WorldWideScience

Sample records for fuel contaminated soil

  1. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    Biological methods for combating pollutants generated within the fossil fuels ... metabolism of fossil fuel contaminants in soil and water bodies is presented. ... Keywords: Fossil fuels, coal, petroleum hydrocarbons, biodegradation, pollutants

  2. Remediation of Diesel Fuel Contaminated Sandy Soil using Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Wulandari P.S.

    2010-01-01

    Full Text Available Ultrasonic cleaning has been used in industry for some time, but the application of ultrasonic cleaning in contaminated soil is just recently received considerable attention, it is a very new technique, especially in Indonesia. An ultrasonic cleaner works mostly by energy released from the collapse of millions of microscopic cavitations near the dirty surface. This paper investigates the use of ultrasonic wave to enhance remediation of diesel fuel contaminated sandy soil considering the ultrasonic power, soil particle size, soil density, water flow rate, and duration of ultrasonic waves application.

  3. Environmental effects of soil contamination by shale fuel oils.

    Science.gov (United States)

    Kanarbik, Liina; Blinova, Irina; Sihtmäe, Mariliis; Künnis-Beres, Kai; Kahru, Anne

    2014-10-01

    Estonia is currently one of the leading producers of shale oils in the world. Increased production, transportation and use of shale oils entail risks of environmental contamination. This paper studies the behaviour of two shale fuel oils (SFOs)--'VKG D' and 'VKG sweet'--in different soil matrices under natural climatic conditions. Dynamics of SFOs' hydrocarbons (C10-C40), 16 PAHs, and a number of soil heterotrophic bacteria in oil-spiked soils was investigated during the long-term (1 year) outdoor experiment. In parallel, toxicity of aqueous leachates of oil-spiked soils to aquatic organisms (crustaceans Daphnia magna and Thamnocephalus platyurus and marine bacteria Vibrio fischeri) and terrestrial plants (Sinapis alba and Hordeum vulgare) was evaluated. Our data showed that in temperate climate conditions, the degradation of SFOs in the oil-contaminated soils was very slow: after 1 year of treatment, the decrease of total hydrocarbons' content in the soil did not exceed 25 %. In spite of the comparable chemical composition of the two studied SFOs, the VKG sweet posed higher hazard to the environment than the heavier fraction (VKG D) due to its higher mobility in the soil as well as higher toxicity to aquatic and terrestrial species. Our study demonstrated that the correlation between chemical parameters (such as total hydrocarbons or total PAHs) widely used for the evaluation of the soil pollution levels and corresponding toxicity to aquatic and terrestrial organisms was weak.

  4. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel.

    Science.gov (United States)

    Borowik, Agata; Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2017-09-10

    This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm(3) kg(-1). Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.

  5. SOIL CONTAMINATION BY NITROGEN COMPOUNDS DURING ORGANIC FUEL COMBUSTION

    Directory of Open Access Journals (Sweden)

    V. P. Bubnov

    2010-01-01

    Full Text Available The paper considers a transition mechanism of flue gas nitrogen oxides being formed due to organic fuel combustion from atmosphere into soil. Mechanisms of nitrogen compound origination and transformation in atmosphere and their transition into soil have been presented in the paper. The paper recommends a generalized equation for mathematical description of nitrogen migration into soil

  6. Advanced fuel hydrocarbon remediation national test location - biocell treatment of petroleum contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Heath, J.; Lory, E.

    1997-03-01

    Biocells are engineered systems that use naturally occurring microbes to degrade fuels and oils into simpler, nonhazardous, and nontoxic compounds. Biocells are able to treat soils contaminated with petroleum based fuels and lubricants, including diesel, jet fuel, and lubricating and hydraulic oils. The microbes use the contaminants as a food source and thus destroy them. By carefully monitoring and controlling air and moisture levels, degradation rates can be increased and total treatment time reduced over natural systems.

  7. Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils.

    Science.gov (United States)

    Balseiro-Romero, María; Kidd, Petra S; Monterroso, Carmela

    2014-01-01

    Vegetation and its associated microorganisms play an important role in the behaviour of soil contaminants. One of the most important elements is root exudation, since it can affect the mobility, and therefore, the bioavailability of soil contaminants. In this study, we evaluated the influence of root exudates on the mobility of fuel derived compounds in contaminated soils. Samples of humic acid, montmorillonite, and an A horizon from an alumi-umbric Cambisol were contaminated with volatile contaminants present in fuel: oxygenates (MTBE and ETBE) and monoaromatic compounds (benzene, toluene, ethylbenzene and xylene). Natural root exudates obtained from Holcus lanatus and Cytisus striatus and ten artificial exudates (components frequently found in natural exudates) were added to the samples, individually and as a mixture, to evaluate their effects on contaminant mobility. Fuel compounds were analyzed by headspace-gas chromatography-mass spectrometry. In general, the addition of natural and artificial exudates increased the mobility of all contaminants in humic acid. In A horizon and montmorillonite, natural or artificial exudates (as a mixture) decreased the contaminant mobility. However, artificial exudates individually had different effects: carboxylic components increased and phenolic components decreased the contaminant mobility. These results established a base for developing and improving phytoremediation processes of fuel-contaminated soils.

  8. The Effect of Urban Fuel Stations on Soil Contamination with Petroleum Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Hassan Parvizi Mosaed

    2015-09-01

    Full Text Available Background:A critical environmental impact of the petroleum industry is the contamination of soil by oil and other related products which are highly toxic and exhibit molecular recalcitrance. Therefore, this study focused on investigating the total amount of petroleum hydrocarbons (TPHs in soil of urban fuel stations in Hamedan City, Iran. Methods:Thirteen high traffic urban fuel stations were selected and random soil samples were collected from surface soils at selected fuel stations. The physical and chemical proper-ties of the soil samples were determined in the laboratory. The concentration of TPHs in soils was determined by GC/MC. Results: Results showed that concentration of TPHs in all stations was more than the stand-ard level in soil (2000 mg kg-1. The minimum and maximum TPHs concentration observed in No. 5 and No.13 fuel station, respectively. Conclusion: The results showed that spillage in urban fuel stations has clear effect on the content of TPH in soil, as concentration TPH in all of fuel stations was in the upper limit of the standard levels in soil. .Soil pollution with petroleum hydrocarbons has clear effects on soil biological, chemical and physical characteristics and results in decreasedg food elements, productivity and soil plant productions.

  9. Approaches to bioremediation of fossil fuel contaminated soil: An ...

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... pressure during decomposition also contributed to the ... the deleterious effects of these contaminants leads to .... on the utilization of low rank coal as a source of carbon .... enzymes involved in cellulose and lignin decay. ... Streptomyces setonii 75Vi2 in submerged culture ... Nitrogen and phosphorous.

  10. (Contaminated soil)

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  11. Toxicity of fuel-contaminated soil to Antarctic moss and terrestrial algae.

    Science.gov (United States)

    Nydahl, Anna C; King, Catherine K; Wasley, Jane; Jolley, Dianne F; Robinson, Sharon A

    2015-09-01

    Fuel pollution is a significant problem in Antarctica, especially in areas where human activities occur, such as at scientific research stations. Despite this, there is little information on the effects of petroleum hydrocarbons on Antarctic terrestrial biota. The authors demonstrate that the Antarctic mosses Bryum pseudotriquetrum, Schistidium antarctici, and Ceratodon purpureus, and the Antarctic terrestrial alga Prasiola crispa are relatively tolerant to Special Antarctic Blend (SAB) fuel-contaminated soil (measured as total petroleum hydrocarbons). Freshly spiked soils were more toxic to all species than were aged soils containing degraded fuel, as measured by photosynthetic efficiency (variable fluorescence/maximum fluorescence [Fv/Fm]), pigment content, and visual observations. Concentrations that caused 20% inhibition ranged from 16,600 mg/kg to 53,200 mg/kg for freshly spiked soils and from 30,100 mg/kg to 56,200 mg/kg for aged soils. The photosynthetic efficiency of C. purpureus and S. antarctici was significantly inhibited by exposure to freshly spiked soils with lowest-observed-effect concentrations of 27,900 mg/kg and 40,400 mg/kg, respectively. Prasiola crispa was the most sensitive species to freshly spiked soils (Fv/Fm lowest-observed-effect concentration 6700 mg/kg), whereas the Fv/Fm of B. pseudotriquetrum was unaffected by exposure to SAB fuel even at the highest concentration tested (62,900 mg/kg). Standard toxicity test methods developed for nonvascular plants can be used in future risk assessments, and sensitivity data will contribute to the development of remediation targets for petroleum hydrocarbons to guide remediation activities in Antarctica.

  12. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.

    Science.gov (United States)

    Habibul, Nuzahat; Hu, Yi; Sheng, Guo-Ping

    2016-11-15

    An investigation of the feasibility of in-situ electrokinetic remediation for toxic metal contaminated soil driven by microbial fuel cell (MFC) is presented. Results revealed that the weak electricity generated from MFC could power the electrokinetic remediation effectively. The metal removal efficiency and its influence on soil physiological properties were also investigated. With the electricity generated through the oxidation of organics in soils by microorganisms, the metals in the soils would mitigate from the anode to the cathode. The concentrations of Cd and Pb in the soils increased gradually through the anode to the cathode regions after remediation. After about 143days and 108 days' operation, the removal efficiencies of 31.0% and 44.1% for Cd and Pb at the anode region could be achieved, respectively. Soil properties such as pH and soil conductivity were also significantly redistributed from the anode to the cathode regions. The study shows that the MFC driving electrokinetic remediation technology is cost-effective and environmental friendly, with a promising application in soil remediation.

  13. Characterization and fingerprinting of soil and groundwater contamination sources around a fuel distribution station in Galicia (NW Spain).

    Science.gov (United States)

    Balseiro-Romero, María; Macías, Felipe; Monterroso, Carmen

    2016-05-01

    Soil and groundwater contamination around a fuel distribution station in Tomiño (NW Spain) was evaluated. For this purpose, top and subsoil (up to 6.4 m) and groundwater were sampled around the station, approximately in a 60-m radius. Samples were analysed by HS-SPME-GC-MS to identify and quantify volatile fuel organic compounds (VFOC) (MTBE, ETBE and BTEX) and diesel range organics (DRO). Analysis and fingerprinting data suggested that the contamination of soil and groundwater was provoked by a fuel leak from underground storage tanks. This was reflected by hydrocarbon indices and principal component analysis, which discriminated a direct source of contamination of the subsoil samples around the station. The contaminants probably migrated from tank nearby soils to surrounding soils and leached to groundwater, following a SW direction. Irrigation with contaminated groundwater provoked a severe contamination of topsoils, which were enriched with the lightest components of gasoline and diesel. Fingerprinting also revealed the continuity of the leak, reflected by the presence of volatiles in some samples, which principally appeared in fresh leaks. MTBE was detected in a very high concentration in groundwater samples (up to 690 μg L(-1)), but it was not detected in fresh gasoline. This also evidenced an old source of contamination, probably starting in the mid-1990s, when the use of MTBE in gasoline was regulated.

  14. Isolation and Characterization of Phenanthrene Degrading Bacteria from Diesel Fuel-Contaminated Antarctic Soils

    Directory of Open Access Journals (Sweden)

    Alejandro Gran-Scheuch

    2017-08-01

    Full Text Available Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH. Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach. Since the introduction of foreign organisms into the Antarctica is prohibited, it is key to discover native bacteria that can be used for diesel bioremediation. By following the degradation of the PAH phenanthrene, we isolated 53 PAH metabolizing bacteria from diesel contaminated Antarctic soil samples, with three of these isolates exhibiting a high phenanthrene degrading capacity. In particular, the Sphingobium xenophagum D43FB isolate showed the highest phenanthrene degradation ability, generating up to 95% degradation of initial phenanthrene. D43FB can also degrade phenanthrene in the presence of its usual co-pollutant, the heavy metal cadmium, and showed the ability to grow using diesel-fuel as a sole carbon source. Microtiter plate assays and SEM analysis revealed that S. xenophagum D43FB exhibits the ability to form biofilms and can directly adhere to phenanthrene crystals. Genome sequencing analysis also revealed the presence of several genes involved in PAH degradation and heavy metal resistance in the D43FB genome. Altogether, these results demonstrate that S. xenophagum D43FB shows promising potential for its application in the bioremediation of diesel fuel contaminated-Antarctic ecosystems.

  15. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  16. Biodegradation of stored jet fuel by a Nocardia sp. isolated from contaminated soil

    Directory of Open Access Journals (Sweden)

    Edelvio de Barros Gomes

    2009-10-01

    Full Text Available The aim of this study was to investigate the potential of degradation of an autochthonous bacterial strain, isolated from petroleum derivatives contaminated soil samples against jet fuel hydrocarbons. The autochthonous bacterial strain was characterized as Nocardia sp. Evaluation of their degrading abilities was carried out by presumptive assays as redox indicator test and by observations of surface tension decreases in aqueous medium. Degradation of jet fuel hydrocarbons was evaluated by chromatographic methods. Experiments were performed in flasks at two biostimulation rates. A bacterial strain of Pseudomonas aeruginosa UFPEDA 39 was utilized as a reference microorganism. The bacterial strain, identified as Nocardia sp, demonstrate high ability to degrade jet fuel compounds as well as to produce surface active compounds when compared to the reference microrganism.O presente estudo objetivou a investigação da capacidade degradadora de uma linhagem bacteriana autóctone (isolada de amostras de solo contaminadas com derivados de petróleo contra hidrocarbonetos de querosene de aviação. A linhagem foi caracterizada como Nocardia sp. A avaliação do seu potencial degradador deu-se realizada mediante testes com indicador redox e observações na redução da tensão superficial na fase aquosa. A degradação do querosene foi avaliada por métodos cromatográficos. Os experimentos foram realizados utilizando-se duas taxas de bioestímulo. Uma linhagem bacteriana Pseudomonas aeruginosa UFPEDA 39 foi utilizada como referência. A linhagem autóctone demonstrou alta eficiência na degradação de hidrocarbonetos do querosene bem como para produzir compostos ativos de superfície quando comparada com a linhagem de referência.

  17. When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial.

    Science.gov (United States)

    Coulon, Frédéric; Al Awadi, Mohammed; Cowie, William; Mardlin, David; Pollard, Simon; Cunningham, Colin; Risdon, Graeme; Arthur, Paul; Semple, Kirk T; Paton, Graeme I

    2010-10-01

    A six month field scale study was carried out to compare windrow turning and biopile techniques for the remediation of soil contaminated with bunker C fuel oil. End-point clean-up targets were defined by human risk assessment and ecotoxicological hazard assessment approaches. Replicate windrows and biopiles were amended with either nutrients and inocula, nutrients alone or no amendment. In addition to fractionated hydrocarbon analysis, culturable microbial characterisation and soil ecotoxicological assays were performed. This particular soil, heavy in texture and historically contaminated with bunker fuel was more effectively remediated by windrowing, but coarser textures may be more amendable to biopiling. This trial reveals the benefit of developing risk and hazard based approaches in defining end-point bioremediation of heavy hydrocarbons when engineered biopile or windrow are proposed as treatment option. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil.

  19. Development of Enhanced Remedial Techniques for Petroleum Fuel and Related Contaminants in Soil and Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-10

    Western Research Institute (WRI) in conjunction with Earth Tech and the U.S. Department of Energy (DOE) was to identify proper sites with soils and/or groundwater contaminated by petroleum constituents and MTBE. Biodegradation rates would have been quantitatively assessed in both laboratory and field tests to achieve the optimal destruction of contaminants of concern. WRI and Earth Tech identified a site contaminated with high concentrations of methanol associated with petroleum hydrocarbons. The site was assessed and a remediation project plan was prepared; however, the site was soon acquired by a new company. An agreement between Earth Tech, WRI, and the new site owners could not be reached; therefore, a work was performed to identify a new project site. Task 33 was terminated and the available funding was redeployed to other Tasks after receiving approval from the U.S. DOE task manager.

  20. Assessment of soil-gas contamination at three former fuel-dispensing sites, Fort Gordon, Georgia, 2010—2011

    Science.gov (United States)

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, from October 2010 to September 2011. The assessment included delineation of organic contaminants using soil-gas samplers collected from the former fuel-dispensing sites at 8th Street, Chamberlain Avenue, and 12th Street. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers installed and retrieved during June and August 2011 at the 8th Street site had detections above the method detection level (MDL) for the mass of total petroleum hydrocarbons (TPH), benzene, toluene, ortho-xylene, undecane, tridecane, pentadecane, and chloroform. Total petroleum hydrocarbons soil-gas mass exceeded the MDL of 0.02 microgram in 54 of the 55 soil-gas samplers. The highest detection of TPH soil-gas mass was 146.10 micrograms, located in the central part of the site. Benzene mass exceeded the MDL of 0.01 microgram in 23 soil-gas samplers, whereas toluene was detected in only 10 soil-gas samplers. Ortho-xylene was detected above the MDL in only one soil-gas sampler. The highest soil-gas mass detected for undecane, tridecane, and pentadecane was located in the northeastern corner of the 8th Street site. Chloroform mass greater than the MDL of 0.01 microgram was detected in less than one-third of the soil-gas samplers. Soil-gas masses above the MDL were identified for TPH, gasoline-related compounds, diesel-range alkanes, trimethylbenzenes, naphthalene, 2-methyl-napthalene, octane, and tetrachloroethylene for the July 2011 soil-gas survey at the Chamberlain Avenue site. All 30 of the soil-gas samplers contained TPH mass above the MDL. The highest detection of TPH mass, 426.36 micrograms, was for a soil-gas sampler located near the northern boundary of the site. Gasoline-related compounds and diesel-range alkanes were

  1. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).

    Science.gov (United States)

    Godoy-Faúndez, Alex; Antizar-Ladislao, Blanca; Reyes-Bozo, Lorenzo; Camaño, Andrés; Sáez-Navarrete, César

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration>50,000 mg kg(-1)) and sawdust (fuel concentration>225,000 mg kg(-1)) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 degrees C), constant moisture content (MC, 50%) and continuous aeration (16 l min(-1)) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p<0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1:3 and a correct

  2. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile)

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Faundez, Alex [Department of Chemical Engineering and Bioprocesses, Pontifica Universidad Catolica de Chile (Chile)], E-mail: agodoy@puc.cl; Antizar-Ladislao, Blanca [Department of Water and Environment Science and Technology, University of Bulevar Ronda Rufino Peon, 39316 Torrelavega, Cantabria (Spain)], E-mail: b_antizar@hotmail.com; Reyes-Bozo, Lorenzo [Department of Chemical Engineering and Bioprocesses, Pontifica Universidad Catolica de Chile (Chile); Camano, Andres [Minera Escondida Ltd. (Chile); Saez-Navarrete, Cesar [Department of Chemical Engineering and Bioprocesses, Pontifica Universidad Catolica de Chile (Chile)], E-mail: csaez@ing.puc.cl

    2008-03-01

    Since early 1900s, with the beginning of mining operations and especially in the last decade, small, although repetitive spills of fuel oil had occurred frequently in the Chilean mining desert industry during reparation and maintenance of machinery, as well as casual accidents. Normally, soils and sawdust had been used as cheap readily available sorbent materials of spills of fuel oil, consisting of complex mixtures of aliphatic and aromatic hydrocarbons. Chilean legislation considers these fuel oil contaminated mixtures of soil and sawdust as hazardous wastes, and thus they must be contained. It remains unknown whether it would be feasible to clean-up Chilean desert soils with high salinity and metal content, historically polluted with different commercial fuel oil, and contained during years. Thus, this study evaluated the feasibility of aerated in-vessel composting at a laboratory scale as a bioremediation technology to clean-up contaminated desert mining soils (fuel concentration > 50,000 mg kg{sup -1}) and sawdust (fuel concentration > 225,000 mg kg{sup -1}) in the Atacama Region. The composting reactors were operated using five soil to sawdust ratios (S:SD, 1:0, 3:1, 1:1, 1:3, 0:1, on a dry weight basis) under mesophilic temperatures (30-40 deg. C), constant moisture content (MC, 50%) and continuous aeration (16 l min{sup -1}) during 56 days. Fuel oil concentration and physico-chemical changes in the composting reactors were monitored following standard procedures. The highest (59%) and the lowest (35%) contaminant removals were observed in the contaminated sawdust and contaminated soil reactors after 56 days of treatment, respectively. The S:SD ratio, time of treatment and interaction between both factors had a significant effect (p < 0.050) on the contaminant removal. The results of this research indicate that bioremediation of an aged contaminated mixture of desert mining soil and sawdust with fuel oil is feasible. This study recommends a S:SD ratio 1

  3. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.

    Science.gov (United States)

    Jampasri, Kongkeat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Ounjai, Puey; Kumsopa, Acharaporn

    2016-10-01

    Phytoremediation is widely promoted as a cost-effective technology for treating heavy metal and total petroleum hydrocarbon (TPH) co-contaminated soil. This study investigated the concurrent removal of TPHs and Pb in co-contaminated soil (27,000 mg kg(-1) TPHs, 780 mg kg(-1) Pb) by growing Siam weed (Chromolaena odorata) in a pot experiment for 90 days. There were four treatments: co-contaminated soil; co-contaminated soil with C. odorata only; co-contaminated soil with C. odorata and Micrococcus luteus inoculum; and co-contaminated soil with M. luteus only. C. odorata survived and grew well in the co-contaminated soil. C. odorata with M. luteus showed the highest Pb accumulation (513.7 mg kg(-1)) and uptake (7.7 mg plant(-1)), and the highest reduction percentage of TPHs (52.2%). The higher TPH degradation in vegetated soils indicated the interaction between the rhizosphere microorganisms and plants. The results suggested that C. odorata together with M. luteus and other rhizosphere microorganisms is a promising candidate for the removal of Pb and TPHs in co-contaminated soils.

  4. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  5. Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batch leaching tests.

    Science.gov (United States)

    Balseiro-Romero, María; Kidd, Petra S; Monterroso, Carmen

    2016-03-05

    Volatile fuel compounds such as fuel oxygenates (FO) (MTBE and ETBE) and BTEX (benzene, toluene, ethylbenzene and xylene) are some of the most soluble components of fuel. Characterizing the leaching potential of these compounds is essential for predicting their mobility through the soil profile and assessing the risk of groundwater contamination. Plant root exudates can play an important role in the modification of contaminant mobility in soil-plant systems, and such effects should also be considered in leaching studies. Artificially spiked samples of A and B horizons from an alumi-umbric Cambisol were leached in packed-columns and batch experiments using Milli-Q water and plant root exudates as leaching agents. The leaching potential and rate were strongly influenced by soil-contaminant interactions and by the presence of root exudates. Organic matter in A horizon preferably sorbed the most non-polar contaminants, lowering their leaching potential, and this effect was enhanced by the presence of root exudates. On the other hand, the inorganic components of the B horizon, showed a greater affinity for polar molecules, and the presence of root exudates enhanced the desorption of the contaminants. Column experiments resulted in a more realistic protocol than batch tests for predicting the leaching potential of volatile organic compounds in dissimilar soils.

  6. Degradative capacities of bacteria and fungi isolated from a fuel-contaminated soil. Capacites degradatives de bacteries et de champignons isoles d'un sol contamine par un fuel

    Energy Technology Data Exchange (ETDEWEB)

    Oudot, J.; Fusey, P.; Abdelouahid, D.E.; Haloui, S.; Roquebert, M.F. (Museum national d' histoire naturelle, Cedex (France))

    1987-01-01

    The long-term influence of a fuel spill on the bacterial and fungal communities of an agricultural soil was studied. Three years after the contamination, biodegradation of the fuel in the soil was achieved and after 5 years the residual compounds had no significant effect on the density and the specific composition of the microbial populations of the soil. Hydrocarbon-oxidizing bacteria Corynebacterium and Nocardia spp. were isolated. Most of the active fungi were Aspergillus and Penicillium spp., but strains of Paecilomyces, Acremonium, Fusarium, and Gliocladium were also identified. In laboratory experiments, the biodegration rate of a reference crude oil by pure cultures of oil-degrading strains was nearly the same as in mixed cultures. The biodegradation potential of the strains isolated from the control plot was as high as strains isolated from the oiled plot. In the soil, as in laboratory cultures, the saturate hydrocarbons were more degraded than the aromatics, whereas the resins and asphaltenes were resistant to microbial attack, as were polycyclic alkanes, steranes and triterpanes. Nocardia degraded preferentially the aromatics and attacked significantly the asphaltenes, as did Fusarium oxysporum. Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum degraded part of the resins. The spectrum of the initial degradation of petroleum by the most active fungi and bacteria was identical, and it appears that the enzymatic equipment necessary to oxidize hydrocarbons is quite complete in these strains. 21 refs., 9 figs., 5 tabs.

  7. Phyto-enhanced remediation of soil co-contaminated with lead and diesel fuel using biowaste and Dracaena reflexa: A laboratory study.

    Science.gov (United States)

    Dadrasnia, Arezoo; Pariatamby, Agamuthu

    2016-03-01

    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead. © The Author(s) 2015.

  8. Degradability of n-alkanes during ex situ natural bioremediation of soil contaminated by heavy residual fuel oil (mazut

    Directory of Open Access Journals (Sweden)

    Ali Ramadan Mohamed Muftah

    2013-01-01

    Full Text Available It is well known that during biodegradation of oil in natural geological conditions, or oil pollutants in the environment, a degradation of hydrocarbons occurs according to the well defined sequence. For example, the major changes during the degradation process of n-alkanes occur in the second, slight and third, moderate level (on the biodegradation scale from 1 to 10. According to previous research, in the fourth, heavy level, when intensive changes of phenanthrene and its methyl isomers begin, n-alkanes have already been completely removed. In this paper, the ex situ natural bioremediation (unstimulated bioremediation, without addition of biomass, nutrient substances and biosurfactant of soil contaminated with heavy residual fuel oil (mazut was conducted during the period of 6 months. Low abundance of n-alkanes in the fraction of total saturated hydrocarbons in the initial sample (identification was possible only after concentration by urea adduction technique showed that the investigated oil pollutant was at the boundary between the third and the fourth biodegradation level. During the experiment, an intense degradation of phenanthrene and its methyl-, dimethyl-and trimethyl-isomers was not followed by the removal of the remaining n-alkanes. The abundance of n-alkanes remained at the initial low level, even at end of the experiment when the pollutant reached one of the highest biodegradation levels. These results showed that the unstimulated biodegradation of some hydrocarbons, despite of their high biodegradability, do not proceed completely to the end, even at final degradation stages. In the condition of the reduced availability of some hydrocarbons, microorganisms tend to opt for less biodegradable but more accessible hydrocarbons.

  9. Recovering greater fungal diversity from pristine and diesel fuel contaminated Sub-Antarctic soil through cultivation using a high and a novel low nutrient approach

    Directory of Open Access Journals (Sweden)

    Belinda Carlene Ferrari

    2011-11-01

    Full Text Available Novel cultivation strategies for bacteria are widespread and are well described for recovering greater diversity from the hitherto unculturable majority. While similar approaches have not been demonstrated for fungi it has been suggested that of the 1.5 million estimated species less than 5% have been recovered into pure culture. Fungi are known to be involved in many degradative processes, including the breakdown of hydrocarbons, and it has been speculated that in Polar Regions they contribute significantly to bioremediation of soils contaminated with hydrocarbons. Given the biotechnological potential of fungi there is a need to increase efforts for greater species recovery, particularly from extreme environments such as sub-Antarctic Macquarie Island. In this study, like the hitherto unculturable bacteria, high concentrations of nutrients selected for predominantly different species to that recovered using low nutrient media. By combining both approaches to cultivation from contaminated and non-contaminated soils, 99 fungal species were recovered, including 42 yet unidentified species, several of which were isolated from soils containing high concentrations of diesel fuel. These novel species will now be characterized for their potential role in hydrocarbon degradation.

  10. Phytostabilization of metal contaminated soils.

    Science.gov (United States)

    Alkorta, I; Becerril, J M; Garbisu, C

    2010-01-01

    The contamination of soils with heavy metals represents a worldwide environmental problem of great concern. Traditional methods for the remediation of metal contaminated soils are usually very expensive and frequently induce adverse effects on soil properties and biological activity. Consequently, biological methods of soil remediation like phytoremediation (the use of green plants to clean up contaminated sites) are currently receiving a great deal of attention. In particular, chemophytostabilization of metal contaminated soils (the use of metal tolerant plants together with different amendments like organic materials, liming agents, or phosphorus compounds and such) to reduce metal mobility and bioavailability in soils appears most promising for sites contaminated with high levels of several metals when phytoextraction is not a feasible option. During chemophytostabilization processes, one must at all times be cautious with a possible future reversal of soil metal immobilization, with concomitant adverse environmental consequences.

  11. Low contaminant formic acid fuel for direct liquid fuel cell

    Science.gov (United States)

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  12. Analytical Evaluation to Determine Selected PAHs in a Contaminated Soil With Type II Fuel; Metodo Optimizado de Extraccion por Ultrasonidos para la Determinacion de PAHs Seleccionados en un Suelo Contaminado con Fuel de Tipo II

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Alonso, S.; Perez Pastor, R. M.; Sevillano Castano, M. L.; Garcia Frutos, F. J.

    2010-10-21

    A study on the optimization of an ultrasonic extraction method for selected PAHs determination in soil contaminated by type II fuel and by using HPLC with fluorescence detector is presented. The main objective was optimize the analytical procedure, minimizing the volume of solvent and analysis time and avoiding possible loss by evaporation. This work was carried out as part of a project that investigated a remediation process of agricultural land affected by an accidental spillage of fuel (Plan Nacional I + D + i, CTM2007-64 537). The paper is structured as: Optimization of wavelengths in the chromatographic conditions to improve resolution in the analysis of fuel samples. Optimization of the main parameters affecting in the extraction process by sonication. Comparison of results with those obtained by accelerated solvent extraction. (Author) 3 refs.

  13. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  14. Light Obscuration Particle Counter Fuel Contamination Limits

    Science.gov (United States)

    2015-10-08

    4) (5). The Army utilizes ASTM D4176 – Standard Test Method for Free Water and Particulate Contamination in Distillate Fuels (Visual Inspection ...where high in the 4µm (c) channel only. 78 samples where aviation fuels (JP-8 and F-24) that where high in the 6µm (c),14µm (c), and/or 30µm (c...AND USE OF LIQUID FUELS Charleston, South Carolina USA 4-8 October 2015 LIGHT OBSCURATION PARTICLE COUNTER FUEL CONTAMINATION LIMITS Joel

  15. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    Science.gov (United States)

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  16. Review of soil contamination guidance

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.A.; Kennedy, W.E. Jr.; Soldat, J.K.

    1981-08-01

    A review of existing and proposed radioactive soil contamination standards and guidance was conducted for United Nuclear Corporation (UNC), Office of Surplus Facilities Management. Information was obtained from both government agencies and other sources during a literature survey. The more applicable standards were reviewed, evaluated, and summarized. Information pertaining to soil contamination for both facility operation and facility decommissioning was obtained from a variety of sources. These sources included: the Code of Federal Regulations, regulatory guides, the Federal Register, topical reports written by various government agencies, topical reports written by national laboratories, and publications from the American National Standards Institute (ANSI). It was difficult to directly compare the standards and guidance obtained from these sources since each was intended for a specific situation and different units or bases were used. However, most of the information reviewed was consistent with the philosophy of maintaining exposures at levels as low as reasonably achievable (ALARA).

  17. Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Andreolli, Marco; Lampis, Silvia; Brignoli, Pierlorenzo; Vallini, Giovanni

    2016-05-01

    Trichoderma sp. strain Evx1 was isolated from a semi-deciduous forest soil in Southern Italy. It decolorizes polynuclear organic dyes and tolerates high concentrations of phenanthrene, anthracene, fluoranthene, and pyrene. The ability of this ascomycete fungus to degrade polycyclic aromatic hydrocarbons was verified in vitro and confirmed by its strong phenoloxidase activity in the presence of gallic acid. Phylogenetic characterization of Trichoderma sp. Evx1 positioned this strain within the species Trichoderma longibrachiatum. The potential use of this species for the bioremediation of contaminated environmental matrices was tested by inoculating diesel-spiked soil with a dense mycelial suspension. The biodegradation percentage of the C12-40 hydrocarbon fraction in the inoculated soil rose to 54.2 ± 1.6 %, much higher than that in non-inoculated soil or soil managed solely by a combination of watering and aeration. The survival and persistence of T. longibrachiatum Evx1 throughout the bioremediation trial was monitored by PCR-DGGE analysis. The fungal strain was still present in the soil 30 days after bioaugmentation. These findings indicate that T. longibrachiatum Evx1 may be a suitable inoculum in bioremediation protocols for the reclamation of soils contaminated by complex mixtures of hydrocarbons.

  18. Isolation and microscopic characterization of nuclear fuel particles from contaminated soil of ChernobylSéparation et caractérisation microscopique des particules de combustible nucléaire présentes dans les sols contaminés de Tchernobyl

    Science.gov (United States)

    Ahamdach, Noureddine; Stammose, Denise

    2000-03-01

    Nuclear fuel particles were separated from Chernobyl contaminated soil sample by sedimentation in bromoform. Their physicochemical characteristics were studied using the scanning electron microscope. One part of the particles contained U and O and the other part contained U, Zr and O. The size of the particles containing Zr was greater than that of the pure fuel particles. The structure and the surface morphology of the studied particles were variable and characterized the conditions of their formation. Thus, the source term is heterogeneous. This heterogeneity has direct consequences on the dissolution of the fuel particles.

  19. Soil biogeochemical toxicity end points for sub-Antarctic islands contaminated with petroleum hydrocarbons.

    Science.gov (United States)

    Schafer, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2007-05-01

    Sub-Antarctic islands have been subjected to petroleum hydrocarbon spills, yet no information is available regarding the toxicity of petroleum hydrocarbons to these subpolar soils. The purpose of the present study was to identify soil biogeochemical toxicity end points for petroleum hydrocarbon contamination in sub-Antarctic soil. Soil from Macquarie Island, a sub-Antarctic island south of Australia, was collected and exposed to 10 concentrations of Special Antarctic Blend (SAB) diesel fuel, ranging from 0 to 50,000 mg fuel/kg soil, for a 21-d period. The sensitivity of nitrification, denitrification, carbohydrate utilization, and total soil respiration to SAB fuel was assessed. Potential nitrification activity was the most sensitive indicator of SAB contamination assessed for nitrogen cycling, with an IC20 (concentration that results in a 20% change from the control response) of 190 mg fuel/ kg soil. Potential denitrification activity was not as sensitive to SAB contamination, with an IC20 of 950 mg fuel/kg soil for nitrous oxide production. Nitrous oxide consumption was unaffected by SAB contamination. Carbohydrate utilization (respiration caused by sucrose) was a more sensitive indicator (IC20, 16 mg fuel/kg soil) of SAB contamination than total respiration (IC20, 220 mg fuel/kg soil). However, total soil respiration was a more responsive measurement end point, increasing soil respiration over a 72-h period by 17 mg of CO2, compared to a change of only 2.1 mg of CO2 for carbohydrate utilization. Our results indicate that IC20s varied between 16 to 950 mg fuel/kg soil for Macquarie Island soil spiked with SAB diesel fuel. These results indicate that current cleanup levels derived from temperate zones may be too liberal for soil contamination in sub-Antarctic islands.

  20. Remediation of heavy metal contaminated soil | Nanda |

    African Journals Online (AJOL)

    Remediation of heavy metal contaminated soil. ... in intensive research aiming at understanding metal interactions in soil and their removal in an efficient way. ... This paper investigates the plant-microbial interactions in reclaiming the metal ...

  1. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soils.

    Science.gov (United States)

    Siciliano, Steven D; Schafer, Alexis N; Forgeron, Michelle A M; Snape, Ian

    2008-11-15

    We do not yet understand why fuel spills can cause greater damage in polar soils than in temperate soils. The role of water in the freezing environment may partly be responsible for why polar soils are more sensitive to pollution. We hypothesized that hydrocarbons alter the liquid water in frozen soil, and we evaluated this hypothesis by conducting laboratory and field experiments at Casey Station, Antarctica. Liquid water content in frozen soils (theta(liquid)) was estimated by time domain reflectometry in laboratory, field collected soils, and in situ field measurements. Our results demonstrate an increase in liquid water associated with hydrocarbon contamination in frozen soils. The dependence of theta(liquid) on aged fuel and spiked fuel were almost identical,with a slope of 2.6 x 10(-6) mg TPH (total petroleum hydrocarbons) kg(-1) for aged fuel and 3.1 x 10(-6) mg TPH kg(-1) for spiked fuel. In situ measurements found theta(liquid) depends, r2 = 0.75, on fuel for silt loam soils (theta(liquid) = 0.094 + 7.8 x 10(-6) mg TPH kg(-1)) but not on fuel for silt clay loam soils. In our study, theta(liquid) doubled in field soils and quadrupled in laboratory soils contaminated with diesel which may have profound implications on frost heave models in contaminated soils.

  2. Transformers as a potential for soil contamination

    Directory of Open Access Journals (Sweden)

    N. Stojić

    2014-10-01

    Full Text Available The aim of this paper is to investigate the presence of PCBs and heavy metals in the surrounding soil and also in the soil of the receiving pit located below the PCB contaminated transformer. Concentrations of PCBs in our samples are ranged from 0,308 to 0,872 mg/kg of absolutely dry soil.

  3. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    Science.gov (United States)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  4. Spectral induced polarization signature of contaminated soil

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Shefer, I.; Furman, A.

    2012-04-01

    Spectral induced polarization (SIP) signatures of porous media contaminated with non aqueous phase liquids (NAPL) were measured using an accurate impedance meter. The samples were prepared by mixing air-dried sand with 15% by weight of bentonite clay, tap water and either diesel fuel or motor oil. Next, the soil was packed in a column and left for 24 hr before electrical measurements were performed. For all the samples, water saturation was constant (Sw = 0.47) and the NAPL saturation was 0 (control), 5, or 15 percent. Counter-intuitively, the results show that addition of NAPL to the porous media resulted in an increase of the real part of the complex conductivity. Evidently, for each type of contaminant, an increase in the contaminant saturation resulted in an increase in the real part of the conductivity. The imaginary part of the complex conductivity showed a reversed behavior: higher NAPL saturation resulted in a reduction of the imaginary part of the complex conductivity. For both the real and the imaginary part of the complex conductivity, the effect of NAPL on the complex electrical conductivity was more significant for motor oil than for diesel fuel. In addition to the electrical measurements, we also performed an extraction experiment to examine the effect of the presence of NAPL on the electrical conductivity (EC) of the pore water. The results from the extraction experiment showed that addition of NAPL to the porous media resulted in an increase of the pore water EC. We argue that this increase in the real part of the complex conductivity is related to adsorption of organic polar compounds from the NAPL onto the mineral surface and the associated release of inorganic ions from the mineral surface to the pore water. These exchange processes affect both the surface and the pore water conductivity. In addition, we suggest that the decrease in polarization (associated with the imaginary part of the complex conductivity) of the NAPL contaminated porous media

  5. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    oxidation of contaminants and by integrating the process to biological treatment, in which the formed degradation products can be biodegraded. Phytoremediation was used to remove fresh and aged petroleum hydrocarbons from soil, and modified FentonAEs reaction combined with biodegradation was used to remove aged creosote oil from soil. The effects of hydrocarbon aging, different plant species and soil amendments on the removal efficiency were studied in phytoremediation experiments. Lab-scale experiments were made with fresh diesel fuel, and a field study was made with aged hydrocarbons deriving from diesel fuel and lubricants. The used plant species were pine, poplar, a grass mixture and a legume mixture. The experiments with modified Fenton's treatment were carried out in soil columns, to which concentrated H{sub 2}O{sub 2} was added simulating in situ injection. Iron was not added since the soil was rich in iron. After FentonAEs treatment, the soil was incubated in serum bottles to determine the effects on bioavailability of PAHs by modified FentonAEs oxidation and to simulate the potential of intrinsic remediation. In addition to hydrocarbon analyses, the effects of both methods on soil microbial activities and toxicity were determined. In the presence of white clover and green pea, pine or poplar, 89 to 98 % of diesel fuel was removed, whereas the presence of grasses did not increase diesel fuel removal compared to treatment without plants, where up to 86 % of diesel fuel was removed. When diesel was applied to the trees for a second time, reduction in one month was 9 to 25 % higher than what was achieved after first month of first application. During the four growing season study with soil contaminated with aged hydrocarbon contaminants, the presence of vegetation did not increase hydrocarbon removal in unfertilised soil. Vegetation cover was denser in amended soil than in unfertilised soil. The addition of compost or NPK fertiliser enhanced hydrocarbon removal

  6. A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.; Hazen, T.

    1994-06-01

    The amount of petroleum contaminated soil (PCS) at the Savannah River site (SRS) that has been identified, excavated and is currently in storage has increased several fold during the last few years. Several factors have contributed to this problem: (1) South Carolina Department of Health ad Environmental control (SCDHEC) lowered the sanitary landfill maximum concentration for total petroleum hydrocarbons (TPH) in the soil from 500 to 100 parts per million (ppm), (2) removal and replacement of underground storage tanks at several sites, (3) most recently SCDHEC disallowed aeration for treatment of contaminated soil, and (4) discovery of several very large contaminated areas of soil associated with leaking underground storage tanks (LUST), leaking pipes, disposal areas, and spills. Thus, SRS has an urgent need to remediate large quantities of contaminated soil that are currently stockpiled and the anticipated contaminated soils to be generated from accidental spills. As long as we utilize petroleum based compounds at the site, we will continue to generate contaminated soil that will require remediation.

  7. Determination of uranium concentration and burn-up of irradiated reactor fuel in contaminated areas in Belarus using uranium isotopic ratios in soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.P.; Matusevich, J.L.; Kudrjashov, V.P.; Ananich, P.I.; Zhuravkov, V.V. [Inst. of Radiobiology, Minsk Univ. (Belarus); Boulyga, S.F. [Inst. of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-Univ. Mainz, Mainz (Germany); Becker, J.S. [Central Div. of Analytical Chemistry, Research Centre Juelich, Juelich (Germany)

    2005-07-01

    An analytical method is described for the estimation of uranium concentrations, of {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and burn-up of irradiated reactor uranium in contaminated soil samples by inductively coupled plasma mass spectrometry. Experimental results obtained at 12 sampling sites situated on northern and western radioactive fallout tails 4 to 53 km distant from Chernobyl nuclear power plant (NPP) are presented. Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 2.1 x 10{sup -9}g/g to 2.0 x 10{sup -6}g/g depending mainly on the distance from Chernobyl NPP. A slight variation of the degree of burn-up of spent reactor uranium was revealed by analyzing {sup 235}U/{sup 238}U and {sup 236}U/{sup 238}U isotope ratios and the average value amounted to 9.4{+-}0.3 MWd/(kg U). (orig.)

  8. Cleanup of contaminated soil -- Unreal risk assumptions: Contaminant degradation

    Energy Technology Data Exchange (ETDEWEB)

    Schiffman, A. [New Jersey Department of Environmental Protection, Ewing, NJ (United States)

    1995-12-31

    Exposure assessments for development of risk-based soil cleanup standards or criteria assume that contaminant mass in soil is infinite and conservative (constant concentration). This assumption is not real for most organic chemicals. Contaminant mass is lost from soil and ground water when organic chemicals degrade. Factors to correct for chemical mass lost by degradation are derived from first-order kinetics for 85 organic chemicals commonly listed by USEPA and state agencies. Soil cleanup criteria, based on constant concentration, are then corrected for contaminant mass lost. For many chemicals, accounting for mass lost yields large correction factors to risk-based soil concentrations. For degradation in ground water and soil, correction factors range from greater than one to several orders of magnitude. The long exposure durations normally used in exposure assessments (25 to 70 years) result in large correction factors to standards even for carcinogenic chemicals with long half-lives. For the ground water pathway, a typical soil criterion for TCE of 1 mg/kg would be corrected to 11 mg/kg. For noncarcinogens, correcting for mass lost means that risk algorithms used to set soil cleanup requirements are inapplicable for many chemicals, especially for long periods of exposure.

  9. Phytoremediation for phenanthrene and pyrene contaminated soils

    Institute of Scientific and Technical Information of China (English)

    GAO Yan-zheng; ZHU Li-zhong

    2005-01-01

    Phytoremediation of soil contaminated with phenanthrene and pyrene was investigated using twelve plant species. Plant uptake and accumulation of these chemicals were evaluated. At the end of the experiment(45 d), the remaining respective concentrations of soil phenanthrene and pyrene in spiked vegetated soils, with initial phenanthrene of 133.3 mg/kg and pyrene of 171.5 mg/kg, were 8.71-16.4and 44.9-65.0 mg/kg, generally 4.7%-49.4% and 7.1%-35.9% lower than their concentrations in the nonvegetated soils. The loss of phenanthrene and pyrene in vegetated spiked soils were 88.2%-93.0% and 62.3%-73.8% of the added amounts of these contaminants, respectively. Although plant uptake and accumulation of these compounds were evident, and root concentrations and RCFs(root concentration factors; defined as the ratio of PAH concentrations in roots and in the soils on a dry weight basis) of these compounds significantly positively correlated to root lipid contents, plant uptake and accumulation only accounted for less than 0.01% and 0.23% of the enhanced loss of these chemicals in vegetated versus non-vegetated soils. In contrast, plant-promoted microbial biodegradation was the dominant mechanism of the phytoremediation for soil phenanthrene and pyrene contamination. Results from this study suggested a feasibility of the establishment of phytoremediation for soil PAH contamination.

  10. Assessing soil and groundwater contamination from biofuel spills.

    Science.gov (United States)

    Chen, Colin S; Shu, Youn-Yuen; Wu, Suh-Huey; Tien, Chien-Jung

    2015-03-01

    Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e., monoaromatic and polyaromatic hydrocarbons) in soil. The extent and reversibility of the sorption of aromatic biofuel constituents onto soil were determined. When the ethanol content in ethanol-blended gasoline exceeded 25%, enhanced desorption of the aromatic constituents to water was observed. However, when biodiesel was added to diesel fuel, the sorption of target compounds was not affected. In addition, when the organic carbon content of the soil was higher, the desorption of target compounds into water was lower. The empirical relationships between the organic-carbon normalized sorption coefficient (Koc) and water solubility and between Koc and the octanol-water partition coefficient (Kow) were established. Column experiments were carried out for the comparison of column effluent concentration/mass from biofuel-contaminated soil. The dissolution of target components depended on chemical properties such as the hydrophobicity and total mass of biofuel. This study provides a basis for predicting the fate and transport of hydrophobic organic compounds in the event of a biofuel spill. The spill scenarios generated can assist in the assessment of biofuel-contaminated sites.

  11. Organic contaminants in soil, desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the soil matri

  12. Fungal Bioremediation of Creosote-contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    The influence of two ligninolytic fungi (Pleurotus ostreatus and Irpex lacteus) on bioremediation of creosote-contaminated soil was studied. The thesis describes the polycyclic aromatic hydrocarbon concentration decrease during the laboratory-scale experiments and reveals the changes in the present soil microbial community under the influence of either fungus. The thesis compares different impact on PAH concentrations and soil microbial community depending on the fungus applied.

  13. Mechanochemical remediation of PCB contaminated soil.

    Science.gov (United States)

    Wang, Haizhu; Hwang, Jisu; Huang, Jun; Xu, Ying; Yu, Gang; Li, Wenchao; Zhang, Kunlun; Liu, Kai; Cao, Zhiguo; Ma, Xiaohui; Wei, Zhipeng; Wang, Quhui

    2017-02-01

    Soil contaminated by polychlorinated biphenyls (PCBs) is a ubiquitous problem in the world, which can cause significant risks to human health and the environment. Mechanochemical destruction (MCD) has been recognized as a promising technology for the destruction of persistent organic pollutants (POPs) and other organic molecules in both solid waste and contaminated soil. However, few studies have been published about the application of MCD technology for the remediation of PCB contaminated soil. In the present study, the feasibility of destroying PCBs in contaminated soil by co-grinding with and without additives in a planetary ball mill was investigated. After 4 h milling time, more than 96% of PCBs in contaminated soil samples were destroyed. The residual concentrations of PCBs decreased from 1000 mg/kg to below the provisional Basel Convention limit of less than 50 mg/kg. PCDD/F present in the original soil at levels of 4200 ng TEQ/kg was also destroyed with even a slightly higher destruction efficiency. Only minor dechlorinations of the PCBs were observed and the destruction of the hydrocarbon skeleton is proposed as the main degradation pathway of PCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. CONTAMINATED SOIL VOLUME ESTIMATE TRACKING METHODOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Durham, L.A.; Johnson, R.L.; Rieman, C.; Kenna, T.; Pilon, R.

    2003-02-27

    The U.S. Army Corps of Engineers (USACE) is conducting a cleanup of radiologically contaminated properties under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The largest cost element for most of the FUSRAP sites is the transportation and disposal of contaminated soil. Project managers and engineers need an estimate of the volume of contaminated soil to determine project costs and schedule. Once excavation activities begin and additional remedial action data are collected, the actual quantity of contaminated soil often deviates from the original estimate, resulting in cost and schedule impacts to the project. The project costs and schedule need to be frequently updated by tracking the actual quantities of excavated soil and contaminated soil remaining during the life of a remedial action project. A soil volume estimate tracking methodology was developed to provide a mechanism for project managers and engineers to create better project controls of costs and schedule. For the FUSRAP Linde site, an estimate of the initial volume of in situ soil above the specified cleanup guidelines was calculated on the basis of discrete soil sample data and other relevant data using indicator geostatistical techniques combined with Bayesian analysis. During the remedial action, updated volume estimates of remaining in situ soils requiring excavation were calculated on a periodic basis. In addition to taking into account the volume of soil that had been excavated, the updated volume estimates incorporated both new gamma walkover surveys and discrete sample data collected as part of the remedial action. A civil survey company provided periodic estimates of actual in situ excavated soil volumes. By using the results from the civil survey of actual in situ volumes excavated and the updated estimate of the remaining volume of contaminated soil requiring excavation, the USACE Buffalo District was able to forecast and update project costs and schedule. The soil volume

  15. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  16. Bioremediation of glyphosate-contaminated soils.

    Science.gov (United States)

    Ermakova, Inna T; Kiseleva, Nina I; Shushkova, Tatyana; Zharikov, Mikhail; Zharikov, Gennady A; Leontievsky, Alexey A

    2010-09-01

    Based on the results of laboratory and field experiments, we performed a comprehensive assessment of the bioremediation efficiency of glyphosate-contaminated soddy-podzol soil. The selected bacterial strains Achromobacter sp. Kg 16 (VKM B-2534D) and Ochrobactrum anthropi GPK 3 (VKM B-2554D) were used for the aerobic degradation of glyphosate. They demonstrated high viability in soil with the tenfold higher content of glyphosate than the recommended dose for the single in situ treatment of weeds. The strains provided a two- to threefold higher rate of glyphosate degradation as compared to indigenous soil microbial community. Within 1-2 weeks after the strain introduction, the glyphosate content of the treated soil decreased and integral toxicity and phytotoxicity diminished to values of non-contaminated soil. The decrease in the glyphosate content restored soil biological activity, as is evident from a more than twofold increase in the dehydrogenase activity of indigenous soil microorganisms and their biomass (1.2-fold and 1.6-fold for saprotrophic bacteria and fungi, respectively). The glyphosate-degrading strains used in this study are not pathogenic for mammals and do not exhibit integral toxicity and phytotoxicity. Therefore, these strains are suitable for the efficient, ecologically safe, and rapid bioremediation of glyphosate-contaminated soils.

  17. Cleanup Verification Package for the 118-H-6:2, 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils; the 118-H-6:3, 105-H Reactor Fuel Storage Basin and Underlying Soils; The 118-H-6:3 Fuel Storage Basin Deep Zone Side Slope Soils; the 100-H-9, 100-H-10, and 100-H-13 French Drains; the 100-H-11 and 100-H-12 Expansion Box French Drains; and the 100-H-14 and 100-H-31 Surface Contamination Zones

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel

    2006-06-29

    This cleanup verification package documents completion of removal actions for the 105-H Reactor Ancillary Support Areas, Below-Grade Structures, and Underlying Soils (subsite 118-H-6:2); 105-H Reactor Fuel Storage Basin and Underlying Soils (118-H-6:3); and Fuel Storage Basin Deep Zone Side Slope Soils. This CVP also documents remedial actions for the following seven additional waste sties: French Drain C (100-H-9), French Drain D (100-H-10), Expansion Box French Drain E (100-H-11), Expansion Box French Drain F (100-H-12), French Drain G (100-H-13), Surface Contamination Zone H (100-H-14), and the Polychlorinated Biphenyl Surface Contamination Zone (100-H-31).

  18. Phytoremediation of soils contaminated by cadmium

    Science.gov (United States)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  19. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.

  20. The use of microbial gene abundance in the development of fuel remediation guidelines in polar soils.

    Science.gov (United States)

    Richardson, Elizabeth L; King, Catherine K; Powell, Shane M

    2015-04-01

    Terrestrial fuel spills in Antarctica commonly occur on ice-free land around research stations as the result of human activities. Successful spill clean-ups require appropriate targets that confirm contaminated sites are no longer likely to pose environmental risk following remediation. These targets are based on knowledge of the impacts of contaminants on the soil ecosystem and on the response of native biota to contamination. Our work examined the response of soil microbial communities to fuel contamination by measuring the abundance of genes involved in critical soil processes, and assessed the use of this approach as an indicator of soil health in the presence of weathered and fresh fuels. Uncontaminated and contaminated soils were collected from the site of remediation treatment of an aged diesel spill at Casey Station, East Antarctica in December 2012. Uncontaminated soil was spiked with fresh Special Antarctic Blend (SAB) diesel to determine the response of the genes to fresh fuel. Partly remediated soil containing weathered SAB diesel was diluted with uncontaminated soil to simulate a range of concentrations of weathered fuel and used to determine the response of the genes to aged fuel. Quantitative PCR (qPCR) was used to measure the abundance of rpoB, alkB, cat23, and nosZ in soils containing SAB diesel. Differences were observed between the abundance of genes in control soils versus soils containing weathered and fresh fuels. Typical dose-response curves were generated for genes in response to the presence of fresh fuel. In contrast, the response of these genes to the range of weathered fuel appeared to be due to dilution, rather than to the effect of the fuel on the microbial community. Changes in microbial genes in response to fresh contamination have potential as a sensitive measure of soil health and for assessments of the effect of fuel spills in polar soils. This will contribute to the development of remediation guidelines to assist in management

  1. Chelant soil-washing technology for metal-contaminated soil.

    Science.gov (United States)

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  2. Contamination of soils. La contaminacion del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Maroto, J.M.; Garcia-Delgado, R.A.; Garcia-Herruzo, F.; Gomez-La Hoz, C. (Universidad de Malaga. Departamento de Ingenieria Quimica (Spain))

    1993-01-01

    The contamination of soils has received less attention from the public opinion than atmospheric pollution and water pollution. This article makes a review of different transfer pathways and decontamination techniques. Detoxification techniques can be broken down into two different groups. : Those implying excavation and transportation of the soil and those not requiring excavation. At the present time there is an increasing trend of giving up those techniques requiring immobilization or on site treatment. (Author) (32 refs.)

  3. Evaluation of soil washing for radiologically contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, D. II

    1994-03-01

    Soil washing has been applied internationally to decontaminate soils due to the widespread increase in environmental awareness manifested in the United States by promulgation of the Comprehensive Environmental Response, Compensation and Liability Act, yet we continue to lack understanding on why the technique works in one application and not in another. A soil washing process typically integrates a variety of modules, each designed to decontaminate the matrix by destroying a particular phase or segregating a particle size fraction in which the contaminants are concentrated. The more known about how the contaminants are fixed, the more likely the process will succeed. Much can be learned from bioavailability studies on heavy metals in soils. Sequential extraction experiments designed to destroy one fixation mechanism at a time can be used to determine how contaminants are bound. This knowledge provides a technical basis for designing a processing strategy to efficiently decontaminate soil while creating a minimum of secondary wastes. In this study, a soil from the Idaho National Engineering Laboratory was physically and chemically characterized, then sequentially extracted to determine if soil washing could be effectively used to remove cesium, cobalt and chromium.

  4. Remediation of plutonium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Amos, S.; Coudace, I.; Voss, J

    2005-07-15

    The effectiveness of paramagnetic separation to remove plutonium from soils from the Aldermaston (UK) site has been investigated and reported to the commissioners of the project, AWE plc, and also subsequently at the WM'05 Conference (Tucson, AZ). The results showed that plutonium can be effectively concentrated in soils using magnetic separation and size fractionation. The work also investigated other methods to enhance the separation process. These approaches were: the use of sodium hexametaphosphate (ca. 1% by weight soil) to disperse the clay minerals; roasting to remove organic matter and to oxidise any organically-compIexed plutonium; ultrasonic vibration to break physical bonds between any plutonium oxide and soil particles; leaching of the <75mm fractions with selected reagents to extract plutonium. As a result of this work, engineering concepts are being developed which will enable more than 95% of some of the AWE contaminated soils to be rated for free release. (author)

  5. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    P. Bala Ramudu

    2007-09-01

    Full Text Available This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself was used as the purging solution. Results showed that 49% reduction of cadmium concentration was achieved in the case of soil saturated (washed with ammonium citrate as well as purging solution also was ammonium citrate. The soil pH and washing solutions were the most important factors in controlling the removal of cadmium in electrokinetic remediation process.

  6. Contaminant and other elements in soil (CCQM-K127)

    Science.gov (United States)

    Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng

    2017-01-01

    Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils

  7. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Pearson correlation coefficient. Rhizosphere microbial communities of zucchini and pumpkin grown in the media amended with highest degree of contaminated soil clustered separately, whereas communities of these plants grown in unamended or amended with lower concentrations of contaminated soil, grouped...

  8. Remediation of contaminated soil using soil washing-a review

    Directory of Open Access Journals (Sweden)

    N.Karthika

    2016-01-01

    Full Text Available Pb, Zn, Ni, Cu, Mn and Cd are heavy metals occur naturally as trace elements in many soils. The present paper reviews the remediation of heavy metals of contaminated soil by soil washing using different agents. It was noted that the contact time, pH, concentration of extract ant and agitation speed were affected the process while remediation, so accordingly select the conditions to obtain efficiency which is mainly depend upon the type of soil, contaminationtype, contamination period and metals present in it.EDTA is effective when compared with other chelating agents for heavy metals especially for lead but it has low biodegradation. Because of the nature of low biodegradability, EDTA can be reusedfurther by membrane separation and electrochemical treatment, or degraded by advanced oxidation processes.

  9. Bioremediation of an area contaminated by a fuel spill.

    Science.gov (United States)

    Vallejo, B; Izquierdo, A; Blasco, R; Pérez del Campo, P; Luque de Castro, M D

    2001-06-01

    In order to decontaminate a large area of restricted access contaminated by a fuel spill, laboratory and field studies were developed in two steps: (a) monitoring of the laboratory experiment on bacterial growth under aerobic and anaerobic conditions with and without addition of nutrients; and (b) use of the best conditions obtained in (a) for the decontamination of the soil. A hydraulic barrier was installed both to clean the aquifer and to avoid migration of hydrocarbons as a consequence of their solution in the groundwater and subsequent displacement. The objective was to create an ideal environment for the treatment of the affected area that favoured the growth of the indigenous bacteria (Pseudomonas and Arthrobacter) that biodegrade the hydrocarbons. Monitoring of the changes in the total concentration of petroleum hydrocarbons in the soil subjected to bacterial action was performed by gas chromatography. In a field study, the progress of biodegradation of hydrocarbons was evaluated in situ by changes in subsurface CO2/O2 levels by means of an analyser equipped with an infrared detector. Biostimulation and oxygen were the most influential factors for the biodegradation of the hydrocarbons. The use of bioventing of the soil was shown as an excellent technology to promote in situ bioremediation of the polluted area.

  10. Rapid bioassay for oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. [ALS Environmental, Edmonton, AB (Canada); Oosterbroek, L. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a study conducted to develop a rapid bioassay for soils contaminated with oil. The bioassay method was designed for a weight of evidence (WoE) approach and eco-contact guideline derivation protocol. Microtox bioassays were conducted on cyclodextrin extracts of soil quantified by solvent extraction and gas chromatography. The method was demonstrated using straight {beta}-cyclodextrin soil extracts and activated {beta}-cyclodextrin soil extracts. An analysis of the methods showed that the activation step weakens or breaks the cyclodextrin and polycyclic hydrocarbon (PHC) inclusion complex. The released PHC became toxic to the microtox organism. Results from the bioassays were then correlated with earthworm reproduction bioassay results. tabs., figs.

  11. Landfarming in a PAH-contaminated soil.

    Science.gov (United States)

    Picado, A; Nogueira, A; Baeta-Hall, L; Mendonça, E; de Fátima Rodrigues, M; do Céu Sàágua, M; Martins, A; Anselmo, A M

    2001-01-01

    The present work describes a coke oven soil treatability study by land-farming, conducted on-site in a field scale facility covering 100 m2. The soil contamination was mainly due to high concentrations of polynuclear aromatic hydrocarbons (PAHs) up to 1,140 mg/Kg dry weight (sigma EPA). Along the treatment process the soil was characterised at the chemical, microbiological and ecotoxicological levels. After 3 months a reduction of 63% in total PAHs concentration was observed, being detected a more pronounced reduction for PAHs with 2, 3 and 4 rings (79%). Concomitantly, a change in the composition of the microbial population was observed with a significant increase in the PAHs degrading and total heterotrophic colonies. Concerning the ecotoxicity and genotoxicity data no effect was detected in the treated soil samples eluates.

  12. Feasilbility of phytoextraction to remediate cadmium and zinc contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Romkens, P.F.A.M.; Fokkema, M.J.; Song, J.; Luo, Y.M.; Japenga, J.; Zhao, F.J.

    2008-01-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and

  13. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, Olaf; Thierfeldt, Stefan [Brenk Systemplanung GmbH, Aachen (Germany); Hummel, Lothar [TUV Sud AG, Munchen (Germany)

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detector was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)

  14. Optimization of nitrogen for soil bioventing of gasoline contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Shewfelt, K.; Zytner, R. G. [University of Guelph, School of Engineering, Guelph, ON (Canada); Lee, H. [University of Guelph, Dept. of Environmental Biology, Guelph, ON (Canada)

    2005-01-01

    Bioventing, a promising in situ technology that uses low or intermittent airflow rates to produce oxygen-rich conditions in the aerated zone of the soil, promotes the growth of indigenous microorganisms, which degrade hydrocarbon contaminants that are frequently found around underground storage tanks. This study was undertaken to determine the optimum form and concentration of nitrogen that will effectively stimulate naturally occurring bacteria and fungi to obtain the highest degradation possible in a soil system using bioventing to treat gasoline-contaminated soil. Results showed that biodegradation was limited at high C:N ratios by the availability of nitrogen and at low C:N ratios by acidification. Aerobic bacteria were responsible for most of the biodegradation that occurred. Indigenous fungi had no significant effect on the rate of biodegradation. 47 refs., 7 tabs., 1 fig.

  15. Optimization of Composting for Explosives Contaminated Soil

    Science.gov (United States)

    1991-09-30

    mixture developed a very strong ammonia odor, while the MAIV-2 mixture had only a mild ammonia odor. 6.1.6.2 Amendment mixtures The three amendment...water, concentrated, dried, formed into pellets, and packaged for resale. Liquors from the reclaiming operation were returned to the washout tank. A...mixture consisted of 1 E cubic yard of contaminated soil, 3/10 yards of sawdust, 40 lb of ammonia sulfide (21:0:0), 10 gallons of sodium acetate (solution

  16. Developing technology of remediation of oil-contaminated soils

    OpenAIRE

    Shevchyk, Lesya; Romaniuk, Olga

    2013-01-01

    Abstract ? The results of developing technologies for cleaning of soils from oil pollution on the example of Boryslav are shown. The prospects of tree species for the remediation of oil-contaminated soils are studied. The best results of cleaning oil contaminated soils with the application of Hippophae rhamnoides L. plants were obtained. It is a promising measure for restoring the oil-contaminated soils, attractive both from environmental and economical point of view.

  17. Monensin inhibits growth of bacterial contaminants from fuel ethanol plants

    Science.gov (United States)

    Contamination of commercial fermentation cultures by lactic acid bacteria (LAB) is a common and costly problem to the fuel ethanol industry. Virginiamycin (VIR) and penicillin (PEN) are frequently used to control bacterial contamination but extensive use of antibiotics may select for strains with d...

  18. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    Science.gov (United States)

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...

  19. Procedures for sampling radium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Fleischhauer, H.L.

    1985-10-01

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel or spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.

  20. Ecological evaluation of oil-contaminated soils (Sakhalin) using enchytraeidae

    Science.gov (United States)

    Kovaleva, E. I.; Yakovlev, A. S.; Nikolaenko (Kegiyan), M. G.; Makarov, A. O.; Makarov, A. A.

    2017-03-01

    The ecological status of oil-contaminated soils of Sakhalin and their background analogues has been evaluated with the use of soil invertebrates. The survival rates of Enchytraeus albidus in soils with different textures and the contents of organic carbon and nutrients have been compared. The indicative role of soil mesofauna ( Enchytraeus albidus) for the ecological evaluation of oil-contaminated soils with due account for their properties has been shown. The permissible residual concentration of oil hydrocarbons in some soils of Sakhalin—acid brown forest soils (Umbrisols), high-moor peat soils (Histosols), acid meadow alluvial soils (Fluvisols), cultivated meadow soddy soils (Anthrosols), and mucky-podzolic surface-gleyed soils (Gleysols)— has been determined from data on the response of Enchytraeus albidus to different levels of the soil contamination with oil hydrocarbons.

  1. [Influence of diesel fuel on the number of selected soil microorganisms group].

    Science.gov (United States)

    Hawrot-Paw, Małgorzata

    2012-01-01

    Among a range of xenobiotics, that are introduced into the environment, especially dangerous are petroleum substances. Microorganisms participating in their decomposition, may be a good effectiveness indicator of biodegradation process. The aim of this study was to determine the influence of soil contamination with diesel oil for changes in number of basic taxonomic groups of microorganisms, including bacteria, actinomycetes and fungi. The study was carried out in two soils, loamy sand and sandy clay, which, apart from granulometric composition also differed in organic matter content. Two levels of diesel contamination was used: 5% and 15% w/w of soil d.m. The soil samples, not contaminated with diesel oil, was left as a experience control objects. The number of microorganisms were evaluated by automated method with measuring impedance in media, using the analyzer BacTrac 4100. In the studied soils the largest group of microorganisms were bacteria, significantly less was fungi and actinomycetes. Based on the results of research it was found a significant effect on the quantitative composition of microflora was both contamination dose and type of soil. Diesel fuel at a concentration of 5% stimulated the number of bacteria and fungi in sandy soil. In general, increase in concentration of pollutants adversely affect the microorganisms, especially in loamy soils. Soil contamination with diesel oil resulted in a reduction in the degree of microbial growth rate (55% in loamy sand and 39% in sandy clay), and thus have an impact on their fertility. The reduction of SR index was correlated with increasing dose of pollutants. Diesel oil affect the biological balance of soil and stimulates or reduces the number of different groups of microorganisms, depending on the amount of fuel. The presence of fuel decrease index of soil fertility, proportion to increase in the level of contamination.

  2. Aromatic plant production on metal contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zheljazkov, Valtcho D. [Mississippi State, Department of Plant and Soil Sciences and North Mississippi Research and Extension Center, 5421 Highway 145 South, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Craker, Lyle E.; Xing Baoshan [Department of Plant and Soil Sciences, 12 Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Nielsen, Niels E. [Plant Nutrition and Soil Fertility Lab, Department of Agricultural Sciences, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK1871, Copenhagen (Denmark); Wilcox, Andrew [Harper Adams University College, Newport, Shropshire, TF10 8NB (United Kingdom)

    2008-06-01

    Field and container experiments were conducted to assess the feasibility of growing aromatic crops in metal contaminated areas and the effect of metals on herbage and oil productivity. The field experiments were conducted in the vicinities of the Non-Ferrous Metals Combine (Zn-Cu smelter) near Plovdiv, Bulgaria using coriander, sage, dill, basil, hyssop, lemon balm, and chamomile grown at various distances from the smelter. Herbage essential oil yields of basil, chamomile, dill, and sage were reduced when they were grown closer to the smelter. Metal removal from the site with the harvestable plant parts was as high as 180 g ha{sup -1} for Cd, 660 g ha{sup -1} for Pb, 180 g ha{sup -1} for Cu, 350 g ha{sup -1} for Mn, and 205 g ha{sup -1} for Zn. Sequential extraction of soil demonstrated that metal fractionation was affected by the distance to the smelter. With decreasing distance to the smelter, the transfer factor (TF) for Cu and Zn decreased but increased for Cd, while the bioavailability factor (BF) for Cd, Pb, Cu, Mn, and Zn decreased. Scanning electron microscopy and X-ray microanalyses of contaminated soil verified that most of the Pb, Cd, Mn, Cu, and Zn were in the form of small (< 1 {mu}m) particles, although there were larger particles (1-5 {mu}m) with high concentrations of individual metals. This study demonstrated that high concentrations of heavy metals in soil or growth medium did not result in metal transfer into the essential oil. Of the tested metals, only Cu at high concentrations may reduce oil content. Our results demonstrated that aromatic crops may not have significant phytoremediation potential, but growth of these crops in metal contaminated agricultural soils is a feasible alternative. Aromatic crops can provide economic return and metal-free final product, the essential oil.

  3. The Effect of Airborne Contaminants on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    St-Pierre, Jean; Pasaogullari, Ugur; Cheng, Tommy; Collins, William

    2017-09-18

    The impact of contaminants on fuel cell performance was examined to document air filter specifications (prevention) and devise recovery procedures (maintenance) that are effective at the system level. Eight previously undocumented airborne contaminants were selected for detailed studies and characterization data was used to identify operating conditions that intensifying contamination effects. The use of many and complementary electrochemical, chemical and physical characterization methods and the derivation of several mathematical models supported the formulation of contamination mechanisms and the development of recovery procedures. The complexity of these contamination mechanisms suggests a shift to prevention and generic maintenance measures. Only two of the selected contaminants led to cell voltage losses after injection was interrupted. Proposed recovery procedures for calcium ions, a component of road de-icers, dessicants, fertilizers and soil conditioners, were either ineffective or partly effective, whereas for bromomethane, a fumigant, the cell voltage was recovered to its initial value before contamination by manipulating and sequencing operating conditions. However, implementation for a fuel cell stack and system remains to be demonstrated. Contamination mechanisms also led to the identification of membrane durability stressors. All 8 selected contaminants promote the formation of hydrogen peroxide, a known agent that can produce radicals that attack the ionomer and membrane molecular structure whereas the dehydrating effect of calcium ions on the ionomer and membrane increases their brittleness and favors the creation of pinholes under mechanical stresses. Data related to acetylene, acetonitrile and calcium ions are emphasized in the report.

  4. Bench Scale Treatability Studies of Contaminated Soil Using Soil Washing Technique

    Directory of Open Access Journals (Sweden)

    M. K. Gupta

    2010-01-01

    Full Text Available Soil contamination is one of the most widespread and serious environmental problems confronting both the industrialized as well as developing nations like India. Different contaminants have different physicochemical properties, which influence the geochemical reactions induced in the soils and may bring about changes in their engineering and environmental behaviour. Several technologies exist for the remediation of contaminated soil and water. In the present study soil washing technique using plain water with surfactants as an enhancer was used to study the remediation of soil contaminated with (i an organic contaminant (engine lubricant oil and (ii an inorganic contaminant (heavy metal. The lubricant engine oil was used at different percentages (by dry weight of the soil to artificially contaminate the soil. It was found that geotechnical properties of the soil underwent large modifications on account of mixing with the lubricant oil. The sorption experiments were conducted with cadmium metal in aqueous medium at different initial concentration of the metal and at varying pH values of the sorbing medium. For the remediation of contaminated soil matrices, a nonionic surfactant was used for the restoration of geotechnical properties of lubricant oil contaminated soil samples, whereas an anionic surfactant was employed to desorb cadmium from the contaminated soil matrix. The surfactant in case of soil contaminated with the lubricant oil was able to restore properties to an extent of 98% vis-à-vis the virgin soil, while up to 54% cadmium was desorbed from the contaminated soil matrix in surfactant aided desorption experiments.

  5. Lead Contamination of Soil Along Road and Its Remediation

    Institute of Scientific and Technical Information of China (English)

    徐佩; 廖超林

    2004-01-01

    With a rapid development of road systems and an associated drastic increase in number of automobiles, the traffic has induced more and more obvious environmental pollution such as noise, dust, emission and heavy metal contamination. Lead, as one of the most harmful heavy metal contaminants, can execute a significant impact on soil quality and plant growth, depending on its form, as well as its transport and accumulation in soil. This paper describes the source and characteristics of Pb contaminant in soil along a road, and reviews the results of research on remediation of Pb-contaminated soils, aiming at identifying promising approaches to soil remediation along roads.

  6. Statistical sampling strategies for survey of soil contamination

    NARCIS (Netherlands)

    Brus, D.J.

    2011-01-01

    This chapter reviews methods for selecting sampling locations in contaminated soils for three situations. In the first situation a global estimate of the soil contamination in an area is required. The result of the surey is a number or a series of numbers per contaminant, e.g. the estimated mean con

  7. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Barrutia, O., E-mail: oihana.barrutia@ehu.es [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, C.; Epelde, L. [NEIKER-Tecnalia, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio (Spain); Sampedro, M.C.; Goicolea, M.A. [Department of Analytical Chemistry, University of the Basque Country/EHU, E-01006 Vitoria (Spain); Becerril, J.M. [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P.O. Box 644, E-48080 Bilbao (Spain)

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg{sup -1} DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 {sup o}C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 {mu}mol photon m{sup -2} s{sup -1}) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F{sub v}/F{sub m}), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of

  8. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  9. Preliminary study of radium-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.W.; Rodgers, J.C.

    1978-10-01

    A preliminary study was made of the potential radiation exposures to people from radium-226 contamination in the soil in order to provide guidance on limits to be applied in decontaminating land. Pathways included were inhalation of radium from resuspension; ingestion of radium with foods; external gamma radiation from radium daughters; inhalation of radon and daughter, both in the open air and in houses; and the intake of /sup 210/Pb and /sup 210/Po from both inhalation and ingestion. The depth of the contaminated layer is of importance for external exposure and especially for radon emanation. The most limiting pathway was found to be emanation of the radon into buildings with limiting values comparable to those found naturally in many areas.

  10. METHODOLOGICAL PROPOSAL FOR CONTAMINATED SOIL RECOVERY

    Directory of Open Access Journals (Sweden)

    José Antonio Fabelo Falcón

    2017-01-01

    Full Text Available The contamination of soils, by different substances and / or products is becoming more extensive throughout the world, its determination, minimization and treatment to reach the recovery of them is a necessity, even though it is not granted the level of importance required by the countries concerned. The objective of this work is to propose a methodology for the recovery of soils with a high degree of efficiency and effectiveness in the selection of procedures, regardless of the types of pollutants and land use once recovered. The methodological proposal involves the stages of diagnosis, characterization, selection of the technology and its technical and economic validation at the laboratory and pilot plant level. Subsequently, the technology of the treatment is designed, along with the elaboration of an objective study of each particular case and an essential economic and technical feasibility analysis for the different scales of the development of the technological process.

  11. DNA Damage Caused By Pesticide-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    K.KRISHNAMURTHI; S. SARAVANA DEVI; T. CHAKRABARTI

    2006-01-01

    Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P<0.001) of DNA strand break, whereas technical grade of major carbaryl and α-naphthol constituents of the contaminated soil showed 64% (P<0.01) and 60% (P<0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and α -napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  12. Soils as a buffer of contaminants in catchments

    Science.gov (United States)

    Evrard, Olivier

    2014-05-01

    Human activities deliver large quantities of contaminants into the environment through atmospheric emissions or direct releases. As many of those contaminants are particle-reactive, they bind strongly to the finest particles or on their organic matter fraction once they deposit onto soils. Contaminants may subsequently migrate in depth of the soil depending on their physico-chemical characteristics. They may also be redistributed along hillslopes in association with particles during soil erosion events and may be subsequently supplied to rivers, preventing to meet the international environmental targets (e.g. in the framework of the EU Water Framework Directive). In regions where soil erosion rates are low to moderate, a large quantity of particle-reactive contaminants may accumulate in soils that constitute a reservoir of pollutants that may be delivered to rivers during decades or centuries. This session will focus on the specific role played by soils as a reservoir of contaminants at the catchment scale. A better understanding of this role and a quantification of the persistence of contaminants in this reservoir will provide crucial insights to guide the implementation of efficient mitigation measures. Contributions to this session may address any aspect of particle-borne contaminant transfer at the catchment scale, with an emphasis on the role played by soils in their storage and transfer. Field-based or modeling studies may focus either on specific pollutants or on a wider range of substances, e.g. metals, radionuclides, organic contaminants. Key themes may include: • Contaminant budget at the hillslope vs. the catchment scales; • Evaluation of the contribution of the regional vs. local contamination sources; • Evaluation of the contaminant removal from soils by degradation vs. soil erosion; • Quantifying the persistence of contaminants in soils; • Discrimination between the legacy and the contemporary supply of contaminants to soils.

  13. Soil contamination in China: current status and mitigation strategies.

    Science.gov (United States)

    Zhao, Fang-Jie; Ma, Yibing; Zhu, Yong-Guan; Tang, Zhong; McGrath, Steve P

    2015-01-20

    China faces great challenges in protecting its soil from contamination caused by rapid industrialization and urbanization over the last three decades. Recent nationwide surveys show that 16% of the soil samples, 19% for the agricultural soils, are contaminated based on China’s soil environmental quality limits, mainly with heavy metals and metalloids. Comparisons with other regions of the world show that the current status of soil contamination, based on the total contaminant concentrations, is not worse in China. However, the concentrations of some heavy metals in Chinese soils appear to be increasing at much greater rates. Exceedance of the contaminant limits in food crops is widespread in some areas, especially southern China, due to elevated inputs of contaminants, acidic nature of the soil and crop species or cultivars prone to heavy metal accumulation. Minimizing the transfer of contaminants from soil to the food chain is a top priority. A number of options are proposed, including identification of the sources of contaminants to agricultural systems, minimization of contaminant inputs, reduction of heavy metal phytoavailability in soil with liming or other immobilizing materials, selection and breeding of low accumulating crop cultivars, adoption of appropriate water and fertilizer management, bioremediation, and change of land use to grow nonfood crops. Implementation of these strategies requires not only technological advances, but also social-economic evaluation and effective enforcement of environmental protection law.

  14. Mixed contaminant interactions in soil: Implications for bioavailability ...

    African Journals Online (AJOL)

    user

    natural communities under realistic exposure conditions and remediation endpoints. In this paper, .... The intro- duction of HMs in soils through contamination eventually ..... for the attenuation of persistent OCs (for example, PAHs) in soils and ...

  15. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  16. Vermiremediation of Soils Contaminated with Mixture of Petroleum ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this paper, vermiremediation, a biological technique was utilized in order to clean-up soil contaminated with gasoline, diesel and spent engine oil using an earthworm ... spilled in soils of mechanic workshops where different ...

  17. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  18. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  19. Petroleum Contaminated Soil Treatment Using Surfactant and Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Ilza Lobo

    2010-12-01

    Full Text Available The process of washing soil with surfactants, sodium lauryl ether sulphate (LESS and sodium lauryl sulphate (SDS was combined with chemical oxidation using hydrogen peroxide, with a view to in situ remediation of clay soil contaminated with hydrocarbons oil. The evaluation of the efficiency of the procedure was the removal of polyaromatic hydrocarbons and the comparison of physical and chemical characteristics of contaminated soil and uncontaminated from the same region. The combination of these two techniques, soil washing and application of an oxidizing agent, presented as a process of effective remediation for soils contaminated with petroleum products in subtropical regions.

  20. FUELS IN SOIL TEST KIT: FIELD USE OF DIESEL DOG SOIL TEST KITS

    Energy Technology Data Exchange (ETDEWEB)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani, Jr.

    2002-09-30

    Western Research Institute (WRI) has developed a new commercial product ready for technology transfer, the Diesel Dog{reg_sign} Portable Soil Test Kit, for performing analysis of fuel-contaminated soils in the field. The technology consists of a method developed by WRI (U.S. Patents 5,561,065 and 5,976,883) and hardware developed by WRI that allows the method to be performed in the field (patent pending). The method is very simple and does not require the use of highly toxic reagents. The aromatic components in a soil extract are measured by absorption at 254 nm with a field-portable photometer. WRI added significant value to the technology by taking the method through the American Society for Testing and Materials (ASTM) approval and validation processes. The method is designated as ASTM Method D 5831-96, Standard Test Method for Screening Fuels in Soils. This ASTM designation allows the method to be used for federal compliance activities. In June 2001, the Diesel Dog technology won an American Chemical Society Regional Industrial Innovations Award. To gain field experience with the new technology, Diesel Dog kits have been used for a variety of site evaluation and cleanup activities. Information gained from these activities has led to improvements in hardware configurations and additional insight into correlating Diesel Dog results with results from laboratory methods. The Wyoming Department of Environmental Quality (DEQ) used Diesel Dog Soil Test Kits to guide cleanups at a variety of sites throughout the state. ENSR, of Acton, Massachusetts, used a Diesel Dog Portable Soil Test Kit to evaluate sites in the Virgin Islands and Georgia. ChemTrack and the U.S. Army Corps of Engineers successfully used a test kit to guide excavation at an abandoned FAA fuel-contaminated site near Fairbanks, Alaska. Barenco, Inc. is using a Diesel Dog Portable Soil Test Kit for site evaluations in Canada. A small spill of diesel fuel was cleaned up in Laramie, Wyoming using a Diesel

  1. Separation and Screening Microorganism From Element Strontium Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Ya-ping

    2013-01-01

    Studies of environmental bioremediation are also attractived greatly in recent years.For contaminated soil of Sr,it is more important that find some microbes which have high biosorption for element Sr.Thus,this work is to separate and screen microbes from contaminated soil of Sr.

  2. Analysis of Chitin in Contaminated Fuels

    Science.gov (United States)

    1975-09-01

    accomplished by G. Ernst, D. A. Emeric, and S. Levine under the lirection of Emil J. York, Chief, Materials Engineering Div;-on, Laboratory 4000...JSAMERDC. Technical contribution was made by Vincent J. Bagdon, Materials Engi- ieering Division. CONTENTS Section Title Page PREFACE iii I INTRODUCTION...However, chitin can be determined when mycelium is present. In order to hasten the appearance of the mycelium in the fuel if spores are present, sterile

  3. Microbial contamination control in fuels and fuel systems since 1980 - a review

    Energy Technology Data Exchange (ETDEWEB)

    Passman, Frederick J. [Biodeterioration Control Associates, Inc (United States)], email: fredp@biodeterioration-control.com

    2011-07-01

    This paper presents a review of microbial contamination control in fuel and fuel systems. Some examples of the biodeterioration of components of fuel systems are given. Root cause analysis (RCA) and modeling can help in condition monitoring of fuel systems. RCA is a systematic process that starts after symptoms become apparent and facilitates improvement. Modeling, by contrast, starts before the problem occurs and the objective is to improve understanding of the process. Some of the different areas creating risk due to the process are climate, microbiology, chemistry, maintenance, and engineering. Condition monitoring is explained in detail, using representative samples. Contamination control plays a very important role. Various aspects of microbial contamination control are design, inventory control, house keeping and remediation. These aspects are explained in detail, using various examples. Since the deterioration cost involved is very high, its is important to avoid this problem by reducing the quantity of water used and using better risk assessment models.

  4. Accumulation of heavy metals in oil-contaminated peat soils

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Savichev, A. T.; Trofimov, S. Ya.; Shishkonakova, E. A.

    2012-10-01

    X-ray fluorescence and X-ray radiometry represent easy and simple methods to determine concentrations of heavy metals in the ash of peat soils contaminated with oil and can be applied for soil monitoring purposes. Oil spills on peat bogs produce two contamination zones differing in the composition of heavy metals. In the zone of primary contamination, the peat surface is covered by a bitumen crust with V, Ni, Sr, Ba, Ce, and La accumulating there. This zone adjoins the zone of secondary peat contamination, where heavy alkaline-earth metals (Sr, Ba) and lanthanides (Ce and La) are accumulated to a lesser extent. Biological preparations recommended for remediation of oil-contaminated peat soils should be tolerant to high concentrations of heavy metals, particularly, V, Ni, and Ba that are present in the oil contaminated soils in relatively high amounts.

  5. Inhibitors of biofilm formation by fuel ethanol contaminants

    Science.gov (United States)

    Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...

  6. Chemical oxidation of cable insulating oil contaminated soil

    NARCIS (Netherlands)

    Jinlan Xu,; Pancras, T.; Grotenhuis, J.T.C.

    2011-01-01

    Leaking cable insulating oil is a common source of soil contamination of high-voltage underground electricity cables in many European countries. In situ remediation of these contaminations is very difficult, due to the nature of the contamination and the high concentrations present. Chemical oxidati

  7. Organic contaminants in urban soils: major inputs and potential risks

    OpenAIRE

    Cachada, Anabela Ferreira de Oliveira

    2014-01-01

    Urban soil quality may be severely affected by hydrophobic organic contaminants (HOCs), impairing environmental quality and human health. A comprehensive study was conducted in two contrasting Portuguese urban areas (Lisbon and Viseu) in order to assess the levels and potential risks of these contaminants, to identify sources and study their behaviour in soils. The concentrations of HOCs were related to the size of the city, with much higher contamination levels observed in ...

  8. Biodegradation and bioremediation of endosulfan contaminated soil.

    Science.gov (United States)

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  9. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Directory of Open Access Journals (Sweden)

    Brent F Kim

    Full Text Available Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  10. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    Science.gov (United States)

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  11. Developing an integration tool for soil contamination assessment

    Science.gov (United States)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  12. Critical evaluation of soil contamination assessment methods for trace metals.

    Science.gov (United States)

    Desaules, André

    2012-06-01

    Correctly distinguishing between natural and anthropogenic trace metal contents in soils is crucial for assessing soil contamination. A series of assessment methods is critically outlined. All methods rely on assumptions of reference values for natural content. According to the adopted reference values, which are based on various statistical and geochemical procedures, there is a considerable range and discrepancy in the assessed soil contamination results as shown by the five methods applied to three weakly contaminated sites. This is a serious indication of their high methodological specificity and bias. No method with off-site reference values could identify any soil contamination in the investigated trace metals (Pb, Cu, Zn, Cd, Ni), while the specific and sensitive on-site reference methods did so for some sites. Soil profile balances are considered to produce the most plausible site-specific results, provided the numerous assumptions are realistic and the required data reliable. This highlights the dilemma between model and data uncertainty. Data uncertainty, however, is a neglected issue in soil contamination assessment so far. And the model uncertainty depends much on the site-specific realistic assumptions of pristine natural trace metal contents. Hence, the appropriate assessment of soil contamination is a subtle optimization exercise of model versus data uncertainty and specification versus generalization. There is no general and accurate reference method and soil contamination assessment is still rather fuzzy, with negative implications for the reliability of subsequent risk assessments.

  13. Determinants of oral bioavailability of soil-borne contaminants

    OpenAIRE

    Oomen, Agnes Guadalupe

    2001-01-01

    Children ingest soil, either accidentally via hand-to-mouth behavior or deliberately. In this manner, a child ingests on average between 50 and 200 mg soil/day, although amounts of as much as 60 g/day have also been observed. Hence, soil ingestion can be a main route of exposure to soil-borne contaminants to children. To estimate the health risk associated to this exposure route, and to assess intervention values for contaminants in soils, one needs to know the oral bioavailability of the soi...

  14. Relative bioavailability of arsenic contaminated soils in a mouse model

    Science.gov (United States)

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  15. Relative bioavailability of arsenic contaminated soils in a mouse model

    Science.gov (United States)

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  16. Application of a Bayesian nonparametric model to derive toxicity estimates based on the response of Antarctic microbial communities to fuel‐contaminated soil

    National Research Council Canada - National Science Library

    Arbel, Julyan; King, Catherine K; Raymond, Ben; Winsley, Tristrom; Mengersen, Kerrie L

    2015-01-01

    ...‐species toxicity tests. In this study, we apply a Bayesian nonparametric model to a soil microbial data set acquired across a hydrocarbon contamination gradient at the site of a fuel spill in Antarctica...

  17. Microbial contamination of stored hydrocarbon fuels and its control

    Directory of Open Access Journals (Sweden)

    Gaylarde Christine C.

    1999-01-01

    Full Text Available The major microbial problem in the petroleum refining industry is contamination of stored products, which can lead to loss of product quality, formation of sludge and deterioration of pipework and storage tanks, both in the refinery and at the end-user. Three major classes of fuel are discussed in this article - gasoline, aviation kerosene and diesel, corresponding to increasingly heavy petroleum fractions. The fuel that presents the most serious microbiological problems is diesel. The many microorganisms that have been isolated from hydrocarbon fuel systems are listed. The conditions required for microbial growth and the methods used to monitor and to control this activity are discussed. The effects of various fuel additives, including biocides, are considered.

  18. Screening of plants for phytoremediation of oil-contaminated soil.

    Science.gov (United States)

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  19. Biological Treatment of Petroleum in Radiologically Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    BERRY, CHRISTOPHER

    2005-11-14

    This chapter describes ex situ bioremediation of the petroleum portion of radiologically co-contaminated soils using microorganisms isolated from a waste site and innovative bioreactor technology. Microorganisms first isolated and screened in the laboratory for bioremediation of petroleum were eventually used to treat soils in a bioreactor. The bioreactor treated soils contaminated with over 20,000 mg/kg total petroleum hydrocarbon and reduced the levels to less than 100 mg/kg in 22 months. After treatment, the soils were permanently disposed as low-level radiological waste. The petroleum and radiologically contaminated soil (PRCS) bioreactor operated using bioventing to control the supply of oxygen (air) to the soil being treated. The system treated 3.67 tons of PCRS amended with weathered compost, ammonium nitrate, fertilizer, and water. In addition, a consortium of microbes (patent pending) isolated at the Savannah River National Laboratory from a petroleum-contaminated site was added to the PRCS system. During operation, degradation of petroleum waste was accounted for through monitoring of carbon dioxide levels in the system effluent. The project demonstrated that co-contaminated soils could be successfully treated through bioventing and bioaugmentation to remove petroleum contamination to levels below 100 mg/kg while protecting workers and the environment from radiological contamination.

  20. Chemical fingerprinting of hydrocarbon-contamination in soil

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen; Nejrup, Jens; Jensen, Julie K.

    2015-01-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.......S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic....... Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl...

  1. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    Science.gov (United States)

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio.

  2. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    Science.gov (United States)

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  3. Development of provisions for oil contaminated soil neutralizing in the conditions of Siberia and the Arctic

    Science.gov (United States)

    Shtripling, L. O.; Kholkin, E. G.

    2017-08-01

    allow to determine the optimum quantity of the reagent necessary for effective neutralization completion of snow contaminated with engine oil and soils contaminated with petroleum products depending on the degree of pollution and the type of pollutant. The conducted studies confirm that the technology of reagent capsulation is suitable for neutralizing soils and snow contaminated with gasoline, diesel fuel and engine oil.

  4. Chemometric treatment of multimode laser-induced fluorescence (LIF) data of fuel-spiked soils

    Science.gov (United States)

    Van Benthem, Mark H.; Mitchell, Ben C.; Gillispie, Gregory D.; St. Germain, Randy W.

    1996-11-01

    Field screening of fuel-contaminated soils using laser- induced fluorescence is a cost effective and timely method of characterizing contaminated sites. Data collected with laser-based screening tools are often extensive and difficult to interpret. Pattern recognition algorithms can be utilized to enable less highly trained personnel to identify contaminants. In this work, fluorescence intensity of various hydrocarbon fuels deposited on various soil types was measured as a function of emission wavelength and decay time, generating wavelength-time matrices. The data were arranged into a three mode array and subjected to trilinear decomposition (TLD). The results of the TLD were then utilized in pattern recognition schemes, specifically, linear discrimination and classification and hierarchical cluster analysis. Classification rates and clustering results indicate that these techniques can be very valuable tools in site characterization.

  5. Geochemical sources, forms and phases of soil contamination in an industrial city.

    Science.gov (United States)

    Harvey, P J; Rouillon, M; Dong, C; Ettler, V; Handley, H K; Taylor, M P; Tyson, E; Tennant, P; Telfer, V; Trinh, R

    2017-04-15

    This study examines current soil contamination in an Australian industrial city, Newcastle. Public (roadside verges and parks) and private (homes) surface soils (n=170) contained metal(loid)s elevated above their respective Australian Health Investigation Levels (HIL). Lead (Pb), the most common contaminant in the city, exceeds the HIL for residential soils (HIL-A, 300mg/kg) in 88% of private soils (median: 1140mg/kg). In-vitro Pb bio-accessibility analysis of selected soils (n=11) using simulated gastric fluid showed a high affinity for Pb solubilisation (maximum Pb concentration: 5190mg/kg, equating to 45% Pb bio-accessibility). Highly soluble Pb-laden Fe- and Mn-oxides likely contribute to the bio-accessibility of the Pb. Public and private space surface soils contain substantially less radiogenic Pb (range: (208)Pb/(207)Pb: 2.345-2.411, (206)Pb/(207)Pb: 1.068-1.312) than local background soil ((208)Pb/(207)Pb: 2.489, (206)Pb/(207)Pb: 1.198), indicating anthropogenic contamination from the less radiogenic Broken Hill type Pb ores ((208)Pb/(207)Pb: 2.319, (206)Pb/(207)Pb: 1.044). Source apportionment using Pb isotopic ratio quantification and soil mineralogy indicate the city's historic copper and steel industries contributed the majority of the soil contaminants through atmospheric deposition and use of slag waste as fill material. High-temperature silicates and oxides combined with rounded particles in the soil are characteristic of smelter dust emissions. Additionally, a preliminary investigation of polycyclic aromatic hydrocarbons in soils, sometimes associated with ferrous metal smelting, coal processing or burning of fossil fuels, shows that these too pose a health exposure risk (calculated in comparison to benzo(a)pyrene: n=12, max: 13.5mg/kg, HIL: 3mg/kg). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yegemova, Saltanat; Bakaikina, Nadezhda V; Kenessov, Bulat; Koziel, Jacek A; Nauryzbayev, Mikhail

    2015-10-01

    Environmental monitoring of Central Kazakhstan territories where heavy space booster rockets land requires fast, efficient, and inexpensive analytical methods. The goal of this study was to develop a method for quantitation of the most stable transformation product of rocket fuel, i.e., highly toxic unsymmetrical dimethylhydrazine - 1-methyl-1H-1,2,4-triazole (MTA) in soils using solid-phase microextraction (SPME) in combination with gas chromatography-mass spectrometry. Quantitation of organic compounds in soil samples by SPME is complicated by a matrix effect. Thus, an isotope dilution method was chosen using deuterated analyte (1-(trideuteromethyl)-1H-1,2,4-triazole; MTA-d3) for matrix effect control. The work included study of the matrix effect, optimization of a sample equilibration stage (time and temperature) after spiking MTA-d3 and validation of the developed method. Soils of different type and water content showed an order of magnitude difference in SPME effectiveness of the analyte. Isotope dilution minimized matrix effects. However, proper equilibration of MTA-d3 in soil was required. Complete MTA-d3 equilibration at temperatures below 40°C was not observed. Increase of temperature to 60°C and 80°C enhanced equilibration reaching theoretical MTA/MTA-d3 response ratios after 13 and 3h, respectively. Recoveries of MTA depended on concentrations of spiked MTA-d3 during method validation. Lowest spiked MTA-d3 concentration (0.24 mg kg(-1)) provided best MTA recoveries (91-121%). Addition of excess water to soil sample prior to SPME increased equilibration rate, but it also decreased method sensitivity. Method detection limit depended on soil type, water content, and was always below 1 mg kg(-1). The newly developed method is fully automated, and requires much lower time, labor and financial resources compared to known methods.

  7. Aggregation of Diesel Contaminated Soil for Bioremediation

    Institute of Scientific and Technical Information of China (English)

    Yu Ying; Shi Xiu-hong; Li Song; Xu Jing-gang

    2014-01-01

    Diesel contaminated soil (DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores >30 µm by approximately 5% and reduced pores <1 µm by 5%, but did not change the percentage of the pores between 1 and 30 µm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m• s-l, but it increased to 1×10-5 m• s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.

  8. Soil Contamination and Remediation Strategies. Current research and future challenge

    Science.gov (United States)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  9. Kinetics of Cd Release from Some Contaminated Calcareous Soils

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

    2013-03-15

    Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

  10. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. ESTCP Technology Demonstration Final Report: Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands With Application to Northern FUD Sites

    Science.gov (United States)

    2004-06-01

    fingerprint for the heavy fuel, fuel oil no. 4. ............................................75 Figure 21. Histogram for three ESTCP field sites - decalin...possibly by greater contaminant solubility due to biosurfactants or pH changes near the root surface, and by “pseudo-mixing” of soil due to root...containment or removal of organic and/ or metal contaminants). A. Phytoextraction: contaminant uptake and accumulation for removal. B

  12. Effects of past copper contamination and soil structure on copper leaching from soil

    DEFF Research Database (Denmark)

    Paradelo, M; Møldrup, Per; Arthur, Emmanuel

    2013-01-01

    Copper contamination affects biological, chemical, and physical soil properties and associated ecological functions. Changes in soil pore organization as a result of Cu contamination can dramatically affect flow and contaminant transport in polluted soils. This study assessed the influence of soil......, and dissolved organic carbon (DOC) and Cu losses. The 5% arrival time (t0.05) and apparent dispersivity (λapp) for tracer breakthrough were calculated by fitting the experimental data to a nonparametric, double-lognormal probability density function. Soil bulk density, which did not follow the Cu gradient...

  13. Humus-assisted cleaning of heavy metal contaminated soils

    Science.gov (United States)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  14. Quantifying Diffuse Contamination: Method and Application to Pb in Soil.

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; de Caritat, Patrice

    2017-06-20

    A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.

  15. Consequences of trace-element contamination of soils

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1972-01-01

    The chemical composition of the bulk of the food eaten has been profoundly modified by the intensification of the means of food production and as a result of the general contamination of the environment. Contamination of the soil in urban and industrial areas with potentially toxic trace elements is an important aspect of environmental pollution which can affect the composition of food. Contamination of soils with elements such as copper, lead and zinc appears to be largely irreversible and sources of this kind of contamination are discussed. Evidence is presented that the trace-element content (B, Cu, Pb, Mo, Ni, Zn) of plants grown on contaminated soils can be enhanced and that deleterious effects on plant growth are possible.

  16. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    Science.gov (United States)

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  17. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering

    OpenAIRE

    Salman, Madiha; Gerhard, Jason I.; Major, David W.; Pironi, Paolo; Hadden, Rory

    2015-01-01

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale exper...

  18. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.;

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...... as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two...

  19. Decreasing the contamination and toxicity of a heavily contaminated soil by in situ bioremediation

    Science.gov (United States)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nikolova, Marina

    2013-04-01

    An experimental plot of 140 m2 consisting of acidic soil heavily contaminated with uranium, non-ferrous metals (mainly Cu, Zn and Cd) and arsenic was treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms (mainly acidophilic chemolithotrophic bacteria) and leach solutions (diluted sulphuric acid). The dissolved contaminants were transferred to the soil horizon B and were removed from the soil profile through a system of drainage collecting pipes. The contaminated soil effluents were treated by means of a multi-component passive system consisting of an anoxic alkalizing drain, a permeable reactive multibarrier and a rock filter. The contamination and toxicity of the soil were regularly tested during the cleaning procedure and were considerably decreased at the end of the treatment.

  20. Mercury species in formerly contaminated soils and released soil gases.

    Science.gov (United States)

    Sysalová, Jiřina; Kučera, Jan; Drtinová, Barbora; Červenka, Rostislav; Zvěřina, Ondřej; Komárek, Josef; Kameník, Jan

    2017-02-01

    Total mercury (T-Hg), elemental mercury (Hg(0)), methylmercury (MeHg(+)), phenylmercury (PhHg(+)), and gaseous elemental mercury (GEM) species were determined in soils formerly contaminated by different processes from two sites in the Czech Republic. Analytical methods involved atomic absorption spectrometry (AAS) using a single-purpose Advanced Mercury Analyser AMA-254 and radiochemical neutron activation analysis (RNAA) for T-Hg determination, a thermal desorption method was used for Hg(0) determination, gas chromatography coupled with atomic fluorescence spectrometry (GC-AFS) was employed for assay of MeHg(+) and PhHg(+), while GEM measurement was carried out using a portable Zeeman-AAS device Lumex RA-915(+). The first sampling site was in the surroundings of a former PhHgCl-based fungicide processing plant next to Příbram (central Bohemia). Although the use of Hg-based fungicides as seed mordant have been banned, and their production stopped at the end of 1980's, highly elevated Hg contents in soil are still observed in the vicinity of the former plant, reaching T-Hg values >13mgkg(-1). The second sampling site was an abandoned mining area named Jedová hora Hill near Hořovice (central Bohemia), where cinnabar (HgS) was occasionally mined as by-product of Fe ores hematite and siderite. Mining activities have been stopped here in 1857. Very high contents of T-Hg are still found at this site, up to 144mgkg(-1). In most cases we found a statistically significant correlation between T-Hg and Hg(0) values regardless of the pollution source. On the contrary, insignificant correlation was observed neither between T-Hg and GEM values, nor between GEM and Hg(0). Concentrations of the investigated organomercury species were above a limit of detection (LOD) only in the most contaminated samples, where their levels were about two to three orders of magnitude lower compared to those of T-Hg.

  1. Biosurfactant-facilitated remediation of metal-contaminated soils.

    OpenAIRE

    R. M. Miller

    1995-01-01

    Bioremediation of metal-contaminated wastestreams has been successfully demonstrated. Normally, whole cells or microbial exopolymers are used to concentrate and/or precipitate metals in the wastestream to aid in metal removal. Analogous remediation of metal-contaminated soils is more complex because microbial cells or large exopolymers do not move freely through the soil. The use of microbially produced surfactants (biosurfactants) is an alternative with potential for remediation of metal-con...

  2. Contamination transfers during fuel transport cask loading. A concrete situation

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, B.; Turchet, J.P.; Faure, S.; Allinei, P.G. [DEN/DED Centre d' Etudes de Cadarache, 13 - Saint Paul lez Durance (France); Briquet, L. [EDF GENV, 93 - Saint Denis (France); Baubet, D. [SGS Qualitest Industrie, 30 - Pont Saint Esprit (France)

    2002-07-01

    In 1998, a number of contamination cases detected during fuel shipments have been pointed out by the french nuclear safety authority. Wagon and casks external surfaces were partly contaminated upon arrival in Valognes railway terminal. Since then, measures taken by nuclear power plants operators in France and abroad solved the problem. In Germany, a report analyzing the situation in depth has been published in which correctives actions have been listed. In France, EDF launched a large cleanliness program (projet proprete radiologique) in order to better understand contamination transfers mechanisms during power plants exploitation and to list remediation actions to avoid further problems. In this context, CEA Department for Wastes Studies at Cadarache (CEA/DEN/DED) was in charge of a study about contamination transfers during fuel elements loading operations. It was decided to lead experiments for a concrete case. The loading of a transport cask at Tricastin-PWR-1 was followed in november 2000 and different analysis comprising water analysis and smear tests analysis were carried out and are detailed in this paper. Results are discussed and qualitatively compared to those obtained in Philippsburg-BWR, Germany for a similar set of tests. (authors)

  3. Uptake by Plants of Radiostrontium from Contaminated Soils

    DEFF Research Database (Denmark)

    Andersen, A. J.

    1965-01-01

    In a recent report from this department it was shown that the extractability of radiostrontium from contaminated soil samples was effectively reduced by heat treatment and by the addition of phosphate to the soil. It was pointed out that, under emergency conditions, heat......-treatment of the contaminated soil surface and heavy phosphate application might thus reduce the uptake by plants of radiostrontium more efficiently than liming, which is only effective in soils of low calcium status. In the investigation reviewed here the influence of heat treatment and superphosphate application on the plant...... uptake of radiostrontium was examined in pot experiments. For comparison the effect of applying calcium carbonate to the contaminated soil surface was also determined....

  4. Phytoremediation Potential of Lead-Contaminated Soil Using Tropical Grasses

    Science.gov (United States)

    The global problem concerning contamination of the environment because of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contribute...

  5. Geochemical cartography as a tool for assessing the degree of soil contamination with heavy metals in Poland

    Science.gov (United States)

    Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta

    2016-04-01

    Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.

  6. Characterization of a soil contaminated by oilfield brine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mutairi, K.; Harris, T. [Univ. of Tulsa, OH (United States)

    1995-12-01

    Brine contamination of soil is a common environmental problem associated with the onshore production of oil and gas. A site of extensive contamination in Oklahoma has been characterized using conductimetry, direct potentiometry (pH- and chloride-selective electrodes), and atomic absorption spectrophotometry (for Na{sup +} and Ca{sup 2+}) to determine the extent of the contamination and the efficacy of various remediation technologies.

  7. Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option.

    Science.gov (United States)

    Bramley-Alves, Jessica; Wasley, Jane; King, Catherine K; Powell, Shane; Robinson, Sharon A

    2014-09-01

    Accidental fuel spills on world heritage subantarctic Macquarie Island have caused considerable contamination. Due to the island's high latitude position, its climate, and its fragile ecosystem, traditional methods of remediation are unsuitable for on-site clean up. We investigated the tolerance of a subantarctic native tussock grass, Poa foliosa (Hook. f.), to Special Antarctic Blend (SAB) diesel fuel and its potential to reduce SAB fuel contamination via phytoremediation. Toxicity of SAB fuel to P. foliosa was assessed in an 8 month laboratory growth trial under growth conditions which simulated the island's environment. Single seedlings were planted into 1 L pots of soil spiked with SAB fuel at concentrations of 1000, 5 000, 10,000, 2000 and 40,000 mg/kg (plus control). Plants were harvested at 0, 2, 4 and 8 months and a range of plant productivity endpoints were measured (biomass production, plant morphology and photosynthetic efficiency). Poa foliosa was highly tolerant across all SAB fuel concentrations tested with respect to biomass, although higher concentrations of 20,000 and 40,000 mg SAB/kg soil caused slight reductions in leaf length, width and area. To assess the phytoremediation potential of P. foliosa (to 10 000 mg/kg), soil from the planted pots was compared with that from paired unplanted pots at each SAB fuel concentration. The effect of the plant on SAB fuel concentrations and the associated microbial communities found within the soil (total heterotrophs and hydrocarbon degraders) were compared between planted and unplanted treatments at the 0, 2, 4 and 8 month harvest periods. The presence of plants resulted in significantly less SAB fuel in soils at 2 months and a return to background concentration by 8 months. Microbes did not appear to be the sole driving force behind the observed hydrocarbon loss. This study provides evidence that phytoremediation using P. foliosa is a valuable remediation option for use at Macquarie Island, and may be

  8. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    Science.gov (United States)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  9. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  10. Validated sampling strategy for assessing contaminants in soil stockpiles

    NARCIS (Netherlands)

    Lamé, F.; Honders, T.; Derksen, G.B.; Gadella, M.

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The

  11. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  12. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  13. Validated sampling strategy for assessing contaminants in soil stockpiles

    NARCIS (Netherlands)

    Lamé, F.; Honders, T.; Derksen, G.B.; Gadella, M.

    2005-01-01

    Dutch legislation on the reuse of soil requires a sampling strategy to determine the degree of contamination. This sampling strategy was developed in three stages. Its main aim is to obtain a single analytical result, representative of the true mean concentration of the soil stockpile. The developme

  14. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    Science.gov (United States)

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  15. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.

    Science.gov (United States)

    Hubálek, Tomás; Vosáhlová, Simona; Matejů, Vít; Kovácová, Nora; Novotný, Cenek

    2007-01-01

    The ecotoxicity of hydrocarbon-contaminated soil originating from a brownfield site was evaluated during a 17-month biodegradation pilot test. The initial concentration of total petroleum hydrocarbons (TPHs) in the soil was 6380 microg/g dry weight. An amount of 200 kg soil was inoculated with 1.5 L of the bacterial preparation GEM-100 containing Pseudomonas sp. and Acinetobacter sp. strains (5.3 x 10(10) CFU.mL(-1)) adapted to diesel fuel. The concentration of TPHs in the soil decreased by 65.5% after bioremediation. Different organisms such as the bacterium Vibrio fischeri, terrestrial plants Sinapis alba, Lactuca sativa, and Hordeum vulgare, the water plant Lemna minor, the earthworm Eisenia fetida, and the crustacean Heterocypris incongruens were used for ecotoxicity evaluation. The highest toxicity was detected in the first period of bioremediation. However, certain toxic effects were detectable during the whole bioremediation process. The contact tests with plants, earthworms, and crustaceans were the most sensitive of all of the bioassays. Therefore, the contact tests performed directly on soil samples were shown to be a better tool for ecotoxicity evaluation of hydrocarbon-contaminated soil than the tests performed on soil elutriates. The ecotoxicity measured by the responses of the tests did not always correlate with the decrease in TPH concentrations in the soil during bioremediation.

  16. Toxicity tests of soil contaminated by recycling of scrap plastics.

    Science.gov (United States)

    Wong, M H; Chui, V W

    1990-03-01

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  17. The Influence of Soil Chemical Factors on In Situ Bioremediation of Soil Contamination

    Energy Technology Data Exchange (ETDEWEB)

    Breedveld, Gijs D.

    1997-12-31

    Mineral oil is the major energy source in Western society. Production, transport and distribution of oil and oil products cause serious contamination problems of water, air and soil. The present thesis studies the natural biodegradation processes in the soil environment which can remove contamination by oil products and creosote. The main physical/chemical processes determining the distribution of organic contaminants between the soil solid, aqueous and vapour phase are discussed. Then a short introduction to soil microbiology and environmental factors important for biodegradation is given. There is a discussion of engineered and natural bioremediation methods and the problems related to scaling up laboratory experiments to field scale remediation. Bioremediation will seldom remove the contaminants completely; a residue remains. Factors affecting the level of residual contamination and the consequences for contaminant availability are discussed. Finally, the main findings of the work are summarized and recommendations for further research are given. 111 refs., 41 figs., 19 tabs.

  18. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  19. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    OpenAIRE

    Wuthiphun, L.; Towatana, P.; Arrykul, S.; Chongsuvivatwong, V

    2007-01-01

    Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash) on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil cove...

  20. Numerical Simulation of Preferential Flow of Contaminants in Soil

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple modeling approach was suggested to simulate preferential transport of water and contaminants in soil.After saturated hydraulic conductivity was interpolated by means of Krige interpolation method or scaling method, and then zoned,the locations where saturated hydraulic conductivity was larger represented regions where preferential flow occurred,because heterogeneity of soil,one of the mechanisms resulting in preferential flow,could be reflected through the difference in saturated hydraulic conductivity.The modeling approach was validated through numerical simulation of contaminant transport in a two-dimensional hypothetical soil profile.The results of the numerical simulation showed that the approach suggested in this study was feasible.

  1. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil.

  2. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...... to measure solute phase concentration of PAHs in contaminated soils. Overall a reliable and reproducable system for determining solute concentration of a wide range of organic compounds in contaminated soils has been developed....

  3. Remediation of PCB contaminated soils at Saglek, Labrador

    Energy Technology Data Exchange (ETDEWEB)

    Maskell, B.; Bordin, D. [Bennett Environmental Inc., Oakville, ON (Canada)

    2005-07-01

    Polychlorinated biphenyl (PCB) contaminated soils were discovered in Saglek in 1986. This paper describes a contract awarded to Bennett Environmental Inc., by the Department of National Defense for the removal of all contaminated soils and debris in the area. Key tasks included removal of all stockpiles of PCB contaminated soil; collection, cleaning and sorting of debris for containerization and removal; remediation of potential contaminated soils beneath the stockpiles; and reinstatement of the staging and clean stone deposition zone area to its natural state. Planning of the project was outlined, including details of partnering sessions and workshops, as well as details of community meetings held in Nain. Details of startup and pre-environmental monitoring were also provided. An outline of the containerization unit used during the project was presented, as well as ship cycle times and soil sampling procedures. Washing and water treatment procedures were reviewed, as well as details of the on-site laboratory, equipped with personal exposure monitoring; an ambient air monitoring network; water sampling and analysis; and continuous monitoring to assess potential exposure to PCB to conform to alarm levels and implement mitigation measures. Shipping procedures were reviewed as well as soil treatment processes at a facility in Cornwall, Ontario. It was concluded that the remediation of the site was successful. All contaminated material was removed and treated. 1 ref., 4 figs.

  4. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    Science.gov (United States)

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides.

  5. Contamination of urban garden soils with copper and boron

    Energy Technology Data Exchange (ETDEWEB)

    Purves, D.

    1966-06-04

    Spectrochemical analyses of garden soils sampled in the Edinburgh and Dundee areas indicate that there is substantial contamination of urban soils with copper and boron. These soils were analyzed spectrochemically with respect to total copper and water-extractable boron content with the view of comparing the levels obtained in urban areas with levels in arable soils in rural areas. The results indicate that urban garden soils contain about four times as much copper and two to three times as much water-soluble boron as rural arable soils. The existence of such a marked disparity between the levels of two potentially toxic elements in urban and rural areas is evidence of slow poisoning of the soil environment in built-up areas and is cause for concern. While the major source of contamination of soils with copper and boron is still a matter for speculation, it is probable that the addition of soot to garden soils and the fall-out of sooty material in built-up areas where atmospheric pollution is a problem make a substantial contribution to the water-extractable boron content of urban soils. Three samples of soot from domestic chimneys, obtained from independent sources, were found on analysis to contain 640, 650 and 555 p.p.m. water-extractable boron, and it is evident that the addition to soil of even small amounts of soot with a boron content of this order would have a marked effect on its water-extractable boron content.

  6. Chemical fingerprinting of hydrocarbon-contamination in soil.

    Science.gov (United States)

    Boll, Esther S; Nejrup, Jens; Jensen, Julie K; Christensen, Jan H

    2015-03-01

    Chemical fingerprinting analyses of 29 hydrocarbon-contaminated soils were performed to assess the soil quality and determine the main contaminant sources. The results were compared to an assessment based on concentrations of the 16 priority polycyclic aromatic hydrocarbons pointed out by the U.S. Environmental Protection Agency (EPAPAH16) and total petroleum hydrocarbon (TPH). The chemical fingerprinting strategy proposed in this study included four tiers: (i) qualitative analysis of GC-FID chromatograms, (ii) comparison of the chemical composition of both un-substituted and alkyl-substituted polycyclic aromatic compounds (PACs), (iii) diagnostic ratios of selected PACs, and (iv) multivariate data analysis of sum-normalized PAC concentrations. The assessment criteria included quantitative analysis of 19 PACs and C1-C4 alkyl-substituted homologues of naphthalene, fluorene, dibenzothiophene, phenanthrene, pyrene, and chrysene; and 13 oxygenated polycyclic aromatic compounds (O-PACs). The chemical composition of un-substituted and alkyl-substituted PACs and visual interpretation of GC-FID chromatograms were in combination successful in differentiating pyrogenic and petrogenic hydrocarbon sources and in assessing weathering trends of hydrocarbon contamination in the soils. Multivariate data analysis of sum-normalized concentrations could as a stand-alone tool distinguish between hydrocarbon sources of petrogenic and pyrogenic origin, differentiate within petrogenic sources, and detect weathering trends. Diagnostic ratios of PACs were not successful for source identification of the heavily weathered hydrocarbon sources in the soils. The fingerprinting of contaminated soils revealed an underestimation of PACs in petrogenic contaminated soils when the assessment was based solely on EPAPAH16. As alkyl-substituted PACs are dominant in petrogenic sources, the evaluation of the total load of PACs based on EPAPAH16 was not representative. Likewise, the O-PACs are not

  7. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    Science.gov (United States)

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  8. Metagenomic analysis of microbial community in uranium-contaminated soil.

    Science.gov (United States)

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.

  9. Electrokinetic remediation of oil-contaminated soils.

    Science.gov (United States)

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  10. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    Science.gov (United States)

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  11. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  12. Electrokinetics removal of lead from lead-contaminated red soils

    Institute of Scientific and Technical Information of China (English)

    刘云国; 李欣; 曾光明; 黄宝荣; 张慧智

    2003-01-01

    Ex-situ electroremediation tests were conducted on the lead-contaminated red soils to find out the optimum condition for the most efficient removal of lead pollution from the red soil,and to examine the relation of the pH of the soil with the electroremediation efficiency.The results show that the electroremediation technology is efficient to remedy Pb contaminated red soils,and the removal efficiency can be enhanced by controlling pH value in the cathode reservoir with HNO3.The average removal efficiency of Pb is enhanced from 24.5% to 79.5%,and the energy consumption reaches 285kW·h per m3 red soil.

  13. Use of passive sampling devices to determine soil contaminant concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.A. [Clemson Univ., Pendleton, SC (United States)]|[Washington State Univ., Richland, WA (United States); Hooper, M.J. [Clemson Univ., Pendleton, SC (United States); Weisskopf, C.P. [Washington State Univ., Richland, WA (United States)

    1996-12-31

    The effective remediation of contaminated sites requires accurate identification of chemical distributions. A rapid sampling method using passive sampling devices (PSDs) can provide a thorough site assessment. We have been pursuing their application in terrestrial systems and have found that they increase the ease and speed of analysis, decrease solvent usage and overall cost, and minimize the transport of contaminated soils. Time and cost savings allow a higher sampling frequency than is generally the case using traditional methods. PSDs have been used in the field in soils of varying physical properties and have been successful in estimating soil concentrations ranging from 1 {mu}g/kg (parts per billion) to greater than 200 mg/kg (parts per million). They were also helpful in identifying hot spots within the sites. Passive sampling devices show extreme promise as an analytical tool to rapidly characterize contaminant distributions in soil. There are substantial time and cost savings in laboratory personnel and supplies. By selectively excluding common interferences that require sample cleanup, PSDs can be retrieved from the field and processed rapidly (one technician can process approximately 90 PSDs in an 8-h work day). The results of our studies indicate that PSDs can be used to accurately estimate soil contaminant concentrations and provide lower detection limits. Further, time and cost savings will allow a more thorough and detailed characterization of contaminant distributions. 13 refs., 4 figs., 2 tabs.

  14. Environmental projects. Volume 14: Removal of contaminated soil and debris

    Science.gov (United States)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  15. Risks, media and the social amplification of soil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Ouboter, S. [NOK, Networkorganisation for Environmental Quality, Gouda (Netherlands)

    2003-07-01

    Soil experts think of the risks of contaminated sites in terms of adverse effects of toxic substances on human health or environmental quality. In other words, the risk is attributed to the contamination. Social scientists define risk as a situation or event in which something of human value (including humans themselves) has been put at stake and where the outcome is uncertain. Since situations or events are constructions of the human mind, risks are also constructed. A relevant question for a psychologist is to learn how these constructions evolve in the mind of an individual and how this perceived risk influences the individuals' behaviour and well-being. A relevant question for a sociologist is how individuals with their own perceptions, feelings and behaviour interact. Many soil contamination experts experienced that one a site is seen as contaminated by a loathsome source, a chain of adverse reactions can easily put a stigma on that specific location and groups of people associated with that contaminated site. The case of Love Canal is worldwide known as an example of this phenomenon, but many countries have their own national symbol, like Lekkerkerk in the Netherlands. Modern media play an important role in this process. This process is often believed to be irrational and therefore uncontrollable. The question of this workshop is to what level technical soil experts can influence the psychological and social effects of soil contamination, using the social amplification metaphor. (orig.)

  16. Soil contamination with emissions of non-ferrous metallurgical plants

    Science.gov (United States)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.; Prokopovich, E. V.; Savichev, A. T.

    2011-02-01

    The upper soil horizons are strongly contaminated in the area influenced by the Mid-Urals copper smelter. In the technogenic desert and impact zones, the contents of a number of elements (Cu, Zn, As, Pb, P, and S) by many times exceed their clarke values and the maximum permissible concentrations (or provisional permissible concentrations). The degree of technogeneity (Tg) for these elements is very high in these zones. In the far buffer zone, Tg is about zero for many elements and increases up to Tg = 27-42% for four heavy elements (Cu, Zn, Pb, and As) and up to 81-98% for P and S. The buffer capacity of the humus horizon depends on the soil's location within the technogeochemical anomaly and also on the particular pollutant. In the impact zone, it is equal to 70-77% for lead and arsenic, although other technogenic elements (Zn, Cr, S, and P) are poorly retained and readily migrate into the deeper horizons (the buffer capacity is equal to 14-25%). Nearly all the heavy metals enter the soil in the form of sulfides. The soils in the area affected by the Noril'sk mining and smelting metallurgical enterprise are subdivided into two groups according to the degree of their contamination, i.e., the soils within Noril'sk proper and the soils in its suburbs to a distance of 4-15 km. The strongest soil contamination is recorded in the city: the clarke values are exceeded by 287, 78, 16, 4.1, and 3.5 times for Cu, Ni, Cr, Fe, and S, respectively. The major pollutants enter the soil from the ferruginous slag. The soil's contamination degree is lower in the suburbs, where heavy metal sulfides reach the soils with the aerial emission from the enterprise.

  17. Bioremediation of industrially contaminated soil using compost and plant technology.

    Science.gov (United States)

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting.

  18. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  19. Bioremediation of Pyrene-Contaminated Soils Using Biosurfactant

    Directory of Open Access Journals (Sweden)

    Jorfi

    2014-10-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs are persistence organic chemicals with proved carcinogenic and mutagenic hazards. These compounds are usually adsorbed in soils in vicinity of oil and gas industries. Bioremediation of PAHs contaminated soils is difficult due to hydrophobic nature of PAHs. Objectives The main purpose of the current study was to determine the pyrene removal efficiency in synthetically contaminated soil, using biosurfactant. Materials and Methods Four pure bacterial strains capable of pyrene degradation were isolated from contaminated soils via enrichment techniques. The soil samples were spiked with an initial pyrene concentration of 500 mg/kg and subjected to bioremediation using a mixed culture comprised of previously isolated strains, in addition to application of biosurfactant during 63 days. Results The pyrene removal efficiency in samples containing biosurfactant, without biosurfactant and controls, were 86.4%, 59.8% and 14%, respectively, after 63 days. The difference of pyrene removal efficiency between the biosurfactant-containing samples and the ones without it was significant (P < 0.05. Conclusions Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa significantly improved pyrene removal in contaminated soils.

  20. Soil contamination by petroleum products. Southern Algerian case

    Science.gov (United States)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  1. COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER

    Science.gov (United States)

    Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...

  2. INTENSITY OF SOIL CONTAMINATION IN INDUSTRIAL CENTERS OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Amanzhol Iztileu

    2013-06-01

    Full Text Available For Kazakhstan, with its vast territory, the problem of disposal of solid waste from metallurgical, energy and petrochemical industries is becoming more acute. Failure to comply with hygiene requirements for the placement and operation of landfills increases the area of contaminated land and could become a threat to the public of environmental safety of industrial centers. The aim of the study was to evaluate the soil contamination in the towns and cities of Kazakhstan and the allocation of areas of risk to public health. The content of heavy metals in the soil (manganese, zinc, copper, cobalt, nickel, lead, cadmium, mercury, selenium, tin, arsenic, vanadium were determined by atomic absorption spectrometer MGA-915M. Evaluation of the results was performed with respect to the MPC substances in the soil, the toxicity of the components. Summarized metal soil pollution index (IZ was obtained by the sum of the rate of excess metal concentration above the level of its world-Clark. To assess the different risk residence zones scale with 5 levels of purity up to 2 - very clean, 2.8 net, 8-16 acceptable, 16-32 moderately dangerous, dangerous 32-128 was chosen. We developed the original software product using GIS technology to provide environmental information on an electronic map of the city in the form of color patches (polygons, matching levels summarized indicator of soil contamination. Found that the most contaminated soil were village Glubokoe where pollution reached dangerous or extremely dangerous levels, Aktau and Zhanaozen in which moderately hazardous contamination was detected throughout; Ust-Kamenogorsk and village Sholakkorgan where moderately hazardous contamination was noted in the fourth part of the urban area. The most common heavy metal toxicity 1-2 class that exceeded MCL in soils, were lead, copper and zinc, and in village Glubokoe - chromium and arsenic, in Aktau - cadmium. Visualization of environmental pollution in some urban

  3. Delineation of ground-water contamination using soil-gas analyses near Jackson, Tennessee

    Science.gov (United States)

    Lee, R.W.

    1991-01-01

    An investigation of the ground-water resources near Jackson, West Tennessee, was conducted during 1988-89. The study included determination of the occurrence of contaminants in the shallow aquifer using soil-gas analyses in the unsaturated zone. Between 1980 and 1988, an underground fuel-storage tank leaked about 3,000 gallons of unleaded fuel to the water table about 4 feet below land surface. A survey of soil gas using a gas chromatograph equipped with a photoionization detector showed concentrations of volatile organic compounds greater than IO, 000 parts per million near the leak These compounds were detected in an area about 240 feet long and 110 feet wide extending west from the point source. The chromatograms provided two distinct 'fingerprints' of volatile organic compounds. The first revealed the presence of benzene, toluene, andxylenes, which are constituents of unleaded fuel, in addition to other volatile compounds, in soil gas in the area near the leak The second did not reveal any detectable benzene, toluene, or xylenes in the soil-gas samples, but showed the presence of other unidentified volatile organic compounds in soil gas north of the storage tank. The distribution of total concentrations of volatile organic compounds in the unsaturated zone indicated that a second plume about 200 feet long and 90 feet wide was present about 100 feet north of the storage tank The second plume could have been the result of previous activities at this site during the 1950's or earlier. Activities at the site are believed to have included storage of solvents used at the nearby railyard and flushing of tanks containing tar onto a gravel-covered parking area. The delineation of these plumes has shown that soil-gas analyses can be a useful technique for identifying areas of contamination with volatile organic compounds in shallow water-table aquifers and may have broad applications in similar situations where the water table is relatively close to the surface.

  4. Soil Contamination by a Former Railroad Shop in Mexico:Proposed Handling and Remedation

    Science.gov (United States)

    Gonzalez, T.; Rocha, M.

    2001-12-01

    The study deals with an area of 589,062 m2 occupied by a national railroad shop located in Aguascalientes, a city in the central part of Mexico. Since 1903, the city became a transcendental railway center in the country and a transportation route toward the United States. Main activities were maintenance and repair of railroads cars, supply of fuel, and foundry of metallic pieces. The place was contaminated for 100 years, up to the recent sale of that company. The workshop area, now surrounded by populated urban areas, is abandoned. This study presents an evaluation of a previous survey of soil contamination in the different areas of the workshop. Based on our evaluation, we are proposing an optimal handling and remediation of the area. The survey referred 19 shallow boreholes (0-12 meters). Cores and chemical samples were analyzed. We defined the most relevant characteristic and contaminants of the soil samples. In terms of health risk analysis, we conclude that the most important contaminants are hydrocarbons and heavy metals. The following areas present the most significant health risk: the fuel supply zone , the oil petroleum or tar (called in Mexico "chapopote") lagoon, the painting area and the dump of axes and wheels.

  5. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing.

    Science.gov (United States)

    Zhang, Weihua; Tsang, Daniel C W; Lo, Irene M C

    2007-02-01

    Heavy metal- and organic-contaminated sites are ubiquitous, but few studies have been conducted to address such an issue. EDTA- and SDS-enhanced washing was studied for remediation of Pb- and/or marine diesel fuel (MDF)-contaminated soils. The feasibility of recovery and reuse of EDTA and SDS, as well as the physicochemical interactions among the chemical agents, contaminants and soils were extensively investigated using batch experiments. The optimal washing sequence was then determined. The experimental results showed that EDTA could be recovered and reused for four cycles without significant loss of its chelating capacity, while the extraction capability of SDS was noticeably reduced after each reuse cycle. The free phase of marine diesel fuel (MDF) in soils physically isolated the sorbed Pb on soils and thus reducing its extraction by EDTA. The presence of SDS alone or together with low concentration of EDTA was found to enhance Pb removal probably via electrostatic interaction and dissolution of soil organic matter. However, it hindered Pb extraction by high concentration of EDTA, because of the potential formation of complexes between some strongly-bound Pb and SDS, that are more resistant to desorption. Therefore, EDTA washing followed by SDS achieved the highest Pb removal efficiency. On the other hand, MDF removal by SDS was significantly hindered by coexisting Pb in soils, probably because the formation of Pb-dodecyl sulfate (DS) complex would decrease the effective amount of SDS available for forming micelles in solution and enhance MDF sorption. EDTA alone or together with SDS could enhance MDF removal, but the residual MDF after EDTA-washing became more resistant to SDS removal. Consequently, SDS washing followed by EDTA is considered as the optimal washing sequence for MDF removal.

  6. Plant enhanced degradation of phenanthrene in the contaminated soil

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-mei

    2006-01-01

    The degradative characteristics ofphenanthrene, microbial biomass carbon, plate counts of heterotrophic bacteria and most probable number (MPN) of phenanthrene degraders in non-rhizosphere or rhizosphere soils with uninoculating or inoculating phenanthrene degraders were measured. At the initial concentration of 20 mg phenanthrene/kg soil, the half-lives of phenanthrene in uninoculated non-rhizosphere soil, uninoculated rhizosphere soil, inoculated non-rhizosphere soil, and inoculated rhizosphere soil were measured to be 81.5, 47.8, 15.1 and 6.4 d, respectively, and corresponding kinetic data fitted first-order kinetics. The highest degradation rate of phenanthrene was observed in inoculated rhizosphere soil. The degradative characteristics of phenanthrene were closely related to the effects of vegetation on soil microbial process. Vegetation could enhance the magnitude ofrhizosphere microbial communities, microbial biomass content, and heterotrophic bacterial community, but barely influence those community components responsible for phenanthrene degradation. Results suggested that combination of vegetation and inoculation with degrading microorganisms of target organic contaminants was a better pathway to enhance degradation of the organic contaminants in soil.

  7. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    Science.gov (United States)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  8. [Feasibility of applying ornamental plants in contaminated soil remediation].

    Science.gov (United States)

    Liu, Jia-Nü; Zhou, Qi-Xing; Sun, Ting; Wang, Xiao-Fei

    2007-07-01

    Phytoremediation is one of the effective ways in resolving problems of contaminated soils, but limited hyperaccumulation plant species were reported and documented. This shortage could be offset if remediation plants can be screened out from various ornamental plants. In addition, such doing can beautify the environment while bring some economic effects. Starting from the importance of phytoremediation, this paper generalized the characters and standards of remediation plants. Through describing the resources of ornamental plants and their functions on environmental protection, particularizing their superiorities to other plants, and analyzing their endurance, accumulation traits and remediation types, the feasibility of applying ornamental plants in the practices of contaminated soil remediation was discussed. To screening out hyperaccumulators from ornamental plants would be an entirely new research area in the remediation of contaminated soils.

  9. Low-cost in-soil organic contaminant sensor

    Science.gov (United States)

    Brossia, Charles E.; Wu, Samuel C.

    1991-03-01

    The First Omega Group Inc. has developed a low cost optical fiber sensing technique for detecting the presence of oils gasoline organic solvents and other oily contaminants in soils. The sensing means consists of a continuous optical fiber having a portion of its surface specially processed to render it sensitive to the presence of soil contandnants. The processed area of the fiber is positioned within the environment that is at risk of contaniination. Contact by a contaminant with the processed area of the optical fiber changes the attenuation of infrared light through the processed area in a characteristic way and in real time. The change in light attenuation is detected using a conven tional photo detector to provide indication of contamination within the soil.

  10. A laboratory test of NOM-assisted remediation of arsenic and copper contaminated soils

    DEFF Research Database (Denmark)

    Rasmussen, Signe Bonde; Jensen, Julie Katrine; Borggaard, Ole K.

    2015-01-01

    Soils contaminated by arsenic (As) and copper (Cu) must be remediated because As and Cu are non-degradable and toxic. On moderately contaminated soils, As and Cu may be removed by in-situ plant uptake (phytoremediation), whereas strongly contaminated soils must be removed and cleaned by soil...

  11. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    Science.gov (United States)

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  12. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  13. Effects of Two Kinds of Biochars on Soil Cu Availability in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    WANG Xiao-qi

    2016-07-01

    Full Text Available This paper is aimed to research the impacts of different biochars(0,1%,2%,4%, including maize biochar and phytolacca root biochar, on rape growth and the soil Cu availability in the Cu-contaminated red soil via a series of pot experiments. The results showed that, compared with the control, the addition of two kinds of biochars could increase the biomass of the rape. In low Cu-contaminated red soil, added 4% maize biochar and phytolacca root biochar increased the biomass by 21.2 times and 67.9 times; however, the biomass were increased by 8.6 times and 109.6 times under high Cu-contaminated soil. The addition of phytolacca root biochar could increase the soil pH significantly, which has been increased by 0.4~1.6 units with the addition of phytolacca root biochar in low Cu-contaminated red soil, and it had 0.25~1.35 units more than that with maize biochar; In high Cu-contaminated red soil, with the addition of phytolacca root biochar, soil pH was increased by 0.33~1.52 units, which was 0.3~1.25 units higher than maize biochar. There was a significant effect on reducing the soil Cu availability with the addition of the two biochars. Among them, 4% addition of maize biochar and phytolacca root biochar could reduce soil available Cu content by 21.9% and 45.2% in low Cu-contaminated soil, however, it was decreased by 41.9% and 53.8% in high Cu-contaminated soil. Both of the two biochars were able to reduce the Cu accumulation in rape, where there was a decrease by 21.2% and 67.8% with he addition of 4% maize biochar and phytolacca root biochar under low Cu-contaminated soil, and it was decreased by 19.9% and 66.8% in high Cu-contaminated soil respectively. Both of the biochars could ameliorate the acidity and Cu availability in the red soil, enhance the biomass of the rape and reduce the Cu accumulation in rape, but phytolacca root biochar had more effective influence than maize biochar.

  14. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana P.

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients...... have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination....

  15. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients....... Experiments have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination...

  16. Human exposure to soil contaminants in subarctic Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Ellen Stephanie Reyes

    2015-05-01

    Full Text Available Background: Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Objective: Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. Design: A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT, other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Methods: Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling from 3 plots (A, B, and C in Fort Albany (on the mainland, subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. Results: The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Conclusions: Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  17. Practical remediation of the PCB-contaminated soils

    OpenAIRE

    Ido, Akiko; Niikawa, Miki; Ishihara, Shinji; Sawama, Yoshinari; Nakanishi, Tsuyoshi; Monguchi, Yasunari; Sajiki, Hironao; Nagase, Hisamitsu

    2015-01-01

    A practical method for the elimination of PCBs from PCB-contaminated soil has been developed by the combination of Soxhlet extraction using a newly-developed modified Soxhlet extractor possessing an outlet valve on the extraction chamber with the chemical degradation. Various types of PCBs contaminated in soils could be completely extracted in refluxing hexane, and the subsequent hydrodechlorination could also be completed within 1 h in a hexane–MeOH (1 : 5) solution in the presence of Pd/C a...

  18. Eco-toxicity of petroleum hydrocarbon contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Jingchun Tang; Min Wang; Fei Wang; Qing Sun; Qixing Zhou

    2011-01-01

    Total petroleum hydrocarbons (TPH) contaminated soil samples were collected from Shengli Oilfield of China.Toxicity analysis was carried out based on earthworm acute toxicity, plant growth experiment and luminescent bacteria test.The soil was contaminated bypetroleum hydrogcarbons with TPH concentration of 10.57%.With lethal and sub-lethal rate as endpoint, earthworm test showed that the LD50 (lethal dose 50%) values in 4 and 7 days were 1.45% and 1.37% respectively, and the inhibition rate of earthworm body weight increased with higher oil concentration.TPH pollution in the soil inhibited seed germination in both wheat and maize experiment when the concentration of petroleum was higher than 0.1%.The EC50 (effective concentration 50%) for germination is 3.04% and 2.86% in maize and wheat, respectively.While lower value of ECs0 for root elongation was to be 1.11% and 1.64% in maize and wheat,respectively, suggesting higher sensitivity of root elongation on petroleum contamination in the soil.The ECs0 value in luminescent bacteria test was 0.47% for petroleum in the contaminated soil.From the experiment result, it was concluded that TPH content of 1.5% is considered to be a critical value for plant growth and living of earthworm and 0.5% will affect the activity of luminescent bacteria.

  19. Arsenic removal from contaminated soil using phosphoric acid and phosphate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Laboratory batch experiments were conducted to study Arsenic (As) removal from a naturally contaminated soil using phosphoric acid (H3PO4) and potassium dihydrogen phosphate (KH2PO4). Both H3PO4 and KH2PO4 proved to clearly reduce toxicity of the soil in terms of soil As content, attaining more than 20% As removal at a concentration of 200 mmol/L, although soil As tolerance limit of 30 mg/kg, according to Chinese Environmental quality standard for soil (EQSS), was not satisfied by using these two extractants. At the same time, acidification of soil and dissolution of soil components (Ca, Mg, and Si) resulted from using these two extractants, especially H3PO4. The effectiveness of these two extractants could be attributed to the replacement of As by phosphate ions (PO43-). The function of H3PO4 as an acid to dissolve soil components had little effects on As removal. KH2PO4 almost removed as much As as H3PO4, but it did not result in serious damage to soils, indicating that it was a more promising extractant. The results of a kinetic study showed that As removal reached equilibrium after incubation for 360 min, but dissolution of soil components, especially Mg and Ca, was very rapid. Therefore dissolution of soil components would be inevitable if As was further removed. Elovich's model best described the kinetic data of As removal among the four models used in the kinetic study.

  20. Effects of several trace contaminants on fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.M.; O' Brien, T.J.

    1979-01-01

    The electrochemical reactivity of various trace contaminants in coal gas, i.e., Hg/HgS, PbS, CdS, Sn/SnCl/sub 2//SnCl/sub 4/, and TiO/sub 2/, in coal gas at the nickel anode and the nickel oxide cathode in a molten carbonate fuel cell have been examined thermodynamically. Calculations indicate that only SnCl/sub 4/ would undergo reduction at the cathode to SnCl/sub 2/. Other species would remain intact. Contaminants such as H/sub 2/S/SO/sub 2/ and HCl have also been included in the calculation. The results are consistent with the limited observations. Possible chemical interactions between contaminants and electrodes or electrolytes have been examined. Reactions of Sn/sup 2 +/, HgS, H/sub 2/S, and HCl with the nickel anode have negative free energies. Mercury would interact physically with the anode by forming an alloy. Reactions of Sn, SnCl/sub 2/, H/sub 2/S, and HCl with the nickel oxide cathode also have negative free energies. Reactions of Sn/sup 2 +/, HCl, H/sub 2/S, and SO/sub 2/ with carbonates have large negative free energies. Born's model of ion transfer was used to calculate the free energy change for the transfer of ions from aqueous solution to the molten carbonate solution.

  1. The effect of soil type on the bioremediation of petroleum contaminated soils.

    Science.gov (United States)

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil.

  2. Remediation of Oil-Contaminated Soil in Greenland

    OpenAIRE

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2013-01-01

    This paper present the recent research conducted at the Arctic Technology Centre, where different solutions for remediation of excavated oil contaminated soil in Greenlandic towns were tested.In the first work, soil polluted by light oil was treated with two different nutrient sources (substrate and N:P:K), stabilizer (crab shells) and heating (20°C). In this work a clear reduction in hydrocarbon content was observed during the treatment period of 730 days. No significant difference in degrad...

  3. Hazard assessment of chemical contaminants in soil.

    Science.gov (United States)

    Poels, C L; Veerkamp, W

    1992-12-01

    Disposal practices, accidental spills, leakages and local aerial deposition occurring in the past have led to local soil pollution in many cases. Especially in situations where people live on or nearby such locations this has created concern about possible adverse effects on human health. A stepped approach to the hazard assessment of polluted soil, as developed by a Task Force from the European Chemical Industry Ecology and Toxicology Centre (ECETOC), is described. In an early phase in the assessment process the potential exposure of humans is estimated. The Human Exposure to Soil Pollutants (HESP) model can be applied for this purpose. The model calculates the total exposure of adults and children resulting from pollutants present in soil, via 10 different exposure routes. The estimated exposure can be used to indicate the potential significant exposure routes and to carry out a preliminary hazard assessment. The model is also able to predict pollutant concentrations in soil which do not exceed accepted maximum exposure levels for humans in both standardised and site specific situations. The stepped approach is cost-effective and provides an objective basis for decisions and priority setting.

  4. Removal of Pyrene from Contaminated Soils by White Clover

    Institute of Scientific and Technical Information of China (English)

    XU Sheng-You; CHEN Ying-Xu; LIN Kuang-Fei; CHEN Xin-Cai; LIN Qi; LI Feng; WANG Zhao-Wei

    2009-01-01

    Phytoremediation has been used as an emerging technology for remediation of soil contamination with polycyclic aromatic hydrocarbons (PAHs),ubiquitous persistent environmental pollutants derived from natural and anthropogenic processes,in the last decade.In this study,a pot experiment was conducted to investigate the potential of phytoremediation of pyrcne from spiked soils planted with white clover (Trifolium repens) in the greenhouse with a series of pyrene concentrations ranging from 4.22 to 365.38 mg kg-1.The results showed that growth of white clover on pyrenecontaminated soils was not affected.The removal of pyrene from the spiked soils planted with white clover was obviously higher than that from the unplanted soils.At the end of the experiment (60 d),the average removal ratio of pyrene in the spiked soils with white clover was 77%,which was 31% and 57% higher than those of the controls with or without micobes,respeetivcly.Both roots and shoots of white clover took up pyrene from the spiked soils and pyrene uptake increased with the soil pyrene concentration.However,the plant-enhanced dissipation of soil pyrene may be the result of plant-promoted microbial degradation and direct uptake and accumulation of pyrene by white clover were only a small part of the pyrene dissipation.Bioconcentration factors of pyrene (BCFs,ratio of pyrene,on a dry weight basis,in the plant to that in the soil) tended to decrease with increase in the residual soil pyrene concentration.Therefore,removal of pyrene in the contaminated soils was feasible using white clove.

  5. Distribution of chromium contamination and microbial activity in soil aggregates.

    Science.gov (United States)

    Tokunaga, Tetsu K; Wan, Jiamin; Hazen, Terry C; Schwartz, Egbert; Firestone, Mary K; Sutton, Stephen R; Newville, Matthew; Olson, Keith R; Lanzirotti, Antonio; Rao, William

    2003-01-01

    Biogeochemical transformations of redox-sensitive chemicals in soils can be strongly transport-controlled and localized. This was tested through experiments on chromium diffusion and reduction in soil aggregates that were exposed to chromate solutions. Reduction of soluble Cr(VI) to insoluble Cr(II) occurred only within the surface layer of aggregates with higher available organic carbon and higher microbial respiration. Sharply terminated Cr diffusion fronts develop when the reduction rate increases rapidly with depth. The final state of such aggregates consists of a Cr-contaminated exterior, and an uncontaminated core, each having different microbial community compositions and activity. Microbial activity was significantly higher in the more reducing soils, while total microbial biomass was similar in all of the soils. The small fraction of Cr(VI) remaining unreduced resides along external surfaces of aggregates, leaving it potentially available to future transport down the soil profile. Using the Thiele modulus, Cr(VI) reduction in soil aggregates is shown to be diffusion rate- and reaction rate-limited in anaerobic and aerobic aggregates, respectively. Thus, spatially resolved chemical and microbiological measurements are necessary within anaerobic soil aggregates to characterize and predict the fate of Cr contamination. Typical methods of soil sampling and analyses that average over redox gradients within aggregates can erase important biogeochemical spatial relations necessary for understanding these environments.

  6. Phytoremediation and its models for organic contaminated soils

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Soil pollution has been attracting considerable public attentions over the last decades. Sorts of traditional physiochemical methods have been used to remove the organic pollutants from soils. However, the enormous costs and low efficiencies associated with these remediation technologies limit their availabilities. Phytoremediation is an emerging technology that uses plants to cleanup pollutants in soils. As overwhelmingly positive results have been shown, phytoremediation is a most economical and effective remediation technique for organic contaminated soils. In this paper phytoremediation and its models for organic contaminated soils is overviewed. The mechanisms of phytoremediation mainly include the direct plant uptake of organic pollutants, degradation by plant-derived degradative enzymes, and stimulated biodegradation in plant rhizosphere. Phytoremediation efficiency is tightly related to physicochemical properties of organic pollutants, environmental characteristics, and plant types. It is no doubt that soil amendments such as surfactants change the solubilities and availabilities of organic pollutants in soils. However, little information is available about effects of soil amendments on phytoremediation efficiencies. Phytoremediation models have been developed to simulate and predict the environmental behavior of organic pollutants, and progress of models is illustrated. In many ways phytoremediation is still in its initial stage, and recommendations for the future research on phytoremediation are presented.

  7. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...

  8. Degradation of toxaphene in aged and freshly contaminated soil.

    Science.gov (United States)

    Lacayo-Romero, Martha; van Bavel, Bert; Mattiasson, Bo

    2006-04-01

    Degradation of toxaphene in soil from both newly contaminated (from Sweden) and aged spills (from Nicaragua) were studied. The newly contaminated soil contained approximately 11 mg kg(-1) toxaphene while the aged Nicaraguan soil contained approximately 100 mg kg(-1). Degradation was studied in anaerobic bioreactors, some of which were supplied with lactic acid and others with Triton X-114. In this study we found that the lower isomers Parlar 11, 12 were degraded while the concentration of isomer Parlar 15 increased. This supported an earlier evaluation which indicated that less chlorinated isomers are formed from more heavily isomers. Lactic acid when added to the soil, interfere with the degradation of toxaphene. Lactic acid was added; several isomers appeared to degrade rather slowly in newly contaminated Swedish soil. The Swedish soil, without any external carbon source, showed the slowest degradation rate of all the compounds studied. When Triton X-114 at 0.4 mM was added, the degradation rate of the compounds increased. This study illustrates that biodegradation of toxaphene is a complex process and several parameters have to be taken into consideration. Degradation of persistent pollutants in the environment using biotechnology is dependent on bioavailability, carbon sources and formation of metabolites.

  9. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  10. Bioremediation of Copper Contaminated Soil Using Bacteria

    Directory of Open Access Journals (Sweden)

    Parul Bhatt Kotiyal

    2013-04-01

    Full Text Available Bioremediation is the use of living organisms (primarily microorganisms for removal of a pollutant from the biosphere. It relies on biological processes to minimize an unwanted environment impact of the pollutants. The microorganisms in particular have the abilities to degrade, detoxify and even accumulate the harmful organic as well as inorganic compounds. Five soil samples were collected from Selaqui industrial area, from different places at a depth of 0-15 cm. These soil samples were subjected to dilution (1:10, then from these dilution 4 and 5 were used for inoculation. Nutrient agar plates were prepared to be used as media. Replica of each dilution was prepared. After 24 hours of incubation at 28 degree centigrade bacterial colonies were observed on the plates. These cultures were purified to get 10 bacterial cultures. Further these cultures were inoculated in 10ml of nutrient broths each and after dense growth were inoculated in 10gm of soil samples in petriplates and were incubated for four days and then copper was estimated by Atomic Absorption Spectrometry technique and compared with the levels of copper obtained that were not inoculated with bacterial strains. The soil samples collected are all alkaline in nature; all the 10 isolated bacteria are gram negative and are chained cocci in structure. Sample 1 and 2, both dilutions have shown reduction in the amount of copper as compared to original soil samples without bacterial inoculation. According to this research sample 1 and sample 2 have shown reduction in the copper levels as compared to the raw soil samples that is without bacterial inoculation in them.

  11. On the fundamentals of thermal treatment for the cleanup of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, J.S.; Silcox, G.D.; Pershing, D.W. (Utah Univ., Salt Lake City, UT (USA)); Cundy, V.A. (Louisiana State Univ., Baton Rouge, LA (USA))

    1988-01-01

    Considerable research has focused on air emissions from the afterburner, mainly as a result of the regulations regarding destruction and removal efficiency of a principle organic hazardous constituent (POHC) -99.99% of the POHC must be destroyed in the system based on gas measurements from the afterburner. Research focusing on the primary desorber environment, the evolution of contaminants from solids and the resulting quality of the ash, is limited. The primary desorber is often operated at high temperatures which is costly, particularly for the cleanup of contaminated solid, due to high auxiliary fuel requirements. A more desirable option would be to desorb the contaminants from the soil at lower temperatures and then expose the off-gas to a high-temperature afterburner for decomposition of the hazardous compounds. In addition, the ability to predict the quality of the resulting soil is desirable for delisting purposes. To understand the desorption process, research must explore the rate controlling processes that are occurring. The overall goal of this research is to develop an understanding of the fundamental transport phenomena associated with the evolution of hazardous materials from soils in the primary desorber environment. As well, the rate information obtained can be used to model the thermal desorption of contaminants under a variety of experimental conditions; from these results large-scale operating parameters can be determined for optimum cleanup conditions.

  12. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    Science.gov (United States)

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  13. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Mendyk Łukasz

    2016-03-01

    Full Text Available The objective of the study was to determine role of soil sealing degree as the factor influencing soil contamination with polycyclic aromatic hydrocarbons (PAHs. The study area included four sampling sites located within the administrative boundaries of the Toruń city, Poland. Sampling procedure involved preparing soil pits representing three examples of soil sealing at each site: non-sealed soil as a control one (I and two degrees of soil sealing: semi-pervious surface (II and totally impervious surface (III. Together with basic properties defined with standard procedures (particle size distribution, pH, LOI, content of carbonates content of selected PAHs was determined by dichloromethane extraction using gas chromatography with mass spectrometric detection (GC-MS. Obtained results show that urban soils in the city of Toruń are contaminated with polycyclic aromatic hydrocarbons. Soil sealing degree has a strong influence on the soil contamination with polycyclic aromatic hydrocarbons. Totally sealed soils are better preserved from atmospheric pollution including PAHs. Combustion of grass/wood/coal was the main source of determined PAHs content in examined soils.

  14. Assessing Metal Contamination in Lead Arsenate Contaminated Orchard Soils Using Near and Mid-Infrared Diffuse Reflectance Spectroscopy

    Science.gov (United States)

    Historic use of lead-arsenate as pesticide in apple orchards left many soils contaminated with arsenic (As) and lead (Pb). Notorious health effects and their severe soil contamination are of primary concerns for major regulatory agencies, and community at large. Wet chemistry methods for soil anal...

  15. Bioremediation of mercury: not properly exploited in contaminated soils!

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Bahar, Md Mezbaul; Labbate, Maurizio; Krishnan, Kannan; Andrews, Stuart; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    Contamination of land and water caused by heavy metal mercury (Hg) poses a serious threat to biota worldwide. The seriousness of toxicity of this neurotoxin is characterized by its ability to augment in food chains and bind to thiol groups in living tissue. Therefore, different remediation approaches have been implemented to rehabilitate Hg-contaminated sites. Bioremediation is considered as cheaper and greener technology than the conventional physico-chemical means. Large-scale use of Hg-volatilizing bacteria are used to clean up Hg-contaminated waters, but there is no such approach to remediate Hg-contaminated soils. This review focuses on recent uses of Hg-resistant bacteria in bioremediation of mercury-contaminated sites, limitation and advantages of this approach, and identifies the gaps in existing research.

  16. Radionuclide contaminated soil: Laboratory study and economic analysis of soil washing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, M.; Zhou, H.; Patel, B.; Bowerman, B.; Brower, J.

    1996-05-20

    The objective of the work discussed in this report is to determine if soil washing is a feasible method to remediate contaminated soils from the Hazardous Waste Management Facility (HWMF) at Brookhaven National Laboratory (BNL). The contaminants are predominantly Cs-137 and Sr-90. The authors have assumed that the target activity for Cs-137 is 50 pCi/g and that remediation is required for soils having greater activities. Cs-137 is the limiting contaminant because it is present in much greater quantities than Sr-90. This work was done in three parts, in which they: estimated the volume of contaminated soil as a function of Cs-137 content, determined if simple removal of the fine grained fraction of the soil (the material that is less than 0.063 mm) would effectively reduce the activity of the remaining soil to levels below the 50 pCi/g target, assessed the effectiveness of chemical and mechanical (as well as combinations of the two) methods of soil decontamination. From this analysis the authors were then able to develop a cost estimate for soil washing and for a baseline against which soil washing was compared.

  17. Evaluation of soil flushing of complex contaminated soil: An experimental and modeling simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Mi; Kang, Christina S. [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Jonghwa [Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Kim, Han S., E-mail: hankim@konkuk.ac.kr [Department of Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)

    2015-04-28

    Highlights: • Remediation of complex contaminated soil achieved by sequential soil flushing. • Removal of Zn, Pb, and heavy petroleum oils using 0.05 M citric acid and 2% SDS. • Unified desorption distribution coefficients modeled and experimentally determined. • Nonequilibrium models for the transport behavior of complex contaminants in soils. - Abstract: The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, K{sub Ubatch} and K{sub Lbatch}, converged to constant values as C{sub e} increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of K{sub Ubatch} and K{sub Lbatch} were very close to those of K{sub Ufit} and K{sub Lfit} determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  18. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  19. Review: Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils

    Institute of Scientific and Technical Information of China (English)

    JING Yan-de; HE Zhen-li; YANG Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  20. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    Science.gov (United States)

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  1. Assessment of combined electro–nanoremediation of molinate contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena I., E-mail: hrg@campus.fct.unl.pt [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Fan, Guangping [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), East Beijing Road, Nanjing 210008 (China); Mateus, Eduardo P. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias-Ferreira, Celia [CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Ribeiro, Alexandra B. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. - Highlights: • Molinate is degraded in soil by zero valent iron nanoparticles (nZVI). • Higher contact time of nZVI with soil facilitates molinate degradation. • Soil type was the most significant factor influencing iron and molinate transport. • When using nZVI and EK molinate is not only transported to catholyte, but also degraded.

  2. Influence of soil structure on contaminant leaching from injected slurry.

    Science.gov (United States)

    Amin, M G Mostofa; Pedersen, Christina Østerballe; Forslund, Anita; Veith, Tamie L; Laegdsmand, Mette

    2016-12-15

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha(-1) and followed with four irrigation events: 3.5-h period at 10 mm h(-1) after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO3-N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO3-N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly lower

  3. Remediation of Oil-Contaminated Soil in Greenland

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2013-01-01

    This paper present the recent research conducted at the Arctic Technology Centre, where different solutions for remediation of excavated oil contaminated soil in Greenlandic towns were tested. In the first work, soil polluted by light oil was treated with two different nutrient sources (substrate....... The degradation proceeded further at the elevated temperature and even more when heat and nutrients were combined. In the second work, a nutrient rich soil highly polluted by weathered heavy oil was aerated by insertion of air-channels, and heated to 20°C. Between 19 % and 34 % of the oil pollution was removed...

  4. Bioventing of gasoline-contaminated soil under varied laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hallman, M.; Shewfelt, K. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada); Lee, H. [Univ. of Guelph, Dept. of Environmental Biology, Guelph, Ontario (Canada); Zytner, R.G. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)

    2002-06-15

    Bioventing is becoming a popular in situ soil remediation technology for the treatment of hydrocarbon-contaminated soil. Bioventing relies on enhancing the growth of indigenous microorganisms, which can mineralize the contaminant in the presence of sufficient nutrients. Although bioventing is currently being used as a remediation technology, there are some important questions that remain to be answered in order to optimize the process. These questions include the optimum soil moisture content, type and amount of nutrients necessary, and the best means of producing these conditions in the field. To address these questions, two distinct phases of experiments were conducted. The first experimental phase was designed to determine the optimum moisture content, C:N ratio and form of nitrogen supply for this soil. Using approximately 200g of contaminated soil in each of a series of sealed respirometers, microbial degradation of gasoline under bioventing conditions was quantified for C:N ratios of 5, 10 and 20:1, using varying mixtures of NH{sub 4}{sup +} - and NO{sub 3}{sup -} -N. The results of the studies indicated that the optimum soil moisture content was 15 wt%, with a C:N ratio of 10:1, using a 100% ammonium application. Using the results of the first phase, a second phase of laboratory research was initiated. Five mesoscale reactors have been developed to simulate the bioventing process that takes place in the field. These reactors are filled with approximately 4kg of gasoline-contaminated soil. The initial results are favourable. (author)

  5. Phytoremediation of contaminated soils and groundwater: lessons from the field

    Energy Technology Data Exchange (ETDEWEB)

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  6. Deep soil mixing for reagent delivery and contaminant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.; Gardner, F.G. [Oak Ridge National Lab., Grand Junction, CO (United States); Cline, S.R.; West, O.R. [Oak Ridge National Lab., TN (United States)] [and others

    1997-12-31

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy`s Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd{sup 3}), there are few alternatives for soils of this type.

  7. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  8. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    Science.gov (United States)

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  9. in situ immobilization of Cadmium and zinc in contaminated soils

    NARCIS (Netherlands)

    Osté, L.A.

    2001-01-01

    Keywords: beringite, cadmium, DOC, DOM, earthworms, immobilization, leaching, lime, manganese oxides, metal binding, metal uptake, organic matter partitioning, pH, soil contamination, remediation, sorption, Swiss chard, zeolites, zinc.It is generally assumed that a decrease in metal c

  10. Evaluating Mediterranean Soil Contamination Risks in Selected Hydrological Scenarios.

    NARCIS (Netherlands)

    Rosa, de la D.; Crompvoets, J.

    1997-01-01

    This paper reports an attempt of predicting the contamination risk of soils and water as they respond to hydrological changes in the agricultural lands of Sevilla province, Spain. Based on land evaluation methodologies, a semi-empirical model (named Pantanal, as module of the integrated package Micr

  11. SUMMARY PAPER: IN SITU BIOREMEDIATION OF CONTAMINATED VADOSE ZONE SOIL

    Science.gov (United States)

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of Issue Papers and Briefing Documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attem...

  12. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  13. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  14. Proximal spectral sensing to monitor phytoremediation of metal - contaminated soils

    NARCIS (Netherlands)

    Rathod, P.H.; Rossiter, D.; Noomen, M.; van der Meer, F.D.

    2013-01-01

    Assessment of soil contamination and its long-term monitoring are necessary to evaluate the effectiveness of phytoremediation systems. Spectral sensing-based monitoring methods promise obvious benefits compared to field-based methods: lower cost, faster data acquisition and better spatio-temporal

  15. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil.

    Science.gov (United States)

    Halmemies, Sakari; Gröndahl, Siri; Arffman, Mika; Nenonen, Keijo; Tuhkanen, Tuula

    2003-02-28

    Accidental overturns of fuel tankers can have, depending on soil types, severe consequences. This applies, particularly in areas of shallow soils where the groundwater is located 2-4m below the ground surface. By rapid, vacuum extraction based recovery emergency services, which would normally be the first to arrive on the scene, could minimize consequences of fresh fuel spills and even prevent groundwater contamination, the primary purpose of emergency response. Powerful vacuum extraction-based response (PER), equipment has been developed to recover freshly spilt volatile fuels from the soil, primary by emergency services, but also by other trained responders. The main components of mobile PER-equipment are perforated extraction pipes, a recovery vacuum tank, a vacuum pump and an incinerator. The PER-equipment has been tested in summer and sub-zero winter conditions, and in both cases 50-80% of fresh gasoline spilled into sandy soil was recovered during the first 2h of operation. Gasoline was recovered in both liquid and vapor form, and hydrocarbon vapors were destroyed by controlled incineration at a safe distance from the spill. Recovery of less volatile diesel oil is not so effective from the sandy soil, but about 30% of it could be pumped from a fresh pool directly after a seepage time of 15 min.

  16. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    Science.gov (United States)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  17. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    Science.gov (United States)

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H3PO4, NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H3PO4, 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H3PO4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H3PO4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation

    Science.gov (United States)

    Cheng, Xuan; Shi, Zheng; Glass, Nancy; Zhang, Lu; Zhang, Jiujun; Song, Datong; Liu, Zhong-Sheng; Wang, Haijiang; Shen, Jun

    This paper reviewed over 150 articles on the subject of the effect of contamination on PEM fuel cell. The contaminants included were fuel impurities (CO, CO 2, H 2S, and NH 3); air pollutants (NO x, SO x, CO, and CO 2); and cationic ions Fe 3+ and Cu 2+ resulting from the corrosion of fuel cell stack system components. It was found that even trace amounts of impurities present in either fuel or air streams or fuel cell system components could severely poison the anode, membrane, and cathode, particularly at low-temperature operation, which resulted in dramatic performance drop. Significant progress has been made in identifying fuel cell contamination sources and understanding the effect of contaminants on performance through experimental, theoretical/modeling, and methodological approaches. Contamination affects three major elements of fuel cell performance: electrode kinetics, conductivity, and mass transfer. This review was focused on three areas: (1) contamination impacts on the fuel cell performance, (2) mechanism approaches dominated by modeling studies, and (3) mitigation development. Some future work on fuel cell contamination research is suggested in order to facilitate the move toward commercialization.

  19. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    Science.gov (United States)

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  20. Dieldrin uptake by vegetable crops grown in contaminated soils.

    Science.gov (United States)

    Donnarumma, Lucia; Pompi, Valter; Faraci, Alessandro; Conte, Elisa

    2009-06-01

    The aim of these trials was to study the distribution of dieldrin in soil and its translocation to roots and the aerial parts of vegetable crops grown in greenhouses and fields. The main objectives were to characterize dieldrin accumulation in plant tissues in relation to the levels of soil contamination; uptake capability among plants belonging to different species, varieties and cultivars. The presence of the contaminant was quantified by gas chromatography-electron capture detector (GC-ECD) and confirmed by gas chromatography-mass spectrometer (GC-MS). The results showed a translocation of residues in cucurbitaceous fruits and flowers confirming that zucchini, cucumber and melon are crops with high uptake capability. The maximum level of dieldrin residue at 0.01 mg/kg was found to be a threshold value to safeguard the quality production of cucurbits. Tomato, lettuce and celery were identified as substitute crops to grow in contaminated fields.

  1. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  2. Guidelines for Posting Soil Contamination Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mcnaughton, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Eisele, William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-01

    All soil guidelines were determined using RESRAD, version 6.1. All offsite guidelines are based on 15 mrem/year. This dose rate is sufficiently low to protect human health and is in accordance with DOE guidance and the proposed EPA 40-CFR-196 regulations for members of the public (never promulgated). For those onsite areas where general employees (non-radiological workers) could have routine access, soil concentrations should be based on a dose rate of 30 mrem/year (approximately one-third of the onsite LANL non-radiological worker dose of 100 mrem/year). In this case, soil concentration guidelines may be obtained by doubling the 15 mrem/year guidelines. Several scenarios were developed to provide maximum flexibility for application of the guidelines. The offsite guidelines were developed using: residential scenarios for both adults and children; a construction worker scenario; a resource user (e.g., a hunter) scenario; a child playing within canyon reaches scenario, a trail using jogger within canyon reaches scenario, and a trail using hiker within canyon reaches scenario. The residential guidelines represent the lowest values from both the adult residential scenario and the child residential scenario.

  3. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th

  4. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH contaminated soils

    DEFF Research Database (Denmark)

    Baun, Anders; Justesen, Kasper Bo; Nyholm, Niels

    2002-01-01

    An algal growth inhibition test procedure with soil suspensions is proposed and evaluated for PAH-contaminated soil. The growth rate reduction of the standard freshwater green alga Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was used as the toxicity endpoint...

  5. Electrodialytic Remediation of Pb Contaminated Soil - Effects of Soil Properties and Pb Distribution

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Jensen, Pernille Erland

    1999-01-01

    The aim of this work was to investigate the effects of soil properties and Pb distribution on the electrodialytic remediation of Pb contaminated soil. Two naturally Pb contaminated soils were compared with respect to total Pb content, Pb distribution, pH, carbonate content, clay content and organic...... matter, and an electrodialytic remediation experiment was made on each soil.It was concluded that soil pH was the most important factor limiting the mobilisation of Pb. In one of the remediation experiments it was possible to mobilise and reduce the amount of Pb significantly, whereas in the other only...... a small amount of the initial Pb was mobilised at similar experimental conditions. A high buffering capacity of one of the soils, which was partly due to a high carbonate content, led to a bad remediation result....

  6. Plutonium and americium contamination in Rocky Flats soil, 1973

    Energy Technology Data Exchange (ETDEWEB)

    Krey, P.; Hardy, E.; Volchok, H.; Toonkel, L.; Knuth, R.; Coppes, M.; Tamura, T.

    1976-03-01

    The plutonium mass isotopic analysis and the Am-241 analysis of soil samples from Rocky Flats identify the contamination as Pu which was processed in 1958. The Am-241 activity in the soil will reach its maximum in 2033 and represent 18 percent of the Pu-239-240 activity. Nuclide ratios indicate that current operations at Rocky Flats contribute little to the airborne Pu concentrations which are due to resuspension of the contaminated soil. Root uptake of Pu or Am by vegetation is slight or shows no discrimination among the isotopes and nuclides studied. The relationship between Pu deposition contour and the area enclosed by that contour has been verified for contour values extending over 7 orders of magnitude. This gives confidence to our calculations of the quantities of Pu released on and off the Rocky Flats plant site. (auth)

  7. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    Science.gov (United States)

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  8. Soil slurry reactors for the assessment of contaminant biodegradation

    Science.gov (United States)

    Toscano, G.; Colarieti, M. L.; Greco, G.

    2012-04-01

    Slurry reactors are frequently used in the assessment of feasibility of biodegradation in natural soil systems. The rate of contaminant removal is usually quantified by zero- or first-order kinetics decay constants. The significance of such constants for the evaluation of removal rate in the field could be questioned because the slurry reactor is a water-saturated, well-stirred system without resemblance with an unsaturated fixed bed of soil. Nevertheless, a kinetic study with soil slurry reactors can still be useful by means of only slightly more sophisticated kinetic models than zero-/first-order decay. The use of kinetic models taking into account the role of degrading biomass, even in the absence of reliable experimental methods for its quantification, provides further insight into the effect of nutrient additions. A real acceleration of biodegradation processes is obtained only when the degrading biomass is in the growth condition. The apparent change in contaminant removal course can be useful to diagnose biomass growth without direct biomass measurement. Even though molecular biology techniques are effective to assess the presence of potentially degrading microorganism in a "viable-but-nonculturable" state, the attainment of conditions for growth is still important to the development of enhanced remediation techniques. The methodology is illustrated with reference to data gathered for two test sites, Oslo airport Gardermoen in Norway (continuous contamination by aircraft deicing fluids) and the Trecate site in Italy (aged contamination by crude oil spill). This research is part of SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7).

  9. Pleasure Boatyard Soils are Often Highly Contaminated

    OpenAIRE

    Eklund, Britta; Eklund, David

    2014-01-01

    The contamination in pleasure boatyards has been investigated. Measured concentrations of copper, zinc, lead, mercury, cadmium, tributyltin (TBT), the 16 most common polycyclic aromatic hydrocarbons (∑16 PAHs), and the seven most common polychlorinated biphenyls (∑7 PCBs) from investigations at 34 boatyards along the Swedish coast have been compiled. The maximum concentrations were 7,700 for Cu, 10,200, for Zn, 40,100 for Pb, 188 for Hg, 18 for Cd, 107 for TBT, 630 for carcinogenic PAHs, 1,48...

  10. Overcoming phytoremediation limitations. A case study of Hg contaminated soil

    Science.gov (United States)

    Barbafieri, Meri

    2013-04-01

    Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to

  11. Response of microbial communities to phytoremediation of nickel contaminated soils

    Institute of Scientific and Technical Information of China (English)

    CAI Xinde; QIU Rongliang; CHEN Guizhu; ZENG Xiaowen; FANG Xiaohang

    2007-01-01

    Through pot experiment,effects ofphytoremediation on microbial communities in soils at different nickel treatment levels were studied.Two Ni hyperaccumulating and one Ni tolerant species were planted in paddy soils different in Ni concentration,ranging from 100 to 1 600 mg/kg.After 110 days of incubation,soil microbial activities were analyzed.Results showed that populations of bacteria,fungus,and actinomycetes and biomass of the microorganisms were stimulated when nickel was added at a rate of 100 mg/kg in non-rhizospheric soil.When the rate was over 100 mg/kg in the soil,adverse effects on the soil microbial communities were observed.The plantation of Ni hyperaccumulating species could increase both the population and biomass of soil microorganisms,because,by absorbing nickel from the soil and excreting root exudates,the plants reduced nickel toxicity and improved the living environment of the microbes.However,different plant species had different effects on microorganisms in soil.Randomly Amplified Polymorphic DNA (RAPD) with five primers was used in this study in 25 soil samples of four types of soils.A total of 947 amplified bands were obtained,including 888 polymorphic bands and 59 non-polymorphic bands.The results indicated that the composition of microbial DNA sequences had changed because of the addition of nickel to the treated soils.Shannon-Weaver index of soil microbial DNA sequences reduced in the nickel contaminated soils with increasing nickel concentration.The changes in ShannonWeaver index in the four types of soils ranged from 1.65 to 2.32 for Alyssum corsicum,1.37 to 2.27 for Alyssum murale,1.37 to 1.96 for Brassicajuncea,and 1.19 to 1.85 for nonrhizospheric soil.With the same amount of nickel added to soils,the Shannon-Weaver index in rhizospheric soil with plants was higher than that in non-rhizospheric soil.

  12. Fertilization stimulates anaerobic fuel degradation of antarctic soils by denitrifying microorganisms.

    Science.gov (United States)

    Powell, Shane M; Ferguson, Susan H; Snape, Ian; Siciliano, Steven D

    2006-03-15

    Human activities in the Antarctic have resulted in hydrocarbon contamination of these fragile polar soils. Bioremediation is one of the options for remediation of these sites. However, little is known about anaerobic hydrocarbon degradation in polar soils and the influence of bioremediation practices on these processes. Using a field trial at Old Casey Station, Antarctica, we assessed the influence of fertilization on the anaerobic degradation of a 20-year old fuel spill. Fertilization increased hydrocarbon degradation in both anaerobic and aerobic soils when compared to controls, but was of most benefit for anaerobic soils where evaporation was negligible. This increased biodegradation in the anaerobic soils corresponded with a shift in the denitrifier community composition and an increased abundance of denitrifiers and benzoyl-CoA reductase. A microcosm study using toluene and hexadecane confirmed the degradative capacity within these soils under anaerobic conditions. It was observed that fertilized anaerobic soil degraded more of this hydrocarbon spike when incubated anaerobically than when incubated aerobically. We conclude that denitrifiers are actively involved in hydrocarbon degradation in Antarctic soils and that fertilization is an effective means of stimulating their activity. Further, when communities stimulated to degrade hydrocarbons under anaerobic conditions are exposed to oxygen, hydrocarbon degradation is suppressed. The commonly accepted belief that remediation of polar soils requires aeration needs to be reevaluated in light of this new data.

  13. Enhancing agents for phytoremediation of soil contaminated by cyanophos.

    Science.gov (United States)

    Ali Romeh, Ahmed

    2015-07-01

    Cyanophos is commonly used in Egypt to control various agricultural and horticultural pests. It is a strong contaminant in the crop culturing environments because it is highly persistent and accumulates in the soil. This contaminant can be removed by phytoremediation, which is the use of plants to clean-up pollutants. Here we tested several several strategies to improve the effectiveness of this technology, which involved various techniques to solubilize contaminants. The phytoremediation efficiency of Plantago major L. was improved more by liquid silicon dioxide (SiO₂) than by other solubility-enhancing agents, resulting in the removal of significant amounts of cyanophos from contaminated soil. Liquid SiO₂ increased the capacity of P. major L. to remove cyanophos from soil by 45.9% to 74.05%. In P. major L. with liquid SiO₂, leaves extracted more cyanophos (32.99 µg/g) than roots (13.33 µg/g) over 3 days. The use of solubilization agents such as surfactants, hydroxypropyl-ß-cyclodextrin (HPßCD), natural humic acid acid (HA), and Tween 80 resulted in the removal of 60 convergents of cyanophos from polluted soil. Although a batch equilibrium technique showed that use of HPßCD resulted in the efficient removal of cyanophos from soil, a greater amount of cyanophos was removed by P. major L. with SiO₂. Moreover, a large amount of cyanophos was removed from soil by rice bran. This study indicates that SiO₂ can improve the efficiency of phytoremediation of cyanophos. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  15. Evaluation of soil flushing of complex contaminated soil: an experimental and modeling simulation study.

    Science.gov (United States)

    Yun, Sung Mi; Kang, Christina S; Kim, Jonghwa; Kim, Han S

    2015-04-28

    The removal of heavy metals (Zn and Pb) and heavy petroleum oils (HPOs) from a soil with complex contamination was examined by soil flushing. Desorption and transport behaviors of the complex contaminants were assessed by batch and continuous flow reactor experiments and through modeling simulations. Flushing a one-dimensional flow column packed with complex contaminated soil sequentially with citric acid then a surfactant resulted in the removal of 85.6% of Zn, 62% of Pb, and 31.6% of HPO. The desorption distribution coefficients, KUbatch and KLbatch, converged to constant values as Ce increased. An equilibrium model (ADR) and nonequilibrium models (TSNE and TRNE) were used to predict the desorption and transport of complex contaminants. The nonequilibrium models demonstrated better fits with the experimental values obtained from the column test than the equilibrium model. The ranges of KUbatch and KLbatch were very close to those of KUfit and KLfit determined from model simulations. The parameters (R, β, ω, α, and f) determined from model simulations were useful for characterizing the transport of contaminants within the soil matrix. The results of this study provide useful information for the operational parameters of the flushing process for soils with complex contamination.

  16. Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Binoy; Naidu, Ravi; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Xi, Yunfei [South Australia Univ., Mawson Lakes, SA (AU). Centre for Environmental Risk Assessment and Remediation (CERAR); South Australia Univ., Mawson Lakes, SA (AU). Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)

    2012-05-15

    Purpose: Naturally occurring layer silicate clay minerals can be value added by modifying their surface properties to enhance their efficacy in the remediation of environmental contaminants. Silicate clay minerals modified by the introduction of organic molecules into the mineral structure are known as organoclays and show much promise for environmental remediation applications. The present study assesses the extent of decrease in bioavailable and bioaccessible arsenic (As) via enhanced adsorption by soil treated with organoclays. Materials and methods: Organoclays were prepared from hexadecyl trimethylammonium bromide (HDTMA) and Arquad {sup registered} 2HT-75 (Arquad) at surfactant loadings equivalent to twice the cation exchange capacity (CEC) of an Australian bentonite and characterised by X-ray diffraction (XRD). Batch experiments were conducted to evaluate the adsorption of arsenate onto the organoclays from aqueous solutions. Encouraged by these results, the organoclays were applied to As-spiked soils, at 10% and 20% (w/w) rates, to assess their capacity to stabilise soil As. After 1 month of incubation in the laboratory, bioavailable (1 mM Ca(NO{sub 3}){sub 2} extractable) and bioaccessible (1 M glycine extractable) As from the spiked soils were assessed. Results and discussion: Both the organobentonites effectively removed As from aqueous solutions. The adsorbent prepared with Arquad adsorbed 23% more As from aqueous phase than adsorbent prepared with HDTMA. Adsorption of As was controlled by anion exchange and electrostatic attraction. When applied to As-contaminated soils, the organoclays reduced the bioavailable As by as much as 81%. The extent of reduction of bioaccessible As was only up to 58%. The adsorbents were not as efficient in reducing bioaccessible As in contaminated soils as compared with bioavailable As. It could be attributed to the extreme pH condition (pH = 3) of the extractant used in the physiologically based extraction test method for

  17. Restoration of contaminated soils in abandoned mine areas (Tuscany, Italy)

    Science.gov (United States)

    Bini, Claudio; Wahsha, Mohammad

    2016-04-01

    In Italy ore research and exploitation have been nearly exhausted since the end of the last century, and have left on the land a huge amount of mine waste, therefore provoking evident environmental damage including surface and groundwater, soils, vegetation and the food chain, and a potential threat to human health. The main processes occurring at these sites are: rock disgregation, fragments migration, dust dispersion, oxidation (Eh>250mV), acidification (pHlevels. The results obtained suggest that the abandoned mine sites represent actual natural laboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, plants growing on these substrates are genetically adapted to metal-enriched soils, and therefore may be utilized in phytoremediation of contaminated sites. Furthermore, the institution of natural parks in these areas could enhance their educational and scientific value, contributing in the meantime to general population amusement and recreation. Finally, it is the occasion for soil scientists to submit to the scientific community new classification proposals of this new kind of soils. Key-words: mine waste, heavy metals, phytoremediation, soil genesis, soil classification

  18. Testing amendments for remediation of military range contaminated soil.

    Science.gov (United States)

    Siebielec, Grzegorz; Chaney, Rufus L

    2012-10-15

    Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study.

  19. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    Science.gov (United States)

    2014-02-01

    GRASS (DACTYLIS GLOMERATA) LITTER IN SOIL CONTAMINATED WITH ENERGETIC MATERIALS ECBC-TR-1199 Roman G. Kuperman Ronald T. Checkai Michael Simini...of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...soils using the U.S. Environmental Protection Agency Method 8330A. The results showed that soil contamination with 2,4-DNT or NG can inhibit litter

  20. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  1. Remediation of a Mercury-Contaminated Industrial Soil Using Bioavailable Contaminant Stripping

    Institute of Scientific and Technical Information of China (English)

    F.PEDRON; G.PETRUZZELLI; M.BARBAFIERI; E.TASSI

    2013-01-01

    The method to remove bioavailable amounts of heavy metals from a contaminated soil by using plants is defined as bioavailable contaminant stripping (BCS) and could safely be applied if the soil's long-term ability to replenish the bioavailable pool is known.The aim of this study was to evaluate the ability of three common plant species selected,Brassica juncea,Poa annua,and Helianthus annus,to remove bioavailable amounts of mercury (Hg) from a contaminated industrial soil containing 15.1 mg kg-1 Hg.Trials were carried out under greenhouse conditions using pots (mesocosms).According to the precautionary principle,we modified the BCS remediation approach by adding a new step,in which mercury bioavailability was increased by the addition of a strong mobilizing agent,ammonium thiosulphate,(NH4)2S2O3,to obtain an estimate of the likely long-term bioavailable Hg pool.The modified BCS remediation approach was called enhanced bioavailable contaminant stripping (EBCS).After one growth cycle,nearly all the bioavailable mercury (95.7%) was removed and the metal remaining in the soil was considered inert since it was neither extractable by (NH4)2S2O3 nor taken up by plants during a second growth cycle.The results demonstrated that EBCS appeared promising since it removed the most dangerous metal forms while substantially shortening the cleanup time.

  2. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  3. [Phytoavailability and chemical speciation of cadmium in different Cd-contaminated soils with crop root return].

    Science.gov (United States)

    Zhang, Jing; Yu, Ling-Ling; Xin, Shu-Zhen; Su, De-Chun

    2013-02-01

    Pot experiments were conducted under greenhouse condition to investigate the effects of crop root return on succeeding crops growth, Cd uptake and soil Cd speciation in Cd-contaminated soil and artificial Cd-contaminated soil. The results showed that the amount of root residue returned to soil by corn and kidney bean growth successive for 3 times was 0.4%-1.1%. The Cd returned to soil by root residue was 1.3%-3.5% to the total soil Cd. There was no significant difference in the shoot dry weights of winter wheat and Chinese cabbage grown on the 2 Cd-contaminated soils with and without root return. While Cd concentration of Chinese cabbage increased significantly in the Cd-contaminated soil with corn or kidney bean root return. Light fraction of soil organic matter increased with root return in both of the Cd-contaminated soils. The percentage of Cd in the light fraction of soil organic matter increased with root return in the artificial Cd-contaminated soil. Soil carbonates-bound Cd concentration decreased significantly with corn root return in the Cd-contaminated soil. Soil exchangeable Cd concentration decreased and soil Fe-Mn oxide-bound Cd concentration increased significantly with kidney bean root return in the artificial Cd-contaminated soil.

  4. Phyto-remediation of contaminated soils; La phytoremediation des sols contamines

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.L. [Ecole Nationale Superieure Agronomie et des Industries Alimentaires, 54 - Vandoeuvre les Nancy (France)

    2002-09-01

    Plants provide new ways for soil remediation. The activity of living roots (absorption, exudation of organic compounds, action on physical soil properties) contribute to decrease the negative effects of pollutants, as they are stabilised or eliminated (extraction or degradation). In the presence of plants, hydrocarbons, a rather ubiquitous group of soil pollutants, are degraded faster than in bare soil. Hydrocarbon degrading bacteria are stimulated by root exudates, which also create favourable conditions for co-metabolism. Also, the fragmentation of aggregates as well as the release of surfactants increase the exposure of organic pollutants to microorganism degradation. The phyto-remediation technology is efficient to reduce the dissemination of pollutants. On historically contaminated soils, effects are generally discrete within a short period of time and may be more effective in the long run. (author)

  5. Effects of soil organic matter and ageing on remediation of diesel-contaminated soil.

    Science.gov (United States)

    Liu, Pao-Wen Grace; Wang, Sih-Yu; Huang, Shen-Gzhi; Wang, Ming-Zhi

    2012-12-01

    Bioremediation of diesel-contaminated soil was investigated for the effects of soil organic matter (SOM) and ageing time in two sets of experiments (Batch I and II, respectively). This study examined degradation efficiency in soil artificially contaminated with diesel oil (maximum total petroleum hydrocarbons (TPH) concentration of 9000 mg/kg soil). Batch I data showed that the values of the first-order degradation rate, k, were relatively high in the low-SOM soil batches. The quantity of SOM negatively correlated with the TPH degradation rates and with the total TPH degradation efficiency (%). Introduction of rhamnolipid to the soil proved to be a useful solution to resolve the problem of the residual TPH in the soil with high SOM. In Batch II, the k values decreased with the length of ageing time: 0.0245, 0.0128 and 0.0090 l/d in samples ST0 (freshly contaminated), ST38 (aged for 38 days) and ST101 (aged for 101 days), respectively. The TPH degradation efficiency (%) also decreased along with the ageing time. The research also applied molecular technology to analyse the bacterial community dynamics during the bioremediation course. Multivariate statistics based on terminal-restriction fragment length data indicated: 1) the soils with different SOM resulted in separate bacterial community structures, 2) ageing time created a variety of bacterial communities, 3) the bacterial community dynamics was associated with the hydrocarbon consumption. The SOM content in soils affected the TPH degradation rate and efficiency and the bacterial community structures. Aged soil is more difficult to remediate than freshly contaminated soil, and the resulting bacterial community was less dynamic and showed a lack of succession.

  6. Subchronic exposure of mice to Love Canal soil contaminants.

    Science.gov (United States)

    Silkworth, J B; McMartin, D N; Rej, R; Narang, R S; Stein, V B; Briggs, R G; Kaminsky, L S

    1984-04-01

    The health hazard potential of soil collected from the surface of the Love Canal chemical dump site in Niagara Falls, New York, was assessed in 90-day exposure studies. Female CD-1 mice were exposed to two concentrations of the volatile components of 1 kg of soil with and without direct soil contact. Control mice were identically housed but without soil. The soil was replaced weekly and 87 compounds were detected in the air in the cages above fresh and 7-day-old soil as analyzed by gas chromatography/mass spectrometry. The concentration of many of these compounds decreased during the 7-day exposure cycle. Histopathologic, hematologic, and serum enzyme studies followed necropsy of all mice. There was no mortality of mice exposed for up to 90 days under any condition. Thymus and spleen weights relative to body weight were increased after 4 weeks of exposure by inhalation but not after 8 or 12 weeks of exposure. alpha-, beta-, and delta- Benzenehexachlorides , pentachlorobenzene, and hexachlorobenzene were detected in liver tissue from these animals. Mice exposed to 5- to 10-fold elevated concentration of volatiles had increased body and relative kidney weights. There was no chemically induced lesion in any animal exposed only to the volatile soil contaminants. Mice exposed by direct contact with the soil without elevated volatile exposure had increased body (10%) and relative liver weights (169%). Centrolobular hepatocyte hypertrophy, which involved 40 to 70% of the lobules, was observed in all mice in this group.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    Science.gov (United States)

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10(3) kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  8. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    DEFF Research Database (Denmark)

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    for different organic wastes influenced the specific draught. Overall, the decrease in draught force could lead to a decrease in tractor fuel consumption for soil tillage of up to 25% for compost applied at an accelerated rate and up to 14% for compost applied at a normal rate. This reduced fuel consumption......Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...

  9. Organochlorinated pesticide degrading microorganisms isolated from contaminated soil.

    Science.gov (United States)

    Lovecka, Petra; Pacovska, Iva; Stursa, Petr; Vrchotova, Blanka; Kochankova, Lucie; Demnerova, Katerina

    2015-01-25

    Degradation of selected organochlorinated pesticides (γ-hexachlorocyclohexane - γ-HCH, dichlorodiphenyltrichloroethane - DDT, hexachlorobenzene - HCB) by soil microorganisms was studied. Bacterial strains isolated from contaminated soil from Klatovy-Luby, Hajek and Neratovice, Czech Republic, capable of growth on the selected pesticides were isolated and characterised. These isolates were subjected to characterisation and identification by MS MALDI-TOF of whole cells and sequence analysis of 16S rRNA genes. The isolates were screened by gas chromatography for their ability to degrade the selected pesticides. Some isolates were able to degrade pesticides, and the formation of degradation products (γ-pentachlorocyclohexane (γ-PCCH), dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) observed in liquid culture confirmed their degradation capability. The isolates and DNA samples isolated from the contaminated soil were also screened for the bphA1 gene (encoding biphenyl-2,3-dioxygenase, the first enzyme in the PCB degradation pathway) and its occurrence was demonstrated. The isolates were also screened for the presence of linA, encoding dehydrochlorinase, the first enzyme of the HCH degradation pathway. The linA gene could not be found in any of the tested isolates, possibly due to the high specificity of the primers used. The isolates with the most effective degradation abilities could be used for further in situ bioremediation experiments with contaminated soil.

  10. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    Science.gov (United States)

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Effect of Sludge Amendment on Remediation of Metal Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Andrés Navarro

    2012-11-01

    Full Text Available Column-leaching and pilot-scale experiments were conducted to evaluate the use of biosolids (sewage sludges to control the mobilization of metals from contaminated soils with smelting slags. The pilot-scale experiments using amended soils showed that Cu, Pb and Sb were retained, decreasing their concentrations from 250 mg/L, 80 mg/L and 6 mg/L, respectively in the leachates of contaminated soils, to <20 mg/L, 40 mg/L and 4 mg/L, respectively, in the amended material. Hydrogeochemical modeling of the leachates using Minteq revealed that the degree of complexation of Cu rose 56.3% and 57.6% in leachates of amended soils. Moreover, Cu may be immobilized by biosolids, possibly via adsorption by oxyhydroxides of Fe or sorption by organic matter. The partial retention of Pb coincides with the possible precipitation of chloropyromorphite, which is the most stable mineral phase in the pH-Eh conditions of the leachates from the amended material. The retention of Sb may be associated with the precipitation of Sb2O3, which is the most stable mineral phase in the experimental conditions. The organic amendments used in this study increased some metal and metalloid concentrations in the leachates (Fe, Mn, Ni, As and Se, which suggests that the organic amendments could be used with caution to remediate metal contaminated areas.

  12. Measuring fuel contamination using high speed gas chromatography and cone penetration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, S.P.; Bratton, W.L. [Applied Research Associates, Inc., South Royalton, VT (United States); Akard, M.L. [Chromatofast, Inc., Ann Arbor, MI (United States)] [and others

    1995-10-01

    Decision processes during characterization and cleanup of hazardous waste sites are greatly retarded by the turnaround time and expense incurred through the use of conventional sampling and laboratory analyses. Furthermore, conventional soil and groundwater sampling procedures present many opportunities for loss of volatile organic compounds (VOC) by exposing sample media to the atmosphere during transfers between and among sampling devices and containers. While on-site analysis by conventional gas chromatography can reduce analytical turnaround time, time-consuming sample preparation procedures are still often required, and the potential for loss of VOC is not reduced. This report describes the development of a high speed gas chromatography and cone penetration testing system which can detect and measure subsurface fuel contamination in situ during the cone penetration process.

  13. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil.

    Science.gov (United States)

    Tzovolou, D N; Benoit, Y; Haeseler, F; Klint, K E; Tsakiroglou, C D

    2009-04-01

    The goal of the present work is to screen and evaluate all available data before selecting and testing remediation technologies on heterogeneous soils polluted by jet fuel. The migration pathways of non-aqueous phase liquids (NAPLs) in the subsurface relate closely with soil properties. A case study is performed on the vadoze zone of a military airport of north-west Poland contaminated by jet fuel. Soil samples are collected from various depths of two cells, and on-site and off-site chemical analyses of hydrocarbons are conducted by using Pollut Eval apparatus and GC-MS, respectively. The geological conceptual model of the site along with microscopic and hydraulic properties of the porous matrix and fractures enable us to interpret the non-uniform spatial distribution of jet fuel constituents. The total concentration of the jet fuel and its main hydrocarbon families (n-paraffins, major aromatics) over the two cells is governed by the slow preferential flow of NAPL through the porous matrix, the rapid NAPL convective flow through vertical desiccation and sub-horizontal glaciotectonic fractures, and n-paraffin biodegradation in upper layers where the rates of oxygen transfer is not limited by complexities of the pore structure. The information collected is valuable for the selection, implementation and evaluation of two in situ remediation methods.

  14. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    Science.gov (United States)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  15. Remediation of lead and cadmium-contaminated soils.

    Science.gov (United States)

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  16. Assessing the Educational Needs of Urban Gardeners and Farmers on the Subject of Soil Contamination

    Science.gov (United States)

    Harms, Ashley Marie Raes; Presley, DeAnn Ricks; Hettiarachchi, Ganga M.; Thien, Stephen J.

    2013-01-01

    Participation in urban agriculture is growing throughout the United States; however, potential soil contaminants in urban environments present challenges. Individuals in direct contact with urban soil should be aware of urban soil quality and soil contamination issues to minimize environmental and human health risks. The study reported here…

  17. Assessing the Educational Needs of Urban Gardeners and Farmers on the Subject of Soil Contamination

    Science.gov (United States)

    Harms, Ashley Marie Raes; Presley, DeAnn Ricks; Hettiarachchi, Ganga M.; Thien, Stephen J.

    2013-01-01

    Participation in urban agriculture is growing throughout the United States; however, potential soil contaminants in urban environments present challenges. Individuals in direct contact with urban soil should be aware of urban soil quality and soil contamination issues to minimize environmental and human health risks. The study reported here…

  18. Study of microorganisms degrading PCB in vegetated contaminated soil

    Directory of Open Access Journals (Sweden)

    Veronika Kurzawova

    2010-12-01

    Full Text Available Removal of PCBs from contaminated soil is one of the challenges ofenvironmental microbiology. In our study, we aimed to isolate,characterize and identify microorganisms from contaminated soiland to find out the plant effect on microbial diversity in theenvironment. Microorganisms were isolated by two ways, directextraction and isolation after cultivation with biphenyl as a solesource of carbon. Isolated bacteria were biochemically characterizedand the composition of ribosomal proteins in bacterial cells wasdetermined by mass spectrometry MALDI-TOF. Bacteria withrequired properties were chosen and the bphA gene was amplifiedand detected. Bacteria with detected bphA gene were then identifiedby 16S rRNA sequence analyses.

  19. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.

  20. Cadmium removal from contaminated soil by tunable biopolymers.

    Science.gov (United States)

    Prabhukumar, Giridhar; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2004-06-01

    An elastin-like polypeptide (ELP) composed of a polyhistidine tail (ELPH12) was exploited as a tunable, metal-binding biopolymer with high affinity toward cadmium. By taking advantage of the property of ELPH12 to undergo a reversible thermal precipitation, easy recovery of the sequestered cadmium from contaminated water was demonstrated as the result of a simple temperature change. In this study, batch soil washing experiments were performed to evaluate the feasibility of using ELPH12 as an environmentally benign strategy for removing cadmium from contaminated soil. The stability constant (log KL) for the cadmium-ELPH12 complex was determined to be 6.8, a value similar to that reported for the biosurfactant rhamnolipid. Two washings with 1.25 mg/mL of ELPH12 were able to remove more than 55% of the bound cadmium as compared to only 8% removal with ELP containing no histidine tail or 21% removal using the same concentration of EDTA. Unlike rhamnolipid from Pseudomonas aeruginosa ATCC 9027, which adsorbs extensively to soil, less than 10% of ELPH12 was adsorbed under all soil washing conditions. As a result, a significantly lower concentration of ELPH12 (0.036 mM as compared to 5-10 mM of biosurfactants) was required to achieve similar extraction efficiencies. However, cadmium recovery by simple precipitation was incomplete due to the displacement of bound cadmium by zinc ions present in soil. Owing to its benign nature, ease of production, and selective tailoring of the metal binding domain toward any target metals of interest, ELP biopolymers may find utility as an effective extractant for heavy metal removal from contaminated soil or ore processing.

  1. Evaluation of biosurfactants for crude oil contaminated soil washing.

    Science.gov (United States)

    Urum, Kingsley; Pekdemir, Turgay

    2004-12-01

    An evaluation of the ability of aqueous biosurfactant solutions (aescin, lecithin, rhamnolipid, saponin and tannin) for possible applications in washing crude oil contaminated soil was carried out. The biosurfactants behaviour in soil-water, water-oil and oil-soil systems (such as foaming, solubilization, sorption to soil, emulsification, surface and interfacial tension) was measured and compared with a well-known chemical surfactant (sodium dodecyl sulphate, SDS) at varying concentrations. Results showed that the biosurfactants were able to remove significant amount of crude oil from the contaminated soil at different solution concentrations for instance rhamnolipid and SDS removed up to 80% oil and lecithin about 42%. The performance of water alone in crude oil removal was equally as good as those of the other biosurfactants. Oil removal was due to mobilization, caused by the reduction of surface and interfacial tensions. Solubilization and emulsification effects in oil removal were negligible due to the low crude oil solubilization of 0.11%. Therefore, these studies suggest that knowledge of surfactants' behaviour across different systems is paramount before their use in the practical application of oil removal.

  2. Characterization and remediation of soils contaminated with uranium.

    Science.gov (United States)

    Gavrilescu, Maria; Pavel, Lucian Vasile; Cretescu, Igor

    2009-04-30

    Environmental contamination caused by radionuclides, in particular by uranium and its decay products is a serious problem worldwide. The development of nuclear science and technology has led to increasing nuclear waste containing uranium being released and disposed in the environment. The objective of this paper is to develop a better understanding of the techniques for the remediation of soils polluted with radionuclides (uranium in particular), considering: the chemical forms of uranium, including depleted uranium (DU) in soil and other environmental media, their characteristics and concentrations, and some of the effects on environmental and human health; research issues concerning the remediation process, the benefits and results; a better understanding of the range of uses and situations for which each is most appropriate. The paper addresses the main features of the following techniques for uranium remediation: natural attenuation, physical methods, chemical processes (chemical extraction methods from contaminated soils assisted by various suitable chelators (sodium bicarbonate, citric acid, two-stage acid leaching procedure), extraction using supercritical fluids such as solvents, permeable reactive barriers), biological processes (biomineralization and microbial reduction, phytoremediation, biosorption), and electrokinetic methods. In addition, factors affecting uranium removal from soils are furthermore reviewed including soil characteristics, pH and reagent concentration, retention time.

  3. Phytoremediation of mercury-contaminated soils by Jatropha curcas.

    Science.gov (United States)

    Marrugo-Negrete, José; Durango-Hernández, José; Pinedo-Hernández, José; Olivero-Verbel, Jesús; Díez, Sergi

    2015-05-01

    Jatropha curcas plants species were tested to evaluate their phytoremediation capacity in soils contaminated by different levels of mercury. The experimental treatments consisted of four levels of mercury concentrations in the soil - T0, T1, T5, and T10 (0, 1, 5, and 10 μg Hg per g soil, respectively). The total mercury content absorbed by the different plant tissues (roots, stems and leaves) was determined during four months of exposure. The growth behavior, mercury accumulation, translocation (TF) and bioconcentration (BCF) factors were determined. The different tissues in J. curcas can be classified in order of decreasing accumulation Hg as follows: roots>leaves>stems. The highest cumulative absorption of the metal occurred between the second and third month of exposure. Maximum TF was detected during the second month and ranged from 0.79 to 1.04 for the different mercury concentrations. Values of BCF ranged from 0.21 to 1.43. Soils with T1 showed significantly higher BCF (1.43) followed by T10 (1.32) and T5 (0.91), all of them at the fourth month. On the other hand TFs were low (range 0.10-0.26) at the en of the experiment. The maximum reduction of biomass (16.3%) occurred for T10 (10 μg Hg g(-1)). In sum, J. curcas species showed high BCFs and low TFs, and their use could be a promising approach to remediating mercury-contaminated soils.

  4. Purification of soil contaminated by oil with microorganisms

    Directory of Open Access Journals (Sweden)

    Maira Kazankapova

    2013-05-01

    Full Text Available The paper presents the results of studying the influence of strains of Pseudomonas mendoсina H-3 and Oscillatoria С-3 on soil contaminated with petroleum and hydrocarbons. The changes in chemical composition of hydrocarbons were determined. The influence of strain on the soil was studied by IR spectroscopy and chromatography. It was found that microorganisms can break down paraffinic and aromatic petroleum hydrocarbons.

  5. Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate.

    Directory of Open Access Journals (Sweden)

    Jingchun Yan

    Full Text Available The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1 was used at a given mass ratio of solution to soil (20:1 to extract NB contaminated soil (47.3 mg kg-1, resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6% with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•-, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.

  6. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil.

    Science.gov (United States)

    Rangel, Wesley M; Thijs, Sofie; Janssen, Jolien; Oliveira Longatti, Silvia M; Bonaldi, Daiane S; Ribeiro, Paula R A; Jambon, Inge; Eevers, Nele; Weyens, Nele; Vangronsveld, Jaco; Moreira, Fatima M S

    2017-02-01

    Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephala-Mesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.

  7. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  8. Adsorption/desorption of phenanthrene on contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Saada, A.; Gaboriau, H.; Amalric, L.; Crouzet, C. [BRGM, Orleans (France)

    2003-07-01

    Polycyclic Aromatic Hydrocarbons (PAH) are persistent environmental contaminants whose behaviour has been thoroughly studies because of their genotoxicity. One of the main processes governing PAH evolution is adsorption onto soil matrices due to the marked hydrophobic properties of this group of pollutants. In this study, pehnanthrene adsorption and desorption were measured for: - an untreated polluted soil (S) from a former coking plant - the same soil washed with toluene in a soxhlet extractor (S{sub w}), which enables the pollutants (PAH and tar) to be extracted from the soil - the fine fraction (<50 {mu}m) of the washed soil (S{sub f}), - a mineral (kaolinite) representative of the polluted soil (K), - the mineral coated with the tar extracted from the polluted soil (K-T). Isotherms of phenanthrene adsorption/desorption on K, K-T and S shows that the hysteresis between the adsorption and desorption isotherms increases 1) with the organic matter content, and 2) for the untreated soil S containing endogenic bacteria, in addition to organic matter. This indicates that tar-type organic matter is capable of reducing the release of phenanthrene by forming bonded residue. For the untreated soil S, endogenic bacteria consume phenanthrene as it is desorbed. Consequently, the desorption isotherm for S is almost horizontal, as if no desorption had taken place. This study has demonstrated the effect that the type of organic matter has on PAH fate, and thus the need to take this into account, particularly where tar is concerned, when assessing the adsorption capacity of soils. (orig.)

  9. Phenanthrene Contaminated Soil Biotreatment Using Slurry Phase Bioreactor

    Directory of Open Access Journals (Sweden)

    M. Arbabi

    2009-01-01

    Full Text Available Problem Statement: Polycyclic Aromatic Hydrocarbons (PAHs are suspected toxins that accumulate in soils and sediments due to their insolubility in water and lack of volatility. Slurry-phase biological treatment is one of the innovative technologies that involve the controlled treatment of excavated soil in a bioreactor. Due to highly soil contamination from petroleum compounds in crude oil extraction and also oil refinery sites in Iran, this research was designed based on slurry phase biotreatment to find out a solution to decontamination of oil compounds polluted sites. Approach: Soil samples were collected from Tehran oil refinery site and Bushehr oil zones. Two compositions of soils (clay and silt were selected for slurry biotreatment experiment. Soil samples were contaminated with three rates of phenanthrene (a 3 ring PAH, 100, 500 and 1000 mg kg-1 and mixed with distilled water in solid concentration of 30% by weight after washing out with strong solvent (hexane and putting in to the oven. Bacterial consortium was revived in culture medium which consisted of Mineral Salt Medium (MSM based on phenanthrene concentrations and ratio of C/N/P in the range of 100/10/2. Prepared soil samples were mixed with distilled water, nutrient and bacterial consortium together in the 250 mL glass Erlenmeyer and putted in the shaker incubator with 200 rpm revolutions and 25°C for 7 weeks (45 days. Samples were analyzed for residual phenanthrene, bacterial population every week. For statistical analysis, general linear model with repeated measures (type III analysis was applied. Results: The concentration of 100 mg Ll of phenanthrene in clayey and silty soils reached to non detectable limit after 5 and 6 weeks, respectively. While concentration of 500 mg L-1 of phenanthrene both in clayey and silty soils reached to non detectable limit after 6 weeks. But concentration of 1000 mg L-1both in clayey and silty soil samples has not met this limitation after 7

  10. Advanced Assay Systems for Radionuclide Contamination in Soils

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Giles; L. G. Roybal; M. V. Carpenter; C. P. Oertel; J. A. Roach

    2008-02-01

    Through the support of the Department of Energy (DOE) Office of Environmental Management (EM) Technical Assistance Program, the Idaho National Laboratory (INL) has developed and deployed a suite of systems that rapidly scan, characterize, and analyze surface soil contamination. The INL systems integrate detector systems with data acquisition and synthesis software and with global positioning technology to provide a real-time, user-friendly field deployable turn-key system. INL real-time systems are designed to characterize surface soil contamination using methodologies set forth in the Multi-Agency Radiation Surveys and Site Investigation Manual (MARSSIM). MARSSIM provides guidance for planning, implementing, and evaluating environmental and facility radiological surveys conducted to demonstrate compliance with a dose or risk-based regulation and provides real-time information that is immediately available to field technicians and project management personnel. This paper discusses the history of the development of these systems and describes some of the more recent examples and their applications.

  11. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal......Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting......, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic...

  12. Estimated association between dwelling soil contamination and internal radiation contamination levels after the 2011 Fukushima Daiichi nuclear accident in Japan

    Science.gov (United States)

    Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2016-01-01

    Objectives Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. Methods To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10–40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2–3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. Results A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual measurements are essential for the precise evaluation of chronic internal radiation contamination. PMID:27357196

  13. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types

    Energy Technology Data Exchange (ETDEWEB)

    Waegeneers, Nadia [Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium)], E-mail: nadia.waegeneers@agr.kuleuven.ac.be; Sauras-Yera, Teresa [Departament de Biologia Vegetal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); Thiry, Yves [SCK.CEN, Radioecology Laboratory, Boeretang 200, B-2400 Mol (Belgium); Vallejo, V. Ramon [Departament de Biologia Vegetal, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona (Spain); CEAM, Parque Tecnologico, Charles Darwin 14, 46980 Parterna (Spain); Smolders, Erik [Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee (Belgium); Madoz-Escande, Chantal; Brechignac, Francois [SERLAB, ISPN, Department for Environmental Protection, CE-Cadarache Batiment 159, Saint-Paul-lez-Durance Cedex 13108 (France)

    2009-06-15

    Uptake of {sup 137}Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil {sup 137}Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of {sup 137}Cs concentrations in plants among soils was related to differences in soil solution {sup 137}Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The {sup 137}Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in {sup 137}Cs and K concentrations in soil solution. It is concluded that differences in {sup 137}Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  14. Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types.

    Science.gov (United States)

    Waegeneers, Nadia; Sauras-Yera, Teresa; Thiry, Yves; Vallejo, V Ramón; Smolders, Erik; Madoz-Escande, Chantal; Bréchignac, François

    2009-06-01

    Uptake of (137)Cs was measured in different agricultural plant species (beans, lettuce, barley and ryegrass) grown in 5 undisturbed soil monoliths covering major European soil types. The first cultivation was made three years after soil contamination and plants were grown during 3 successive years. The plant-soil (137)Cs transfer factors varied maximally 12-fold among soils and 35-fold among species when grown on the same soil. Single correlations between transfer factors and soil properties were found, but they varied widely with plant type and can hardly be used as a predictive tool because of the few soils used. The variation of (137)Cs concentrations in plants among soils was related to differences in soil solution (137)Cs and K concentrations, consistent with previous observations in hydroponics and pot trials. Absolute values of transfer factors could not be predicted based on a model validated for pot trials. The (137)Cs activity concentration in soil solution decreased significantly (11- to 250-fold) for most soils in the 1997-1999 period and is partly explained by decreasing K in soil solution. Transfer factors of lettuce showed both increasing and decreasing trends between 2 consecutive years depending on soil type. The trends could be explained by the variation in (137)Cs and K concentrations in soil solution. It is concluded that differences in (137)Cs transfer factors among soils and trends in transfer factors as a function of time can be explained from soil solution composition, as shown previously for pot trials, although absolute values of transfer factors could not be predicted.

  15. Remote Detection of Plant Physiological Responses to TNT Soil Contamination

    Science.gov (United States)

    2010-01-01

    Photosystem II efficiency and mechanisms of energy dissipation in iron - deficient, field-grown pear trees (Pyrus communis L.). Photosynth Res 63:9–21...associated metabolites directly impact the photosystem, resulting in decreased biomass and chlorosis . It has been proposed that xenobiotics are taken up and...cerifera, and this could provide future field opportunities in contaminated soils. Fruits of M. cerifera were collected from Hog Island (37° 40′N; 75

  16. Improving Bioremediation of PAH Contaminated Soils by Thermal Pretreatment

    OpenAIRE

    Bonten, L.T.C.

    2001-01-01

    Numerous sites and large volumes of sediments in the Netherlands are contaminated with polycyclic aromatic hydrocarbons (PAH), which are of great concern because of their toxic and carcinogenic effects. Since PAH tend to sorb very strongly to the soil matrix, bioremediation is a slow process with often high residual concentrations after remediation. In this study it was tried to develop methods to improve bioremediation, this means to decrease residual concentrations after bioremediation. In ...

  17. Comparison of Kriging and coKriging for soil contamination mapping in abandoned mine sites

    Science.gov (United States)

    Lee, Hyeongyu; Choi, Yosoon

    2015-04-01

    Soil contamination mapping around abandoned mines is an important task for the planning and design of mine reclamation. This study compared the ordinary Kriging and the co-Kriging methods for the soil contamination mapping in abandoned mine sites. Four approaches were conducted as follows: (1) soil contamination mapping using the ordinary Kriging and Inductively Coupled Plasma (ICP) data only; (2) soil contamination mapping using the ordinary Kriging and Portable X-Ray Fluorescence (PXRF) data only; (3) soil contamination mapping using the ordinary Kriging and integrated data from ICP and PXRF; and (4) soil contamination mapping using the co-Kriging and integrated data from ICP and PXRF. Results indicate that the approach 3 provides substantial improvements over other three approaches including a more reasonable spatial pattern of soil contamination and reduction in the error of its estimates.

  18. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.

    Science.gov (United States)

    Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities.

  19. Effective Treatment of Trichloroethylene-Contaminated Soil by Hydrogen Peroxide in Soil Slurries

    Institute of Scientific and Technical Information of China (English)

    CAI Xin-De; DU Wen-Ting; WU Jia-Yi; LI Rong-Fei; GUO Yang; YANG Zi-Jiang

    2012-01-01

    Trichloroethylene (TCE),as one of the most common chlorinated organic compounds in soils and aquifers at many industrial sites,is carcinogenic and often recalcitrant in environment.TCE degradation in artificially contaminated soil samples was conducted using Fenton-like processes,i.e.,by addition of excess hydrogen peroxide (H2O2).H2O2 could directly oxidize TCE without addition of ferrous iron in contaminated soil.Under the optimal condition (H2O2 concentration of 300 mg kg-1,pH at 5.0,and reaction time of 30 miu),the removal efficiency of TCE in the soil was up to 92.3%.When the initial TCE concentration increased from 30 to 480 mg kg-1 in soil,the TCE removal rates varied from 89.2% to 86.6%; while the residual TCE in soil ranged from 2.28 to 47.57 mg kg-1.Results from successive oxidations showed that the TCE removal rate with the TCE concentration of 180 mg kg-1 increased slightly from 91.6% to 96.2% as the number of successive oxidation cycle increased from one to four.Therefore,increasing the frequency of H2O2 oxidation was perhaps a feasible way to increase TCE removal rate for TCE-contaminated soil.

  20. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  1. Soil factors of ecosystems' disturbance risk reduction under the impact of rocket fuel

    Science.gov (United States)

    Krechetov, Pavel; Koroleva, Tatyana; Sharapova, Anna; Chernitsova, Olga

    2016-04-01

    Environmental impacts occur at all stages of space rocket launch. One of the most dangerous consequences of a missile launch is pollution by components of rocket fuels ((unsymmetrical dimethylhydrazine (UDMH)). The areas subjected to falls of the used stages of carrier rockets launched from the Baikonur cosmodrome occupy thousands of square kilometers of different natural landscapes: from dry steppes of Kazakhstan to the taiga of West Siberia and mountains of the Altai-Sayany region. The study aims at assessing the environmental risk of adverse effects of rocket fuel on the soil. Experimental studies have been performed on soil and rock samples with specified parameters of the material composition. The effect of organic matter, acid-base properties, particle size distribution, and mineralogy on the decrease in the concentration of UDMH in equilibrium solutions has been studied. It has been found that the soil factors are arranged in the following series according to the effect on UDMH mobility: acid-base properties > organic matter content >clay fraction mineralogy > particle size distribution. The estimation of the rate of self-purification of contaminated soil is carried out. Experimental study of the behavior of UDMH in soil allowed to define a model for calculating critical loads of UDMH in terrestrial ecosystems.

  2. In-Situ Containment and Extraction of Volatile Soil Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  3. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    Science.gov (United States)

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  4. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  5. Assessment of Canadian Regulations and Remediation Methods for Diesel Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    D. G. Rushton

    2007-01-01

    Full Text Available Diesel fuel released into the environment can contaminate ground water, degrade potable water supplies and cause the collapse of fisheries. They are toxic to both animals and humans and can affect the liver, lungs, kidneys, and nervous system leading to cancer as well as immunological and reproductive effects. The objectives of this study were to review current Canadian regulations pertaining to diesel fuel and to evaluate the current remediation methods using five criteria: efficiency, applicability, cost, time and cleanliness. PAHs are deemed toxic under the Canadian Environmental Protection Act but no standards have been set for PAHs in diesel. The Canadian Council of Ministers of the Environment (CCME has developed Canada-Wide Standards for Petroleum Hydrocarbons in Soil (CWS PHCS while the Atlantic PIRI has implemented a Risk Based Corrective Action (RBCA for the Atlantic region. The remediation methods included soil washing, landfilling, incineration, thermal desorption, radio frequency heating, chemical addition, landfarming, biopiling, composting, bioventing, liquid delivery and bioreactors. The bioreactors studied included: static bed, continuous mix, horizontal drum, fungal compost, slurry-phase, DITS, biofilters and packed bed bioreactors. The results showed that the biological methods were more effective than nonbiological ones and the bioreactors scored the highest among the biological methods. Eight criteria were then used for the evaluation of bioreactors: efficiency, time, cost, maintenance, simplicity, release of VOCs to the atmosphere, containment of contaminants and control of operating parameters The results showed that the continuous mix bioreactor was the most effective system.

  6. Bioavailability and bioaccessibility of petroleum hydrocarbons in contaminated site soils

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, G.; Angell, R.; Strive, E.; Ma, W. [Stantec Consulting Ltd., Surrey, BC (Canada)

    2010-07-01

    Although the bioavailability and/or bioaccessibility of contaminants in soil can be measured by various ecological receptors, the methods that are suitable for metals do not necessarily work well for petroleum hydrocarbons (PHCs). In this study, several biological and chemical methods were used at various PHC contaminated sites to find the most fitting method for different soil types in terms of predicting the biological responses of organisms as measured by standard single species toxicity tests. Organisms such as plants, earthworms, and collembolan were exposed to soils with different PHC concentrations. Multiple endpoints were then measured to evaluate the biological responses. The exposure concentrations for the 4 CCME hydrocarbon fractions were measured using hexane:acetone extraction as well as extractions with cyclodextrin, and a mixture of enzymes to simulate the gastro-intestinal fluid of an earthworm. The estimated exposure concentrations depended on the extraction method. The study showed that existing methodologies must be modified in order to better estimate the biological effect of PHCs in soil. Comparative data was presented and discussed along with proposed methodological modifications.

  7. Degradation Kinetics of Petroleum Contaminants in Soil-Water Systems

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xilai; WANG Bingchen; LI Yuying; XIA Wenxiang

    2004-01-01

    On the basis of site investigation and sample collection of petroleum contaminants in the soil-water-crop system in the Shenyang-Fushun sewage irrigation area, the physical-chemical-biological compositions of the unsaturated zone is analyzed systematically in this paper. At the same time, the degradation kinetics of residual and aqueous oils is determined through biodegradation tests. The studies show that dominant microorganisms have been formed in the soils after long-term sewage irrigation. The microorganisms mainly include bacteria, and a few of fungus and actinomycetes.After a 110-days' biodegradation test, the degradation rate of residual oil is 9.74%-10.63%, while the degradation rate of aqueous oil reaches 62.43%. This indicates that the degradation rate of low-carbon aqueous oil is higher than that of highcarbon residual oil. In addition, although microbial degradation of petroleum contaminants in soils is suitable to the firstorder kinetics equation, the half-lives of aqueous oil, No. 20 heavy diesel and residual oil in the surface soils (L2-1, S1-1 and X1-1) are 1732 h, 3465 h and 17325 h, respectively.

  8. Heavy Metal Contamination of Soil Due to Road Traffic

    Directory of Open Access Journals (Sweden)

    A. Athanasopoulou

    2017-01-01

    Full Text Available Particles coming from the pavement’s maintenance or from the traffic on it enter the soil carried by water. More pollutants transferred by air are dispersed in different distances, also polluting the soil. Precautionary and remedial measures are suggested for urban, peri-urban, and rural zones crossed by roadways, as a function of the plants' species and the level of the road. The proposed measures are based on the soil's chemical composition and draining conditions. Iron and the non-volatile heavy metals, copper, zinc, cadmium, lead, chromium, nickel, are often found in roadside topsoil, as well as in roots and leafage of vegetables and trees. Manganese is found in combination with iron in many minerals and not as free element. The reasons and frequency of existence of metals have to be examined so as to take measures against contamination and possible health hazards. Heavy metal concentrations of soils have been seldom studied in Greece and there is a lack of data sources for the environmental impact of these elements in soil and dust from the pavements and the traffic. The impacts of road construction and service on the surrounding soil masses are studied and analyzed in view of their quality as nutrient materials

  9. The effect of soil type on the electrodialytic remediation of lead-contaminated soil

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Harmon, Thomas C.

    2007-01-01

    experiments with ten representative industrially Pb-contaminated surface soils. Results indicate that Pb-speciation is of primary importance. Specifically, organic matter and stable compounds like PbCrO4 can impede and possibly even preclude soil remediation. In soils rich in carbonate, where the acidic front......This work investigates the influence of soil type on electrodialytic remediation (EDR) of lead (Pb). It is well-known in electrokinetic soil remediation that pH is a key factor, and carbonate influences remediation efficiency negatively. This work provides results from laboratory scale EDR...... is impeded, part of the Pb can be transferred from the soil to the anolyte as negatively charged complexes during the EDR process. The dominant complex is in this case likely to be Pb(CO3)22-. Efficient remediation is however not obtained until all carbonate has dissolved and Pb2+ is transported...

  10. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil.

    Science.gov (United States)

    Bengtsson, Göran; Törneman, Niklas; Yang, Xiuhong

    2010-09-01

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.

  11. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    Science.gov (United States)

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, M Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs.

  12. Fixation of soil surface contamination using natural polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations.

  13. Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators.

    Science.gov (United States)

    Pardo, T; Clemente, R; Epelde, L; Garbisu, C; Bernal, M P

    2014-03-15

    The efficiency of a remediation strategy was evaluated in a mine soil highly contaminated with trace elements (TEs) by microbiological, ecotoxicological and physicochemical parameters of the soil and soil solution (extracted in situ), as a novel and integrative methodology for assessing recovery of soil health. A 2.5-year field phytostabilisation experiment was carried out using olive mill-waste compost, pig slurry and hydrated lime as amendments, and a native halophytic shrub (Atriplex halimus L.). Comparing with non-treated soil, the addition of the amendments increased soil pH and reduced TEs availability, favoured the development of a sustainable vegetation cover (especially the organic materials), stimulated soil microorganisms (increasing microbial biomass, activity and functional diversity, and reducing stress) and reduced direct and indirect soil toxicity (i.e., its potential associated risks). Therefore, under semi-arid conditions, the use of compost and pig slurry with A. halimus is an effective phytostabilisation strategy to improve soil health of nutrient-poor soils with high TEs concentrations, by improving the habitat function of the soil ecosystem, the reactivation of the biogeochemical cycles of essential nutrients, and the reduction of TEs dissemination and their environmental impact.

  14. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  15. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.J.; Clemente, Rafael; Roig, Asuncion; Bernal, M.P

    2003-04-01

    The effects of organic amendments on metal bioavailability were not always related to their degree of humification. - Two heavy metal contaminated calcareous soils from the Mediterranean region of Spain were studied. One soil, from the province of Murcia, was characterised by very high total levels of Pb (1572 mg kg{sup -1}) and Zn (2602 mg kg{sup -1}), whilst the second, from Valencia, had elevated concentrations of Cu (72 mg kg{sup -1}) and Pb (190 mg kg{sup -1}). The effects of two contrasting organic amendments (fresh manure and mature compost) and the chelate ethylenediaminetetraacetic acid (EDTA) on soil fractionation of Cu, Fe, Mn, Pb and Zn, their uptake by plants and plant growth were determined. For Murcia soil, Brassica juncea (L.) Czern. was grown first, followed by radish (Raphanus sativus L.). For Valencia soil, Beta maritima L. was followed by radish. Bioavailability of metals was expressed in terms of concentrations extractable with 0.1 M CaCl{sub 2} or diethylenetriaminepentaacetic acid (DTPA). In the Murcia soil, heavy metal bioavailability was decreased more greatly by manure than by the highly-humified compost. EDTA (2 mmol kg{sup -1} soil) had only a limited effect on metal uptake by plants. The metal-solubilising effect of EDTA was shorter-lived in the less contaminated, more highly calcareous Valencia soil. When correlation coefficients were calculated for plant tissue and bioavailable metals, the clearest relationships were for Beta maritima and radish.

  16. Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island).

    Science.gov (United States)

    Prus, Wojciech; Fabiańska, Monika J; Łabno, Radosław

    2015-06-15

    The organic contamination of Antarctic soils and terrestrial sediments from nearby of five polar scientific stations on King George Island (Antarctica) was investigated. Gas chromatography-mass spectrometry (GC-MS) was applied to find composition of dichloromethane extracts of soil and terrestrial sediments. The presence of geochemical markers, such as n-alkanes, steranes, pentacyclic triterpenoids, and alkyl PAHs, their distribution types, and values of their ratios indicates the predominating source of organic fossil fuels and products of their refining rather than from the natural Antarctic environment. Fossil fuel-originated compounds well survived in conditions of Antarctic climate over long times thus enabling to characterize geochemical features of source fossil fuel identified as petroleum expelled from kerogen II of algal/bacterial origins deposited in sub-oxic conditions and being in the middle of catagenesis. Both microbial activity and water leaching play an important role in degradation of terrestrial oil spills in the Antarctica climate, and petroleum alteration occurs lowly over long periods of time. Synthetic anthropogenic compounds found in terrestrial Antarctica sediments included diisopropylnaphthalenes, products of their sulfonates degradation in paper combustion, and organophosporus compounds used as retardants and plasticizers.

  17. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    Science.gov (United States)

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil.

  18. Effects of temperature and soil components on emissions from pyrolysis of pyrene-contaminated soil.

    Science.gov (United States)

    Risoul, Véronique; Richter, Henning; Lafleur, Arthur L; Plummer, Elaine F; Gilot, Patrick; Howard, Jack B; Peters, William A

    2005-11-11

    Effects of temperature and soil on yields and identities of light gases (H2, CH4, C2H2, C2H4, C2H6, CO, and CO2) and polycyclic aromatic hydrocarbons (PAH) from thermal treatment of a pyrene-contaminated (5 wt%) soil in the absence of oxygen were determined for a U.S. EPA synthetic soil matrix prepared to proxy U.S. Superfund soils. Shallow piles (140-170 mg) of contaminated soil particles and as controls, neat (non-contaminated) soil (140-160 mg), neat pyrene (10-15 mg), neat sand (230 mg), and pyrene-contaminated sand (160 mg), were heated in a ceramic boat inside a 1.65 cm i.d. pyrex tube at temperatures from 500 to 1100 degrees C under an axial flow of helium. Volatile products spent 0.2-0.4s at temperature before cooling. Light gases, PAH and a dichloromethane extract of the residue in the ceramic boat, were analyzed by gas chromatography or high pressure liquid chromatography (HPLC). Over 99% pyrene removal was observed when heating for a few tens of seconds in all investigated cases, i.e., at 500, 650, 750, 1000, and 1100 degrees C for soil, and 750 and 1000 degrees C for sand. However, each of these experiments gave significant yields (0.2-16 wt% of the initial pyrene) of other PAH, e.g., cyclopenta[cd]pyrene (CPP), which mutates bacterial cells and human cells in vitro. Heating pyrene-polluted soil gave pyrene conversions and yields of acetylene, CPP, and other PAH exceeding those predicted from similar, but separate heating of neat soil and neat pyrene. Up to 750 degrees C, recovered pyrene, other PAH, and light gases accounted for all or most of the initial pyrene whereas at 1000 and 1100 degrees C conversion to soot was significant. A kinetic analysis disentangled effects of soil-pyrene interactions and vapor phase pyrolysis of pyrene. Increase of residence time was found to be the main reason for the enhanced conversion of pyrene in the case of the presence of a solid soil or sand matrix. Light gas species released due to the thermal treatment, such as

  19. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    Science.gov (United States)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  20. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants

    Science.gov (United States)

    Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...

  1. Assessing Biodegradation Susceptibilities of Selected Petroleum Hydrocarbons at Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Markus Heryanto Langsa

    2010-01-01

    Full Text Available The susceptibility to biodegradation of selected saturated hydrocarbons (SHCs, polycyclic aromatichydrocarbons (PAHs and asphaltenes in a Barrow crude oil and extracts isolated from soils contaminated with theBarrow crude oil at day 0 and 39 was determined. Soil samples were contaminated with a Barrow crude oil across thesurface (5% w/w as part of a mesocosm experiment in order to mimic similar conditions in the environment. Theextent of biodegradation of the Barrow oil extracted from the contaminated soils at day 0 and day 39 was assessed byGC-MS analyses of SHCs and PAHs fractions. Changes in the relative abundances of n-alkanes (loss of low-molecularweighthydrocarbons and pristane relative to phytane (Pr/Ph and their diastereoisomers were determined. Changesin the diastereoisomer ratios of Pr and Ph relate to the decrease in abundance of the phytol-derived 6(R,10(Sisoprenoids with increasing biodegradation. The percentage change in abundances of each of selectedalkylnaphathalenes with time (day 0 to 39 was determined, enabling an order of susceptibility of their isomers tobiodegradation. It was established that the 2-methylnaphthalene isomers (2-MN is more susceptible to microbialattack than 1-MN isomer indicated by decreasing in percent abundance from day 0 to 39 for the 2-MN isomer. TheGC-MS analyses of the original Barrow oil indicated the oil had not undergone biodegradation. When this oil wasused in the soil mesocosm experiments the oil was shown to biodegrade to about a level 2 -3 based on the biodegradationsusceptibility of the various SHCs and PAHs described above

  2. Physicochemical and microbiological effects of biosurfactant on the remediation of HOC-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    ZENG Guangming; ZHONG Hua; HUANG Guohe; FU Haiyan

    2005-01-01

    Remediation of soil contaminated by hydrophobic organic compounds using biosurfactants as additives involves interactions between soil matrix, hydrophobic organic compound contaminants, biosurfactants and microorganisms. In this paper, the mechanism for biosurfactants to enhance the contaminant degradation is basically revealed. Biosurfactants can enhance solubilization of the contaminants in the soil matrix, change their mass transfer properties into the aqueous phase, as well as affect their sorption properties. Furthermore, biosurfactants can act on microorganisms and change their surface properties, accordingly cause new growth and uptake behavior of the bacteria in the soil matrix. Both the physicochemical and the microbiological effects can basically increase the bioavailability of the contaminants and enhance their degradation.

  3. Remediation in Situ of Hydrocarbons by Combined Treatment in a Contaminated Alluvial Soil due to an Accidental Spill of LNAPL

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2016-10-01

    Full Text Available Soil contamination represents an environmental issue which has become extremely important in the last decades due to the diffusion of industrial activities. Accidents during transport of dangerous materials and fuels may cause severe pollution. The present paper describes the criteria of the actions which were operated to remediate the potential risk and observed negative effects on groundwater and soil originating from an accidental spill of diesel fuel from a tank truck. With the aim to evaluate the quality of the involved environmental matrices in the “emergency” phase, in the following “safety” operation and during the remediation action, a specific survey on hydrocarbons, light and heavy, was carried out in the sand deposits soil. Elaboration of collected data allows us to observe the movement of pollutants in the unsaturated soil. The remediation action was finalized to improve the groundwater and soil quality. The former was treated by a so called “pump and treat” system coupled with air sparging. A train of three different technologies was applied to the unsaturated soil in a sequential process: soil vapour extraction, bioventing and enhanced bioremediation. Results showed that the application of sequential remediation treatments allowed us to obtain a state of quality in unsaturated soil and groundwater as required by Italian law.

  4. Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant.

    Science.gov (United States)

    Song, Saisai; Zhu, Lizhong; Zhou, Wenjun

    2008-12-01

    Batch experiments were conducted to evaluate the performance of saponin, a plant-derived biosurfactant, for simultaneously removing phenanthrene and cadmium from the combined contaminated soils. Results showed that phenanthrene was desorbed from the contaminated soils by saponin with the partition of phenanthrene into surfactant micelle, meanwhile cadmium was effectively removed from the contaminated soils by the complexation of cadmium with the external carboxyl groups of saponin micelle. The efficiencies of saponin for the removal of phenanthrene and cadmium from the contaminated soils were greater than that of Triton X100 and citric acid, respectively. At concentration of 3750 mg/L, saponin has a removal rate of 87.7% and 76.2% of cadmium and phenanthrene, respectively, from the combined contaminated soil. The removals of cadmium and phenanthrene from the soils were not obviously constrained each other. Thus, saponin has the potential for the removal of heavy metal and PAHs from the combined contaminated soils.

  5. Radiocarbon-based assessment of fossil fuel-derived contaminant associations in sediments.

    Science.gov (United States)

    White, Helen K; Reddy, Christopher M; Eglinton, Timothy I

    2008-08-01

    Hydrophobic organic contaminants (HOCs) are associated with natural organic matter (OM) in the environment via mechanisms such as sorption or chemical binding. The latter interactions are difficult to quantitatively constrain, as HOCs can reside in different OM pools outside of conventional analytical windows. Here, we exploited natural abundance variations in radiocarbon (14C) to trace various fossil fuel-derived HOCs (14C-free) within chemically defined fractions of contemporary OM (modern 14C content) in 13 samples including marine and freshwater sediments and one dust and one soil sample. Samples were sequentially treated by solvent extraction followed by saponification. Radiocarbon analysis of the bulk sample and resulting residues was then performed. Fossil fuel-derived HOCs released by these treatments were quantified from an isotope mass balance approach as well as by gas chromatography-mass spectrometry. For the majority of samples (n = 13), 98-100% of the total HOC pool was solvent extractable. Nonextracted HOCs are only significant (29% of total HOC pool)in one sample containing p,p-2,2-bis(chlorophenyl)-1,1,1-trichloroethane and its metabolites. The infrequency of significant incorporation of HOCs into nonextracted OM residues suggests that most HOCs are mobile and bioavailable in the environment and, as such, have a greater potential to exert adverse effects.

  6. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  7. Isolation, screening and identification of mercury resistant bacteria from mercury contaminated soil

    Directory of Open Access Journals (Sweden)

    Kowalczyk Anna

    2016-01-01

    Full Text Available New bacterial strains resistant to high concentration of mercury were obtained and character iz ed focusing on their potential application in bioremediation. The biological material was isolated from soil contaminated with mercury. The ability to removal of Hg from the liquid medium and the effect of the various pH and mercury concentrations in the environment on bacterial strains growth kinetics were tested. The selected strains were identified by analysis of the 16S ribosome subunit coding sequenc es as Pseudomonas syringae. The analysis of Hg concentration in liquid medium as effect of microbial metabolism demonstrated that P. syringae is able to remove almost entire metal from medium after 120 hours of incubation. Obtained results revealed new ability of the isolated strain P. syringae. Analyzed properties of this soil bacteria species able to reduce concentration of Hg ors immobi lize this metal are promising for industrial wastewater treatment and bioremediation of the soils polluted especially by mercury lamps scrapping, measuring instruments, dry batteries, detonators or burning fuels made from crude oil, which may also contain mercury. Selected bacteria strains provide efficient and relatively low-cost bioremediation of the areas and waters contaminated with Hg.

  8. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    Science.gov (United States)

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased.

  9. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.

    Science.gov (United States)

    Majumder, Aparajita; Bhattacharyya, Kallol; Kole, S C; Ghosh, Sagarmoy

    2013-08-01

    Selected arsenic-volatilizing indigenous soil bacteria were isolated and their ability to form volatile arsenicals from toxic inorganic arsenic was assessed. Approximately 37 % of AsIII (under aerobic conditions) and 30 % AsV (under anaerobic conditions) were volatilized by new bacterial isolates in 3 days. In contrast to genetically modified organism, indigenous soil bacteria was capable of removing 16 % of arsenic from contaminated soil during 60 days incubation period while applied with a low-cost organic nutrient supplement (farm yard manure).

  10. [Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].

    Science.gov (United States)

    Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui

    2015-05-01

    Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.

  11. Toxicity Assessment of Contaminated Soils of Solid Domestic Waste Landfill

    Science.gov (United States)

    Pasko, O. A.; Mochalova, T. N.

    2014-08-01

    The paper delivers the analysis of an 18-year dynamic pattern of land pollutants concentration in the soils of a solid domestic waste landfill. It also presents the composition of the contaminated soils from different areas of the waste landfill during its operating period. The authors calculate the concentrations of the following pollutants: chrome, nickel, tin, vanadium, lead, cuprum, zinc, cobalt, beryllium, barium, yttrium, cadmium, arsenic, germanium, nitrate ions and petrochemicals and determine a consistent pattern of their spatial distribution within the waste landfill area as well as the dynamic pattern of their concentration. Test-objects are used in experiments to make an integral assessment of the polluted soil's impact on living organisms. It was discovered that the soil samples of an animal burial site are characterized by acute toxicity while the area of open waste dumping is the most dangerous in terms of a number of pollutants. This contradiction can be attributed to the synergetic effect of the polluted soil, which accounts for the regularities described by other researchers.

  12. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Peng, Zhiwei; Zeng, Guangming; Xu, Piao; Cheng, Min; Wang, Rongzhong; Wan, Jia

    2017-09-13

    Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.

  13. Microwave thermal remediation of crude oil contaminated soil enhanced by carbon fiber.

    Science.gov (United States)

    Li, Dawei; Zhang, Yaobin; Quan, Xie; Zhao, Yazhi

    2009-01-01

    Thermal remediation of the soil contaminated with crude oil using microwave heating enhanced by carbon fiber (CF) was explored. The contaminated soil was treated with 2.45 GHz microwave, and CF was added to improve the conversion of microwave energy into thermal energy to heat the soil. During microwave heating, the oil contaminant was removed from the soil matrix and recovered by a condensation system of ice-salt bath. The experimental results indicated that CF could efficiently enhance the microwave heating of soil even with relatively low-dose. With 0.1 wt.% CF, the soil could be heated to approximately 700 degrees C within 4 min using 800 W of microwave irradiation. Correspondingly, the contaminated soil could be highly cleaned up in a short time. Investigation of oil recovery showed that, during the remediation process, oil contaminant in the soil could be efficiently recovered without causing significant secondary pollution.

  14. Influence of Oil Contamination on Geotechnical Properties of Basaltic Residual Soil

    Directory of Open Access Journals (Sweden)

    Zulfahmi A. Rahman

    2010-01-01

    Full Text Available Problem statement: Oil contamination due to accidental spillage or leakage brings hefty damage to the environments. It percolates steadily into subsurface environments and contaminates the soil and water system. Hydrocarbon contamination has not just affected the quality of the soil but will also alter the physical properties of oil-contaminated soil. Approach: This study presented the geotechnical properties of oil-contaminated soils as well as uncontaminated soils for comparison. Testing programs performed on the studied soils included basic properties, Atterberg limit, compaction, permeability and unconsolidated undrained triaxial tests. The base soils used were originated from weathered basaltic rock of grades V and VI. Soil samples were artificially contaminated with 4, 8, 12 and 16% oil of the dry weight of based soils. Results: The results showed that the oil contamination decreased the liquid limit and plastic limit values for both grades of weathered soils. For soil grade V, the decrease in plastic limit and liquid limit were represented by 21 and 39%, respectively. Meanwhile, for soil grade VI, the drop was significantly high for liquid limit (39% and lower for plastic limit (19% if compared to soil grade V. The oil-contaminated soils also indicated a lower Maximum Dry Density (MDD and optimum water content if compared with uncontaminated soils. The MDD for soil grade V and VI decreased from 1.67-1.50 and 1.60-1.55 g cm-3, respectively. The OMD values dropped from 23.5-17.5% for soil grade V and 23.0-16.5% for soil grade VI when oil contents were increased. A reduction in permeability was observed as a result of the oil contamination. The permeability of soil grade V and VI decreased from 3.74-0.22 and 2.65-0.22 cm sec-1, respectively. In terms of undrained shear strength, Cu was clearly affected by the increase in oil content in contaminated soils. Both soil grades showed stress dependant behavior with a brittle mode of failure. The

  15. Phytoremediation mechanisms for polycyclic aromatic hydrocarbons removing from contaminated soils

    Directory of Open Access Journals (Sweden)

    Alagić Slađana Č.

    2015-01-01

    Full Text Available Phytoremediation of polycyclic aromatic hydrocarbons (PAHs from soil aims to degrade them into less toxic/non toxic compounds and limit their further movement by sequestration and accumulation into the vacuoles. Lipophilic organic compounds such as PAHs are bound strongly to the epidermis of the root tissue and are rarely translocated within plant. There are no reports in the literature data of PAHs being completely mineralized by plants. There is little evidence to suggest that PAHs accumulate to significant degree in plants, but there still is a lot of evidences on the ability of various plant species (most often grasses and legumes, to degrade and dissipate these dangerous contaminants. The primary mechanism controlling the dissipation of PAHs is rhizosphere microbial degradation where microbes use PAHs molecules as carbon substrates for growth, which in final, leads to the breakdown or total mineralization of the contaminants. The process is usually augmented by the excretion of root exudates (e.g., sugars, alcohols, acids, enzymes, and the build-up of organic carbon in the soil, so the proper selection of particular plant species represents a critical management decision for PAHs phytoremediation. These facts favor the rhyzoremediation as the best solution for sites contaminated with PAHs.

  16. [Bioremediation of petroleum hydrocarbon contaminated soil by bioaugmentation products].

    Science.gov (United States)

    Huang, Ting-Lin; Xu, Jin-Lan; Tang, Zhi-Xin; Xiao, Zhou-Qiang

    2009-06-15

    In an experimental investigation of bioaugmentation products affected on the petroleum contaminated soil. The influence of the bioaugmentation products dose, injections and temperature on bioremediation were studied. The results showed that the degradation rate was related positively to the amount of inoculation, when the dose was increased to 0.6 mg x kg(-1), total petroleum hydrocarbon (TPH) degradation rate was 87% in 48 days. The results of GC-MS indicated that the dominant petroleum constituents in oil-contaminated raw soil were 82.1% n-alkane, 16% alkene and little of others hydrocarbons, such as carotane, alkylnaphthalenes, hopanes, and steranes. The peaks amount of GC profile decreased from 32 to 14 after 40 days of bioremediation, this result indicated that branched alkanes, alkene, and alkylnaphthalenes were thoroughly degraded, then line alkanes, hopanes, and steranes were left in soil. In addition, the longer part of n-alkane were degraded with rate relatively higher, while the residual fraction at the end of the test is shorter part of n-alkane because bacteria degraded the longer n-alkane to shorter. The shorter n-alkane concentration decreased with increasing inoculation. One time injection of bioaugmentation products into soil clearly improved the biodegradation efficiency higher than injection of bioaugmentation products in turn. Soil temperature also affected TPH degradation rate when it was 30 degrees C, TPH rate reached 80%, where as when it was 20 degrees C, the TPH rate was lower to 60%, which indicated higher temperature improved TPH degradation and accelerated bioremediation.

  17. Cadmium Release in Contaminated Soils due to Organic Acids

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-Mei

    2004-01-01

    There is limited information on the release behavior of heavy metals from natural soils by organic acids. Thus,cadmium release,due to two organic acids (tartrate and citrate) that are common in the rhizosphere,from soils polluted by metal smelters or tailings and soils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at a low concentration (≤6mmol L-1 for tartrate and ≤0.5 mmol L-1 for citrate) inhibited Cd release,whereas the presence of organic acids in high concentrations (≥2 mmol L-1 for citrate and ≥15 mmol L-1 for tartrate)apparently promoted Cd release. Under the same conditions,the Cd release in naturally polluted soils was less than that of artificially contaminated soils. Additionally,as the initial pH rose from 2 to 8 in the presence of citrate,a sequential valley and then peak appeared in the Cd release curve,while in the presence of tartrate the Cd release steadily decreased.In addition,Cd release was clearly enhanced as the electrolyte concentration of KNO3 or KC1 increased in the presence of 2 mmol L-1 tartrate. Moreover,a higher desorption of Cd was shown with the KC1 electrolyte compared to KNO3 for the same concentration levels. This implied that the bioavailability of heavy metals could be promoted with the addition of suitable types and concentrations of organic acids as well as reasonable field conditions.

  18. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Goeran, E-mail: goran.bengtsson@ekol.lu.s [Lund University, Department of Ecology, Soelvegatan 37, SE-223 62 Lund (Sweden); Toerneman, Niklas [Lund University, Department of Ecology, Soelvegatan 37, SE-223 62 Lund (Sweden); Yang Xiuhong [Lund University, Department of Ecology, Soelvegatan 37, SE-223 62 Lund (Sweden); Department of Environmental Science, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2010-09-15

    Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added {sup 13}C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass. - Hotspots of PAH biodegradation in a creosote contaminated soil do not coincide with hotspots of PAH concentration, microbial biomass and respiration.

  19. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Science.gov (United States)

    2010-07-01

    ... for contaminated soil. 268.49 Section 268.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of...

  20. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories

    OpenAIRE

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L.; Díaz-Ramírez, Ildefonso J.

    2015-01-01

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and

  1. RISK ASSESSMENT AND REMEDIATION OF SOILS CONTAMINATED BY MINING AND SMELTING OF LEAD, ZINC AND CADMIUM

    Science.gov (United States)

    Mining nd smelting of Pb, Zn and Cd ores have caused widespread soil contamination in many countries. In locations with severe soil contamination, and strongly acidic soil or mine waste, ecosystems are devastated. Research has shown that An phytotoxicity, Pb-induced phosphate def...

  2. Earthworms as colonisers: Primary colonisation of contaminated land, and sediment and soil waste deposits

    NARCIS (Netherlands)

    Eijsackers, H.J.P.

    2010-01-01

    This paper reviews the role of earthworms in the early colonisation of contaminated soils as well as sediment and waste deposits, which are worm-free because of anthropogenic activities such as open-cast mining, soil sterilisation, consistent pollution or remediation of contaminated soil. Earthworms

  3. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    Science.gov (United States)

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  4. Natural attenuation is enhanced in previously contaminated and coniferous forest soils.

    Science.gov (United States)

    Kauppi, Sari; Romantschuk, Martin; Strömmer, Rauni; Sinkkonen, Aki

    2012-01-01

    Prevalence of organic pollutants or their natural analogs in soil is often assumed to lead to adaptation in the bacterial community, which results in enhanced bioremediation if the soil is later contaminated. In this study, the effects of soil type and contamination history on diesel oil degradation and bacterial adaptation were studied. Mesocosms of mineral and organic forest soil (humus) were artificially treated with diesel oil, and oil hydrocarbon concentrations (GC-FID), bacterial community composition (denaturing gradient gel electrophoresis, DGGE), and oil hydrocarbon degraders (DGGE + sequencing of 16S rRNA genes) were monitored for 20 weeks at 16°C. Degradation was advanced in previously contaminated soils as compared with pristine soils and in coniferous organic forest soil as compared with mineral soil. Contamination affected bacterial community composition especially in the pristine mineral soil, where diesel addition increased the number of strong bands in the DGGE gel. Sequencing of cloned 16S rRNA gene fragments and DGGE bands showed that potential oil-degrading bacteria were found in mineral and organic soils and in both pristine and previously contaminated mesocosms. Fast oil degradation was not associated with the presence of any particular bacterial strain in soil. We demonstrate at the mesocosm scale that previously contaminated and coniferous organic soils are superior environments for fast oil degradation as compared with pristine and mineral soil environments. These results may be utilized in preventing soil pollution and planning soil remediation.

  5. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    Science.gov (United States)

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils.

  6. Spectral characterization of soil and coal contamination on snow reflectance using hyperspectral analysis

    Indian Academy of Sciences (India)

    S K Singh; A V Kulkarni; B S Chaudhary

    2011-04-01

    Snow is a highly reflecting object found naturally on the Earth and its albedo is highly influenced by the amount and type of contamination. In the present study, two major types of contaminants (soil and coal) have been used to understand their effects on snow reflectance in the Himalayan region. These contaminants were used in two categories quantitatively – addition in large quantity and addition in small quantity. Snow reflectance data were collected between 350 and 2500 nm spectral ranges and binned at 10 nm interval by averaging. The experiment was designed to gather the field information in controlled conditions, and radiometric observations were collected. First derivative, band absorption depth, asymmetry, percentage change in reflectance and albedo in optical region were selected to identify and discriminate the type of contamination. Band absorption depth has shown a subtle increasing pattern for soil contamination, however, it was significant for small amounts of coal contamination. The absorption peak asymmetry was not significant for soil contamination but showed a nature towards left asymmetry for coal. The width of absorption feature at 1025 nm was not significant for both the contaminations. The percentage change in reflectance was quite high for small amount of coal contamination rather than soil contamination, however, a shift of peak was observed in soil-contaminated snow which was not present in coal contamination. The albedo drops exponentially for coal contamination rather than soil contamination.

  7. Spectroscopy as a diagnostic tool for urban soil contaminants

    Science.gov (United States)

    Brook, Anna; Kopel, Daniella

    2014-05-01

    Urbanization has become one of the major forces of change around the globe. Land use transformation, especially urbanization has the most profound influences of human activities because it affects so many of the planet's physical and biological systems. Land use changes directly impact the ability of the earth to continue to provide ecological services to human society and the other occupants of the ecosystems. The urban process gradually degrades and transforms agricultural and natural ecosystems into built environments. The urban environment includes cities, suburbs, peri-urban areas and towns. Urban ecosystems are highly heterogeneous due to the variety of land covers and land purposes. Thus, the choices on managing the extent and arranging the land cover patches (e.g., lawns) assist to shape the emergent structure and function of the urban ecosystems. As a result of ecological conditions and current management status the urban soils show substantial spatial heterogeneity. Whereas, adverse effects of pollutants on ecosystems have been demonstrated, one important need for environmental impact assessment have been defined as maintenance of long-term monitoring systems, which can enable to improve monitoring, modelling and assessment of various stressors in agriculture environment. Diffuse reflectance spectroscopy and diffuse reflectance Fourier-transform infrared (FTIR) spectroscopy across visible-near- short- mid- and long- wave infrared (0.4-14μm) has the potential to meet this demand. Relationships between spectral reflectance and soil properties, such as grain size distribution, moisture, iron oxides, carbonate content, and organic matter, have already been established in many studies (Krishnan et al. 1980, Ben-Dor and Banin 1995, Jarmer et al. 2008, Richter et al. 2009). The aims of this study are to develop diagnostic tool for heavy metals, polycyclic aromatic hydrocarbons, asbestos and other anthropogenic contaminants in urban soil using spectroscopy

  8. Microbial mobilization of plutonium and other actinides from contaminated soil.

    Science.gov (United States)

    Francis, A J; Dodge, C J

    2015-12-01

    We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.

  9. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    Science.gov (United States)

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits.

  11. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    Science.gov (United States)

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  12. Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks.

    Science.gov (United States)

    Nunes, L M; Zhu, Y-G; Stigter, T Y; Monteiro, J P; Teixeira, M R

    2011-11-01

    Environmental impacts of airports are similar to those of many industries, though their operations expand over a very large area. Most international impact assessment studies and environmental management programmes have been giving less focus on the impacts to soil and groundwater than desirable. This may be the result of the large attention given to air and noise pollution, relegating other environmental descriptors to a second role, even when the first are comparatively less relevant. One reason that contributes to such "biased" evaluation is the lack of systematic information about impacts to soil and groundwater from airport activities, something the present study intends to help correct. Results presented here include the review of over seven hundred documents and online databases, with the objective of obtaining the following information to support environmental studies: (i) which operations are responsible for chemical releases?; (ii) where are these releases located?; (iii) which contaminants of concern are released?; (iv) what are the associated environmental risks? Results showed that the main impacts occur as a result of fuel storage, stormwater runoff and drainage systems, fuel hydrant systems, fuel transport and refuelling, atmospheric deposition, rescue and fire fighting training areas, winter operations, electrical substations, storage of chemical products by airport owners or tenants, and maintenance of green areas. A new method for ranking environmental risks of organic substances, based on chemical properties, is proposed and applied. Results show that the contaminants with the highest risks are the perfluorochemicals, benzene, trichloroethylene and CCl(4). The obtained information provides a basis for establishing the planning and checking phases of environmental management systems, and may also help in the best design of pollution prevention measures in order to avoid or reduce significant environmental impacts from airports.

  13. An appraisal of soil diffuse contamination in an industrial district in northern Italy.

    Science.gov (United States)

    Biasioli, M; Fabietti, G; Barberis, R; Ajmone-Marsan, F

    2012-08-01

    Soil diffuse contamination is one the major soil threats, especially in regions with a high population density and strong industrialization. In this work agricultural, natural, and periurban soils of an Italian Province (858 km(2)) were sampled and analyzed. Overall, 140 samples were taken at two depths and analyzed for 10 trace elements, 13 rare earth elements and for organic contaminants (PCBs, PCDDs and PAHs). The aim of this work was to obtain an appraisal of soil diffuse contamination in a large Italian Province by applying and validating available tools to quantify background values and evaluate the intensity of contamination. Data were processed, background values estimated, and enrichment and contamination factors calculated. For some contaminants the results allowed a discrimination between natural or anthropic-derived contaminants. Some contaminants revealed clear trends of enrichment in function of the land use (in particular for periurban soils). REEs were found to mostly derive from parent material. The results obtained in this study show the importance of merging the quantification of contaminants with the elaboration of indices of contamination. These require an accurate quantification of background values to be able to discriminate the anthropic contribution. Enrichment factor resulted to be more accurate than contamination factor but it cannot be applied to organic contaminants and requires a careful selection of the reference element to be adopted. This study revealed that some contaminants - Sb, Sn, Pb, and organic contaminants - can be used as tracers of diffuse contamination, and should be therefore always included in similar studies.

  14. Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks.

    Science.gov (United States)

    Johnson, Andrew C; Park, Barry

    2012-11-01

    As a fuel additive, cerium oxide nanoparticles may become widely dispersed throughout the environment. Commercial information from the United Kingdom (UK) on the use of cerium oxide nanoparticles was used to perform a modeling and risk assessment exercise. Discharge from exhausts took into account the likely removal by filters fitted to these vehicles. For predicting current soil exposure, scenarios were examined, ranging from dispersion occurring across the entire UK landmass to only within the urban area to only 20 m on either side of road networks. For soils, the highest predicted contamination level was 0.016 mg/kg within 20 m of a road following seven years of continuous deposition. This value would represent 0.027% of reported natural background cerium. If usage were to double for five more years, levels would not be expected to exceed 0.04 mg/kg. River water contamination considered direct aerial deposition and indirect contamination via runoff in the water and entrained soil sediment, with the highest level of 0.02 ng/L predicted. The highest predicted water concentration of 300 ng/L was associated with water draining from a road surface, assuming a restricted deposition spread. These predictions are well below most toxicological levels of concern. Copyright © 2012 SETAC.

  15. Survey of Contamination in Fuel Tanks of DD-963 Class Ships.

    Science.gov (United States)

    1982-07-23

    and Identifly by block num0b.’) Diesel fuel Fuel sludge Bacteria Fuel contamination Cladosporium resinae Sludge composition assess sources of... resinae ) predominated. Viable sulfate reducers were sometimes present but rarely sulfide. Below pH 4 bacteria were rare and fungi and yeasts were numerous...but the variety tended to be restricted to C. resinae and Candida. Differences in viable microbial varieties present in these sludge categories are

  16. 8. Atmospheric, water, and soil contamination after Chernobyl.

    Science.gov (United States)

    Yablokov, Alexey V; Nesterenko, Vassily B; Nesterenko, Alexey V

    2009-11-01

    Air particulate activity over all of the Northern Hemisphere reached its highest levels since the termination of nuclear weapons testing--sometimes up to 1 million times higher than before the Chernobyl contamination. There were essential changes in the ionic, aerosol, and gas structure of the surface air in the heavily contaminated territories, as measured by electroconductivity and air radiolysis. Many years after the catastrophe aerosols from forest fires have dispersed hundreds of kilometers away. The Chernobyl radionuclides concentrate in sediments, water, plants, and animals, sometimes 100,000 times more than the local background level. The consequences of such a shock on aquatic ecosystems is largely unclear. Secondary contamination of freshwater ecosystems occurs as a result of Cs-137 and Sr-90 washout by the high waters of spring. The speed of vertical migration of different radionuclides in floodplains, lowland moors, peat bogs, etc., is about 2-4 cm/year. As a result of this vertical migration of radionuclides in soil, plants with deep root systems absorb them and carry the ones that are buried to the surface again. This transfer is one of the important mechanisms, observed in recent years, that leads to increased doses of internal irradiation among people in the contaminated territories.

  17. Aspergillus flavus: A potential Bioremediator for oil contaminated soils

    Directory of Open Access Journals (Sweden)

    Y.Avasn Maruthi

    2013-02-01

    Full Text Available Biodegradation is cost-effective, environmentally friendly treatment for oily contaminated sites by the use of microorganisms. In this study, laboratory experiments were conducted to establish the performance of fungal isolates in degradation of organic compounds contained in soils contaminated with petrol and diesel. As a result of the laboratory screening, two natural fungal strains capable of degrading total organic carbons (TOC were prepared from isolates enriched from the oil contaminated sites. Experiments were conducted in Erlenmeyer flasks under aerobic conditions, with TOC removal percentage varied from 0.7 to 32% depending on strains type and concentration. Strains Phanerocheate chrysosporium and Aspergillus niger exhibited the highest TOC removal percentage of 32 and 21%, respectively, before nutrient addition. TOC removal rate was enhanced after addition of nutrients to incubated flasks. The highest TOC reduction (45% was estimated after addition of combination of nitrogen, phosphorus and sulphur to Phanerocheate chrysosporium strains. Results of experimental work carried out elucidate that the fungi like Phanerocheate chrysosporium and Aspergillus niger were capabled of producing enzymes at a faster rate to decompose the substrate hydrocarbon and released more CO2 and hence these potential fungi can be utilized effectively as agents of biodegradation in waste recycling process and Bioremediation of oil contaminated sites.

  18. Phytoextraction of metals and metalloids from contaminated soils.

    Science.gov (United States)

    McGrath, Steve P; Zhao, Fang-Jie

    2003-06-01

    The removal of inorganic contaminants by plants is termed phytoextraction. Recent studies have looked at the feasibility of phytoextraction, and demonstrate that both good biomass yields and metal hyperaccumulation are required to make the process efficient. Adding chelating agents to soil to increase the bioavailability of contaminants can sometimes induce hyperaccumulation in normal plants, but may produce undesirable environmental risks. Thus, it is necessary to investigate the mechanisms responsible for hyperaccumulation, using natural hyperaccumulators as model plant species. Recent advances have been made in understanding the mechanisms responsible for hyperaccumulation of Zn, Cd, Ni and As by plants. Attempts to engineer metal tolerance and accumulation have so far been limited to Hg, As and Cd, and although promising results have been obtained they may be some way from practical application. More fundamental understanding of the traits and mechanisms involved in hyperaccumulation are needed so that phytoextraction can be optimised.

  19. Stabilization/Solidification Remediation Method for Contaminated Soil: A Review

    Science.gov (United States)

    Tajudin, S. A. A.; Azmi, M. A. M.; Nabila, A. T. A.

    2016-07-01

    Stabilization/Solidification (S/S) is typically a process that involves a mixing of waste with binders to reduce the volume of contaminant leachability by means of physical and chemical characteristics to convert waste in the environment that goes to landfill or others possibly channels. Stabilization is attempts to reduce the solubility or chemical reactivity of the waste by changing the physical and chemical properties. While, solidification attempt to convert the waste into easily handled solids with low hazardous level. These two processes are often discussed together since they have a similar purpose of improvement than containment of potential pollutants in treated wastes. The primary objective of this review is to investigate the materials used as a binder in Stabilization/Solidification (S/S) method as well as the ability of these binders to remediate the contaminated soils especially by heavy metals.

  20. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    Science.gov (United States)

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH)2, CuCO3, and Zn5(CO3)2(OH)6, and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process.

  1. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    Science.gov (United States)

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols.

  2. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    Science.gov (United States)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  3. Vertical characterization of soil contamination using multi-way modeling--a case study.

    Science.gov (United States)

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  4. Using Iron to Treat Chlorohydrocarbon-Contaminated Soil

    Science.gov (United States)

    Hitchens, G. Duncan; Hodko, Dalibor; Kim, Heekyung; Rogers, Tom; Singh, Waheguru Pal; Giletto, Anthony; Cisar, Alan

    2004-01-01

    A method of in situ remediation of soil contaminated with chlorinated hydrocarbon solvents involves injection of nanometer-size iron particles. The present method exploits a combination of prompt chemical remediation followed by longer-term enhanced bioremediation and, optionally, is practiced in conjunction with the method of bioremediation described earlier. Newly injected iron particles chemically reduce chlorinated hydrocarbons upon contact. Thereafter, in the presence of groundwater, the particles slowly corrode via chemical reactions that effect sustained release of dissolved hydrogen. The hydrogen serves as an electron donor, increasing the metabolic activity of the anaerobic bacteria and thereby sustaining bioremediation at a rate higher than the natural rate.

  5. TXRF analysis of soils and sediments to assess environmental contamination.

    Science.gov (United States)

    Bilo, Fabjola; Borgese, Laura; Cazzago, Davide; Zacco, Annalisa; Bontempi, Elza; Guarneri, Rita; Bernardello, Marco; Attuati, Silvia; Lazo, Pranvera; Depero, Laura E

    2014-12-01

    Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent.

  6. Chemically enhanced phytoextraction of lead-contaminated soils.

    Science.gov (United States)

    Perry, V Ryan; Krogstad, Eirik J; El-Mayas, Hanan; Greipsson, Sigurdur

    2012-08-01

    The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4.

  7. Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils

    Energy Technology Data Exchange (ETDEWEB)

    Lottermoser, Bernd G., E-mail: Bernd.Lottermoser@utas.edu.au [School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001 (Australia); Schnug, Ewald; Haneklaus, Silvia [Institute for Crop and Soil Science, Federal Institute for Cultivated Plants, Julius Kuehn-Institute (JKI), Bundesallee 50, D-38116 Braunschweig (Germany)

    2011-08-15

    There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic (registered) , Diet Coke (registered) , Coke Zero (registered) ) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic (registered) , Diet Coke (registered) and Coke Zero (registered) demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl{sub 2}-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic (registered) is close to unity (+ 0.98), with reduced correlations for Diet Coke (registered) (+ 0.66) and Coke Zero (registered) (+ 0.55). Also, Coca-Cola Classic (registered) extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke (registered) and Coke Zero (registered) . Results of this study demonstrate that the use of Coca-Cola Classic (registered) in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for

  8. Removal of cadmium from cadmium-contaminated red soils using electrokinetic soil processing

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; LI Cheng-feng; ZENG Guang-ming; YUE Xiu; LI Xin; XU Wei-hua; TANG Chun-fang; YUAN Xing-zhong

    2005-01-01

    To investigate the feasibility of electrokinetic soil processing on the removal of Cd from Cd-contaminated red soils, a laboratory experiment was conducted. A constant direct current density of 0.5mA/cm2 was applied. The result shows that the Cd-removal efficiency is remarkably pH-dependent, which is caused by the change of Cd retention capacity of the red soils under different pH conditions. The initial Cd concentration is 1.490g/kg and over 79% of it is removed from the red soils after treatment for 96h. The energy expenditure per unit volume at the end of experiment is about 77.6kW·h/m3 and the capital consumed by the whole experiment is 42.6RMB Yuan/m3, which suggests that the electrokinetic soil processing is a promising technology for remedying Cd-contaminated red soils due to its high removal efficiency and low energy consumption.

  9. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate.

    Science.gov (United States)

    Ma, Yameng; Li, Fangfang; Jiang, Yuling; Yang, Weihua; Lv, Lv; Xue, Haotian; Wang, Yangyang

    2016-09-01

    Acidified hydrazine hydrate was used to remediate Cr(VI)-contaminated soil. The content of water-soluble Cr(VI) in contaminated soil was 4977.53 mg/kg. The optimal initial pH of hydrazine hydrate solution, soil to solution ratio and molar ratio of Cr(VI) to hydrazine hydrate for remediation of Cr(VI)-contaminated soil were 5.0, 3:1 and 1:3, respectively. Over 99.50 % of water-soluble Cr(VI) in the contaminated soil was reduced at the optimal condition within 30 min. The remediated soil can keep stable within 4 months. Meanwhile the total phosphorus increased from 0.47 to 4.29 g/kg, indicating that using of acidified hydrazine hydrate is an effective method to remediate Cr(VI)-contaminated soil.

  10. Response of soil catalase activity to chromium contamination

    Institute of Scientific and Technical Information of China (English)

    Zofia St(e)pniewska; Agnieszka Woli(n)ska; Joanna Ziomek

    2009-01-01

    The impact of chromium (III) and (VI) forms on soil catalase activity is presented.The Orthic Podzol, Haplic Phaeozem and Mollic Gleysol from different depths were used in the experiment.The soil samples were amended with solution of Cr(III) using CrCl3, and with Cr(VI) using K2Cr2O7 in the concentration range from 0 to 20 mg/kg, whereas the samples without the addition of chromium served as control.Catalase activity was assayed by one of the commonly used spectrophotometric methods.As it is demonstrated in the experiment, both Cr(III) and Cr(VI) forms have ability to reduce soil catalase activity.A chromium dose of 20 mg/kg caused the inhibition of catalase activity and the corresponding contamination levels ranged from 75% to 92% for Cr(III) and 68% to 76% for Cr(VI), with relation to the control.Catalase activity reached maximum in the soil material from surface layers (0-25 cm), typically characterized by the highest content of organic matter creating favorable conditions for microorganisms.

  11. Method of ecological assessment of oil-contaminated soils

    Directory of Open Access Journals (Sweden)

    O. I. Romaniuk

    2016-06-01

    Full Text Available A method for determination of the ecological condition of oil-contaminated soils was developed. This method is suitable for use in a wide range of oil concentrations in soil, ranging from 0–20% and provides a quantitative assessment of phytotoxicity – effective toxicity. The method involves the germination on the investigated soil (moisture 33.3% in closed Petri dishes in the dark at +24ºС of seeds of test objects: Linum usitatissimum L., Helianthus annuus L., Fagopyrum vulgare St. We used for biotesting initial growth parameters of test objects during 5 days of growth, whenthe toxic effect of oil is quite evident, but other damaging factors do not become apparent. For each test object, an optimal oil concentration range is suggested. At low concentrations of oil in the soil 15.0% phytotoxicity is >4.0; the level of pollution – catastrophic. The method was tested on an industrial area – dumps of the Borislav Ozokerite Mine. Environmental maps of toxicity drawn up using different test objects: L. usitatissimum, H. annuus, F. vulgare were similar, which additionally confirms the correctness of the method. We recommend the application of the proposed method for identification of sites in a threatening, pre-crisis or crisis state, on which other physical-chemical studies can be further conducted.

  12. Plumbum contamination detecting model for agricultural soil using hyperspectral data

    Science.gov (United States)

    Liu, Xiangnan; Huang, Fang; Wang, Ping

    2008-10-01

    The issue of environmental pollution due to toxic heavy metals in agricultural land has caused worldwide growing concern in recent years. Being one of toxic heavy metals, the accumulation of Plumbum (Pb) may have negative effects on natural and agricultural vegetation growth, yield and quality. It can also constitute short-term and long-term health risks by entering the food chain. In this study, we analyze the relationships between physical and chemical characteristics, biological parameters of soil-vegetation system and hyperspectral spectrum responses systematically. The relation between hyperspectral data and the biological parameters of Pb polluted wheat canopy such as leaf pigments, leaf moisture, cell structure and leaf area index (LAI) are discussed. We detect the changes in the wheat biological parameters and spectral response associated with Pb concentration in soil. To reveal the impact mechanisms of Pb concentration on agricultural soil, six models including chlorophyll-leaf moisture model, chlorophyll-cell structure model, chlorophyll-LAI model, leaf moisture-cell structure model, leaf moisture-LAI model, cell structure- LAI model are explored. We find that changes in Pb concentration present various features in different models. Pb contamination in agricultural soil can be identified and assessed effectively while integrating the characteristics of those developed models.

  13. Bioremediation of coal contaminated soil under sulfate-reducing condition

    Energy Technology Data Exchange (ETDEWEB)

    Kuwano, Y.; Shimizu, Y. [Kyoto University, Shiga (Japan)

    2006-01-15

    The objective of this study was to investigate the biodegradation of coal-derived hydrocarbons, especially high molecular weight (HMW) components, under anaerobic conditions. For this purpose biodegradation experiments were performed, using specifically designed soil column bioreactors. For the experiment, coal-contaminated soil was prepared, which contains high molecular weight hydrocarbons at high concentration (approx. 55.5 mgC g-drysoil{sup -1}). The experiment was carried out in two different conditions: sulfate reducing (SR) condition (SO{sub 4}{sup 2-}=10 mmol 1{sup -1} in the liquid medium) and control condition (SO{sub 4}{sup 2-} {lt} 0.5 mmol 1{sup -1}). Although no degradation was observed under the control condition, the resin fraction decreased to half (from 6,541 to 3,386 mgC g-soil{sup -1}) under SR condition, with the concomitant increase of two PAHs (phenanthrene and fluoranthene 9 and 2.5 times, respectively). From these results, we could conclude that high molecular hydrocarbons were biodegradable and transformed to low molecular weight PAHs under the sulfate-reducing condition. Since these PAHs are known to be biologically degraded under aerobic condition, a serial combination of anaerobic (sulfate reducing) and then aerobic bioremediations could be effective and useful for the soil pollution by petroleum and/or coal derived hydrocarbons.

  14. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    Science.gov (United States)

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

  15. Weeds ability to phytoremediate cadmium-contaminated soil.

    Science.gov (United States)

    Hammami, Hossein; Parsa, Mehdi; Mohassel, Mohammad Hassan Rashed; Rahimi, Salman; Mijani, Sajad

    2016-01-01

    An alternative method to other technologies to clean up the soil, air and water pollution by heavy metals is phytoremediation. Therefore, a pot culture experiment was conducted at the College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, in 2014 to determine the potential absorption of cadmium by Portulaca oleracea (Common purslane), Solanum nigrum (Black nightshade), Abutilon theophrasti (Velvetleaf) and Taraxacum officinale (Dandelion). The type of experiment was completely randomized design with factorial arrangement and four replications. The soil in pot was treated with different rates of CdCl2.H2O (0 (control), 10, 20, 40, 60, and 80 mg Cd/kg soil) and the plants were sown. With increasing concentration levels, fresh weight and dry weight of shoots and roots of all plant species were reduced. The reduction severity was ranked according the following order, P. oleracea > A. theophrasti > S. nigrum > T. officinale. Bioconcentration factor (BCF), Translocation factor (TF) and Translocation efficiency (TE%) was ranked according the following order, T. officinale > S. nigrum > A. theophrasti > P. oleracea. The results of this study revealed that T. officinale and S. nigrum are effective species to phytoremediate Cd-contaminated soil.

  16. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae, in petroleum-contaminated soil and bioremediated soil

    Directory of Open Access Journals (Sweden)

    AM. Gogosz

    Full Text Available In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C, bioremediated soil (B and uncontaminated soil (U; with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days and shoot biomass (60 days was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil.

  17. Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae), in petroleum-contaminated soil and bioremediated soil.

    Science.gov (United States)

    Gogosz, A M; Bona, C; Santos, G O; Botosso, P C

    2010-11-01

    In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR) in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C), bioremediated soil (B) and uncontaminated soil (U); with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days) and shoot biomass (60 days) was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil.

  18. Arsenic-contaminated soils. Phytotoxicity studies with sunflower and sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Lyubun, Y.V.; Kosterin, P.V.; Zakharova, E.A.; Fedorov, E.E. [Inst. of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Shcherbakov, A.A. [Saratov Military Inst. of Radiological, Chemical and Biological Defence, Saratov (Russian Federation)

    2002-07-01

    Background, Aim and Scope. Environmental pollution caused by arsenic (As) is a major ecological problem. There has been intense worldwide effort to find As-hyperaccumulating plants that can be used in phytoremediation - the green-plant-assisted removal of chemical pollutants from soils. For phytoremediation, it is natural to prefer cultivated rather than wild plants, because their agriculture is well known. This study was conducted to evaluate the tolerance of common sunflower (Helianthus annuus L.) and sugar sorghum (Sorghum saccharatum Pers.) for soil-As contents of 10-100 mg As kg{sup -1} soil, with sodium arsenite as a model contaminant. Methods. Plants were grown in a growth chamber for 30 days. Microfield experiments were conducted on experimental plots. To study the phytoremediation effect of the auxins indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), we treated 1- and 3-day-old plant seedlings with water solutions of the auxins (concentrations of 10{sup -5}, 10{sup -7}, and 10{sup -9} g l{sup -1}). The soil and plant-biomass samples were analyzed for total As by using the color reaction of ammonium molybdate with As. Results and Discussion. Phytotoxicity studies showed that 100 mg as kg{sup -1} soil poisoned sunflower and sorghum growth by 50%. There was a linear correlation between soil-As content and As accumulation in the plants. Laboratory experiments showed that the soil-As content was reduced two- to threefold after sunflower had been grown with 10-100 mg As kg{sup -1} soil for 30 days. Treatment of sunflower and sorghum seedlings with IAA and 2,4-D at a concentration of 10{sup -5} g l{sup -1} in microfield experiments enhanced the phytoremediation two- to fivefold as compared with untreated control plants. The best results were obtained with 3-day-old seedlings. Conclusion, Recommendation and Outlook. (a) Sunflower and sorghum are good candidates to remediate As-polluted soils. (b) Phytoremediation can be improved with IAA or 2

  19. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Guiwei, Q. [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Soil and Environmental College, Shenyang Agricultural University, 110161 Shenyang, Liaoning Province (China); Varennes, A. de, E-mail: adevarennes@isa.utl.pt [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Martins, L.L.; Mourato, M.P.; Cardoso, A.I. [Department of Agricultural and Environmental Chemistry, Instituto Superior de Agronomia, Technical University of Lisbon (TULisbon), Tapada da Ajuda, 1349-017 Lisboa (Portugal); Mota, A.M. [Department of Chemical Engineering, Instituto Superior Tecnico, Technical University of Lisbon (TULisbon), Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Pinto, A.P. [Instituto de Ciencias Agrarias Mediterranicas (ICAM), University of Evora, R. Romao Ramalho no. 59, 7000 Evora (Portugal); Goncalves, M.L. [Department of Chemical Engineering, Instituto Superior Tecnico, Technical University of Lisbon (TULisbon), Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2010-01-15

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl{sub 2}-extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl{sub 2}-extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, {beta}-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  20. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil.

    Science.gov (United States)

    Guiwei, Q; de Varennes, A; Martins, L L; Mourato, M P; Cardoso, A I; Mota, A M; Pinto, A P; Gonçalves, M L

    2010-01-15

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl(2)-extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl(2)-extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, beta-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  1. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    Science.gov (United States)

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P  -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils.

  2. Mixing of an anthracene-contaminated soil: a simple but efficient remediation technique?

    Science.gov (United States)

    Delgado-Balbuena, Laura; Aguilar-Chávez, Ángel R; Luna-Guido, Marco L; Dendooven, Luc

    2013-10-01

    Contamination of soils with polycyclic aromatic hydrocarbons (PAHs) is a serious problem in petroleum producing countries, such as México, and environment-friendly easy to apply techniques are required to accelerate the removal of the contaminants. Removal of anthracene was monitored in an arable and a pasture soil regularly mixed or amended with organic material, a non-ionic surfactant (Surfynol(®) 485) or earthworms (Eisenia fetida (Savigny, 1826)). In both soils the same results were obtained although the removal of anthracene was faster from the pasture than from the arable soil. The fastest removal of anthracene was obtained when the soil was mixed every 7 days and no contaminant was detected in both soils after 56 days. The second fastest removal of anthracene was obtained when earthworms were added to soil and no contaminant was detected in both soils after 112 days. Application of organic material that served as feed for the earthworms also accelerated the removal of the contaminant compared to the unamended soil, but application of the surfactant inhibited the dissipation of the contaminant. Only 37% of the spiked anthracene was removed from soil when surfactant was applied, while 62% was dissipated in the unamended soil after 112 days. It was found that simply mixing a soil removed anthracene faster than when earthworms were applied, while the application of the surfactant inhibited the removal of anthracene by the autochthonous soil microorganisms.

  3. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    Science.gov (United States)

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  4. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    Science.gov (United States)

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  5. the effect of poultry m anure on oil contaminated soil introduction

    African Journals Online (AJOL)

    BSN

    among the microbial isolates from the oil contaminated soil. ... soil was weighted into seven plastic bowls, such that each contained 438g o, c :1 .... ( 1983) and. Ajisebutu (1987) was used, to study degradation and emulsification of diesel oil. Tlll'.

  6. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  7. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible.

  8. Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene.

    Science.gov (United States)

    Sharonova, Natalia; Breus, Irina

    2012-05-01

    In laboratory experiments on leached chernozem contaminated by kerosene (1-15 wt.%), germination of 50 plants from 21 families (cultivated and wild, annual and perennial, mono- and dicotyledonous) as affected by kerosene type and concentration and plant features was determined. Tested plants formed three groups: more tolerant, less tolerant, and intolerant, in which relative germination was more than 70%, 30-70% and less than 30%, respectively. As parameters of soil phytotoxicity, effective kerosene concentrations (EC) causing germination depression of 10%, 25% and 50% were determined. EC values depended on the plant species and varied in a wide range of kerosene concentrations: 0.02-7.3% (EC(10)), 0.05-8.1% (EC(25)), and 0.2-12.7% (EC(50)). The reported data on germination in soils contaminated by oil and petrochemicals were generalized. The comparison showed that at very high contamination levels (10 and 15%) kerosene was 1.3-1.6 times more phytotoxic than diesel fuel and 1.3-1.4 times more toxic than crude oil, and at low (1 and 2%) and medium (3 and 5%) levels the toxicity of these contaminants was close differing by a factor of 1.1-1.2. Tolerance of plants to soil contamination had a species-specific nature and, on the average, decreased in the following range of families: Fabaceae (germination decrease of 10-60% as compared to an uncontaminated control)>Brassicaceae (5-70%)>Asteraceae (25-95%)>Poaceae (10-100%). The monocotyledonous species tested were characterized as medium- and low-stable to contamination, whereas representatives of dicotyledonous plants were met in all groups of tolerance. Tested wild plants, contrary to reference data on oil toxicity, were more sensitive to kerosene than cultivated. No correlation was observed between degree of plant tolerance to kerosene and mass of seeds. The evidence indicates factors as structure and properties of testa, structure of germ, type of storage compounds, and type of seed germination (underground or

  9. Cadmium and zinc in plants and soil solutions from contaminated soils

    DEFF Research Database (Denmark)

    Lorenz, S.E.; Hamon, R.E.; Holm, P.E.;

    1997-01-01

    In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably...... because of uptake by plants and the subsequent redistribution of ions onto soil exchange sites at lower ionic strength. Speciation analysis by a resin exchange method showed that most Cd and Zn in non-rhizospbere solutions was present as Cd2+ and Zn2+; respectively. The proportion of free ions.......70, respectively). This suggests that the great variability among soils in the solubility of Zn affected the rate of release of Zn into solution, and thus Zn uptake. There was no such effect for Cd, for which solubility varied much less. Furthermore, the plants may have partly controlled Zn uptake, as they took up...

  10. Legacy soil contamination at abandoned mine sites: making a case for guidance on soil protection.

    Science.gov (United States)

    Kostarelos, Konstantinos; Gavriel, Ifigenia; Stylianou, Marinos; Zissimos, Andreas M; Morisseau, Eleni; Dermatas, Dimitris

    2015-03-01

    Within the European Union, guidance in the form of a uniform Soil Directive does not exist and member states are left to enact their own legislation governing historic soil contamination. Several historic or "legacy" sites exist in Cyprus - an EU member state with a long history of mining and a significant number of abandoned mining sites. The gold-silver enrichment plant of Mitsero village was abandoned 70 years ago, yet soil samples inside and outside the plant were extremely low in pH, exhibited high leachability of heavy metals and high cyanide levels. Water samples collected from an ephemeral stream located down-gradient of the site contained high levels of heavy metals. Two abandoned open-pit mines (Kokkinopezoula and Mathiatis) were investigated, where elevated metal content in soil samples from the surrounding streams and spoil heaps, and extremely low pH and high metal content in water samples from the mine crater were measured.

  11. Effect of OSE(II)-Enhanced Soil Washing(OESW) for TPH -Contaminated Soil Remediation

    Science.gov (United States)

    Hwang, J. H.; Lee, D. H.; Woo, N. C.

    2015-12-01

    The objectives of this study were to perform potentially suitable active agent that solubilize total petroleum hydrocarbon (TPH) present as contaminants and to evaluate the optimal range of process parameters that can increase the removal efficiency in OSE(II)-enhanced soil washing (OESW) pilot tests. Used experimental method for solubilisation of TPH by using OSE(II) was batch experiments. The active agent solution parameters for OESW pilot tests were solution concentration, solution pH in the OESW pilot tests. Based on the batch experiments, OSE(II) was proved as a suitable active agent that solubilizes TPH present as contaminants. The highest recovery (92-95 %) of the contaminants was obtained using a OSE(II) in the batch experiments. The pilot test results revealed that the optimum conditions were achieved with a OSE(II) surfactant solution concentration of 10 % (v/v), a OSE(II) surfactant solution pH of 6.5-7.5 of OSE(II) active agent solution. The maximum removal of contaminants (88 %) was obtained when optimum conditions were simultaneously met in pilot-scale OESW operations. These results confirm the viability of OESW for treating TPH-contaminated soil.

  12. Surfactant-Enhanced Phytoremediation of Soils Contaminated with Hydrophobic Organic Contaminants: Potential and Assessment

    Institute of Scientific and Technical Information of China (English)

    GAO Yan-Zheng; LING Wan-Ting; ZHU Li-Zhong; ZHAO Bao-Wei; ZHENG Qing-Song

    2007-01-01

    Phytoremediation is becoming a cost-effective technology for the in-situ clean up of sites polluted with hydrophobic organic contaminants (HOCs). The major factors limiting phytoremediation are the mass transfer, rate of plant uptake, and microbial biodegradation of HOCs. This article discusses the potential of surfactants to enhance desorption, plant uptake, and biodegradation of HOCs in the contaminated sites. Positive effects of surfactants on phytoremediation have been recently observed in greenhouse studies. The presence of some nonionic surfactants including polyoxyethylene sorbitan monooleate (Tween 80) and polyoxyethylene(23)dodecanol (Brij35) at relatively low concentrations resulted in significant positive effects on phytoremediation for pyrene-contaminated soil. However, the anionic surfactant (sodium dodecyl sulfate, SDS) and the cationic surfactant (cetyltrimethylammonium bromide, CTMAB) were not useful because of their phytotoxicity or low efficiency for surfactant-enhanced phytoremediation (SEPR). The mechanisms of SEPR for HOC-contaminated sites were evaluated by considering experimental observations. In view of concerns about the cost effectiveness and toxicity of surfactants to plants, more research is needed to enhance the use of SEPR technology.

  13. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  14. Genotoxicity of Pesticide Waste Contaminated Soil and Its Leachate

    Institute of Scientific and Technical Information of China (English)

    S. D. SIVANESAN; K. KRISHNAMURTHI; S. D. WACHASUNDER; T. CHAKRABARTI

    2004-01-01

    Improper land disposal of hazardous waste can result in leaching of hazardous constituents which may contaminate ground and surface water leading to adverse impact on human health and environment consequences. The present study utilized mammalian cell culture for the genotoxicity assessment of waste and its leachate. Methods Genotoxic potential and chemical analysis of pesticide derived tarry waste contaminated soil extract and its leachate was assessed using in vitro human lymphocyte cultures and GC-MS. Results The investigation revealed that the soil extract could cause significant to highly significant genotoxicity in the form of DNA strand break at 25 μL (P<0.01), 50 μL, 100 μL and 200 μL (P<0.001) and chromosomal aberration at 25 μL (P<0.01) and 50 μL and 100 μL (P<0.001). The leachate could cause significant DNA strand break and chromosomal aberration only at 100 μL and 200 μL (P<0.01) dose levels. Conclusion The genotoxicity observed is attributed to carbaril and tetra methyl naphthyl carbamate, the major ingredients of the extracts, as revealed by GC-MS.

  15. Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound.

    Science.gov (United States)

    Abramov, O V; Abramov, V O; Myasnikov, S K; Mullakaev, M S

    2009-03-01

    In the present paper, the kinetics of the water extraction of bitumen from tar sand and crude oil or residual fuel oil from model contaminated soils under the effect of ultrasound is studied. The influence of process temperature, ultrasound power, the nature, and properties of the components of heterogeneous mixtures being separated, and the concentration of added alkaline reagents on the rate and degree of oil recovery is investigated. A functional form of the dependencies of separation efficiency on the mean size of solid particles and the temperature of a working medium is found. Optimum concentrations of reagents in the process solution are determined. It is shown that the spent solution of sodium silicate can be multiply used for separation, its reuse even speeding up the yield of oil in the initial period. Taking into account obtained results, a multipurpose pilot plant with a flow-type reactor for ultrasonic extraction of petroleum and its products from contaminated soils was manufactured and tested. During tests, the purification of sandy soil contaminated with residual fuel oil was carried out which verified the results of laboratory studies.

  16. Toxicity of naturally-contaminated manganese soil to selected crops.

    Science.gov (United States)

    Kováčik, Jozef; Štěrbová, Dagmar; Babula, Petr; Švec, Pavel; Hedbavny, Josef

    2014-07-23

    The impact of manganese excess using naturally contaminated soil (Mn-soil, pseudototal Mn 6494 vs 675 μg g(-1) DW in control soil) in the shoots of four crops was studied. Mn content decreased in the order Brassica napus > Hordeum vulgare > Zea mays > Triticum aestivum. Growth was strongly depressed just in Brassica (containing 13696 μg Mn g(-1) DW). Some essential metals (Zn, Fe) increased in Mn-cultured Brassica and Zea, while macronutrients (K, Ca, Mg) decreased in almost all species. Toxic metals (Ni and Cd) were rather elevated in Mn-soil. Microscopy of ROS, NO, lipid peroxidation, and thiols revealed stimulation in all Mn-cultured crops, but changes were less visible in Triticum, a species with low shoot Mn (2363 μg g(-1) DW). Antioxidative enzyme activities were typically enhanced in Mn-cultured plants. Soluble phenols increased in Brassica only while proteins rather decreased in response to Mn excess. Inorganic anions (chloride, sulfate, and phosphate) were less accumulated in almost all Mn-cultured crops, while the nitrate level rather increased. Organic anions (malate, citrate, oxalate, acetate, and formate) decreased or remained unaffected in response to Mn-soil culture in Brassica, Hordeum, and Triticum but not in Zea. However, the role of organic acids in Mn uptake in these species is not assumed. Because control and Mn-soil differed in pH (6.5 and 3.7), we further studied its impact on Mn uptake in solution culture (using Mn concentration ∼5 mM deducted from water-soluble fraction of Mn-soil). Shoot Mn contents in Mn-treated plants were similar to those observed in soil culture (high in Brassica and low in Triticum) and pH had negligible impact. Fluorescence indicator of "general ROS" revealed no extensive or pH-dependent impact either in control or Mn-cultured roots. Observed toxicity of Mn excess to common crops urges for selection of cultivars with higher tolerance.

  17. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  18. Anaerobic disinfestation of tare soils contaminated with Ralstonia solanacearum biovar 2 and Globodera pallida.

    NARCIS (Netherlands)

    Overbeek, van L.S.; Runia, W.T.; Kastelein, P.; Molendijk, L.P.G.

    2014-01-01

    Tare soil is soil attached to harvested products like potato tubers. Tare soil becomes a considerable waste stream after storage, washing and processing of harvested products. There is a high risk on contamination of tare soils with (quarantine) phytopathogens, because of import of harvested product

  19. Influence of nonlinear sorption kinetics on the slow-desorbing organic contaminant fraction in soil

    NARCIS (Netherlands)

    Schlebaum, W.; Schraa, G.; Riemsdijk, van W.H.

    1999-01-01

    Release rates of hydrophobic organic compounds (HOCs) from the soil matrix influence the availability of HOCs in soils or sediments for microbial degradation or removal by physical means (e.g., soil washing or soil venting). In this study it was shown that the initial contaminant concentration influ

  20. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    Science.gov (United States)

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  1. Land contamination and soil evolution in abandoned mine areas (Italy)

    Science.gov (United States)

    Bini, Claudio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    In Italy ore research and exploitation are nearly exhausted since the end of the last century, leaving on the land a huge amount of mine waste, therefore provoking evident environmental damage including landscape, vegetation and the food chain, and a potential threat to human health. The increasing environmental consciousness of general population compelled Public Administrators to set down effective legislation acts on this subject (e.g. D.L. 152/2006), and more generally on environmental contamination. In this work we present the results of a survey carried out at several mixed sulphides mine sites in Italy, exploited for at least a millennium, and closed in the '60s of the last century. Biogeochemical analyses carried out on 50 soil profiles (mostly Entisols and Inceptisols) and vegetation in the proximal and distal areas of ore exploitation show metal concentrations overcoming legislation limits on average (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). Ni, Cr and Mn concentrations, instead, are generally below the reference levels. Metal concentrations in native vegetation of the examined areas are moderately to highly elevated. Significant amounts of Cu, Pb, Zn in roots of Plantago major and Silene dioica, in leaves of Taraxacum officinale, and Salix spp, have been recorded. Essential elements, in particular, present Translocation Coefficients (TC) >1, with Mn>Zn>Cu>Fe. Toxic elements (Cd, Cr, Pb), instead, present TCparks in these areas could enhance their educational and scientific value, contributing in the meantime to general population amusement and recreation. Finally, it is the occasion for soil scientists to submit to the scientific community new classification proposals of this new kind of soils. Key-words: mine waste, heavy metals, accumulator plants, phytoremediation, soil genesis, soil classification

  2. Biodegradation capacities of diesel soil and microbial composition of a microflora from a contaminated-soil

    Energy Technology Data Exchange (ETDEWEB)

    Penet, S.; Marchal, R.; Monot, F. [Institut Francais du Petrole (IFP), Dept. de Biotechnologie et Chimie de la Biomasse, 92 - Rueil-Malmaison (France); Penet, S.; Sghir, A.; Le Paslier, D. [Genoscope, UMR CNRS 8030 Structure et Evolution des Genomes, 91 - Evry (France)

    2005-07-01

    In hydrocarbon-contaminated soils, efficiency of natural attenuation depends on the biodegradation capacities of local micro-florae. In this study, degradation capacity of a microflora from a soil contaminated by diesel oil was investigated. The degradation rate and mineralisation yield were assessed in closed-flask system by gas chromatography (GC-FID) after a 4-week incubation period. The bacterial composition of the soil microflora was then determined through phylogenetic analysis of 16S rRNA gene sequences. The contaminated-soil microflora extensively degraded commercial diesel oil (DO). At the end of incubation period, all n-alkanes and identifiable iso-alkanes such as farnesane, pristane and phytane were totally consumed. The so-called 'unresolved complex hydrocarbon mixture' (UCM), describing the raised baseline hump of petroleum gas chromatograms, was degraded to a large extent, highlighting the remarkable biodegradation capacity of the soil microflora. The biodegradation rate representing the relative amount of substrate biodegraded was 93%; the mineralisation yield standing for the relative amount of substrate transformed into CO{sub 2} was 54%. A culture-independent molecular phylogenetic approach was used to study prokaryotic diversity in the soil sample. A 16S rRNA gene library was constructed using the total genomic DNA amplified by PCR with primers specific for bacterial domain. Phylogenetic analysis of almost full-length 16S rRNA genes was performed using the ARB software package. Results show that among 328 sequences analysed, 91 operational taxonomic units (OTUs) could be detected. They were affiliated to 9 phylogenetic divisions among which Proteobacteria (73%) was the predominant group. In addition, 56% of the OTUs belonged to novel putative phylo-types never described before. (authors)

  3. Effects of Soil Oxygen Conditions and Soil pH on Remediation of DDT-contaminated Soil by Laccase from White Rot Fungi

    OpenAIRE

    Yuechun Zhao; Xiaoyun Yi

    2010-01-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between ...

  4. Comparison of analytical error and sampling error for contaminated soil.

    Science.gov (United States)

    Gustavsson, Björn; Luthbom, Karin; Lagerkvist, Anders

    2006-11-16

    Investigation of soil from contaminated sites requires several sample handling steps that, most likely, will induce uncertainties in the sample. The theory of sampling describes seven sampling errors that can be calculated, estimated or discussed in order to get an idea of the size of the sampling uncertainties. With the aim of comparing the size of the analytical error to the total sampling error, these seven errors were applied, estimated and discussed, to a case study of a contaminated site. The manageable errors were summarized, showing a range of three orders of magnitudes between the examples. The comparisons show that the quotient between the total sampling error and the analytical error is larger than 20 in most calculation examples. Exceptions were samples taken in hot spots, where some components of the total sampling error get small and the analytical error gets large in comparison. Low concentration of contaminant, small extracted sample size and large particles in the sample contribute to the extent of uncertainty.

  5. Bioremediation of Contaminated Soil with Oils Residuals through Bioaugmentation and Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Maitê Carla Deon

    2012-04-01

    Full Text Available The potential for soil contamination by oil spills is growing, due to heavy industrialization and economic development of countries. Due to this fact, the bioremediation has become an alternative to remediate areas through the use of biological agents. Two microorganisms, isolated from a lipid-rich effluent, were used in the bioaugmentation of soils contaminated with diesel oil, lubricating oil and soybean oil. Natural attenuation tests were conducted as controls. The removal of diesel fuel at the time of 21 d were of 18.5%, 7.30% and 11.38%, respectively, for the bioaugmentation with isolated I1 and I2 and natural attenuation. The removal of lubricating oil were 41.6%, 14.16% and 6.91% respectively for the bioaugmentation with the isolated I1 and I2 and natural attenuation, while for soybean oil removals were of 87 8%, 73.9% and 49.4%. Considering the processes of bioaugmentatiom and natural attenuation, the bioaugmentation with the isolated I1 showed better results, possibly due to the production of compounds capable of reducing the surface tension during the preparation of bioaugmentation.

  6. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Fuel System Supply Point

    Science.gov (United States)

    2014-06-19

    utilizing Fuel System Supply Point Joel Schmitigal U S Army Tank Automotive Research DISTRIBUTION STATEMENT A. Approved for public release; distribution...UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18...Test Center while AMRDEC was conducting Alcohol to Jet (ATJ) fuel flight tests (17). The test results indicated that on-line particle counters

  7. Molecular biomonitoring during rhizoremediation of oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Jussila, M.

    2006-07-01

    Rhizoremediation is the use of microbial populations present in the rhizosphere of plants for environmental cleanup. The idea of this work was that bacteria living in the rhizosphere of a nitrogen-fixing leguminous plant, goat's rue (Galega orientalis), could take part in the degradation of harmful monoaromatic hydrocarbons, such as benzene, toluene and xylene (BTEX), from oil-contaminated soils. In addition to chemical (e.g. pollutant concentration) and physical (e.g. soil structure) information, the knowledge of biological aspects (e.g. bacteria and their catabolic genes) is essential when developing the rhizoremediation into controlled and effective bioremediation practice. Therefore, the need for reliable biomonitoring methods is obvious. The main aims of this thesis were to evaluate the symbiotic G. orientalis - Rhizobium galegae system for rhizoremediation of oil-contaminated soils, to develop molecular methods for biomonitoring, and to apply these methods for studying the microbiology of rhizoremediation. In vitro, Galega plants and rhizobia remained viable in m-toluate concentrations up to 3000 mg/l. Plant growth and nodulation were inhibited in 500 mg/l m-toluate, but were restored when plants were transferred to clean medium. In the greenhouse, Galega showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 mg/l m-toluate. The high aromatic tolerance of R. galegae and the viability of Galega plants in oil-polluted soils proved this legume system to be a promising method for the rhizoremediation of oil-contaminated soils. Molecular biomonitoring methods were designed and/or developed further for bacteria and their degradation genes. A combination of genomic fingerprinting ((GTG)5-PCR), taxonomic ribotyping of 16S rRNA genes and partial 16S rRNA gene sequencing were chosen for molecular grouping of culturable, heterogeneous rhizosphere bacteria. PCR primers specific for

  8. Growth response of Avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum.

    Science.gov (United States)

    Lee, Soo Youn; Kim, Bit-Na; Choi, Yong Woo; Yoo, Kye Sang; Kim, Yang-Hoon; Min, Jiho

    2012-04-01

    The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenolcontaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

  9. Approaches to assessing the risk of chemical contamination of Urban Soils

    Science.gov (United States)

    Makarov, O. A.; Makarov, A. A.

    2016-09-01

    The existing approaches to studying the risk of chemical contamination of soils are analyzed. It is noted that the actual and critical loads of contaminants on the soil cover are often compared for estimating these risks. The insufficient use of economic tools and methods for assessing the risk of soil contamination is emphasized. The sanitary-hygienic standards are found out to be exceeded for lead, zinc, cadmium and copper content in soils in six localities, each of 6250 m2 in the area, situated in the industrial and transport zones of Podol'sk and Moscow. The values of actual and maximal permissible damage exerted by the heavy-metal contamination to the studied soils are calculated. The probable damage R and the degree of probable damage implementation (DPDI) are used as the indices of soil contamination risk.

  10. Thermal desorption of PCBs from contaminated soil with copper dichloride.

    Science.gov (United States)

    Liu, Jie; Qi, Zhifu; Li, Xiaodong; Chen, Tong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    Copper dichloride is an important catalyst both in the dechlorination of chlorinated aromatic compounds and the formation of PCDD/Fs. The effect of copper dichloride on polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) was studied in treated soil and off gas after thermal desorption of PCB-contaminated soil at 300, 400, 500, 600 °C. The presence of copper dichloride clearly enhances thermal desorption by promoting PCBs removal, destruction, and dechlorination. After thermal treatment at 600 °C for 1 h, the removal efficiency and destruction efficiency for PCBs reached 98.1 and 93.9%, respectively. Compared with the positive influence on PCBs, copper dichloride catalyzed large amount of PCDFs formation at 300 °C, with the concentration ratio of 2.35. The effect of CuCl2 on PCDFs formation weakened with the rising temperature since PCDFs destruction became dominant under higher temperature. Different from PCDFs, PCDDs concentration in treated soil and off gas decreased continuously with the increasing temperature.

  11. Bioremediation treatment of MTBE and ETBE in contaminated soils

    Directory of Open Access Journals (Sweden)

    Alissara Reungsang

    2006-07-01

    Full Text Available Three Methyl Tertiary Butyl Ether (MTBE degradative consortia were isolated from gasoline-contaminated soil namely: mKMS, mKGS1 and mKGS2. These consortia were tested for the ability to degrade Ethyl Tertiary Butyl Ether (ETBE at the concentration of 100 mg/L and to degrade a mixture of MTBE and ETBE in the Nutrient Broth (NB media at the concentration of 50 mg/L each. The results showed that mKGS1 was the best degraders in which 74% of MTBE, 25% of ETBE and 16% of MTBE and 23% of ETBE in the mixture were degraded, within 30 days. mKGS1 was then further used in the bioaugmentation and biostimulation experiments. Degradation of MTBE increased from 34% to 61% after 70 days when mKGS1 was amended in soil mixed with the combination of MTBE and ETBE (at 50 mg/L each. However, mKGS1 did not significantly help the ETBE degradation when it was amended in soil (biostimulation technique. One percent glucose significantly stimulated the degradation of MTBE by the indigenous microorganisms. The presence of mKGS1 and an addition of 1% glucose as extra carbon source improved the degradation of MTBE, from 42 to 51%, suggesting mKGS1 played an important role in the degradation of MTBE.

  12. Use of sugarcane filter cake and nitrogen, phosphorus and potassium fertilization in the process of bioremediation of soil contaminated with diesel.

    Science.gov (United States)

    Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal

    2016-09-01

    This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).

  13. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

  14. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.

    Science.gov (United States)

    Chigbo, Chibuike

    2015-06-01

    This study compared the phytoremediation potential of Zea mays in soil either aged or freshly amended with chromium (Cr) and benzo[a]pyrene (B[a]P). Z. mays showed increased shoot biomass in aged soils than in freshly spiked soils. The shoot biomass in contaminated soils increased by over 50% in aged soil when compared to freshly amended soils, and over 29% more Cr was accumulated in the shoot of Z. mays in aged soil than in freshly amended soil. Planting Z. mays in aged soil helped in the dissipation of more than 31% B[a]P than in freshly spiked soil, but in the absence of plants, there seemed to be no difference between the dissipation rates of B[a]P in freshly and aged co-contaminated soil. Z. mays seemed to enhance the simultaneous removal of Cr and B[a]P in aged soil than in freshly spiked soil and hence can be a good plant choice for phytoremediation of co-contaminated soils.

  15. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  16. Desorption and Degradation of Organic Contaminants in Soil by Microwave Radiation

    Science.gov (United States)

    Jeong, S.; Kim, H.

    2011-12-01

    Many military bases located in the down towns of South Korea are asked to move outside of the urban areas due to the growth of the cities. During the past 60 years, many military bases of South Korea have been operated and according to that, parts of the soil have been polluted with organic contaminants such as total petroleum hydrocarbons (TPH), solvents, etc. In the case of South Korea, rapid remediation of the contaminated soil is required for efficient development of land. Thermal desorption is one of the most efficient and rapid remediation methods for polluted soil to clean up, but the fact is it consumes a lot of energy. In this study, desorption and degradation of organic contaminants in soil using microwave radiation is investigated in order to energy efficient and rapid remediation technique development. Polluted soil collected from a military base was remediated in the laboratory using a home made microwave reactor. In order to study uncontaminated soil was also intentionally contaminated with diesel, TCE, and phenanthrene, respectively, for a month and used for experiments. Contaminated soil places within stainless steel reactor and microwave radiates with nitrogen gas. Emitted gas from the reactor was collected with methanol or acetonitrile solution every 3 minute for 15 minutes, and analyzed with GC, HPLC, GC/MS, respectively. The TPH contaminated soil from military base desorbed initially light hydrocarbon (retention time reaction, iron powder, graphite will be added to the contaminated soil and desorption and degradation properties of this soil during microwave radiation will be studied.

  17. [Strengthening Effects of Sodium Salts on Washing Kerosene Contaminated Soil with Surfactants].

    Science.gov (United States)

    Huang, Zhao-lu; Chen, Quan-yuan; Zhou, Juan; Xie, Mo-han

    2015-05-01

    The impact of sodium salt on kerosene contaminated soil washing with surfactants was investigated. The results indicated that sodium silicate greatly enhanced the washing efficiency of SDS. Sodium tartrate can largely enhance the washing efficiency of SDBS and Brij35. Sodium salts can enhance the washing efficiency on kerosene contaminated with TX-100. No significant differences were observed between different sodium salts. Sodium salt of humic acid and sodium silicate had similar enhancement on kerosene contaminated soil washing with saponin. Sodium humate can be a better choice since its application can also improve soil quality. The enhancement of sodium silicate on kerosene contaminated soil washing with Tw-80 increased with the increase of Tw-80 dosage. However, the impact of sodium chloride and sodium tartrate was opposite to sodium silicate. Sodium salts can reduce surface tension and critical micelle concentration of ionic surfactants to enhance the washing. Sodium salts can also reduce re-adsorption of oil to soil with nonionic surfactants to enhance the washing. Kerosene contamination can increase the contact angle of soil, which indicated the increase of hydrophilicity of soil. Washing with surfactants can reduce the hydrophilicitiy of soil according to contact angle measurement, which indicated that kerosene contaminated soil remediation with surfactant can also benefit nutrient and water transportation in the contaminated soil.

  18. EFFECT OF REFINED PETROLEUM PRODUCTS CONTAMINATION ON BACTERIAL POPULATION AND PHYSICOCHEMICAL CHARACTERISTICS OF CULTIVATED AGRICULTURAL SOIL

    Directory of Open Access Journals (Sweden)

    Adewale Sogo Olalemi

    2012-10-01

    Full Text Available An investigation into the effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil was carried out. The soil samples obtained from the Teaching and Research Farm, Obakekere, Federal University of Technology, Akure, Ondo State were contaminated with varying volumes of petrol, diesel and kerosene. The results revealed higher bacterial populations in uncontaminated soils than contaminated soils. The counts of bacteria ranged from 3.0 × 105 to 5.0 × 105 cfu/g in uncontaminated soils and 1.0 × 105 to 3.0 × 105 cfu/g in contaminated soils. The isolated bacteria were identified as Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, Corynebacterium variabilis, Pseudomonas fluorescens. The contamination had no significant effect on pH, potassium, sodium, organic carbon and nitrogen content of the soils, while the moisture, calcium, phosphorus and magnesium content of the contaminated soils were significantly different (P < 0.05 compared with the uncontaminated soils. The ability of Bacillus subtilis, Flavobacterium lutescens, Micrococcus luteus, and Pseudomonas fluorescens to utilize the refined petroleum products suggest that these bacteria had potential to bioremediate petroleum contaminated soils.

  19. Physicochemical and mineralogical characterization of transuranic contaminated soils for uranium soil integrated demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Elless, M.P. [Oak Ridge Inst. for Science and Education, TN (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States)

    1994-10-01

    DOE has initiated the Uranium Soils Integrated Demonstration (USID) project. The objective of the USID project is to develop a remediation strategy that can be adopted for use at other DOE sites requiring remediation. Four major task groups within the USID project were formed, namely the Characterization Task Group (CTG), the Treatability Task Group (TTG), the Secondary Waste Treatment and Disposal Task Group (SWTDTG), and the Risk and Performance Assessment Task Group (RPATG). The CTG is responsible for determining the nature of the uranium contamination in both untreated and treated soil. The TTG is responsible for the selective removal of uranium from these soils in such a manner that the leaching does not seriously degrade the soil`s physicochemical characteristics or generate a secondary waste form that is difficult to manage and/or dispose. The SWTDTG is responsible for developing strategies for the removal of uranium from all wastewaters generated by the TTGs. Finally the RPATG is responsible for developing the human health and environmental risk assessment of the untreated and treated soils. Because of the enormity of the work required to successfully remediate uranium-contaminated soils, an integrated approach was designed to avoid needless repetition of activities among the various participants in the USID project. Researchers from Oak Ridge National Laboratory (ORNL), Los Alamos National Laboratory (LANL), Argonne National Laboratory (ANL), and Idaho National Engineering Laboratory (INEL) were assigned characterization and/or treatability duties in their areas of specialization. All tasks groups are involved in the integrated approach; however, the thrust of this report concentrates on the utility of the integrated approach among the various members of the CTG. This report illustrates the use of the integrated approach for the overall CTG and to provide the results generated specifically by the CTG or ORNL from FY1993 to the present.

  20. An Analysis of Microbial Contamination in Military Aviation Fuel Systems

    Science.gov (United States)

    2003-03-01

    aircraft. Multiple samples were taken of the various tanks due to the recent drop in average ambient temperatures (normal winter season), which led...Relationship With Fuel Fouling,” Revista Argentina de Microbiologia 30:105-114. 1998. Finefrock, V. H. and London, S. A. Microbial...Hydrocarbon Fuels and Its Control,” Revista de Microbiologia 30:01-10. 1999. Geiss, K. T. and Frazier, J. M. “In Vitro Toxicities of Experimental

  1. Natural revegetation of hydrocarbon-contaminated soil in semi-arid grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Bizecki Robson, D.; Knight, J. D.; Farrell, R. E.; Germida, J. J. [University of Saskatchewan, Dept. of Soil Science, Saskatoon, SK (Canada)

    2004-01-01

    Phytoremediation, or the use of plants to degrade and contain soil contaminants is considered a cost-effective decontaminant for sites contaminated by spills in the oil and gas producing areas of Western Canada. The objective of this study was to determine if contamination by hydrocarbons changes soil properties, species composition, and species abundance when compared with uncontaminated plots, and to identify species and functional groups unique to contaminated sites that may be further screened for their hydrocarbon-degrading ability. In pursuit of these objectives the effect of contamination on coverage, litter and bare ground was examined, differences in species composition between contaminated and uncontaminated sites were assessed, and the ability to fix nitrogen, and form mycorrhiza, life form, pollination mode, seed dispersal and reproduction mode of each species was determined. Results showed less vegetation and litter cover in contaminated plots, and significantly higher soil carbon to nitrogen ratios. Species diversity was also lower on contaminated sites, although species richness was not significantly different. Self-pollinated species were significantly more common on contaminated sites. Five grasses and three forbs were identified as tolerant of hydrocarbon-contaminated soils, with two grasses -- Agropyron smithii, and Agropyron trachycaulum -- being the most promising for reclamation. The low vegetation cover on contaminated plots is attributed to high pH and carbon to nitrogen ratios, and low nitrogen and phosphorus that results from soil disturbance. High electrical conductivity is also considered to adversely affect vegetation and litter cover on contaminated sites. 54 refs., 3 tabs., 1 fig.

  2. On-site radioactive soil contamination at the Andreeva Bay shore technical base, Northwest Russia.

    Science.gov (United States)

    Reistad, O; Dowdall, M; Selnaes, Ø G; Standring, W J F; Hustveit, S; Steenhuisen, F; Sørlie, A

    2008-07-01

    The radioactive waste (RAW) storage site at Andreeva Bay in the Russian Northwest has experienced radioactive contamination both as a result of activities carried out at the site and due to incidents that have occurred there in the past such as accidental releases of radioactive materials. The site is an interesting case study for decommissioning due to the extremely large amounts of radioactivity present at the site and the conditions under which it is stored; very little has been previously published in the scientific literature about this site. This paper complements the paper describing dose rates at Andreeva Bay which is published in this issue of Journal of Environmental Radioactivity by the same authors. This study presents new data related to the activity concentrations of (137)Cs and (90)Sr in surface soils and measurements of alpha- and beta-particle fluxes taken at different areas around the site. Limited data on 60Co is also presented. The results of the study indicate that the main areas of site contamination are associated with the former spent nuclear fuel storage facility at Building 5, due to accidental discharges which began in 1982. Substantial contamination is also observed at the solid radioactive waste storage facilities, probably due to the ingress of water into these facilities. More than 240 samples were measured: maximum contamination levels were 1 x 10(6)Bq/kg (137)Cs (mean value 4.1 x 10(5)Bq/kg) and 4 x 10(6)Bq/kg (90)Sr (mean value 1.2 x1 0(5)Bq/kg). Localised patches of alpha and beta contamination were also observed throughout the site.

  3. Enhanced degradation activity by endophytic bacteria of plants growing in hydrocarbon contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, L.; Germida, J.J. [Saskatchewan Univ., Saskatoon, SK (Canada); Greer, C.W. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2006-07-01

    The feasibility of using phytoremediation for cleaning soils contaminated with petroleum hydrocarbons was discussed. Petroleum hydrocarbons are problematic because of their toxicity, mobility and persistence in the environment. Appropriate clean-up methods are needed, given that 60 per cent of Canada's contaminated sites contain these compounds. Phytoremediation is an in situ biotechnology in which plants are used to facilitate contaminant removal. The approach relies on a synergistic relationship between plants and their root-associated microbial communities. Previous studies on phytoremediation have focussed on rhizosphere communities. However, it is believed that endophytic microbes may also play a vital role in organic contaminant degradation. This study investigated the structural and functional dynamics of both rhizosphere and endophytic microbial communities of plants from a phytoremediation field site in south-eastern Saskatchewan. The former flare pit contains up to 10,000 ppm of F3 to F4 hydrocarbon fractions. Root samples were collected from tall wheatgrass, wild rye, saltmeadow grass, perennial ryegrass, and alfalfa. Culture-based and culture-independent methods were used to evaluate the microbial communities associated with these roots. Most probable number assays showed that the rhizosphere communities contained more n-hexadecane, diesel fuel, and PAH degraders. However, mineralization assays with 14C labelled n-hexadecane, naphthalene, and phenanthrene showed that endophytic communities had more degradation activities per standardized initial degrader populations. Total community DNA samples taken from bulk, rhizosphere, and endophytic samples, were analyzed by denaturing gradient gel electrophoresis. It was shown that specific bacteria increased in endophytic communities compared to rhizosphere communities. It was suggested plants may possibly recruit specific bacteria in response to hydrocarbon contamination, thereby increasing degradation

  4. Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Kukharchyk, T. I.; Khomich, V. S.; Kakareka, S. V.; Kurman, P. V.; Kozyrenko, M. I.

    2013-02-01

    The content of polycyclic aromatic hydrocarbons (PAHs) in the soils of urbanized areas, including the impact zones of Belarus, were studied. The concentrations of 16 PAHs in the soils were determined for individual and high-rise building zones, forests, and forest parks of Belarus. The levels of the PAH accumulation in the soils of different industrial enterprises and boiler stations were analyzed. Possible sources of soil contamination with PAHs were considered, and the structure of the PAHs in the soils was shown. The levels of the soil contamination were determined from the regulated parameters for individual compounds and the sum of 16 PAHs.

  5. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil.

    Science.gov (United States)

    Jayanthy, V; Geetha, R; Rajendran, R; Prabhavathi, P; Karthik Sundaram, S; Dinesh Kumar, S; Santhanam, P

    2014-09-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV-vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC-MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram.

  6. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  7. Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil

    Directory of Open Access Journals (Sweden)

    Rıdvan Kızılkaya

    2012-07-01

    Full Text Available nsecticides are used in modern agriculture in large quantities to control pests and increase crop yield. Their use, however, has resulted in the disruption of ecosystems because of the effects on non-target soil microorganisms, some environmental problems, and decreasing soil fertility. These negative effects of synthetic pesticides on the environment have led to the search for alternative means of pest control. One such alternative is use of natural plant products such as azadirachtin that have pesticidal activity. The aim of this experiment was to study the effect of soil contamination by azadirachtin (C35H44O16 on dehydrogenase (DHA and catalase activity (CA of soil under field conditions in Perm, Russia. The tests were conducted on loamy soil (pHH2O 6.7, ECH2O 0.213 dSm-1, organic carbon 0.99%, to which the following quantities of azadirachtin were added: 0, 15, 30 and 60 mL da-1 of soil. Experimental design was randomized plot design with three replications. The DHA and CA analyses were performed 7, 14 and 21 days after the field experiment was established. The results of field experiment showed that azadirachtin had a positive influence on the DHA and CA at different soil sampling times. The increased doses of azadirachtin applied resulted in the higher level of DHA and CA in soil. The soil DHA and CA showed the highest activity on the 21th day after 60 mL azadirachtin da-1 application doses.

  8. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments.

    Science.gov (United States)

    Okkenhaug, Gudny; Amstätter, Katja; Lassen Bue, Helga; Cornelissen, Gerard; Breedveld, Gijs D; Henriksen, Thomas; Mulder, Jan

    2013-06-18

    Antimony (Sb) in lead bullets poses a major environmental risk in shooting range soils. Here we studied the effect of iron (Fe)-based amendments on the mobility of Sb in contaminated soil from shooting ranges in Norway. Untreated soil showed high Sb concentrations in water extracts from batch tests (0.22-1.59 mg L(-1)) and soil leachate from column tests (0.3-0.7 mg L(-1)), occurring exclusively as Sb(V). Sorption of Sb to different iron-based sorbents was well described by the Freundlich equation (Fe2(SO4)3, log KF = 6.35, n = 1.51; CFH-12 (Fe oxyhydroxide), log KF = 4.16-4.32, n = 0.75-0.76); Fe(0) grit, log KF = 3.26, n = 0.47). These sorbents mixed with soil (0.5 and 2% w/w), showed significant sorption of Sb in batch tests (46-92%). However, for Fe2(SO4)3 and CFH-12 liming was also necessary to prevent mobilization of lead, copper, and zinc. Column tests showed significant retention of Sb (89-98%) in soil amended with CFH-12 (2%) mixed with limestone (1%) compared to unamended soil. The sorption capacity of soils amended with Fe(0) (2%) increased steadily up to 72% over the duration period of the column test (64 days), most likely due to the gradual oxidation of Fe(0) to Fe oxyhydroxides. Based on the experimental results, CFH-12 and oxidized Fe(0) are effective amendments for the stabilization of Sb in shooting range soils.

  9. Trophic structure of amoeba communities near roots of Medicago sativa after contamination with fuel oil no. 6.

    Science.gov (United States)

    Cortés-Pérez, Sandra; Rodríguez-Zaragoza, Salvador; Mendoza-López, Ma Remedios

    2014-02-01

    Root exudation increases microbial activity, selecting bacterial and fungal communities that metabolize organic matter such as hydrocarbons. However, a strong contamination pulse of hydrocarbons around plant roots may reorganize the soil's microbial trophic structure toward amoebae feeding on bacteria. We conducted a microcosm experiment to elucidate the effect of Medicago sativa on the trophic structure of naked amoebae after a strong pulse of pollution (50,000 ppm of fuel oil no. 6, which is a mixture of long chains ranging from C10 to C28). Plants were seeded 24 h after contamination and species of amoebae in the microcosms were identified at 1, 30, and 60 days after pollution. Several species from three trophic groups of naked amoeba were still alive 24 h after the hydrocarbon pulse. Non-planted microcosms harbored three trophic groups after 60 days, while planted ones nourished four groups. The bacterivore group was the most diverse in all microcosms, followed by protist-eaters and omnivores. The quantity of amoebae was significantly higher (3.4×10(3) organisms/g soil) in the planted pots than in the non-planted ones (1.3×10(3) organisms/g soil after 30 days of pollution (P ≤ 0.01). The shortest hydrocarbon chains (C10-C14) disappeared or diminished in all microcosms, and the longest ones increased in the planted ones. M. sativa thus exerted a positive effect on species richness, quantity, and the composition of amoebae trophic groups in contaminated soil. This indirect effect on bacterial predators is another key factor underlying hydrocarbon assimilation by living organisms during phytoremediation.

  10. Isolation and identification of dioxin degrading bacteria found in soils contaminated with dioxins

    Science.gov (United States)

    There is a need to identify bacteria that can degrade environmental contaminants; a fruitful place to identify such bacteria is within contaminated soil. The dioxin content and congener distribution in soils collected from adjacent to old railroad track that were treated with pentachlorophenol (PCP...

  11. Contamination limits for real and personal property. Progress report, January--June 1976. [Plutonium in soils

    Energy Technology Data Exchange (ETDEWEB)

    Healy, J.W.; Wenzel, W.J.

    1976-09-01

    Progress is reported on the plutonium in soils limit and on the surface contamination study. The report on the soils limit is being typed in draft form for review at other ERDA facilities. A model for surface contamination was derived and programmed but parametric studies have not yet been done.

  12. Heavy metal accumulation in earthworms exposed to spatially variable soil contamination.

    NARCIS (Netherlands)

    Marinussen, M.P.J.C.

    1997-01-01

    Ecotoxicity of contaminated soil is commonly tested in standard laboratory tests. Extrapolation of these data to the field scale is complicated due to considerable differences between conditions in laboratory tests and conditions in situ in contaminated soils. In this thesis, heavy metal accumulatio

  13. Microbial indicators of fecal contamination in soils under different wastewater irrigation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Godinez, C. A.; Palacios-Lopez, O. A.; Munoz-Castellanos, L. N.; Saucedo-Teran, R.; Rubio-Arias, H.; Nevarez-Moorillon, G. V.

    2009-07-01

    The use of wastewater to irrigate produce was a common practice in some suburban areas in Mexico. The continuous use of wastewater can increase the chance of fecal soil contamination, which can percolate in soil and finally cause groundwater contamination. A suburban area in Chihuahua, mexico, has been traditionally irradiated with wastewater for production of agriculture goods, including produce and animal foodstuffs. (Author)

  14. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    Science.gov (United States)

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  15. CSOIL 2000 an exposure model for human risk assessment of soil contamination. A model description

    NARCIS (Netherlands)

    Brand E; Otte PF; Lijzen JPA; LER

    2007-01-01

    This RIVM description of the CSOIL 2000 model deals, for the first time, with all aspects of the model. CSOIL 2000 can be used to derive intervention values. Intervention values are calculated for contaminated soil and represent a measure for determining when contaminated soil needs to be

  16. CSOIL 2000 an exposure model for human risk assessment of soil contamination. A model description

    NARCIS (Netherlands)

    Brand E; Otte PF; Lijzen JPA; LER

    2007-01-01

    This RIVM description of the CSOIL 2000 model deals, for the first time, with all aspects of the model. CSOIL 2000 can be used to derive intervention values. Intervention values are calculated for contaminated soil and represent a measure for determining when contaminated soil needs to be remediated

  17. PHYTOREMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVATIVES: GREENHOUSE AND FIELD EVALUATIONS

    Science.gov (United States)

    Phytoremediation was evaluated as a potential treatment for the creosote-contaminated surface soil at the McCormick and Baxter (M&B) Superfund Site in Portland, OR. Soil a the M&B site is contaminated with pentachlorophenol (PCP) and polyaromatic hydrocarbons (PAHs). Eight indivi...

  18. PHYTOREMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVATIVES: GREENHOUSE AND FIELD EVALUATIONS

    Science.gov (United States)

    Phytoremediation was evaluated as a potential treatment for the creosote-contaminated surface soil at the McCormick and Baxter (M&B) Superfund Site in Portland, OR. Soil a the M&B site is contaminated with pentachlorophenol (PCP) and polyaromatic hydrocarbons (PAHs). Eight indivi...

  19. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: consequences on biodegradation.

    Science.gov (United States)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-06-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5-6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives.

  20. Analysis of predictors related to soil contamination in recreational areas of Romania.

    Science.gov (United States)

    Gagiu, C; Pica, E M; Querol, X; Botezan, C S

    2015-12-01

    Soil contamination in recreational areas can considerably affect children's health, as they are the segment of the population most sensitive to anthropogenic contamination. Soil contamination in recreational areas is influenced by a number of factors such as type and age of the recreational area, nearby traffic intensity, proximity to industrial areas, presence of vegetation, level of usage, treated wood structures, and the extent of maintenance operations carried out in the area. These can most often be observed during a simple site visit. The purpose of the present research is to analyze to which extent the presence of these factors can trigger an alarm signal, highlighting soil contamination in urban recreational areas. In this regard, soil contamination was scaled using the integrated pollution index applied on nine distinctive contaminants (As, Cu, Cd, Zn, Pb, Hg, Co, Ni, Mg) identified using inductively coupled plasma mass spectrometry (ICP-MS). Multiple linear regression analysis was performed in order to assess predictors of soil contamination. The research was carried out in a number of 88 recreational areas, parks, and playgrounds from 19 Romanian cities, revealing the fact that proximity to industrial areas and intensive traffic had statistically significant effects on soil contamination. Furthermore, it was observed that in 78 out of the 88 analyzed locations, the concentrations of contaminants exceeded the guidelines established through national legislation, thus confirming the presumption that high concentrations of contaminants exist in the parks and playgrounds of Romania.

  1. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    Science.gov (United States)

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and contaminated soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO2 kg(-1) h(-1), while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO2 kg(-1) h(-1). The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g(-1)). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g(-1) of perlite) and dehydrogenase (~3000 μg INF g(-1) of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO2 kg(-1) h(-1)) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  2. Selection of surfactant in remediation of DDT-contaminated soil by comparison of surfactant effectiveness.

    Science.gov (United States)

    Guo, Ping; Chen, Weiwei; Li, Yueming; Chen, Tao; Li, Linhui; Wang, Guanzhu

    2014-01-01

    With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.

  3. Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health.

    Science.gov (United States)

    Chae, Yooeun; Cui, Rongxue; Woong Kim, Shin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-01-01

    It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health.

  4. Effects of biosurfactant production by indigenous soil microorganisms on bioremediation of a co-contaminated soil in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, F.; Mulligan, C.N. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering

    2007-07-01

    The challenge of remediating soils that are contaminated with both hydrocarbon compounds and metals was discussed, with particular reference to an in-situ bioremediation technique that was developed in the 1970s to deal with contaminated soils. The technique involves a two-stage process where water with added oxygen and nutrients is applied onto and injected into a contaminated area to stimulate the indigenous microbial populations in the soil. In addition to using organic pollutants as their carbon source, microorganisms can facilitate the removal of metals from the soil matrix and attenuate the toxicity of certain metals. Extraction wells placed downstream of the contaminated soils are used to remove and treat the water to eliminate any mobilized contaminants. This paper presented the results of batch experiments that evaluated the feasibility of biosurfactant production for the purpose of bioremediating a soil contaminated with aged petroleum hydrocarbons and heavy metals. The first phase of the study examined the growth of the native microbial population and the biodegradation of petroleum hydrocarbons, the production of biosurfactant and the mobilization of the total petroleum hydrocarbons (TPH) and metals into the aqueous phase. Biodegradation of petroleum hydrocarbons was observed in both soil and soil amended with nitrogen and phosphorous. However, the nutrient-amended soil had higher biodegradation of petroleum hydrocarbons, where 36 per cent of TPH was degraded by the end of the 50 day experiment, compared to 15 per cent for the non-amended soils. The concentration of biosurfactants in the same period increased 3 times their critical micelle concentration. It was concluded that biosurfactant production enhances the bioremediation of co-contaminated soils. 36 refs., 1 tab., 8 figs.

  5. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  6. Nature and extent of metal-contaminated soils in urban environments (keynote talk).

    Science.gov (United States)

    Mielke, Howard W

    2016-08-01

    Research on the nature and extent of metal-contaminated soil began with an urban garden study in Baltimore, MD (USA). Largest quantities of soil metals were clustered in the inner city with lesser amounts scattered throughout metropolitan Baltimore. The probability values of metal clustering varied from P value 10(-15)-10(-23) depending on element. The inner-city clustering of lead (Pb) could not be explained by Pb-based paint alone. A major Pb source was tetraethyl lead (TEL), developed as an anti-knock agent for use in vehicle fuel, thereby making highway traffic flow a toxic substance delivery system in cities. Further study in Minneapolis and St. Paul confirmed the clustering of inner-city soil metals, especially Pb. Based on the evidence, the Minnesota State Legislature petitioned Congress to curtail Pb additives resulting in the rapid phasedown of TEL on January 1, 1986, 10 years ahead of the EPA scheduled ban. Further research in New Orleans, Louisiana (NOLA), verified the link between soil Pb, blood Pb, morbidity, and societal health. Although Pb is a known cause of clinical impairment, there is no known effective medical intervention for reducing children's blood Pb exposure. Ingestion and inhalation are routes of exposure requiring prevention, and soil is a reservoir of Pb. Children's blood Pb exposure observed in pre-Hurricane Katrina (August 29, 2005) NOLA underwent substantial decreases 10 years post-Katrina due to many factors including input of low Pb sediment residues by the storm surge and the introduction of low Pb landscaping materials from outside of the city. Investigation on the topic is ongoing.

  7. Plutonium contamination in soils and sediments at Mayak PA, Russia.

    Science.gov (United States)

    Skipperud, Lindis; Salbu, Brit; Oughton, Deborah H; Drozcho, Eugeny; Mokrov, Yuri; Strand, Per

    2005-09-01

    The Mayak Production Association (Mayak PA) was established in the late 1940's to produce plutonium for the Soviet Nuclear Weapons Programme. In total, seven reactors and two reprocessing plants have been in operation. Today, the area comprises both military and civilian reactors as well as reprocessing and metallurgical plants. Authorized and accidental releases of radioactive waste have caused severe contamination to the surrounding areas. In the present study, [alpha]-spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to determine plutonium activities and isotope ratios in soil and sediment samples collected from reservoirs of the Techa River at the Mayak area and downstream Techa River. The objective of the study was to determine the total inventory of plutonium in the reservoirs and to identify the different sources contributing to the plutonium contamination. Results based on [alpha]-spectrometry and ICP-MS measurements show the presence of different sources and confirmed recent reports of civilian reprocessing at Mayak. Determination of activity levels and isotope ratios in soil and sediment samples from the Techa River support the hypothesis that most of the plutonium, like other radionuclides in the Techa River, originated from the very early waste discharges to the Techa River between 1949 and 1951. Analysis of reservoir sediment samples suggest that about 75% of the plutonium isotopes could have been released to Reservoir 10 during the early weapons production operation of the plant, and that the majority of plutonium in Reservoir 10 originates from discharges from power production or reprocessing. Enhanced 240Pu/239Pu atom ratios in river sediment upper layers (0-2 cm) between 50 and 250 km downstream from the plant indicate a contribution from other, non-fallout sources.

  8. Remediation of metal-contaminated urban soil using flotation technique.

    Science.gov (United States)

    Dermont, G; Bergeron, M; Richer-Laflèche, M; Mercier, G

    2010-02-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions >250microm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor>2.5), and volume reduction (>80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles (flotation selectivity drop, especially with a long flotation time (>5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 microm) showed the best flotation selectivity. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    Science.gov (United States)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  10. Uptake of trace elements and PAHs by fruit and vegetables from contaminated soils

    DEFF Research Database (Denmark)

    Samsøe-Petersen, L.; Larsen, Erik Huusfeldt; Larsen, P.B.

    2002-01-01

    The aims of this study were to investigate the uptake of seven trace elements and five PAHs in crop plants in order to establish advice regarding consumption of fruit and vegetables grown in soils contaminated by trace elements and PAHs. In a field experiment, vegetables were grown in two...... contaminated soils and in a reference soil, whereas fruits were collected from uncontaminated and contaminated private gardens. The results showed elevated levels of several trace elements and PAHs in the vegetables from contaminated soil. Bioconcentration factors (BCF values), based on dry weight, were below.......05, respectively, and those for benzo[a]pyrene were 0.004, 0.002, and 0.002, respectively. For most metals in most vegetables, linear regression showed good correlation between soil and crop concentrations. For PAHs, such good correlation was generally not found. The contents of contaminants in fruits were...

  11. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    Science.gov (United States)

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  12. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  13. Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions

    OpenAIRE

    Wilkens, B. J.

    1995-01-01

    The research reported here is aimed at improving the knowledge of the mobility of the heavy metals cadmium and zinc in vulnerable soil types. We use the term vulnerable with reference to vulnerability of groundwater for contamination by soil leaching. At diffuse soil immissions of heavy metals, accumulation is often supposed to occur mainly in the topsoil. Binding of heavy metals in this soil compartment is relatively strong, because of de presence of soil organic matter, clay-minerals and se...

  14. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junhui, E-mail: liuzhe2000_2005@163.com [College of Life Sciences, Zhejiang University, Hangzhou 310058 (China) and College of Life Sciences, Taizhou University, Linhai 317000 (China); Hang Min, E-mail: minhang@zju.edu.cn [College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2009-06-15

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg{sup -1}), and weakly contaminated with Cu (256.36 mg kg{sup -1}) and Zn (209.85 mg kg{sup -1}). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  15. Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: a survival-based approach.

    Science.gov (United States)

    Charrois, J W; McGill, W B; Froese, K L

    2001-11-01

    Quantification of risks to the ecosystem is necessary for cost-effective remediation strategies. Contaminant endpoints need to be established that consider the bioavailability of toxicants in soil. The challenge is to develop methods that assign risk to the bioavailable toxic contaminants, thereby protecting ecosystems, while balancing remediation costs. Our objective was to evaluate changes in bioavailability of creosote constituents in soils to earthworms. An acute ecotoxicological investigation of three weathered creosote-contaminated and two slurry-phase-biotreated soils was conducted using a 14-d earthworm (Eisenia fetida) survival bioassay. Soil characterization (physical and chemical) and contaminant concentration data (polycyclic aromatic hydrocarbons [PAH] and total dichloromethane extractable organics [DEO]) were also determined. The toxicity of the soils could not always be predicted based on chemical concentrations alone. Soils having a low PAH:DEO ratio had higher cumulative earthworm survival times as measured by earthworm-days. We propose that the DEO fraction may regulate toxicity by altering bioavailability of toxicants.

  16. Microbial interactions with organic contaminants in soil: definitions, processes and measurement.

    Science.gov (United States)

    Semple, Kirk T; Doick, Kieron J; Wick, Lukas Y; Harms, Hauke

    2007-11-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil.

  17. INFLUENCE OF HEXAVALENT CHROMIUM INITIAL CONCENTRATION ON RETARDATION FACTOR AND CONTAMINANT VELOCITY IN A SOIL MEDIA

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2016-02-01

    Full Text Available Sources of soil and ground water contamination are many and include many folds of accidental spills and leaks of toxic and hazardous chemicals. Preparation of ground water contamination model needs good understanding of the behavior of contaminant transport through soil media for predicting the level of contamination of ground water in the near future at the intended site conditions. Sorption is a natural process; due to its presence, the contaminant can move slowly as compared to the ground water and hence the effects of sorption must be taken into consideration while predicting the travel time of the contaminant to reach the ground water sources. This paper discusses the results of column test studies carried out in the laboratory under controlled conditions about the spreading of contaminant (Hexavalent chromium, Cr (VI through the clay mixed red soil at two different initial concentrations (800 mg/L and 4200 mg/L. The variations of the contaminant flow velocity and retardation factor for two different initial concentrations of contaminant were brought out and discussed. The contaminant flow velocity drastically coming down for a relative concentration of 0 to 0.2 and beyond this range, the contaminant flow velocity value is decreasing in a slow rate for both the lower and higher initial contaminant concentrations tested. At the lower relative concentration, the higher retardation factor was observed and it may be due to slowly filling the available sorption sites in the soil column.

  18. Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure

    OpenAIRE

    Sutton, Nora B.; Maphosa, Farai; Morillo, Jose A.; Abu Al-Soud, Waleed; Langenhoff, Alette A. M.; Grotenhuis, Tim; Huub H M Rijnaarts; Smidt, Hauke

    2013-01-01

    Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination signific...

  19. Contamination of Harvested Organs in Root Crops Grown on Chlordecone-Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    Y. M. CABIDOCHE; M. LESUEUR-JANNOYER

    2012-01-01

    Chlordecone,one of the most persistent organochlorine pesticides,was applied between 1972 and 1993 in banana fields in the French West Indies,which results in long-term pollution of soils and contamination of waters,aquatic biota,and crops.As human exposure to chlordecone is mainly due to food contamination,early research was focused on chlordecone transfer to crops.Field trials were conducted to investigate chlordecone contamination of yam,sweet potato,turnip,and radish grown on a Ferralic Nitisol polluted by chlordecone.We also carried out trials on yam,courgette,and tomato under greenhouse conditions with homogenized Andosol and Nitisol,polluted by chlordecone to various extents.Our results indicated that i) all tubers were contaminated in accordance with the chlordecone content of the soils; ii) the plant contamination capacity of the Nitisol was greater than that of the Andosol; and iii) whatever the soil type,tuber contamination was related to the soil volumetric content of dissolved chlordecone.Nevertheless,no tubers showed sufficient chlordecone uptake for efficient soil decontamination by means of plant extraction.Soil contact accounted for most of the root crop contamination,which was inversely proportional to the tuber size.Internal transfer might also increase root crop contamination when the root central cylinder contained raw sap flow,as in the case of turnip or radish.Courgette fruits showed high contamination without soil contact.Thus,further research is needed to explore the pattern of both below- and aboveground plant chlordecone contamination and assess the hypothesis of its correlation with sap flow.Finally.we used our results to build a decisionmaking tool for farmers,relating soil pollution with the maximal contamination of the harvested organs to predict crop contamination and thus assisting farmers in making crop choices at planting in order to conform with the European Union's regulations.

  20. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils.

    OpenAIRE

    Pepper, Ian L.; Gentry, Terry J; Newby, Deborah T; Roane, Timberley M; Josephson, Karen L.

    2002-01-01

    Soils co-contaminated with metals and organics present special problems for remediation. Metal contamination can delay or inhibit microbial degradation of organic pollutants such that for effective in situ biodegradation, bioaugmentation is necessary. We monitored the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) or 3-chlorobenzoate (3-CB) in two different soils with and without cadmium (Cd) contamination. Additionally, we evaluated the ability of bioaugmentation to enhance organic de...

  1. Engineering and Design: Use of Petroleum Contaminated Soil in Cold-Mix Asphalt Stabilized Base Course

    Science.gov (United States)

    2007-11-02

    and construction of mixtures using petroleum contaminated soil and similar hydrocarbon waste for cold -mix asphalt stabilized base course (ASB). This...also performed an analysis using the diesel contaminated soil as part of a cold mix asphalt mixture . The mixtures produced with and without contaminated...quality materials ( RAP and asphalt cement) and good mixture design, construction procedures, and quality control, a high quality base or intermediate

  2. Fungal contamination of stored automobile-fuels in a tropical environment

    Institute of Scientific and Technical Information of China (English)

    Carlos E.Rodríguez-Rodríguez; Evelyn Rodríguez; Rigoberto Blanco; Ivannia Cordero; Daniel Segura

    2010-01-01

    Because of the lack of reports,the base levels of microbial contamination on stored fuels are unknown in tropical regions and it is unclear whether these levels have some influence on fuel quality parameters.Therefore,fungal quality in automobile fuels stored across Costa Rican territory was evaluated during two years according to the standard ASTM D6974-04.For a total of 96 samples,counts and identification of molds and yeasts were performed on regular gas,premium gas and diesel taken from the bottom and superior part of the container tanks.The highest contamination was found on the bottom of the tanks,where an aqueous phase was usually identified,showing populations over the ones present in the hydrocarbon itself (up to 108 CFU/L).Diesel was the most contaminated fuel (up to 107 CFU/L);however,an alteration on the physicochemical parameters was not observed in any kind of fuel.Seventy-five mold strains were isolated,Penicillium sp.being the most common genus (45.8% of the samples),and ten yeast strains,from the genera Candida sp.and Rhodotorula sp.Four of the yeasts were able to grow on diesel as the sole carbon source,at concentrations ranging from 0.5% to 25%.Increasing the frequency of tank cleaning,adding antimicrobial agents and monitoring microbial populations are recommended strategies to improve microbial quality of stored fuels.

  3. Remediation of contaminated soil using soil washing and biopile methodologies at a field level

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe, R.; Flores, C.; Chavez, C.; Bautista, G.; Torres, L.G. [Inst. de Ingenieria, Univ. Nacional Autonoma de Mexico, Coordinacion de Ingenieria Ambiental, Grupo Saneamiento de Suelos y Acuiferos, Coyoacn, Mexico, D.F. (Mexico)

    2004-07-01

    Background, aims and scope. An out-of-service oil distribution and storage station (ODSS), which operated from 1966 to 2000 in Mexico, is contaminated mainly by gasoline and diesel, showing the presence of methyl-tert-butyl-ether, benzene, toluene, ethyl benzene, and xylenes. Nine of the 16 polycyclic aromatic hydrocarbons were found, as well as Fe, Pb, V, and Zn. The health risk assessment suggested the necessity of reducing of three PAHs [benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene], and vanadium. The aim of this work is to show that soil washing (on-site) and biopiles are excellent remediation methodologies to treat soils contaminated with petroleum derivates and metals. Applying them, it is possible to reach the goal value of 2,000 mg TPH/kg in a few months, as requested by Mexican legislation. Methods. More than 140 m{sup 3} were excavated from the ODSS. Three soil-washing dishes were built. 1540 m{sup 3} were treated by soil washing using a nonionic surfactant. A 100 m{sup 3} biopile was built to study the system capabilities in the biodegradation of around 4,500 mg/kg of TPH using the autochthonous microflora. Results and discussion. The soil washing, average TPH-removal value was 83%, but values up to ca. 93% were observed. Removal values resulted in a function of the TPH initial values. Biopile (100 m{sup 3}) worked during 66 days, reaching a TPH-removal value of 85%. At the end of the processes, no PAHs were detected. The contaminated soil was treated successfully, reaching the legislation limits (TPH values under 2,000 mg/kg, and a significant reduction in PAH concentrations). Conclusion and recommendation. Both systems are suitable for remediation purposes, achieving high removal efficiencies at short and medium stages. It is highly recommended to proceed with soil washing studies, identifying new products, and mixtures, which could reduce costs and assure optimum operation. (orig.)

  4. Effects of Temperature Changes on Biodegradation of Petroleum Hydrocarbons in Contaminated Soils from an Arctic Site

    Science.gov (United States)

    Chang, W.; Klemm, S.; Whyte, L.; Ghoshal, S.

    2009-05-01

    Bioremediation is being considered as a cost-effective and a minimally disruptive remedial option at remote sites in the Arctic and sub-Arctic impacted by petroleum NAPL contamination. The implementation of on-site bioremediation in cold environments has been generally limited in the short, non-freezing summer months since ground remains frozen for 8-9 months of the year. This study evaluates the effect of different temperature regimes on petroleum hydrocarbon biodegradation rates and extent, as well as on the microbial activity. A series of pilot-scale landfarming bioremediation experiments (1 m×0.6 m×0.35 m soil tank dimension) was performed using aged, petroleum fuel-contaminated soils shipped from Resolution Island, Nunavut, Canada. These experiments were conducted under the following temperature conditions: (1) variable daily average field temperatures (1 to 10°C) representative of summers at the site; (2) constant mean temperature-mode with 6°C, representing typical stable laboratory incubation; and (3) under seasonal freeze-thaw conditions (-8°C to 10°C). Data to be presented include changes with time of petroleum hydrocarbons concentration fractionated by C-lengths, soil moisture (unfrozen water) contents, O2 and CO2 concentrations in soil pore gas, microbial population size and community composition in nutrient- amended and untreated landfarms. Hydrocarbon biodegradation and heterotrophic respiration activity was more rapid under the variable temperature cycle (1 to 10°C) than at a constant average temperature of 6°C, and total petroleum hydrocarbon (TPH) concentrations were reduced by 55% due to biodegradation over a 60 day test period under the variable temperature regime, compared to only 21% in soil tanks which were subjected to a constant temperature of 6°C. Shifts in microbial community were clearly observed in the both temperature modes using PCR-DGGE analyses and the emergence of a hydrocarbon-degrading population, Alkanindiges, was

  5. Pesticide soil contamination mainly affects earthworm male reproductive parameters

    Institute of Scientific and Technical Information of China (English)

    EduardoBustos-Obregon; RogerIzigaGoicochea

    2002-01-01

    Aim:To explore the effect of exposure to commercial Parathion(Pc)on the reproductive parameters(sperm and cocoon production and genotoxicity on male germ cells),the survival,the body weight and the gross anatomical changes in Eisenia foetida.Methods:Three doses of Pc(1478,739and 444mg/kg of soil)and three thme intervals of exposure(5,15and30days)were used.Results:Alltreated amimals were affected.An acute genotoxic effect,revealed by DNAfragmentation(comet assay),was seen by 5days,Alterations in reproductive parameters were conspicuous in regard to the number of sperm,cocoons and worms born,and the histological observation of the gonads and seminal receptacles.In addition,the body weight and survival rate were decreased,Neuromuscular function was also affected.Conclusion:Earthworms are suitable bioindicators of chemical contamination of the soil,their advantage being their easy and economical handling.

  6. Bioavailability of contaminants estimated from uptake rates into soil invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Straalen, N.M. van [Vrije Universiteit, Institute of Ecological Science, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)]. E-mail: nico.van.straalen@ecology.falw.vu.nl; Donker, M.H. [Vrije Universiteit, Institute of Ecological Science, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Vijver, M.G. [Vrije Universiteit, Institute of Ecological Science, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Gestel, C.A.M. van [Vrije Universiteit, Institute of Ecological Science, Department of Animal Ecology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2005-08-15

    It is often argued that the concentration of a pollutant inside an organism is a good indicator of its bioavailability, however, we show that the rate of uptake, not the concentration itself, is the superior predictor. In a study on zinc accumulation and toxicity to isopods (Porcellio scaber) the dietary EC{sub 50} for the effect on body growth was rather constant and reproducible, while the internal EC{sub 50} varied depending on the accumulation history of the animals. From the data a critical value for zinc accumulation in P. scaber was estimated as 53 {mu}g/g/wk. We review toxicokinetic models applicable to time-series measurements of concentrations in invertebrates. The initial slope of the uptake curve is proposed as an indicator of bioavailability. To apply the dynamic concept of bioavailability in risk assessment, a set of representative organisms should be chosen and standardized protocols developed for exposure assays by which suspect soils can be evaluated. - Sublethal toxicity of zinc to isopods suggests that bioavailability of soil contaminants is best measured by uptake rates, not by body burdens.

  7. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    Science.gov (United States)

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime.

  8. Bioremediation of a tropical clay