WorldWideScience

Sample records for fuel cycle systems

  1. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  2. The fuel cycle scoping system

    International Nuclear Information System (INIS)

    Dooley, G.D.; Malone, J.P.

    1986-01-01

    The Fuel Cycle Scoping System (FCSS) was created to fill the need for a scoping tool which provides the utilities with the ability to quickly evaluate alternative fuel management strategies, tails assay choices, fuel fabrication quotes, fuel financing alternatives, fuel cycle schedules, and other fuel cycle perturbations. The FCSS was specifically designed for PC's that support dBASE-III(TM), a relational data base software system by Ashton-Tate. However, knowledge of dBASE-III is not necessary in order to utilize the FCSS. The FCSS is menu driven and can be utilized as a teaching tool as well as a scoping tool

  3. Nuclear Fuel Cycle Information System. A directory of nuclear fuel cycle facilities. 2009 ed

    International Nuclear Information System (INIS)

    2009-04-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities, published online as part of the Integrated Nuclear Fuel Cycle Information System (iNFCIS: http://www-nfcis.iaea.org/). This is the fourth hardcopy publication in almost 30 years and it represents a snapshot of the NFCIS database as of the end of 2008. Together with the attached CD-ROM, it provides information on 650 civilian nuclear fuel cycle facilities in 53 countries, thus helping to improve the transparency of global nuclear fuel cycle activities

  4. ITER fuel cycle systems layout

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-10-01

    The ITER fuel cycle building (FCB) will contain the following systems: fuel purification - permeator based; fuel purification - molecular sieves; impurity treatment; waste water storage and treatment; isotope separation; waste water tritium extraction; tritium extraction from solid breeder; tritium extraction from test modules; tritium storage, shipping and receiving; tritium laboratory; atmosphere detritiation systems; fuel cycle control centre; tritiated equipment maintenance space; control maintenance space; health physics laboratory; access, access control and facilities. The layout of the FCB and the requirements for these systems are described. (10 figs.)

  5. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  6. The status of nuclear fuel cycle system analysis for the development of advanced nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Seong Ki; Lee, Hyo Jik; Chang, Hong Rae; Kwon, Eun Ha; Lee, Yoon Hee; Gao, Fanxing [KAERI, Daejeon (Korea, Republic of)

    2011-11-15

    The system analysis has been used with different system and objectives in various fields. In the nuclear field, the system can be applied from uranium mining to spent fuel reprocessing or disposal which is called the nuclear fuel cycle. The analysis of nuclear fuel cycle can be guideline for development of advanced fuel cycle through integrating and evaluating the technologies. For this purpose, objective approach is essential and modeling and simulation can be useful. In this report, several methods which can be applicable for development of advanced nuclear fuel cycle, such as TRL, simulation and trade analysis were explained with case study

  7. The Nuclear Fuel Cycle Information System

    International Nuclear Information System (INIS)

    1987-02-01

    The Nuclear Fuel Cycle Information System (NFCIS) is an international directory of civilian nuclear fuel cycle facilities. Its purpose is to identify existing and planned nuclear fuel cycle facilities throughout the world and to indicate their main parameters. It includes information on facilities for uranium ore processing, refining, conversion and enrichment, for fuel fabrication, away-from-reactor storage of spent fuel and reprocessing, and for the production of zirconium metal and Zircaloy tubing. NFCIS currently covers 271 facilities in 32 countries and includes 171 references

  8. ARC System fuel cycle analysis capability, REBUS-2

    International Nuclear Information System (INIS)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation

  9. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  10. Nuclear fuel cycle simulation system (VISTA)

    International Nuclear Information System (INIS)

    2007-02-01

    The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. The VISTA model needs isotopic composition of spent nuclear fuel in order to make estimations of the material arisings from the nuclear reactor operation. For this purpose, in accordance with the requirements of the VISTA code, a new module called Calculating Actinide Inventory (CAIN) was developed. CAIN is a simple fuel depletion model which requires a small number of input parameters and gives results in a very short time. VISTA has been used internally by the IAEA for the estimation of: spent fuel discharge from the reactors worldwide, Pu accumulation in the discharged spent fuel, minor actinides (MA) accumulation in the spent fuel, and in the high level waste (HLW) since its development. The IAEA decided to disseminate the VISTA tool to Member States using internet capabilities in 2003. The improvement and expansion of the simulation code and the development of the internet version was started in 2004. A website was developed to introduce the simulation system to the visitors providing a simple nuclear material flow calculation tool. This website has been made available to Member States in 2005. The development work for the full internet version is expected to be fully available to the interested parties from IAEA Member States in 2007 on its website. This publication is the accompanying text which gives details of the modelling and an example scenario

  11. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    International Nuclear Information System (INIS)

    Ashley, S.F.; Lindley, B.A.; Parks, G.T.; Nuttall, W.J.; Gregg, R.; Hesketh, K.W.; Kannan, U.; Krishnani, P.D.; Singh, B.; Thakur, A.; Cowper, M.; Talamo, A.

    2014-01-01

    Highlights: • We study three open cycle Th–U-fuelled nuclear energy systems. • Comparison of these systems is made to a reference U-fuelled EPR. • Fuel cycle modelling is performed with UK NNL code “ORION”. • U-fuelled system is economically favourable and needs least separative work per kWh. • Th–U-fuelled systems offer negligible waste and proliferation resistance advantages. - Abstract: In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∼20% 235 U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∼6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little

  12. A New Dynamic Model for Nuclear Fuel Cycle System Analysis

    International Nuclear Information System (INIS)

    Choi, Sungyeol; Ko, Won Il

    2014-01-01

    The evaluation of mass flow is a complex process where numerous parameters and their complex interaction are involved. Given that many nuclear power countries have light and heavy water reactors and associated fuel cycle technologies, the mass flow analysis has to consider a dynamic transition from the open fuel cycle to other cycles over decades or a century. Although an equilibrium analysis provides insight concerning the end-states of fuel cycle transitions, it cannot answer when we need specific management options, whether the current plan can deliver these options when needed, and how fast the equilibrium can be achieved. As a pilot application, the government brought several experts together to conduct preliminary evaluations for nuclear fuel cycle options in 2010. According to Table 1, they concluded that the closed nuclear fuel cycle has long-term advantages over the open fuel cycle. However, it is still necessary to assess these options in depth and to optimize transition paths of these long-term options with advanced dynamic fuel cycle models. A dynamic simulation model for nuclear fuel cycle systems was developed and its dynamic mass flow analysis capability was validated against the results of existing models. This model can reflects a complex combination of various fuel cycle processes and reactor types, from once-through to multiple recycling, within a single nuclear fuel cycle system. For the open fuel cycle, the results of the developed model are well matched with the results of other models

  13. A nuclear fuel cycle system dynamic model for spent fuel storage options

    International Nuclear Information System (INIS)

    Brinton, Samuel; Kazimi, Mujid

    2013-01-01

    Highlights: • Used nuclear fuel management requires a dynamic system analysis study due to its socio-technical complexity. • Economic comparison of local, regional, and national storage options is limited due to the public financial information. • Local and regional options of used nuclear fuel management are found to be the most economic means of storage. - Abstract: The options for used nuclear fuel storage location and affected parameters such as economic liabilities are currently a focus of several high level studies. A variety of nuclear fuel cycle system analysis models are available for such a task. The application of nuclear fuel cycle system dynamics models for waste management options is important to life-cycle impact assessment. The recommendations of the Blue Ribbon Committee on America’s Nuclear Future led to increased focus on long periods of spent fuel storage [1]. This motivated further investigation of the location dependency of used nuclear fuel in the parameters of economics, environmental impact, and proliferation risk. Through a review of available literature and interactions with each of the programs available, comparisons of post-reactor fuel storage and handling options will be evaluated based on the aforementioned parameters and a consensus of preferred system metrics and boundary conditions will be provided. Specifically, three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module (WMM) which provides an easy to use interface for education on fuel cycle waste management economic impacts. Initial results of baseline cases point to positive benefits of regional storage locations with local regional storage options continuing to offer the lowest cost

  14. Environmental systems analysis of biogas systems-Part I: Fuel-cycle emissions

    International Nuclear Information System (INIS)

    Boerjesson, Pal; Berglund, Maria

    2006-01-01

    Fuel-cycle emissions of carbon dioxide (CO 2 ), carbon oxide (CO), nitrogen oxides (NO x ), sulphur dioxide (SO 2 ), hydrocarbons (HC), methane (CH 4 ), and particles are analysed from a life-cycle perspective for different biogas systems based on six different raw materials. The gas is produced in large- or farm-scale biogas plants, and is used in boilers for heat production, in turbines for co-generation of heat and electricity, or as a transportation fuel in light- and heavy-duty vehicles. The analyses refer mainly to Swedish conditions. The levels of fuel-cycle emissions vary greatly among the biogas systems studied, and are significantly affected by the properties of the raw material digested, the energy efficiency of the biogas production, and the status of the end-use technology. For example, fuel-cycle emission may vary by a factor of 3-4, and for certain gases by up to a factor of 11, between two biogas systems that provide an equivalent energy service. Extensive handling of raw materials, e.g. ley cropping or collection of waste-products such as municipal organic waste, is often a significant source of emissions. Emission from the production phase of the biogas exceeds the end-use emissions for several biogas systems and for specific emissions. Uncontrolled losses of methane, e.g. leakages from stored digestates or from biogas upgrading, increase the fuel-cycle emissions of methane considerably. Thus, it is necessary to clearly specify the biogas production system and end-use technology being studied in order to be able to produce reliable and accurate data on fuel-cycle emission

  15. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Hodong; Choi, Iljae

    2013-04-01

    The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The demonstration of pyroprocess technology which is proliferation resistance nuclear fuel cycle technology can reduce spent fuel and recycle effectively. Through this, people's trust and support on nuclear power would be obtained. Deriving the optimum nuclear fuel cycle alternative would contribute to establish a policy on back-end nuclear fuel cycle in the future, and developing the nuclear transparency-related technology would contribute to establish amendments of the ROK-U. S. Atomic Energy Agreement scheduled in 2014

  16. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  17. Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Burch, W.D.; Haire, M.J.; Rainey, R.H.

    1981-01-01

    The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment

  18. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  19. Market-Based and System-Wide Fuel Cycle Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Paul Philip Hood [Univ. of Wisconsin, Madison, WI (United States); Scopatz, Anthony [Univ. of South Carolina, Columbia, SC (United States); Gidden, Matthew [Univ. of Wisconsin, Madison, WI (United States); Carlsen, Robert [Univ. of Wisconsin, Madison, WI (United States); Mouginot, Baptiste [Univ. of Wisconsin, Madison, WI (United States); Flanagan, Robert [Univ. of South Carolina, Columbia, SC (United States)

    2017-06-13

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  20. Market-Based and System-Wide Fuel Cycle Optimization

    International Nuclear Information System (INIS)

    Wilson, Paul Philip Hood; Scopatz, Anthony; Gidden, Matthew; Carlsen, Robert; Mouginot, Baptiste; Flanagan, Robert

    2017-01-01

    This work introduces automated optimization into fuel cycle simulations in the Cyclus platform. This includes system-level optimizations, seeking a deployment plan that optimizes the performance over the entire transition, and market-level optimization, seeking an optimal set of material trades at each time step. These concepts were introduced in a way that preserves the flexibility of the Cyclus fuel cycle framework, one of its most important design principles.

  1. Uranium requirements for advanced fuel cycles in expanding nuclear power systems

    International Nuclear Information System (INIS)

    Banerjee, S.; Tamm, H.

    1978-01-01

    When considering advanced fuel cycle strategies in rapidly expanding nuclear power systems, equilibrium analyses do not apply. A computer simulation that accounts for system delay times and fissile inventories has been used to study the effects of different fuel cycles and different power growth rates on uranium consumption. The results show that for a given expansion rate of installed capacity, the main factors that affect resource requirements are the fissile inventory needed to introduce the advanced fuel cycle and the conversion (or breeding) ratio. In rapidly expanding systems, the effect of fissile inventory dominates, whereas in slowly expanding systems, conversion or breeding ratio dominates. Heavy-water-moderated and -cooled reactors, with their high conversion ratios, appear to be adaptable vehicles for accommodating fuel cycles covering a wide range of initial fissile inventories. They are therefore particularly suitable for conserving uranium over a wide range of nuclear power system expansion rates

  2. Development of fusion fuel cycles: Large deviations from US defense program systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, James Edward, E-mail: james.klein@srnl.doe.gov; Poore, Anita Sue; Babineau, David W.

    2015-10-15

    Highlights: • All tritium fuel cycles start with a “Tritium Process.” All have similar tritium processing steps. • Fusion tritium fuel cycles minimize process tritium inventories for various reasons. • US defense program facility designs did not minimize in-process inventories. • Reduced inventory tritium facilities will lower public risk. - Abstract: Fusion energy research is dominated by plasma physics and materials technology development needs with smaller levels of effort and funding dedicated to tritium fuel cycle development. The fuel cycle is necessary to supply and recycle tritium at the required throughput rate; additionally, tritium confinement throughout the facility is needed to meet regulatory and environmental release limits. Small fuel cycle development efforts are sometimes rationalized by stating that tritium processing technology has already been developed by nuclear weapons programs and these existing processes only need rescaling or engineering design to meet the needs of fusion fuel cycles. This paper compares and contrasts features of tritium fusion fuel cycles to United States Cold War era defense program tritium systems. It is concluded that further tritium fuel cycle development activities are needed to provide technology development beneficial to both fusion and defense programs tritium systems.

  3. Verifiable Fuel Cycle Simulation Model (VISION): A Tool for Analyzing Nuclear Fuel Cycle Futures

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Piet, Steven J.; Matthern, Gretchen E.; Shropshire, David E.; Jeffers, Robert F.; Yacout, A.M.; Schweitzer, Tyler

    2010-01-01

    The nuclear fuel cycle consists of a set of complex components that are intended to work together. To support the nuclear renaissance, it is necessary to understand the impacts of changes and timing of events in any part of the fuel cycle system such as how the system would respond to each technological change, a series of which moves the fuel cycle from where it is to a postulated future state. The system analysis working group of the United States research program on advanced fuel cycles (formerly called the Advanced Fuel Cycle Initiative) is developing a dynamic simulation model, VISION, to capture the relationships, timing, and changes in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model components and some examples of how to use VISION. For example, VISION users can now change yearly the selection of separation or reactor technologies, the performance characteristics of those technologies, and/or the routing of material among separation and reactor types - with the model still operating on a PC in <5 min.

  4. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  5. Comparative techniques for nuclear fuel cycle waste management systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Voss, J.W.

    1979-09-01

    A safety assessment approach for the evaluation of predisposal waste management systems is described and applied to selected facilities in the light water reactor (LWR) once-through fuel cycle and a potential coprocessed UO 2 -PuO 2 fuel cycle. This approach includes a scoping analysis on pretreatment waste streams and a more detailed analysis on proposed waste management processes. The primary evaluation parameters used in this study include radiation exposures to the public from radionuclide releases from normal operations and potential accidents, occupational radiation exposure from normal operations, and capital and operating costs. On an overall basis, the waste management aspects of the two fuel cycles examined are quite similar. On an individual facility basis, the fuel coprocessing plant has the largest waste management impact

  6. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-01-01

    Current interest in the thorium cycle, as an alternative to the uranium cycle, for water-moderated reactors is based on two attractive aspects of its use - the extension of uranium resources, and the related lower sensitivity of energy costs to uranium price. While most of the scientific basis required is already available, some engineering demonstrations are needed to provide better economic data for rational decisions. Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. There appear to be no major feasibility problems associated with the use of thorium, although development is required in the areas of fuel testing and fuel management. The use of thorium cycles implies recycling the fuel, and the major uncertainties are in the associated costs. Experience in the design and operation of fuel reprocessing and active-fabrication facilities is required to estimate costs to the accuracy needed for adequately defining the range of conditions economically favourable to thorium cycles. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An ''inventory'' of uranium of between 1 and 2Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium), is some two decades

  7. Dynamic analysis of Korean nuclear fuel cycle with fast reactor systems

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2004-12-01

    The Korean nuclear fuel cycle scenario was analyzed by the dynamic analysis method, including Pressurized Water Reactor (PWR), Canadian Deuterium Uranium (CANDU) and fast reactor systems. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 1%. After setting up the once-through fuel cycle model, the Korea Advanced Liquid Metal Reactor (KALIMER) scenario was modeled to investigate the fuel cycle parameters. For the analysis of the fast reactor fuel cycle, both KAILMER-150 and KALIMER-600 reactors were considered. In this analysis, the spent fuel inventory as well as the amount of plutonium, Minor Actinides (MA) and Fission Products (FP) of the recycling fuel cycle was estimated and compared to that of the once-through fuel cycle. Results of the once-through fuel cycle calculation showed that the demand grows up to 64 GWe and total amount of spent fuel would be ∼102 kt in 2100. If the KALIMER scenario is implemented, the total spent fuel inventory can be reduced by ∼80%. However it was found that the KALIMER scenario does not contribute to reduce the amount of MA and FP, which is important when designing a repository. For the further destruction of MA, an actinide burner can be considered in the future nuclear fuel cycle

  8. Engineered safeguards system activities at Sandia Laboratories for back-end fuel cycle facilities

    International Nuclear Information System (INIS)

    Sellers, T.A.; Fienning, W.C.; Winblad, A.E.

    1978-01-01

    Sandia Laboratories have been developing concepts for safeguards systems to protect facilities in the back-end of the nuclear fuel cycle against potential threats of sabotage and theft of special nuclear material (SNM). Conceptual designs for Engineered Safeguards Systems (ESSs) have been developed for a Fuel Reprocessing Facility (including chemical separations, plutonium conversion, and waste solidification), a Mixed-Oxide Fuel Fabrication Facility, and a Plutonium Transport Vehicle. Performance criteria for the various elements of these systems and a candidate systematic design approach have been defined. In addition, a conceptual layout for a large-scale Fuel-Cycle Plutonium Storage Facility has been completed. Work is continuing to develop safeguards systems for spent fuel facilities, light-water reactors, alternative fuel cycles, and improved transportation systems. Additional emphasis will be placed on the problems associated with national diversion of special nuclear material. The impact on safeguards element performance criteria for surveillance and containment to protect against national diversion in various alternative fuel cycle complexes is also being investigated

  9. Estimates of Canadian fuel fabrication costs for alternative fuel cycles and systems

    International Nuclear Information System (INIS)

    Blahnik, C.

    1979-04-01

    Unit fuel fabrication costs are estimated for alternate fuel cycles and systems that may be of interest in Ontario Hydro's strategy analyses. A method is proposed for deriving the unit fuel fabrication price to be paid by a Canadian utility as a function of time (i.e. the price that reflects the changing demand/supply situation in the particular scenario considered). (auth)

  10. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  13. Nuclear Fuel Cycle System Analysis (I)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Kim, Ho Dong; Yoon, Ji Sup; Park, Seong Won

    2006-12-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle, and evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance and economics. The analysis shows that the GEN-IV Recycle appears to have an advantage in terms of sustainability, environment-friendliness and long-term proliferation-resistance, while it is expected to be more economically competitive, if uranium ore prices increase or costs of pyroprocessing and fuel fabrication decrease.

  14. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    International Nuclear Information System (INIS)

    Brown, N.R.; Powers, J.J.; Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G.; Todosow, M.; Worrall, A.; Gehin, J.C.; Kim, T.K.; Taiwo, T.A.

    2015-01-01

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems

  15. Sustainable thorium nuclear fuel cycles: A comparison of intermediate and fast neutron spectrum systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.R., E-mail: nbrown@bnl.gov [Brookhaven National Laboratory, Upton, NY (United States); Powers, J.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Feng, B.; Heidet, F.; Stauff, N.E.; Zhang, G. [Argonne National Laboratory, Argonne, IL (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States); Worrall, A.; Gehin, J.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Kim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States)

    2015-08-15

    Highlights: • Comparison of intermediate and fast spectrum thorium-fueled reactors. • Variety of reactor technology options enables self-sustaining thorium fuel cycles. • Fuel cycle analyses indicate similar performance for fast and intermediate systems. • Reproduction factor plays a significant role in breeding and burn-up performance. - Abstract: This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10{sup 5} eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this self-sustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  16. Fuel cycle management in Finland

    International Nuclear Information System (INIS)

    Vaeyrynen, H.; Mikkola, I.

    1987-01-01

    Both Finnish utilities producing nuclear power - Imatran Voima Oy (IVO) and Teollisuuden Voima Oy (Industrial Power Co. Ltd, TVO) - have created efficient fuel cycle management systems. The systems however differ in almost all respects. The reason is that the principal supplier for IVO is the Soviet Union and for TVO is Sweden. A common feature of both systems at the front end of the cycle is the building of stockpiles in order to provide for interruptions in fuel deliveries. Quality assurance supervision at the fuel factory for IVO is regulated by the Soviet Chamber of Commerce and Industry and a final control is made in Finland. The in-core fuel management is done by IVO using codes developed in Finland. The whole IVO fuel cycle is basically a leasing arrangement. The spent fuel is returned to the USSR after five years cooling. TVO carries out the in-core fuel management using a computer code system supplied by Asea-Atom. TVO is responsable for the back end of the cycle and makes preparations for the final disposal of the spent fuel in Finland. 6 refs., 2 figs

  17. Characteristics of fuel cycle waste

    International Nuclear Information System (INIS)

    Aquilina, C.A.; Everette, S.E.

    1982-01-01

    The Low-Level Waste Management System started in 1979 to describe and model the existing commercial low-level waste management system. The system description produced is based on the identification of the different elements making up both the fuel and non-fuel cycle and their relationships to each other. A systems model based on the system description can accurately reflect the flow of low-level waste from generator to disposal site and is only limited by the reliability of the information it uses. For both the fuel cycle and non-fuel cycle large quantities of information is required in order to allow the system to operate at its full potential. Work is ongoing to collect this information. Significant progress is being made in the fuel cycle area primarily because the majority of fuel cycle low-level radioactive waste is produced by commercial power reactor plant operations. The Low-Level Waste Management system is only beginning to derive the benefits to be obtained from an accurate low-level waste management information system. As data is verified and analyzed, results on a national as well as individual organization level will be gained. Comparisons to previous studies will be made. Accurate projections of waste volumes and activities to be produced, projected impacts of waste streams of treatment or management changes are only examples of information to be produced. 1 figure, 1 table

  18. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  19. Nuclear Fuel Cycle System Analysis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Yoon, Ji Sup; Park, Seong Won

    2007-04-15

    As a nation develops strategies that provide nuclear energy while meeting its various objectives, it must begin with identification of a fuel cycle option that can be best suitable for the country. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 2nd Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Reactor Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of sustainability, environment-friendliness, proliferation-resistance, economics and technologies. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects of sustainability, environment-friendliness, proliferation-resistance, economics, technologies and so on, which makes the comparison of the options extremely complicated. Taking this into consideration, the paper analyzes all the four fuel cycle options using the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP), methods of Multi-Attribute Decision Making (MADM), that support systematical evaluation of the cases with multi- goals or criteria and that such goals are incompatible with each other. The analysis shows that the GEN-IV Recycle appears to be most competitive.

  20. The uranium-plutonium breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Salmon, A.; Allardice, R.H.

    1979-01-01

    All power-producing systems have an associated fuel cycle covering the history of the fuel from its source to its eventual sink. Most, if not all, of the processes of extraction, preparation, generation, reprocessing, waste treatment and transportation are involved. With thermal nuclear reactors more than one fuel cycle is possible, however it is probable that the uranium-plutonium fuel cycle will become predominant; in this cycle the fuel is mined, usually enriched, fabricated, used and then reprocessed. The useful components of the fuel, the uranium and the plutonium, are then available for further use, the waste products are treated and disposed of safely. This particular thermal reactor fuel cycle is essential if the fast breeder reactor (FBR) using plutonium as its major fuel is to be used in a power-producing system, because it provides the necessary initial plutonium to get the system started. In this paper the authors only consider the FBR using plutonium as its major fuel, at present it is the type envisaged in all, current national plans for FBR power systems. The corresponding fuel cycle, the uranium-plutonium breeder reactor fuel cycle, is basically the same as the thermal reactor fuel cycle - the fuel is used and then reprocessed to separate the useful components from the waste products, the useful uranium and plutonium are used again and the waste disposed of safely. However the details of the cycle are significantly different from those of the thermal reactor cycle. (Auth.)

  1. A dynamic, dependent type system for nuclear fuel cycle code generation

    Energy Technology Data Exchange (ETDEWEB)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  2. Development of multilateral comparative evaluation method for fuel cycle system

    International Nuclear Information System (INIS)

    Tamaki, Hitoshi; Ikushima, Takeshi; Nomura, Yasushi; Nakajima, Kiyoshi.

    1998-03-01

    In the near future, Japanese nuclear fuel cycle system will be promoted by national nuclear energy policy, and it''s options i.e. once through, thermal cycle and fast breeder cycle must be selected by multilateral comparative evaluation method from various aspects of safety, society, economy, and e.t.c. Therefore such a problem can be recognized as a social problem of decision making and applied for AHP (Analytic Hierarchy Process) that can multilaterally and comparatively evaluate the problem. On comparative evaluation, much information are needed for decision making, therefore two kinds of databases having these information have been constructed. And then, the multilateral comparative evaluation method consisting of two kinds of databases and AHP for optimum selection of fuel cycle system option have been developed. (author)

  3. The thorium fuel cycle in water-moderated reactor systems

    International Nuclear Information System (INIS)

    Critoph, E.

    1977-05-01

    Thorium and uranium cycles are compared with regard to reactor characteristics and technology, fuel-cycle technology, economic parameters, fuel-cycle costs, and system characteristics. In heavy-water reactors (HWRs) thorium cycles having uranium requirements at equilibrium ranging from zero to a quarter of those for the natural-uranium once-through cycle appear feasible. An 'inventory' of uranium of between 1 and 2 Mg/MW(e) is required for the transition to equilibrium. The cycles with the lowest uranium requirements compete with the others only at high uranium prices. Using thorium in light-water reactors, uranium requirements can be reduced by a factor of between two and three from the once-through uranium cycle. The light-water breeder reactor, promising zero uranium requirements at equilibrium, is being developed. Larger uranium inventories are required than for the HWRs. The lead time, from a decision to use thorium to significant impact on uranium utilization (compared to uranium cycle, recycling plutonium) is some two decades

  4. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  5. Development of FR fuel cycle in japan (1) development scope of fuel cycle technology

    International Nuclear Information System (INIS)

    Nakamura, H.; Funasaka, H.; Namekawa, T.

    2008-01-01

    A fast reactor (FR) cycle has a potential to realize a sustainable energy supply system that is harmonized with environment by fully recycling both uranium (U) and transuranium (TRU) elements. In Japan, a Feasibility Study on Commercialized FR Cycle Systems (FS) was launched in July 1999, and through two different study phases, a final report was presented in 2006. As a result of FS, a combined system of sodium-cooled FR with mixed-oxide (MOX) fuel, advanced aqueous reprocessing and simplified pelletizing fuel fabrication was considered to be most promising for commercialization. The advanced aqueous reprocessing system, which is called the New Extraction system for TRU recovery (NEXT), consists of a U crystallization process for the bulk of U recovery, a simplified solvent extraction process for residual U, plutonium (Pu) and neptunium (Np) without Pu partitioning and purification, and a process for recovering americium (Am) and curium (Cm) from the raffinate. The ratio of Pu/U concentration in the mother solution after crystallization is adequate for MOX fuel fabrication, and thus complicated powder mixing processes for adjusting Pu content in MOX fuel can be eliminated in the subsequent simplified fuel fabrication system. In this system, lubricant-mixing process can also be eliminated by adopting the advanced technology in which lubricant is coated on the inner surface of a die before fuel powder supply. Such a simplification could help us overcoming the difficulty to treat MA bearing fuel powders in a hot cell. Ministry of Education, Culture, Sports, Science and Technology (MEXT) reviewed these results of FS in 2006 and identified the most promising FR cycle concept proposed in the FS phase II study as a mainline choice for commercialization. According to such a governmental assessment, R and D activities of FR cycle systems were decided to be concentrated mainly to the innovative technology development for the mainline concept. The stage of R and D project was

  6. Fuel Cycle System Analysis Handbook

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Gombert, Dirk; Hoffman, Edward A.; Matthern, Gretchen E.; Williams, Kent A.

    2009-01-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  7. Future fuel cycles

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1980-01-01

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  8. Evaluation of DD and DT fusion fuel cycles for different fusion-fission energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    1980-01-01

    A study has been carried out in order to investigate the characteristics of an energy system to produce a new source of fissile fuel for existing fission reactors. The denatured fuel cycles were used because it gives additional proliferation resistance compared to other fuel cycles. DT and DD fusion drivers were examined in this study with a thorium or uranium blanket for each fusion driver. Various fuel cycles were studied for light-water and heavy-water reactors. The cost of electricity for each energy system was calculated

  9. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  10. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  11. Sustainability Features of Nuclear Fuel Cycle Options

    Directory of Open Access Journals (Sweden)

    Stefano Passerini

    2012-09-01

    Full Text Available The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis, the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.

  12. The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options

    International Nuclear Information System (INIS)

    Price, Robert R.; Singh, Bhupinder P.; MacKinnon, Robert J.; David Sevougian, S.

    2013-01-01

    We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle “screening” methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justify the research and development (R and D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R and D resources and facilitates dialog among a variety of stakeholder groups interested in U.S. energy policy. Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America’s Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R and D for associated technologies. - Highlights: ► Systems engineering principles applied in U.S. DOE-NE Fuel Cycle Technology Program. ► Use of decision analysis methods for determining promising nuclear fuel cycles. ► A new screening methodology to help communicate and prioritize U.S. DOE R and D needs. ► Fuel cycles categorized by performance/risk in meeting FCT Program objectives. ► Systems engineering allows DOE-NE to more rapidly adapt to future policy changes

  13. CFTSIM-ITER dynamic fuel cycle model

    International Nuclear Information System (INIS)

    Busigin, A.; Gierszewski, P.

    1998-01-01

    Dynamic system models have been developed for specific tritium systems with considerable detail and for integrated fuel cycles with lesser detail (e.g. D. Holland, B. Merrill, Analysis of tritium migration and deposition in fusion reactor systems, Proceedings of the Ninth Symposium Eng. Problems of Fusion Research (1981); M.A. Abdou, E. Vold, C. Gung, M. Youssef, K. Shin, DT fuel self-sufficiency in fusion reactors, Fusion Technol. (1986); G. Spannagel, P. Gierszewski, Dynamic tritium inventory of a NET/ITER fuel cycle with lithium salt solution blanket, Fusion Eng. Des. (1991); W. Kuan, M.A. Abdou, R.S. Willms, Dynamic simulation of a proposed ITER tritium processing system, Fusion Technol. (1995)). In order to provide a tool to understand and optimize the behavior of the ITER fuel cycle, a dynamic fuel cycle model called CFTSIM is under development. The CFTSIM code incorporates more detailed ITER models, specifically for the important isotope separation system, and also has an easier-to-use graphical interface. This paper provides an overview of CFTSIM Version 1.0. The models included are those with significant and varying tritium inventories over a test campaign: fueling, plasma and first wall, pumping, fuel cleanup, isotope separation and storage. An illustration of the results is shown. (orig.)

  14. Large-scale fuel cycle centres

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The US Nuclear Regulatory Commission (NRC) has considered the nuclear energy centre concept for fuel cycle plants in the Nuclear Energy Centre Site Survey 1975 (NECSS-75) Rep. No. NUREG-0001, an important study mandated by the US Congress in the Energy Reorganization Act of 1974 which created the NRC. For this study, the NRC defined fuel cycle centres as consisting of fuel reprocessing and mixed-oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle centre sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000-300,000MW(e). The types of fuel cycle facilities located at the fuel cycle centre permit the assessment of the role of fuel cycle centres in enhancing the safeguard of strategic special nuclear materials - plutonium and mixed oxides. Siting fuel cycle centres presents a smaller problem than siting reactors. A single reprocessing plant of the scale projected for use in the USA (1500-2000t/a) can reprocess fuel from reactors producing 50,000-65,000MW(e). Only two or three fuel cycle centres of the upper limit size considered in the NECSS-75 would be required in the USA by the year 2000. The NECSS-75 fuel cycle centre evaluation showed that large-scale fuel cycle centres present no real technical siting difficulties from a radiological effluent and safety standpoint. Some construction economies may be achievable with fuel cycle centres, which offer opportunities to improve waste-management systems. Combined centres consisting of reactors and fuel reprocessing and mixed-oxide fuel fabrication plants were also studied in the NECSS. Such centres can eliminate shipment not only of Pu but also mixed-oxide fuel. Increased fuel cycle costs result from implementation of combined centres unless the fuel reprocessing plants are commercial-sized. Development of Pu-burning reactors could reduce any economic penalties of combined centres. The need for effective fissile

  15. Study of DD versus DT fusion fuel cycles for different fusion-fission hybrid energy systems

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.C.

    1981-01-01

    A study was performed to investigate the characteristics of an energy system to produce fissile fuel for fission reactors. DD and DT fusion reactors were examined in this study with either a thorium or uranium blanket for each fusion reactor. Various fuel cycles were examined for light-water reactors including the denatured fuel cycles (which may offer proliferation resistance compared to other fuel cycles); these fuel cycles include a uranium fuel cycle with 239 Pu makeup, a thorium fuel cycle with 239 Pu makeup, a denatured uranium fuel cycle with 233 U makeup, and a denatured thorium fuel cycle with 233 U makeup. Four different blankets were considered for this study. The first two blankets have a tritium breeding capability for DT reactors. Lithium oxide (Li 2 O) was used for tritium breeding due to its high lithium density and high temperature capability; however, the use of Li 2 O may result in higher tritium inventories compared to other solid breeders

  16. Feasibility study on commercialization of fast breeder reactor cycle systems interim report of phase II. Technical study report for nuclear fuel cycle systems

    International Nuclear Information System (INIS)

    Sato, Koji; Amamoto, Ippei; Inoue, Akira

    2004-06-01

    As a part of the feasibility study on commercialization of fast breeder reactor cycle systems, the plant concept concerning the fuel cycle systems (combination of the reprocessing and the fuel fabrication) has been constructed to reduce their total cost by the introduction of various innovative techniques and to apply their utmost superior efficiency from such standpoints of a decrease in the environmental burden, better resource utilization and proliferation resistance improvement by the low decontamination transuranium element (TRU) recycle. This interim report of Phase II describes the results of an on-going study which will cover a five-year period. For oxide fuels, the system which combines the use of the advanced aqueous reprocessing using three main methods such as the crystallization method, the simplified solvent extraction method, and the extraction chromatography method for minor actinide (MA) recovery, as well as the simplified pelletizing fuel fabrication which rationalized a powder mixing process etc., has abundant current results and a high technical feasibility for the basic process. Though this system faces difficulties in the technical development of control technology of the extraction chromatography and the fabrication technology of low decontamination TRU fuel etc., its expected practical use is possible at an early stage. As for the super-critical direct extraction reprocessing, it is necessary to fulfill more basic data although further economical improvement of an advanced aqueous reprocessing is expected. The system which combines the advanced aqueous reprocessing and the gelation sphere packing fuel fabrication has the advantage of lesser dispersion of the fine powder due to the use of solution and granule in the fuel fabrication process. However, this system will shoulder additional cost for the reagent recovery process and the waste liquid treatment process due to need to dispose of a large bulk of process waste liquid. The system which

  17. Large-scale fuel cycle centers

    International Nuclear Information System (INIS)

    Smiley, S.H.; Black, K.M.

    1977-01-01

    The United States Nuclear Regulatory Commission (NRC) has considered the nuclear energy center concept for fuel cycle plants in the Nuclear Energy Center Site Survey - 1975 (NECSS-75) -- an important study mandated by the U.S. Congress in the Energy Reorganization Act of 1974 which created the NRC. For the study, NRC defined fuel cycle centers to consist of fuel reprocessing and mixed oxide fuel fabrication plants, and optional high-level waste and transuranic waste management facilities. A range of fuel cycle center sizes corresponded to the fuel throughput of power plants with a total capacity of 50,000 - 300,000 MWe. The types of fuel cycle facilities located at the fuel cycle center permit the assessment of the role of fuel cycle centers in enhancing safeguarding of strategic special nuclear materials -- plutonium and mixed oxides. Siting of fuel cycle centers presents a considerably smaller problem than the siting of reactors. A single reprocessing plant of the scale projected for use in the United States (1500-2000 MT/yr) can reprocess the fuel from reactors producing 50,000-65,000 MWe. Only two or three fuel cycle centers of the upper limit size considered in the NECSS-75 would be required in the United States by the year 2000 . The NECSS-75 fuel cycle center evaluations showed that large scale fuel cycle centers present no real technical difficulties in siting from a radiological effluent and safety standpoint. Some construction economies may be attainable with fuel cycle centers; such centers offer opportunities for improved waste management systems. Combined centers consisting of reactors and fuel reprocessing and mixed oxide fuel fabrication plants were also studied in the NECSS. Such centers can eliminate not only shipment of plutonium, but also mixed oxide fuel. Increased fuel cycle costs result from implementation of combined centers unless the fuel reprocessing plants are commercial-sized. Development of plutonium-burning reactors could reduce any

  18. Accelerator-driven systems (ADS) and fast reactors (FR) in advanced nuclear fuel cycles

    International Nuclear Information System (INIS)

    2002-01-01

    The long-term hazard of radioactive waste arising from nuclear energy production is a matter of continued discussion and public concern in many countries. Through partitioning and transmutation (P and T) of the actinides and some of the long-lived fission products, the radiotoxicity of high-level waste (HLW) can be reduced by a factor of 100 compared with the current once-through fuel cycle. This requires very effective reactor and fuel cycle strategies, including fast reactors (FR) and/or accelerator-driven, sub-critical systems (ADS). The present study compares FR- and ADS-based actinide transmutation systems with respect to reactor properties, fuel cycle requirements, safety, economic aspects and (R and D) needs. Several advanced fuel cycle strategies are analysed in a consistent manner to provide insight into the essential differences between the various systems in which the role of ADS is emphasised. The report includes a summary aimed at policy makers and research managers as well as a detailed technical section for experts in this domain. (authors)

  19. Nuclear fuel cycle, nuclear fuel makes the rounds: choosing a closed fuel cycle, nuclear fuel cycle processes, front-end of the fuel cycle: from crude ore to enriched uranium, back-end of the fuel cycle: the second life of nuclear fuel, and tomorrow: multiple recycling while generating increasingly less waste

    International Nuclear Information System (INIS)

    Philippon, Patrick

    2016-01-01

    France has opted for a policy of processing and recycling spent fuel. This option has already been deployed commercially since the 1990's, but will reach its full potential with the fourth generation. The CEA developed the processes in use today, and is pursuing research to improve, extend, and adapt these technologies to tomorrow's challenges. France has opted for a 'closed cycle' to recycle the reusable materials in spent fuel (uranium and plutonium) and optimise ultimate waste management. France has opted for a 'closed' nuclear fuel cycle. Spent fuel is processed to recover the reusable materials: uranium and plutonium. The remaining components (fission products and minor actinides) are the ultimate waste. This info-graphic shows the main steps in the fuel cycle currently implemented commercially in France. From the mine to the reactor, a vast industrial system ensures the conversion of uranium contained in the ore to obtain uranium oxide (UOX) fuel pellets. Selective extraction, purification, enrichment - key scientific and technical challenges for the teams in the Nuclear Energy Division (DEN). The back-end stages of the fuel cycle for recycling the reusable materials in spent fuel and conditioning the final waste-forms have reached maturity. CEA teams are pursuing their research in support of industry to optimise these processes. Multi-recycle plutonium, make even better use of uranium resources and, over the longer term, explore the possibility of transmuting the most highly radioactive waste: these are the challenges facing future nuclear systems. (authors)

  20. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  1. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  2. Introduction to nuclear supply chain management. In the context of fuel cycle strategy from LWR cycle system to FR cycle system

    International Nuclear Information System (INIS)

    Shiotani, Hiroki; Ono, Kiyoshi; Namba, Takashi; Yasumatsu, Naoto; Heta, Masanori

    2011-01-01

    Supply chain management (SCM) is an important technique to maintain supply and demand balance and to achieve total optimization from upstream to downstream in manufacturers' management. One of the major reasons why SCM receives much attention recently is the trend in production and sales systems from 'Push type' to 'Pull type'. 'Push type' can be restated as 'Make to Stock' (MTS). MTS is a type of supply chain in which the production is not connected to actual demand. On the contrary, 'Pull type' can be restated as 'Make to Order' (MTO) in which the production is connected to actual demand. In this paper, the terminologies and ideas of SCM was introduced into the scenario study to give a fresh perspective for considering LWR cycle to FR cycle transition strategies in Japan. Then, an analytical tool (SCM tool) which has been developed by the authors is used to survey Japanese nuclear energy system in transition with the SCM terminologies and viewpoints. When some of the Japanese nuclear fuel cycle strategies and tools are thought back with the framework of SCM, they tend to treat nuclear fuel cycle system as 'Push type' supply chain in their simulations. For example, a reprocessing plant separates SFs (spent fuels) without considering the actual Pu demand. However, because future reprocessing plants and fuel fabrication plants will act as Pu suppliers (front-end facility) to FR as well as back-end facilities of LWRs, the reasonable plant operation principle can be 'Pull type'. The analysis was conducted by the SCM tool to simulate the behaviors of both MTS and MTO type facilities during the LWR to FR transition period. If there are large uncertainties in the Pu demand or the load factor, etc. of future reprocessing plants, SCM framework is beneficial. Furthermore, the realization of MTO type operation by SCM can reduce the recovered Pu stock in spite of the increase of the SF interim storage. As the result of the investigation on the boundary location of 'Push type

  3. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  4. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  5. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  6. Full fuel-cycle comparison of forklift propulsion systems

    International Nuclear Information System (INIS)

    Gaines, L.L.; Elgowainy, A.; Wang, M.Q.

    2008-01-01

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis

  7. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  8. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies

    International Nuclear Information System (INIS)

    Harrison, Thomas

    2013-01-01

    Presentation Outline: • Why Do I Need a Cost Basis?; • History of the Advanced Fuel Cycle Cost Basis; • Description of the Cost Basis; • Current Work; • Fast Reactor Fuel Cycle Applications; • Sample Fuel Cycle Cost Estimate Analysis; • Future Work

  9. Fuel cycle for a fusion neutron source

    Science.gov (United States)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  10. Fuel cycle for a fusion neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, S. S., E-mail: Ananyev-SS@nrcki.ru; Spitsyn, A. V., E-mail: spitsyn-av@nrcki.ru; Kuteev, B. V., E-mail: Kuteev-BV@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  11. US activities on fuel cycle transition scenarios

    International Nuclear Information System (INIS)

    McCarthy, Kathryn A.

    2010-01-01

    Countries with active nuclear programmes typically have as a goal transition to a closed fuel cycle. A closed fuel cycle enables long-term sustainability, provides waste management benefits, and as a system, can reduce overall proliferation risk. This transition will take many decades, thus the study of the actual transition is an important topic. The United States systems analysis activities as part of the Advanced Fuel Cycle Initiative (AFCI) provide the integrating analyses for the fuel cycle programme, and recent activities are focusing on transition options, and specifically, the dynamics of the transition. The United States is still studying both one-tier (recycling in fast reactors only) and two-tier (recycling in both thermal and fast reactors) systems, and the systems analysis activities provide insight into the trade-offs associated with the systems, and variations of each. Most recently, a series of sensitivity studies have been completed which provide insight into the behaviour of a transition system. These studies evaluate the impact of changing various parameters in the fuel cycle system, and provide insight into how the system will change as parameters change. Because these deployment analyses look at the development of nuclear energy systems over a long period of time, it is very unlikely that we will accurately predict the system's characteristics over time (for example, growth in electricity demand, how quickly nuclear reactors will be deployed, how many fast rectors versus thermal reactors, the conversion ratio of the fast reactors, etc.). How the system will develop will depend on a variety of factors, ranging from political to technical, rational to irrational. Because we cannot accurately predict the future, we need to understand how things could change, and what impact those changes have. Analyses of future fuel cycle systems require a number of assumptions. These include growth rates for nuclear energy, general architecture of fuel cycle

  12. New technology and fuel cycles

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1979-06-01

    The means of improving uranium utilization in nuclear power reactors are reviewed with respect to economic considerations, assurance of adequate fuel supplies and risk of weapons proliferation. Reference is made to what can be done to improve fuel economy in existing reactor systems operating on a once-through fuel cycle and the potential for improvement offered by fuel recycle in those systems. The state of development of new reactor systems that offer significant savings in uranium utilization is also reviewed and conclusions are made respecting the policy implications of the search for fuel economy. (author)

  13. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  14. French development program on fuel cycle

    International Nuclear Information System (INIS)

    Viala, M.; Bourgeois, M.

    1991-01-01

    The need to close the fuel cycle of fast reactors makes the development of the cycle installations (fuel fabrication, irradiated assembly conditioning before reprocessing, reprocessing and waste management) especially independent with the development of the reactor. French experience with the integrated cycle over a period of about 25 years, the tonnage of fuels fabricated (more than 100 t of mixed oxides) for the Rapsodie, Phoenix and SuperPhoenix reactors, and the tonnage of reprocessed fuel (nearly 30 t of plutonium fuel) demonstrate the control of the cycle operations. The capacities of the cycle installations in existence and under construction are largely adequate for presents needs, even including a new European EFR reactor. They include the Cadarache fuel fabrication complex, the La Hague UP2-800 reprocessing plant, and the Marcoule pilot facility. Short- and medium-term R and D programs are connected with fuel developments, with the primary objective of very high burnups. For the longer term and for a specific plant to reprocess fast reactor fuels, the programs could concern new fabrication and reprocessing systems and the study of the consequences of the reduction in fuel out-of-core time

  15. Survey of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Zech, H.J.; Pickert, F.K.

    1975-01-01

    A brief outline of the technical aspects of the fuel cycle, starting from the mining of uranium up to fuel element fabrication, is followed by a more detailed description of the management of the outer fuel cycle. This includes the system of contracts and their reciprocal technical and chronological interdepence, as well as financial aspects, market conditions and trends. (RB) [de

  16. Reliability and availability requirements analysis for DEMO: fuel cycle system

    International Nuclear Information System (INIS)

    Pinna, T.; Borgognoni, F.

    2015-01-01

    The Demonstration Power Plant (DEMO) will be a fusion reactor prototype designed to demonstrate the capability to produce electrical power in a commercially acceptable way. Two of the key elements of the engineering development of the DEMO reactor are the definitions of reliability and availability requirements (or targets). The availability target for a hypothesized Fuel Cycle has been analysed as a test case. The analysis has been done on the basis of the experience gained in operating existing tokamak fusion reactors and developing the ITER design. Plant Breakdown Structure (PBS) and Functional Breakdown Structure (FBS) related to the DEMO Fuel Cycle and correlations between PBS and FBS have been identified. At first, a set of availability targets has been allocated to the various systems on the basis of their operating, protection and safety functions. 75% and 85% of availability has been allocated to the operating functions of fuelling system and tritium plant respectively. 99% of availability has been allocated to the overall systems in executing their safety functions. The chances of the systems to achieve the allocated targets have then been investigated through a Failure Mode and Effect Analysis and Reliability Block Diagram analysis. The following results have been obtained: 1) the target of 75% for the operations of the fuelling system looks reasonable, while the target of 85% for the operations of the whole tritium plant should be reduced to 80%, even though all the tritium plant systems can individually reach quite high availability targets, over 90% - 95%; 2) all the DEMO Fuel Cycle systems can reach the target of 99% in accomplishing their safety functions. (authors)

  17. Ignition of deuterium based fuel cycles in a high beta system

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-01-01

    A steady state self-consistent plasma modeling applied to a system having close to unity, such as FRC or like, is found to be quite effective in solving the problems independently of any anomalous process and proves the existence of ignited state of deuterium based fuel cycles. The temperature ranges that the plasma falls into ignited state are obtained as a function of relative feeding rates of tritium and 3 He to deuterium's. We find pure DD cycle will not ignite so that 3 He or/and tritium must be added as catalyzer to achieve ignition. Standing on the points to construct a cleaner system yielding smaller amount of 14 MeV neutrons and to burn the fuel in steady state for long periods of time, we have confirmed superiority of the complex composed of the master reactor of 3 He-Cat.D cycle (catalyzed DD cycle reinjecting only fusion produced 3 He) and the satellite reactor of 3 He enriched D 3 He cycle. In case storage of tritium for 3 He by β - decay is turned out not to be allowed environmentally, we may utilize conventional catalyzed DD cycle although 14 MeV neutron yields will be increased by 35 % over the complex. It is demonstrated that advanced fuel cycle reactors can be very simple in constructions and compact in size such that the field strength and the plasma volume of the order of JT-60's may be enough for 1000 MW power plant. (author)

  18. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel; Velasco, Abanades

    2013-01-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U 233 , Th+Pu 239 and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  19. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  20. A strategy analysis of the fast breeder reactor introduction and nuclear fuel cycle systems deployment

    International Nuclear Information System (INIS)

    Wajima, Tsunetaka; Kawashima, Katsuyuki; Yamashita, Takashi

    1996-01-01

    A study is made on a strategy analysis of the long term nuclear fuel cycle systems deployment in accordance with the nuclear power growth projection and fast breeder reactor (FBR) introduction. In the analysis, the reprocessed plutonium (Pu) is charged into the reactor in such a way that the reprocessed Pu is not stored outside the reactor, i.e., there is no excess Pu outside the reactor. The analysis characterized the fuel cycle systems, and showed the usefulness of the present method to determine future directions for the FBR introduction and nuclear fuel cycle systems deployment. Concerning an intermediate-term strategy, the time of introduction and required capacities of a second commercial LWR reprocessing plant, Pu-thermal, and the first FBR reprocessing plant deployment are evaluated. A long term strategy analysis shows that the two or three large plants are run in parallel for each fuel cycle facility and that FBR related facilities deal with a markedly large amount of Pu. It is concluded that the early stage introduction of FBRs of significant capacities seems necessary to materialize a consistent total FBR/fuel cycle system where Pu balance becomes feasible through its flexible operation of, for instance, adjusting breeding ratio, in order to keep the transparency of the Pu utilization. (author)

  1. IFR fuel cycle--pyroprocess development

    International Nuclear Information System (INIS)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ''pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs

  2. Denatured fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This paper traces the history of the denatured fuel concept and discusses the characteristics of fuel cycles based on the concept. The proliferation resistance of denatured fuel cycles, the reactor types they involve, and the limitations they place on energy generation potential are discussed. The paper concludes with some remarks on the outlook for such cycles

  3. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  4. Fuel cycles using adulterated plutonium

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; Bigelow, J.E.; Campbell, D.O.; Kitts, F.G.; Lindauer, R.B.

    1978-01-01

    Adjustments in the U-Pu fuel cycle necessitated by decisions made to improve the nonproliferation objectives of the US are examined. The uranium-based fuel cycle, using bred plutonium to provide the fissile enrichment, is the fuel system with the highest degree of commercial development at the present time. However, because purified plutonium can be used in weapons, this fuel cycle is potentially vulnerable to diversion of that plutonium. It does appear that there are technologically sound ways in which the plutonium might be adulterated by admixture with 238 U and/or radioisotopes, and maintained in that state throughout the fuel cycle, so that the likelihood of a successful diversion is small. Adulteration of the plutonium in this manner would have relatively little effect on the operations of existing or planned reactors. Studies now in progress should show within a year or two whether the less expensive coprocessing scheme would provide adequate protection (coupled perhaps with elaborate conventional safeguards procedures) or if the more expensive spiked fuel cycle is needed as in the proposed civex pocess. If the latter is the case, it will be further necessary to determine the optimum spiking level, which could vary as much as a factor of a billion. A very basic question hangs on these determinations: What is to be the nature of the recycle fuel fabrication facilities. If the hot, fully remote fuel fabrication is required, then a great deal of further development work will be required to make the full cycle fully commercial

  5. Conceptual study of the future nuclear fuel cycle system for the extended LWR age

    International Nuclear Information System (INIS)

    Fujine, Sachio; Takano, Hideki; Sato, Osamu; Tone, Tatsuzo; Yamada, Takashi; Kurosawa, Katsutoshi.

    1993-08-01

    A large scale integrated fuel cycle facility (IFCF) is assumed for the future nuclear fuel cycle in the extended LWR age. Spent MOX fuels are reprocessed mixed with UOX in a centralized reprocessing plant. The reprocessing plant separates long-lived nuclides as well as Pu. Nitric acid solutions of those products are fed directly to MOX fabrication process which is incorporated with reprocessing. MOX pellets are made by sphere-cal process. Two process concepts are made as advanced reprocessing incorporated with partitioning (ARP) which has the function of long-lived nuclides recovery. One is a simplified Purex combined with partitioning. Extractable long-lived nuclides, 237 Np and 99 Tc, are assumed to be recovered in main flow stream of the improved Purex process. The other process concept is made aiming at recovering all TRU nuclides in reprocessing to meet with TRU recycle requirement in the long future. A concept of the future fuel cycle system is made by combining integrated fuel cycle facility and very high burnup LWRs (VHBR). The reactor concept of VHBRs has been proposed to improve Pu recycle economy in the future. Highly enriched MOX fuel are loaded in the full core of reactor in order to increase reactivity for the burnup. Fuel cycle indices such as Pu isotopic composition change, spent fuel integration, nuclide transmutation effect are estimated by simulating the Pu recycling in the system of VHBR and ARP. It is concluded that Pu enrichment of MOX fuel can be kept less than 20 % through multi-recycle. Reprocessing MOX fuels with UOX shows a favorable effect for keeping Pu reactivity high enough for VHBR. Integration of spent MOX fuel can be reduced by Pu recycle. Transmutation of Np is feasible by containing Np into MOX fuel. (author)

  6. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    The DUPIC fuel cycle was conceived as an alternative to the conventional fuel cycle backed options, with a view to multiple benefits expectable from burning spent PWR fuel again in CANDU reactors. It is based on the basic idea that the bulk of spent PWR fuel can be directly refabricated into a reusable fuel for CANDU of which high efficiency in neutron utilization would exhaustively burn the fissile remnants in the spent PWR fuel to a level below that of natural uranium. Such ''burn again'' strategy of the DUPIC fuel cycle implies that the spent PWR fuel will become CANDU fuel of higher burnup with relevant benefits such as spent PWR fuel disposition, saving of natural uranium fuel, etc. A salient feature of the DUPIC fuel cycle is neither the fissile content nor the bulk radioactivity is separated from the DUPIC mass flow which must be contained and shielded all along the cycle. This feature can be considered as a factor of proliferation resistance by deterrence against access to sensitive materials. It means also the requirement for remote systems technologies for DUPIC fuel operation. The conflicting aspects between better safeguardability and harder engineering problems of the radioactive fuel operation may be the important reason why the decades' old concept, since INFCE, of ''hot'' fuel cycle has not been pursued with much progress. In this context, the DUPIC fuel cycle could be a live example for development of proliferation resistant fuel cycle. As the DUPIC fuel cycle looks for synergism of fuel linkage from PWR to CANDU (or in broader sense LWR to HWR), Korea occupies a best position for DUPIC exercise with her unique strategy of reactor mix of both reactor types. But the DUPIC benefits can be extended to global bonus, expectable from successful development of the technology. (author)

  7. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  8. Nuclear fuel cycle modelling using MESSAGE

    International Nuclear Information System (INIS)

    Guiying Zhang; Dongsheng Niu; Guoliang Xu; Hui Zhang; Jue Li; Lei Cao; Zeqin Guo; Zhichao Wang; Yutong Qiu; Yanming Shi; Gaoliang Li

    2017-01-01

    In order to demonstrate the possibilities of application of MESSAGE tool for the modelling of a Nuclear Energy System at the national level, one of the possible open nuclear fuel cycle options based on thermal reactors has been modelled using MESSAGE. The steps of the front-end and back-end of nuclear fuel cycle and nuclear reactor operation are described. The optimal structure for Nuclear Power Development and optimal schedule for introducing various reactor technologies and fuel cycle options; infrastructure facilities, nuclear material flows and waste, investments and other costs are demonstrated. (author)

  9. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  10. Fuel cycle centres

    International Nuclear Information System (INIS)

    Hagen, M.

    1977-01-01

    The concept of co-locating and integrating fuel cycle facilities at one site is discussed. This concept offers considerable advantages, especially in minimizing the amount of radioactive material to be transported on public roads. Safeguards and physical protection as relating to such an integrated system of facilities are analysed in detail, also industrial and commercial questions. An overall risk-benefit evaluation turns out to be in favour of fuel cycle centres. These centres seem to be specifically attractive with regard to the back end of the fuel cycle, including on-site disposal of radioactive wastes. The respective German approach is presented as an example. Special emphasis is given to the site selection procedures in this case. Time scale and cost for the implementation of this concept are important factors to be looked at. Since participation of governmental institutions in these centres seems to be indispensable their respective roles as compared to industry must be clearly defined. The idea of adjusting fuel cycle centres to regional rather than national use might be an attractive option, depending on the specific parameters in the region, though results of existing multinational ventures are inconclusive in this respect. Major difficulties might be expected e.g. because of different national safety regulations and standards as well as commercial conditions among partner countries. Public acceptance in the host country seems to be another stumbling block for the realization of this type of multinational facilities

  11. Advance reactor and fuel-cycle systems--potentials and limitations for United States utilities

    International Nuclear Information System (INIS)

    Zebroski, E.L.; Williams, R.F.

    1979-01-01

    This paper reviews the potential benefits and limitations of advance reactor and fuel-cycle systems for United States utilities. The results of the review of advanced technologies show that for the near and midterm, the only advance reactor and fuel-cycle system with significant potential for United States utilities is the current LWR, and evolutionary, not revolutionary, enhancements. For the long term, the liquid-metal breeder reactor continues to be the most promising advance nuclear option. The major factors leading to this conclusion are summarized

  12. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU/FBR system, in which the FBR would be operated as a 'fuel factory,'providing the fissile material to power a number of lower-cost, high-efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on-line fuelling provide flexibility to respond to changing fuel-cycle requirements in the short term and in the indefinite future

  13. Analysis of Korean Nuclear Fuel Cycle System by Using DANESS Code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2009-08-01

    Korean fast reactor scenarios have been analyzed for various kinds of conversion ratio (CR) by the DANESS system dynamic analysis code. The once-through fuel cycle analysis was modeled based on the Korean 'National Energy Basic Plan' up to 2030 and a postulated nuclear demand growth rate until 2150. The fast reactor scenario analysis has been performed for three kinds of conversion ratios such as 0.3, 0.61 and 1.0. Through the calculations, the nuclear reactor deployment scenario, front-end cycle, back-end cycle, and long-term heat load have been investigated. From the once-through results, it is shown that the nuclear power demand would be ∼70 GWe and the total amount of the spent fuel accumulated by 2150 would be ∼168000 t. The fast reactor (FR) scenario analysis results show that the spent fuel inventory and out-pile transuranic element (TRU) can be reduced by increasing the fast reactor conversion ratio. Furthermore, the long-term heat load of spent fuel decreases with increasing the conversion ratio. However, it is known that the deployment of a fast reactor of low conversion ratio does not much reduce the spent fuel and out-pile TRU inventory due to the fast reactor deployment limitation which is related to the availability of TRU

  14. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  15. Performance analysis of hybrid solid oxide fuel cell and gas turbine cycle: Application of alternative fuels

    International Nuclear Information System (INIS)

    Zabihian, Farshid; Fung, Alan S.

    2013-01-01

    Highlights: • Variation of the stream properties in the syngas-fueled hybrid SOFC–GT cycle. • Detailed analysis of the operation of the methane-fueled SOFC–GT cycle. • Investigate effects of inlet fuel type and composition on performance of cycle. • Comparison of system operation when operated with and without anode recirculation. - Abstract: In this paper, the hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) model was applied to investigate the effects of the inlet fuel type and composition on the performance of the cycle. This type of analysis is vital for the real world utilization of manufactured fuels in the hybrid SOFC–GT system due to the fact that these fuel compositions depends on the type of material that is processed, the fuel production process, and process control parameters. In the first part of this paper, it is shown that the results of a limited number of studies on the utilization of non-conventional fuels have been published in the open literature. However, further studies are required in this area to investigate all aspects of the issue for different configurations and assumptions. Then, the results of the simulation of the syngas-fueled hybrid SOFC–GT cycle are employed to explain the variation of the stream properties throughout the cycle. This analysis can be very helpful in understanding cycle internal working and can provide some interesting insights to the system operation. Then, the detailed information of the operation of the methane-fueled SOFC–GT cycle is presented. For both syngas- and methane-fueled cycles, the operating conditions of the equipment are presented and compared. Moreover, the comparison of the characteristics of the system when it is operated with two different schemes to provide the required steam for the cycle, with anode recirculation and with an external source of water, provides some interesting insights to the system operation. For instance, it was shown that although the physical

  16. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  17. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  18. Uncertainty Analyses of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Miller, Laurence F.; Preston, J.; Sweder, G.; Anderson, T.; Janson, S.; Humberstone, M.; MConn, J.; Clark, J.

    2008-01-01

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development

  19. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  20. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  1. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  2. Life cycle assessment of hydrogen production and fuel cell systems

    International Nuclear Information System (INIS)

    Dincer, I.

    2007-01-01

    This paper details life cycle assessment (LCA) of hydrogen production and fuel cell system. LCA is a key tool in hydrogen and fuel cell technologies for design, analysis, development; manufacture, applications etc. Energy efficiencies and greenhouse gases and air pollution emissions have been evaluated in all process steps including crude oil and natural gas pipeline transportation, crude oil distillation, natural gas reprocessing, wind and solar electricity generation , hydrogen production through water electrolysis and gasoline and hydrogen distribution and utilization

  3. Introducing advanced nuclear fuel cycles in Canada

    International Nuclear Information System (INIS)

    Duret, M.F.

    1978-05-01

    The ability of several different advanced fuel cycles to provide energy for a range of energy growth scenarios has been examined for a few special situations of interest in Canada. Plutonium generated from the CANDU-PHW operating on natural uranium is used to initiate advanced fuel cycles in the year 2000. The four fuel cycles compared are: 1) natural uranium in the CANDU-PHW; 2) high burnup thorium cycle in the CANDU-PHW; 3) self-sufficient thorium cycle in the CANDU-PHW; 4) plutonium-uranium cycle in a fast breeder reactor. The general features of the results are quite clear. While any plutonium generated prior to the introduction of the advanced fuel cycle remains, system requirements for natural uranium for each of the advanced fuel cycles are the same and are governed by the rate at which plants operating on natural uranium can be retired. When the accumulated plutonium inventory has been entirely used, natural uranium is again required to provide inventory for the advanced fuel cycle reactors. The time interval during which no uranium is required varies only from about 25 to 40 years for both thorium cycles, depending primarily on the energy growth rate. The breeder does not require the entire plutonium inventory produced and so would call for less processing of fuel from the PHW reactors. (author)

  4. Status of IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

    1993-01-01

    The next major step in Argonne's Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program

  5. Modeling the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Jacobson, Jacob J.; Dunzik-Gougar, Mary Lou; Juchau, Christopher A.

    2010-01-01

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  6. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    International Nuclear Information System (INIS)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-01-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC

  7. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  8. Alternative fuels, fuel cycles, and reactors: are they useful. are they necessary

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses reactors, fuel cycles, and fuel production concepts other than those considered conventional in the nuclear community. An attempt is made to look for improvements with the aim of providing cheaper and more durable energy systems, and to contribute toward a solution of the threat of weapons material diversion and weapons proliferation problems. Topics considered include breeding, alternate breeder cycles, alternative reprocessing schemes, symbiotic reactor systems, an interim strategy, and other sources of nuclear fuel. It is determined that the reprocessing of spent fuel is an important safeguard measure in itself

  9. Spent fuel management and closed nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kudryavtsev, E.G.

    2012-01-01

    Strategic objectives set by Rosatom Corporation in the field of spent fuel management are given. By 2030, Russia is to create technological infrastructure for innovative nuclear energy development, including complete closure of the nuclear fuel cycle. A target model of the spent NPP nuclear fuel management system until 2030 is analyzed. The schedule for key stages of putting in place the infrastructure for spent NPP fuel management is given. The financial aspect of the problem is also discussed [ru

  10. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    International Nuclear Information System (INIS)

    Gurin, Andrey V.; Alekseev, P.N.

    2017-01-01

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  11. Analysis of changes in the fuel component of the cost of electricity in the transition to a closed fuel cycle in nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Gurin, Andrey V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Alekseev, P.N.

    2017-09-15

    This paper presents a study of scenarios of transition to a closed fuel cycle in the system of nuclear power, built basing on resource availability requirements at the stage of full life-cycle reactors. Conventionally, there are three main scenarios for the development of nuclear energy: with VVER reactors operating in an open fuel cycle; with VVER reactors operating in a closed fuel cycle; and co-operating VVER and BN, operating in a closed fuel cycle. For the considered scenarios, a quantitative estimation of change in time of material balances were performed, including spent fuel balance, balance of plutonium, reprocessed and depleted uranium, radioactive waste, and the analysis of the fuel component of the cost of electricity.

  12. Application of a personal computer relational data base management system to fuel cycle economic scoping

    International Nuclear Information System (INIS)

    Malone, J.P.; Dooley, G.D.

    1986-01-01

    A personal computer (PC) relational data base management system (RDBMS) permits large quantities of data to be maintained in a data base composed of structured data sets or files and provides data access through a software environment, procedure, or program language. The features of an RDBMS-based system create an environment on a PC that can provide significant benefits to any fuel cycle economics analysis. The ability to maintain a separate data set for each fuel cycle parameter group and the ability to manipulate the data through a series of independent calculation modules combine to provide the fuel cycle analyst with more time to examine and use the data, because less time is required to manipulate it

  13. Nonproliferation characteristics of advanced fuel cycle concepts

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1998-01-01

    The purpose of this study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiatives and safeguards methods and systems. Alternative cycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products

  14. Nuclear-fuel-cycle education: Module 1. Nuclear fuel cycle overview

    International Nuclear Information System (INIS)

    Eckhoff, N.D.

    1981-07-01

    This educational module is an overview of the nuclear-fule-cycle. The overview covers nuclear energy resources, the present and future US nuclear industry, the industry view of nuclear power, the International Nuclear Fuel Cycle Evaluation program, the Union of Concerned Scientists view of the nuclear-fuel-cycle, an analysis of this viewpoint, resource requirements for a model light water reactor, and world nuclear power considerations

  15. Request from nuclear fuel cycle and criticality safety design

    International Nuclear Information System (INIS)

    Hamasaki, Manabu; Sakashita, Kiichiro; Natsume, Toshihiro

    2005-01-01

    The quality and reliability of criticality safety design of nuclear fuel cycle systems such as fuel fabrication facilities, fuel reprocessing facilities, storage systems of various forms of nuclear materials or transportation casks have been largely dependent on the quality of criticality safety analyses using qualified criticality calculation code systems and reliable nuclear data sets. In this report, we summarize the characteristics of the nuclear fuel cycle systems and the perspective of the requirements for the nuclear data, with brief comments on the recent issue about spent fuel disposal. (author)

  16. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  17. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  18. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems.

  19. Descriptions of reference LWR facilities for analysis of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Schneider, K.J.; Kabele, T.J.

    1979-09-01

    To contribute to the Department of Energy's identification of needs for improved environmental controls in nuclear fuel cycles, a study was made of a light water reactor system. A reference LWR fuel cycle was defined, and each step in this cycle was characterized by facility description and mainline and effluent treatment process performance. The reference fuel cycle uses fresh uranium in light water reactors. Final treatment and ultimate disposition of waste from the fuel cycle steps were not included, and the waste is assumed to be disposed of by approved but currently undefined means. The characterization of the reference fuel cycle system is intended as basic information for further evaluation of alternative effluent control systems

  20. Dynamic modeling and analysis of alternative fuel cycle scenarios in Korea

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2007-01-01

    The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ∼65000 tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors

  1. Proceedings of GLOBAL 2007 conference on advanced nuclear fuel cycles and systems

    International Nuclear Information System (INIS)

    2007-01-01

    In keeping with the 12-year history of this conference, GLOBAL 2007 focuses on future nuclear energy systems and fuel cycles. With the increasing public acceptance and political endorsement of nuclear energy, it is a pivotal time for nuclear energy research. Significant advances have been made in development of advanced nuclear fuels and materials, reactor designs, partitioning, transmutation and reprocessing technologies, and waste management strategies. In concert with the technological advances, it is more important than ever to develop sensible nuclear proliferation policies, to promote sustainability, and to continue to increase international collaboration. To further these aims, GLOBAL 2007 highlights recent developments in the following areas: advanced integrated fuel cycle concepts, spent nuclear fuel reprocessing, advanced reprocessing technology, advanced fuels and materials, advanced waste management technology, novel concepts for waste disposal and repository development, advanced reactors, partitioning and transmutation, developments in nuclear non-proliferation technology, policy, and implementation, sustainability and expanded global utilization of nuclear energy, and international collaboration on nuclear energy

  2. Analysis of transition to fuel cycle system with continuous recycling in fast and thermal reactors - 5060

    International Nuclear Information System (INIS)

    Passereini, S.; Feng, B.; Fei, T.; Kim, T.K.; Taiwo, T.A.; Brown, N.R.; Cuadra, A.

    2015-01-01

    A recent Evaluation and Screening study of nuclear fuel cycle options identified a few groups of options as most promising. One of these most promising Evaluation Groups (EGs) is characterized by the continuous recycling of uranium (U) and transuranics (TRU) with natural uranium feed in both fast and thermal critical reactors. This evaluation group, designated as EG30, is represented by an example fuel cycle option that employs a two-technology, two-stage fuel cycle system. The first stage involves the continuous recycling of co-extracted U/TRU in Sodium-cooled Fast Reactors (SFRs) with metallic fuel and breeding ratio greater than 1. The second stage involves the use of the surplus TRU in Mixed Oxide (MOX) fuel in Pressurized Water Reactors that are MOX-capable (MOX-PWRs). This paper presents and discusses preliminary fuel cycle analysis results from the fuel cycle codes VISION and DYMOND for the transition to this fuel cycle option from the current once-through cycle in the United States (U.S.) that consists of Light Water Reactors (LWRs) that only use conventional UO 2 fuel. The analyses in this paper are applicable for a constant 100 GWe capacity, roughly the size of the U.S. nuclear fleet. Two main strategies for the transition to EG30 were analyzed: 1) deploying both SFRs and MOX-PWRs in parallel or 2) deploying them in series with the SFR fleet first. With an estimated retirement schedule for the existing LWRs, an assumed reactor lifetime of 60 years, and no growth, the nuclear system fully transitions to the new fuel cycle within 100 years for both strategies without SFR fuel shortages. Compared to the once-through cycle, transition to the SFR/MOX-PWR fleet with continuous recycle was shown to offer significant reductions in uranium consumption and waste disposal requirements. In addition, these initial calculations revealed a few notable modeling and strategy questions regarding how recycled resources are allocated, reactors that can switch between

  3. Effects of an LMR-based partitioning-transmutation system on US nuclear fuel cycle health risk

    International Nuclear Information System (INIS)

    Michaels, G.E.; Reich, W.J.

    1992-01-01

    Health risks for the current US nuclear fuel cycle and for an illustrative partitioning and transmutation (P-T) fuel cycle based on Liquid Metal Reactor (LMR) technology are calculated and compared. Health risks are calculated for all non-reactor fuel cycle steps, including reprocessing, transportation, and high-level waste (HLW) disposal. Uranium mining and milling health risks have been updated to include recent occupational injury and death statistics, and the radiological health risk to the general public posed by the uranium mining overburden. In addition, the radiological health risks for transportation have been updated to include latent cancer fatalities associated with both normal transport and accidents. Given the assumptions of the study, it is shown that the deployment of an LMR-based P-T system is expected to reduce overall nuclear fuel cycle health risk

  4. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  5. Radioactive Waste Generation in Pyro-SFR Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byung Heung; Ko, Won Il

    2011-01-01

    Which nuclear fuel cycle option to deploy is of great importance in the sustainability of nuclear power. SFR fuel cycle employing pyroprocessing (named as Pyro- SFR Cycle) is one promising fuel cycle option in the near future. Radioactive waste generation is a key criterion in nuclear fuel cycle system analysis, which considerably affects the future development of nuclear power. High population with small territory is one special characteristic of ROK, which makes the waste management pretty important. In this study, particularly the amount of waste generation with regard to the promising advanced fuel cycle option was evaluated, because the difficulty of deploying an underground repository for HLW disposal requires a longer time especially in ROK

  6. On the problems of the fuel cycles of nuclear fuels

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.; Wagner, H.F.

    1976-01-01

    A secured procurement with nuclear energy can be only achieved if a completely closed fuel cycle will be established. In the Federal Republic of Germany efforts are concentrated on the front end as well as on the back end of the fuel cycle. At the front end the main tasks are to secure uranium supply and to establish the necessary enrichment capacity. The German concept for the back end of the fuel cycle will provide for an integrated and co-located system for all necessary facilities including reprocessing, plutonium fuel fabrication, treatment, interim storage and final disposal of the radioactive wastes to be operational in the mid-80's. Responsibilities for establishing this system are shared between government and private industry. Government will provide for final waste disposal, industry will built and operate the other facilities. Another important point for the introduction of nuclear energy is to solve reliably the problems of protection of fissionable material, radioactive waste and nuclear facilities. German government has initiated respective activities and has started appropriate R+D-work. (orig.) [de

  7. Current status of feasibility studies on commercialized fuel cycle system for Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Ojima, Hisao; Nagaoki, Yoshihiro

    2000-01-01

    A 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' is underway at the Japan Nuclear Cycle Development Institute (JNC). The study will select the promising concepts with their R and D tasks in order to commercialize the fast breeder reactor (FBR) cycle system. The feasibility studies (F/S) have to present surveyed and screened various relevant technologies, and defined the design requirement of the commercialized fuel cycle system for FBR. The promising technical options are being evaluated and conceptual designs are being examined. At the end of JFY2000, several candidate concepts of the commercialized FBR cycle system will be proposed. (author)

  8. Concept of DT fuel cycle for a fusion neutron source DEMO-FNS

    Energy Technology Data Exchange (ETDEWEB)

    Ananyev, Sergey S., E-mail: Ananyev_SS@nrcki.ru; Spitsyn, Alexander V.; Kuteev, Boris V.

    2016-11-01

    Highlights: • We presented the concept of a deuterium-tritium fuel cycle of stationary thermonuclear reactor. • Data of fuel cycles for nuclear facility (DEMO-FNS) with 2 variants of the fuel mixture for NBI system are presented. • The amount of tritium which is required for operation of DEMO-FNS is estimated. - Abstract: The paper describes the concept of a deuterium-tritium fuel cycle of a steady-state thermonuclear reactor with a fusion power over 10 MW. Parameters of fuel cycle for nuclear facility (JET scale) with different types of fuel mixtures for neutral beam injection system are presented. Optimization of fuel cycle characteristics was aimed at reducing flows and inventory of hydrogen isotopes and tritium in fuel cycle subsystems. The calculations were carried out using computer code TC-FNS to estimate tritium distribution in fusion reactor systems and components of “tritium plant”. The code enables calculations of tritium flows and inventory in the tokamak systems. Calculations of tritium flows and accumulation have been carried out for two different cases of the fuel mixture for neutral beam injection (NBI) system. The amounts of tritium which is required for operation of all fuel cycle systems in two different cases of the fuel mixture for NBI are 0.45 “” kg (D:T = 1:0) and 0.9 kg (D:T = 1:1) respectively.

  9. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  10. Economic comparison of fusion fuel cycles

    International Nuclear Information System (INIS)

    Brereton, S.J.; Kazimi, M.S.

    1987-01-01

    The economics of the DT, DD, and DHe fusion fuel cycles are evaluated by comparison on a consistent basis. The designs for the comparison employ HT-9 structure and helium coolant; liquid lithium is used as the tritium breeding material for the DT fuel cycle. The reactors are pulsed, superconducting tokamaks, producing 1200 MW of electric power. The DT and DD designs scan a range of values of plasma beta, assuming first stability scaling laws. The results indicate that on a purely economic basis, the DT fuel cycle is superior to both of the advanced fuel cycles. Geometric factors, materials limitations, and plasma beta were seen to have an impact on the Cost of Electricity (COE). The economics for the DD fuel cycle are more strongly affected by these parameters than is the DT fuel cycle. Fuel costs are a major factor in determining the COE for the DHe fuel cycle. Based on costs directly attributable to the fuel cycle, the DT fuel cycle appears most attractive. Technological advances, improved understanding of physics, or strides in advanced energy conversion schemes may result in altering the economic ranking of the fuel cycles indicated here. 7 refs., 6 figs., 2 tabs

  11. Fuel-cycle analysis of early market applications of fuel cells: Forklift propulsion systems and distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, Amgad; Gaines, Linda; Wang, Michael [Center for Transportation Research, Argonne National Laboratory, 9700 South Cass Ave, Argonne, IL 60439 (United States)

    2009-05-15

    Forklift propulsion systems and distributed power generation are identified as potential fuel cell applications for near-term markets. This analysis examines fuel cell forklifts and distributed power generators, and addresses the potential energy and environmental implications of substituting fuel-cell systems for existing technologies based on fossil fuels and grid electricity. Performance data and the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources. The greenhouse gas (GHG) impacts of fuel-cell forklifts using hydrogen from steam reforming of natural gas are considerably lower than those using electricity from the average U.S. grid. Fuel cell generators produce lower GHG emissions than those associated with the U.S. grid electricity and alternative distributed combustion technologies. If fuel-cell generation technologies approach or exceed the target efficiency of 40%, they offer significant reduction in energy use and GHG emissions compared to alternative combustion technologies. (author)

  12. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  13. Fuel cycle math - part two

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is Part 2 of a two part series on simple mathematics associated with the nuclear fuel cycle. While not addressing any of the financial aspects of the fuel cycle, this article does discuss the following: conversion between English and metric systems; uranium content expressed in equivalent forms, such as U3O8, and the method of determining these equivalencies; the uranium conversion process, considering different input and output compounds; and the enrichment process, including feed, tails, and product assays, as well as SWU and feed requirements

  14. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  15. Proposed fuel cycle for the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Walters, L.C.

    1985-01-01

    One of the key features of ANL's Integral Fast Reactor (IFR) concept is a close-coupled fuel cycle. The proposed fuel cycle is similar to that demonstrated over the first five to six years of operation of EBR-II, when a fuel cycle facility adjacent to EBR-II was operated to reprocess and refabricate rapidly fuel discharged from the EBR-II. Locating the IFR and its fuel cycle facility on the same site makes the IFR a self-contained system. Because the reactor fuel and the uranium blanket are metals, pyrometallurgical processes (shortned to ''pyroprocesses'') have been chosen. The objectives of the IFR processes for the reactor fuel and blanket materials are to (1) recover fissionable materials in high yield; (2) remove fission products adequately from the reactor fuel, e.g., a decontamination factor of 10 to 100; and (3) upgrade the concentration of plutonium in uranium sufficiently to replenish the fissile-material content of the reactor fuel. After the fuel has been reconstituted, new fuel elements will be fabricated for recycle to the reactor

  16. Development of dynamic simulation code for fuel cycle fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Isao; Seki, Yasushi [Department of Fusion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka, Ibaraki (Japan); Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  17. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  18. Equilibrium transuranic management scheme for diverse fuel cycle analysis

    International Nuclear Information System (INIS)

    Haas, Jason; Lee, John C.

    2008-01-01

    A key issue cited in the U.S. Department of Energy's report to Congress (2003) on the research path for the Advanced Fuel Cycle Initiative (AFCI) is an accurate estimation of life cycle costs for the construction, operation, decontamination and decommissioning of all fuel cycle facilities. In this report we discuss the methodology and validation of a fuel cycle model based on equilibrium operation. We apply our model to a diverse set of advanced reactors and fuel types in order to determine the most effective transmuting system while simultaneously minimizing fuel cycle costs. Our analysis shows that a nearly instant equilibrium modeling of fuel cycle scenarios can accurately approximate the detailed complex dynamic models developed by national laboratories. Our analysis also shows that the cost of transmuting Spent Nuclear Fuel (SNF) from a UO 2 fueled Pressurized Water Reactor (PWR) is minimized by utilizing the thorium cycle in sodium cooled fast reactors and is near the cost for long term repository storage of SNF at Yucca Mountain. (authors)

  19. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  20. Challenge to establishment of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Nakajima, Ichiro

    2000-01-01

    Japan Nuclear Cycle Development Inst. (JNC) has promoted some efforts on introduction of business management cycle system integrated on safety security and business management, planning a safety conservation system with effectiveness concept on risk, and their practice steadily and faithfully. Here were described on some characteristic items on effort of safety promotion since establishment of JNC. And, here were also introduced on outlines of some research actions, at a center of research and development on a high breeding reactor and its relating cycle technology carried out at present by JNC under aiming at establishment of the nuclear fuel recycling, that is to say the nuclear fuel cycle, in Japan to upgrade the nuclear security more and more. (G.K.)

  1. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  2. Studying international fuel cycle robustness with the GENIUSv2 discrete facilities/materials fuel cycle systems analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.H. [Dept. of Engineering Physics, University of Wisconsin-Madison (United States)

    2009-06-15

    GENIUSv2 (Global Evaluation of Nuclear Infrastructure Utilization Scenarios, hereafter 'GENIUS') is a discrete-facilities/materials nuclear fuel cycle systems analysis tool currently under development at the University of Wisconsin-Madison. For a given scenario, it models nuclear fuel cycle facilities (reactors, fuel fabrication, enrichment, etc.), the institutions that own them (utilities and governments), and the regions in which those institutions operate (sub-national, national, and super-national entities). Facilities work together to provide each other with the materials they need. The results of each simulation include the electricity production in each region as well as operational histories of each facility and isotopic and facility histories of each material object. GENIUS users specify an initial condition and a facility deployment plan. The former describes each region and institution in the scenario as well as facilities that exist at the start. The latter specifies all the facilities that will be built over the course of the simulation (and by which institutions). Each region, institution, and facility can be assigned financial parameters such as tax and interest rates, and facilities also get assigned technical information about how they actually operate. Much of the power of the data model comes from the flexibility to model individual entities to a fine level of detail or to allow them to inherit region-, institution-, or facility-type-specific default parameters. Most importantly to the evaluation of regional, national, and international policies, users can also specify rules that define the affinity (or lack thereof) for trade of particular commodities between particular entities. For instance, these rules could dictate that a particular region or institution always buy a certain commodity (ore, enriched UF{sub 6}, fabricated fuel, etc.) from a particular region or institution, never buy from that region, or merely have a certain

  3. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  4. Feasibility Study on Nitrogen-15 Enrichment and Recycling System for Innovative FR Cycle System With Nitride Fuel

    International Nuclear Information System (INIS)

    Masaki Inoue; Kiyoshi Ono; Tsuna-aki Fujioka; Koji Sato; Takeo Asaga

    2002-01-01

    Highly-isotopically-enriched nitrogen (HE-N 2 ; 15 N abundance 99.9%) is indispensable for a nitride fueled fast reactor (FR) cycle to minimize the effect of carbon-14 ( 14 C) generated mainly by 14 N(n,p) 14 C reaction in the core on environmental burden. Thus, the development of inexpensive 15 N enrichment and recycling technology is one of the key aspects for the commercialization of a nitride fueled FR cycle. Nitrogen isotope separation by the gas adsorption technique was experimentally confirmed in order to obtain its technological perspective. A conventional pressure swing adsorption technique, which is already commercialized for recovering the nitrogen gas from multi-composition gas-mixture, would be suitable for recovering in both reprocessing and fuel fabrication to recycle the HE-N 2 gas. A couple of the nitride fuel cycle system concepts including the reprocessing and fuel fabrication process flow diagrams with the HE-N 2 gas recycling were newly designed for both aqueous and non-aqueous (pyrochemical) nitride fuel recycle plants, and also the effect of the HE-N 2 gas recycling on the economics of each concept was evaluated. (authors)

  5. Nuclear Fuel Cycle Evaluation and Screening Findings on Partitioning and Transmutation

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Taiwo, T.A.; Gehin, J.C.; Jubin, R.; Todosow, M.

    2015-01-01

    A Nuclear Fuel Cycle Evaluation and Screening (E and S) study has recently been completed in the United States. The study considered the entire fuel cycle, included considerations for both once-through and recycle fuel cycle options, evaluated a set of 40 fuel cycles that allowed a comprehensive assessment of fuel cycle performance, identified a relatively small number of promising fuel cycle options that have the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States, and allowed the identification of research and development (R and D) activities needed to support the development of the promising fuel cycle options. Nine high-level criteria (Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilisation, Development and Deployment Risk, Institutional Issues, and Financial Risk and Economics) and associated metrics were used in the study to compare the performance of nuclear fuel cycle options to that of the current fuel cycle practiced in the United States. The study also evaluated a number of fuel cycle characteristics that may have the potential to impact future R and D directions. These included for example: 1) The fuel resources used, i. e., uranium and/or thorium. 2) Impact of extremely high burnup fuels. 3) Minor actinide recycle. 4) The impact of losses during separations (partitioning). 5) Critical versus subcritical (externally-driven) systems for material irradiation. 6) Impact of spectrum of irradiation system, i.e., fast, thermal or intermediate. 7) Waste generation reduction, all of which were quantified in the study. The E and S study has implemented a framework that can be used now and in the future to objectively inform on the potential of alternative nuclear fuel cycles, providing decision-makers and others with perspective on fuel cycle capabilities. (authors)

  6. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  7. Comparison of PWR-IMF and FR fuel cycles

    International Nuclear Information System (INIS)

    Darilek, Petr; Zajac, Radoslav; Breza, Juraj; Necas, Vladimir

    2007-01-01

    The paper gives a comparison of PWR (Russia origin VVER-440) cycle with improved micro-heterogeneous inert matrix fuel assemblies and FR cycle. Micro-heterogeneous combined assembly contains transmutation pins with Pu and MAs from burned uranium reprocessing and standard uranium pins. Cycle analyses were performed by HELIOS spectral code and SCALE code system. Comparison is based on fuel cycle indicators, used in the project RED-IMPACT - part of EU FP6. Advantages of both closed cycles are pointed out. (authors)

  8. Part 5. Fuel cycle options

    International Nuclear Information System (INIS)

    Lineberry, M.J.; McFarlane, H.F.; Amundson, P.I.; Goin, R.W.; Webster, D.S.

    1980-01-01

    The results of the FBR fuel cycle study that supported US contributions to the INFCE are presented. Fuel cycle technology is reviewed from both generic and historical standpoints. Technology requirements are developed within the framework of three deployment scenarios: the reference international, the secured area, and the integral cycle. Reprocessing, fabrication, waste handling, transportation, and safeguards are discussed for each deployment scenario. Fuel cycle modifications designed to increase proliferation defenses are described and assessed for effectiveness and technology feasibility. The present status of fuel cycle technology is reviewed and key issues that require resolution are identified

  9. Regional nuclear fuel cycle centers study project

    International Nuclear Information System (INIS)

    Bennett, L.; Catlin, R.G.; Meckoni, V.

    1977-01-01

    The concept of regional fuel cycle centers (RFCC) has attracted wide interest. The concept was endorsed by many countries in discussions at the General Conference of the International Atomic Energy Agency and at the General Assembly of the United Nations. Accordingly, in 1975, the IAEA initiated a detailed study of the RFCC concept. The Agency study has concentrated on what is referred to as the ''back-end'' of the fuel cycle because that is the portion which is currently problematic. The study covers transport, storage, processing and recycle activities starting from the time the spent fuel leaves the reactor storage pools and through all steps until the recycled fuel is in finished fuel elements and shipped to the reactor. A detailed evaluation of the specific features of large regional fuel cycle centers established on a multinational basis vis-a-vis smaller dispersed fuel cycle facilities set up on a national basis has been carried out. The methodology for assessment of alternative strategies for fuel storage, reprocessing, and recycling of plutonium has been developed, characteristic data on material flows and cost factors have been generated, and an analytic system has been developed to carry out such evaluations including appropriate sensitivity analysis. Studies in related areas on institutional and legal, organizational, environmental, materials control and other essential aspects have also been made. The material developed during the course of this Study would enable any group of interested Member States to examine and work out alternative strategies pertinent to their present and projected nuclear fuel cycle needs, as well as evolve institutional, legal and other appropriate frameworks or agreements for the establishment of fuel cycle centers on a multinational cooperative basis

  10. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  11. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  12. Economic Analysis of Several Nuclear Fuel Cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Gao, Fanxing; Kim, Sung Ki

    2012-01-01

    Economics is one of the essential criteria to be considered for the future deployment of the nuclear power. With regard to the competitive power market, the cost of electricity from nuclear power plants is somewhat highly competitive with those from the other electricity generations, averaging lower in cost than fossil fuels, wind, or solar. However, a closer look at the nuclear power production brings an insight that the cost varies within a wide range, highly depending on a nuclear fuel cycle option. The option of nuclear fuel cycle is a key determinant in the economics, and therefrom, a comprehensive comparison among the proposed fuel cycle options necessitates an economic analysis for thirteen promising options based on the material flow analysis obtained by an equilibrium model as specified in the first article (Modeling and System Analysis of Different Fuel Cycle Options for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation). The objective of the article is to provide a systematic cost comparison among these nuclear fuel cycles. The generation cost (GC) generally consists of a capital cost, an operation and maintenance cost (O and M cost), a fuel cycle cost (FCC), and a decontaminating and decommissioning (D and D) cost. FCC includes a frontend cost and a back-end cost, as well as costs associated with fuel recycling in the cases of semi-closed and closed cycle options. As a part of GC, the economic analysis on FCC mainly focuses on the cost differences among fuel cycle options considered and therefore efficiently avoids the large uncertainties of the Generation-IV reactor capital costs and the advanced reprocessing costs. However, the GC provides a more comprehensive result covering all the associated costs, and therefrom, both GC and FCC have been analyzed, respectively. As a widely applied tool, the levelized cost (mills/KWh) proves to be a fundamental calculation principle in the energy and power industry, which is particularly

  13. V.S.O.P.-computer code system for reactor physics and fuel cycle simulation

    International Nuclear Information System (INIS)

    Teuchert, E.; Hansen, U.; Haas, K.A.

    1980-03-01

    V.S.O.P. (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shutdown features, incore and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterative processes and to optimize the internal data transfer. A limitation of the storage requirement to 360 K-bites is achieved by an overlay structure. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. Beside its use in research and development work for the high temperature reactor the system has been applied successfully to LWR and Heavy Water Reactors. (orig.) [de

  14. Practical introduction of thorium fuel cycles

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1982-01-01

    The pracitcal introduction of throrium fuel cycles implies that thorium fuel cycles compete economically with uranium fuel cycles in economic nuclear power plants. In this study the reactor types under consideration are light water reactors (LWRs), heavy water reactors (HWRs), high-temperature gas-cooled reactors (HTGRs), and fast breeder reactors (FBRs). On the basis that once-through fuel cycles will be used almost exclusively for the next 20 or 25 years, introduction of economic thorium fuel cycles appears best accomplished by commercial introduction of HTGRs. As the price of natural uranium increases, along with commercialization of fuel recycle, there will be increasing incentive to utilize thorium fuel cycles in heavy water reactors and light water reactors as well as in HTGRs. After FBRs and fuel recycle are commercialized, use of thorium fuel cycles in the blanket of FBRs appears advantageous when fast breeder reactors and thermal reactors operate in a symbiosis mode (i.e., where 233 U bred in the blanket of a fast breeder reactor is utilized as fissile fuel in thermal converter reactors)

  15. Transportation of radioactive wastes from nuclear fuel cycles

    International Nuclear Information System (INIS)

    1979-09-01

    This paper discusses current and foreseen radioactive waste transportation systems as they apply to the INFCE Working Group 7 study. The types of wastes considered include spent fuel, which is treated as a waste in once-through fuel cycles; high-, medium-, and low-level waste; and gaseous waste. Regulatory classification of waste quantities and containers applicable to these classifications are discussed. Radioactive wastes are presently being transported in a safe and satisfactory manner. None of the INFCE candidate fuel cycles pose any extraordinary problems to future radioactive waste transportation and such transportation will not constitute a decisive factor in the choice of a preferred fuel cycle

  16. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Green, R.E.; Boczar, P.G.

    1990-04-01

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  17. Nuclear-fuel-cycle education: Module 5. In-core fuel management

    International Nuclear Information System (INIS)

    Levine, S.H.

    1980-07-01

    The purpose of this project was to develop a series of educational modules for use in nuclear-fuel-cycle education. These modules are designed for use in a traditional classroom setting by lectures or in a self-paced, personalized system of instruction. This module on in-core fuel management contains information on computational methods and theory; in-core fuel management using the Virginia Polytechnic Institute and State University computer modules; pressurized water reactor in-core fuel management; boiling water reactor in-core fuel management; and in-core fuel management for gas-cooled and fast reactors

  18. Economic evaluation of fast reactor fuel cycling

    International Nuclear Information System (INIS)

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  19. Comparison of fuel cycles characteristics for nuclear energy systems based on WWER-TOI and BN-1200 reactors

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Kalashnikov, A.G.; Kapranova, Eh.N.; Puzakov, A.Yu.

    2014-01-01

    Authors determine the characteristics of the fuel cycle (FC) based on stationary nuclear power system based on WWER-TOI and BN-1200 reactors with fuel of different composition. Characteristics of reactor systems with partial or complete spent nuclear fuel reprocessing and recycling of plutonium are compared to those of the reference system consisting only of WWER-TOI with uranium oxide fuel, operating in an open FC [ru

  20. Optimization of the fuel cycle

    International Nuclear Information System (INIS)

    Kidd, S.W.; Balu, K.; Boczar, P.G.; Krebs, W.D.

    1999-01-01

    The nuclear fuel cycle can be optimized subject to a wide range of criteria. Prime amongst these are economics, sustainability of resources, environmental aspects, and proliferation-resistance of the fuel cycle. Other specific national objectives will also be important. These criteria, and their relative importance, will vary from country to country, and with time. There is no single fuel cycle strategy that is optimal for all countries. Within the short term, the industry is attached to dominant thermal reactor technologies, which themselves have two main variants, a cycle closed by reprocessing of spent fuel and subsequent recycling and a once through one where spent fuel is stored in advance of geological disposal. However, even with current technologies, much can be done to optimize the fuel cycles to meet the relevant criteria. In the long term, resource sustainability can be assured for centuries through the use of fast breeder reactors, supporting high-conversion thermal reactors, possibly also utilizing the thorium cycle. These must, however, meet the other key criteria by being both economic and safe. (author)

  1. Actinide production in different HTR-fuel cycle concepts

    International Nuclear Information System (INIS)

    Filges, D.; Hecker, R.; Mirza, N.; Rueckert, M.

    1978-01-01

    At the 'Institut fuer Reaktorentwicklung der Kernforschungsanlage Juelich' the production of α-activities in the following HTR-OTTO cycle concepts were studied: 1. standard HTR cycle (U-Th); 2. low enriched HTR cycle (U-Pu); 3. near breeder HTR cycle (U-Th); 4. combined system (conventional and near breeder HTR). The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The production of α-activity in HTR Uranium-Thorium fuel cycles has been investigated and compared with the standard LWR cycles. The calculations were performed by the short depletion code KASCO and the well-known ORIGEN program

  2. Multiple tier fuel cycle studies for waste transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system

  3. Development of dynamic simulation code for fuel cycle of fusion reactor

    International Nuclear Information System (INIS)

    Aoki, Isao; Seki, Yasushi; Sasaki, Makoto; Shintani, Kiyonori; Kim, Yeong-Chan

    1999-02-01

    A dynamic simulation code for fuel cycle of a fusion experimental reactor has been developed. The code follows the fuel inventory change with time in the plasma chamber and the fuel cycle system during 2 days pulse operation cycles. The time dependence of the fuel inventory distribution is evaluated considering the fuel burn and exhaust in the plasma chamber, purification and supply functions. For each subsystem of the plasma chamber and the fuel cycle system, the fuel inventory equation is written based on the equation of state considering the fuel burn and the function of exhaust, purification, and supply. The processing constants of subsystem for steady states were taken from the values in the ITER Conceptual Design Activity (CDA) report. Using this code, the time dependence of the fuel supply and inventory depending on the burn state and subsystem processing functions are shown. (author)

  4. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  5. The FIT Model - Fuel-cycle Integration and Tradeoffs

    International Nuclear Information System (INIS)

    Piet, Steven J.; Soelberg, Nick R.; Bays, Samuel E.; Pereira, Candido; Pincock, Layne F.; Shaber, Eric L.; Teague, Melissa C.; Teske, Gregory M.; Vedros, Kurt G.

    2010-01-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria - fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the 'system losses study' team that developed it (Shropshire2009, Piet2010) are an initial step by the FCR and D program toward a global analysis that accounts for the requirements and capabilities of each component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R and D needs and set longer-term goals. The question originally posed to the 'system losses study' was the cost of separation, fuel fabrication, waste management, etc. versus the separation efficiency. In other words, are the costs associated with marginal reductions in separations losses (or improvements in product recovery) justified by the gains in the performance of other systems? We have learned that that is the wrong question. The right question is: how does one adjust the compositions and quantities of all mass streams, given uncertain product criteria, to balance competing objectives including cost? FIT is a method to analyze different fuel cycles using common bases to determine how chemical performance changes in one part of a fuel cycle (say used fuel cooling times or separation efficiencies) affect other parts of the fuel cycle. FIT estimates impurities in fuel and waste via a rough estimate of physics and mass balance for a set of technologies. If feasibility is an issue for a set, as it is for 'minimum fuel treatment' approaches such as melt refining and AIROX, it can help to make an estimate of how performances would have to change to achieve feasibility.

  6. Tradeoffs in fuel cycle performance for most promising options - 15346

    International Nuclear Information System (INIS)

    Taiwo, T.; Kim, T.K.; Feng, B.; Stauff, N.; Hoffman, E.; Ganda, F.; Todosow, M.; Brown, N.; Raitses, G.; Gehin, J.; Powers, J.; Youinou, G.; Hiruta, H.; Wigeland, R.

    2015-01-01

    A recent Evaluation and Screening (E/S) study of nuclear fuel cycle options was conducted by grouping all potential options into 40 Evaluation Groups (EGs) based on similarities in fundamental physics characteristics and fuel cycle performance. Through a rigorous evaluation process considering benefit and challenge metrics, 4 of these EGs were identified by the E/S study as 'most promising'. All 4 involve continuous recycle of U/Pu or U/TRU with natural uranium feed in fast critical reactors. However, these most promising EGs also include fuel cycle groups with variations on feed materials, neutron spectra, and reactor criticality. Therefore, the impacts of the addition of natural thorium fuel feed to a system that originally only used natural uranium fuel feed, using an intermediate spectrum instead of a fast spectrum, and using externally-driven systems versus critical reactors were evaluated. It was found that adding thorium to the natural uranium feed mixture leads to lower burnup, higher mass flows, and degrades fuel cycle benefit metrics (waste management, resource utilization, etc.) for fuel cycles that continuously recycle U/Pu or U/TRU. Adding thorium results in fissions of 233 U instead of just 239 Pu and in turn results in a lower average number of neutrons produced per absorption (η) for the fast reactor system. For continuous recycling systems, the lower η results in lower excess reactivity and subsequently lower achievable fuel burnup. This in turn leads to higher mass flows (fabrication, reprocessing, disposal, etc.) to produce a given amount of energy and subsequent lower metrics performance. The investigated fuel cycle options with intermediate spectrum reactors also exhibited degraded performance in the benefit metrics compared to fast spectrum reactors. Similarly, this is due to lower η values as the spectrum softens. The best externally-driven systems exhibited similar performance as fast critical reactors in terms of mass flows

  7. BWROPT: A multi-cycle BWR fuel cycle optimization code

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, Keith E.; Maldonado, G. Ivan, E-mail: Ivan.Maldonado@utk.edu

    2015-09-15

    Highlights: • A multi-cycle BWR fuel cycle optimization algorithm is presented. • New fuel inventory and core loading pattern determination. • The parallel simulated annealing algorithm was used for the optimization. • Variable sampling probabilities were compared to constant sampling probabilities. - Abstract: A new computer code for performing BWR in-core and out-of-core fuel cycle optimization for multiple cycles simultaneously has been developed. Parallel simulated annealing (PSA) is used to optimize the new fuel inventory and placement of new and reload fuel for each cycle considered. Several algorithm improvements were implemented and evaluated. The most significant of these are variable sampling probabilities and sampling new fuel types from an ordered array. A heuristic control rod pattern (CRP) search algorithm was also implemented, which is useful for single CRP determinations, however, this feature requires significant computational resources and is currently not practical for use in a full multi-cycle optimization. The PSA algorithm was demonstrated to be capable of significant objective function reduction and finding candidate loading patterns without constraint violations. The use of variable sampling probabilities was shown to reduce runtime while producing better results compared to using constant sampling probabilities. Sampling new fuel types from an ordered array was shown to have a mixed effect compared to random new fuel type sampling, whereby using both random and ordered sampling produced better results but required longer runtimes.

  8. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  9. Fuel cycle related parametric study considering long lived actinide production, decay heat and fuel cycle performances

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Lenain, R.; Lecomte, M.

    2001-01-01

    One of the very attractive HTGR reactor characteristics is its highly versatile and flexible core that can fulfil a wide range of diverse fuel cycles. Based on a GTMHR-600 MWth reactor, analyses of several fuel cycles were carried out without taking into account common fuel particle performance limits (burnup, fast fluence, temperature). These values are, however, indicated in each case. Fuel derived from uranium, thorium and a wide variety of plutonium grades has been considered. Long-lived actinide production and total residual decay heat were evaluated for the various types of fuel. The results presented in this papers provide a comparison of the potential and limits of each fuel cycle and allow to define specific cycles offering lowest actinide production and residual heat associated with a long life cycle. (author)

  10. Advanced Fuel Cycle Economic Sensitivity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  11. Fuel Cycle of VVER-1000: technical and economic aspects

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.

    2009-01-01

    The paper contains estimations of dependences of technical and economic characteristics of VVER-1000 fuel cycle on number of charged FAs and their enrichment. In the study following restrictions were used: minimum quantity of loaded fresh FAs is equal 36 FAs, a maximum one - 78 (79) FAs and fuel enrichment is limited by value 4,95 %. The following technical and economic characteristics are discussed: cycle length, average burnup of spent fuel, specific consumption of natural uranium, specific quantity of separative work, annual production of thermal energy, fuel component of electrical energy cost, electricity generation cost. Results of estimations are presented as dependences of researched characteristics on cycle length, quantity of loaded FAs and their enrichments. The presented information allows to show tendencies and ranges of technical and economic characteristics at change of fuel cycle parameters. This information can be useful for definition of the fuel cycle parameters which satisfy the requirements of power system and exploiting organizations. (authors)

  12. Fuel-cycle cost comparisons with oxide and silicide fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1982-01-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed

  13. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  14. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  15. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  16. Wastes from the light water reactor fuel cycle

    International Nuclear Information System (INIS)

    Steindler, M.J.; Trevorrow, L.E.

    1976-01-01

    The LWR fuel cycle is represented, in the minimum detail necessary to indicate the origin of the wastes, as a system of operations that is typical of those proposed for various commercial fuel cycle ventures. The primary wastes (before any treatment) are described in terms of form, volume, radioactivity, chemical composition, weight, and combustibility (in anticipation of volume reduction treatments). Properties of the wastes expected from the operation of reactors, fuel reprocessing plants, and mixed oxide fuel fabrication plants are expressed in terms of their amounts per unit of nuclear energy produced

  17. Environmental Health Impacts of Nuclear Fuel Cycle With Emphasis to Monitoring and Radiological Safety Control System

    International Nuclear Information System (INIS)

    Gad Allah, A.A.; El- Shanshory, A.I.

    2010-01-01

    Security of energy supply and global climatic changes due to carbon dioxide gas emission of fissile fuels encouraged many developed countries for planning to introduce nuclear power for energy generation. Recently, nuclear power provides approximately 20 % of the world's electricity, which is equivalent to a reduction in carbon emissions of 0.5 Gt of C/year. This is a modest contribution to the reduction of global carbon emissions, 6.5 Gt C/year. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different reactor types (such as thermal and fast neutron reactors). Within each cycle, the volume and composition of the nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of material used to immobilize different radionuclides. Most analyses suggest that in order to have a significant impact on carbon emissions. By the year 2050, carbon free sources, such as nuclear power, would have to expand total energy production by a factor of three to ten. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/year, depending on the type of the carbon-based energy source. This paper reviews, discusses and evaluates the relation between the different types of fuel cycles and their environmental impacts. The paper investigates the environmental impacts of the nuclear fuel cycle compared to fossil fuel energy system.. It also reviews the impact of an expansion of this scale on the generation of nuclear waste and fissile material that might be diverted to the production of nuclear weapons. Investigations of different wastes fissile and fertile mater in the fuel cycle have been estimated. The paper provides an overview of the main contaminates in the waste streams and effluents from nuclear fuel cycle

  18. Reprocessing and fuel fabrication systems

    International Nuclear Information System (INIS)

    Field, F.R.; Tooper, F.E.

    1978-01-01

    The study of alternative fuel cycles was initiated to identify a fuel cycle with inherent technical resistance to proliferation; however, other key features such as resource use, cost, and development status are major elements in a sound fuel cycle strategy if there is no significant difference in proliferation resistance. Special fuel reprocessing techniques such as coprocessing or spiking provide limited resistance to diversion. The nuclear fuel cycle system that will be most effective may be more dependent on the institutional agreements that can be implemented to supplement the technical controls of fuel cycle materials

  19. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect.

  20. Compatibility analysis of DUPIC fuel (part5) - DUPIC fuel cycle economics analysis

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hang Bok; Yang, Myung Seung

    2000-08-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the one-batch equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.55-6.72 mills/kWh for proposed DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.04-0.28 mills/kWh. Considering the uncertainty (0.45-0.51 mills/kWh) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by -20% and reduce the spent fuel arising by -65%, compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle possesses a strong advantage over the once-through fuel cycle from the viewpoint of the environmental effect

  1. Fuel cycle services

    International Nuclear Information System (INIS)

    Gruber, Gerhard J.

    1990-01-01

    TRIGA reactor operators are increasingly concerned about the back end of their Fuel Cycle due to a new environmental policy in the USA. The question how to close the Fuel Cycle will have to be answered by all operators sooner or later. Reprocessing of the TRIGA fuel elements is not available. Only long term storage and final disposal can be considered. But for such a storage or disposal a special treatment of the fuel elements and of course a final depository is necessary. NUKEM plans to undertake efforts to assist the TRIGA operators in this area. For that reason we need to know your special needs for today and tomorrow - so that potential processors can consider whether to offer these services on the market. (orig.)

  2. Physics of fusion-fuel cycles

    International Nuclear Information System (INIS)

    McNally, J.R. Jr.

    1981-01-01

    The evaluation of nuclear fusion fuels for a magnetic fusion economy must take into account the various technological impacts of the various fusion fuel cycles as well as the relative reactivity and the required β's and temperatures necessary for economic steady-state burns. This paper will review some of the physics of the various fusion fuel cycles (D-T, catalyzed D-D, D- 3 He, D- 6 Li, and the exotic fuels: 3 He 3 He and the proton-based fuels such as P- 6 Li, P- 9 Be, and P- 11 B) including such items as: (1) tritium inventory, burnup, and recycle, (2) neutrons, (3) condensable fuels and ashes, (4) direct electrical recovery prospects, (5) fissile breeding, etc. The advantages as well as the disadvantages of the different fusion fuel cycles will be discussed. The optimum fuel cycle from an overall standpoint of viability and potential technological considerations appears to be catalyzed D-D, which could also support smaller relatively clean, lean-D, rich- 3 He satellite reactors as well as fission reactors

  3. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    International Nuclear Information System (INIS)

    Johnson, E.R.; Best, R.E.

    2009-01-01

    produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model also included recycle and reuse of extant inventories of spent LWR fuel. The results of the simulations allowed comparisons of the two fuel cycles from the standpoints of cost, non-proliferation, radiological health, wastes generated, and sustainability. Results of the research also provide insights regarding (i) multiple recycling of uranium and plutonium from spent MOX fuel in LWRs, (ii) costs and benefits of reenriching and reusing uranium from spent LWR fuel; (iii) effects of using uranium, plutonium, and minor actinides from LWR spent fuels to produce fuel for FRs; (iv) net rates of consumption (burning) in FRs of actinide elements produced in LWRs, and (v) ependencies of and interactions among the different systems of an advanced nuclear fuel cycle -- and the flows of nuclear materials between these systems.

  4. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  5. Answering Key Fuel Cycle Questions

    International Nuclear Information System (INIS)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-01-01

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties

  6. Advanced and sustainable fuel cycles for innovative reactor systems

    International Nuclear Information System (INIS)

    Glatz, J. P.; Malmbeck, R.; Purroy, D. S.; Soucek, P.; Inoue, T.; Uozumi, K.

    2007-01-01

    The key objective of nuclear energy systems of the future as defined by the Generation IV road map is to provide a sustainable energy generation for the future. It includes the requirement to minimize the nuclear waste produced and thereby notably reduce the long term stewardship burden in the future. It is therefore evident that the corresponding fuel cycles will play a central role in trying to achieve these goals by creating clean waste streams which contain almost exclusively the fission products. A new concept based on a grouped separation of actinides is widely discussed in this context, but it is of course a real challenge to achieve this type of separation since technologies available today have been developed to separate actinides from each other. In France, the CEA has launched extensive research programs in the ATALANTE facility in Marcoule to develop the advanced fuel cycles for new generation reactor systems. In this so called global actinide management (GAM) concept, the actinides are extracted in a sequence of chemical reactions (grouped actinide extraction (GANEX)) and immediately reintroduced in the fuel fabrication process is to use all actinides in the energy production process. The new group separation processes can be derived as in this case from aqueous techniques but also from so-called pyrochemical partitioning processes. Significant progress was made in recent years for both routes in the frame of the European research projects PARTNEW, PYROREP and EUROPART, mainly devoted to the separation of minor actinides in the frame of partitioning and transmutation (P and T) studies. The fuels used in the new generation reactors will be significantly different from the commercial fuels of today. Because of the fuel type and the very high burn-ups reached, pyrometallurgical reprocessing could be the preferred method. The limited solubility of some of the fuel materials in acidic aqueous solutions, the possibility to have an integrated irradiation and

  7. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  8. National Policy on Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Soedyartomo, S.

    1996-01-01

    National policy on nuclear fuel cycle is aimed at attaining the expected condition, i.e. being able to support optimality the national energy policy and other related Government policies taking into account current domestic nuclear fuel cycle condition and the trend of international nuclear fuel cycle development, the national strength, weakness, thread and opportunity in the field of energy. This policy has to be followed by the strategy to accomplish covering the optimization of domestic efforts, cooperation with other countries, and or purchasing licences. These policy and strategy have to be broken down into various nuclear fuel cycle programmes covering basically assesment of the whole cycle, performing research and development of the whole cycle without enrichment and reprocessing being able for weapon, as well as programmes for industrialization of the fuel cycle stepwisery commencing with the middle part of the cycle and ending with the edge of the back-end of the cycle

  9. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive owing to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Rapidly increasing uranium prices, public reluctance for widespread Pu recycling and expected delays for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, problems associated with reprocessing and waste handling, particularly with re-fabrication by remote handling of 233 U, are certainly not appreciably more difficult than for Pu recycling. To divert from uranium as a nuclear energy source it seems worth while intensifying future efforts for closing the Th/ 233 U fuel cycle. HTGRs are particularly promising for economic application. However, further research and development activities should not concentrate on this reactor type alone. Light- and heavy-water-moderated reactors, and even future fast breeders, may just as well take advantage of a demonstrated thorium fuel cycle. (author)

  10. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.

    1980-09-01

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U 3 O 8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  11. Plutonium in an enduring fuel cycle

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1998-05-01

    Nuclear fuel cycles evolved over the past five decades have allowed many nations of the world to enjoy the benefits of nuclear energy, while contributing to the sustainable consumption of the world's energy resources. The nuclear fuel cycle for energy production suffered many traumas since the 1970s because of perceived risks of proliferation of nuclear weapons. However, the experience of the past five decades has shown that the world community is committed to safeguarding all fissile materials and continuing the use of nuclear energy resources. Decisions of a few nations to discard spent nuclear fuels in geologic formations are contrary to the goals of an enduring nuclear fuel cycle and sustainable development being pursued by the world community. The maintenance of an enduring nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including spent fuels

  12. Economic assessment of new technology of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Kim, H. S.; Song, K. D.; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lee, J. S.; Choi, H. B.

    1998-06-01

    The purpose of this study is to analyze the impact of the change in the manufacturing cost of DUPIC fuel on the power generation cost. In doing so, the installed capacity of nuclear power plants until the year 2040 were forecasted by using the trend analysis technique. This study used the NUFCAP computer code, developed by KAERI, which allows to conduct quantitative evaluation of the volumes of nuclear fuel and spent fuel as well as unit and system costs of nuclear fuel cycle. As a result of this study, it was found that there was little economic difference between the two possible options for the Korean electric system, direct disposal and DUPIC fuel cycle. The rate of discount and the manufacturing cost of DUPIC fuel were resulted in the most significant factors affecting the economics of the two options. Finally, it was expected that the result of this study provided the arguing point for the international debate on the economics of DUPIC fuel cycle technology. (author). 6 refs., 7 tabs., 8 figs

  13. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-09-01

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  14. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  15. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  16. Comparison of two thorium fuel cycles for use in light water prebreeder/breeder reactor systems (AWBA Development Program)

    International Nuclear Information System (INIS)

    Merriman, F.C.; McCoy, D.F.; Boyd, W.A.; Dwyer, J.R.

    1983-05-01

    Light water prebreeder/breeder conceptual reactor systems have been developed which have the potential to significantly improve the fuel utilization of present generation light water reactors. The purpose of this study is to describe and compare two possible types of thorium fuel cycles for use in these light water prebreeder and breeder concepts. The two types of thorium fuel cycles basically differ in the fuel rod design used in the prebreeder cores and the uranium isotopic concentration of fuel supplied to the breeder cores

  17. Analysis on the fuel cycle requirements of the FR systems

    International Nuclear Information System (INIS)

    Maki, Takashi; Horiuchi, Nobutake

    2002-01-01

    The functions of the nuclear fuel cycle amount analysis code, developed in 2001 were extended. This code is a program that calculates the change in characteristics with time of mass balance (for example, the amount of natural uranium demand, plutonium mass balance, environmental load reduction, etc.) in a nuclear fuel cycle, to examine the state of future reactor types or recycling facilities. In 2002, as for this code, calculation functions of reprocessing facilities on plutonium-thermal spent fuels, recovery uranium recycling, and multiple FR concepts were added, and the I/O function was improved according to it. Moreover, benchmark calculation to the extended amount analysis code was performed using the other tool, and it was confirmed that mass balance was calculated appropriately. Furthermore, the mass balance of a few typical FR cycle concepts was calculated in this analysis code, and the feature of each concept was clarified. (author)

  18. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  19. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  20. Fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1984-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors

  1. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive due to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Although the uranium ore as well as the separative work requirements are usually lower for any thorium-based fuel cycle in comparison to present uranium-plutonium fuel cycles of thermal water reactors, interest by nuclear industry has hitherto been marginal. Fast increasing uranium prices, public reluctance against widespread Pu-recycling and expected retardations for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, it could be learned in the meantime that problems associated with reprocessing and waste handling, but particularly with a remote refabrication of 233 U are certainly not appreciably more difficult than for Pu-recycling. This may not only be due to psychological constraints but be based upon technological as well as economical facts, which have been mostly neglected up till now. In order to diversify from uranium as a nuclear energy source it seems to be worthwhile to greatly intensify efforts in the future for closing the Th/ 233 U fuel cycle. HTGR's are particularly promising for economic application. However, further R and D activites should not be solely focussed on this reactor type alone. Light and heavy-water moderated reactors, as well as even fast breeders later on, may just as well take advantage of a demonstrated thorium fuel cycle. A summary is presented of the state-of-the-art of Th/ 233 U-recycling technology and the efforts still necessary to demonstrate this technology all the way through to its industrial application

  2. Multiple Tier Fuel Cycle Studies for Waste Transmutation

    International Nuclear Information System (INIS)

    Hill, R.N.; Taiwo, T.A.; Stillman, J.A.; Graziano, D.J.; Bennett, D.R.; Trellue, H.; Todosow, M.; Halsey, W.G.; Baxter, A.

    2002-01-01

    As part of the U.S. Department of Energy Advanced Accelerator Applications Program, a systems study was conducted to evaluate the transmutation performance of advanced fuel cycle strategies. Three primary fuel cycle strategies were evaluated: dual-tier systems with plutonium separation, dual-tier systems without plutonium separation, and single-tier systems without plutonium separation. For each case, the system mass flow and TRU consumption were evaluated in detail. Furthermore, the loss of materials in fuel processing was tracked including the generation of new waste streams. Based on these results, the system performance was evaluated with respect to several key transmutation parameters including TRU inventory reduction, radiotoxicity, and support ratio. The importance of clean fuel processing (∼0.1% losses) and inclusion of a final tier fast spectrum system are demonstrated. With these two features, all scenarios capably reduce the TRU and plutonium waste content, significantly reducing the radiotoxicity; however, a significant infrastructure (at least 1/10 the total nuclear capacity) is required for the dedicated transmutation system. (authors)

  3. World nuclear fuel cycle requirements 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  4. World nuclear fuel cycle requirements 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, ''burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs

  5. The fuel cycle of the LWR system in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Spalthoff, F.J.; Messer, K.P.

    1977-01-01

    Within the framework of a system analysis conducted to forecast the nuclear output capacity that would presumably be installed by the year 2000 in the Federal Republic of Germany, the demands for uranium, enrichment and reprocessing, the fuel fabrication of elements and transportation capacity are determined. The factors of uncertainty involved in forecasts concerning the demand are discussed (analysis of sensitivity). Furthermore, the study points out to what extent the demand for uranium and fuel cycle services is being covered in the FRG and what aspects related to the coverage not yet secured are important. The situation in the field of reprocessing and ultimate disposal in the FRG, and the role which the electrical utilities are to play are in particular dealt with. After a brief survey of the Federal Republic's plans concerning the reprocessing and ultimate disposal issues, the pending problems related to the technology, organization and financing of this sector of the fuel cycle are analyzed. Moreover, the paper deals with the past and probable future development of fuel cycle costs as well as with their influence on the further development of nuclear energy as a whole. It will be examined whether and to what extent the considerable increase in the costs for uranium, enrichment and reprocessing occurring simultaneously with the rise of capital expense for new nuclear power plants has affected the profitability of nuclear energy as compared with fossil primary energies. Finally, the paper discusses how the security of supply for nuclear power plants with fuel and all necessary services could be improved under economically justifiable conditions, and what measures could be taken in this area by the electric utilities, the fuel cycle industries, and the public authorities

  6. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  7. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  8. Fuel cell hybrid taxi life cycle analysis

    International Nuclear Information System (INIS)

    Baptista, Patricia; Ribau, Joao; Bravo, Joao; Silva, Carla; Adcock, Paul; Kells, Ashley

    2011-01-01

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO 2 emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO 2 emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: → A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. → The hydrogen powered vehicles have the lowest energy consumption and CO 2 emissions results. → A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  9. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR (Integral Fast Reactor) program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. (author)

  10. IFR fuel cycle demonstration in the EBR-II Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Rigg, R.H.; Benedict, R.W.; Carnes, M.D.; Herceg, J.E.; Holtz, R.E.

    1991-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs

  11. DUPIC fuel cycle economics assessment (1)

    International Nuclear Information System (INIS)

    Choi, H. B.; Roh, G. H.; Kim, D. H.

    1999-04-01

    This is a state-of-art report that describes the current status of the DUPIC fuel cycle economics analysis conducted by the DUPIC fuel compatibility assessment group of the DUPIC fuel development project. For the DUPIC fuel cycle economics analysis, the DUPIC fuel compatibility assessment group has organized the 1st technical meeting composed of 8 domestic specialists from government, academy, industry, etc. and a foreign specialist of hot-cell design from TRI on July 16, 1998. This report contains the presentation material of the 1st technical meeting, published date used for the economics analysis and opinions of participants, which could be utilized for further DUPIC fuel cycle and back-end fuel cycle economics analyses. (author). 11 refs., 7 charts

  12. IFR fuel cycle

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Lineberry, M.J.; Phipps, R.D.

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation

  13. Nuclear fuel cycle optimization - methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book is aimed at presenting methods applicable in the analysis of fuel cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After a succinct introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective and subsequent chapters deal with the fuel cycle problems faced by a power utility. A fundamental material flow model is introduced first in the context of light water reactor fuel cycles. Besides the minimum cost criterion, the text also deals with other objectives providing for a treatment of cost uncertainties and of the risk of proliferation of nuclear weapons. Methods to assess mixed reactor strategies, comprising also other reactor types than the light water reactor, are confined to cost minimization. In the final Chapter, the integration of nuclear capacity within a generating system is examined. (author)

  14. Fuel cycle economics of HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.

    1975-06-15

    The High Temperature Reactor commands a unique fuel cycle flexibility and alternative options are open to the utilities. The reference thorium reactor operating in the U-233 recycle mode is 10 to 20% cheaper than the low-enriched reactor; however, the thorium cycle depends on the supply of 93% enriched uranium and the availability of reprocessing and refabrication facilities to utilize its bred fissile material. The economic landscape towards the end of the 20th Century will presumably be dominated by pronounced increases in the costs of natural resources. In the case of nuclear energy, resource considerations are reflected in the price of uranium, which is expected Lo have reached 50 $/lbm U3O8 in the early 1990s and around 100 $/lbm U3O8 around 2010. In this economic environment the fuel cycle advantage of the thorium system amounts to some 20% and is capable of absorbing substantial expenses in bringing about the closing of the out-of-pile cycle. A most attractive aspect of the HTR fuel cycle flexibility is for the utility to start operating the reactor on the low enriched uranium cycle and at a later date switch over to the thorium cycle as this becomes economically more and more attractive. The incentive amounts to some 50 M$ in terms of present worth money at the time of decision making, assumed to take place 10 years after start-up. The closing of the thorium cycle is of paramount importance and a step to realize this objective lies in simplifying the head-end reprocessing technology by abandoning the segregation concept of feed and breed coated particles in the reference cycle. A one-coated-particle scheme in which all discharged uranium isotopes are recycled in mixed oxide particles is feasible and suffers a very minor economic penalty only.

  15. Thermodynamic analysis of an integrated solid oxide fuel cell cycle with a rankine cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of solid oxide fuel cells (SOFC) on the top of a steam turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydro-carbons. The pre-treated fuel enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a heat recovery steam generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67% are achieved which is considerably higher than the conventional combined cycles (CC). Both adiabatic steam reformer (ASR) and catalytic partial oxidation (CPO) fuel pre-reformer reactors are considered in this investigation.

  16. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  17. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    International Nuclear Information System (INIS)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-01

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR

  18. Assessment of Proliferation Resistance of Closed Nuclear Fuel Cycle System with Sodium Cooled Fast Reactors Using INPRO Evaluation Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young In; Hahn, Do Hee; Won, Byung Chool; Lee, Dong Uk

    2007-11-15

    Using the INPRO methodology, the proliferation resistance of an innovative nuclear energy system(INS) defined as a closed nuclear fuel cycle system consisting of KALIMER and pyroprocessing, has been assessed. Considering a very early development stage of the INS concept, the PR assessment is carried out based on intrinsic features, if required information and data are not available. The PR assessment of KALIMER and JSFR using the INPRO methodology affirmed that an adequate proliferation resistance has been achieved in both INSs CNFC-SFR, considering the assessor's progress and maturity of design development. KALIMER and JSFR are developed or being developed conforming to the targets and criteria defined for developing Gen IV nuclear reactor system. Based on these assessment results, proliferation resistance and physical protection(PR and PP) of KALIMER and JSFR are evaluated from the viewpoint of requirements for future nuclear fuel cycle system. The envisioned INSs CNFC-SFR rely on active plutonium management based on a closed fuel cycle, in which a fissile material is recycled in an integrated fuel cycle facility within proper safeguards. There is no isolated plutonium in the closed fuel cycle. The material remains continuously in a sequence of highly radioactive matrices within inaccessible facilities. The proliferation resistance assessment should be an ongoing analysis that keeps up with the progress and maturity of the design of Gen IV SFR.

  19. The nuclear fuel cycle in the 21st century

    International Nuclear Information System (INIS)

    Todreas, Neil E.

    2004-01-01

    As we enter the 21st century and contemplate the deployment of Generation III+ machines and the development of Generation IV systems, the fuel cycle within which these reactors are to operate has become a predominant consideration. The four challenges to nuclear development of the 21st century of economics, safety, sustainability through spent fuel management and efficient fuel utilization, and proliferation resistance increasingly involve the front and back ends of the fuel cycle equally if not more than the design of the reactor which has reached a far higher level of maturity. It is tempting to accept the closed cycle with its promise of effective waste management as inevitable. The central questions, however, are the characteristics of the desired closed cycle, the relative advantages of thermal versus fast spectrum closed cycles, the character and pace of the transition to a closed cycle, and finally the most central question as to whether the closed cycle is indeed more desirable a choice than is an open cycle. The desired closed fuel cycle for the long term around which this paper is based is full actinide recycle with natural uranium feed and only fission products discharged to an ultimate waste repository. It is concluded that a major international research and development program to achieve this fuel cycle is important to pursue. However, the need to decide for the closed cycle and deploy it is not pressing for the next several decades. (author)

  20. Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2011-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  1. Systematic design of an intra-cycle fueling control system for advanced diesel combustion concepts

    NARCIS (Netherlands)

    Kefalidis, L.

    2017-01-01

    This technical report presents a systematic approach for the design and development of an intra-cycle fueling control system for diesel combustion concepts. A high level system was developed and implemented on an experimental engine setup. Implementation and experimental validation are performed for

  2. Economics of radioactive material transportation in the light-water reactor nuclear fuel cycle

    International Nuclear Information System (INIS)

    Dupree, S.A.; O'Malley, L.C.

    1980-10-01

    This report presents estimates of certain transportation costs, in 1979 dollars, associated with Light-Water Reactor (LWR) once-through and recycle fuel cycles. Shipment of fuel, high-level waste and low-level waste was considered. Costs were estimated for existing or planned transportation systems and for recommended alternate systems, based on the assumption of mature fuel cycles. The annual radioactive material transportation costs required to support a nominal 1000-MW(e) LWR in a once-through cycle in which spent fuel is shipped to terminal storage or disposal were found to be approx. $490,000. Analogous costs for an average reactor operating in a fuel cycle with uranium and plutonim recycle were determined to be approx. $770,000. These results assume that certain recommended design changes will occur in radioactive material shipping systems as a mature fuel cycle evolves

  3. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    Energy Technology Data Exchange (ETDEWEB)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  4. Economic aspects of Dukovany NPP fuel cycle

    International Nuclear Information System (INIS)

    Vesely, P.; Borovicka, M.

    2001-01-01

    The paper discusses some aspects of high burnup program implementation at Dukovany NPP and its influence on the fuel cycle costs. Dukovany internal fuel cycle is originally designed as a three years cycle of the Out-In-In fuel reloading patterns. These reloads are not only uneconomical but they additionally increased the radiation load of the reactor pressure vessel due to high neutron leakage typical for Out-In-In loading pattern. To avoid the high neutron leakage from the core a transition to 4-year fuel cycle is started in 1987. The neutron leakage from the core is sequentially decreased by insertion of older fuel assemblies at the core periphery. Other developments in fuel cycle are: 1) increasing of enrichment in control assemblies (3.6% of U-235); 2) improvement in fuel assembly design (reduce the assembly shroud thickness from 2.1 to 1.6 mm); 3) introduction of Zr spacer grid instead of stainless steel; 4) introduction of new type of assembly with profiled enrichment with average value of 3.82%. Due to increased reactivity of the new assemblies the transition to the partial 5-year fuel cycle is required. Typical fuel loading pattern for 3, 3.5, 4 and 5-year cycles are shown in the presented paper. An evaluation of fuel cost is also discussed by using comparative analysis of different fuel cycle options. The analysis shows that introduction of the high burnup program has decrease relative fuel cycle costs

  5. Spent fuel transport in fuel cycle

    International Nuclear Information System (INIS)

    Labrousse, M.

    1977-01-01

    The transport of radioactive substances is a minor part of the fuel cycle because the quantities of matter involved are very small. However the length and complexity of the cycle, the weight of the packing, the respective distances between stations, enrichment plants and reprocessing plants are such that the problem is not negligible. In addition these transports have considerable psychological importance. The most interesting is spent fuel transport which requires exceptionally efficient packaging, especially where thermal and mechanical resistance are concerned. To meet the safety criteria necessary for the protection of both public and users it was decided to use the maximum capacity consistent with rail transport and to avoid coolant fluids under pressure. Since no single type of packing is suitable for all existing stations an effort has been made to standardise handling accessories, and future trands are towards maximum automation. A discussion on the various technical solutions available for the construction of these packing systems is followed by a description of those used for the two types of packaging ordered by COGEMA [fr

  6. Fuel cycle oriented approach

    International Nuclear Information System (INIS)

    Petit, A.

    1987-01-01

    The term fuel cycle oriented approach is currently used to designate two quite different things: the attempt to consider all or part of a national fuel cycle as one material balance area (MBA) or to consider individual MBAs existing in a state while designing a unique safeguards approach for each and applying the principle of nondiscrimination to fuel cycles as a whole, rather than to individual facilities. The merits of such an approach are acceptability by the industry and comparison with the contemplated establishment of long-term criteria. The following points concern the acceptability by the industry: (1) The main interest of the industry is to keep an open international market and therefore, to have effective and efficient safeguards. (2) The main concerns of the industry regarding international safeguards are economic burden, intrusiveness, and discrimination. Answers to these legitimate concerns, which retain the benefits of a fuel cycle oriented approach, are needed. More specifically, the problem of reimbursing the operator the costs that he has incurred for the safeguards must be considered

  7. Analysis of possible fuel cycles

    International Nuclear Information System (INIS)

    Boehm, H.; Kessler, G.; Engelmann, P.; Maerkl, H.; Stoll, W.

    1978-01-01

    A brief survey is presented of the most important fuel cycles. A rough analysis of fuel cycles is attempted under the aspects of proliferation, status of technical feasibility, resource conservation and waste management and the most important criteria for such an analysis are discussed. Among the multitude of potential combinations of fuel cycles and types of reactors only a few have reached a level of technical feasibility which would make them eligible for commercial implementation within the next decade. However, if, for instance, the higher proliferation resistance of a specific fuel cycle is to be utilized to diminish the worldwide proliferation hazard, that cycle would first of all have to be introduced on an industrial scale as quickly as possible. The analysis shows that the reduction of the bazard of worldwide proliferation will continue to be the objective primarily of international agreements and measures taken in the political realm. (orig.) [de

  8. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    Energy Technology Data Exchange (ETDEWEB)

    E. R. Johnson; R. E. Best

    2009-12-28

    materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model also included recycle and reuse of extant inventories of spent LWR fuel. The results of the simulations allowed comparisons of the two fuel cycles from the standpoints of cost, non-proliferation, radiological health, wastes generated, and sustainability. Results of the research also provide insights regarding (i) multiple recycling of uranium and plutonium from spent MOX fuel in LWRs, (ii) costs and benefits of reenriching and reusing uranium from spent LWR fuel; (iii) effects of using uranium, plutonium, and minor actinides from LWR spent fuels to produce fuel for FRs; (iv) net rates of consumption (burning) in FRs of actinide elements produced in LWRs, and (v) ependencies of and interactions among the different systems of an advanced nuclear fuel cycle -- and the flows of nuclear materials between these systems.

  9. Feasibility study on tandem fuel cycle

    International Nuclear Information System (INIS)

    Han, P.S.; Suh, I.S.; Rim, C.S.; Kim, B.K.; Suh, K.S.; Ro, S.K.; Juhn, P.I.; Kim, S.Y.

    1983-01-01

    The objective of this feasibility study is to review and assess the current state of technology concerning the tandem fuel cycle. Based on the results from this study, a long-term development plan suitable for Korea has been proposed for this cycle, i.e., the PWR → CANDU tandem fuel cycle which used plutonium and uranium, recovered from spent PWR fuel by co-processing, as fuel material for CANDU reactors. (Author)

  10. Dynamic analysis of once-through and closed fuel cycle economics using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungyeol, E-mail: csy@kaeri.re.kr; Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr; Ko, Won Il, E-mail: nwiko@kaeri.re.kr

    2014-10-01

    Highlights: • Dynamic behavior of system costs, both reactor and fuel cycle costs, is analyzed. • Relative economics of once-through and closed fuel cycles is explored. • Probabilistic approaches are adopted for levelized electricity generation costs. • Main cost drivers for cost gaps between once-through and closed cycles are identified. - Abstract: Although no consensus about the best approach to manage spent fuels has been achieved, economics is one of the major criteria for assessing and selecting acceptable management options. This study compares the reactor and fuel cycle costs of the closed system associated with sodium-cooled fast reactors and pyroprocessing versus the once-through system. We specifically investigated the fuel cycle transition cases of the Republic of Korea from 2013 to 2100. The results revealed that the closed system (34.00 mills/kWh as a mean value) could be more expensive than the once-through system (32.75 mills/kWh). In contrast, the once-through fuel cycle costs (8.31 mills/kWh), excluding reactor costs, were projected to be greater than the closed fuel cycle costs (7.77 mills/kWh) because of the increased costs of interim storage estimated by the Korean government and the limited contribution of backend fuel cycle components to the discounted costs. The capital cost of sodium-cooled fast reactor is the largest component contributing to the cost gap between the two systems. Among fuel cycle components, pyroprocessing has the largest uncertainty contribution to the cost gap. We also calculated the breakeven unit costs of SFR capital cost and PWR spent fuel pyroprocessing cost.

  11. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  12. Thorium fuel cycle - Potential benefits and challenges

    International Nuclear Information System (INIS)

    2005-05-01

    There has been significant interest among Member States in developing advanced and innovative technologies for safe, proliferation resistant and economically efficient nuclear fuel cycles, while minimizing waste and environmental impacts. This publication provides an insight into the reasons for renewed interest in the thorium fuel cycle, different implementation scenarios and options for the thorium cycle and an update of the information base on thorium fuels and fuel cycles. The present TECDOC focuses on the upcoming thorium based reactors, current information base, front and back end issues, including manufacturing and reprocessing of thorium fuels and waste management, proliferation-resistance and economic issues. The concluding chapter summarizes future prospects and recommendations pertaining to thorium fuels and fuel cycles

  13. Synergistic fuel cycles of the future

    International Nuclear Information System (INIS)

    Meneley, D.A.; Dastur, A.R.

    1997-01-01

    Good neutron economy is the basis of the fuel cycle flexibility in the CANDU reactor. This paper describes the fuel cycle options available to the CANDU owner with special emphasis on resource conservation and waste management. CANDU fuel cycles with low initial fissile content operate with relatively high conversion ratio. The natural uranium cycle provides over 55 % of energy from the plutonium that is created during fuel life. Resource utilization is over 7 MWd/kg NU. This can be improved by slight enrichment (between 0.9 and 1.2 wt % U235) of the fuel. Resource utilization increases to 11 MWd/kg NU with the Slightly Enriched Uranium cycle. Thorium based cycles in CANDU operate at near-breeder efficiency. Obey provide attractive options when used with natural uranium or separated (reactor grade and weapons grade) plutonium as driver fuels. In the latter case, the energy from the U233 plus the initial plutonium content amounts to 3.4 GW(th).d/kg Pu-fissile. The same utilization is expected from the use of FBR plutonium in a CANDU thorium cycle. Extension of natural resource is achieved by the use of spent fuels in CANDU. The LWR/CANDU Tandem cycle leads to an additional 77 % of energy through the use of reprocessed LWR fuel (which has a fissile content of 1.6 wt %) in CANDU. Dry reprocessing of LWR fuel with the OREOX process (a more safeguardable alternative to the PUREX process) provides an additional 50 % energy. Uranium recovered (RU) from separation of plutonium contained in spent LWR fuel provides an additional 15 MWd/kg RU. CANDU's low fissile requirement provides the possibility, through the use of non-fertile targets, of extracting energy from the minor actinides contained in spent fuel. In addition to the resource utilization advantage described above, there is a corresponding reduction in waste arisings with such cycles. This is especially significant when separated plutonium is available as a fissile resource. (author)

  14. Nuclear fuel cycles : description, demand and supply estimates

    International Nuclear Information System (INIS)

    Gadallah, A.A.; Abou Zahra, A.A.; Hammad, F.H.

    1985-01-01

    This report deals with various nuclear fuel cycles description as well as the world demand and supply estimates of materials and services. Estimates of world nuclear fuel cycle requirements: nuclear fuel, heavy water and other fuel cycle services as well as the availability and production capabilities of these requirements, are discussed for several reactor fuel cycle strategies, different operating and under construction fuel cycle facilities in some industrialized and developed countries are surveyed. Various uncertainties and bottlenecks which are recently facing the development of some fuel cycle components are also discussed, as well as various proposals concerning fuel cycle back-end concepts. finally, the nuclear fuel cycles activities in some developing countries are reviewed with emphasis on the egyptian plans to introduce nuclear power in the country. 11 fig., 16 tab

  15. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Nguyen, Viet Phuong; Yim, Man Sung

    2016-01-01

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle

  16. Modeling the Multinationality and Other Socio-Political Aspects of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Viet Phuong; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Nuclear fuel cycle is a complex process with numerous steps, which are influenced by both engineering and socio-economic factors. Therefore, as an interdisciplinary tool developed to study the dynamic complexity of a system, system dynamics has been used to simulate nuclear fuel cycle and to support the development of nuclear policies. A number of studies have been done in this area providing comprehensive view of nuclear fuel cycle in respect to the energy scenarios, material flows, and pricing mechanism. However, the effect of other socio-economic aspects like public acceptance, proliferation risks, or the transboundary nature of the nuclear fuel cycle have not been well illustrated by those previous researches. In order to inform decision makers of the suitability and sustainability of any nuclear fuel cycle option, a modeling tool has to adequately cover such issues. A system dynamics model of nuclear fuel cycle was developed in order to examine the trans-boundary and domestic effects related to the socio-economic aspect of the fuel cycle. The significance and coefficient of the socio-economic factors were determined using statistical analysis of historical data. Preliminary results show the definitive effect of such factors on the net benefit of the nuclear fuel cycle and its expansion in relation with the nuclear cooperation between the service provider and the end-user. Thus, future models need to incorporate such features in order to provide a more comprehensive look of the fuel cycle.

  17. Assessment of the thorium fuel cycle in power reactors

    International Nuclear Information System (INIS)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled

  18. Nuclear-fuel-cycle optimization: methods and modelling techniques

    International Nuclear Information System (INIS)

    Silvennoinen, P.

    1982-01-01

    This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables

  19. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-01-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  20. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  1. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  2. Advanced Fuel Cycle Cost Basis

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  3. Fuel cycles for the 80's

    International Nuclear Information System (INIS)

    1980-01-01

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base

  4. Suggested non-proliferation criteria for commercial nuclear fuel cycles

    International Nuclear Information System (INIS)

    Laney, R.V.; Heubotter, P.R.

    1978-01-01

    Based on the Administration's policy to prevent nuclear weapons proliferation through diversion of fuel from commercial reactor fuel cycles, a ''benchmark'' set of nonproliferation criteria was prepared for the commercial nuclear fuel cycle. These criteria should eliminate incremental risks of proliferation beyond those inherent in the present generation of low-enriched-uranium-fueled reactors operating in a once-through mode, with internationally safeguarded storage of spent fuel. They focus on the balanced application of technical constraints consistent with the state of the technology, with minimal requirements for institutional constraints, to provide a basis for assessing the proliferation resistance of proposed fission power systems. The paper contains: (1) our perception of the nuclear energy policy and of the baseline proliferation risk accepted under this policy; (2) objectives for a reactor and fuel cycle strategy which address the technical, political, and institutional aspects of diversion and proliferation and, at the same time, satisfy the Nation's needs for efficient, timely, and economical utilization of nuclear fuel resources; (3) criteria which are responsive to these objectives and can therefore be used to screen proposed reactor and fuel cycle strategies; and (4) a rationale for these criteria

  5. The nuclear fuel cycle, Economical, environmental and social aspects

    International Nuclear Information System (INIS)

    2002-01-01

    The nuclear energy part in the durable development depends of many factors, bound to the fuel cycle. This document describes the developments and the tendencies in the fuel cycle domain, susceptible of improve the competitiveness and the durability of the nuclear energy systems at moderate and long-dated. Evaluation criteria and indicators illustrate the analysis. (A.L.B.)

  6. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  7. Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle

    Science.gov (United States)

    Jeong, Kwi Seong; Oh, Byeong Soo

    The most promising vehicle engine that can overcome the problem of present internal combustion is the hydrogen fuel cell. Fuel cells are devices that change chemical energy directly into electrical energy without combustion. Pure fuel cell vehicles and fuel cell hybrid vehicles (i.e. a combination of fuel cell and battery) as energy sources are studied. Considerations of efficiency, fuel economy, and the characteristics of power output in hybridization of fuel cell vehicle are necessary. In the case of Federal Urban Driving Schedule (FUDS) cycle simulation, hybridization is more efficient than a pure fuel cell vehicle. The reason is that it is possible to capture regenerative braking energy and to operate the fuel cell system within a more efficient range by using battery. Life-cycle cost is largely affected by the fuel cell size, fuel cell cost, and hydrogen cost. When the cost of fuel cell is high, hybridization is profitable, but when the cost of fuel cell is less than 400 US$/kW, a pure fuel cell vehicle is more profitable.

  8. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  9. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  10. Fuel cycle and waste newsletter, Vol. 3, No. 3, December 2007

    International Nuclear Information System (INIS)

    2007-12-01

    This issue of the Fuel Cycle and Waste Newsletter reports on the IAEA's International Conference on Research Reactors which focused on sharing the latest scientific, technical and safety information related to research reactors including projects on design, construction and commissioning of new research facilities. This issue further covers reports of some of the activities performed by the Division of Nuclear Fuel Cycle and Waste Technology including information on upgrading radioactive waste management facilities, aqueous homogeneous reactors for isotope production, activities of the contact experts group in 2007, current activities related to HEU minimization, repatriation of radioactive sources in Nigeria, the 2007 TWGNFCO (Nuclear Fuel Cycle Options and Spent Fuel Management) meeting, the stakeholder involvement in decommissioning (draft technical report in preparation), initial activities of the International Decommissioning Network (IDN), spent fuel publications, the thorium fuel cycle, the Nuclear Fuel Cycle Simulation System (NFCSS). Finally, it presents a bibliography of recent publications of IAEA's Division of Nuclear Fuel Cycle and Waste Technology as well as a list of Meetings in 2008

  11. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  12. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Chungju National University, Chungju (Korea, Republic of); Ko, Won IL [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-12-15

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  13. Nuclear Fuel Cycle Analysis Technology to Develop Advanced Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Park, Byung Heung; Ko, Won IL

    2011-01-01

    The nuclear fuel cycle (NFC) analysis is a study to set a NFC policy and to promote systematic researches by analyzing technologies and deriving requirements at each stage of a fuel cycle. System analysis techniques are utilized for comparative analysis and assessment of options on a considered system. In case that NFC is taken into consideration various methods of the system analysis techniques could be applied depending on the range of an interest. This study presented NFC analysis strategies for the development of a domestic advanced NFC and analysis techniques applicable to different phases of the analysis. Strategically, NFC analysis necessitates the linkage with technology analyses, domestic and international interests, and a national energy program. In this respect, a trade-off study is readily applicable since it includes various aspects on NFC as metrics and then analyzes the considered NFC options according to the derived metrics. In this study, the trade-off study was identified as a method for NFC analysis with the derived strategies and it was expected to be used for development of an advanced NFC. A technology readiness level (TRL) method and NFC simulation codes could be utilized to obtain the required metrics and data for assessment in the trade-off study. The methodologies would guide a direction of technology development by comparing and assessing technological, economical, environmental, and other aspects on the alternatives. Consequently, they would contribute for systematic development and deployment of an appropriate advanced NFC.

  14. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  15. Sustainomics of the AMBIDEXTER-NEC Fuel Cycle and Management

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Kee; Lee, Young Joon; Ham, Tae Kyu; Seo, Myung Hwan; Hong, Sung Taek; Kwon, Tae An [Ajou University, Suwon (Korea, Republic of)

    2009-05-15

    Energy issues these days become planetary concerns, recognized as the major driver for the resiliency of the earth in the sustainomics framework of the society, economy and environment axes. In the circumstances, in order for the nuclear to take advantage of its GHG-free nature, criticisms associated with the fuel cycle should be defied. As long as the uranium fuel cycle persists, problems bearing on the HLW management and the proliferation prevention could be neither completely decoupled nor independently resolved. Geopolitics around the Korean peninsula makes them be more complicated. Reference of the AMBIDEXTER fuel cycle relies on the DUPIC technology. Combined with fluoride volatility process, desired quantity of uranium contents in the PWR spent fuel powder could be removed. Then, the reactor system runs with the fluorides salt of this uranium-reduced DUPIC fuel material. Surplus uranium from the AMBIDEXTER-DUPIC1 processes should satisfy the LLW classification criteria. So far, the sustainomics goal of the AMBIDEXTER fuel cycle focuses on generating energy from the HLW, meanwhile, converting into LLW without jeopardizing proliferation transparency.

  16. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  17. Fuel cycle and waste management: A perspective from British nuclear fuels plc

    International Nuclear Information System (INIS)

    Holmes, R.G.G.; Fairhall, G.A.; Robbins, R.A.

    1996-01-01

    The phrase fuel cycle and waste management implies two separate and distinct activities. British Nuclear Fuels plc (BNFL) has adopted a holistic approach to the fuel cycle that integrates the traditional fuel cycle activities of conversion to uranium hexafluoride, fuel fabrication, power generation, and reprocessing with waste arisings, its subsequent treatment, and disposal

  18. A fuel cycle cost study with HEU and LEU fuels

    International Nuclear Information System (INIS)

    Matos, J.E.; Freese, K.E.

    1985-01-01

    Fuel cycle costs are compared for a range of 235 U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  19. A fuel cycle cost study with HEU and LEU fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [Argonne National Laboratory, Argonne, IL (United States)

    1985-07-01

    Fuel cycle costs are compared for a range of {sup 235}U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors. (author)

  20. Nuclear Fuel Cycle Objectives

    International Nuclear Information System (INIS)

    2013-01-01

    . The four Objectives publications include Nuclear General Objectives, Nuclear Power Objectives, Nuclear Fuel Cycle Objectives, and Radioactive Waste management and Decommissioning Objectives. This publication sets out the objectives that need to be achieved in the area of the nuclear fuel cycle to ensure that the Nuclear Energy Basic Principles are satisfied. Within each of these four Objectives publications, the individual topics that make up each area are addressed. The five topics included in this publication are: resources; fuel engineering and performance; spent fuel management and reprocessing; fuel cycles; and the research reactor nuclear fuel cycle

  1. Report of the Nuclear Fuel Cycle Study Group

    International Nuclear Information System (INIS)

    1978-01-01

    In order to establish the nuclear fuel cycle in nuclear power generation, the study group has discussed necessary measures. Japan's attitudes to the recent international situation are first expounded. Then, the steps to be taken by the Government and private enterprises respectively are recommended regarding acquisition of natural uranium, acquisition of enriched uranium, establishment of fuel reprocessing system, utilization of plutonium, management of radioactive wastes, and transport system of spent fuel. (Mori, K.)

  2. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration

    International Nuclear Information System (INIS)

    Dimopoulos, George G.; Stefanatos, Iason C.; Kakalis, Nikolaos M.P.

    2016-01-01

    Highlights: • Process modelling and optimisation of an integrated marine MCFC system. • Component-level and spatially distributed exergy analysis and balances. • Optimal simple cycle MCFC system with 45.5% overall exergy efficiency. • Optimal combined cycle MCFC system with 60% overall exergy efficiency. • Combined cycle MCFC system yields 30% CO_2 relative emissions reduction. - Abstract: In this paper we present the exergy analysis and design optimisation of an integrated molten carbonate fuel cell (MCFC) system for marine applications, considering waste heat recovery options for additional power production. High temperature fuel cells are attractive solutions for marine energy systems, as they can significantly reduce gaseous emissions, increase efficiency and facilitate the introduction of more environmentally-friendly fuels, like LNG and biofuels. We consider an already installed MCFC system onboard a sea-going vessel, which has many tightly integrated sub-systems and components: fuel delivery and pre-reforming, internal reforming sections, electrochemical conversion, catalytic burner, air supply and high temperature exhaust gas. The high temperature exhaust gasses offer significant potential for heat recovery that can be directed into both covering the system’s auxiliary heat requirements and power production. Therefore, an integrated systems approach is employed to accurately identify the true sources of losses in the various components and to optimise the overall system with respect to its energy efficiency, taking into account the various trade-offs and subject to several constraints. Here, we present a four-step approach: a. dynamic process models development of simple and combined-cycle MCFC system; b. MCFC components and system models calibration via onboard MCFC measurements; c. exergy analysis, and d. optimisation of the simple and combined-cycle systems with respect to their exergetic performance. Our methodology is based on the

  3. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.

  4. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  5. WWER-440 fuel cycles possibilities using improved fuel assemblies design

    International Nuclear Information System (INIS)

    Mikolas, P.; Svarny, J.

    2008-01-01

    Practically five years cycle has been achieved in the last years at NPP Dukovany. There are two principal means how it could be achieved. First, it is necessary to use fuel assemblies with higher fuel enrichment and second, to use fuel loading with very low leakage. Both these conditions are fulfilled at NPP Dukovany at this time. It is known, that the fuel cycle economy can be improved by increasing the fuel residence time in the core up to six years. There are at least two ways how this goal could be achieved. The simplest way is to increase enrichment in fuel. There exists a limit, which is 5.0 w % of 235 U. Taking into account some uncertainty, the calculation maximum is 4.95 w % of 235 U. The second way is to change fuel assembly design. There are several possibilities, which seem to be suitable from the neutron - physical point of view. The first one is higher mass content of uranium in a fuel assembly. The next possibility is to enlarge pin pitch. The last possibility is to 'omit' FA shroud. This is practically unrealistic; anyway, some other structural parts must be introduced. The basic neutron physical characteristics of these cycles for up-rated power are presented showing that the possibilities of fuel assemblies with this improved design in enlargement of fuel cycles are very promising. In the end, on the basis of neutron physical characteristics and necessary economical input parameters, a preliminary evaluation of economic contribution of proposals of advanced fuel assemblies on fuel cycle economy is presented (Authors)

  6. Back end of an enduring fuel cycle

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1998-03-01

    An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world's riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future

  7. A life-cycle perspective on automotive fuel cells

    International Nuclear Information System (INIS)

    Simons, Andrew; Bauer, Christian

    2015-01-01

    Highlights: • Individual inventories for each fuel cell system component, current and future. • Environmental and human health burdens from fuel cell production and end-of-life. • Comparison passenger transport in fuel cell and conventional vehicles. • Fuel cell can be more critical to overall burdens than hydrogen production. • Fuel cell developments require radical but possible changes to reduce burdens. - Abstract: The production and end-of-life (EoL) processes for current and future proton exchange membrane fuel cell (PEMFC) systems for road passenger vehicle applications were analysed and quantified in the form of life cycle inventories. The current PEMFC technology is characterised by highly sensitive operating conditions and a high system mass. For each core component of PEMFC there are a range of materials under development and the research aimed to identify those considered realistic for a 2020 future scenario and according to commercial goals of achieving higher performance, increased power density, greater stability and a marked reduction of costs. End-of-life scenarios were developed in consideration of the materials at the focus of recovery efforts. The life cycle impact assessment (LCIA) addressed the production and EoL of the fuel cell systems with inclusion of a sensitivity analysis to assess influences on the results from the key fuel cell parameters. The second part to the LCIA assessed the environmental and human health burdens from passenger transport in a fuel cell vehicle (FCV) with comparison between the 2012 and 2020 fuel cell scenarios and referenced to an internal combustion engine vehicle (ICEV) of Euro5 emission standard. It was seen that whilst the drivetrain (and therefore the fuel cell system) is a major contributor to the emissions in all the indicators shown, the hydrogen use (and therefore the efficiency of the fuel cell system and the method of hydrogen production) can have a far greater influence on the environmental

  8. Fuel cycle parameters for strategy studies

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1979-05-01

    This report summarizes seven fuel cycle parameters (efficiency, specific power, burnup, equilibrium net fissile feed, equilibrium net fissile surplus, first charge fissile content, and whether or not fuel reprocessing is required) to be used in long-term strategy analyses of fuel cycles based on natural UO 2 , low enriched uranium, mixed oxides, plutonium topped thorium, uranium topped thorium, and the fast breeder oxide cycle. (LL)

  9. Alternative fuel cycles and non-proliferation aspects

    International Nuclear Information System (INIS)

    Kessler, G.

    1980-10-01

    The most important physical characteristics of the U/Pu and the Th/U fuel cycles and the technical data of the most significant converter reactors operating with Th/U fuel are outlined in the report. Near breeders as well as breeders with a thermal neutron spectrum are briefly discussed, and the potential of breeders with fast neutron spectra in the Th/U fuel is outlined. The essential criteria for the comparison of the alternative fuel cycles with the reference Pu/U cycle are the consumption of natural uranium, the numbers of U-233 producing and U-233 consuming converter reactors and the amounts of fission material transported and handled within the fuel cycle (reprocessing, refabrication). Although the alternative U/Th fuel cycles are feasible with some advantages and some disadvantages as compared to the reference U/Pu cycle, not much experience has so far been gathered with pilot plants of the fuel cycle. The respective status in reprocessing, refabrication and waste disposal is briefly discussed. Finally, a comparison of the risk potential inherent in secular storage is presented and questions of resistance to proliferation and of safeguards of the U/Th cycle are discussed

  10. Economic prospects of the Integral Fast Reactor (IFR) fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.; Till, C.E.

    1991-01-01

    The IFR fuel cycle based on pyroprocessing involves only few operational steps and the batch-oriented process equipment systems are compact. This results in major cost reductions in all of three areas of reprocessing, fabrication, and waste treatment. This document discusses the economic aspects of this fuel cycle

  11. A Fast Numerical Method for the Calculation of the Equilibrium Isotopic Composition of a Transmutation System in an Advanced Fuel Cycle

    Directory of Open Access Journals (Sweden)

    F. Álvarez-Velarde

    2012-01-01

    Full Text Available A fast numerical method for the calculation in a zero-dimensional approach of the equilibrium isotopic composition of an iteratively used transmutation system in an advanced fuel cycle, based on the Banach fixed point theorem, is described in this paper. The method divides the fuel cycle in successive stages: fuel fabrication, storage, irradiation inside the transmutation system, cooling, reprocessing, and incorporation of the external material into the new fresh fuel. The change of the fuel isotopic composition, represented by an isotope vector, is described in a matrix formulation. The resulting matrix equations are solved using direct methods with arbitrary precision arithmetic. The method has been successfully applied to a double-strata fuel cycle with light water reactors and accelerator-driven subcritical systems. After comparison to the results of the EVOLCODE 2.0 burn-up code, the observed differences are about a few percents in the mass estimations of the main actinides.

  12. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  13. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    International Nuclear Information System (INIS)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials

  14. Remote maintenance system technology development for nuclear fuel cycle plants

    International Nuclear Information System (INIS)

    Kashihara, Hidechiyo

    1984-01-01

    The necessity of establishing the technology of remote maintenance, the kinds of maintenance techniques and the change, the image of a facility adopting remote maintenance canyon process, and the outline of the R and D plan to put remote maintenance canyon process in practical use are described. As the objects of development, there are twin arm type servo manipulator system, rack system, remote tube connectors, solution sampling system, inspection system for in-cell equipment, and large plugs for wall penetration. The outline of those are also reported. The development of new remote maintenance technology has been forwarded in the Tokai Works aiming at the application to a glass solidification pilot plant and a FBR fuel recycling test facility. The lowering of the rate of utilization of cells due to poor accessibility and the increase of radiation exposure of workers must be overcome to realize nuclear fuel cycle technology. The maintenance technology is classified into crane canyon method, direct maintenance cell method, remote maintenance cell method and remote maintenance canyon method, and those are described briefly. The development plan of remote maintenance technology is outlined. (Kako, I.)

  15. Globalization of the nuclear fuel cycle impact of developments on fuel management

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Durpel, L.; Bertel, E. [OCDE-NEA, Nuclear Development Div., 92 - Issy-les-Moulineaux (France)

    1999-07-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the de-regulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to compete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economical perspective including environmental and social considerations. (authors)

  16. Globalisation of the nuclear fuel cycle - impact of developments on fuel management

    International Nuclear Information System (INIS)

    Durpel, L. van den; Bertel, E.

    2000-01-01

    Nuclear energy will have to cope more and more with a rapid changing environment due to economic competitive pressure and the deregulatory progress. In current economic environment, utilities will have to focus strongly on the reduction of their total generation costs, covering the fuel cycle costs, which are only partly under their control. Developments in the fuel cycle will be in the short-term rather evolutionary addressing the current needs of utilities. However, within the context of sustainable development and more and more inclusion of externalities in energy generation costs, more performing developments in the fuel cycle could become important and feasible. A life-cycle design approach of the fuel cycle will be requested in order to cover all factors in order to decrease significantly the nuclear energy generation cost to complete with other alternative fuels in the long-term. This paper will report on some of the trends one could distinguish in the fuel cycle with emphasis on cost reduction. OECD/NEA is currently conducting a study on the fuel cycle aiming to assess current and future nuclear fuel cycles according to the potential for further improvement of the full added-value chain of these cycles from a mainly technological and economic perspective including environmental and social considerations. (orig.) [de

  17. Regeneration and localization of radioactive waste in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Egorov, N.N.; Kudryavtsev, E.G.; Nikipelov, B.V.; Polyakov, A.S.; Zakharkin, B.S.; Mamaev, L.A.

    1993-01-01

    Normal functioning of the nuclear-power industry is only possible with a closed fuel cycle, including regeneration of the spent fuel from atomic power plants, the production and recycling of the secondary fuel, and localization of the radioactive waste. Despite the diversity of contemporary attitudes toward the structure of the nuclear fuel cycle around the world, the closure of the fuel cycle has been fundamental to the atomic-power industry in the USSR since the very beginning, and has taken on even greater significance in Russia today. From the beginning, the idea of a closed fuel cycle has been based essentially on one fundamental criterion: the concept of expanded productivity on the basis of fuel regeneration, i.e., the economic factor. Important as economic factors are, safety issues have taken on great significance in recent years: not only power-station reactors but all the ancillary stages of the fuel cycle must meet fundamentally new reliability, safety, and environmental hazards. The RT-1 plant is a versatile operation, regenerating spent fuel from VVER-440, BN-350, and BN-600 reactors, nuclear icebreakers and submarines, research reactors, and other power units. The plant can reprocess 400 ton/year of basic VVER-440 fuel. World-class modern processes have been introduced at the plant, meeting the necessary quality standards: zonal planning, remote operation to eliminate direct contact of the staff with radioactive material, extensive monitoring and control systems, multistage gas-purification systems, and new waste-treatment methods

  18. The evolving nuclear fuel cycle

    International Nuclear Information System (INIS)

    Gale, J.D.; Hanson, G.E.; Coleman, T.A.

    1993-01-01

    Various economics and political pressures have shaped the evolution of nuclear fuel cycles over the past 10 to 15 yr. Future trends will no doubt be similarly driven. This paper discusses the influences that long cycles, high discharge burnups, fuel reliability, and costs will have on the future nuclear cycle. Maintaining the economic viability of nuclear generation is a key issue facing many utilities. Nuclear fuel has been a tremendous bargain for utilities, helping to offset major increases in operation and maintenance (O ampersand M) expenses. An important factor in reducing O ampersand M costs is increasing capacity factor by eliminating outages

  19. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  20. The integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  1. Transition Analysis of Promising U.S. Future Fuel Cycles Using ORION

    International Nuclear Information System (INIS)

    Sunny, Eva E.; Worrall, Andrew; Peterson, Joshua L.; Powers, Jeffrey J.; Gehin, Jess C.; Gregg, Robert

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E&S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E&S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups (EGs) and evaluating their performance according to a set of 22 standardized metrics. Following the E&S study, additional studies are being conducted to assess transitioning from the current US fuel cycle to future fuel cycle options identified by the E&S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle—the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs)—to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle.

  2. Simulation of Cycle-to-Cycle Variation in Dual-Fuel Engines

    KAUST Repository

    Jaasim, Mohammed

    2017-03-13

    Standard practices of internal combustion (IC) engine experiments are to conduct the measurements of quantities averaged over a large number of cycles. Depending on the operating conditions, the cycle-to-cycle variation (CCV) of quantities, such as the indicated mean effective pressure (IMEP) are observed at different levels. Accurate prediction of CCV in IC engines is an important but challenging task. Computational fluid dynamics (CFD) simulations using high performance computing (HPC) can be used effectively to visualize such 3D spatial distributions. In the present study, a dual fuel large engine is considered, with natural gas injected into the manifold accompanied with direct injection of diesel pilot fuel to trigger ignition. Multiple engine cycles in 3D are simulated in series as in the experiments to investigate the potential of HPC based high fidelity simulations to accurately capture the cycle to cycle variation in dual fuel engines. Open cycle simulations are conducted to predict the combined effect of the stratification of fuel-air mixture, temperature and turbulence on the CCV of pressure. The predicted coefficient of variation (COV) of pressure compared to the results from closed cycle simulations and the experiments.

  3. Relationship between basic nuclear data and LWR fuel cycle parameters

    International Nuclear Information System (INIS)

    Becker, M.; Harris, D.R.; Quan, B.; Ryskamp, J.M.

    1979-01-01

    An interactive system has been developed at RPI to analyze the sensitivity of water reactor fuel cycle parameters and costs to uncertainties in nuclear data. A sequence of batch depletion, core analysis, and fuel cost codes (referred to as Path B) determines the changes in fuel cycle parameters and costs for changes in few-group microscopic cross sections, in fission yields, and in decay data. For cases that are found to be significant from Part B analysis, the sensitivities of few-group data to basic nuclear data are determined by detailed calculations (referred to as Path A). Analyses of pressurized and boiling water reactors with recycle and throwaway options show substantial sensitivities of fuel cycle parameters and costs, particularly to thermal and resonance nuclear data for fissile nuclides. The results bring out the importance for power reactor sensitivity analysis of dealing with the full fuel cycle including depletion of initially-loaded fuel and the building-in of actinides and fission products

  4. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  5. The economics of thorium fuel cycles

    International Nuclear Information System (INIS)

    James, R.A.

    1978-01-01

    The individual cost components and the total fuel cycle costs for natural uranium and thorium fuel cycles are discussed. The thorium cycles are initiated by using either enriched uranium or plutonium. Subsequent thorium cycles utilize recycled uranium-233 and, where necessary, either uranium-235 or plutonium as topping. A calculation is performed to establish the economic conditions under which thorium cycles are economically attractive. (auth)

  6. ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES

    International Nuclear Information System (INIS)

    BARI, R.; ROGLANS, J.; DENNING, R.; MLADINEO, S.

    2003-01-01

    The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities

  7. Analysis on the fuel cycle requirements of the FR systems

    International Nuclear Information System (INIS)

    Maki, Takashi; Horiuchi, Nobutake

    2003-01-01

    The functions of the nuclear fuel cycle amount analysis code, developed in 2002 were extended. This code calculates the change in characteristics with time of mass balance (for example, the amount of natural uranium demand, plutonium mass balance, environmental load reduction, etc.) in nuclear fuel cycles, to examine the state of future reactor types or recycling facilities. In 2003, as for this code, calculation functions of automatic adjustment of FR capacity, LWR's recovery minor actinide (MA) recycling, were added, and the I/O function was improved according to it. Moreover, benchmark calculation to the extended amount analysis code was performed using the other tool, and it was confirmed that mass balance was calculated appropriately. Furthermore, the mass balance of a few typical FR cycle concepts was calculated with this analysis code, and the further of each concept was clarified. (author)

  8. Innovation in the fuel cycle industry

    International Nuclear Information System (INIS)

    Lamorlette, Guy

    1998-01-01

    The fuel cycle industry will have to adapt to the production of new fuel and in the same time will have to improve its performance. Innovation will be a key factor of success. Innovation must be driven by the needs of the fuel cycle industry to achieve. The fuel cycle requirement of tomorrow, Innovative processes for mining high grade uranium, Innovative enrichment process, Sorting the pellets at Melox plant, Innovation in action, and Innovative waste management in la Hague are presented. A number of innovative solutions are already implemented and are in action on industrial facilities. As problems are becoming more and more tough to address, international cooperation will be required. The fuel cycle industry, as a part of the nuclear power industry, is committed to seek improvements through performance upgrade and innovation. (Cho. G. S.). 10 refs., 4 figs

  9. Factors determining the long term back end nuclear fuel cycle strategy and future nuclear systems. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2002-05-01

    The Technical Committee Meeting (TCM) was held in Vienna on 8-10 November 1999; it was organized by the International Atomic Energy Agency and attended by 26 participants from 16 Member States. The purpose of the meeting was to exchange information among experts on the back end fuel cycle strategies adopted by Member States; to identify key factors determining the long-term back end fuel cycle strategies; and to assess the applicability of these factors to future nuclear systems. Issues associated with the back end fuel cycle supporting a country's nuclear power programme are technical, economic, institutional and political. This TCM provided an opportunity to address these issues and their impacts to the back end fuel cycles, as well as to identify and assess factors affecting the back end fuel cycle strategies. The discussion was organized ib the following topical sessions: the nuclear fuel cycle; spent fuel management; waste management and repository; plutonium management. This document contains a summary of the meeting and 22 individual papers presented by participants. Each of the papers was indexed separately

  10. Factors determining the long term back end nuclear fuel cycle strategy and future nuclear systems. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    The Technical Committee Meeting (TCM) was held in Vienna on 8-10 November 1999; it was organized by the International Atomic Energy Agency and attended by 26 participants from 16 Member States. The purpose of the meeting was to exchange information among experts on the back end fuel cycle strategies adopted by Member States; to identify key factors determining the long-term back end fuel cycle strategies; and to assess the applicability of these factors to future nuclear systems. Issues associated with the back end fuel cycle supporting a country's nuclear power programme are technical, economic, institutional and political. This TCM provided an opportunity to address these issues and their impacts to the back end fuel cycles, as well as to identify and assess factors affecting the back end fuel cycle strategies. The discussion was organized ib the following topical sessions: the nuclear fuel cycle; spent fuel management; waste management and repository; plutonium management. This document contains a summary of the meeting and 22 individual papers presented by participants. Each of the papers was indexed separately.

  11. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  12. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  13. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    International Nuclear Information System (INIS)

    Forsberg, C.; Miller, W.F.

    2013-01-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state

  14. Transportation risks in the US nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rhoads, R.E.; Andrews, W.B.

    1980-01-01

    Estimated risks associated with accidental releases of materials transported for each step of the nuclear fuel cycle are presented. The risk estimates include both immediate and latent fatilities caused by releases of these materials in transportation accidents. Studies of the risk of transporting yellowcake, fresh nuclear and low level wastes from the front end of the fuel cycle have not been completed. Existing information does permit estimates of the risks to be made. The estimates presented result from the very low hazards associated with release of these materials. These estimates are consistent with the results of other studies. The results show that risks from all the fuel cycle transportation steps are low. The results also indicate that the total transportation risks associated with the nuclear fuel cycle are distributed about evenly between the fuel supply end and waste management end of the cycle. Risks in the front end of the cycle result primarily from the chemical toxicity of the materials transported. The results of the risk analysis studies for transportation of nuclear fuel cycle materials are compared with the results for the three studies that have been completed for non-nuclear systems. The risk analysis methodology used in these studies identifies the complete spectrum of potential accident consequences and estimates the probability of events producing that level of consequence. The maximum number of fatalities predicted for each material is presented. A variety of risk measures have been used because of the inherent difficulties in making risk comparisons. Examination of a number of risk measures can provide additional insights and help guard against conclusions that are dependent on the way the risk information has been developed and displayed. The results indicate that the risks from transporting these materials are all relatively low in comparison to other risks in society

  15. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  16. System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Adam David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mohagheghi, Amir H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cohn, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, Douglas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DeMenno, Mercy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Maikael A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Ethan Rutledge [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Mancel Jordan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeantete, Brian A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) and system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.

  17. Development of fuel cycle technology for molten-salt reactor systems

    International Nuclear Information System (INIS)

    Uhlir, J.

    2006-01-01

    Full text: Full text: The Molten-Salt Reactor (MSR) represents one of promising advanced reactor type assigned to the GEN IV reactor systems. It can be operated either as thorium breeder within the Th -133U fuel cycle or as actinide transmuter incinerating transuranium fuel. Essentially the main advantage of MSR comes out from the prerequisite, that this reactor type should be directly connected with the 'on-line' reprocessing of circulating liquid (molten-salt) fuel. This principle should allow very effective extraction of freshly constituted fissile material (233U). Besides, the on-line fuel salt clean up is necessary within a long run to keep the reactor in operation. As a matter of principle, it permits to clear away typical reactor poisons like xenon, krypton, lanthanides etc. and possibly also other products of burned plutonium and transmuted minor actinides. The fuel salt clean up technology should be linked with the fresh MSR fuel processing to continuously refill the new fuel (thorium or transuranics) into the reactor system. On the other hand, the technologies of fresh transuranium molten-salt fuel processing from the current LWR spent fuel and of the on-line reprocessing of MSR fuel represent two killing points of the whole MSR technology, which have to be successfully solved before MSR deployment in the future. There are three main pyrochemical partitioning techniques proposed for processing and/or reprocessing of MSR fuel: Fluoride volatilization processes, Molten salt / liquid metal extraction processes and Electrochemical separation processes. Two of them - Fluoride Volatility Method and Electrochemical separation process from fluoride media are under development in the Nuclear Research Institute Rez pic. R and D in the field of Fluoride Volatility Method is concentrated to the development and verification of experimental semi-pilot technology for LWR spent fuel reprocessing, which may result in a product the form and composition of which might be

  18. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  19. Fuel cycle cost analysis on molten-salt reactors

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro

    1976-01-01

    An evaluation is made of the fuel cycle costs for molten-salt reactors (MSR's), developed at Oak Ridge National Laboratory. Eight combinations of conditions affecting fuel cycle costs are compared, covering 233 U-Th, 235 U-Th and 239 Pu-Th fuels, with and without on-site continuous fuel reprocessing. The resulting fuel cycle costs range from 0.61 to 1.18 mill/kWh. A discussion is also given on the practicability of these fuel cycles. The calculations indicate that somewhat lower fuel cycle costs can be expected from reactor operation in converter mode on 235 U make-up with fuel reprocessed in batches every 10 years to avoid fission product precipitation, than from operation as 233 U-Th breeder with continuous reprocessing. (auth.)

  20. Advanced fuel cycles and burnup increase of WWER-440 fuel

    International Nuclear Information System (INIS)

    Proselkov, V.; Saprykin, V.; Scheglov, A.

    2003-01-01

    Analyses of operational experience of 4.4% enriched fuel in the 5-year fuel cycle at Kola NPP Unit 3 and fuel assemblies with Uranium-Gadolinium fuel at Kola NPP Unit 4 are made. The operability of WWER-440 fuel under high burnup is studied. The obtained results indicate that the fuel rods of WWER-440 assemblies intended for operation within six years of the reviewed fuel cycle totally preserve their operability. Performed analyses have demonstrated the possibility of the fuel rod operability during the fuel cycle. 12 assemblies were loaded into the reactor unit of Kola 3 in 2001. The predicted burnup in six assemblies was 59.2 MWd/kgU. Calculated values of the burnup after operation for working fuel assemblies were ∼57 MWd/kgU, for fuel rods - up to ∼61 MWd/kgU. Data on the coolant activity, specific activity of the benchmark iodine radionuclides of the reactor primary circuit, control of the integrity of fuel rods of the assemblies that were operated for six years indicate that not a single assembly has reached the criterion for the early discharge

  1. Nuclear Fuel Cycle Evaluation and Real Options

    Directory of Open Access Journals (Sweden)

    L. Havlíček

    2008-01-01

    Full Text Available The first part of this paper describes the nuclear fuel cycle. It is divided into three parts. The first part, called Front-End, covers all activities connected with fuel procurement and fabrication. The middle part of the cycle includes fuel reload design activities and the operation of the fuel in the reactor. Back-End comprises all activities ensuring safe separation of spent fuel and radioactive waste from the environment. The individual stages of the fuel cycle are strongly interrelated. Overall economic optimization is very difficult. Generally, NPV is used for an economic evaluation in the nuclear fuel cycle. However the high volatility of uranium prices in the Front-End, and the large uncertainty of both economic and technical parameters in the Back-End, make the use of NPV difficult. The real option method is able to evaluate the value added by flexibility of decision making by a company under conditions of uncertainty. The possibility of applying this method to the nuclear fuel cycle evaluation is studied. 

  2. Analysis of environmental friendliness of DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong

    2001-07-01

    Some properties of irradiated DUPIC fuels are compared with those of other fuel cycles. It was indicated that the toxicity of the DUPIC option based on 1 GWe-yr is much smaller than those of other fuel cycle options, and is just about half the order of magnitude of other fuel cycles. From the activity analysis of 99 Tc and 237 Np, which are important to the long-term transport of fission products stored in geologic media, the DUPIC option, was being contained only about half of those other options. It was found from the actinide content estimation that the MOX option has the lowest plutonium arising based on 1 GWe-year and followed by the DUPIC option. However, fissile Pu content generated in the DUPIC fuel was the lowest among the fuel cycle options. From the analysis of radiation barrier in proliferation resistance aspect, the fresh DUPIC fuel can play a radiation barrier part, better than CANDU spent fuels as well as fresh MOX fuel. It is indicated that the DUPIC fuel cycle has the excellent resistance to proliferation, compared with an existing reprocessing option and CANDU once-through option. In conclusions, DUPIC fuel cycle would have good properties on environmental effect and proliferation resistance, compared to other fuel cycle cases

  3. Overview of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Knief, R.A.

    1978-01-01

    The nuclear fuel cycle is substantially more complicated than the energy production cycles of conventional fuels because of the very low abundance of uranium 235, the presence of radioactivity, the potential for producing fissile nuclides from irradiation, and the risk that fissile materials will be used for nuclear weapons. These factors add enrichment, recycling, spent fuel storage, and safeguards to the cycle, besides making the conventional steps of exploration, mining, processing, use, waste disposal, and transportation more difficult

  4. High conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1975-01-01

    This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilisation of the high conversion potential are compared with others that aim at easier reprocessing and the 'environmental' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (orig./UA) [de

  5. Partially closed fuel cycle of WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2002-01-01

    Position of nuclear energy at the energy sources competition is characterised briefly. Multi-tier transmutation system is outlined out as effective back-end solution and consequently as factor that can increase nuclear energy competitiveness. LWR and equivalent WWER are suggested as a first tier reactors. Partially closed fuel cycle with combined fuel assemblies is briefed. Main back-end effects are characterised (Authors)

  6. Flexible fuel cycle system for the transition from LWR to FBR

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Yamashita, Junichi; Hoshino, Kuniyoshi; Sasahira, Akira; Inoue, Tadashi; Minato, Kazuo; Sato, Seichi

    2009-01-01

    Japan will deploy commercial fast breeder reactor (FBR) from around 2050 under the suitable conditions for the replacement of light water reactor (LWR) with FBR. The transition scenario from LWR to FBR is investigated in detail and the flexible fuel cycle initiative (FFCI) system has been proposed as a optimum transition system. The FFCI removes ∼95% uranium from LWR spent fuel (SF) in LWR reprocessing and residual material named Recycle Material (RM), which is ∼1/10 volume of original SF and contains ∼50% U, ∼10% Pu and ∼40% other nuclides, is treated in FBR reprocessing to recover Pu and U. If the FBR deployment speed becomes lower, the RM will be stored until the higher speed again. The FFCI has some merits compared with ordinary system that consists of full reprocessing facilities for both LWR and FBR SF during the transition period. The economy is better for FFCI due to the smaller LWR reprocessing facility (no Pu/U recovery and fabrication). The FFCI can supply high Pu concentration RM, which has high proliferation resistance and flexibly respond to FBR introduction rate changes. Volume minimization of LWR SF is possible for FFCI by its conversion to RM. Several features of FFCI were quantitatively evaluated such as Pu mass balance, reprocessing capacities, LWR SF amounts, RM amounts, and proliferation resistance to compare the effectiveness of the FFCI system with other systems. The calculated Pu balance revealed that the FFCI could supply enough but no excess Pu to FBR. These evaluations demonstrated the applicability of FFCI system to the transition period from LWR to FBR cycles. (author)

  7. Romanian nuclear fuel cycle development

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Comsa, Olivia

    1998-01-01

    Romanian decision to introduce nuclear power was based on the evaluation of electricity demand and supply as well as a domestic resources assessment. The option was the introduction of CANDU-PHWR through a license agreement with AECL Canada. The major factors in this choice have been the need of diversifying the energy resources, the improvement the national industry and the independence of foreign suppliers. Romanian Nuclear Power Program envisaged a large national participation in Cernavoda NPP completion, in the development of nuclear fuel cycle facilities and horizontal industry, in R and D and human resources. As consequence, important support was being given to development of industries involved in Nuclear Fuel Cycle and manufacturing of equipment and nuclear materials based on technology transfer, implementation of advanced design execution standards, QA procedures and current nuclear safety requirements at international level. Unit 1 of the first Romanian nuclear power plant, Cernavoda NPP with a final profile 5x700 Mw e, is now in operation and its production represents 10% of all national electricity production. There were also developed all stages of FRONT END of Nuclear Fuel Cycle as well as programs for spent fuel and waste management. Industrial facilities for uranian production, U 3 O 8 concentrate, UO 2 powder and CANDU fuel bundles, as well as heavy water plant, supply the required fuel and heavy water for Cernavoda NPP. The paper presents the Romanian activities in Nuclear Fuel Cycle and waste management fields. (authors)

  8. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  9. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    fulfill its mission that is to contribute in improving the quality of life of the Brazilian people. The nuclear fuel cycle is a series of steps involved in the production and use of fuel for nuclear reactors. The Laboratories of Chemistry and Environmental Diagnosis Center, CQMA, support the demand of Nuclear Fuel Cycle Program providing chemical characterization of uranium compounds and other related materials. In this period the Research Reactor Center (CRPq) concentrated efforts on improving equipment and systems to enable the IEA-R1 research reactor to operate at higher power, increasing the capacity of radioisotopes production, samples irradiation, tests and experiments. (author)

  10. Alternative nuclear fuel cycle arrangements for proliferation resistance: an overview of regulatory factors

    International Nuclear Information System (INIS)

    O'Brien, J.N.

    1982-08-01

    President Carter proposed the International Fuel Cycle Evaluation to analyze various alternative fuel cycles which could minimize the risk of nuclear weapons proliferation. DOE also initiated the Non-Proliferation Alternative Systems Assessment Program. In response to GAO contentions that NRC was not sufficiently involved in these two assessments, a NRC study was initiated, with emphasis on legal and institutional factors. Objectives were to examine multinational fuel cycle facilities, potential effects on the US/IAEA agreement, development of an algorithm for ranking potential fuel cycles, and potential licensing of candidate fuel cycles. This anthology represents the products of this study which has been conducted between 1979 and 1981

  11. Logistics of the research reactor fuel cycle: AREVA solutions

    International Nuclear Information System (INIS)

    Ohayon, David; Halle, Laurent; Naigeon, Philippe; Falgoux, Jean-Louis; Franck Obadia, Franck; Auziere, Philippe

    2005-01-01

    The AREVA Group Companies offer comprehensive solutions for the entire fuel cycle of Research Reactors comply with IAEA standards. CERCA and Cogema Logistics have developed a full partnership in the front end cycle. In the field of uranium CERCA and Cogema Logistics have the long term experience of the shipment from Russia, USA to the CERCA plant.. Since 1960, CERCA has manufactured over 300,000 fuel plates and 15,000 fuel elements of more than 70 designs. These fuel elements have been delivered to 40 research reactors in 20 countries. For the Back-End stage, Cogema and Cogema Logistics propose customised solutions and services for international shipments. Cogema Logistics has developed a new generation of packaging to meet the various needs and requirements of the Laboratories and Research Reactors all over the world, and complex regulatory framework. Comprehensive assistance dedicated, services, technical studies, packaging and transport systems are provided by AREVA for every step of research reactor fuel cycle. (author)

  12. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  13. Physics characteristics of CANDU cores with advanced fuel cycles

    International Nuclear Information System (INIS)

    Garvey, P.M.

    1985-01-01

    The current generation of CANDU reactors, of which some 20 GWE are either in operations or under construction worldwide, have been designed specifically for the natural uranium fuel cycle. The CANDU concept, due to its D 2 O coolant and moderator, on-power refuelling and low absorption structural materials, makes the most effective utilization of mined uranium of all currently commercialized reactors. An economic fuel cycle cost is also achieved through the use of natural uranium and a simple fuel bundle design. Total unit energy costs are achieved that allow this reactor concept to effectively compete with other reactor types and other forms of energy production. There are, however, other fuel cycles that could be introduced into this reactor type. These include the slightly enriched uranium fuel cycle, fuel cycles in which plutonium is recycled with uranium, and the thorium cycle in which U-233 is recycled. There is also a special range of fuel cycles that could utilize the spent fuel from LWR's. Two specific variants are a fuel cycle that only utilizes the spent uranium, and a fuel cycle in which both the uranium and plutonium are recycled into a CANDU. For the main part these fuel cycles are characterized by a higher initial enrichment, and hence discharge burnup, than the natural uranium cycle. For these fuel cycles the main design features of both the reactor and fuel bundle would be retained. Recently a detailed study of the use in a CANDU of mixed plutonium and uranium oxide fuel from an LWR has been undertaken by AECL. This study illustrates many of the generic technical issues associated with the use of Advanced Fuel Cycles. This paper will report the main findings of this evaluation, including the power distribution in the reactor and fuel bundle, the choice of fuel management scheme, and the impact on the control and safety characteristics of the reactor. These studies have not identified any aspects that significantly impact upon the introduction of

  14. Compound process fuel cycle concept

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2005-01-01

    Mass flow of light water reactor spent fuel for a newly proposed nuclear fuel cycle concept 'Compound Process Fuel Cycle' has been studied in order to assess the capacity of the concept for accepting light water reactor spent fuels, taking an example for boiling water reactor mixed oxide spent fuel of 60 GWd/t burn-up and for a fast reactor core of 3 GW thermal output. The acceptable heavy metal of boiling water reactor mixed oxide spent fuel is about 3.7 t/y/reactor while the burn-up of the recycled fuel is about 160 GWd/t and about 1.6 t/y reactor with the recycled fuel burn-up of about 300 GWd/t, in the case of 2 times recycle and 4 times recycle respectively. The compound process fuel cycle concept has such flexibility that it can accept so much light water reactor spent fuels as to suppress the light water reactor spent fuel pile-up if not so high fuel burn-up is expected, and can aim at high fuel burn-up if the light water reactor spent fuel pile-up is not so much. Following distinctive features of the concept have also been revealed. A sort of ideal utilization of boiling water reactor mixed oxide spent fuel might be achieved through this concept, since both plutonium and minor actinide reach equilibrium state beyond 2 times recycle. Changes of the reactivity coefficients during recycles are mild, giving roughly same level of reactivity coefficients as the conventional large scale fast breeder core. Both the radio-activity and the heat generation after 4 year cooling and after 4 times recycle are less than 2.5 times of those of the pre recycle fuel. (author)

  15. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  16. Comparison of potential radiological impacts of 233U and 239Pu fuel cycles

    International Nuclear Information System (INIS)

    Meyer, H.R.; Little, C.A.; Witherspoon, J.P.; Till, J.E.

    1979-01-01

    Nuclear fuel cycles utilizing 233 U are currently the subject of considerable interest in the United States. This paper focuses on the identification of significant differences between the off-site radiological hazards posed by 232 Th/ 233 U (Th/U) and 238 U/ 239 Pu (U/Pu) fuel cycles, and represents a portion of our involvement in the Nonproliferation Alternative Systems Assessment Program (NASAP), to be used in support of the International Fuel Cycle Evaluation (INFCE). The major contributors to radiological dose are likely to be uranium mining and milling (58.5% of total fuel cycle dose), reprocessing (33.9%), and light-water reactor power generation (7.3%). The remainder of the cycle, including enrichment processes, fuel fabrication, transportation, and waste management, contributes only 0.3% to total estimated fuel cycle dose

  17. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Bourg, S.; Ouvrier, N.; Combernoux, N.; Rostaing, C.; Vargas-Gonzalez, M.; Bruno, J.

    2014-01-01

    Energy perspectives for the current century are dominated by the anticipated significant increase of energy needs. Particularly, electricity consumption is anticipated to increase by a factor higher than two before 2050. Energy choices are considered as structuring political choices that implies a long-standing and stable policy based on objective criteria. LCA (life cycle analysis) is a structured basis for deriving relevant indicators which can allow the comparison of a wide range of impacts of different energy sources. Among the energy-mix, nuclear power is anticipated to have very low GHG-emissions. However, its viability is severely addressed by the public opinion after the Fukushima accident. Therefore, a global LCA of the French nuclear fuel cycle was performed as a reference model. Results were compared in terms of impact with other energy sources. It emphasized that the French nuclear energy is one of the less impacting energy, comparable with renewable energy. In a second, part, the French scenario was compared with an equivalent open fuel cycle scenario. It demonstrates that an open fuel cycle would require about 16% more natural uranium, would have a bigger environmental footprint on the “non radioactive indicators” and would produce a higher volume of high level radioactive waste. - Highlights: • A life cycle analysis of the French close nuclear fuel cycle is performed. • The French nuclear energy is one of the less environmental impacting energy. • The French close fuel cycle is compared to an equivalent open fuel cycle. • An open fuel cycle would have a bigger environmental impact than the French fuel cycle. • Spent nuclear fuel recycling has a positive impact on the environmental footprint

  18. Transition analysis of promising U.S. future fuel cycles using ORION - 5114

    International Nuclear Information System (INIS)

    Sunny, E.; Worrall, A.; Peterson, J.; Powers, J.; Gehin, J.

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E/S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E/S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups and evaluating their performance according to a set of 22 standardized metrics. Following the E/S study, additional studies are being conducted to assess transition period from the current US fuel cycle to future fuel cycle options identified by the E/S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle - the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs) - to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle. (authors)

  19. Fuel cycle centers revisited: Consolidation of fuel cycle activities in a few countries

    International Nuclear Information System (INIS)

    Kratzer, M.B.

    1996-01-01

    Despite varied expressions, the general impression remains that the international fuel cycle center concept, whatever its merits, is visionary. It also is quite possibly unattainable in light of strong national pressures toward independence and self-sufficiency in all things nuclear. Is the fuel cycle center an idea that has come and gone? Is it an idea whose time has not yet come? Or is it, as this paper suggests, an idea that has already arrived on the scene, attracting little attention or even acknowledgement of its presence? The difficult in answering this questions arises, in part, from the fact that despite its long and obvious appeal, there has been very little systematic analysis of the concept itself. Such obvious questions as how many and where fuel cycle centers should be located; what characteristics should the hot country or countries possess; and what are the institutional forms or features that endow the concept with enhanced proliferation protection have rarely been seriously and systematically addressed. The title of this paper focuses on limiting the geographic spread of fuel cycle facilities, and some may suggest that doing so does not necessarily call for any type of international or multinational arrangements applicable to those that exist. It is a premise of this paper, however, that a restriction on the number of countries possessing sensitive fuel cycle facilities necessarily involves some degree of multinationalization. This is not only because in every instance a nonproliferation pledge and international or multinational safeguards, or both, will be applied to the facility, but also because a restriction on the number of countries possessing these facilities implies that those in existence will serve a multinational market. This feature in itself is an important form of international auspices. Thus, the two concepts--limitation and multinationalization--if not necessarily one and the same, are at least de facto corollaries

  20. Rapsodie: A closed fuel cycle

    International Nuclear Information System (INIS)

    Levallet, E.H.; Costa, L.; Mougniot, J.C.; Robin, J.

    1977-01-01

    The Fortissimo Version of the core of the RAPSODIE fast reactor produces 40 MWTh. Since its start up in May 1970 in the CEN-CADARACHE its availability has stayed around 85%. Some of the mixed oxyde fuel pins UO 2 - 30% PuO 2 have already reached 150.000 MWd/t. The reprocessing is done in the pilot plant located in the La Hague Center and the plutonium obtained has already been re-used in the reactor. The Rapsodie-Fortissimo cycle is therefore now a closed cycle. This cycle is quite representative of fast reactor cycle characteristics and thus provides a remarkable research and development tool for the study of fabrication, in-reactor performances, transport, storage and reprocessing. These studies concern in particular the evolution of fission products and heavy isotopes content in fuel which controls both reprocessing schemes and intensity of emitted radiations. A program for the analysis of irradiated fuel has been developed either using samples collected all along the cycle, or following the actual reprocessing subassemblies. A set of basic data and calculation models has been established with two objectives: to give a better interpretation of the experimental program on one hand, and to extrapolate these results to the fuel cycle of fast reactors in general on the other hand. The first results have been quite encouraging up to now [fr

  1. Back-end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Choi, J.S.

    2002-01-01

    Current strategies of the back-end nuclear fuel cycles are: (1) direct-disposal of spent fuel (Open Cycle), and (2) reprocessing of the spent fuel and recycling of the recovered nuclear materials (Closed Cycle). The selection of these strategies is country-specific, and factors affecting selection of strategy are identified and discussed in this paper. (author)

  2. International nuclear fuel cycle fact book. Revision 6

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2

  3. Present condition of survey research on actualization strategy of fast breeder reactor (FBR) cycling. Design research on fuel production system

    International Nuclear Information System (INIS)

    Tanaka, Kenya

    2001-01-01

    The fuel production system design investigation was performed for construction of fuel production process concept and plant image searching for the targets such as economics, environmental loading reduction, and so on required for practical use of FBR fuel recycling at a premise of safety security. By expectation of economics as a fuel cycling system, enhancement of nuclear proliferation resistance, and so on, it becomes more important to investigate on a fuel cycling system suitable for raw materials with low decontamination and high radiation intensity. In addition, it is also necessary to carry out investigation on fuel production system concept accompanies with MA recycling system for reduction of environmental loading. Therefore, investigation objects on the system were laid their fundamental processes on denitrification conversion/pelletizing process and gelation/vibration filling process for raw material solution from advancing wet reprocessing and on vibration filling process for oxide granules obtained from dry reprocessing system and casting method for metal fuels. As a result, for the pollution removal fuel production system suitable for either of wet/dry reprocessing, a mass-production scale production plant image was elucidated at a premise of production yield, realizability of remote automation system, and so on. On candidate concepts of every fuel production system, no fatal defect was found on results of outline evaluation on features of system such as production facility scale and so on before present stage. (G.K.)

  4. Actinide recycling by pyro process for future nuclear fuel cycle system

    International Nuclear Information System (INIS)

    Inoue, T.

    2001-01-01

    Pyrometallurgical technology is one of the potential devices for the future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required. So as to satisfy the requirements, actinide recycling applicable to LWR and FBR cycles by pyro-process has been developed over a ten-year period at the CRIEPI. The main technology is electrorefining for U and Pu separation and reductive extraction for TRU separation, which can be applied on oxide fuels through reduction process as well as metal fuels. The application of this technology for separation of TRU in HLLW through chlorination could contribute to the improvement of public acceptance with regard to geologic disposal. The main achievements are summarised as follows: - Elemental technologies such as electrorefining, reductive extraction, injection casting and salt waste treatment and solidification have been successfully developed with lots of experiments. - Fuel dissolution into molten salt and uranium recovery on solid cathode for electrorefining has been demonstrated at an engineering scale facility in Argonne National Laboratory using spent fuels and at the CRIEPI through uranium tests. - Single element tests using actinides showed Li reduction to be technically feasible; the subjects of technical feasibility on multi-element systems and on effective recycle of Li by electrolysis of Li 2 O remain to be addressed. - Concerning the treatment of HLLW for actinide separation, the conversion to chlorides through oxides has also been established through uranium tests. - It is confirmed that more than 99% of TRU nuclides can be recovered from high-level liquid waste by TRU tests. - Through these studies, the process flowsheets for reprocessing of metal and oxide fuels and for partitioning of TRU separation have been established. The subjects to be emphasised for further development are classified into three categories: process development (demonstration

  5. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    International Nuclear Information System (INIS)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.; Park, T. K.; Deng, P.; Yang, G.; Jung, Y. S.; Kim, T. K.; Stauff, N. E.

    2016-01-01

    This report presents the performance characteristics of two ''two-stage'' fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  6. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  7. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    Energy Technology Data Exchange (ETDEWEB)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  8. Nuclear fuel cycle and its supply industrial system

    Energy Technology Data Exchange (ETDEWEB)

    Takei, M [Japan Energy Economic Research Inst., Tokyo

    1976-04-01

    This paper discusses problems about the supply and costs of nuclear fuel cycle referring to the discussions of IAEA's Advisory Group Meeting. As for natural uranium resources, prospect is given to the demand, supply, and cost trend up to 2000. As for uranium enrichment, the increasing capacity is compared with the projected demand. The comparison of cost characteristics between diffusion and centrifuge plants is presented with respect to plant scale, investment cost, electric power cost, and operation and maintenance cost. The fabrication cost for fuel is analyzed, and it is suggested that some cost down can be expected for the future. As for the mixed oxide fuel fabrication, the capacity in each country and the estimated fabrication costs for PWR, prototype fast breeder reactor and commercial fast breeder reactor are presented. As for reprocessing, the shortage of supply capacity and the needs for more storage capacity are emphasized. The estimated reprocessing cost for a new plant is also presented. Finally, the present status and future trend of fuel storage in each major country are reviewed.

  9. Perspectives and benefits of the non-proliferating fuel cycle

    International Nuclear Information System (INIS)

    Parker, F.

    2012-01-01

    The world community has faced the issues of nuclear non-proliferation for decades. Frank Parker, Emeritus Distinguished Professor at Vanderbilt University, has proposed a non-proliferating fuel cycle, which greatly reduces the risk of use of nuclear materials for military purpose. A simplified fuel cycle with reduced opportunities for proliferation of nuclear weapons and permanent disposal of radioactive wastes as well as a reference sub-seabed HLW disposal system are described [ru

  10. The high temperature reactor and its fuel cycle options

    International Nuclear Information System (INIS)

    1979-07-01

    The status of the HTR system in the Federal Republic of Germany as well as the consecutive steps and the probable cost of further development are presented. The considerations are based on a recycling Th/highly enriched uranium (HEU) fuel cycle which has been chosen as the main line of the German HTR R and D efforts. Alternative fuel cycles such as medium-enriched uranium (MEU) and low-enriched uranium (LEU) are discussed as well

  11. Introductory remarks about the international fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.

    1989-01-01

    The reason why nuclear power has promise is because of the promise of its fuel cycle. The fuel cycle is in fairly good shape and has demonstrated the characteristics of good economics, good general characterization, and good maintenance of the various parts of the fuel cycle. The thermal recycling of fuel is an area in which the economics have changed to the point that, at least in many parts of the world, it's no longer economical

  12. Fusion fuel cycle: material requirements and potential effluents

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described

  13. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  14. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  15. Regulation of fuel cycle facilities in the UK

    International Nuclear Information System (INIS)

    Ascroft-Hutton, H.W.

    2001-01-01

    The UK has facilities for the production of uranium hexafluoride, its enrichment, conversion into fuel and for the subsequent reprocessing of irradiated fuel and closure of the fuel cycle. All of these facilities must be licensed under UK legislation. HM Nuclear Installations Inspectorate has delegated powers to issue the licence and to attach any conditions it considers necessary in the interests of safety. The fuel cycle facilities in the UK have been licensed since 1971. This paper describes briefly the UK nuclear regulatory framework and the fuel cycle facilities involved. It considers the regulatory practices adopted together with similarities and differences between regulation of fuel cycle facilities and power reactors. The safety issues associated with the fuel cycle are discussed and NII's regulatory strategy for these facilities is set out. (author)

  16. International nuclear fuel cycle fact book. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  17. Social awareness on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Tanigaki, Toshihiko

    2006-01-01

    In the present we surveyed public opinion regarding the nuclear fuel cycle to find out about the social awareness about nuclear fuel cycle and nuclear facilities. The study revealed that people's image of nuclear power is more familiar than the image of the nuclear fuel cycle. People tend to display more recognition and concern towards nuclear power and reprocessing plants than towards other facilities. Comparatively speaking, they tend to perceive radioactive waste disposal facilities and nuclear power plants as being highly more dangerous than reprocessing plants. It is found also that with the exception of nuclear power plants don't know very much whether nuclear fuel cycle facilities are in operation in Japan or not. The results suggests that 1) the relatively mild image of the nuclear fuel cycle is the result of the interactive effect of the highly dangerous image of nuclear power plants and the less dangerous image of reprocessing plants; and 2) that the image of a given plant (nuclear power plant, reprocessing plant, radioactive waste disposal facility) is influenced by the fact of whether the name of the plant suggests the presence of danger or not. (author)

  18. Reference thorium fuel cycle

    International Nuclear Information System (INIS)

    Driggers, F.E.

    1978-08-01

    In the reference fuel cycle for the TFCT program, fissile U will be denatured by mixing with 238 U; the plants will be located in secure areas, with Pu being recycled within these secure areas; Th will be recycled with recovered U and Pu; the head end will handle a variety of core and blanket fuel assembly designs for LWRs and HWRs; the fuel may be a homogeneous mixture either of U and Th oxide pellets or sol-gel microspheres; the cladding will be Zircaloy; and MgO may be added to the fuel to improve Th dissolution. Th is being considered as the fertile component of fuel in order to increase proliferation resistance. Spent U recovered from Th-based fuels must be re-enriched before recycle to prevent very rapid buildup of 238 U. Stainless steel will be considered as a backup to Zircaloy cladding in case Zr is incompatible with commercial aqueous dissolution. Storage of recovered irradiated Th will be considered as a backup to its use in the recycle of recovered Pu and U. Estimates are made of the time for introducing the Th fuel cycle into the LWR power industry. Since U fuel exposures in LWRs are likely to increase from 30,000 to 50,000 MWD/MT, the Th reprocessing plant should also be designed for Th fuel with 50,000 MWD/MT exposure

  19. Aspects of the fast reactors fuel cycle

    International Nuclear Information System (INIS)

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  20. Ecological effects of fuel cycle activities

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L; Cada, G; Kroodsma, R; Shriner, D; Tolbert, V; Turner, R

    1994-07-01

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO{sub 2}-induced global climate change are beyond the scope of this paper and are not discussed.

  1. Ecological effects of fuel cycle activities

    International Nuclear Information System (INIS)

    Barnthouse, L.; Cada, G.; Kroodsma, R.; Shriner, D.; Tolbert, V.; Turner, R.

    1994-01-01

    The purpose of this paper is to summarize the approach used to characterize ecological impacts of the coal fuel cycle. The same approach is used for many of the impacts in other fuel cycles as well. The principal analytical approach being used in the study is an accounting framework - that is, a series of matrices that map each phase of the fuel cycle to a suite of possible. emissions, each emission to a suite of impact categories, and each impact category to an external cost. This paper summarizes the ecological impacts of all phases of the coal fuel cycle, defines the ecological impact categories used in the study's 'accounting framework', and discusses alternative approaches to quantification. Externalities associated with CO 2 -induced global climate change are beyond the scope of this paper and are not discussed

  2. Safety of fuel cycle facilities. Topical issues paper no. 3

    International Nuclear Information System (INIS)

    Ranguelova, V.; Niehaus, F.; Delattre, D.

    2001-01-01

    A wide range of nuclear fuel cycle facilities are in operation. These installations process, use, store and dispose of radioactive material and cover: mining and milling, conversion, enrichment, fuel fabrication (including mixed oxide fuel), reactor, interim spent fuel storage, reprocessing, waste treatment and waste disposal facilities. For the purposes of this paper, reactors and waste disposal facilities are not considered. The term 'fuel cycle facilities' covers only the remainder of the installations listed above. The IAEA Secretariat maintains a database of fuel cycle facilities in its Member States. Known as the Nuclear Fuel Cycle Information System (NFCIS), it is available as an on-line service through the Internet. More than 500 such facilities have been reported under this system. The facilities are listed by facility type and operating status. Approximately one third of all of the facilities are located in developing States. About half of all facilities are reported to be operating, of which approximately 40% are operating in developing States. In addition, some 60 facilities are either in the design stage or under construction. Although the radioactive source term for most fuel cycle facilities is lower than the source term for reactors, which results in less severe consequences to the public from potential accidents at these fuel cycle installations, recent events at some fuel cycle facilities have given rise to public concern which has to be addressed adequately by national regulatory bodies and at the international level. Worldwide, operational experience feedback warrants improvements in the safety of these facilities. Some of the hazards are similar for reactor and non-reactor facilities. However, the differences between these installations give rise to specific safety concerns at fuel cycle facilities. In particular, these concerns include: criticality, radiation protection of workers, chemical hazards, fire and explosion hazards. It is recognized

  3. Serving the fuel cycle: preparing tomorrow's packagings

    International Nuclear Information System (INIS)

    Roland, V.

    2001-01-01

    The main fleet of transport packagings serving today the fuel cycle was born more than 20 years ago. Or was it they? The present paper will show that serving the fuel cycle by preparing tomorrow's logistics is actually an on-going process, rather than a rupture. We shall review the great packagings of the fuel cycle: In the front end, the major actors are the UF 4 , UF 6 , enriched UF 6 , UO 2 powders, fresh fuel packagings. In the back end of the fuel cycle, we find the dry transport casks of the TN-12, TN-17, TN-13, family and also the Excellox wet flasks. In the waste management, a whole fleet of containers, culminating in the TN Gemini, are available or being created. (author)

  4. Nuclear fuel cycle information workshop

    International Nuclear Information System (INIS)

    1983-01-01

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US

  5. Proceeding of the Fifth Scientific Presentation on Nuclear Fuel Cycle: Development of Nuclear Fuel Cycle Technology in Third Millennium

    International Nuclear Information System (INIS)

    Suripto, A.; Sastratenaya, A.S.; Sutarno, D.

    2000-01-01

    The proceeding contains papers presented in the Fifth Scientific Presentation on Nuclear Fuel Element Cycle with theme of Development of Nuclear Fuel Cycle Technology in Third Millennium, held on 22 February in Jakarta, Indonesia. These papers were divided by three groups that are technology of exploration, processing, purification and analysis of nuclear materials; technology of nuclear fuel elements and structures; and technology of waste management, safety and management of nuclear fuel cycle. There are 35 papers indexed individually. (id)

  6. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    International Nuclear Information System (INIS)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing

  7. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  8. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    International Nuclear Information System (INIS)

    Djokic, D.; Piet, S.; Pincock, L.; Soelberg, N.

    2013-01-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  9. Survey of nuclear fuel cycle economics: 1970--1985

    International Nuclear Information System (INIS)

    Prince, B.E.; Peerenboom, J.P.; Delene, J.G.

    1977-03-01

    This report is intended to provide a coherent view of the diversity of factors that may affect nuclear fuel cycle economics through about 1985. The nuclear fuel cycle was surveyed as to past trends, current problems, and future considerations. Unit costs were projected for each step in the fuel cycle. Nuclear fuel accounting procedures were reviewed; methods of calculating fuel costs were examined; and application was made to Light Water Reactors (LWR) over the next decade. A method conforming to Federal Power Commission accounting procedures and used by utilities to account for backend fuel-cycle costs was described which assigns a zero net salvage value to discharged fuel. LWR fuel cycle costs of from 4 to 6 mills/kWhr (1976 dollars) were estimated for 1985. These are expected to reach 6 to 9 mills/kWr if the effect of inflation is included

  10. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  11. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    Science.gov (United States)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  12. Fuel cycle model and the cost of a recycling thorium in the CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok; Park, Chang Je

    2005-01-01

    The dry process fuel technology has a high proliferation-resistance, which allows applications not only to the existing but also to the future nuclear fuel cycle systems. In this study, the homogeneous ThO 2 -UO 2 recycling fuel cycle in a Canada deuterium uranium (CANDU) reactor was assessed for a fuel cycle cost evaluation. A series of parametric calculations were performed for the uranium fraction, enrichment of the initial uranium fuel, and the fission product removal rated of the recycled fuel. The fuel cycle cost was estimated by the levelized lifetime cost model provided by the Organization for Economic Cooperation and Development/Nuclear Energy Agency. Though it is feasible to recycle the homogeneous ThO 2 -UO 2 fuel in the CANDU reactor from the viewpoint of a mass balance, the recycling fuel cycle cost is much higher than the conventional natural uranium fuel cycle cost for most cases due to the high fuel fabrication cost. (author)

  13. Argonne Fuel Cycle Facility ventilation system -- modeling and results

    International Nuclear Information System (INIS)

    Mohr, D.; Feldman, E.E.; Danielson, W.F.

    1995-01-01

    This paper describes an integrated study of the Argonne-West Fuel Cycle Facility (FCF) interconnected ventilation systems during various operations. Analyses and test results include first a nominal condition reflecting balanced pressures and flows followed by several infrequent and off-normal scenarios. This effort is the first study of the FCF ventilation systems as an integrated network wherein the hydraulic effects of all major air systems have been analyzed and tested. The FCF building consists of many interconnected regions in which nuclear fuel is handled, transported and reprocessed. The ventilation systems comprise a large number of ducts, fans, dampers, and filters which together must provide clean, properly conditioned air to the worker occupied spaces of the facility while preventing the spread of airborne radioactive materials to clean am-as or the atmosphere. This objective is achieved by keeping the FCF building at a partial vacuum in which the contaminated areas are kept at lower pressures than the other worker occupied spaces. The ventilation systems of FCF and the EBR-II reactor are analyzed as an integrated totality, as demonstrated. We then developed the network model shown in Fig. 2 for the TORAC code. The scope of this study was to assess the measured results from the acceptance/flow balancing testing and to predict the effects of power failures, hatch and door openings, single-failure faulted conditions, EBR-II isolation, and other infrequent operations. The studies show that the FCF ventilation systems am very controllable and remain stable following off-normal events. In addition, the FCF ventilation system complex is essentially immune to reverse flows and spread of contamination to clean areas during normal and off-normal operation

  14. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  15. Fuel cycle problems in fusion reactors

    International Nuclear Information System (INIS)

    Hickman, R.G.

    1976-01-01

    Fuel cycle problems of fusion reactors evolve around the breeding, recovery, containment, and recycling of tritium. These processes are described, and their implications and alternatives are discussed. Technically, fuel cycle problems are solvable; economically, their feasibility is not yet known

  16. Nonproliferation and safeguards aspects of the DUPIC fuel cycle concept

    Energy Technology Data Exchange (ETDEWEB)

    Persiani, P K [Argonne National Lab., IL (United States)

    1997-07-01

    The purpose of the study is to comment on the proliferation characteristic profiles of some of the proposed fuel cycle alternatives to help ensure that nonproliferation concerns are introduced into the early stages of a fuel cycle concept development program, and to perhaps aid in the more effective implementation of the international nonproliferation regime initiative and safeguards systems. Alternative recycle concepts proposed by several countries involve the recycle of spent fuel without the separation of plutonium from uranium and fission products. The concepts are alternatives to either the direct long-term storage deposition of or the purex reprocessing of the spent fuels. The alternate fuel cycle concepts reviewed include: the dry-recycle processes such as the direct use of reconfigured PWR spent fuel assemblies into CANDU reactors(DUPIC); low-decontamination, single-cycle co-extraction of fast reactor fuels in a wet-purex type of reprocessing; and on a limited scale the thorium-uranium fuel cycle. The nonproliferation advantages usually associated with the above non-separation processes are: the highly radioactive spent fuel presents a barrier to the physical diversion of the nuclear material; avoid the need to dissolve and chemically separate the plutonium from the uranium and fission products; and that the spent fuel isotopic quality of the plutonium vector is further degraded. Although the radiation levels and the need for reprocessing may be perceived as barriers to the terrorist or the subnational level of safeguards, the international level of nonproliferation concerns is addressed primarily by material accountancy and verification activities. On the international level of nonproliferation concerns, the non-separation fuel cycle concepts involved have to be evaluated on the bases of the impact the processes may have on nuclear materials accountancy. (author).

  17. Status and development of the thorium fuel cycle

    International Nuclear Information System (INIS)

    Yi Weijing; Wei Renjie

    2003-01-01

    A perspective view of the thorium fuel cycle is provided in this paper. The advantages and disadvantages of the thorium fuel cycle are given and the development of thorium fuel cycle in several types of reactors is introduced. The main difficulties in developing the thorium fuel cycle lie in the reprocessing and disposal of the waste and its economy, and the ways tried by foreign countries to solve the problems are presented in the paper

  18. User's guide for the REBUS-3 fuel cycle analysis capability

    International Nuclear Information System (INIS)

    Toppel, B.J.

    1983-03-01

    REBUS-3 is a system of programs designed for the fuel-cycle analysis of fast reactors. This new capability is an extension and refinement of the REBUS-3 code system and complies with the standard code practices and interface dataset specifications of the Committee on Computer Code Coordination (CCCC). The new code is hence divorced from the earlier ARC System. In addition, the coding has been designed to enhance code exportability. Major new capabilities not available in the REBUS-2 code system include a search on burn cycle time to achieve a specified value for the multiplication constant at the end of the burn step; a general non-repetitive fuel-management capability including temporary out-of-core fuel storage, loading of fresh fuel, and subsequent retrieval and reloading of fuel; significantly expanded user input checking; expanded output edits; provision of prestored burnup chains to simplify user input; option of fixed-or free-field BCD input formats; and, choice of finite difference, nodal or spatial flux-synthesis neutronics in one-, two-, or three-dimensions

  19. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    International Nuclear Information System (INIS)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-01-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  20. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  1. A collaboration on extended INPRO case study of the DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Yang, M. S.; Ko, W. I. (and others)

    2007-05-15

    Since 1992, KAERI, AECL, United States Department of States(USDOS) and IAEA have performed the DUPIC fuel cycle development activities as an international cooperative research program, which has now been chosen as a target nuclear system for an INPRO case study. This study will focus on a further improvement and modification of the basic principles, user requirements and acceptance limits, which are defined in the IAEA-TECDOC-1434 for an evaluation of its proliferation-resistance through a proliferation-resistance assessment of the whole fuel cycle of DUPIC based on the INPRO methodology. In order to further develop an evaluation method for a proliferation-resistance based on the INPRO methodology, the basic principles, user requirements and acceptance limits of a proliferation-resistance was reviewed and quantified. Then the evaluation model (material flow, facility scale, reference fuel, etc.) of the DUPIC fuel cycle was developed and a proliferation-resistance assessment of the DUPIC fuel cycle including the PWR fuel cycle was performed by using the revised INPRO methodology in the area of a proliferation resistance. Also, the recommendations for a further improvement of INPRO methodology were suggested through examining the INPRO methodology for a proliferation resistance assessment. Through the proliferation resistance assessment of the whole fuel cycle of DUPIC including the PWR fuel cycle, the proliferation-resistance methodology was updated and re-established. And based on its experience, The research results can be used not only to evaluate and determine the future domestic proliferation-resistant fuel cycles which were derived from the GEN{sub I}V or INPRO programs but also to improve a system design to enhance its proliferation resistance. The present results will be utilized for the development of an INPRO User's Manual which is being developed as an important issue by IAEA. The credibility of the research results were ensured by the IAEA

  2. A collaboration on extended INPRO case study of the DUPIC fuel cycle

    International Nuclear Information System (INIS)

    Park, J. H.; Yang, M. S.; Ko, W. I.

    2007-05-01

    Since 1992, KAERI, AECL, United States Department of States(USDOS) and IAEA have performed the DUPIC fuel cycle development activities as an international cooperative research program, which has now been chosen as a target nuclear system for an INPRO case study. This study will focus on a further improvement and modification of the basic principles, user requirements and acceptance limits, which are defined in the IAEA-TECDOC-1434 for an evaluation of its proliferation-resistance through a proliferation-resistance assessment of the whole fuel cycle of DUPIC based on the INPRO methodology. In order to further develop an evaluation method for a proliferation-resistance based on the INPRO methodology, the basic principles, user requirements and acceptance limits of a proliferation-resistance was reviewed and quantified. Then the evaluation model (material flow, facility scale, reference fuel, etc.) of the DUPIC fuel cycle was developed and a proliferation-resistance assessment of the DUPIC fuel cycle including the PWR fuel cycle was performed by using the revised INPRO methodology in the area of a proliferation resistance. Also, the recommendations for a further improvement of INPRO methodology were suggested through examining the INPRO methodology for a proliferation resistance assessment. Through the proliferation resistance assessment of the whole fuel cycle of DUPIC including the PWR fuel cycle, the proliferation-resistance methodology was updated and re-established. And based on its experience, The research results can be used not only to evaluate and determine the future domestic proliferation-resistant fuel cycles which were derived from the GEN I V or INPRO programs but also to improve a system design to enhance its proliferation resistance. The present results will be utilized for the development of an INPRO User's Manual which is being developed as an important issue by IAEA. The credibility of the research results were ensured by the IAEA Consultant

  3. Evaluation of various fuel cycles to control inventories of plutonium and minor in advanced fuel cycles

    International Nuclear Information System (INIS)

    Miller, L.F.; Anderson, T.; Preston, J.; Humberstone, M.; Hou, J.; McConn, J.; Van Den Durpel, L.

    2007-01-01

    Inventories of Plutonium and minor actinides are important factors in determination of the risk associated with the use of nuclear energy. This includes the potential of exceeding release limits from a repository and the potential for proliferation. The amount of these materials in any given fleet of reactors is determined in large part by the choice of fuel cycle and by the types of reactors selected for operation. Most of the US reactor fleet will need to be replaced within the next 30 years and additional reactors will need to be added if the contribution of power from nuclear energy is expanded. In order to minimize risk and to make judicious use of repository space, inventories of all radionuclides will need to be effectively managed. Use of hard-spectrum reactors to burn excess Plutonium and other actinides is technologically feasible and is most likely less costly than any other options for minimizing various risks. Calculations for the inventories of several categories of radionuclides indicate that introduction of a modest fraction of fast reactors into the US reactor fleet is effective in stabilizing the growth of problematic radioisotopes. Results are obtained from the DANESS (Dynamic Analysis of Nuclear Energy System Strategies)1,2 Code and from the solution of algebraic equations that define steady state inventories. There are various different possible fuel cycle scenarios to utilize in the implementation of fast, thermal and intermediate spectrum reactors into the U.S. fleet. Results include various combinations of reactor types and fuel with varying times of implementations. Mass flows with uncertainties for equilibrium cycles will also be reported. Time-dependent scenarios are modeled with the DANESS code, and algebraic equations for various fuel cycles are derived. Uncertainties are obtained using Monte Carlo simulations based on estimates of parameters in the models. (authors)

  4. Evaluation of various fuel cycles to control inventories of plutonium and minor in advanced fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.F.; Anderson, T.; Preston, J.; Humberstone, M.; Hou, J.; McConn, J. [Tennessee Univ., Nuclear Engineering Dept., Knoxville, TN (United States); Van Den Durpel, L. [Argonne National Laboratory, Argonne, IL (United States)

    2007-07-01

    Inventories of Plutonium and minor actinides are important factors in determination of the risk associated with the use of nuclear energy. This includes the potential of exceeding release limits from a repository and the potential for proliferation. The amount of these materials in any given fleet of reactors is determined in large part by the choice of fuel cycle and by the types of reactors selected for operation. Most of the US reactor fleet will need to be replaced within the next 30 years and additional reactors will need to be added if the contribution of power from nuclear energy is expanded. In order to minimize risk and to make judicious use of repository space, inventories of all radionuclides will need to be effectively managed. Use of hard-spectrum reactors to burn excess Plutonium and other actinides is technologically feasible and is most likely less costly than any other options for minimizing various risks. Calculations for the inventories of several categories of radionuclides indicate that introduction of a modest fraction of fast reactors into the US reactor fleet is effective in stabilizing the growth of problematic radioisotopes. Results are obtained from the DANESS (Dynamic Analysis of Nuclear Energy System Strategies)1,2 Code and from the solution of algebraic equations that define steady state inventories. There are various different possible fuel cycle scenarios to utilize in the implementation of fast, thermal and intermediate spectrum reactors into the U.S. fleet. Results include various combinations of reactor types and fuel with varying times of implementations. Mass flows with uncertainties for equilibrium cycles will also be reported. Time-dependent scenarios are modeled with the DANESS code, and algebraic equations for various fuel cycles are derived. Uncertainties are obtained using Monte Carlo simulations based on estimates of parameters in the models. (authors)

  5. Fossil fuel combined cycle power system

    Science.gov (United States)

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  6. Fuel cycle technologies - The next 50 years

    International Nuclear Information System (INIS)

    Chamberlain, L.N.; Ion, S.E.; Patterson, J.

    1997-01-01

    World energy demands are set to increase through the next Millennium. As fossil fuel reserves fall and environmental concerns increase there is likely to be a growing dependence on nuclear and renewable sources for electricity generation. This paper considers some of the desirable attributes of the nuclear fuel cycle in the year 2050 and emphasises the importance of considering the whole of the fuel cycle in an integrated way - the concept of the 'holistic' fuel cycle. We then consider how some sectors of the fuel cycle will develop, through a number of multi- national contributions covering: enrichment, fuel, aqueous reprocessing, non-aqueous reprocessing, P and T, MOX, direct disposal, waste. Finally, we summarize some of the key technical and institutional challenges that lie ahead if nuclear power is going to play its part in ensuring that planet Earth is a safe and hospitable place to live. (author)

  7. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  8. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce...... pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each...... other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle....

  9. Tests of prototype salt stripper system for IFR fuel cycle

    International Nuclear Information System (INIS)

    Carls, E.L.; Blaskovitz, R.J.; Johnson, T.R.; Ogata, T.

    1993-01-01

    One of the waste treatment steps for the on-site reprocessing of spent fuel from the Integral Fast Reactor fuel cycles is stripping of the electrolyte salt used in the electrorefining process. This involves the chemical reduction of the actinides and rare earth chlorides forming metals which then dissolve in a cadmium pool. To develop the equipment for this step, a prototype salt stripper system has been installed in an engineering scale argon-filled glovebox. Pumping trails were successful in transferring 90 kg of LiCl-KCl salt containing uranium and rare earth metal chlorides at 500 degree C from an electrorefiner to the stripper vessel at a pumping rate of about 5 L/min. The freeze seal solder connectors which were used to join sections of the pump and transfer line performed well. Stripping tests have commenced employing an inverted cup charging device to introduce a Cd-15 wt % Li alloy reductant to the stripper vessel

  10. Molten salt actinide recycler and transforming system without and with Th–U support: Fuel cycle flexibility and key material properties

    International Nuclear Information System (INIS)

    Ignatiev, V.; Feynberg, O.; Gnidoi, I.; Merzlyakov, A.; Surenkov, A.; Uglov, V.; Zagnitko, A.; Subbotin, V.; Sannikov, I.; Toropov, A.; Afonichkin, V.; Bovet, A.; Khokhlov, V.; Shishkin, V.; Kormilitsyn, M.; Lizin, A.; Osipenko, A.

    2014-01-01

    Highlights: • We examine feasibility of MOSART system without and with U–Th support. • We experimentally studied key material properties to prove MOSART flowsheet. • MOSART potential as the system with flexible fuel cycle scenarios is emphasized. • MOSART can operate with different TRU loadings in transmuter or even breeder modes. - Abstract: A study is under progress to examine the feasibility of MOlten Salt Actinide Recycler and Transforming (MOSART) system without and with U–Th support fuelled with different compositions of transuranic elements (TRU) trifluorides from spent LWR fuel. New design options with homogeneous core and fuel salt with high enough solubility for transuranic elements trifluorides are being examined because of new goals. The paper has the main objective of presenting the fuel cycle flexibility of the MOSART system while accounting technical constrains and experimental data received in this study. A brief description is given of the experimental results on key physical and chemical properties of fuel salt and combined materials compatibility to satisfy MOSART system requirements

  11. Back end of the fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.; Lambert, R.W.

    1975-01-01

    At present, that portion of the nuclear fuel cycle involving reprocessing, waste management, and mixed-oxide fuel fabrication is in an unsettled state. Government regulatory requirements with respect to all aspects of the back end of the fuel cycle are still being formulated, and there is little positive experience on the operation of commercial reprocessing or mixed-oxide fabrication plants. In view of this unsettled situation, it will be difficult to meet the reprocessing and mixed-oxide fabrication needs of the next decade in the pattern previously anticipated. The costs in the back end of the fuel cycle are much higher than had been anticipated several years ago, a situation similar to that of almost all large endeavors in this country. On the other hand, the added costs are small relative to total power costs and do not affect the economic advantage of nuclear power as compared to other power sources. A rough economic analysis indicates that the question for the back end of the fuel cycle has changed from one of optimizing profitability to one of determining the most economic disposition of spent fuel. Long-term spent fuel storage is a practical and economically acceptable way to provide time for determining a sound course of action for the back end of the fuel cycle. Indeed, if one could count on a breeder economy before the end of the century, one possible course of action is to store light-water fuel until the plutonium can be used in breeders. However, for philosophical as well as practical reasons, it is important that the uncertainties in the course of action should be resolved as quickly as possible. Long-term storage should not be an excuse to delay resolution of the basic questions. (U.S.)

  12. Nuclear fuel cycle scenarios at CGNPC

    International Nuclear Information System (INIS)

    Xiao, Min; Zhou, Zhou; Nie, Li Hong; Mao, Guo Ping; Hao, Si Xiong; Shen, Kang

    2008-01-01

    Established in 1994, China Guangdong Nuclear Power Holding Co. (CGNPC) now owns two power stations GNPS and LNPS Phase I, with approximate 4000 MWe of installed capacity. With plant upgrades, advanced fuel management has been introduced into the two plants to improve the plant economical behavior with the high burnup fuel implemented. For the purpose of sustainable development, some preliminary studies on nuclear fuel cycle, especially on the back-end, have been carried out at CGNPC. According to the nuclear power development plan of China, the timing for operation and the capacity of the reprocessing facility are studied based on the amount of the spent fuel forecast in the future. Furthermore, scenarios of the fuel cycles in the future in China with the next generation of nuclear power were considered. Based on the international experiences on the spent fuel management, several options of spent fuel reprocessing strategies are investigated in detail, for example, MOX fuel recycling in light water reactor, especially in the current reactors of CGNPC, spent fuel intermediated storage, etc. All the investigations help us to draw an overall scheme of the nuclear fuel cycle, and to find a suitable road-map to achieve the sustainable development of nuclear power. (authors)

  13. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  14. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity.

  15. Model development for quantitative evaluation of proliferation resistance of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Ko, Won Il; Kim, Ho Dong; Yang, Myung Seung

    2000-07-01

    This study addresses the quantitative evaluation of the proliferation resistance which is important factor of the alternative nuclear fuel cycle system. In this study, model was developed to quantitatively evaluate the proliferation resistance of the nuclear fuel cycles. The proposed models were then applied to Korean environment as a sample study to provide better references for the determination of future nuclear fuel cycle system in Korea. In order to quantify the proliferation resistance of the nuclear fuel cycle, the proliferation resistance index was defined in imitation of an electrical circuit with an electromotive force and various electrical resistance components. The analysis on the proliferation resistance of nuclear fuel cycles has shown that the resistance index as defined herein can be used as an international measure of the relative risk of the nuclear proliferation if the motivation index is appropriately defined. It has also shown that the proposed model can include political issues as well as technical ones relevant to the proliferation resistance, and consider all facilities and activities in a specific nuclear fuel cycle (from mining to disposal). In addition, sensitivity analyses on the sample study indicate that the direct disposal option in a country with high nuclear propensity may give rise to a high risk of the nuclear proliferation than the reprocessing option in a country with low nuclear propensity

  16. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    International Nuclear Information System (INIS)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and 233 U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles

  17. Study of LH2-fueled topping cycle engine for aircraft propulsion

    Science.gov (United States)

    Turney, G. E.; Fishbach, L. H.

    1983-01-01

    An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.

  18. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    International Nuclear Information System (INIS)

    Sandvig, Eric; Walling, Gary; Brown, Robert C.; Pletka, Ryan; Radlein, Desmond; Johnson, Warren

    2003-01-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW e ; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system

  19. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  20. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  1. Preliminary investigation study of code of developed country for developing Korean fuel cycle code

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Ko, Won Il; Lee, Ho Hee; Cho, Dong Keun; Park, Chang Je

    2012-01-01

    In order to develop Korean fuel cycle code, the analyses has been performed with the fuel cycle codes which are used in advanced country. Also, recommendations were proposed for future development. The fuel cycle codes are AS FLOOWS: VISTA which has been developed by IAEA, DANESS code which developed by ANL and LISTO, and VISION developed by INL for the Advanced Fuel Cycle Initiative (AFCI) system analysis. The recommended items were proposed for software, program scheme, material flow model, isotope decay model, environmental impact analysis model, and economics analysis model. The described things will be used for development of Korean nuclear fuel cycle code in future

  2. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  3. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  4. Fuel cycle cost comparisons with oxide and silicide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matos, J E; Freese, K E [RERTR Program, Argonne National Laboratory (United States)

    1983-09-01

    This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. The status of the development and demonstration of the oxide and silicide fuels are presented in several papers in these proceedings. Routine utilization of these fuels with the uranium densities considered here requires that they are successfully demonstrated and licensed. Thermal-hydraulic safety margins, shutdown margins, mixed cores, and transient analyses are not addressed here, but analyses of these safety issues are in progress for a limited number of the most promising design options. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data is presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed. All safety criteria for the reactor with these fuel element designs need to be satisfied as well. With LEU oxide fuel, 31 g U/cm{sup 3} 1 and 0.76 mm--thick fuel meat, elements with 18-22 plates 320-391 g {sup 235}U) result in the same or lower total costs than with the HEU element 23 plates, 280 g {sup 235}U). Higher LEU loadings (more plates per element) are needed for larger excess reactivity requirements. However, there is little cost advantage to using more than 20 of these plates per element. Increasing the fuel meat thickness from 0.76 mm to 1.0 mm with 3.1 g U/cm{sup 3} in the design with 20 plates per element could result in significant cost reductions if the

  5. The IFR modern nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs

  6. Implications of alternative fuel cycles

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The United States is re-examining alternative fuel cycles and nuclear power strategies, and doubtful attempts are being made to justify the economics of the 'throw-away' fuel cycle. At an international forum on 'An acceptable nuclear energy future for the world' at Fort Lauderdale, Karl Cohen of General Electric and a leading authority on this topic put the implications into perspective. Extracts from his address are presented

  7. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  8. Evaluation of U-Zr hydride fuel for a thorium fuel cycle in an RTR concept

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Taek; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    In this paper, we performed a design study of a thorium fueled reactor according to the design concept of the Radkowsky Thorium Reactor (RTR) and evaluated its overall performance. To enhance its performance and alleviate its problems, we introduced a new metallic uranium fuel, uranium-zirconium hydride (U-ZrH{sub 1.6}), as a seed fuel. For comparison, typical ABB/CE-type PWR based on SYSTEM 80+and standard RTR-type thorium reactor were also studied. From the results of performance analysis, we could ascertain advantages of RTR-type thorium fueled reactor in proliferation resistance, fuel cycle economics, and back-end fuel cycle. Also, we found that enhancement of proliferation resistance and safer operating conditions may be achieved by using the U-ZrH{sub 1.6} fuel in the seed region without additional penalties in comparison with the standard RTR`s U-Zr fuel. 6 refs., 2 figs., 6 tabs. (Author)

  9. Safety study of fire protection for nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    2013-01-01

    Insufficiencies in the fire protection system of the nuclear reactor facilities were pointed out when the fire occurred due to the Niigata prefecture-Chuetsu-oki Earthquake in July, 2007. This prompted the revision of the fire protection safety examination guideline for nuclear reactors as well as commercial guidelines. The commercial guidelines have been endorsed by the regulatory body. Now commercial fire protection standards for nuclear facilities such as the design guideline and the management guideline for protecting fire in the Light Water Reactors (LWRs) are available, however, those to apply to the nuclear fuel cycle facilities such as mixed oxide fuel fabrication facility (MFFF) have not been established. For the improvement of fire protection system of the nuclear fuel cycle facilities, the development of a standard for the fire protection, corresponding to the commercial standard for LWRs were required. Thus, Japan Nuclear Energy Safety Organization (JNES) formulated a fire protection guidelines for nuclear fuel cycle facilities as a standard relevant to the fire protection of the nuclear fuel cycle facilities considering functions specific to the nuclear fuel cycle facilities. In formulating the guidelines, investigation has been conduced on the commercial guidelines for nuclear reactors in Japan and the standards relevant to the fire protection of nuclear facilities in USA and other countries as well as non-nuclear industrial fire protection standards. The guideline consists of two parts; Equipments and Management, as the commercial guidances of the nuclear reactor. In addition, the acquisition of fire evaluation data for a components (an electric cabinet, cable, oil etc.) targeted for spread of fire and the evaluation model of fire source were continued for the fire hazard analysis (FHA). (author)

  10. Gadolinia experience and design for PWR fuel cycles

    International Nuclear Information System (INIS)

    Stephenson, L. C.

    2000-01-01

    The purpose of this paper is to describe Siemens Power Corporation's (SPC) current experience with the burnable absorber gadolinia in PWR fuel assemblies, including optimized features of SPC's PWR gadolinia designs, and comparisons with other burnable absorbers. Siemens is the world leader in PWR gadolinia experience. More than 5,900 Siemens PWR gadolinia-bearing fuel assemblies have been irradiated. The use of gadolinia-bearing fuel provides significant flexibility in fuel cycle designs, allows for low radial leakage fuel management and extended operating cycles, and reduces BOC (beginning-of-cycle) soluble boron concentrations. The optimized use of an integral burnable neutron absorber is a design feature which provides improved economic performance for PWR fuel assemblies. This paper includes a comparison between three different types of integral burnable absorbers: gadolinia, Zirconium diboride and erbia. Fuel cycle design studies performed by Siemens have shown that the enrichment requirements for 18-24 month fuel cycles utilizing gadolinia or zirconium diboride integral fuel burnable absorbers can be approximately the same. Although a typical gadolinia residual penalty for a cycle design of this length is as low as 0.02-0.03 wt% U-235, the design flexibility of gadolinia allows for very aggressive low-leakage core loading plans which reduces the enrichment requirements for gadolinia-bearing fuel. SPC has optimized its use of gadolinia in PWR fuel cycles. Typically, low (2-4) weight percent Gd 2 O 3 is used for beginning to middle of cycle reactivity hold down as well as soluble boron concentration holddown at BOC. Higher concentrations of Gd 2 O 3 , such as 6 and 8 wt%, are used to control power peaking in assemblies later in the cycle. SPC has developed core strategies that maximize the use of lower gadolinia concentrations which significantly reduces the gadolinia residual reactivity penalty. This optimization includes minimizing the number of rods with

  11. Fuel cycles of WWER-1000 based on assemblies with increased fuel mass

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlovichev, A.; Shcherenko, A.

    2011-01-01

    Modern WWER-1000 fuel cycles are based on FAs with the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively. The highest possible fuel enrichment has reached its license limit that is 4.95 %. Research in the field of modernization, safety justification and licensing of equipment for fuel manufacture, storage and transportation are required for further fuel enrichment increase (above 5 %). So in the nearest future an improvement of technical and economic characteristics of fuel cycles is possible if assembly fuel mass is increased. The available technology of the cladding thinning makes it possible. If the fuel rod outer diameter is constant and the clad inner diameter is increased to 7.93 mm, the diameter of the fuel pellet can be increased to 7.8 mm. So the suppression of the pellet central hole allows increasing assembly fuel weight by about 8 %. In this paper we analyze how technical and economic characteristics of WWER-1000 fuel cycle change when an advanced FA is applied instead of standard one. Comparison is made between FAs with equal time interval between refueling. This method of comparison makes it possible to eliminate the parameters that constitute the operation component of electricity generation cost, taking into account only the following technical and economic characteristics: 1)cycle length; 2) average burnup of spent FAs; 3) specific natural uranium consumption; 4)specific quantity of separative work units; 5) specific enriched uranium consumption; 6) specific assembly consumption. Collected data allow estimating the efficiency of assembly fuel weight increase and verifying fuel cycle characteristics that may be obtained in the advanced FAs. (authors)

  12. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  13. Fast breeder fuel cycle, worldwide and French prospects

    International Nuclear Information System (INIS)

    Rapin, M.

    1982-01-01

    A review is given of fast breeder fuel cycle development from both the technological and the economical points of view. LMFBR fuel fabrication, reactor operation, spent fuel storage and transportation, reprocessing and fuel cycle economics are topics considered. (U.K.)

  14. Fuel fabrication and reprocessing for nuclear fuel cycle with inherent safety demands

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, Andrey Yurevich; Dvoeglazov, Konstantin Nikolaevich; Ivanov, Valentine Borisovich; Volk, Vladimir Ivanovich; Skupov, Mikhail Vladimirovich; Glushenkov, Alexey Evgenevich [Joint Stock Company ' ' The High Technological Research Institute of Inorganic Materials' ' , Moscow (Russian Federation); Troyanov, Vladimir Mihaylovich; Zherebtsov, Alexander Anatolievich [Innovation and Technology Center of Project ' ' PRORYV' ' , State Atomic Energy Corporation ' ' Rosatom' ' , Moscow (Russian Federation)

    2015-06-01

    The strategies adopted in Russia for a closed nuclear fuel cycle with fast reactors (FR), selection of fuel type and recycling technologies of spent nuclear fuel (SNF) are discussed. It is shown that one of the possible technological solutions for the closing of a fuel cycle could be the combination of pyroelectrochemical and hydrometallurgical methods of recycling of SNF. This combined scheme allows: recycling of SNF from FR with high burn-up and short cooling time; decreasing the volume of stored SNF and the amount of plutonium in a closed fuel cycle in FR; recycling of any type of SNF from FR; obtaining the high pure end uranium-plutonium-neptunium end-product for fuel refabrication using pellet technology.

  15. Developing safety in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Brown, M.L.

    1996-01-01

    The nuclear fuel cycle had its origins in the new technology developed in the 1940s and 50s involving novel physical and chemical processes. At the front end of the cycle, mining, milling and fuel fabrication all underwent development, but in general the focus of process development and safety concerns was the reprocessing stage, with radiation, contamination and criticality the chief hazards. Safety research is not over and there is still work to be done in advancing technical knowledge to new generation nuclear fuels such as Mixed Oxide Fuel and in refining knowledge of margins and of potential upset conditions. Some comments are made on potential areas for work. The NUCEF facility will provide many useful data to aid safety analysis and accident prevention. The routine operations in such plants, basically chemical factories, requires industrial safety and in addition the protection of workers against radiation or contamination. The engineering and management measures for this were novel and the early operation of such plants pioneering. Later commissioning and operating experience has improved routine operating safety, leading to a new generation of factories with highly developed worker protection, engineering safeguards and safety management systems. Ventilation of contamination control zones, remote operation and maintenance, and advanced neutron shielding are engineering examples. In safety management, dose control practices, formally controlled operating procedures and safety cases, and audit processes are comparable with, or lead, best industry practice in other hazardous industries. Nonetheless it is still important that the knowledge and experience from operating plants continue to be gathered together to provide a common basis for improvement. The NEA Working Group on Fuel Cycle Safety provides a forum for much of this interchange. Some activities in the Group are described in particular the FINAS incident reporting system. (J.P.N.)

  16. The IFR modern nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, W.H.

    1991-01-01

    Nuclear power is an essential component of the world's energy supply. The IFR program, by returning to fundamentals, offers a fresh approach to closing the nuclear fuel cycle. This closed fuel cycle represents the ultimate in efficient resource utilization and environmental accountability. 35 refs., 2 tabs.

  17. Proliferation Resistance: Acquisition/Diversion Pathway Analysis for the DUPIC Fuel Cycle

    International Nuclear Information System (INIS)

    Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Lee, Ho Hee; Kwon, Eun Ha; Jeong, Chang Joon; Kim, Ho Dong

    2009-07-01

    Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), a methodology for evaluating proliferation resistance (INPRO PR methodology) has been developed. However, it remains to develop the methodology to evaluate User Requirements (UR) 4 regarding multiplicity and robustness of barriers against proliferation - innovative nuclear energy systems should incorporate multiple proliferation resistance features and measures. Since this requires an acquisition/diversion pathway analysis, this report describes a systematic approach developed for the identification and analysis of pathways for the acquisition of weapons-usable nuclear material using the DUPIC fuel cycle system. At the first step, the objectives of the proliferation were identified, including the quality and quantity of the material, the time required to acquire the material for the proliferation, thr capability of the potential proliferant country, etc. At the second step, the possible strategies, which the potential proliferant country could adopt, were identified: undeclared removal of nuclear material from the fuel cycle facilities; and further treatment of the diverted nuclear materials needed to acquire weapons-usable materials. At the final step, a systematic approach to select the plausible pathways for the acquisition/diversion of nuclear material during the whole fuel cycle has been developed. The coarse material diversion pathways for the DUPIC fuel cycle and the approach developed was reviewed and discussed at the experts meeting at the IAEA for its appropriateness and comprehensiveness

  18. Out-of-core fuel cycle optimization for nonequilibrium cycles

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1988-01-01

    A methodology has been developed for determining the family of near-optimum fuel management schemes that minimize the levelized fuel cycle costs of a light water reactor over a multicycle planning horizon. Feed batch enrichments and sizes, burned batches to reinsert, and burnable poison loadings are determined for each cycle in the planning horizon. Flexibility in the methodology includes the capability to assess the economic benefits of various partially burned bath reload strategies as well as the effects of using split feed enrichments and enrichment palettes. Constraint limitations are imposed on feed enrichments, discharge burnups, moderator temperature coefficient, and cycle energy requirements

  19. RU fuel development program for an advanced fuel cycle in Korea

    International Nuclear Information System (INIS)

    Suk, Hochum; Sim, Kiseob; Kim, Bongghi; Inch, W.W.; Page, R.

    1998-01-01

    Korea is a unique country, having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimize overall waste production, and maximize energy derived from the fuel, by ultimately burning the spent fuel from its PWR reactors in CANDU reactors. As one of the possible fuel cycles, Recovered Uranium (RU) fuel offers a very attractive alternative to the use of Natural Uranium (NU) and slightly enriched uranium (SEU) in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, therefore no enrichment tails, direct conversion to UO 2 , lower sensitivity to 234 U and 236U absorption in the CANDU reactor, and expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the conventional reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU 6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. The use of the CANDU Flexible Fueling (CANFLEX) bundle as the carrier for RU will be fully compatible with the reactor design, current safety and operational requirements, and there will be improved fuel performance compared with the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in both fuel requirements and spent fuel, arisings, and the potential lower cost for RU material. There is the potential for annual fuel cost savings in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D efforts on the use of RU fuel for advanced fuel cycles in CANDU

  20. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  1. Nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    Wymer, R.G.

    1986-01-01

    A series of viewgraphs describes the nuclear fuel cycle and nuclear power, covering reactor types, sources of uranium, enrichment of uranium, fuel fabrication, transportation, fuel reprocessing, and radioactive wastes

  2. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    The nuclear fuel cycle covers the procurement and preparation of fuel for nuclear power reactors, its recovery and recycling after use and the safe storage of all wastes generated through these operations. The facilities associated with these activities have an extensive and well documented safety record accumulated over the past 40 years by technical experts and safety authorities. This report constitutes an up-to-date analysis of the safety of the nuclear fuel cycle, based on the available experience in OECD countries. It addresses the technical aspects of fuel cycle operations, provides information on operating practices and looks ahead to future activities

  3. Economic analysis of thorium-uranium fuel cycle introduced into PWRs

    International Nuclear Information System (INIS)

    Fan Li; Sun Qian

    2014-01-01

    Using PWR of Daya Bay Unit l as the reference reactor, a validated computer code was used to calculate the fuel cycle costs for uranium fuel cycle and thorium-uranium fuel cycle over the following 20 0perational years respectively. The calculation results show that the thorium-uranium fuel cycle is economically competitive with the uranium fuel cycle when reprocessing mode is adopted. For thorium-uranium fuel cycle, if the price of natural uranium is higher than 120 $ /pound U_3O_8, the fuel cycle cost of the direct disposal mode is greater than that of the reprocessing mode. Therefore, when the uranium price may maintain a high level long-termly, adopting reprocessing mode will benefit the economic advantage for the thorium-uranium fuel cycle introduced into PWRs. (authors)

  4. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    Science.gov (United States)

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems.

  5. Integrated fuel-cycle models for fast breeder reactors

    International Nuclear Information System (INIS)

    Ott, K.O.; Maudlin, P.J.

    1981-01-01

    Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented. The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. (author)

  6. Globalisation of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rougeau, J.-P.; Durret, L.-F.

    1995-01-01

    Three main features of the globalisation of the nuclear fuel cycle are identified and discussed. The first is an increase in the scale of the nuclear fuel cycle materials and services markets in the past 20 years. This has been accompanied by a growth in the sophistication of the fuel cycle. Secondly, the nuclear industry is now more vulnerable to outside pressures; it is no longer possible to make strategic decisions on the industry within a country solely on national considerations. Thirdly, there are changes in the decision-making process at the political, regulatory, operational and industrial level which are the consequence of global factors. (UK)

  7. Concept of innovative water reactor for flexible fuel cycle (FLWR)

    International Nuclear Information System (INIS)

    Iwamura, T.; Uchikawa, S.; Okubo, T.; Kugo, T.; Akie, H.; Nakatsuka, T.

    2005-01-01

    In order to ensure sustainable energy supply in the future based on the matured Light Water Reactor (LWR) and coming LWR-Mixed Oxide (MOX) technologies, a concept of Innovative Water Reactor for Flexible Fuel Cycle (FLWR) has been investigated in Japan Atomic Energy Research Institute (JAERI). The concept consists of two parts in the chronological sequence. The first part realizes a high conversion type core concept, which is basically intended to keep the smooth technical continuity from current LWR and coming LWR-MOX technologies without significant gaps in technical point of view. The second part represents the Reduced-Moderation Water Reactor (RMWR) core concept, which realizes a high conversion ratio over 1.0 being useful for the long-term sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The key point is that the two core concepts utilize the compatible and the same size fuel assemblies, and hence, the former concept can proceed to the latter in the same reactor system, based flexibly on the fuel cycle circumstances during the reactor operation period around 60 years. At present, since the fuel cycle for the plutonium multiple recycling with MOX fuel reprocessing has not been realized yet, reprocessed plutonium from the LWR spent fuel is to be utilized in LWR-MOX. After this stage, the first part of FLWR, i.e. the high conversion type, can be introduced as a replacement of LWR or LWR-MOX. Since the plutonium inventory of FLWR is much larger, the number of the reactor with MOX fuel will be significantly reduced compared to the LWR-MOX utilization. The size of the fuel assembly for the first part is the same as in the RMWR concept, i.e. the hexagonal fuel assembly with the inner face-to-face distance of about 200 mm. Fuel rods are arranged in the triangular lattice with a relatively wide gap size around 3 mm between rods, and the effective MOX length is less than 1.5 m without using the blanket. When

  8. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    International Nuclear Information System (INIS)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-01-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a ''living document'' that will be modified over the course of the execution of this work

  9. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant.

  10. Plant characteristics of an integrated solid oxide fuel cell cycle and a steam cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical University of Denmark, Dept. of Mechanical Engineering, Thermal Energy System, Building 402, 2800 Kgs, Lyngby (Denmark)

    2010-12-15

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier hydrocarbons in an adiabatic steam reformer (ASR). The pre-treated fuel then entered to the anode side of the SOFC. The remaining fuels after the SOFC stacks entered a catalytic burner for further combusting. The burned gases from the burner were then used to produce steam for the Rankine cycle in a heat recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization and the pre-reformer had no effect on the plant efficiency, which was also true when decreasing the anode temperature. However, increasing the cathode temperature had a significant effect on the plant efficiency. In addition, decreasing the SOFC utilization factor from 0.8 to 0.7, increases the plant efficiency by about 6%. An optimal plant efficiency of about 71% was achieved by optimizing the plant. (author)

  11. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  12. Economic analyses of LWR fuel cycles

    International Nuclear Information System (INIS)

    Field, F.R.

    1977-05-01

    An economic comparison was made of three options for handling irradiated light-water reactor (LWR) fuel. These options are reprocessing of spent reactor fuel and subsequent recycle of both uranium and plutonium, reprocessing and recycle of uranium only, and direct terminal storage of spent fuel not reprocessed. The comparison was based on a peak-installed nuclear capacity of 507 GWe by CY 2000 and retirement of reactors after 30 years of service. Results of the study indicate that: Through the year 2000, recycle of uranium and plutonium in LWRs saves about $12 billion (FY 1977 dollars) compared with the throwaway cycle, but this amounts to only about 1.3% of the total cost of generating electricity by nuclear power. If deferred costs are included for fuel that has been discharged from reactors but not reprocessed, the economic advantage increases to $17.7 billion. Recycle of uranium only (storage of plutonium) is approximately $7 billion more expensive than the throwaway fuel cycle and is, therefore, not considered an economically viable option. The throwaway fuel cycle ultimately requires >40% more uranium resources (U 3 O 8 ) than does reprocessing spent fuel where both uranium and plutonium are recycled

  13. Prospects for Australian involvement in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Chandra, S.; Hallenstein, C.

    1988-05-01

    A review of recent overseas developments in the nuclear industry by The Northern Territory Department of Mines and Energy suggests that there are market prospects in all stages of the fuel cycle. Australia could secure those markets through aggressive marketing and competitive prices. This report gives a profile of the nuclear fuel cycle and nuclear fuel cycle technologies, and describes the prospects of Australian involvement in the nuclear fuel cycle. It concludes that the nuclear fuel cycle industry has the potential to earn around $10 billion per year in export income. It recommend that the Federal Government: (1) re-examines its position on the Slayter recommendation (1984) that Australia should develop new uranium mines and further stages of the nuclear fuel cycle, and (2) gives it's in-principle agreement to the Northern Territory to seek expressions of interest from the nuclear industry for the establishment of an integrated nuclear fuel cycle industry in the Northern Territory

  14. The impact of the multilateral approach to the nuclear fuel cycle in Malaysia's nuclear fuel cycle policy

    International Nuclear Information System (INIS)

    Baharuddin, B.; Ferdinand, P.

    2014-01-01

    Since the Pakistan-India nuclear weapon race, the North Korean nuclear test and the September 11 attack revealed Abdul Qadeer Khan's clandestine nuclear black market and the fear that Iran's nuclear program may be used for nuclear weapon development, scrutiny of activities related to nuclear technologies, especially technology transfer has become more stringent. The nuclear supplier group has initiated a multilateral nuclear fuel cycle regime with the purpose of guaranteeing nuclear fuel supply and at the same time preventing the spread of nuclear proliferation. Malaysia wants to develop a programme for the peaceful use of nuclear energy and it needs to accommodate itself to this policy. When considering developing a nuclear fuel cycle policy, the key elements that Malaysia needs to consider are the extent of the fuel cycle technologies that it intends to acquire and the costs (financial and political) of acquiring them. Therefore, this paper will examine how the multilateral approach to the nuclear fuel cycle may influence Malaysia's nuclear fuel cycle policy, without jeopardising the country's rights and sovereignty as stipulated under the NPT. (authors)

  15. Cost aspects of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    Research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. In doing so, they have provided an invaluable service to humanity. Research reactors are expected to make important contributions in the coming decades to further development of the peaceful uses of nuclear technology, in particular for advanced nuclear fission reactors and fuel cycles, fusion, high energy physics, basic research, materials science, nuclear medicine, and biological sciences. However, in the context of decreased public sector support, research reactors are increasingly faced with financial constraints. It is therefore of great importance that their operations are based on a sound understanding of the costs of the complete research reactor fuel cycle, and that they are managed according to sound financial and economic principles. This publication is targeted at individuals and organizations involved with research reactor operations, with the aim of providing both information and an analytical framework for assessing and determining the cost structure of fuel cycle related activities. Efficient management of fuel cycle expenditures is an important component in developing strategies for sustainable future operation of a research reactor. The elements of the fuel cycle are presented with a description of how they can affect the cost efficient operation of a research reactor. A systematic review of fuel cycle choices is particularly important when a new reactor is being planned or when an existing reactor is facing major changes in its fuel cycle structure, for example because of conversion of the core from high enriched uranium (HEU) to low enriched uranium (LEU) fuel, or the changes in spent fuel management provision. Review and optimization of fuel cycle issues is also recommended for existing research reactors, even in cases where research reactor

  16. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature

    International Nuclear Information System (INIS)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included

  17. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  18. World nuclear capacity and fuel cycle requirements 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment for the Lower and Upper Reference case scenarios were obtained from the Office of Integrated Analysis and Forecasting, Energy Information Administration. Most of these projections were developed using the World Integrated Nuclear Evaluation System (WINES) model

  19. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.

    This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.

  20. Fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  1. Moving towards sustainable thorium fuel cycles

    International Nuclear Information System (INIS)

    Hyland, B.; Hamilton, H.

    2011-01-01

    The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO 2 ) based fuel offers both fuel performance and safety advantages over urania (UO 2 ) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO 2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)

  2. International Nuclear Fuel Cycle Fact Book. Revision 5

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  3. International Nuclear Fuel Cycle Fact Book. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  4. International nuclear fuel cycle fact book. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  5. International nuclear fuel cycle fact book. Revision 4

    International Nuclear Information System (INIS)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate

  6. EPRI nuclear fuel-cycle accident risk assessment

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The present results of the nuclear fuel-cycle accident risk assessment conducted by the Electric Power Research Institute show that the total risk contribution of the nuclear fuel cycle is only approx. 1% of the accident risk of the power plant; hence, with little error, the accident risk of nuclear electric power is essentially that of the power plant itself. The power-plant risk, assuming a very large usage of nuclear power by the year 2005 is only approx. 0.5% of the radiological risk of natural background. The smallness of the fuel-cycle risk relative to the power-plant risk may be attributed to the lack of internal energy to drive an accident and the small amount of dispersible material. This work aims at a realistic assessment of the process hazards, the effectiveness of confinement and mitigation systems and procedures, and the associated likelihood of errors and the estimated size of errors. The primary probabilistic estimation tool is fault-tree analysis, with the release source terms calculated using physicochemical processes. Doses and health effects are calculated with CRAC (Consequences of Reactor Accident Code). No evacuation or mitigation is considered; source terms may be conservative through the assumption of high fuel burnup (40,000 MWd/t) and short cooling period (90 to 150 d); high-efficiency particulate air filter efficiencies are derived from experiments

  7. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  8. Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

  9. Environmental monitoring standardization of effluent from nuclear fuel cycle facilities in China

    International Nuclear Information System (INIS)

    Gao Mili

    1993-01-01

    China has established some environmental monitoring standards of effluent from nuclear fuel cycle facilities. Up to date 33 standards have been issued; 10 to be issued; 11 in drafting. These standards cover sampling, gross activities measurement, analytical methods and management rules and so on. They involve with almost all nuclear fuel cycle facilities and have formed a complete standards system. By the end of the century, we attempt to draft a series of analytical and determination standards in various environmental various medium, they include 36 radionuclides from nuclear fuel cycle facilities. (3 tabs.)

  10. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  11. Advanced fuel cycles for WWER-1000 reactors

    International Nuclear Information System (INIS)

    Semchenkov, Y. M.; Pavlovichev, A. M.; Pavlov, V. I.; Spirkin, E. I.; Styrin, Y. A.; Kosourov, E. K.

    2007-01-01

    Main stages of Russian uranium fuel development regarding improvement of safety and economics of fuel load operation are presented. Intervals of possible changes in fuel cycle duration have been demonstrated for the use of current and perspective fuel. Examples of equilibrium fuel load patterns have been demonstrated and main core neutronics parameters have been presented. Problems on the use of axial blankets with reduced enrichment in WWER-1000 fuel assemblies are considered. Some results are presented regarding core neutronic characteristics of WWER-1000 at the use of regenerated uranium and uranium-plutonium fuel. Examples of equilibrium fuel cycles for the core partially loaded with MOX fuel from weapon-grade plutonium are also considered (Authors)

  12. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  13. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  14. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  15. Some alternatives to the mixed oxide fuel cycle

    International Nuclear Information System (INIS)

    Deonigi, D.E.; Eschbach, E.A.; Goldsmith, S.; Pankaskie, P.J.; Rohrmann, C.A.; Widrig, R.D.

    1977-02-01

    While on initial examination each of the six fuel cycle concepts (tandem cycle, extended burnup, fuel rejuvenation, coprocessing, partial reprocessing, and thorium) described in the report may have some potential for improving safeguards, none of the six appears to have any other major or compelling advantages over the mixed oxide (MOX) fuel cycle. Compared to the MOX cycle, all but coprocessing appear to have major disadvantages, including severe cost penalties. Three of the concepts-tandem, extended burnup, and rejuvenation--share the basic problems of the throwaway cycle (GESMO Alternative 6): without reprocessing, high-level waste volumes and costs are substantially increased, and overall uranium utilization decreases for three reasons. First, the parasitic fission products left in the fuel absorb neutrons in later irradiation steps reducing the overall neutronic efficiencies of these cycles. Second, discarded fuel still has sufficient fissile values to warrant recycle. Third, perhaps most important, the plutonium needed for breeder start-up will not be available; without the breeder, uranium utilization would drop by about a factor of sixty. Two of the concepts--coprocessing and partial reprocessing--involve variations of the basic MOX fuel cycle's chemical reprocessing step to make plutonium diversion potentially more difficult. These concepts could be used with the MOX fuel cycle or in conjunction with the tandem, extended burnup and rejuvenation concepts to eliminate some of the problems with those cycles. But in so doing, the basic impetus for those cycles--elimination of reprocessing for safeguards purposes--no longer exists. Of all the concepts considered, only coprocessing--and particularly the ''master blend'' version--appears to have sufficient promise to warrant a more detailed study. The master blend concept could possibly make plutonium diversion more difficult with minimal impact on the reprocessing and MOX fuel fabrication operations

  16. Modifications to HFEF/S for IFR fuel cycle demonstration

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Phipps, R.D.; Forrester, R.J.; Carnes, M.D.; Rigg, R.H.

    1988-01-01

    Modifications have begun to the Hot Fuel Examination Facility-South (HFEF/S) in order to demonstrate the technology of the integral fast reactor (IFR) fuel cycle. This paper describes the status of the modifications to the facility and briefly reviews the status of the development of the process equipment. The HFEF/S was the demonstration facility for the early Experimental Breeder Reactor II (EBR-II) melt refining/injection-casting fuel cycle. Then called the Fuel Cycle Facility, ∼400 EBR-II fuel assemblies were recycled in the two hot cells of the facility during the 1964-69 period. Since then it has been utilized as a fuels examination facility. The objective of the IFR fuel cycle program is to upgrade HFEF/S to current standards, install new process equipment, and demonstrate the commercial feasibility of the IFR pyroprocess fuel cycle

  17. Insight from a Critical Review on the Safety Analysis of Nuclear Fuel Cycle Facility for Domestic Regulatory System

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Chung, Young Wook; Jeong, Seung Young

    2010-01-01

    Korea has 20 nuclear power plants in operation, and 10,761 ton of spent fuel deposited in plant sites. The capacity of reservoir for spent fuel in plant sites is to begin to be full in 2016. The light water reactors of 16 units generate around 320 ton/year and the heavy water reactors of 4 units around 380 ton/year in Korea. And the electricity generated by nuclear power plants is planned to increase up to 59% share by 2030. Spent fuel classified as high level radioactive waste in law is characterized by high level radiation, high heat generation, and high radiological toxicity. In the contrary, it is also a very useful domestic energy source. Thus, the safe management of spent fuel is very important confronting job in nuclear industry. Advanced fuel cycle (AFC) using pyro-process is an innovative technology, by which environmental load is drastically relieved because the extracted long-lived fission products are burn in fast breeder reactors. Domestic nuclear industry also has a perspective road map for the construction of AFC facilities. However, there is not a sufficiently detailed licensing regulatory system yet. Moreover, there is no systematic frame for the safety evaluation. This paper reviews the safety analysis system of foreign fuel cycle facilities. Critical review leads to the insight for setting-up safety analysis system of domestic AFC facilities

  18. The role of spent fuel test facilities in the fuel cycle strategy

    International Nuclear Information System (INIS)

    Huang, S. T.; Gross, D. L.; Snyder, N. W.; Woods, W. D.

    1988-01-01

    Disposal of commercial spent nuclear fuels in the major industrialized countries may be categorized into two broad approaches: a once-through policy which will dispose of spent fuels and recycle fissile materials. Within reprocess spent fuels and recycle fissile materials. Within each policy, various technical, licensing, institutional and public issues exist. These issues tend to complicate the formulation of an effective and acceptable fuel cycle strategy which will meet various cost, schedule, and legislative constraints. This paper examines overall fuel cycle strategies from the viewpoint of these underlying technical issues and assesses the roles of spent fuel test facilities in the overall fuel cycles steps. Basic functions of such test facilities are also discussed. The main emphasis is placed on the once-through policy although the reprocessing / recycle policy is also discussed. Benefits of utilizing test facilities in the fuel cycle strategies are explored. The results indicate that substantial benefits may be obtained in terms of minimizing programmatic risks, increasing public confidence, and more effective utilization of overall budgetary resources by structuring and highlighting the test facilities as an important element in the overall strategy

  19. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative

  20. Interim assessment of the denatured 233U fuel cycle: feasibility and nonproliferation characteristics

    International Nuclear Information System (INIS)

    Abbott, L.S.; Bartine, D.E.; Burns, T.J.

    1979-12-01

    A fuel cycle that employs 233 U denatured with 238 U and mixed with thorium fertile material is examined with respect to its proliferation-resistance characteristics and its technical and economic feasibility. The rationale for considering the denatured 233 U fuel cycle is presented, and the impact of the denatured fuel on the performance of Light-Water Reactors, Spectral-Shift-Controlled Reactors, Gas-Cooled Reactors, Heavy-Water Reactors, and Fast Breeder Reactors is discussed. The scope of the R, D and D programs to commercialize these reactors and their associated fuel cycles is also summarized and the resource requirements and economics of denatured 233 U cycles are compared to those of the conventional Pu/U cycle. In addition, several nuclear power systems that employ denatured 233 U fuel and are based on the energy center concept are evaluated

  1. The benefits of longer fuel cycle lengths

    International Nuclear Information System (INIS)

    Kesler, D.C.

    1986-01-01

    Longer fuel cycle lengths have been found to increase generation and improve outage management. A study at Duke Power Company has shown that longer fuel cycles offer both increased scheduling flexibility and increased capacity factors

  2. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barela, Amanda Crystal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walkow, Walter M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schetnan, Richard Reed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Arnold, Matthew Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  3. Economic Analysis of Pyro-SFR Fuel Cycle

    International Nuclear Information System (INIS)

    Gao, Fanxing; Park, Byungheung; Kwon, Eunha; Ko, Wonil

    2010-01-01

    In this study, based on the material flow the economics of Pyro-SFR has been estimated. These are mainly two methodologies to perform nuclear fuel cycle cost study which is based on the material flow calculations. One is equilibrium model and the other is dynamic model. Equilibrium model focus on the batch study with the assumptions that the whole system is in a steady state and mass flow as well as the electricity production all through the fuel cycle is in equilibrium state, which calculates the electricity production within a certain period and associated material flow with reference to unit cost in order to obtain the cost of electricity. Dynamic model takes the time factor into consideration to simulate the actual cases. Compared with the dynamic analysis model, the outcome of equilibrium model is more theoretical comparisons, especially with regard to the large uncertainty of the development of the pyro-technology evaluated. In this study equilibrium model was built to calculate the material flow on a batch basis. With the unit cost being determined, the cost of each step of fuel cycle could be obtained, so does the FMC. Due to the unavoidable uncertainty with certain unit costs, evaluated cost range and uncertainty study are applied. Sensitivity analysis has also been performed to obtain the breakeven uranium price for Pyro-SFR against PWR-O T. Economics of Pyro-SFR fuel cycle scenario has been calculated and compared by employing equilibrium model. The LFCC were obtained, Pyro-SFR 7.68 mills/kWh. The Uranium price is the dominant driver of LFCC. Pyro-techniques also weight considerably in Pyro-SFR scenario. On consideration of the current unavoidable uncertainties introduced by certain cost data, cost range and triangle techniques were used to perform the uncertainty study which indicates that the gap between Pyro-SFR and PWR-O T fuel cycle scenario is relatively small

  4. Several remarks on the fuel cycle economy

    International Nuclear Information System (INIS)

    Roman Kubin; Rudolf Vespalec

    2007-01-01

    Present paper deals with some aspects influencing significantly cost of nuclear fuel and possibilities of its usage in optimal fuel cycle technology. Our discussion is focused on the phase of fuel procurement that means financial parts of the contract as well as its technical Appendices. Typically the fuel fabrication price is taken as the main economy indicator; nevertheless also many other financial and technical features of the contract must be taken into account in order to reach the best price of electricity sold into public energy grid. Our experience from several international tenders shows that the consistent complex of commercial and technical parameters of the contract is necessary to achieve optimal economic results and prepare proper conditions for advanced fuel cycle technology. Among those essential characteristics are payment conditions and schedule and extent of vendor's services and assistance to the operator. Very important role play also technical parameters, as safety and operational limits, influencing loading pattern quality and operating flexibility. Obviously also a level of operator's fuel cycle technology is a crucial point that is necessary for usage of technical quality of the fuel at the power plant. The final electricity price, produced by the plant, and uranium consumption are the only objective criteria to evaluate economic level of the fuel contract and the fuel cycle at all (Authors)

  5. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  6. Decommissioning of nuclear fuel cycle facilities. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of this Safety Guide is to provide guidance to regulatory bodies and operating organizations on planning and provision for the safe management of the decommissioning of non-reactor nuclear fuel cycle facilities. While the basic safety considerations for the decommissioning of nuclear fuel cycle facilities are similar to those for nuclear power plants, there are important differences, notably in the design and operating parameters for the facilities, the type of radioactive material and the support systems available. It is the objective of this Safety Guide to provide guidance for the shutdown and eventual decommissioning of such facilities, their individual characteristics being taken into account

  7. Safety Aspects of Radioactive Waste Management in Different Nuclear Fuel Cycle Policies, a Comparative Study

    International Nuclear Information System (INIS)

    Gad Allah, A.A.

    2009-01-01

    With the increasing demand of energy worldwide, and due to the depletion of conventional natural energy resources, energy policies in many countries have been devoted to nuclear energy option. On the other hand, adopting a safe and reliable nuclear fuel cycle concept guarantees future nuclear energy sustain ability is a vital request from environmental and economic point of views. The safety aspects of radioactive waste management in the nuclear fuel cycle is a topic of great importance relevant to public acceptance of nuclear energy and the development of nuclear technology. As a part of nuclear fuel cycle safety evaluation studies in the department of nuclear fuel cycle safety, National Center for Nuclear Safety and Radiation Control (NCNSRC), this study evaluates the radioactive waste management policies and radiological safety aspects of three different nuclear fuel cycle policies. The once-through fuel cycle (OT- fuel cycle) or the direct spent fuel disposal concept for both pressurized light water reactor ( PWR) and pressurized heavy water reactor (PHWR or CANDU) systems and the s elf-generated o r recycling fuel cycle concept in PWR have been considered in the assessment. The environmental radiological safety aspects of different nuclear fuel cycle options have been evaluated and discussed throughout the estimation of radioactive waste generated from spent fuel from these fuel cycle options. The decay heat stored in the spent fuel was estimated and a comparative safety study between the three fuel cycle policies has been implemented

  8. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information

  9. International Nuclear Fuel Cycle Fact Book

    International Nuclear Information System (INIS)

    Leigh, I.W.; Mitchell, S.J.

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information

  10. International Nuclear Fuel Cycle Fact Book

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  11. Outlook on to fuel cycle perspectives at WWER-440

    International Nuclear Information System (INIS)

    Stech, S.; Bajgl, J.

    2005-01-01

    Current internal fuel cycle in NPP Dukovany 4x440 MWe is shortly characterized with new types of fuel assemblies and advanced fuel cycles which have been introduced in the last years. The modernization activities accomplished until now might be extrapolated to the further period in fuel design - mechanic, thermal-hydraulic and neutronic respectively - with additional increase in fuel enrichments and burnups on the way to the 6-year cycle. Reaktor power up rating together with Unit thermal efficiency improvements could bring an increase in the electric output to the value nearly 500 MWe. The reasons are given for long-term cooperation with Fuel Supplier and Plant Designer in the area of fuel cycle as well as in Unit Design Basis. All innovations mentioned in the article including future fuel and fuel cycle changes might be a quite realistic perspective at the end of the first decade of the new century (Authors)

  12. A novel method for rapid comparative quantitative analysis of nuclear fuel cycles

    International Nuclear Information System (INIS)

    Eastham, Sebastian D.; Coates, David J.; Parks, Geoffrey T.

    2012-01-01

    Highlights: ► Metric framework determined to compare nuclear fuel cycles. ► Fast and thermal reactors simulated using MATLAB models, including thorium. ► Modelling uses deterministic methods instead of Monte–Carlo for speed. ► Method rapidly identifies relative cycle strengths and weaknesses. ► Significant scope for use in project planning and cycle optimisation. - Abstract: One of the greatest obstacles facing the nuclear industry is that of sustainability, both in terms of the finite reserves of uranium ore and the production of highly radiotoxic spent fuel which presents proliferation and environmental hazards. Alternative nuclear technologies have been suggested as a means of delivering enhanced sustainability with proposals including fast reactors, the use of thorium fuel and tiered fuel cycles. The debate as to which is the most appropriate technology continues, with each fuel system and reactor type delivering specific advantages and disadvantages which can be difficult to compare fairly. This paper demonstrates a framework of performance metrics which, coupled with a first-order lumped reactor model to determine nuclide population balances, can be used to quantify the aforementioned pros and cons for a range of different fuel and reactor combinations. The framework includes metrics such as fuel efficiency, spent fuel toxicity and proliferation resistance, and relative cycle performance is analysed through parallel coordinate plots, yielding a quantitative comparison of disparate cycles.

  13. Research reactors fuel cycle problems and dilemma

    International Nuclear Information System (INIS)

    Romano, R.

    2004-01-01

    During last 10 years, some problems appeared in different steps of research reactors fuel cycle. Actually the majority of these reactors have been built in the 60s and these reactors were operated during all this long period in a cycle with steps which were dedicated to this activity. Progressively and for reasons often economical, certain steps of the cycle became more and more difficult to manage due to closing of some specialised workshops in the activities of scraps recycling, irradiated fuel reprocessing, even fuel fabrication. Other steps of the cycle meet or will meet difficulties, in particular supplying of fissile raw material LEU or HEU because this material was mostly produced in enrichment units existing mainly for military reason. Rarefaction of fissile material lead to use more and more enriched uraniums said 'of technical quality', that is to say which come from mixing of varied qualities of enriched material, containing products resulting from reprocessing. Actually, problems of end of fuel cycle are increased, either consisting of intermediary storage on the site of reactor or on specialised sites, or consisting of reprocessing. This brief summary shows most difficulties which are met today by a major part of industrials of the fuel cycle in the exercise of their activities

  14. Research and development of thorium fuel cycle

    International Nuclear Information System (INIS)

    Oishi, Jun.

    1994-01-01

    Nuclear properties of thorium are summarized and present status of research and development of the use of thorium as nuclear fuel is reviewed. Thorium may be used for nuclear fuel in forms of metal, oxide, carbide and nitride independently, alloy with uranium or plutonium or mixture of the compound. Their use in reactors is described. The reprocessing of the spent oxide fuel in thorium fuel cycle is called the thorex process and similar to the purex process. A concept of a molten salt fuel reactor and chemical processing of the molten salt fuel are explained. The required future research on thorium fuel cycle is commented briefly. (T.H.)

  15. Multidimensional evaluation on FR cycle systems

    International Nuclear Information System (INIS)

    Nakai, Ryodai; Fujii, Sumio; Takakuma, Katsuyuki; Katoh, Atsushi; Ono, Kiyoshi; Ohtaki, Akira; Shiotani, Hiroki

    2004-01-01

    This report explains some results of the multidimensional evaluation on various fast reactor cycle system concepts from an interim report of the 2nd phase of ''Feasibility Study on Commercialized FR Cycle System''. This method is designed to give more objective and more quantitative evaluations to clarify commercialized system candidate concepts. Here we brief current evaluation method from the five viewpoints of safety, economy, environment, resource and non-proliferation, with some trial evaluation results for some cycles consist of promising technologies in reactor, core and fuel, reprocessing and fuel manufacture. Moreover, we describe FR cycle deployment scenarios which describe advantages and disadvantages of the cycles from the viewpoints of uranium resource and radioactive waste based on long-term nuclear material mass flow analyses and advantages of the deployment of FR cycle itself from the viewpoints of the comparison with alternative power supplies as well as cost and benefit. (author)

  16. Advanced nuclear fuel cycles - Main challenges and strategic choices

    International Nuclear Information System (INIS)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-01-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness

  17. Advanced nuclear fuel cycles - Main challenges and strategic choices

    Energy Technology Data Exchange (ETDEWEB)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  18. Gaseous fuel reactors for power systems

    Science.gov (United States)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  19. Use of non-proliferation fuel cycles in the HTGR

    International Nuclear Information System (INIS)

    Baxter, A.M.; Merrill, M.H.; Dahlberg, R.C.

    1978-10-01

    All high-temperature gas-cooled reactors (HTGRs) built or designed to date utilize a uranium-thorium fuel cycle (HEU/Th) in which fully-enriched uranium (93% U-235) is the initial fuel and thorium is the fertile material. The U-233 produced from the thorium is recycled in subsequent loadings to reduce U-235 makeup requirements. However, the recent interest in proliferation-proof fuel cycles for fission reactors has prompted a review and evaluation of possible alternate cycles in the HTGR. This report discusses these alternate fuel cycles, defines those considered usable in an HTGR core, summarizes their advantages and disadvantages, and briefly describes the effect on core design of the most important cycles. Examples from design studies are also given. These studies show that the flexibility afforded by the HTGR coated-particle fuel design allows a variety of alternative cycles, each having special advantages and attractions under different circumstances. Moreover, these alternate cycles can all use the same fuel block, core layout, control scheme, and basic fuel zoning concept

  20. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S. R. [University of Science and Technology, Daejeon (Korea, Republic of); Choi, S. Y. [UNIST, Ulju (Korea, Republic of); Koc, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle.

  1. Nuclear Fuel Cycle Analysis by Integrated AHP and TOPSIS Method Using an Equilibrium Model

    International Nuclear Information System (INIS)

    Yoon, S. R.; Choi, S. Y.; Koc, W. I.

    2015-01-01

    Determining whether to break away from domestic conflict surrounding nuclear power and step forward for public consensus can be identified by transparent policy making considering public acceptability. In this context, deriving the best suitable nuclear fuel cycle for Korea is the key task in current situation. Assessing nuclear fuel cycle is a multicriteria decision making problem dealing with multiple interconnected issues on efficiently using natural uranium resources, securing an environment friendliness to deal with waste, obtaining the public acceptance, ensuring peaceful uses of nuclear energy, maintaining economic competitiveness compared to other electricity sources, and assessing technical feasibility of advanced nuclear energy systems. This paper performed the integrated AHP and TOPSIS analysis on three nuclear fuel cycle options against 5 different criteria including U utilization, waste management, material attractiveness, economics, and technical feasibility. The fuel cycle options analyzed in this paper are three different fuel cycle options as follows: PWR-Once through cycle(PWR-OT), PWR-MOX cycle, Pyro- SFR cycle. These fuel cycles are most likely to be adopted in the foreseeable future. Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution). The analyzed nuclear fuel cycle options include the once-through cycle, the PWR-MOX recycle, and the Pyro-SFR recycle

  2. Design study and evaluation of fuel fabrication systems for FR fuel cycle

    International Nuclear Information System (INIS)

    Namekawa, Takashi; Tanaka, Kenya; Kawaguchi, Koichi; Koike, Kazuhiro; Shimuta, Hiroshi; Suzuki, Yoshihiro

    2004-01-01

    The plant concept for each FBR fuel fabrication system has been constructed and evaluated, which achieves economical improvement, decrease in the environmental burden, better resource utilization, and proliferation resistance by the various innovative techniques employed. The results are as follows: (1) For oxide fuels, the simplified pelletizing method has a high technical feasibility, and it is possible to apply this method to practical process at early stage, because this method is based on wealth results of a conventional method. (2) For oxide fuels, the sphere packing fuel fabrication system by gelation and vibro-compaction processes has the advantage of lesser dispersion of the fine powder due to the use of solution and granule in the process. However this system shoulders additional cost for the liquid waste treatment process to dispose a large bulk of process liquid waste. (3) For the metal fuel, the casting system is generally expected to have high economical efficiency even for small-scale facilities, although verification for fabrication of the TRU alloy slug is required. (author)

  3. Impact of actinide recycle on nuclear fuel cycle health risks

    International Nuclear Information System (INIS)

    Michaels, G.E.

    1992-06-01

    The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR) 1 and Integral Fast Reactor (IF) 2 technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle

  4. An economic analysis code used for PWR fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1989-01-01

    An economic analysis code used for PWR fuel cycle is developed. This economic code includes 12 subroutines representing vavious processes for entire PWR fuel cycle, and indicates the influence of the fuel cost on the cost of the electricity generation and the influence of individual process on the sensitivity of the fuel cycle cost

  5. Thorium-based fuel cycles: Reassessment of fuel economics and proliferation risk

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [Senior Lecturer at the School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001, Internal Post Box 360, Potchefstroom 2520 (South Africa); Mulder, Eben J. [Professor at the School of Mechanical and Nuclear Engineering, North West University (South Africa)

    2014-05-01

    At current consumption and current prices, the proven reserves for natural uranium will last only about 100 years. However, the more abundant thorium, burned in breeder reactors, such as large High Temperature Gas-Cooled Reactors, and followed by chemical reprocessing of the spent fuel, could stretch the 100 years for uranium supply to 15,000 years. Thorium-based fuel cycles are also viewed as more proliferation resistant compared to uranium. However, several barriers to entry caused all countries, except India and Russia, to abandon their short term plans for thorium reactor projects, in favour of uranium/plutonium fuel cycles. In this article, based on the theory of resonance integrals and original analysis of fast fission cross sections, the breeding potential of {sup 232}Th is compared to that of {sup 238}U. From a review of the literature, the fuel economy of thorium-based fuel cycles is compared to that of natural uranium-based cycles. This is combined with a technical assessment of the proliferation resistance of thorium-based fuel cycles, based on a review of the literature. Natural uranium is currently so cheap that it contributes only about 10% of the cost of nuclear electricity. Chemical reprocessing is also very expensive. Therefore conservation of natural uranium by means of the introduction of thorium into the fuel is not yet cost effective and will only break even once the price of natural uranium were to increase from the current level of about $70/pound yellow cake to above about $200/pound. However, since fuel costs constitutes only a small fraction of the total cost of nuclear electricity, employing reprocessing in a thorium cycle, for the sake of its strategic benefits, may still be a financially viable option. The most important source of the proliferation resistance of {sup 232}Th/{sup 233}U fuel cycles is denaturisation of the {sup 233}U in the spent fuel by {sup 232}U, for which the highly radioactive decay chain potentially poses a large

  6. WWER-1000 fuel cycles: current situation and outlook

    International Nuclear Information System (INIS)

    Kosourov, E.; Pavlov, V.; Pavlovichev, A.; Spirkin, E.; Shcherenko, A.

    2013-01-01

    Usage mode of nuclear fuel in WWER type reactor has been changed significantly till the moment of the first WWER-1000 commissioning. There are a lot of improvements, having an impact on the fuel cycle, have been implemented for units with WWER-1000. FA design and its constructional materials, FA fuel weight, burnable poison, usage mode of units and etc have been modified. As the result of development it has been designed a modern FA with rigid skeleton. As a whole it allows to use more efficient configurations of the core, to extend range of fuel cycle lengths and to provide good flexibility in the operation. In recent years there were in progress works on increasing FA uranium capacity. As the result there were developed two designs of the fuel rod: 1) the fuel column height of 3680 mm, diameters of the fuel pellet and its central hole of 7.6 and 1.2 mm respectively and 2) the fuel column height of 3530 mm, the fuel pellet diameter of 7.8 mm without the central hole. Such fuel rods have operating experience as a part of different FA designs. Positive operating experience was a base of new FA (TVS-4) development with the fuel column height of 3680 mm and the fuel pellet diameter of 7.8 mm without the central hole. The paper presents the overview of WWER-1000, AES-2006 and WWER-TOI fuel cycles based on FAs with fuel rod designs described above. There are demonstrated fuel cycle possibilities and its technical and economic characteristics. There are discussed problems of further fuel cycle improvements (fuel enrichment increase above 5 %, use of erbium as alternative burnable poison) and their impact on neutronics characteristics. (authors)

  7. Fuel Cycle Requirements Code (FLYER). Summary report

    International Nuclear Information System (INIS)

    Gift, E.H.; Goode, W.D.

    1976-01-01

    Planning for, and the analysis of, the fuel requirements of the nuclear industry requires the ability to evaluate contingencies in many areas of the nuclear fuel cycle. The areas of nuclear fuel utilization, both uranium and plutonium, and of separative work requirements are of particular interest. The Fuel Cycle Requirements (FLYER) model has been developed to provide a flexible, easily managed tool for obtaining a comprehensive analysis of the nuclear fuel cycle. The model allows analysis of the interactions among the nuclear capacity growth rate, reactor technology and mix, and uranium and plutonium recycling capabilities. The model was initially developed as a means of analyzing nuclear growth contingencies with particular emphasis on the uranium feed and separative work requirements. It served to provide the planning group with analyses similar to the OPA's NUFUEL code which has only recently become available for general use. The model has recently been modified to account for some features of the fuel cycle in a more explicit manner than the NUFUEL code. For instance, the uranium requirements for all reactors installed in a given year are calculated for the total lifetime of those reactors. These values are cumulated in order to indicate the total uranium committed for reactors installed by any given year of the campaign. Similarly, the interactions in the back end of the fuel cycle are handled specifically, such as, the impacts resulting from limitations on the industrial capacity for reprocessing and mixed oxide fabrication of both light water reactor and breeder fuels. The principal features of the modified FLYER code are presented in summary form

  8. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  9. Nuclear power and the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    The IAEA is organizing a major conference on nuclear power and the nuclear fuel cycle, which is to be held from 2 to 13 May 1977 in Salzburg, Austria. The programme for the conference was published in the preceding issue of the IAEA Bulletin (Vol.18, No. 3/4). Topics to be covered at the conference include: world energy supply and demand, supply of nuclear fuel and fuel cycle services, radioactivity management (including transport), nuclear safety, public acceptance of nuclear power, safeguarding of nuclear materials, and nuclear power prospects in developing countries. The articles in the section that follows are intended to serve as an introduction to the topics to be discussed at the Salzburg Conference. They deal with the demand for uranium and nuclear fuel cycle services, uranium supplies, a computer simulation of regional fuel cycle centres, nuclear safety codes, management of radioactive wastes, and a pioneering research project on factors that determine public attitudes toward nuclear power. It is planned to present additional background articles, including a review of the world nuclear fuel reprocessing situation and developments in the uranium enrichment industry, in future issues of the Bulletin. (author)

  10. The dupic fuel cycle synergism between LWR and HWR

    International Nuclear Information System (INIS)

    Lee, J.S.; Yang, M.S.; Park, H.S.; Lee, H.H.; Kim, K.P.; Sullivan, J.D.; Boczar, P.G.; Gadsby, R.D.

    1999-01-01

    The DUPIC fuel cycle can be developed as an alternative to the conventional spent fuel management options of direct disposal or plutonium recycle. Spent LWR fuel can be burned again in a HWR by direct refabrication into CANDU-compatible DUPIC fuel bundles. Such a linkage between LWR and HWR can result in a multitude of synergistic effects, ranging from savings of natural uranium to reductions in the amount of spent fuel to be buried in the earth, for a given amount of nuclear electricity generated. A special feature of the DUPIC fuel cycle is its compliance with the 'Spent Fuel Standard' criteria for diversion resistance, throughout the entire fuel cycle. The DUPIC cycle thus has a very high degree of proliferation resistance. The cost penalty due to this technical factor needs to be considered in balance with the overall benefits of the DUPIC fuel cycle. The DUPIC alternative may be able to make a significant contribution to reducing spent nuclear fuel burial in the geosphere, in a manner similar to the contribution of the nuclear energy alternative in reducing atmospheric pollution from fossil fuel combustion. (author)

  11. The transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the French national plan for the management of radioactive materials and wastes (PNGMDR - Plan national de gestion des matieres et dechets nucleaires), its elaboration process, its content in terms of nuclear fuel cycle. Then, it describes the control by the ASN of the nuclear fuel cycle, the associated installations, the concerned transports, the 'cycle consistency' approach and its limitations. Propositions are stated aiming at the improvement of the transparency associated with the fuel cycle: to use the PNGMDR, to extend the investigation on the cycle consistency to imported materials and wastes, to improve the transparency on radioactive material transport

  12. Quantities of actinides in nuclear reactor fuel cycles

    International Nuclear Information System (INIS)

    Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000 MW reactors of the following types: water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breeder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium, and recycled uranium. The radioactivity levels of plutonium, americium, and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the United States nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium processed in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing and fuel fabrication to eliminate the off-site transport of separated plutonium. (U.S.)

  13. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  14. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  15. Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach

    Science.gov (United States)

    Passerini, Stefano

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test

  16. Non-proliferation and safeguards aspects of alternative fuel cycle concepts

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1997-01-01

    Timely visibility on the development, evaluation and optimization of fuel cycle concepts with respect to nonproliferation characteristics should be emphasized in the early stage of planning a civilian nuclear power program, by fuel cycle developers, reviewers and decision makers. Fuel cycle technologies have inherently differing levels of nonproliferation characteristic profiles. Institutional and/or multi-national arrangements have been effective in reducing the nonproliferation concerns. The implementation of international safeguards further reduces these concerns by the timely detection of a possible physical diversion of SNM from fuel cycle facilities. Fuel cycles are safeguardable, but the nonproliferation characteristics of fuel cycle concepts differ significantly with consequent impacts on the international level of technical safeguards measures. The paper comments on characteristics of some of the fuel cycle concepts for the purpose of exploring the need to develop advanced nonproliferation and safeguards measures. (author)

  17. Cycle to Cycle Variation Study in a Dual Fuel Operated Engine

    KAUST Repository

    Pasunurthi, Shyamsundar

    2017-03-28

    The standard capability of engine experimental studies is that ensemble averaged quantities like in-cylinder pressure from multiple cycles and emissions are reported and the cycle to cycle variation (CCV) of indicated mean effective pressure (IMEP) is captured from many consecutive combustion cycles for each test condition. However, obtaining 3D spatial distribution of all the relevant quantities such as fuel-air mixing, temperature, turbulence levels and emissions from such experiments is a challenging task. Computational Fluid Dynamics (CFD) simulations of engine flow and combustion can be used effectively to visualize such 3D spatial distributions. A dual fuel engine is considered in the current study, with manifold injected natural gas (NG) and direct injected diesel pilot for ignition. Multiple engine cycles in 3D are simulated in series like in the experiments to investigate the potential of high fidelity RANS simulations coupled with detailed chemistry, to accurately predict the CCV. Cycle to cycle variation (CCV) is expected to be due to variabilities in operating and boundary conditions, in-cylinder stratification of diesel and natural gas fuels, variation in in-cylinder turbulence levels and velocity flow-fields. In a previous publication by the authors [1], variabilities in operating and boundary conditions are incorporated into several closed cycle simulations performed in parallel. Stochastic variations/stratifications of fuel-air mixture, turbulence levels, temperature and internal combustion residuals cannot be considered in such closed cycle simulations. In this study, open cycle simulations with port injection of natural gas predicted the combined effect of the stratifications on the CCV of in-cylinder pressure. The predicted Coefficient of Variation (COV) of cylinder pressure is improved compared to the one captured by closed cycle simulations in parallel.

  18. Interim assessment of the denatured 233U fuel cycle: feasibility and nonproliferation characteristics

    International Nuclear Information System (INIS)

    Abbott, L.S.; Bartine, D.E.; Burns, T.J.

    1978-12-01

    A fuel cycle that employs 233 U denatured with 238 U and mixed with thorium fertile material is examined with respect to its proliferation-resistance characteristics and its technical and economic feasibility. The rationale for considering the denatured 233 U fuel cycle is presented, and the impact of the denatured fuel on the performance of Light-Water Reactors, Spectral-Shift-Controlled Reactors, Gas-Cooled Reactors, Heavy-Water Reactors, and Fast Breeder Reactors is discussed. The scope of the R, D and D programs to commercialize these reactors and their associated fuel cycles is also summarized and the resource requirements and economics of denatured 233 U cycles are compared to those of the conventional Pu/U cycle. In addition, several nuclear power systems that employ denatured 233 U fuel and are based on the energy center concept are evaluated. Under this concept, dispersed power reactors fueled with denatured or low-enriched uranium fuel are supported by secure energy centers in which sensitive activities of the nuclear cycle are performed. These activities include 233 U production by Pu-fueled transmuters (thermal or fast reactors) and reprocessing. A summary chapter presents the most significant conclusions from the study and recommends areas for future work

  19. Systems Analyses of Advanced Brayton Cycles

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study

  20. NPP fuel cycle and assessment of possible options for long-term fuel supply

    International Nuclear Information System (INIS)

    Ignatenko, E.I.; Lebedev, V.M.; Davidenko, N.N.

    1999-01-01

    The purpose of this paper is to present some results of the analysis of the possible options for Russian NPPs fuel supply. In the classical consideration these are four fuel cycles: uranium cycle based on natural uranium, this cycle has several economical advantages with the use of CANDU type reactors with a heavy-water moderator; uranium cycle based on enriched uranium, it is a basis for the current and future nuclear power; uranium-thorium fuel cycle with capabilities which are very promising but unfortunately difficult to implement in practice; plutonium-uranium cycle, in terms of its potential capabilities it is an excellent option, but it is extremely difficult to implement it in practice due to a high activity and toxicity of nuclear materials under recycle. The nuclear power of Russia is currently aimed at using the cheapest fuel resources, that is first of all, uranium reprocessed from industrial reactor fuel and slag-heaps accumulated on the past in isotope-separation plant sites. These resources are enough for the Russian large-scale nuclear power to be developed [ru

  1. Control rod studies for alternative fuel cycles in the GA 1160 MW(e) high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neef, H. J.

    1975-06-15

    The control system, which is investigated in this paper for both the low enriched uranium high enriched uranium/thorium fuel cycles, has been developed to control the General Atomics (GA) thorium fuel cycle 1160 MW(e) reactor. It has been shown in this investigation that its effectiveness in the low enriched and subsequent thorium cycle switch-over reactor is equivalent to the effectiveness in the thorium cycle. The shutdown margin in the low enriched core is even higher compared to the thorium core, mainly due to the presence of Pa-233 in the thorium cycle. As long as the fuel cycle for the thorium cycle is not closed with the recycling of U-233, the low enriched cycle will offer an attractive alternative. It was found that the GA 1160 MW(e) control system has enough built-in control rod capacity to accommodate the low enriched uranium cycle and to perform a later switch-over to a thorium-based fuel cycle.

  2. Fuel Cycle Services The Heart of Nuclear Energy

    International Nuclear Information System (INIS)

    Soedyartomo-Soentono

    2007-01-01

    Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO 2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services world wide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international cooperations are central for proceeding with the utilization of nuclear energy, while this advantagous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically. (author)

  3. Fuel Cycle Services the Heart of Nuclear Energy

    Directory of Open Access Journals (Sweden)

    S. Soentono

    2007-01-01

    Full Text Available Fuel is essential for development whether for survival and or wealth creation purposes. In this century the utilization of fuels need to be improved although energy mix is still to be the most rational choice. The large amount utilization of un-renewable fossil has some disadvantages since its low energy content requires massive extraction, transport, and processing while emitting CO2 resulting degradation of the environment. In the mean time the advancement of nuclear science and technology has improved significantly the performance of nuclear power plant, management of radioactive waste, enhancement of proliferation resistance, and more economic competitiveness. Ever since the last decade of the last century the nuclear renaissance has taken place. This is also due to the fact that nuclear energy does not emit GHG. Although the nuclear fuel offers a virtually limitless source of economic energy, it is only so if the nuclear fuel is reprocessed and recycled. Consequently, the fuel cycle is to be even more of paramount important in the future. The infrastructure of the fuel cycle services worldwide has been adequately available. Various International Initiatives to access the fuel cycle services are also offered. However, it is required to put in place the International Arrangements to guaranty secured sustainable supply of services and its peaceful use. Relevant international co-operations are central for proceeding with the utilization of nuclear energy, while this advantageous nuclear energy utilization relies on the fuel cycle services. It is therefore concluded that the fuel cycle services are the heart of nuclear energy, and the international nuclear community should work together to maintain the availability of this nuclear fuel cycle services timely, sufficiently, and economically.

  4. Recent developments in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Wunderer, A.

    1984-01-01

    There is a description of the present situation in each individual area of the nuclear fuel cycle. Further topics are: risk and safety factors and emissions from the fuel cycle, availability and disruptions, waste disposal and the storage of radioactive waste. (UA) [de

  5. Fuel cycle and waste newsletter. Vol. 3, No. 2, July 2007

    International Nuclear Information System (INIS)

    2007-07-01

    The top stories in this issue of the Fuel Cycle and Waste Newsletter highlight some important activities of the Division to reduce the nuclear threats worldwide. It involves conditioning and possible repatriation spent sealed radioactive sources, conversion of research reactors from high enriched uranium fuel to low enriched uranium and return of the fuel to the USA and to the Russian Federation. These activities have great technical challenges and are connected with important legal and administrative work. Topics covered are mobile hot cell (SHARS) for conditioning of spent high-activity sealed radioactive sources and support of global efforts to remove highly enriched uranium from international commerce. The activities of the waste technology section (WTS), and of the nuclear fuel cycle and materials section (NFC and MS) are presented as well as the launch of the IAEA's international decommissioning network. Further discussions include the development and implementation of radioactive waste management policies and strategies, the national reporting tool upgrade of the Net -Enabled Waste Management Data Base (NEWMBD), spent fuel assessment and research, spent fuel treatment options, FUMEX (FUel Modelling at EXtende Burnup), FUWAC (Fuel and Water Chemistry), the International Nuclear Fuel Cycle Information System (INFCIS), research reactor availability and reliability, research reactor coalitions and upcoming training course on research reactor water quality management as well as ongoing activities related to Advanced Fuel Cycles (AFC). Recent publications and meetings in 2007 are listed

  6. Safety and Regulatory Issues of the Thorium Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Brian [ORNL; Worrall, Andrew [ORNL; Powers, Jeffrey [ORNL; Bowman, Steve [ORNL; Flanagan, George [ORNL; Gehin, Jess [ORNL

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2), add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.

  7. Closing the fuel cycle: A superior option for India

    International Nuclear Information System (INIS)

    Balu, K.; Purushotham, D.S.C.; Kakodkar, A.

    1999-01-01

    The closed fuel cycle option with reprocessing and recycle of uranium and plutonium (U and Pu) for power generation allows better utilization of the uranium resources. On its part, plutonium is a unique energy source. During the initial years of nuclear fuel cycle activities, reprocessing and recycle of uranium and plutonium for power generation was perceived by many countries to be among the best of long term strategies for the management of spent fuel. But, over the years, some of the countries have taken a position that once-through fuel cycle is both economical and proliferation-resistant. However, such perceptions do vary as a function of economic growth and energy security of a given country. This paper deals with techno-economic perspectives of reprocessing and recycling in the Indian nuclear power programme. Experience of developing Mixed Oxide UO 2 -PuO 2 (MOX) fuel and its actual use in a power reactor (BWR) is presented. The paper further deals with the use of MOX in PHWRs in the future and current thinking, in the Indian context, in respect of advanced fuel cycles for the future. From environmental safety considerations, the separation of long-lived isotopes and minor actinides from high level waste (HLW) would enhance the acceptability of reprocessing and recycle option. The separated actinides are suitable for recycling with MOX fuel. However, the advanced fuel cycles with such recycling of Uranium and transuranium elements call for additional sophisticated fuel cycle activities which are yet to be mastered. India is interested in both uranium and thorium fuel cycles. This paper describes the current status of the Indian nuclear power scenario with reference to the program on reactors, reprocessing and radioactive waste management, plutonium recycle options, thorium-U233 fuel cycle studies and investigations on partitioning of actinides from Purex HLW as relevant to PHWR spent fuels. (author)

  8. Regulatory cross-cutting topics for fuel cycle facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

    2013-10-01

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

  9. Concept for fuel-cycle based safeguards

    International Nuclear Information System (INIS)

    deMontmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-01-01

    Although the guidelines for NPT safeguards specify that the State's fuel cycle and degree of international independence are to be taken into account, the same model approach and absolute-quantity inspection goals are applied to all similar facilities, irrespective of the State's fuel cycle, and the findings are reported in those terms. A concept whereby safeguards might more effectively and efficiently accomplish the purposes of NPT safeguards is explored. The principal features are: (1) division of the fuel cycle into three zones, each containing material having a different degree of significance for safeguards; (2) closing a verified material balance around each zone, supplementing the present MBA balances for more sensitive facilities and replacing them for others; (3) maintenance by the IAEA of a current book inventory for each facility by means of immediate, abbreviated reporting of interfacility transfers; (4) near real-time analysis of material flow patterns through the fuel cycle; and (5) a periodic statement of the findings for the entire State that takes the form that there is assurance that all nuclear materials under safeguards are accounted for to some stated degree of uncertainty

  10. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-07-01

    This contribution is prepared for the answer to the questionnaire of working group 5, subgroup B. B.1. is the short review of the fast breeder fuel cycles based on the reference large commercial Japanese LMFBR. The LMFBRs are devided into two types. FBR-A is the reactor to be used before 2000, and its burnup and breeding ratio are relatively low. The reference fuel cycle requirement is calculated based on the FBR-A. FBR-B is the one to be used after 2000, and its burnup and breeding ratio are relatively high. B.2. is basic FBR fuel reprocessing scheme emphasizing the differences with LWR reprocessing. This scheme is based on the conceptual design and research and development work on the small scale LMFBR reprocessing facility of Japan. The facility adopts a conventional PUREX process except head end portions. The report also describes the effects of technical modifications of conventional reprocessing flow sheets, and the problems to be solved before the adoption of these alternatives

  11. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Erich [Univ. of Texas, Austin, TX (United States); Scopatz, Anthony [Univ. of Wisconsin, Madison, WI (United States)

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  12. Transparency associated with the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the different fuel cycle stages with which the CEA is associated, the annual flow of materials and wastes produced at these different stages, and the destiny of these produced materials and wastes. These information are given for the different CEA R and D activities: experimentation hot laboratories (activities, fuel cycle stages, list of laboratories, tables giving annual flows for each of them), research reactors (types of reactors, fuel usage modes, annual flows of nuclear materials for each reactor), spent fuel management (different types of used materials), spent fuels and radioactive wastes with a foreign origin (quantities, processes)

  13. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.

    2009-01-01

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof

  14. International issue: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    In this special issue a serie of short articles of informations are presented on the following topics: the EEC's medium term policy regarding the reprocessing and storage of spent fuel, France's natural uranium supply, the Pechiney Group in the nuclear field, zircaloy cladding for nuclear fuel elements, USSI: a major French nuclear engineering firm, gaseous diffusion: the only commercial enrichment process, the transport of nuclear materials in the fuel cycle, Cogema and spent fuel reprocessing, SGN: a leader in the fuel cycle, quality control of mechanical, thermal and termodynamic design in nuclear engineering, Sulzer's new pump testing station in Mantes, the new look of the Ateliers et Chantiers de Bretagne, tubes and piping in nuclear power plants, piping in pressurized water reactor. All these articles are written in English and in French [fr

  15. Long-term alternatives for nuclear fuel cycles

    International Nuclear Information System (INIS)

    Vira, J.; Vieno, T.

    1981-07-01

    Several technical alternatives have been proposed to the nuclear spent fuel management but the practical experience on any of these is small or totally lacking. Since the management method is also connected with the composition of fresh fuel, the comparison of the alternatives must include the whole fuel cycle of a nuclear power plant. In the planning of the nuclear fuel cycle over a time range of several decades a consideration must be given, in addition, to the potential of the new reactor types with increased efficiency of uranium utilization. For analyses and mutual comparisons of the fuel cycle alternatives a number of computer models have been designed and implemented at the Technical Research Centre of Finland. Given the estimated boundary conditions the models can be used to study the impact of different goals and requirements on the fuel cycle decisions. Further, they facilitate cost predictions and display information on the role of the intrinsic uncertainties in the decision-making. The conclusions of the study are tied to the questions of price and availability of uranium. Hence, for instance, the benefits from the reprocessing of spent fuel might prove to be small when compared to the costs required, especially as the current reprocessing contracts do not allow the custemer to dismiss the duty of building the final disposal facilities for high level radioactive waste. For a few decades the final decisions can be postponed by extending the interim storage period. Farther in the future the decisions in the nuclear fuel cycle arrangements will more link to the introduction of the fast breeder reactors. (author)

  16. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  17. Nondestructive nuclear measurement in the fuel cycle. Part 1

    International Nuclear Information System (INIS)

    Lyoussi, A.

    2005-01-01

    Nondestructive measurement techniques are today widely used in practically all steps of the fuel cycle. This article is devoted to the presentation of the control and characterization needs and to the main passive nondestructive nuclear methods used: 1 - nondestructive nuclear measurement, needs and motivation: nuclear fuel cycle, nondestructive nuclear measurements (passive and active methods), comments; 2 - main passive nondestructive nuclear measurement methods: gamma spectroscopy (principle, detectors, electronic systems, data acquisition and signal processing, domains of application, main limitations), passive neutronic measurements (needs and motivations, neutron detectors, total neutronic counting, neutronic coincidences counting, neutronic multiplicities counting, comments). (J.S.)

  18. Advanced fuel cycles: a rationale and strategy for adopting the low-enriched-uranium fuel cycle

    International Nuclear Information System (INIS)

    James, R.A.

    1980-01-01

    A two-year study of alternatives to the natural uranium fuel cycle in CANDU reactors is summarized. The possible advanced cycles are briefly described. Selection criteria for choosing a cycle for development include resource utilization, economics, ease of implementaton, and social acceptability. It is recommended that a detailed study should be made with a view to the early implementation of the low-enriched uranium cycle. (LL)

  19. The DUPIC alternative for backend fuel cycle

    International Nuclear Information System (INIS)

    Lee, J.S.; Choi, J.W.; Park, H.S.; Boczar, P.; Sullivan, J.; Gadsby, R.D.

    1997-01-01

    From the early nineties, a research programme, called DUPIC (Direct Use of Spent PWR Fuel in CANDU) has been undertaken in an international exercise involving Korea, Canada, the U.S. and later the IAEA. The basic idea of this fuel cycle alternative is that the spent fuel from LWR contains enough fissile remnant to be burnt again in CANDUs thanks to its excellent neutron economy. A systematic R and D plan has now gained a full momentum to verify experimentally the DUPIC fuel cycle concept. 4 refs

  20. Fuel cycle studies for the Dragon HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A; Nunn, R M; Twitchin, A E

    1971-02-15

    This note reports the progress made at B.N.L. in the study of the fuel cycle for the HTR design described by Daub (1970). The primary purpose of the study is to examine the special problems of the approach to equilibrium fuel cycle.