahlquist, F.P.

    1981-12-01

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  12. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes...

  13. Residential Fuel Cell Demonstration Handbook: National Rural Electric Cooperative Association Cooperative Research Network

    Energy Technology Data Exchange (ETDEWEB)

    Torrero, E.; McClelland, R.

    2002-07-01

    This report is a guide for rural electric cooperatives engaged in field testing of equipment and in assessing related application and market issues. Dispersed generation and its companion fuel cell technology have attracted increased interest by rural electric cooperatives and their customers. In addition, fuel cells are a particularly interesting source because their power quality, efficiency, and environmental benefits have now been coupled with major manufacturer development efforts. The overall effort is structured to measure the performance, durability, reliability, and maintainability of these systems, to identify promising types of applications and modes of operation, and to assess the related prospect for future use. In addition, technical successes and shortcomings will be identified by demonstration participants and manufacturers using real-world experience garnered under typical operating environments.

  14. A description of the demonstration Integral Fast Reactor fuel cycle facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Carnes, M.D.; Dwight, C.C.; Forrester, R.J.

    1991-01-01

    A fuel examination facility at the Idaho National Engineering Laboratory is being converted into a facility that will electrochemically process spent fuel. This is an important step in the demonstration of the Integral Fast Reactor concept being developed by Argonne National Laboratory. Renovations are designed to bring the facility up to current health and safety and environmental standards and to support its new mission. Improvements include the addition of high-reliability earthquake hardened off-gas and electrical power systems, the upgrading of radiological instrumentation, and the incorporation of advances in contamination control. A major task is the construction of a new equipment repair and decontamination facility in the basement of the building to support operations

  15. The Ford Nuclear Reactor demonstration project for the evaluation and analysis of low enrichment fuel

    International Nuclear Information System (INIS)

    Kerr, W.; King, J.S.; Lee, J.C.; Martin, W.R.; Wehe, D.K.

    1991-07-01

    The whole-core LEU fuel demonstration project at the University of Michigan was begun in 1979 as part of the Reduced Enrichment Research and Test Reactor (RERTR) Program at Argonne National Laboratory. An LEU fuel design was selected which would produce minimum perturbations in the neutronic, operations, and safety characteristics of the 2-MW Ford Nuclear Reactor (FNR). Initial criticality with a full LEU core on December 8, 1981, was followed by low- and full-power testing of the fresh LEU core, transitional operation with mixed HEU-LEU configurations, and establishment of full LEU equilibrium core operation. The transition from the HEU to the LEU configurations was achieved with negligible impact on experimental utilization and safe operation of the reactor. 78 refs., 74 figs., 84 tabs

  16. Overview about the fuel cell bus demonstration programs CUTE, ECTOS and STEP

    International Nuclear Information System (INIS)

    Faltenbacher, M.; Fischer, M.; Eyerer, P.; Binder, M.; Schuckert, M.

    2004-01-01

    'Full text:' The paper will give an overview about the CUTE, ECTOS and STEP projects. The aim of the projects is to develop and demonstrate a emission-free and low-noise transport system, including the accompanying energy infrastructure, which has great potential for reducing the global greenhouse effect according to the Kyoto protocol, improving the quality of the atmosphere and life in densely populated areas and conserving fossil resources. For this purpose the application of the innovative hydrogen-based fuel cell technology is established by using fuel cell powered buses in an urban environment together with novel hydrogen production and support systems as part of a European Union wide demonstration scheme. The project demonstrates also to European Society the availability of the FC technology as a safe and reliable transportation technology. The major objectives are as follows: Demonstration of more than 20 fuel cell powered regular service buses over a period of two years in several European inner city areas to illustrate the different operating conditions to be found in Europe; Design, construction and operation of the necessary infrastructure for hydrogen production, including the required refuelling stations; Collection of findings concerning the construction and operating behaviour of hydrogen production for mobile use, and exchange of experiences including bus operation under differing conditions among the numerous participating companies; and, the research work of IKP and PE comprises the ecological analysis of the entire life cycle and comparison with conventional alternatives (diesel driven buses, CNG-buses). It also includes the economical analysis of the hydrogen infrastructure. First experiences from CUTE and ECTOS were presented. (author)

  17. Spanish experience of fuel performance under zinc injection conditions in high duty plants

    International Nuclear Information System (INIS)

    Sanchez, Alicia; Doncel, Nuria

    2008-01-01

    Zinc is being added to the reactor coolant system in three Spanish PWRs (Vandellos II, Asco I and Asco II), owned by Association Nuclear Asco Vandellos AIE (ANAV), to delay Primary Water Stress Corrosion Cracking (PWSCC) initiation. Although additional advantages from zinc addition are expected, in the short term some concern exists concerning fuel performance during the first cycles of zinc addition due to a possible elevation of corrosion products from system materials when zinc is initially added. Elevated corrosion product levels in a high duty plant may cause an enhancement on crud deposited on fuel, increasing Axial Offset Anomaly (AOA) risk and accelerated cladding corrosion. To demonstrate the acceptable performance of ZIRLOTM clad fuel under zinc chemistry at a high duty plant, EPRI's Fuel Reliability Program (FRP) has chosen Vandellos II as a zinc demonstration plant to perform oxide thickness measurements and crud scraping and analysis. This paper presents the results from Vandellos II and Asco II oxide measurements as well as the conclusions from the crud samples analyses performed at Vandellos II. Furthermore, the effect of zinc addition on corrosion product behavior and dose rates are be discussed

  18. Pre-engineering assessment of Enersolve Demonstration Project. Dairy processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-15

    This study involved evaluation of a dairy processing plant to demonstrate energy conservation potential and developing a strategy to realize energy savings through retrofitting and revamping. The cheese and whey making plant of Agropur Cooperative Agro-Alimentaire located in Quebec was selected as a representative Canadian dairy processing plant. The pre-engineering assessment included a review of existing facility at the plant and plant operation, identification of plant equipment or process steps where substantial economic benefits would result from retrofitting and revamping, and estimation of budgetary cost for the subsequent engineering, procurement, construction management and monitoring of the retrofitted equipment. 3 figs., 2 tabs.

  19. Radiation protection training at uranium hexafluoride and fuel fabrication plants

    International Nuclear Information System (INIS)

    Brodsky, A.; Soong, A.L.; Bell, J.

    1985-05-01

    This report provides general information and references useful for establishing or operating radiation safety training programs in plants that manufacture nuclear fuels, or process uranium compounds that are used in the manufacture of nuclear fuels. In addition to a brief summary of the principles of effective management of radiation safety training, the report also contains an appendix that provides a comprehensive checklist of scientific, safety, and management topics, from which appropriate topics may be selected in preparing training outlines for various job categories or tasks pertaining to the uranium nuclear fuels industry. The report is designed for use by radiation safety training professionals who have the experience to utilize the report to not only select the appropriate topics, but also to tailor the specific details and depth of coverage of each training session to match both employee and management needs of a particular industrial operation. 26 refs., 3 tabs

  20. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Third semiannual report, January-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbaum, H.S. (comp.)

    1980-09-01

    Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the work scope of this program one of these concepts is to be selected for demonstration in a commercial power reactor. It was decided to demonstrate Zr-liner in 132 bundles which have liners of either crystal-bar zirconium or of low-oxygen sponge zirconium in the reload for Quad Cities Unit 2, Cycle 6. Irradiation testing or barrier fuel was continued, and the superior PCI resistance of Zr-liner fuel was further substantiated in the current report period. Furthermore, an irradiation experiment in which Zr-liner fuel, having a deliberately fabricated cladding perforation, was operated at a linear heat generation rate of 35 kW/m to a burnup of approx. 3 MWd/kg U showed no unusual signs of degradation compared with a similarly defected reference fuel rod. Four lead test assemblies of barrier fuel (two of Zr-liner and two of Cu-barrier), presently under irradiation in Quad Cities Unit 1, have achieved a burnup of 11 MWd/kg U.

  1. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Third semiannual report, January-June 1980

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1980-09-01

    Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the work scope of this program one of these concepts is to be selected for demonstration in a commercial power reactor. It was decided to demonstrate Zr-liner in 132 bundles which have liners of either crystal-bar zirconium or of low-oxygen sponge zirconium in the reload for Quad Cities Unit 2, Cycle 6. Irradiation testing or barrier fuel was continued, and the superior PCI resistance of Zr-liner fuel was further substantiated in the current report period. Furthermore, an irradiation experiment in which Zr-liner fuel, having a deliberately fabricated cladding perforation, was operated at a linear heat generation rate of 35 kW/m to a burnup of approx. 3 MWd/kg U showed no unusual signs of degradation compared with a similarly defected reference fuel rod. Four lead test assemblies of barrier fuel (two of Zr-liner and two of Cu-barrier), presently under irradiation in Quad Cities Unit 1, have achieved a burnup of 11 MWd/kg U

  2. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  3. Evaluation of bioassay program at uranium fuel fabrication plants

    International Nuclear Information System (INIS)

    Biggs, D.

    1981-03-01

    Results of a comprehensive study of urinalysis, lung burden and personal air sample measurements for workers at a uranium fuel fabrication plant are presented. Correlations between measurements were found and regression models used to explain the relationship between lung burden, daily intakes and urinary excretions of uranium. Assuming the ICRP lung model, the lung burden histories of ten workers were used to estimate the amounts in each of the long-term compartments of the lung. Estimates of the half lives of each compartment and of the maximum relative contributions to the urine from each compartment are given. These values were then used to predict urinary excretions from the long-term compartments for workers at another fuel fabrication plant. The standard error of estimate compared well with the daily variation in urinary excretion. (author)

  4. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  5. Fuel procurement for first generation fusion power plants

    International Nuclear Information System (INIS)

    Gore, B.F.; Hendrickson, P.L.

    1976-09-01

    The provision of deuterium, tritium, lithium and beryllium fuel materials for fusion power plants is examined in this document. Possible fusion reactions are discussed for use in first generation power plants. Requirements for fuel materials are considered. A range of expected annual consumption is given for each of the materials for a 1000 megawatts electric (MWe) fusion power plant. Inventory requirements are also given. Requirements for an assumed fusion power plant electrical generating capacity of 10 6 MWe (roughly twice present U.S. generating capacity) are also given. The supply industries are then examined for deuterium, lithium, and beryllium. Methods are discussed for producing the only tritium expected to be purchased by a commercial fusion industry--an initial inventory for the first plant. Present production levels and methods are described for deuterium, lithium and beryllium. The environmental impact associated with production of these materials is then discussed. The toxicity of beryllium is described, and methods are indicated to keep worker exposure to beryllium as low as achievable

  6. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  7. Abnormal reactions in a evaporator in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu

    2003-01-01

    In order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions, a development of a calculation code is under way. Mock-up tests were performed to investigate the fluid dynamic behavior of the organic solvent in the evaporator. Based on these results, the model of the calculation code was constructed. This report describes the results of mock-up tests and the model of the calculation code. (author)

  8. Demonstration of fuel resistant to pellet-cladding interaction: Phase 2. Fourth semiannual report, July-December 1980

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1981-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts have been developed for possible demonstration: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to avoid the harmful effects of localized stress and reactive fission products during reactor service. Within the scope of this program one of these concepts had to be selected for a large-scale demonstration in a commercial power reactor. The selection was made to demonstrate Zr-liner fuel and to include bundles which have liners prepared from either low oxygen sponge zirconium or of crystal bar zirconium. The demonstration is intended to include a total of 132 barrier bundles in the reload for Quad Cities Unit 2, Cycle 6. In the current report period changes in the nuclear design were made to respond to changes in the Energy Utilization Plan for Quad Cities Unit 2. Bundle designs were completed, and were licensed for use in a BWR/3. The core specific licensing will be done as part of the reload license for Quad Cities Unit 2, Cycle 6

  9. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  10. Demonstrating the compatibility of Canflex fuel bundles with a CANDU 6 fuelling machine

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, P; Oldaker, I E [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Suk, H C; Choi, C B [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1997-12-31

    CANFLEX is a new 43-element fuel bundle, designed for high operating margins. It has many small-diameter elements in its two outer rings, and large-diameter elements in its centre rings. By this means, the linear heat ratings are lower than those of standard 37-element bundles for similar power outputs. A necessary part of the out-reactor qualification program for the CANFLEX fuel bundle design, is a demonstration of the bundle`s compatibility with the mechanical components in a CANDU 6 Fuelling Machine (FM) under typical conditions of pressure, flow and temperature. The diameter of the CANFLEX bundle is the same as that of a 37-element bundle, but the smaller-diameter elements in the outer ring result in a slightly larger end-plate diameter. Therefore, to minimize any risk of unanticipated damage to the CANDU 6 FM sidestops, a series of measurements and static laboratory tests were undertaken prior to the fuelling machine tests. The tests and measurements showed that; a) the CANFLEX bundle end plate is compatible with the FM sidestops, b) all the dimensions of the CANFLEX fuel bundle are within the specified limits. (author). 3 tabs., 3 figs.

  11. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  12. Description of ECRI (CNEA'S MTR fuel fabrication plant)

    International Nuclear Information System (INIS)

    Echenique, P.; Fabro, J.; Podesta, D.; Restelli, M.; Rossi, G.; Alvarez, L.; Adelfang, P.

    2002-01-01

    The ECRI Plant is dedicated to the development and fabrication of high-density fuel elements and targets for 99 Mo. In this sector had been done the start up Fuel Elements for the Reactors of Peru, Iran, Algeria and Egypt. All of them were made with U 3 O 8 . The targets for 99 Mo using HEU were fabricated too in the last years. The new material of high-density for Fuel Elements as U 3 Si 2 were done in this sector, three prototypes were fabricated, two are still under irradiation. (P06 and P07). As new developments we are working with U-Mo (7%) Fuel Plates with both material Korean and HMD. This work is under the RERTR Program and two fuel elements, manufactured by us, with both powders, will be irradiated in Petten. For 99 Mo targets, we are fabricating miniplates of LEU with an AlUx powder by pulvi-metallurgy technique. And it is under development the foils targets under the RERTR Program. A general view of the fabrication facilities and control sector will be shown. The different operations that are done in each sector will be explained. All our activities will be certified under the ISO 9000 and we are working hard to get it in the middle of 2003. (author)

  13. Plant for retention of 14C in reprocessing plants for LWR fuel elements

    International Nuclear Information System (INIS)

    Braun, H.; Gutowski, H.; Bonka, H.; Gruendler, D.

    1983-01-01

    The 14 C produced from nuclear power plants is actually totally emitted from nuclear power plants and reprocessing plants. Using the radiation protection principles proposed in ICRP 26, 14 C should be retained at heavy water moderated reactors and reprocessing plants due to a cost-benefit analysis. In the frame of a research work to cost-benefit analysis, which was sponsored by the Federal Minister of the Interior, an industrial plant for 14 C retention at reprocessing plants for LWR fuel elements has been planned according to the double alkali process. The double alkali process has been chosen because of the sufficient operation experience in the conventional chemical technique. In order to verify some operational parameters and to gain experiences, a cold test plant was constructed. The experiment results showed that the double alkali process is a technically suitable method with high operation security. Solidifying CaCO 3 with cement gives a product fit for final disposal

  14. Safety demonstration analyses at JAERI for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Nomura, Yasushi; Kitao, Kohichi; Karasawa, Kiyonori; Yamada, Kenji; Takahashi, Satoshi; Watanabe, Kohji; Okuno, Hiroshi; Miyoshi, Yoshinori

    2005-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted in a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident postulated to occur during transportation, for the purpose of gaining acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and thus, accident conditions leading to mechanical damages and thermal failure were determined to characterize the scenarios. As a result, the worst-case conditions of run-off-the-road accidents were set up to define the impact against a concrete or asphalt surface. For fire accident scenarios to be set up, collisions were assumed to occur with an oil tanker carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside a tunnel without ventilation. Then the cask models were determined for these safety demonstration analyses to represent those commonly used for fresh nuclear fuel transported throughout Japan. Following the postulated accident scenarios, the mechanical damages were analyzed by using the general-purpose finite element code LS-DYNA with three-dimensional elements. It was found that leak tightness of the package be maintained even in the severe impact scenario. Then the thermal safety was analyzed by using the general-purpose finite element code ABAOUS with three-dimensional elements to describe cask geometry. As a result of the thermal analyses, the integrity of the containment

  15. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  16. ACSEPT a European project for a new step in the future demonstration of advanced fuel processing

    International Nuclear Information System (INIS)

    Bourg, S.; Hill, C.; Caravaca, C.; Espartero, A.; Rhodes, C.; Taylor, R.; Harrison, M.; EKBERG, C.; GEIST, A.; Modolo, G.; Cassayre, L.; Malmbeck, R.; De Angelis, G.; Bouvet, S.; Klaassen, F.

    2010-01-01

    For more than fifteen years, a European scientific community has joined its effort to develop and optimise processes for the partitioning of actinides from fission products. In an international context of 'nuclear renaissance', the upcoming of a new generation of nuclear reactor (Gen IV) will require the development of associated advanced closed fuel cycles which answer the needs of a sustainable nuclear energy: the minimization of the production of long lived radioactive waste but also the optimization of the use of natural resources with an increased resistance to proliferation. Actually, Partitioning and Transmutation (P and T), associated to a multi-recycling of all transuranics (TRUs), should play a key role in the development of this sustainable nuclear energy. By joining together 34 Partners coming from European universities, nuclear research bodies and major industrial players in a multidisciplinary consortium, the FP7 EURATOM-Fission Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), started in 2008 for four year duration, provides the sound basis and fundamental improvements for future demonstrations of fuel treatment in strong connection with fuel fabrication techniques. Consistently with potentially viable recycling strategies, ACSEPT therefore provides a structured R and D framework to develop chemical separation processes compatible with fuel fabrication techniques, with a view to their future demonstration at the pilot level. ACSEPT is organized into three technical domains: (i) Considering technically mature aqueous separation processes, ACSEPT works to optimize and select the most promising ones dedicated either to actinide partitioning or to group actinide separation. (ii) Concerning high temperature pyrochemical separation processes, ACSEPT focuses on the enhancement of the two reference cores of process selected within previous projects. R and D efforts are now devoted to key scientific and technical points

  17. Effect of wood fuels on power plant operability

    International Nuclear Information System (INIS)

    Orjala, M.; Ingalsuo, R.

    2001-01-01

    The objective of the research is to determine the critical properties of wood fuels on the basis of power plant operability, to determine the optimal conditions for reduction of harmful detriments, and to study how the storage and processing of wood fuels effect on the operability. Both the CFB and BFB technologies are studied. The project started in December 2000 and it will be ended by the end of 2002. Experts of the Fuels and Combustion research field of VTT Energy carry out the main parts of the research. Experts of the research field of Mineral Processing of VTT Chemical Technology, located in Outokumpu, and Kemian tutkimuspalvelut Oy/Oulu University, located in Outokumpu, participate in the analytics, and the research field of Materials and Manufacturing Technology of VTT Manufacturing Technology in Otaniemi participates in the research on material effects. System Technology Laboratory of Oulu University carries out the power plant automation and boiler control technology research under supervision of Professor Urpo Kortela. Co-operation with the materials research unit of EU's JRC, located in Petten, which started in the research 'Combustion of Forest Chips', will be continues in this research. Co-operation will be made with Swedish Vaermeforsk in the field of information exchange on experiences in utilisation of wood fuels in Swedish power plants and possibilities to join in the projects of Vaermeforsk in this research field. Following companies participate in the project: Etelae-Savon Energia Oy, Foster Wheeler Energia Oy, Kvaerner Pulping Oy, Simpele pasteboard factory of M-Real Oyj and Vaermeforsk AB (Sweden). (orig.)

  18. Cost and quality of fuels for electric utility plants 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ''Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990

  19. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 2. Summary of Fiscal Year 2001-2003 Projects

    Science.gov (United States)

    2005-09-01

    produced many of the Beatles 1970s recordings. This facility was selected to host the UK PEM demonstration project from a selection of four potential sites...funded the Department of Defense (DOD) Residential PEM Demonstration Project to demonstrate domestically-produced, residential Proton Exchange Membrane...PEM) fuel cells at DOD Facilities. The objectives were to: (1) assess PEM fuel cells’ role in supporting sustainability at military installations

  20. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A [Modigen Oy, Helsinki (Finland)

    1996-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  1. Bio-oil fueled diesel power plant; Biooeljyllae toimiva dieselvoimala

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, A. [Modigen Oy, Helsinki (Finland)

    1995-12-31

    The project mission is to develop a diesel power plant which is capable of using liquid bio-oils as the main fuel of the power plant. The applicable bio-oils are rape seed oils and pyrolysis oils. The project was started in 1994 by installing a 1.5 MW Vasa 4L32 engine in VTT Energy laboratory in Otaniemi. During 1995 the first tests with the rape seed oils were made. The tests show that the rape seed oil can be used in Vasa 32 engines without difficulties. In the second phase of the project during 1996 and 1997 pyrolysis oil made of wood will be tested. Finally a diesel power plant concept with integrated pyrolysis oil, electricity and heat production will be developed

  2. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  3. Development of remote maintenance technology for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kawahara, Akira; Saito, Masayuki; Kawamura, Hironobu; Yamade, Atsushi; Sugiyama, Sen; Sugiyama, Sakae.

    1986-01-01

    In the plants for reprocessing spent nuclear fuel containing fission products, due to the facts that the facilities are in high radiations fields, and the surfaces of equipments are contaminated with radioactive substances, the troubles of process equipments are directly connected to the remarkable drop of the rate of operation of the facilities. Therefore, the development of various remote maintenance techniques has been carried out so far, but this time, Hitachi Ltd. got a chance to take part in the repair of spent fuel dissolving tanks in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp. and the development of several kinds of remote checkup equipment related to the repair work. Especially in the repair of the dissolving tanks, a radiation-withstanding checkup and repair apparatus which has high remote operability taking the conditions of radioactive environment and the restriction of the repaired objects in consideration was required, and a dissolving tank repairing robot composed of six kinds has been developed. The key points of the development were the selective use of high radiation-withstanding parts and materials, small size structure and the realization of full remote operability. The full remote maintenance apparatus of this kind is unique in the world, and applicable to wide fields. (Kako, I.)

  4. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hickson, Allister; Phillips, Al; Morales, Gene

    2007-01-01

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  5. The characteristics of the prestressed concrete reactor vessel of the HHT demonstration plant

    International Nuclear Information System (INIS)

    Schoening, J.; Schwiers, H.G.

    1979-01-01

    The paper concentrates on the design studies of the HTGR prestressed concrete reactor vessel (PCRV) for the HHT Demonstration Plant. The multi-cavity reactor pressure vessel accommodates all components carrying primary gas, including heat exchangers and gas turbine. For reasons of economics and availability of the reactor plant, generic requirements are made for the PCRV. A short description of the power plant is also presented

  6. Reprocessing of nuclear fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.

    1986-01-01

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets

  7. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. Instead of releasing the 85 Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing 85 Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of 85 Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for 85 Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated 3 H and 14 C also encourage delaying implementation of the 85 Kr recovery in the early plants

  8. Safety demonstration analyses for severe accident of fresh nuclear fuel transport packages at JAERI

    International Nuclear Information System (INIS)

    Yamada, K.; Watanabe, K.; Nomura, Y.; Okuno, H.; Miyoshi, Y.

    2004-01-01

    It is expected in the near future that more and more fresh nuclear fuel will be transported in a variety of transport packages to cope with increasing demand from nuclear fuel cycle facilities. Accordingly, safety demonstration analyses of these methods are planned and conducted at JAERI under contract with the Ministry of Economy, Trade and Industry of Japan. These analyses are conducted part of a four year plan from 2001 to 2004 to verify integrity of packaging against leakage of radioactive material in the case of a severe accident envisioned to occur during transportation, for the purpose of gaining public acceptance of such nuclear fuel activities. In order to create the accident scenarios, actual transportation routes were surveyed, accident or incident records were tracked, international radioactive material transport regulations such as IAEA rules were investigated and, thus, accident conditions leading to mechanical damage and thermal failure were selected for inclusion in the scenario. As a result, the worst-case conditions of run-off-the-road accidents were incorporated, where there is impact against a concrete or asphalt surface. Fire accidents were assumed to occur after collision with a tank truck carrying lots of inflammable material or destruction by fire after collision inside a tunnel. The impact analyses were performed by using three-dimensional elements according to the general purpose impact analysis code LS-DYNA. Leak-tightness of the package was maintained even in the severe impact accident scenario. In addition, the thermal analyses were performed by using two-dimensional elements according to the general purpose finite element method computer code ABAQUS. As a result of these analyses, the integrity of the inside packaging component was found to be sufficient to maintain a leak-tight state, confirming its safety

  9. Development and demonstration of near-real-time accounting systems for reprocessing plants

    International Nuclear Information System (INIS)

    Cobb, D.D.; Hakkila, E.A.; Dayem, H.A.; Shipley, J.P.; Baker, A.L.

    1981-01-01

    A program to develop and demonstrate near-real-time accounting systems for reprocessing plants has been active at Los Alamos since 1976. The technology has been developed through modeling and simulation of process operation and measurement systems and evaluation of these data using decision analysis techniques. Aspects of near-real-time systems have been demonstrated successfully at the AGNS reprocessng plant as part of a joint study of near-real-time accounting

  10. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  11. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  12. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Pasini, S.; Trebbi, G.

    1991-01-01

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  13. Fuel for the next Brazilian nuclear power plants

    International Nuclear Information System (INIS)

    Lameiras, Fernando S.; Faeda, Kelly Cristina Ferreira

    2009-01-01

    The conclusion of the Angra III nuclear power plant ends a cycle of the nuclear energy in Brazil that started about forty years ago. Nowadays the country is planning the installation of 4 GWe to 8 GWe of nuclear power up to the year 2030. The nuclear reactors considered for this new cycle should take into account the current technologic development and environment of the nuclear market. They certainly will have significant differences in relation to the Angra I, II, and III reactors. Important impacts may result on the nuclear fuel production chain, e. g., case high temperature reactors were chosen, which can deliver electricity and heat. The differences between the fuels of the candidate reactors after Angra III are analyzed and development lines are suggested to minimize these impacts. (author)

  14. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    A search of the literature through the Nuclear Safety Information Center revealed that approximately 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 h of orientation courses, followed by 60 to 80 h of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use. (U.S.)

  15. Air conditioning facilities in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kawasaki, Michitaka; Oka, Tsutomu

    1987-01-01

    Reprocessing plants are the facilities for separating the plutonium produced by nuclear reaction and unconsumed remaining uranium from fission products in the spent fuel taken out of nuclear reactors and recovering them. The fuel reprocessing procedure is outlined. In order to ensure safety in handling radioactive substances, triple confinement using vessels, concrete cells and buildings is carried out in addition to the prevention of criticality and radiation shielding, and stainless steel linings and drip trays are installed as occasion demands. The ventilation system in a reprocessing plant is roughly divided into three systems, that is, tower and tank ventilation system to deal with offgas, cell ventilation system for the cells in which main towers and tanks are installed, and building ventilation system. Air pressure becomes higher from tower and tank system to building system. In a reprocessing plant, the areas in a building are classified according to dose rate. The building ventilation system deals with green and amber areas, and the cell ventilation system deals with red area. These three ventilation systems are explained. Radiation monitors are installed to monitor the radiation dose rate and air contamination in working places. The maintenance and checkup of ventilation systems are important. (Kako, I.)

  16. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  17. Aspects of nuclear safety at power plants and fuel cycle plants in the USSR

    International Nuclear Information System (INIS)

    Kozlov, N.I.; Efimov, E.; Dubovskij, B.G.; Dikarev, V.; Lyubchenko, V.; Kruglov, A.K.

    1977-01-01

    The paper discusses the problems of organizing inspection monitoring of power plants including the development of some regulations and norms and the interaction between the USSR State Nuclear Safety Organization, scientific and designing organizations and power plants. The principles of computer use to work out advice for operational staff and warning signals and commands for the reactor control and protection system are discussed. Some attention is turned to the importance of using high-speed computers to calculate prompt reactivity values and to determine impurity concentrations in the coolant and margins to permissible operational limits. In particular, reactimeters are considered as signal generators in monitor and protection systems. Some problems of nuclear safety inspection, the issue and inculcation of some regulations and operational documents on nuclear safety, and instrumentation of plants reprocessing or processing fuel elements are presented. Methods of determining the critical parameters of technological units are described, together with the fundamental principles of fuel cycle plant nuclear safety, providing margin coefficients, accounting for deviations from the normal operational process and other problems, as well as methods of keeping the restrictions on nuclear safety requirements at fuel cycle plants. (author)

  18. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  19. Development of demonstration facility design technology for advanced nuclear fuel cycle process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.; Lee, E. P.; Hong, D. H.; Lee, W. K.; Ku, J. H.; Moon, S. I.; Kwon, K. C.; Lee, K. I. and other

    2012-04-01

    PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. It is essential to develop design technologies for the advanced nuclear fuel cycle demonstration facilities and complete the detailed design of PRIDE facility with capabilities of the stringent inert atmosphere control, fully remote operation which are necessary to develop the high-temperature molten salts technology. For these, it is necessary to design the essential equipment of large scale inert cell structure and the control system to maintain the inert atmosphere, and evaluate the safety. To construct the hot cell system which is appropriate for pyroprocess, some design technologies should be developed, which include safety evaluation for effective operation and maintenance, radiation safety analysis for hot cell, structural analysis, environmental evaluation, HVAC systems and electric equipment

  20. ETV/ESTCP Demonstration Plan - Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas

    Science.gov (United States)

    This Test and Quality Assurance Plan (TQAP) provides data quality objections for the success factors that were validated during this demonstration include energy production, emissions and emission reductions compared to alternative systems, economics, and operability, including r...

  1. Description and characterization of BRPR series S-0, S-1, S-2, S-3, and S-4 demonstration fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.

    1981-07-01

    This report describes the process development, fabrication, and pre-irradiation characterization of the demonstration fuel rods for irradiation in the Big Rock Point Reactor as part of the DOE-sponsored Fuel Performance Improvement Program (FPIP). The fuel rods represent advanced designs that are expected to exhibit improved performance with respect to pellet-cladding-interaction and the attainment of extended burnup. Whereas other design variations are described, the primary fuel concepts being evaluated as part of the FPIP are an annular-coated-pressurized design and, at a more modest level, a sphere-pac design. A solid-pellet reference design provides the basis for comparing irradiation behavior

  2. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  3. Probabilistic safety analysis for nuclear fuel cycle facilities, an exemplary application for a fuel fabrication plant

    International Nuclear Information System (INIS)

    Gmal, B.; Gaenssmantel, G.; Mayer, G.; Moser, E.F.

    2013-01-01

    In order to assess the risk of complex technical systems, the application of the Probabilistic Safety Assessment (PSA) in addition to the Deterministic Safety Analysis becomes of increasing interest. Besides nuclear installations this applies to e. g. chemical plants. A PSA is capable of expanding the basis for the risk assessment and of complementing the conventional deterministic analysis, by which means the existing safety standards of that facility can be improved if necessary. In the available paper, the differences between a PSA for a nuclear power plant and a nuclear fuel cycle facility (NFCF) are discussed in shortness and a basic concept for a PSA for a nuclear fuel cycle facility is described. Furthermore, an exemplary PSA for a partial process in a fuel assembly fabrication facility is described. The underlying data are partially taken from an older German facility, other parts are generic. Moreover, a selected set of reported events corresponding to this partial process is taken as auxiliary data. The investigation of this partial process from the fuel fabrication as an example application shows that PSA methods are in principle applicable to nuclear fuel cycle facilities. Here, the focus is on preventing an initiating event, so that the system analysis is directed to the modeling of fault trees for initiating events. The quantitative results of this exemplary study are given as point values for the average occurrence frequencies. They include large uncertainties because of the limited documentation and data basis available, and thus have only methodological character. While quantitative results are given, further detailed information on process components and process flow is strongly required for robust conclusions with respect to the real process. (authors)

  4. Carbonization plant for low temperature carbonization of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    1948-02-13

    A carbonization plant for the low-temperature carbonization of solid fuels, consists of a heat-treating retort including an outer vertical stationary tube, a second inner tube coaxial with the first tube, adapted to rotate round its axis and defining the first tube, and an annular gap where the solid fuel is treated. The inside of the inner tube is divided in two parts, the first fed with superheated steam which is introduced into the annular gap through vents provided in the wall of the inner tube, the second part communicating with the gap by means of vents provided in the wall of the inner tube through which gases and oil vapors evolved from the fuel are evacuated. A combustion furnace is provided in which the hot solid residues evacuated at the bottom of the annular gap are burned and from which hot fumes are evacuated, a conduit surrounding, in the form of a helical flue, outer cylinder of the retort, and in which flow hot fumes; a preliminary drier for the raw solid fuel heated by the whole or a part of the fumes evacuated from the combustion furnace. Means for bringing solid fuels from the outlet of the preliminary drier to the upper inlet of the gap of the retort a pipe line receiving steam and bringing it into the first inside part of the inner tube, this pipe line has portions located within the conduit for the fumes in order to superheat the steam, and an expansion chamber in which the gases and oil vapors are trapped at the bottom of the second inside part of the inner tube are included.

  5. Prevention of criticality accidents in a fuel cycle plant

    International Nuclear Information System (INIS)

    Gatti, A.M.; Canavese, S.I.; Capadona, N.M.

    1990-01-01

    This work reports the basic considerations on criticality accidents applied to an uranium dioxide fuel cycle production plant. The different fabrication stages are briefly described, with the identification of the neutronically isolated areas. Once the areas have been defined, an evaluation is made, setting up the control parameters to be used in each of them and their variation ranges; normal operation limitations based on experimental data or validating calculations, applied specifically to 5% enriched uranium, are established. Afterwards, defined parameters deviations are analyzed due to incidental conditions in order to prevent criticality accidents under normal conditions and maintenance operations. (Author) [es

  6. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection

    Science.gov (United States)

    Arias-Thode, Y. Meriah; Hsu, Lewis; Anderson, Greg; Babauta, Jerome; Fransham, Roy; Obraztsova, Anna; Tukeman, Gabriel; Chadwick, D. Bart

    2017-07-01

    The Navy has a need for monitoring conditions and gathering information in marine environments. Sensors can monitor and report environmental parameters and potential activities such as animal movements, ships, or personnel. However, there has to be a means to power these sensors. One promising enabling technology that has been shown to provide long-term power production in underwater environments is the benthic microbial fuel cells (BMFC). BMFCs are devices that generate energy by coupling bioanodes and biocathodes through an external energy harvester. Recent studies have demonstrated success for usage of BMFCs in powering small instruments and other devices on the seafloor over limited periods of time. In this effort, a seven-stranded BMFC linear array of 30 m was designed to power a seafloor magnetometer to detect passing ship movements through Pearl Harbor, Hawaii. The BMFC system was connected to a flyback energy harvesting circuit that charged the battery powering the magnetometer. The deployment was demonstrated the BMFC supplied power to the battery for approximately 38 days. This is the first large-scale demonstration system for usage of the SeptiStrand BMFC technology to power a relevant sensor.

  7. Recuperative aluminium recycling plant. A demonstration at J. McIntyre (Aluminium) Ltd. [Nottingham (GB)

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    Direct energy savings worth up to 470,000 pounds/year are being achieved by J McIntyre (Aluminium) Ltd in the United Kingdom as a result of the development of a recuperative aluminium recycling plant. The overall design incorporates a novel version of a closed-well furnace coupled with a radically improved design of dry hearth furnace. The plant not only treats clean scrap more efficiently than at present, but will also treat contaminated scrap which has not previously been recycled in an environmentally acceptable way. This is because the plant incorporates fume pyrolysis, afterburning of organics, recuperation and fume treatment. At 1987 prices the total installed plant cost was 1.3M.pounds. The direct energy saving at 1987 fuel prices was between 294,000 and 470,000pounds/year. Also, the improved melting technique has reduced metal lost as dross by 2 - 8% (420 -1,680 tonnes/year) when compared to other furnace operations. The improved metal recovery (1987 prices) was worth a further 400,000 pounds - 1,600,000 pounds. Taking median figures for the total fuel-plus-metal savings results in a payback on the project of only 14 months, some six months less than anticipated. Other consequential benefits which have also helped in reducing operating costs have been improvements in output per man, reductions in sickness and absenteeism, and reduced down-time for maintenance and repair. (author).

  8. Extended fuel cycle operation for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1978-01-01

    A nuclear steam turbine power plant system having an arrangement therein for extended fuel cycle operation is described. The power plant includes a turbine connected at its inlet to a source of motive fluid having a predetermined pressure associated therewith. The turbine has also connected thereto an extraction conduit which extracts steam from a predetermined location therein for use in an associated apparatus. A bypass conduit is provided between a point upstream of the inlet and the extraction conduit. A flow control device is provided within the bypass conduit and opens when the pressure of the motive steam supply drops beneath the predetermined pressure as a result of reactivity loss within the nuclear reactor. Opening of the bypass conduit provides flow to the associated apparatus and at the same time provides an increased flow orifice to maintain fluid flow rate at a predetermined level

  9. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Robert L [Argonne National Laboratory

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  10. Beyond Demonstration: The Role of Fuel Cells in DoD’s Energy Strategy

    Science.gov (United States)

    2011-10-19

    interest to DoD, in part by obtaining rec- ommendations from organizations with an interest in fuel cells. Analysis and feedback led us to define 11...FuelCell Energy manufactures MCFC systems. They are nor- mally operated using natural gas, but they can also run on re- newable fuels such as biogas ...of the base load power at the Gills Onions processing facility in Oxnard, CA. Installed in 2009, the fuel cell system uses biogas produced from

  11. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options

  12. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  13. A feasible approach to implement a commercial scale CANDU fuel manufacturing plant in Egypt

    International Nuclear Information System (INIS)

    El-Shehawy, I.; El-Sharaky, M.; Yasso, K.; Selim, I.; Graham, N.; Newington, D.

    1995-01-01

    Many planning scenarios have been examined to assess and evaluate the economic estimates for implementing a commercial scale CANDU fuel manufacturing plant in Egypt. The cost estimates indicated strong influence of the annual capital costs on total fuel manufacturing cost; this is particularly evident in a small initial plant where the proposed design output is only sufficient to supply reload fuel for a single CANDU-6 reactor. A modular approach is investigated as a possible way, to reduce the capital costs for a small initial fuel plant. In this approach the plant would do fuel assembly operations only and the remainder of a plant would be constructed and equipped in the stages when high production volumes can justify the capital expenses. Such approach seems economically feasible for implementing a small scale CANDU fuel manufacturing plant in developing countries such as Egypt and further improvement could be achieved over the years of operation. (author)

  14. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    International Nuclear Information System (INIS)

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  15. The Hidden Habit of the Entomopathogenic Fungus Beauveria bassiana: First Demonstration of Vertical Plant Transmission

    Science.gov (United States)

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120–140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum. PMID:24551242

  16. The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission.

    Science.gov (United States)

    Quesada-Moraga, Enrique; López-Díaz, Cristina; Landa, Blanca Beatriz

    2014-01-01

    Beauveria bassiana strain 04/01-Tip, obtained from a larva of the opium poppy stem gall wasp Iraella luteipes (Hymenoptera; Cynipidae), endophytically colonizes opium poppy (Papaver somniferum L.) plants and protects them against this pest. The goal of this study was to monitor the dynamics of endophytic colonization of opium poppy by B. bassiana after the fungus was applied to the seed and to ascertain whether the fungus is transmitted vertically via seeds. Using a species-specific nested PCR protocol and DNA extracted from surface-sterilised leaf pieces or seeds of B. bassiana-inoculated opium poppy plants, the fungus was detected within the plant beginning at the growth stage of rosette building and them throughout the entire plant growth cycle (about 120-140 days after sowing). The fungus was also detected in seeds from 50% of the capsules sampled. Seeds that showed positive amplification for B. bassiana were planted in sterile soil and the endophyte was again detected in more than 42% of the plants sampled during all plant growth stages. Beauveria bassiana was transmitted to seeds in 25% of the plants from the second generation that formed a mature capsule. These results demonstrate for the first time the vertical transmission of an entomopathogenic fungus from endophytically colonised maternal plants. This information is crucial to better understand the ecological role of entomopathogenic fungi as plant endophytes and may allow development of a sustainable and cost effective strategy for I. luteipes management in P. somniferum.

  17. Monitoring of releases from an irradiated fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fitoussi, L.

    1978-01-01

    At its UP 2 plant, the La Hague facility reprocesses irradiated fuel by the PUREX process. The fuel stems from graphite/gas, natural-uranium reactors and pressurized or boiling water enriched-uranium reactors. The gaseous effluents are collected and purified by high-efficiency washing and filtration. After purification the gas stream is discharged into the atmosphere by a single stack, 100m high and 6m in diameter, located at a high point on the site (184m). The radionuclides released into the air are: krypton-85, iodine-129 and -131, and tritium. The liquid effluents are collected by drainage systems, which transfer them to the effluent treatment station in the case of active or suspect solutions. Active solutions undergo treatment by chemical and physical processes. After purification the waste water is released into the sea by an underwater drainage system 5km long, which brings the outlet point into the middle of a tidal current 2km offshore. The radionuclides contained in the purified waste water are fission products originating from irradiated fuels in only slightly variable proportions, in which ruthenium-rhodium-106 predominates. Traces of the transuranium elements are also found in these solutions

  18. The decommissioning of the Barnwell nuclear fuel plant

    International Nuclear Information System (INIS)

    McNeil, J.

    1999-01-01

    The decommissioning of the Barnwell Nuclear Fuel Plant is nearing completion. The owner's objective is to terminate the plant radioactive material license associated with natural uranium and transuranic contamination at the plant. The property is being released for commercial-industrial uses, with radiation exposure from residual radioactivity not to exceed 0.15 millisieverts per year. Historical site assessments have been performed and the plant characterized for residual radioactivity. The decommissioning of the uranium hexafluoride building was completed in April, 1999. Most challenging from a radiological control standpoint is the laboratory building that contained sixteen labs with a total of 37 glove boxes, many of which had seen transuranics. Other facilities being decommissioned include the separations building and the 300,000-gallon underground high-level waste tanks. This decommissioning in many ways is the most significant project of this type yet undertaken in South Carolina. Many innovations have been made to reduce the time and costs associated with the project. (author)

  19. ACSEPT, a new step in the future demonstration of advanced fuel processing

    International Nuclear Information System (INIS)

    Bourg, Stephane; Hill, Clement; Caravaca, Concha; Ekberg, Christian; Rhodes, Chris

    2010-01-01

    Actinide recycling by separation and transmutation is considered world wide and particularly in several European countries as one of the most promising strategies to reduce the inventory of radioactive waste, thus contributing to making nuclear energy sustainable. By joining together European universities, nuclear research bodies and major industrial players in a multi-disciplinary consortium, the FP7 EURATOM Fission Project ACSEPT provides the sound basis and fundamental improvements for future demonstrations of fuel treatment in strong connection with fuel fabrication techniques. In accordance with the Strategic Research Agenda of the Sustainable Nuclear Energy Technology Platform (SNE-TP), the timelines of this four-year R and D project (2008-2012) should allow the offering of technical solutions in terms of separation process that may be reviewed by governments, European utilities as well as technology providers at that time horizon. By showing a technically feasible recycling of actinides strategy, ACSEPT will certainly produce positive arguments in the sense that European decision makers, and more globally public opinion, could be convinced that technical solutions for a better management of nuclear wastes are now technologically feasible. ACSEPT is thus an essential contribution to the demonstration, in the long term, of the potential benefits of actinide recycling to minimise the burden on geological repositories. To succeed, ACSEPT is organised in three technical domains: i) Considering technically mature aqueous separation processes, ACSEPT will optimise and select the most promising ones dedicated either to actinide partitioning or to group actinide separation. These developments are appropriately balanced with an exploratory research focused on the design of new molecules. ii) Concerning pyrochemical separation processes, ACSEPT first focuses on the enhancement of the two reference cores of process selected within EUROPART. R and D efforts shall also be

  20. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  1. Army Demonstration of Light Obscuration Particle Counters for Monitoring Aviation Fuel Contamination

    Science.gov (United States)

    2013-05-07

    Hydraulic industry has utilized this technology for decades and created a mature process •Hydraulic industry has developed recognized calibration ...Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18/16/13 14/10/7 Pamas/Parker/Particle Solutions 19/17/12 U.S. Army 19...17/14/13* Diesel Fuel World Wide Fuel Charter 4th 18/16/13 DEF (AUST) 5695B 18/16/13 Bosch/Cummins 18/16/13 Donaldson 22/21/18 14/13/11 12/9/6 P ll

  2. Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant

    International Nuclear Information System (INIS)

    Malato, Sixto; Blanco, Julian; Maldonado, Manuel I.; Oller, Isabel; Gernjak, Wolfgang; Perez-Estrada, Leonidas

    2007-01-01

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500 mg L -1 ) containing a non-biodegradable organic substance (α-methylphenylglycine at 500 mg L -1 ), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe 2+ = 20 mg L -1 . Based on pilot plant results, an industrial plant with 100 m 2 of CPC collectors for a 250 L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500 L h -1 at an average solar ultraviolet radiation of 22.9 W m -2 , under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant

  3. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  4. Recovery Act: Demonstration of a SOFC Generator Fueled by Propane to Provide Electrical Power to Real World Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bessette, Norman [Acumentrics Corporation, Westwood, MA (United States)

    2016-08-01

    The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portable generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.

  5. Airborne effluent control at fuel enrichment, conversion, and fabrication plants

    International Nuclear Information System (INIS)

    Mitchell, M.E.

    1976-01-01

    Uranium conversion, enrichment, and fuel fabrication facilities generate gaseous wastes that must be treated prior to being discharged to the atmosphere. Since all three process and/or handle similar compounds, they also encounter similar gaseous waste disposal problems, the majority of which are treated in a similar manner. Ventilation exhausts from personnel areas and equipment off-gases that do not contain corrosive gases (such as HF) are usually passed through roughening and/or HEPA filters prior to release. Ventilation exhausts that contain larger quantities of particles, such as the conversion facilities' U 3 O 8 sampling operation, are passed through bag filters or cyclone separators, while process off-gases containing corrosive materials are normally treated by sintered metal filters or scrubbers. The effectiveness of particle removal varies from about 90 percent for a scrubber alone to more than 99.9 percent for HEPA filters or a combination of the various filters and scrubbers. The removal of nitrogen compounds (N 2 , HNO 3 , NO/sub x/, and NH 3 ) is accomplished by scrubbers in the enrichment and fuel fabrication facilities. The conversion facility utilizes a nitric acid recovery facility for both pollution control and economic recovery of raw materials. Hydrogen removal from gaseous waste streams is generally achieved with burners. Three different systems are currently utilized by the conversion, enrichment, and fuel fabrication plants to remove gaseous fluorides from airborne effluents. The HF-rich streams, such as those emanating from the hydrofluorination and fluorine production operations of the conversion plant, are passed through condensers to recover aqueous hydrofluoric acid

  6. Demonstration program for small-scale straw fuel systems. Pre-study for the Swedish Energy Agency; Demonstrationsprogram foer smaaskaliga straabraenslesystem. Foerstudie foer Energimyndigheten

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne (Swedish Environmental Research Institute Ltd., Stockholm (Sweden)); Wahlberg, Cecilia (Hushaallningssaellskapet, Stockholm (Sweden)); Arkeloev, Olof (LRF Konsult, Stockholm (Sweden))

    2008-02-15

    Energy crops from arable land is still an almost entirely untapped potential as a fuel for heating. Canary grass, straw and hemp could eventually form an important part of the raw-material from agriculture. For this production to increase and become a viable alternative to conventional farming it is required, however, that the whole production chain from cultivation to end-use is developed. The aim of this pilot study has been to make suggestions for the design of a Demonstration project of small-scale fuel straw-crops. The programme's vision is to within 6 years build up a number of demonstration plants for small-scale briquetting/pelletizing of straw fuels in different parts of the country. In addition, potential producers of raw materials and other actors in the programme will be made aware what opportunities and conditions there are to process the agro-fuels in small-scale production facilities. The overall objective of the programme is to increase knowledge about how straw fuels and/or residues can be used as raw material in small-scale production of briquettes/pellets, and enhance the understanding of how producers take part in different business models. In the short term, the objective of the programme to build up a network of pellets and briquettes producing demonstration. Within the activities of the programme it is proposed that demonstration is built up of at least 7 different places in the country. This is in order to be able to gain experience on the basis of local and regional conditions. Demonstration refers both to demonstrate the entire chain with existing proven technology, and to improve technologies, reduce costs and make the production and user experience. On the other hand, the intention may be to test the new technology. Demonstration refers to smaller installations and with a production capacity of plants should vary from about 100 to 500 kg/h produced fuel. Operations are limited to the supply of raw material, cultivation and harvest

  7. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  8. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  9. Thorium base fuels reprocessing at the L.P.R. (Radiochemical Processes Laboratory) experimental plant

    International Nuclear Information System (INIS)

    Almagro, J.C.; Dupetit, G.A.; Deandreis, R.A.

    1987-01-01

    The availability of the LPR (Radiochemical Processes Laboratory) plant offers the possibility to demonstrate and create the necessary technological basis for thorium fuels reprocessing. To this purpose, the solvents extraction technique is used, employing TBP (at 30%) as solvent. The process is named THOREX, a one-cycle acid, which permits an adequate separation of Th 232 and U 233 components and fission products. For thorium oxide elements dissolution, the 'chopp-leach' process (installed at LPR) is used, employing a NO 3 H 13N, 0.05M FH and 0.1M Al (NO 3 ) 3 , as solvent. To adapt the pilot plant to the flow-sheet requirements proposed, minor modifications must be carried out in the interconnection of the existing decanting mixers. The input of the plant has been calculated by Origin Code modified for irradiations in reactors of the HWR type. (Author)

  10. Management of radioactive wastes from nuclear fuels and power plants in Canada

    International Nuclear Information System (INIS)

    Tomlinson, M.; Mayman, S.A.; Tammemagi, H.Y.; Gale, J.; Sanford, B.

    1977-05-01

    The nature of Canadian nuclear fuel and nuclear generating plant radioactive wastes is summarized. Principles of a scheme for disposal of long-lived radioactive wastes deep underground in isolation from man and the biosphere are outlined. The status of the development and construction program is indicated. We have demonstrated incorporation of fission products in solids that in the short term (17 years) dissolve more slowly than plutonium decays. Investigations of long-term stability are in hand. Additional capacity for storage of used fuel prior to reprocessing and disposal is required by 1986 and a preliminary design has been prepared for a pool facility to be located at a central fuel recycling and disposal complex. A demonstration of dry storage of fuel in concrete containers is in progress. The quantities of CANDU generating-station wastes and the principles and methods for managing them are summarized. A radioactive-waste operations site is being developed with several different types of surface storage, each with multiple barriers against leakage. A reactor decommissioning study has been completed. Estimated costs of the various waste management operations are summarized. (author)

  11. Nuclear liability and research reactor fuel. A plant supplier's view

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Hetzmann, A.

    2000-01-01

    Contracts on Research Reactors are normally entered into by the owner and - very often - later user and the supplier of such plants. They are not concluded by the fuel supplier, except fuel supplier and plant supplier are identical. Thus, the fuel supplier mostly has no direct influence into the contract negotiations and the clauses which are eventually agreed upon between the parties. So has any other subcontractor for any other system or component. Any such subsupplier can and will negotiate a subsidiary supply contract (subcontract) with the supplier of the plant. The supplier drafts the related clauses so as to pass on to the subsupplier as many risks out of his contracts as possible. The subsupplier, on the other hand, tries to protect himself, tries to limit the risks he takes over, e.g. to the worth of his subcontract maximum. A critical issue in such negotiations is those concerning the risks the supplier had to accept and the subsupplier, although he may be responsible later for the risk changing to reality; i.e. the occurrence of a loss, cannot be hold liable for in full because the subcontract limits his liability, e.g. to the subcontract value or a certain delay penalty. A typical example for this conflict are delays of the entire project caused by one subsupplier. A very specific case in this context is the so-called nuclear liability. Nuclear liability means being hold responsible for the consequences or damages originating from a nuclear event in the plant. Those consequences or damages may be suffered by third parties, which are neither the owner/operator nor the supplier and result in a liability to such party (third party liability). Several of the aspects below may be related to the nuclear liability issue: The supplier often has its registered office not in the country where the plant is; The supplier may have far bigger assets than the owner/operator. The legal system of the supplier's country may be more favourable for enforcing claims of

  12. Plant diversity to support humans in a CELSS ground based demonstrator

    Science.gov (United States)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  13. Repository for spent nuclear fuel. Plant description layout D - Forsmark

    International Nuclear Information System (INIS)

    2010-07-01

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and backfilling

  14. A decision analysis framework to support long-term planning for nuclear fuel cycle technology research, development, demonstration and deployment

    International Nuclear Information System (INIS)

    Sowder, A.G.; Machiels, A.J.; Dykes, A.A.; Johnson, D.H.

    2013-01-01

    To address challenges and gaps in nuclear fuel cycle option assessment and to support research, develop and demonstration programs oriented toward commercial deployment, EPRI (Electric Power Research Institute) is seeking to develop and maintain an independent analysis and assessment capability by building a suite of assessment tools based on a platform of software, simplified relationships, and explicit decision-making and evaluation guidelines. As a demonstration of the decision-support framework, EPRI examines a relatively near-term fuel cycle option, i.e., use of reactor-grade mixed-oxide fuel (MOX) in U.S. light water reactors. The results appear as a list of significant concerns (like cooling of spent fuels, criticality risk...) that have to be taken into account for the final decision

  15. Radiation protection aspects in decommissioning of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kotrappa, P.; Joshi, P.P.; Theyyunni, T.K.; Sidhwa, B.M.; Nadkarni, M.N.

    1980-01-01

    The decontamination of a fuel reprocessing plant which underwent partial decommissioning is described. The following radiation protection aspects of the work are discussed: dismantling and removal of process vessels, columns and process off-gas filters; decontamination of various process areas; and management of liquid and solid wastes. The work was completed safely by using personnel protective equipment such as plastic suits and respirators (gas, particulate and fresh air). Total dose commitment for this work was around 3000 man-rems, including dose received by staff for certain jobs related to the operation of a section of the plant. The external dose was kept below the annual limit of 5000 mrems for any individual. No internal contamination incident occurred which caused a dose commitment in excess of 10% of the annual limit. The fact that all the work was completed by the staff normally associated with the operation of the plant contributed significantly to the management and control of personnel exposures. (H.K.)

  16. 1000kW phosphoric acid fuel cell power plant. Outline of the plant

    Energy Technology Data Exchange (ETDEWEB)

    Shinobe, Kenji; Suzuki, Kazuo; Kaneko, Hideo

    1988-02-10

    The outline of the 1000KW phosphoric acid fuel cell power plant, developed as part of the Moonlight plan, was described. The plant was composed of 4 stacks of 260KW DC output. They were devided into two train with 680V and 765A. The generation efficiency of the plant was 40% and more. Steam reforming of natural gas was used. As the fuel, fuel cell exhaust gas was used in composition with the natural gas. The DC-AC inverter had an efficiency of 96%. The capacity of hot water generator and demineralized water plant for cell cooling were 2t/h and 1.6t/h, respectively, and air-system was incorporated. In September of 1987, the plant has succeeded in 1000KW power generation, and put in operation now. Under the 100% loaded condition, each cell had a voltage of 0.7V with little variation, and the current was 200mA/cm/sup 2/. No problems were found in cooling conditions and in the control of interpole differential pressure. The reformer has been operated for 1200h scince its commisioning, and had experiences of 100 times on start up-shut down operations, the reformer also indicated good performances in the gas compositions. The starting time of 8h and the load follow-up rate 10%/min remain as the subjects for shortening. DC-AC conversion was good. The concentration of NOx and the noise level satisfied the target values. (12 figs, 1 tab)

  17. Evaluation of design and operation of fuel handling systems for 25 MW biomass fueled CFB power plants

    International Nuclear Information System (INIS)

    Precht, D.

    1991-01-01

    Two circulating fluidized bed, biomass fueled, 25MW power plants were placed into operation by Thermo Electron Energy Systems in California during late 1989. This paper discusses the initial fuel and system considerations, system design, actual operating fuel characterisitics, system operation during the first year and modifications. Biomass fuels handled by the system include urban/manufacturing wood wastes and agricultural wastes in the form of orchard prunings, vineyard prunings, pits, shells, rice hulls and straws. Equipment utilized in the fuel handling system are described and costs are evaluated. Lessons learned from the design and operational experience are offered for consideration on future biomass fueled installations where definition of fuel quality and type is subject to change

  18. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing100084 (China)

    2009-01-15

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration. (author)

  19. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    Science.gov (United States)

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  1. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, Vahan; O' Neill, Barbara

    2016-01-21

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of

  2. Operating experience with a near-real-time inventory balance in a nuclear fuel cycle plant

    International Nuclear Information System (INIS)

    Armento, W.J.; Box, W.D.; Kitts, F.G.; Krichinsky, A.M.; Morrison, G.W.; Pike, D.H.

    1981-01-01

    The principal objective of the ORNL Integrated Safeguards Program (ISP) is to provide enhanced material accountability, improved process control, and greater security for nuclear fuel cycle facilities. With the improved instrumentation and computer interfacing currently installed, the ORNL 233 U Pilot Plant has demonstrated capability of a near-real-time liquid-volume balance in both the solvent-extraction and ion-exchange systems. Future developments should include the near-real-time mass balancing of special nuclear materials as both a static, in-tank summation and a dynamic, in-line determination. In addition, the aspects of site security and physical protection can be incorporated into the computer monitoring

  3. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  4. Planar Solid-Oxide Fuel Cell System Demonstration at UT SimCenter

    Science.gov (United States)

    2015-12-09

    Optimization of Chemically Reacting Flows in Catalytic Monoliths", PhD Thesis, University of Heidelberg, 2005. [55] David G. Goodwin, Harry K. Moffat...Berry. Fuel Cells: Technologies for Fuel Processing. Oxford: Elsevier, 2011 [114] J. Pasel, J. Meissner, Z. Pors, C. Palm, P. Cremer , R. Peters, D

  5. Innovations in fuels management: Demonstrating success in treating a serious threat of wildfire in Northern Minnesota

    Science.gov (United States)

    Dennis Neitzke

    2007-01-01

    This case study illustrates the positive effects of strategic fuels treatments in continuous heavy fuels. In 1999, a severe windstorm blew down close to 1,000 square miles of forest land in northern Minnesota and Canada. As much as 400,000 acres of the blowdown occurred in the Boundary Waters Canoe Area Wilderness. Fire experts were invited to assess the hazardous...

  6. The use of artificial intelligence for safeguarding fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs

  7. The use of artificial intelligence for safeguard fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from minirun campaigns conducted at the Barnwell Nuclear Fuels Plant have been utilized to study the suitability of computer-based artificial intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software. The computer software accepted as input process data customarily used for process operations that had previously been recorded on magnetic tape during the 1980 miniruns. The OPS5 AI language was used to construct an expert system for simulated monitoring of the process. Such expert systems facilitate the employment of the heuristic reasoning used by human observers to form reasoned conclusions from incomplete, inaccurate, or otherwise fuzzy data

  8. Microbial transformations of radionuclides released from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Francis, A.J.

    2007-01-01

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed. (author)

  9. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  10. Status of disposal techniques for spent fuel in Germany: Results of demonstration tests for direct disposal

    International Nuclear Information System (INIS)

    Engelmann, H.J.; Filbert, W.

    1993-01-01

    According to the Atomic Energy Act (1985) the Federal Government is responsible for establishing facilities to indemnify and dispose radioactive waste. According to Art. 9b of the Atomic Energy Act (1986) the construction and operation of such a repository requires approval of a plan. According to safety criteria applicable for disposing radioactive waste in mines, construction and operation of repository mines require application of acknowledged rules of technology, laws, ordinances and other regulations to protect operating staff and population from radiation damages. Shaft hoisting equipment for the transportation of radioactive waste in a repository mine must satisfy normal operational tasks and meet special safety-requirements. Its failure may result in danger for persons, release of radioactive substances into the plant and environment. That means, shaft hoisting equipment must be designed to satisfy the necessary safety requirements and be state of the art of science and technology. The aim of these demonstration tests is verification of technical feasibility of a shaft hoisting equipment with a payload of 85 t, underground for drift disposal of POLLUX-casks, and essential machine and mine-technical systems and components. The demonstration also includes safe radiation protection during transport and disposal operations. Investigations assume that radioactive waste is transported in containers that satisfy transport requirements for dangerous goods and have a type-B-certificate

  11. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  12. Suggestions of radiation protection instruments in ships used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants

    International Nuclear Information System (INIS)

    Warenmo, G.

    1979-01-01

    Some radiation protection measures are necessary in ships which will be used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants in order to protect the crew from unnecessarily high radiation doses and to ensure that not allowable values occur. Such measures are discussed in this report as well as suitable radiation protection instruments for such ships. (E.R.)

  13. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  14. Remote maintenance system technology development for nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kashihara, Hidechiyo

    1984-01-01

    The necessity of establishing the technology of remote maintenance, the kinds of maintenance techniques and the change, the image of a facility adopting remote maintenance canyon process, and the outline of the R and D plan to put remote maintenance canyon process in practical use are described. As the objects of development, there are twin arm type servo manipulator system, rack system, remote tube connectors, solution sampling system, inspection system for in-cell equipment, and large plugs for wall penetration. The outline of those are also reported. The development of new remote maintenance technology has been forwarded in the Tokai Works aiming at the application to a glass solidification pilot plant and a FBR fuel recycling test facility. The lowering of the rate of utilization of cells due to poor accessibility and the increase of radiation exposure of workers must be overcome to realize nuclear fuel cycle technology. The maintenance technology is classified into crane canyon method, direct maintenance cell method, remote maintenance cell method and remote maintenance canyon method, and those are described briefly. The development plan of remote maintenance technology is outlined. (Kako, I.)

  15. RIMAP demonstration project. Pat. 1: Risk based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Puck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic

    2003-01-01

    In the framework of EU project RIMAP [1] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM - Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: development (RTD), demonstration (DEMO) and thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: identification of critical components, application of a multilevel risk analysis (..from ''screening'' to ''detailed analysis''), determination of PoF - Probability of Failure, determination of COF - Consequence of Failure and optimation of inspection and maintenance plan. (orig.)

  16. Economic analysis of fuel management philosophy amendment in the second Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Cai Guangming

    2006-01-01

    In order to improve economic benefit, the Second Qinshan Nuclear Power Plant prepares to amend its fuel management philosophy after several fuel cycles. Economic evaluation is necessary before amendment of fuel management philosophy. Strong points and shortcomings are compared in this paper between yearly 1/4 refueling philosophy and 18 months refueling philosophy. (authors)

  17. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  18. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    Science.gov (United States)

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  19. Proceedings of the 1978 symposium on instrumentation and control for fossil demonstration plants

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The 1978 symposium on instrumentation and control for fossil demonstration plants was held at Newport Beach, California, June 19--21, 1978. It was sponsored by Argonne National Laboratory, the U.S. Department of Energy - Fossil Energy, and the Instrument Society of America - Orange County Section. Thirty-nine papers have been entered individually into the data base. (LTN)

  20. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  1. The implications of plant design on the life-time costs for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Macphee, D.S.; Hexter, B.C.; Young, M.P.; Wilson, B.J.

    1997-01-01

    Utilising the experience gained during many years of design and project management of nuclear plant, BNFL is now approaching the final stages of the construction and commissioning of the Sellafield MOX Plant (SMP) in the UK. The paper uses the SMP project to highlight the benefits of these experiences, in particular addressing the implications of the approach to plant design on life time costs. In addition to providing BNFL with a state of the art, commercial scale MOX fuel fabrication facility, the construction of this 120 tHM/yr facility, which is currently in the advanced stages of commissioning, represents a significant demonstration of the design and project management skills of BNFL Engineering Ltd. As well as meeting the main process requirements, the plant design incorporates the highest standards of safety, together with input from the future plant operators and potential customers. As befits a commercial scale plutonium handling facility, SMP also incorporates material accountancy and security provisions that will meet all international requirements. Design, construction and commissioning of this complex and highly automated plant, has benefited from a totally integrated approach to design and documentation that considers not only project implementation but also overall lifetime costs. In addition, project management techniques, developed over many years of major project construction at Sellafield, have been utilised in order to ensure successful project implementation against a background of significant technical challenge and 'fast track' timescales. (author)

  2. Laser-based analytical monitoring in nuclear-fuel processing plants

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1978-09-01

    The use of laser-based analytical methods in nuclear-fuel processing plants is considered. The species and locations for accountability, process control, and effluent control measurements in the Coprocessing, Thorex, and reference Purex fuel processing operations are identified and the conventional analytical methods used for these measurements are summarized. The laser analytical methods based upon Raman, absorption, fluorescence, and nonlinear spectroscopy are reviewed and evaluated for their use in fuel processing plants. After a comparison of the capabilities of the laser-based and conventional analytical methods, the promising areas of application of the laser-based methods in fuel processing plants are identified

  3. The significance of the pilot conditioning plant (PKA) for spent fuel management

    International Nuclear Information System (INIS)

    Willax, H.O.

    1996-01-01

    The pilot conditioning plant (PKA) is intended as a multi-purpose facility and thus may serve various purposes involved in the conditioning or disposal of spent fuel elements or radwaste. Its design as a pilot plant permits development and trial of various methods and processes for fuel element conditioning, as well as for radwaste conditioning. (orig./DG) [de

  4. Administrative and managerial controls for the operation of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidelines are provided for the administrative and managerial controls necessary for the safe and efficient operation of nuclear fuel reprocessing plants. Topics covered include: administrative organization; review and audit; facility administrative policies and procedures; and tests and inspections. Recognizing that administrative practices vary among organizations operating nuclear fuel reprocessing plants, the standard incorporates flexibility that provides for compliance by any organization

  5. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into

  6. Water chemistry control in thermal and nuclear power plants. 9. Nuclear fuel management

    International Nuclear Information System (INIS)

    2008-01-01

    The chemical management of fuels in nuclear power plants aims at maintenance of the soundness of nuclear fuels and at reduction of the radiation exposure of the working employees. With regard to the former, particular attention should be paid to the fabrication process of fuel assembly, mainly for chemical management for fuel cladding tubes together with fuel pellet-clad chemical interactions, and to the outer tubes in the power plants. With regard to the latter, the fabrication process should be carefully controlled to prevent radioactive impurity increase in primary cooling water systems by maintaining cleaning level and decreasing surface contamination. Reactions of zircalloy with water or hydrogen forming ZrH 2 , sintered density of UO 2 pellet controlling water content, pellet-clad interactions, stress corrosion cracking, crud induced fuel failure, behaviors of such fission products as I, Xe, Kr, and Cs in plants are also important to water and chemical management of nuclear fuels. (S. Ohno)

  7. FY 1991 report on the results of the demonstration test on the methanol conversion at oil-fired power plant. Feasibility study of a new system for the stabilized supply of fuel use methanol; 1991 nendo sekiyu karyoku hatsudensho metanoru tenkan tou jissho shiken. Nenryo you metanoru kyokyu antei ka no tameno shin system no kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    As a part of the project on the demonstration test on the methanol conversion at oil-fired power plant, feasibility study was made of a new system for methanol production by using abundant hydraulic power energy overseas and by combining water electrolysis and coal gasification technology, and the FY 1991 results were summarized. As a result of the survey, the following were selected as water electrolysis facilities: high efficiency/high current density/simplification system and solid polyelectrolyte electrolysis system with a high purity of hydrogen gas. As the coal gasifier, the oxygen blown furnace was selected which has a high carbon utilization factor, is able to gasify coal at high pressure, has no unnecessary N{sub 2}, and is being used in the integrated coal gasification combined cycle power system. As methanol synthesis facilities, the MGC/MHI method super converter was selected. Assuming the output of hydroelectric power generation to be 4,000MW, conceptual design of the optimum system was made. The methanol cost was estimated under the conditions written below: cost of hydroelectric power generation at site: 2-5 yen/kWh, coal unit price at site: 5,000-6,000 yen/t, transportation distance: 5,000-10,000 km. (NEDO)

  8. ABB Turbo advanced fuel for application in System 80 family of plants

    International Nuclear Information System (INIS)

    Karoutas, Z.E.; Dixon, D.J.; Shapiro, N.L.

    1998-01-01

    ABB Combustion Engineering Nuclear Operations (ABB CE) has developed an Advanced Fuel Design, tailored to the Combustion Engineering, Inc. (CE) Nuclear Steam Supply System (NSSS) environment. This Advanced Fuel Design called Turbo features a full complement of innovative components, including GUARDIAN debris-resistant spacer grids, Turbo Zircaloy mixing grids to increase thermal margin and grid-to-rod fretting resistance, value-added fuel pellets to increase fuel loading, advanced cladding to increase achievable burnup, and axial blankets and Erbium integral burnable absorbers for improving fuel cycle economics. This paper summarizes the Turbo Fuel Design and its application to a System 80 family type plant. Benefits in fuel reliability, thermal margin, improved fuel cycle economics and burn up capability are compared relative to the current ABB CE standard fuel design. The fuel management design and the associated thermal margin are also evaluated. (author)

  9. Software system for fuel management at Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Grant, C.; Pomerantz, M.E.; Moreno, C.A.

    2002-01-01

    For accurate tracking of flux and power distribution in a CANDU reactor, the information needed is evaluated from a neutronic code calculation adjusted with experimental values, making use of in-core vanadium detectors at 102 locations together with auxiliary programs.The basic data that feed these programs come from the geometric and neutronic features and the actual instantaneous operating parameters. The system that provides all this information should be designed to meet with software quality assurance requirements. A software system was implemented at Embalse Nuclear Power Plant and it is in operation since 1998 after two year testing. This PC version replaced the former system introducing new concepts in its architecture. The neutronic code runs by procedures implemented in a language of macro instructions, so only new data are loaded for two consecutive instantaneous cases avoiding unnecessary data repetition. After each step, all results of neutronic calculation are stored in master files. Afterwards other auxiliary programs retrieve basic data for further evaluation and files are sorted in different thematic folders using a specific codification, for reevaluating further calculations over any specific case. The whole system can be installed in any PC. The package is provided with its general and particular support documentation and procedures for each program.The main purpose of the system is to track fuel and power distribution calculated after a certain period where fuelling operation were done in between. The main code, PUMA, evaluates in a 3-D, two-group scheme using finite difference diffusion theory. After neutronic calculation is performed, other programs allow to retrieve assorted information valid for fuel strategy and to build the fuelling operation list to be sent to the operation shifts. This program also permits to evaluate the accuracy of PUMA by doing comparisons with experimental values. Along with these features, some other system

  10. Evaluation and demonstration of methods for improved fuel utilization. First semi-annual progress report, September 1979-March 1980

    International Nuclear Information System (INIS)

    Decher, U.

    1980-01-01

    Demonstrations of improved fuel management and burnup are being performed in the Fort Calhoun reactor. More efficient fuel management will be achieved through the implementation of a low leakage concept called SAVFUEL (Shimmed And Very Flexible Uranium Element Loading), which is expected to reduce uranium requirements by 2 to 4%. The burnup will be increased sufficiently to reduce uranium requirements by 5 to 15%. Four fuel assemblies scheduled to demonstrate the SAVFUEL duty cycle and loaded into the core in December 1978 were inspected visually prior to their second exposure cycle. In addition, seventeen fuel assemblies were inspected after their fourth exposure cycle having achieved assembly average burnup up to 36 GWD/T. One assembly has been reinserted into Cycle 6 for a fifth exposure cycle. The preliminary results of all visual fuel inspections which appear to show excellent fuel rod performance are presented in this report. This report also contains the results of a licensing activity which was performed to allow insertion of a highly burned assembly into the reactor for a fifth irradiation cycle

  11. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  12. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  13. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents

  14. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul; Hall, Stephen; Morjaria, Mahesh; Chadliev, Vladimir; Milam, Nick; Milan, Christopher; Gevorgian, Vahan

    2017-03-24

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integration of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be

  15. Demonstration of uncertainty quantification and sensitivity analysis for PWR fuel performance with BISON

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Zou, Ling; Burns, Douglas; Ladd, Jacob

    2017-01-01

    BISON is an advanced fuels performance code being developed at Idaho National Laboratory and is the code of choice for fuels performance by the U.S. Department of Energy (DOE)’s Consortium for Advanced Simulation of Light Water Reactors (CASL) Program. An approach to uncertainty quantification and sensitivity analysis with BISON was developed and a new toolkit was created. A PWR fuel rod model was developed and simulated by BISON, and uncertainty quantification and sensitivity analysis were performed with eighteen uncertain input parameters. The maximum fuel temperature and gap conductance were selected as the figures of merit (FOM). Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis. (author)

  16. Demonstration of Uncertainty Quantification and Sensitivity Analysis for PWR Fuel Performance with BISON

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin; Ladd, Jacob; Zhao, Haihua; Zou, Ling; Burns, Douglas

    2015-11-01

    BISON is an advanced fuels performance code being developed at Idaho National Laboratory and is the code of choice for fuels performance by the U.S. Department of Energy (DOE)’s Consortium for Advanced Simulation of Light Water Reactors (CASL) Program. An approach to uncertainty quantification and sensitivity analysis with BISON was developed and a new toolkit was created. A PWR fuel rod model was developed and simulated by BISON, and uncertainty quantification and sensitivity analysis were performed with eighteen uncertain input parameters. The maximum fuel temperature and gap conductance were selected as the figures of merit (FOM). Pearson, Spearman, and partial correlation coefficients were considered for all of the figures of merit in sensitivity analysis.

  17. Development and Demonstration of Carbon Fuel Cell Final Report CRADA No. TC02091.0

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berner, J. K. [Contained Energy, Inc., Shaker Heights, OH (United States)

    2017-09-08

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  18. Results of fuel management at Embalse nuclear power plant. Analysis of performance at other plants

    International Nuclear Information System (INIS)

    Paz, A.O. de; Moreno, C.A.; Vinez, J.C.

    1987-01-01

    The operating experience of fuel management at the Embalse nuclear power plant from new core to the present situation (approximately 937 days at full power) is described. The average core burnup is about 4000 MW d/t U and the monthly averaged discharge burnup about 7800 MW d/t U. The neutron flux distribution is calculated by means of program PUMA-C, which is periodically checked by comparison between calculated and measured values of 102 vanadium detectors. A comparison of the performance of other reactors type CANDU 600 (Point Lepreau, Gentilly 2, Wolsung) from the point of view of fuel strategy is also presented. The data to perform the comparison were obtained by means of the CANDU system of information exchange between users (COG). (Author)

  19. Verification of the Barnwell Nuclear Fuel Plant (BNFP) mechanical headend design

    International Nuclear Information System (INIS)

    Townes, G.A.

    1978-11-01

    Design of the Barnwell Nuclear Fuel Plant mechanical head end includes unique provisions for remote maintenance, minimizes remote handling, and permits high throughput (6 MTU of spent fuel per day). Operability studies have been performed under a contract with the Department of Energy that: (1) assessed its capabilities for possible use in fuel encapsulation with or without compaction as a preparation for spent fuel storage, (2) verified the design of the mechanical head end as remotely maintainable, and (3) provided operator training

  20. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  1. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  2. Reprocessing fuel from the Southwest Experimental Fast Oxide Reactor at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gray, L.W.; Campbell, T.G.

    1985-11-01

    The irradiated fuel, reject fuel tubes, and fuel fabrication scrap from the Southwest Experimental Fast Oxide Reactor (SEFOR) were transferred to the Savannah River Plant (SRP) for uranium and plutonium recovery. The unirradiated material was declad and dissolved at SRP; dissolution was accomplished in concentrated nitric acid without the addition of fluoride. The irradiated fuel was declad at Atomics International and repacked in aluminum. The fuel and aluminum cans were dissolved at SRP using nitric acid catalyzed by mercuric nitrate. As this fuel was dissolved in nongeometrically favorable tanks, boron was used as a soluble neutron poison

  3. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  4. PA activity by using nuclear power plant safety demonstration and analysis

    International Nuclear Information System (INIS)

    Tsuchiya, Mitsuo; Kamimae, Rie

    1999-01-01

    INS/NUPEC presents one of Public acceptance (PA) methods for nuclear power in Japan, 'PA activity by using Nuclear Power Plant Safety Demonstration and Analysis', by using one of videos which is explained and analyzed accident events (Loss of Coolant Accident). Safety regulations of The National Government are strictly implemented in licensing at each of basic design and detailed design. To support safety regulation activities conducted by the National Government, INS/NLTPEC continuously implement Safety demonstration and analysis. With safety demonstration and analysis, made by assuming some abnormal conditions, what impacts could be produced by the assumed conditions are forecast based on specific design data on a given nuclear power plants. When analysis results compared with relevant decision criteria, the safety of nuclear power plants is confirmed. The decision criteria are designed to help judge if or not safety design of nuclear power plants is properly made. The decision criteria are set in the safety examination guidelines by taking sufficient safety allowance based on the latest technical knowledge obtained from a wide range of tests and safety studies. Safety demonstration and analysis is made by taking the procedure which are summarized in this presentation. In Japan, various PA (Public Acceptance) pamphlets and videos on nuclear energy have been published. But many of them focused on such topics as necessity or importance of nuclear energy, basic principles of nuclear power generation, etc., and a few described safety evaluation particularly of abnormal and accident events in accordance with the regulatory requirements. In this background, INS/NUPEC has been making efforts to prepare PA pamphlets and videos to explain the safety of nuclear power plants, to be simple and concrete enough, using various analytical computations for abnormal and accident events. In results, PA activity of INS/NUPEC is evaluated highly by the people

  5. Revisit of analytical methods for the process and plant control analyses during reprocessing of fast reactor fuels

    International Nuclear Information System (INIS)

    Subba Rao, R.V.

    2016-01-01

    CORAL (COmpact facility for Reprocessing of Advanced fuels in Lead cell) is an experimental facility for demonstrating the reprocessing of irradiated fast reactor fuels discharged from the Fast Breeder Test Reactor (FBTR). The objective of the reprocessing plant is to achieve nuclear grade plutonium and uranium oxides with minimum process waste volumes. The process flow sheet for the reprocessing of spent Fast Reactor Fuel consists of Transport of spent fuel, Chopping, Dissolution, Feed conditioning, Solvent Extraction cycle, Partitioning Cycle and Re-conversion of Plutonium nitrate and uranium nitrate to respective oxides. The efficiency and performance of the plant to achieve desired objective depends on the analyses of various species in the different steps adopted during reprocessing of fuels. The analytical requirements in the plant can be broadly classified as 1. Process control Analyses (Analyses which effect the performance of the plant- PCA); 2. Plant control Analyses (Analyses which indicates efficiency of the plant-PLCA); 3. Nuclear Material Accounting samples (Analyses which has bearing on nuclear material accounting in the plant - NUMAC) and Quality control Analyses (Quality of the input bulk chemicals as well as products - QCA). The analytical methods selected are based on the duration of analyses, precision and accuracies required for each type analytical requirement classified earlier. The process and plant control analyses requires lower precision and accuracies as compared to NUMAC analyses, which requires very high precision accuracy. The time taken for analyses should be as lower as possible for process and plant control analyses as compared to NUMAC analyses. The analytical methods required for determining U and Pu in process and plant samples from FRFR will be different as compared to samples from TRFR (Thermal Reactor Fuel Reprocessing) due to higher Pu to U ratio in FRFR as compared TRFR and they should be such that they can be easily

  6. Use of Pilot Plants for Developing Used Nuclear Fuel Recycling Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Chris; Arm, Stuart [EnergySolutions LLC (United States); Banfield, Zara; Jeapes, Andrew; Taylor, Richard [National Nuclear Laboratory (United Kingdom)

    2009-06-15

    EnergySolutions and its teaming partners are working with the US Department of Energy (DOE) to develop processes, equipment and facilities for recycling used nuclear fuel (UNF). Recycling significantly reduces the volume of wastes that ultimately will be consigned to the National Geologic Repository, enables the re-use in new fuel of the valuable uranium and plutonium in the UNF, and allows the long-lived minor actinides to be treated separately so they do not become long term heat emitters in the Repository. A major requirement of any new UNF recycling facility is that pure plutonium is not separated anywhere in the process, so as to reduce the nuclear proliferation attractiveness of the facility. EnergySolutions and its team partner the UK National Nuclear Laboratory (NNL) have developed the NUEX process to achieve this and to handle appropriately the treatment of other species such as krypton, tritium, neptunium and technetium. NUEX is based on existing successful commercial UNF recycling processes deployed in the UK, France and imminently in Japan, but with a range of modifications to the flowsheet to keep some uranium with the plutonium at all times and to minimize aerial and liquid radioactive discharges. NNL's long-term experience in developing the recycling and associated facilities at the Sellafield site in the UK, and its current duties to support technically the operation of the Thermal Oxide Reprocessing Plant (THORP) at Sellafield provides essential input to the design of the US NUEX-based facility. Development work for THORP and other first-of-kind nuclear plants employed miniature scale fully radioactive through large scale inactive pilot plants. The sequence of development work that we have found most successful is to (i) perform initial process development at small (typically 1/5000) scale in gloveboxes using trace active materials, (ii) demonstrate the processes at the same small scale with actual irradiated fuel in hot cells and (iii

  7. Filter safety tests under solvent fire in a cell of nuclear-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Nishio, Gunji

    1988-01-01

    In a nuclear-fuel reprocessing plant, a solvent fire in an extraction process is postulated. Since 1983, large scale solvent fire tests were carried out by Fire/Filter Facility to demonstrate solvent burning behavior in the cell, HEPA filter integrity by the fire and radioactive confinement by air-ventilation of the plant under postulated fire conditions. From results of 30 % TBP-70 % n-dodecane fire, burning rate of solvent in the cell, smoke generation rate and smoke deposition onto duct surface were obtained by a relation between air-ventilation rate into the cell and burning surface area of the solvent. The endurance of HEPA filter due to smoke plugging was measured by a pressure drop across the filter during the fire. The confinement of radioactive materials from the burning solvent was determined by the measurement of airborne concentrations in the cell for stable nuclei simulated fission products, radioactive tracers and uranium nitrate. (author)

  8. Plant-scale anodic dissolution of unirradiated IFR fuel pins

    International Nuclear Information System (INIS)

    Gay, E.C.; Tomczuk, Z.; Miller, W.E.

    1993-01-01

    This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500 degrees C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated

  9. Introduction of fuel GE14 in the nuclear power plant of Laguna Verde for the extended increase of power

    International Nuclear Information System (INIS)

    Hernandez M, N.; Vargas A, A. F.; Cardenas J, J. B.; Contreras C, P.

    2008-01-01

    The project of extended increase of power responds to a necessity of electrical energy in the country, increasing the thermal exit of the reactors of the nuclear power plant of Laguna Verde of 2027 MWt to 2317 MWt. In order to support this transition, changes will make in the configuration of the reactor core and in the operation strategies of the cycle, also they will take initiatives to optimize the economy in fuel cycle. At present in both reactors of the nuclear plant of Laguna Verde fuel GE12 is used. The fuel GE14 presents displays with respect to the GE12, some improvements in the mechanical design and consequently in its performance generally. Between these improvements we can mention: 1. Spacers of high performance. 2. Shielding with barrier. 3. Filter for sweepings d ebris a nd 4. Fuel rods of minor partial length. The management of nuclear power plants has decided to introduce the use of fuel GE14 in Laguna Verde in the reload 14 for Unit 1 and of the reload 10 for Unit 2. The process of new introduction fuel GE14 consists of two stages, first consists on subjecting the one new design of fuel to the regulator organism in the USA: Nuclear Regulatory Commission, in Mexico the design must be analyzed and authorized by the National Commission of Nuclear Safety and Safeguards, for its approval of generic form, by means of the demonstration of the fulfillment with the amendment 22 of GESTAR II, the second stage includes the specific analyses of plant to justify the use of the new fuel design in a reload core. The nuclear plant of Laguna Verde would use some of the results of the security analyses that have been realized for the project of extended increase of power with fuel GE14, to document the specific analyses of plant with the new fuel design. The result of the analyses indicates that the reload lots are increased of 116-120 assemblies in present conditions (2027 MWt) to 140-148 assemblies in conditions of extended increase of power (2317 MWt). (Author)

  10. Design aspects of water usage in the Windscale nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wharton, J.; Bullock, M.J.

    1982-01-01

    The safeguard requirements of a nuclear fuel reprocessing plant place unique constraints on a designer which, in turn, affect the scope for the exercise of water economy. These constraints are examined within the context of the British Nuclear Fuels Limited reprocessing plants at Windscale and indicate the scope for water conservation. The plants and their design principles are described with particular reference to water services and usage. Progressive design development is discussed to illustrate the increasing importance of water economy. (author)

  11. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM ANAEROBIC DIGESTER GAS - PHASE I. CONCEPTUAL DESIGN, PRELIMINARY COST, AND EVALUATION STUDY

    Science.gov (United States)

    The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...

  12. Bringing solid fuel ramjet projectiles closer to application - An overview of the TNO/RWMS technology demonstration programme

    NARCIS (Netherlands)

    Veraar, R.G.; Giusti, G.

    2005-01-01

    TNO executed a technology demonstration programme in co-operation with RWMS on the application of solid fuel ramjet propulsion technology to medium calibre air defence projectiles. From 2000 to 2004 a complete and integrated structural and aero-thermodynamic projectile design was conceived

  13. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  14. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    Several aspects make today's transport system non-sustainable: - Production, transport and combustion of fossil fuels lead to global and local environmental problems. - Oil dependency in the transport sector may lead to economical and political instability. - Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell

  15. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  16. Phenomenology and course of severe accidents in PWR-plants training by teaching and demonstration

    International Nuclear Information System (INIS)

    Sonnenkalb, M.; Rohde, J.

    1999-01-01

    A special one day training course on 'Phenomenology and Course of Severe Accidents in PWR-Plants' was developed at GRS initiated by the interest of German utilities. The work was done in the frame of projects sponsored by the German Ministries for Environment, Nature Conservation and Nuclear Safety (BMW) and for Education, Science, Research and Technology (BMBF). In the paper the intention and the subject of this training course are discussed and selected parts of the training course are presented. Demonstrations are made within this training course with the GRS simulator system ATLAS to achieve a broader understanding of the phenomena discussed and the propagation of severe accidents on a plant specific basis. The GRS simulator system ATLAS is linked in this case to the integral code MELCOR and pre-calculated plant specific severe accident calculations are used for the demonstration together with special graphics showing plant specific details. Several training courses have been held since the first one in November, 1996 especially to operators, shift personal and the management board of a German PWR. In the meantime the training course was updated and suggestions for improvements from the participants were included. In the future this training course will be made available for members of crisis teams, instructors of commercial training centres and researchers of different institutions too. (author)

  17. Over facility design description for the CPDF [Centrifuge Plant Demonstration Facility]: SDD-1 [System Design Description

    International Nuclear Information System (INIS)

    1987-04-01

    The Centrifuge Plant Demonstration Facility (CPDF) is an essential part of the continuing development of first-production-plant centrifuge technology that will integrate centrifuge machines into a process and enrichment plant design. The CPDF will provide facilities for testing and continued development of a unit cascade in direct support of the commercial Gas Centrifuge Enrichment Plant (GCEP). The basic cascade-oriented equipment, feed, withdrawal, drive system, process piping, utility piping, and other auxiliary and support equipment will be tested in an operating configuration that represents, to the extent possible, GCEP arrangement and operating conditions. The objective will be to demonstrate procedures for production cascade installation, start-up, operation, and maintenance, and to provide proof of overall cascade and associated system design, construction, and operating and maintenance concepts. To the maximum possible extent, all equipment for the CPDF will be procured from commercial sources. Centrifuges will be procured from industry using government-supplied specifications and drawings. The existing Component Preparation Laboratory (CPL) located near the CPDF site will be used for centrifuge component receiving, inspection, assembly, and qualification testing of pre-production test machines. Later in the test program, samples of production machines planned for use in the GCEP will be tested in the CPDF

  18. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  19. An Evaluation on the Fluid Elastic Instability of the Fuel Rod for OPR1000 Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Koo; Jeon, Sang Yoon; Lee, Kyu Seok; Kim, Jeong Ha; Lee, Sang Jong [Reactor Core Technology Department, Korea Nuclear Fuel, 493, Deogjin, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2009-06-15

    The fuel assembly for a typical PWR (Pressurized Water Reactor) plant suffers severe operating conditions during its lifetime such as high temperature, high pressure and massive coolant passing through the fuel assembly with high speed. Moreover, recently nuclear fuel is requested not only to operate under more severe operation conditions for example high burnup, longer cycle and power up-rate, but also to maintain its integrity in spite of the operation severity. Lots of vendors, therefore, have poured their endeavor to develop an advanced fuel in order to meet these requirements. However, the fuel failures are still reported from time to time. In general, fuel failure mechanisms known as significant causes of PWR fuel failure are grid to rod fretting, corrosion of the cladding, pellet cladding interaction and debris induced fretting. Especially, since the fuel assembly is very tall and flexible structure and the flow velocity of reactor coolant is pretty high, flow induced vibration (FIV) of fuel rod is an inevitable phenomenon in PWR fuel and the energy vibrating fuel rod continually provided by coolant flow can become a root cause of the fuel failure like grid to rod fretting. Moreover, the cross flow of the coolant is highly susceptible to cause the fluid elastic instability (FEI) which produces extraordinarily big amplitudes of the fuel rod suddenly and is eventually ended up fuel failure within very short-term. The FIV problem, therefore, has to be evaluated carefully to avoid unexpected fuel failure. At present, the susceptibility to vibration damage of the fuel rod for OPR1000 plants has been estimated by the comparison of natural frequencies of every fuel rod span with recognized external excitation frequencies like coolant pump blade passing frequencies, vortex shedding frequencies and lower support structure vibration frequencies. That is, in order to prevent fuel failure due to the external excitation, the natural frequencies of unsupported lengths of

  20. Haida Gwaii / Queen Charlotte Islands demonstration tidal power plant feasibility study : summary results

    Energy Technology Data Exchange (ETDEWEB)

    Tu, A. [BC Hydro, Burnaby, BC (Canada)

    2008-07-01

    Remote communities may benefit from using tidal energy in terms of reduced diesel fuel consumption and the associated greenhouse gas emissions. A study was conducted to assess the feasibility for a tidal demonstration project on the Haida Gwaii, Queen Charlotte Islands. Candidate communities were scanned for resource potential, load profile, infrastructure distribution and community interest. This presentation focused on choosing an appropriate site for a given tidal power technology. Three hotspots in Masset Sound were identified as well as one hotspot at Juskatla Narrows. Technology providers were solicited for information on unit performance, cost, and trials to date. The presentation noted that demonstration or future commercial deployment is limited by resource and by the ability of the grid to accommodate tidal power. The presentation concluded with next steps which include publishing the study. tabs., figs.

  1. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  2. Micro-organisms and divers exposure to radioactivity in spent fuel pools at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Muniz de A, D. [Underwater Construction Corporation, Latin America, Fortaleza, Ceara (Brazil); Silva, R. [Universidade Federal do Rio de Janeiro, Instituto de Biofisica Carlos Chagas Filho, 21941-902 Rio de Janeiro (Brazil); Gomes N, C. A., E-mail: dmuniz@uccdive.com [Universidade Federal do Rio de Janeiro, Instituto de Biologia, Environmental Engineering Program, 21941-902 Rio de Janeiro (Brazil)

    2017-09-15

    Many nuclear power plants (NPPs) around the world are in the process of extending their lifespan from 40 to 60 years of operation. The NPP; Angra 1 (Brazil) has performed a thorough evaluation of its Life Extension Engineering project. In this context, the spent fuel pool (SFP) was one of the areas studied in order to demonstrate the plants integrity for a life extension. Micro-organisms growing on the liner of the fuel transfer channel (Ftc) and SFP can form a film of bacteria, which is highly resistant to radiation. This paper aims to compare the micro-organisms found in NPP Angra 1 with those reported to other NPPs and also relates their occurrence with the radiation levels at the sites. It also compares divers exposure to radioactivity during underwater activities in the SFP. Fourteen samples were collected on the surface of the liners of the Ftc, the SFP and the drains within the fuel building (FB) of Angra 1. For the identification of the micro-organisms, a metagenomics analysis was performed by random sequencing (Shotgun) and the use of Ion Torrent PGM Sequence r. Twelve micro-organisms phyla were identified; Acido-bacteria, Actino-bacteria, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Cyano-bacteria, Deinococcus-Thermus, Firmicutes, Planctomycetes, Proteo-bacteria, and Verrucomicrobia as well as organisms not classified. In the SFP of Angra 1, the bacteria survived the exposure to a radiation of 0.416 Gy/h (high radiation). Deinococcus-thermus, bacteria identified in Angra 1, has resisted an exposure to 30,000 Gy/h in another plant. (Author)

  3. Micro-organisms and divers exposure to radioactivity in spent fuel pools at nuclear power plants

    International Nuclear Information System (INIS)

    Muniz de A, D.; Silva, R.; Gomes N, C. A.

    2017-09-01

    Many nuclear power plants (NPPs) around the world are in the process of extending their lifespan from 40 to 60 years of operation. The NPP; Angra 1 (Brazil) has performed a thorough evaluation of its Life Extension Engineering project. In this context, the spent fuel pool (SFP) was one of the areas studied in order to demonstrate the plants integrity for a life extension. Micro-organisms growing on the liner of the fuel transfer channel (Ftc) and SFP can form a film of bacteria, which is highly resistant to radiation. This paper aims to compare the micro-organisms found in NPP Angra 1 with those reported to other NPPs and also relates their occurrence with the radiation levels at the sites. It also compares divers exposure to radioactivity during underwater activities in the SFP. Fourteen samples were collected on the surface of the liners of the Ftc, the SFP and the drains within the fuel building (FB) of Angra 1. For the identification of the micro-organisms, a metagenomics analysis was performed by random sequencing (Shotgun) and the use of Ion Torrent PGM Sequence r. Twelve micro-organisms phyla were identified; Acido-bacteria, Actino-bacteria, Bacteroidetes, Chlamydiae, Chlorobi, Chloroflexi, Cyano-bacteria, Deinococcus-Thermus, Firmicutes, Planctomycetes, Proteo-bacteria, and Verrucomicrobia as well as organisms not classified. In the SFP of Angra 1, the bacteria survived the exposure to a radiation of 0.416 Gy/h (high radiation). Deinococcus-thermus, bacteria identified in Angra 1, has resisted an exposure to 30,000 Gy/h in another plant. (Author)

  4. One year of operation of the Belgonucleaire (Dessel) plutonium fuel fabrication plant

    International Nuclear Information System (INIS)

    Leblanc, J.M.

    1975-01-01

    Based on experience with plutonium since 1958, Belgonucleaire has successively launched a pilot plant and then a fuel fabrication plant for mixed uranium and plutonium oxides in 1968 and 1973 respectively. After describing briefly the plants and the most important stages in the planning, construction and operation of the Dessel plant, the present document describes the principal problems which were met during the course of operation of the plant and their direct incidence on the capacity and quality of the production of fuel elements

  5. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Szilard, Ronaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Epiney, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States); Parisi, Carlo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vaghetto, Rodolfo [Texas A & M Univ., College Station, TX (United States); Vanni, Alessandro [Texas A & M Univ., College Station, TX (United States); Neptune, Kaleb [Texas A & M Univ., College Station, TX (United States)

    2017-06-01

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance during LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.

  6. Experiences from Swedish demonstration projects with phosphoric acid fuel cells; Erfarenheter fraan svenska demonstrationsprojekt med fosforsyrabraensleceller

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Per [Sycon Energikonsult AB, Stockholm (Sweden); Sarkoezi, Laszlo [Vattenfall Utveckling AB, Stockholm (Sweden)

    1999-10-01

    In Sweden, there are today two phosphoric acid fuel cells installed, one PC25A which have been in operation in more than 4 years, and one PC25C which have been in operation for two years. The aim with this project has been two compare operation characteristics, performance, and operation experiences for these two models.

  7. A near-real-time material accountancy model and its preliminary demonstration in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ikawa, K.; Ihara, H.; Nishimura, H.; Tsutsumi, M.; Sawahata, T.

    1983-01-01

    The study of a near-real-time (n.r.t.) material accountancy system as applied to small or medium-sized spent fuel reprocessing facilities has been carried out since 1978 under the TASTEX programme. In this study, a model of the n.r.t. accountancy system, called the ten-day-detection-time model, was developed and demonstrated in the actual operating plant. The programme was closed on May 1981, but the study has been extended. The effectiveness of the proposed n.r.t. accountancy model was evaluated by means of simulation techniques. The results showed that weekly material balances covering the entire process MBA could provide sufficient information to satisfy the IAEA guidelines for small or medium-sized facilities. The applicability of the model to the actual plant has been evaluated by a series of field tests which covered four campaigns. In addition to the material accountancy data, many valuable operational data with regard to additional locations for an in-process inventory, the time needed for an in-process inventory, etc., have been obtained. A CUMUF (cumulative MUF) chart of the resulting MUF data in the C-1 and C-2 campaigns clearly showed that there had been a measurement bias across the process MBA. This chart gave a dramatic picture of the power of the n.r.t. accountancy concept by showing the nature of this bias, which was not clearly shown in the conventional material accountancy data. (author)

  8. The logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The paper describe the logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant, located in Juzbado in the province of Salamanca. In the the article are described the principal elements in the supply chain and the difficulties of its management derived from the short period for the manufacturing of the nuclear fuel. It's also given a view in relation to the transportation by land sea of the nuclear components, uranium oxide powder and the manufactured fuel. The characteristics of the supply chain are determined by the plant production forecast, by the origin and high technology of the raw materials and by nuclear fuel delivery site locations. (Author)

  9. Uranium-236 in light water reactor spent fuel recycled to an enriching plant

    International Nuclear Information System (INIS)

    de la Garza, A.

    1977-01-01

    The introduction of 236 U to an enriching plant by recycling spent fuel uranium results in enriched products containing 236 U, a parasitic neutron absorber in reactor fuel. Convenient approximate methodology determines 235 236 U, and total uranium flowsheets with associated separative work requirements in enriching plant operations for use by investigators of the light water reactor fuel cycle not having recourse to specialized multicomponent cascade technology. Application of the methodology has been made to compensation of an enriching plant product for 236 U content and to the value at an enriching plant of spent fuel uranium. The approximate methodology was also confirmed with more exact calculations and with some experience with 236 U in an enriching plant

  10. A safety evaluation of fire and explosion in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji; Miyata, Teijirou

    1996-01-01

    The demonstration test was performed in JAERI to prove the adequacy of a safety evaluation for an air-ventilation system in the case of solvent fire and red-oil explosion in a nuclear fuel reprocessing plant. The test objectives were to obtain data of the safety evaluation on a thermofluid behavior and a confinement effect of radioactive materials during fire and explosion while the system is operating in a cell. The computer code was developed to evaluate the safety of associated network in the ventilation system and to estimate the confinement of radioactive materials in the system. The code was verified by comparison of code calculations with results of the demonstration test. (author)

  11. Standard format and content of license applications for plutonium processing and fuel fabrication plants

    International Nuclear Information System (INIS)

    1976-01-01

    The standard format suggested for use in applications for licenses to possess and use special nuclear materials in Pu processing and fuel fabrication plants is presented. It covers general description of the plant, summary safety assessment, site characteristics, principal design criteria, plant design, process systems, waste confinement and management, radiation protection, accident safety analysis, conduct of operations, operating controls and limits, and quality assurance

  12. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  13. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  14. Total energy analysis of nuclear and fossil fueled power plants

    International Nuclear Information System (INIS)

    Franklin, W.D.; Mutsakis, M.; Ort, R.G.

    1971-01-01

    The overall thermal efficiencies of electrical power generation were determined for Liquid Metal Fast Breeder, High Temperature Gas Cooled, Boiling Water, and Pressurized Water Reactors and for coal-, oil-, and gas-fired systems. All important energy consuming steps from mining through processing, transporting, and reprocessing the fuels were included in the energy balance along with electrical transmission and thermal losses and energy expenditures for pollution abatement. The results of these studies show that the overall fuel cycle efficiency of the light water nuclear fueled reactors is less than the efficiency of modern fossil fuel cycles. However, the nuclear fuel cycle based on the fast breeder reactors should produce power more efficiently than the most modern supercritical fossil fuel cycles. The high temperature gas cooled reactor has a cycle efficiency comparable to the supercritical coal fuel cycle

  15. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.

    Science.gov (United States)

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-10-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.

  16. Round Robin Test for Performance Demonstration System of Ultrasound Examination Personnel in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Young Ho; Yang, Seung Han; Kim, Yong Sik; Yoon, Byung Sik; Lee, Hee Jong

    2005-01-01

    Ultrasound testing performance during in-service inspection for the main components of NPPs is strongly affected by each examination person. Therefore, ASME established a more strict qualification requirement in Sec. XI Appendix VIII for the ultrasound testing personnel in nuclear power plants. The Korean Performance Demonstration (KPD) System according to the ASME code for the ultrasonic testing personnel, equipments, and procedures to apply to the Class 1 and 2 piping ultrasound examination of nuclear power plants in Korea was established. And a round robin test was conducted in order to verify the effectiveness of PD method by comparing the examination results from the method of Performance Demonstration (PD) and a traditional ASME code dB-drop method. The round robin test shows that the reliability of the PD method is better than that of the dB-drop method. As a result, application of the PD method to the in-service inspection of the nuclear power plants will improve the performance of ultrasound testing

  17. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    Energy Technology Data Exchange (ETDEWEB)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  18. Demonstration of CO2 Conversion to Synthetic Transport Fuel at Flue Gas Concentrations

    Directory of Open Access Journals (Sweden)

    George R. M. Dowson

    2017-10-01

    Full Text Available A mixture of 1- and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO2 utilization step uses dry, dilute carbon dioxide (12% CO2 in nitrogen similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO2, this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO2 to butanol requires significantly less hydrogen than CO2 to octanes, there is a potentially reduced burden on the so-called hydrogen

  19. Demonstration of CO{sub 2} Conversion to Synthetic Transport Fuel at Flue Gas Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Dowson, George R. M. [Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom); Styring, Peter, E-mail: p.styring@sheffield.ac.uk [Chemical and Biological Engineering, The University of Sheffield, Sheffield (United Kingdom); UK Centre for Carbon Dioxide Utilisation, Department of Chemistry, The University of Sheffield, Sheffield (United Kingdom)

    2017-10-12

    A mixture of 1- and 2-butanol was produced using a stepwise synthesis starting with a methyl halide. The process included a carbon dioxide utilization step to produce an acetate salt which was then converted to the butanol isomers by Claisen condensation of the esterified acetate followed by hydrogenation of the resulting ethyl acetoacetate. Importantly, the CO{sub 2} utilization step uses dry, dilute carbon dioxide (12% CO{sub 2} in nitrogen) similar to those found in post-combustion flue gases. The work has shown that the Grignard reagent has a slow rate of reaction with oxygen in comparison to carbon dioxide, meaning that the costly purification step usually associated with carbon capture technologies can be omitted using this direct capture-conversion technique. Butanol isomers are useful as direct drop-in replacement fuels for gasoline due to their high octane number, higher energy density, hydrophobicity, and low corrosivity in existing petrol engines. An energy analysis shows the process to be exothermic from methanol to butanol; however, energy is required to regenerate the active magnesium metal from the halide by-product. The methodology is important as it allows electrical energy, which is difficult to store using batteries over long periods of time, to be stored as a liquid fuel that fits entirely with the current liquid fuels infrastructure. This means that renewable, weather-dependent energy can be stored across seasons, for example, production in summer with consumption in winter. It also helps to avoid new fossil carbon entering the supply chain through the utilization of carbon dioxide that would otherwise be emitted. As methanol has also been shown to be commercially produced from CO{sub 2}, this adds to the prospect of the general decarbonization of the transport fuels sector. Furthermore, as the conversion of CO{sub 2} to butanol requires significantly less hydrogen than CO{sub 2} to octanes, there is a potentially reduced burden on the so

  20. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  1. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  2. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  3. Underestimation of nuclear fuel burnup – theory, demonstration and solution in numerical models

    Directory of Open Access Journals (Sweden)

    Gajda Paweł

    2016-01-01

    Full Text Available Monte Carlo methodology provides reference statistical solution of neutron transport criticality problems of nuclear systems. Estimated reaction rates can be applied as an input to Bateman equations that govern isotopic evolution of reactor materials. Because statistical solution of Boltzmann equation is computationally expensive, it is in practice applied to time steps of limited length. In this paper we show that simple staircase step model leads to underprediction of numerical fuel burnup (Fissions per Initial Metal Atom – FIMA. Theoretical considerations indicates that this error is inversely proportional to the length of the time step and origins from the variation of heating per source neutron. The bias can be diminished by application of predictor-corrector step model. A set of burnup simulations with various step length and coupling schemes has been performed. SERPENT code version 1.17 has been applied to the model of a typical fuel assembly from Pressurized Water Reactor. In reference case FIMA reaches 6.24% that is equivalent to about 60 GWD/tHM of industrial burnup. The discrepancies up to 1% have been observed depending on time step model and theoretical predictions are consistent with numerical results. Conclusions presented in this paper are important for research and development concerning nuclear fuel cycle also in the context of Gen4 systems.

  4. Improved method to demonstrate the structural integrity of high density fuel storage racks

    International Nuclear Information System (INIS)

    Hinderks, M.; Ungoreit, H.; Kremer, G.

    2001-01-01

    Reracking of existing fuel pools to the maximum extent is desirable from an economical point of view. This goal can be achieved by minimizing the gaps between the spent fuel storage racks. Since the rack design is aimed at enabling consolidated fuel rod storage, additional requirements arise with respect to the design and the structural analysis. The loads resulting from seismic events are decisive for the structural analysis and require a specially detailed and in-depth analysis for high seismic loads. The verification of structural integrity and functionality is performed in two phases. In the first phase the motional behavior of single racks, rows of racks and, where required, of all racks in the pool is simulated by excitation with displacement time histories under consideration of the fluid-structure interaction (FSI). The displacements from these simulations are evaluated, while the loads are utilized as input data for the structural analysis of the racks and the pool floor. The structural analyses for the racks comprise substantially stress analyses for base material and welds as well as stability analyses for the support channels and the rack outside walls. The analyses are performed in accordance with the specified codes and standards

  5. Final report, Task 3: possible uses of the Nuclear Fuel Services, Inc. reprocessing plant at West Valley, New York

    International Nuclear Information System (INIS)

    1978-01-01

    The West Valley Plant could readily be used for work on reprocessing of alternative fuels, spiking, coprocessing (including CIVEX), waste solidification, and the recovery of radioactive gases. The plant could be easily modified for any scale between small-scale experimental work to production-scale demonstration, involving virtually any combination of fissile/fertile fuel materials that might be used in the future. The use of this plant for the contemplated experimental work would involve lower capital costs than the use of other facilities at DOE sites, except possibly for spiking of recovered products; the operating costs would be no greater than at other sites. The work on reprocessing of alternative fuels and coprocessing could commence within about one year; on recovery of radioactive gases, in 3 to 5 years; on spiking, in 4 years; and on waste solidification demonstration, in about 5 years. The contemplated work could be begun at this plant at least as early as at Barnwell, although work on spiking of recovered products could probably be started in existing hot cells earlier than at West Valley

  6. Design of a hot pilot plant facility for demonstration of the pot calcination process

    Energy Technology Data Exchange (ETDEWEB)

    Buckham, J A

    1962-01-01

    A facility was designed for demonstration of the pot calcination process with wastes from processing aluminum alloy fuels, Darex or electrolytic processing of stainless-steel fuels, and Purex processes. This facility will also permit determination of procedures required for economical production of low-porosity, relatively nonleachable materials by addition of suitable reagents to the wastes fed to the calciner. The process consists of concentration by evaporation and thermal decomposition in situ in pots which also serve as the final disposal containers. This unit permits determination of pot loading and density, leachability, melting point, volatile material content, heat release, and thermal conductivity of the calcine. Also to be determined are transient calcine temperature distributions, fission product behavior during calcination, deentrainment obtained in the various parts of the system, decontamination achieved on all liquid and gaseous effluent streams, need for venting of stored pots, optimum means of remotely sealing the pots, and methods required for production of a minimum volume of noncondensable off-gas. This facility will employ nominal full-scale pots 8 and 12 in. in diameter and 8 ft long. A unique evaporator design was evolved to permit operation either with close-coupled continuous feed preparation or with bath feed preparation. Provisions were made to circumvent possible explosions due to organic material in feed solutions and other suspected hazards.

  7. Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region

    Energy Technology Data Exchange (ETDEWEB)

    Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

    2000-12-30

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  8. Demonstration study on direct use of waste vegetable oil as car fuel

    International Nuclear Information System (INIS)

    Remoto, Yasuyuki; Zeeren, Nyamgerel; Ushiyama, Izumi

    2009-01-01

    Full text: Various kinds of vegetable oil and waste cooking oil are in fact used as car fuel all over the world. In general, 'bio-diesel' i.e. fatty acid methyl ester extracted from such oil is utilized as fuel for vehicles. However bio-diesel has some problems such as byproduct and waste materials created during transesterification. An alternative method is the direct use of vegetable oil as car fuel through installation of a heater unit in the car to decrease vegetable oil viscosity. However little data has been reported concerning this method. The authors of this study carried out performance tests on the direct use of waste cooking oil using a car with a heater unit and found its high potential. Moreover, the authors compared the environmental load of direct use with biodiesel and light oil by carrying out life cycle inventory to clarify the superiority of direct use. First, the authors made a car to test waste cooking oil as fuel by equipping a heater unit, filter and sub tank for light oil to a used Toyota Estima Diesel KD-CXR10G. The car can be driven on road using only waste cooking oil, although a little light oil is necessary for starting the engine. The authors, then, carried out chassis dynamo tests and on-road tests using the car. The car showed similar performance and could be driven on road for over half a year without any problems in both cases using either waste cooking oil or light oil as fuel. Next, authors carried out life cycle inventory and compared the environmental loads of direct use of waste cooking oil with biodiesel from waste cooking oil and light oil. The data for life cycle inventory were obtained from tests on direct use, from a factory in Japan for bio-diesel and from the Life Cycle Assessment Society of Japan database for light oil, respectively. The CO 2 emission rates were 73.9, 12.7 and 7.06 [kg-CO 2 / GJ] for light oil, bio-diesel from waste cooking oil and the direct use of waste cooking oil, respectively. The superiority of

  9. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  10. Design consideration on hydrogen production demonstration plant of thermochemical IS process

    International Nuclear Information System (INIS)

    Iwatsuki, Jin; Noguchi, Hiroki; Terada, Atsuhiko; Kubo, Shinji; Sakaba, Nariaki; Onuki, Kaoru; Hino, Ryutaro

    2009-03-01

    Preliminary design study was carried out on the hydrogen production demonstration plant of thermochemical IS process. In the pilot test, hydrogen production will be examined under prototypical condition using an apparatus made of industrial materials, which is driven by the sensible heat of helium gas heated by an electric heater that simulates the High Temperature Engineering Test Reactor (HTTR). Tentative system condition was defined considering the HTTR specification and the experience on the construction and the operation of the mock-up test facility using methane reforming for hydrogen production. The process condition and the system flow diagram were discussed to meet the system condition. Based on the defined process condition, types of the main components were discussed taking the corrosion resistance of the structural materials into consideration. Applicable rules and regulations were also surveyed regarding the plant construction and operation. (author)

  11. Impact of inlet fogging and fuels on power and efficiency of gas turbine plants

    Directory of Open Access Journals (Sweden)

    Basha Mehaboob

    2013-01-01

    Full Text Available A computational study to assess the performance of different gas turbine power plant configurations is presented in this paper. The work includes the effect of humidity, ambient inlet air temperature and types of fuels on gas turbine plant configurations with and without fogger unit. Investigation also covers economic analysis and effect of fuels on emissions. GT frames of various sizes/ratings are being used in gas turbine power plants in Saudi Arabia. 20 MWe GE 5271RA, 40 MWe GE-6561B and 70 MWe GE-6101FA frames are selected for the present study. Fogger units with maximum mass flow rate of 2 kg/s are considered for the present analysis. Reverse Osmosis unit of capacity 4 kg/s supplies required water to the fogger units. GT PRO software has been used for carrying out the analysis including; net plant output and net efficiency, break even electricity price and break even fuel LHV price etc., for a given location of Saudi Arabia. The relative humidity and temperature have been varied from 30 to 45 % and from 80 to 100° F, respectively. Fuels considered in the study are natural gas, diesel and heavy bunker oil. Simulated gas turbine plant output from GT PRO has been validated against an existing gas turbine plant output. It has been observed that the simulated plant output is less than the existing gas turbine plant output by 5%. Results show that variation of humidity does not affect the gas turbine performance appreciably for all types of fuels. For a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to increase by 5 and 2 %, respectively for all fuels, for GT only situation. However, for GT with Fogger scenario, for a decrease of inlet air temperature by 10 °F, net plant output and efficiency have been found to further increase by 3.2 and 1.2 %, respectively for all fuels. For all GT frames with fogger, the net plant output and efficiency are relatively higher as compared to GT only case for all

  12. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas

    International Nuclear Information System (INIS)

    Waggoner, R.C.

    1982-08-01

    A technical and economical analysis has been made of methods for collecting and concentrating krypton from the off-gas from a typical nuclear fuel reprocessing plant. The methods considered were cryogenic distillation, fluorocarbon absorption, mordenite adsorption, and selective permeation. The conclusions reached were: Cryogenic distillation is the only demonstrated route to date. Fluorocarbon absorption may offer economic and technical advantages if fully developed and demonstrated. Mordenite adsorption has been demonstrated only on a bench scale and is estimated to cost more than either cryogenic distillation or fluorocarbon absorption. Selective permeation through a silicone rubber membrane is not sufficiently selective for the route to be cost effective

  13. Hydrogen Fuel as Ecological Contribution to Operation of the Existing Coal-Fired Thermal Power Plants

    International Nuclear Information System (INIS)

    Cosic, D.

    2009-01-01

    The analysis is carried out of the application of a new hydrogen based alternative fuel as ecological contribution of the coal thermal power plants operation. Given the fact that coal thermal power plants are seen as the largest producers, not only of CO 2 , but of all others harmful gases, the idea is initiated to use the new alternative fuel as an additive to the coal which would result in much better performance of the coal power plants from an ecological point of view. It is possible to use such a fuel in relation of 10-30% of former coal use. The positive influence of such an application is much bigger than relative used quantity. This lecture has a goal to incite potential investors to create conditions for industrial testing of the new fuel. It will be very interesting to animate investors for large-scale production of the new fuel, too.(author).

  14. Economic assessment of nuclear power plant operation with regard to effective use of nuclear fuel

    International Nuclear Information System (INIS)

    Svec, P.; Raninec, S.; Mizov, J.

    1988-01-01

    The essential preconditions are discussed for the better utilization of fuel in nuclear power plants. The MORNAP program which models the operation of the reactor is used for assessing the consequences of various fuel utilization strategies on technical and economic parameters of WWER-440 nuclear power plant operation. Some results of model calculation are given for the third and fourth units of the Jaslovske Bohunice nuclear power plant. The calculations have served for the economic assessment of the transition of part of the nuclear fuel from a three-campaign to a four-campaign cycle. This transition reduces fuel costs by 1.7%. The implementation of this strategy on a larger scale is expected to save 7 to 9% of fuel costs. (Z.M.). 2 tabs., 7 refs

  15. A suitable model plant for control of the set fuel cell-DC/DC converter

    Energy Technology Data Exchange (ETDEWEB)

    Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)

    2008-04-15

    In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)

  16. RIMAP demonstration project. Risk-based life management of piping system in power plant Heilbronn

    International Nuclear Information System (INIS)

    Bareiss, J.; Buck, P.; Matschecko, B.; Jovanovic, A.; Balos, D.; Perunicic, M.

    2004-01-01

    In the framework of EU project RIMAP [Risk Based Inspection and Maintenance Procedures for European Industry (2000)] a new European Guideline for optimized risk based maintenance and inspection planning of industrial plants (RBLM, Risk Based Life Management) is being developed. The RIMAP project consists of the three clustered projects: - development (RTD); - demonstration (DEMO): - thematic network (TN). Current work and future, planned work in RIMAP demonstration project on applications of the RIMAP methodology in power plants are presented briefly in the first part of the paper. Also presented in the paper are the results of a preliminary analysis of piping system in power plant Heilbronn using the concept of risk-based monitoring as part of overall concept of risk-based life management. Shortly the following issues are discussed in the paper: - identification of critical components; - application of a multilevel risk analysis (...from 'screening' to 'detailed analysis'); - determination of PoF (Probability of Failure); - determination of CoF (Consequence of Failure); - optimation of inspection and maintenance plan. From our experience with the application of the RIMAP methodology the following conclusions can be drawn: The use of risk-based methods in inspection and maintenance of piping systems in power plants gives transparency to the decision making process and gives an optimized maintenance policy based on current state of the components. The results of the work clearly show the power of the proposed method for concentration on critical items: out of 64 monitored components 5 were selected for intermediate analysis and only 1 for the detailed analysis (probabilistic high temperature fracture mechanics)

  17. The Blend Down Monitoring System Demonstration at the Padijcah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Benton, J.; Close, D.; Johnson, W. Jr.; Kerr, P.; March-Leuba, J.; Mastal, E.; Moss, C.; Powell, D.; Sumner, J.; Uckan, T.; Vines, R.; Wright, P.D.

    1999-01-01

    Agreements between the governments of the US and the Russian Federation for the US purchase of low enriched uranium (LEU) derived from highly enriched uranium (HEU) from dismantled Russian nuclear weapons calls for the establishment of transparency measures to provide confidence that nuclear nonproliferation goals are being met. To meet these transparency goals, the agreements call for the installation of nonintrusive US instruments to monitor the down blending of HEU to LEU. The Blend Down Monitoring System (BDMS) has been jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor 235 U enrichments and mass flow rates at Russian blending facilities. Prior to its installation in Russian facilities, the BDMS was installed and operated in a UF 6 flow loop in the Paducah Gaseous Diffusion Plant simulating flow and enrichment conditions expected in a typical down-blending facility. A Russian delegation to the US witnessed the equipment demonstration in June, 1998. To conduct the demonstration in the Paducah Gaseous Diffusion Plant (PGDP), the BDMS was required to meet stringent Nuclear Regulatory Commission licensing, safety and operational requirements. The Paducah demonstration was an important milestone in achieving the operational certification for the BDMS use in Russian facilities

  18. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  19. Fuel cycle management by the electric enterprises and spanish nuclear Power plants

    International Nuclear Information System (INIS)

    Celma, E. M.; Gonzalez, C.; Lopez, J. V.; Melara, J.; Lopez, L.; Martinez, J. C.; Culbras, F.; Blanco, J.; Francia, L.

    2015-01-01

    The Nuclear Fuel Group reports to the Technology Committee of the UNESA Nuclear Energy Committee, and is constituted by representatives of both the Spanish Utilities and the Nuclear Power Plants. The Group addresses the nuclear plant common issues in relation to the operation and management of the nuclear fuel in their different stages of the Fuel Cycle. The article reviews the activities developed by the Group in the Front-End, mainly in the monitoring of international programs that define criteria to improve the Fuel Reliability and in the establishment of common bases for the implementation of changes in the regulation applying the nuclear fuel. Concerning the Back-End the Group focuses on those activities of coordination with third parties related to the management of used fuel. (Author)

  20. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    International Nuclear Information System (INIS)

    1994-10-01

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R ampersand D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined

  1. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  2. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  3. Effect of nitrate addition on biorestoration of fuel-contaminated aquifer: Field demonstration

    International Nuclear Information System (INIS)

    Hutchins, S.R.; Downs, W.C.; Wilson, J.T.; Smith, G.B.; Kovacs, D.A.

    1991-01-01

    A spill of JP-4 jet fuel at the U.S. Coast Guard Air Station in Traverse City, Michigan, contaminated a water-table aquifer. An infiltration gallery (30 ft X 30 ft) was installed above a section of the aquifer containing 700 gal JP-4. Purge wells recirculated three million gallons of ground water per week through the infiltration gallery at a rate designed to raise the water table above the contaminated interval. Ground water containing ambient concentrations was first recirculated for 40 days. Concentrations of benzene in monitoring wells beneath the infiltration gallery were reduced from 760 to <1 micrograms/1. Concentrations of toluene, ethylbenzene, m,p-xylene, and o-xylene were reduced from 4500 to 17,840 to 44,2600 to 490, and 1400 to 260 micrograms/1, respectively. Average core concentrations of benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene were reduced from 0.84 to 0.032, 33 to 0.13, 18 to 0.36, 58 to 7.4, and 26 to 3.2 mg/kg, respectively. Ground water amended with nitrate (10 mg/1 nitrate-nitrogen) and nutrients was then recirculated for 76 days. Final core concentrations of benzene, toluene, ethylbenzene, m,p-xylene and o-xylene were 0.017, 0.036, 0.019, 0.059, and 0.27 mg/kg, respectively. Final aqueous concentrations were <1 micrograms/1 for benzene and toluene, 6 micrograms/1 for ethylbenzene, and 20 to 40 micrograms/1 for the xylene isomers, in good agreement with predicted values based on residual fuel content and partitioning theory. Although alkylbenzene concentrations have been substantially reduced, the test plot is still contaminated with the weathered fuel. Based on stoichiometry, approximately 10 times more nitrate was consumed than could be accounted for by BTX degradation alone, indicating that other compounds were also degraded under denitrifying conditions

  4. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  5. Application and demonstration of oxyfuel combustion technologies to the existing power plant in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Terutoshi; Yamada, Toshihiko; Watanabe, Shuzo; Kiga, Takashi; Gotou, Takahiro [IHI Corporation, Tokyo (Japan). Power Plant Div.; Misawa, Nobuhiro [Electric Power Development Co., Ltd., Tokyo (Japan); Spero, Chris [CS Energy Ltd, Brisbane (Australia)

    2013-07-01

    Oxyfuel combustion is able to directly make the highly concentrated CO{sub 2} from the flue gas of pulverized coal fired power plant and, therefore, is expected as one of the promising technologies for CO{sub 2} capture. We are advancing the Oxyfuel combustion demonstration project, which is called Callide Oxyfuel Project, with the support of both Australian and Japanese governments. Currently the boiler retrofit work is completed and the commissioning in air combustion is going on. In this paper, we introduce the general outline of the Callide Oxyfuel Project and its progress.

  6. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  7. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    International Nuclear Information System (INIS)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V.

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs

  8. Instrumentation and process control for fossil demonstration plants. Quarterly technical progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    LeSage, L.G.

    1977-07-01

    Work has been performed on updating the study of the state-of-the-art of instrumentation for Fossil Demonstration Plants (FDP), development of mass-flow and other on-line instruments for FDP, process control analysis for FDP, and organization of a symposium on instrumentation and control for FDP. A Solids/Gas Flow Test Facility (S/GFTF) under construction for instrument development, testing, evaluation, and calibration is described. The development work for several mass-flow and other on-line instruments is described: acoustic flowmeter, capacitive density flowmeter, neutron activation flowmeter and composition analysis system, gamma ray correlation flowmeter, optical flowmeter, and capacitive liquid interface level meter.

  9. Linking fuel design features ampersand plant management to uranium, SWU savings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article, contributed by Scott Garrett, Manager of Planning and Uranium Operations for Siemens Power Corporation in Bellevue, Washington, explores the impact of advances in fuel design and fuel management strategies on uranium utilization in the United States. Nuclear plant operators are deriving substantial benefits from these changes, including longer fuel cycle lengths, increased burnup, and added capacity - and experiencing cost savings in both uranium and enrichment services at the same time

  10. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  11. Safety demonstration analyses on criticality for severe accident during overland transport of fresh nuclear fuel

    International Nuclear Information System (INIS)

    Takahashi, Satoshi; Okuno, Hiroshi; Yamada, Kenji; Watanabe, Kouji; Nomura, Yasushi; Miyoshi, Yoshinori

    2005-01-01

    Criticality safety analysis was performed for transport packages of uranium dioxide powder or of fresh PWR fuel involved in a severe accident during overland transportation, and as a result, sub-criticality was confirmed against impact accident conditions such as loaded by a drop from high position to a concrete or asphalt surface, and fire accident conditions such as caused by collisions with an oil tank trailer carrying lots of inflammable material in open air, or with a commonly used two-ton-truck inside an unventilated tunnel. (author)

  12. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  13. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Townes, G.A.

    1979-10-01

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  14. Investigation into rationalization of low decontamination pellet fuel fabrication plant configuration

    International Nuclear Information System (INIS)

    Maekawa, Kazuhiko; Yoshimura, Tadahiro; Hoshino, Yasushi; Munekata, Hideki; Tamaki, Yoshihisa

    2005-02-01

    In feasibility studies on commercialized FBR cycle system, a comprehensive system investigation and properties evaluation for candidate FBR cycle systems has been implemented through view point of safety, economics, environmental burden reduction, non-proliferation resistivity, etc. As part of these studies, an investigation into rationalization of low decontamination pellet fuel fabrication plant configuration was carried out. Until last fiscal year, conceptual design studies of the fuel fabrication plant in 200t-HM/y scale were conducted, and system properties data concerning economics and environmental burden reduction of fuel fabrication plant was acquired. In addition to this, 50t-HM/y scale plant was also schematically studied. In this fiscal year, a rationalization study on conceptual design of 50t-HM/y scale plant was conducted with main aim of economic improvement, and the 200t-HM/y scale plant design was revised based on the recent R and D progress. The system properties data concerning economics and environmental burden reduction of fuel fabrication plant was also acquired. In both case of the 50t-HM/y and 200t-HM/y scale plant, it was suggested that the equipment costs were reduced in several percentages because of reduction of maintenance equipments and cut in line number at the pellet fabrication process although granulation process fro denitration converted powder and O/M control process for pellets were added. System properties data for comparative evaluation of candidate fuel fabrication systems was also prepared. (author)

  15. Some possibilities for improvement of fuel utilization in nuclear power plants

    International Nuclear Information System (INIS)

    Kocic, A.; Marinkovic, N.

    1983-01-01

    Methods for improving the nuclear fuel utilization with the emphasis on LWRs are being dealt with in this paper. Some basic results concerning tubular fuel pellets of the Krsko nuclear power plants are presented, showing promising possibilities for uranium saving from the neutronics point of view. (author)

  16. Forest biomass and tree planting for fossil fuel offsets in the Colorado Front Range

    Science.gov (United States)

    Mike A. Battaglia; Kellen Nelson; Dan Kashian; Michael G. Ryan

    2010-01-01

    This study estimates the amount of carbon available for removal in fuel reduction and reforestation treatments in montane forests of the Colorado Front Range based on site productivity, pre-treatment basal area, and planting density. Thinning dense stands will yield the greatest offsets for biomass fuel. However, this will also yield the greatest carbon losses, if the...

  17. Analysis to the criticality the storage and containers to the Juragua Nuclear Power Plant Fuel

    International Nuclear Information System (INIS)

    Guerra Valdes, R.

    1998-01-01

    Presently analysis the criticality the warehouses and containers the nuclear fuels in Juragua nuclear power plant the property multiplicity determined in these system and it is verified that for the geometry and operation conditions defined in the design as well as in accidents situations, the arrangement the fuel stays subcritical with an appropriate margin

  18. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  19. Storage of unirradiated fuel in borated concrete at the Savannah River Plant

    International Nuclear Information System (INIS)

    Honkonen, D.L.

    1979-06-01

    At the Savannah River Plant (SRP), more than 3000 enriched uranium fuel elements can be stored in horizontal holes in borated concrete racks. This method of storage was selected. This paper describes the largest of these racks and the reactivity calculations and measurements which confirmed that SRP fuel may be safely stored in them

  20. Technology for controlling emissions from power plants fired with fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Slack, A V

    1981-04-01

    Emission control technologies for fossil-fuel-fired power plants are examined. Acid rain, impaired visibility, and health effects of respirable particulates have combined to raise concerns from the local to the regional level. This report discusses advantages, disadvantages, and costs of technologies associated with emissions of sulfur oxides, nitrogen oxides, and particulate matter. Coal, oil and natural gas fuels are discussed. 7 refs.