WorldWideScience

Sample records for fuel clad tubes

  1. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  2. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  3. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  4. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  5. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  6. Method for the protection of the cladding tubes of fuel rods

    International Nuclear Information System (INIS)

    Steinberg, E.

    1978-01-01

    To present stress crack corrosion and to protect the cladding tubes of the fuel rods made of a circonium alloy from attack by iodine, the inward surfaces are provided with protective coatings. Therefore the casting tubes already filled with fuel element pellets are put under over-pressure at a temperature range between 300 and 500 0 C, until almost yield-point is reached. A small amount of H 2 O or H 2 O 2 , filled in, reacts with the cladding tube material to form the Zr-O 2 protective coating. Afterwards comes a pressure relief, and the cladding tube reaches its original dimensions. (DG) [de

  7. Chemical interaction of fuel and cladding tubes

    International Nuclear Information System (INIS)

    Kirihara, Tomoo; Yamawaki, Michio; Obata, Naomi; Handa, Muneo.

    1983-01-01

    It was attempted to take up the behavior of nuclear fuel in cores and summarize it by the expert committee on the irradiation behavior of nuclear fuel from fiscal 1978 to fiscal 1980 from the following viewpoints. The behavior of nuclear fuel in cores has been treated separately according to each reactor type, accordingly this point is reconsidered. The clearly understood points and the uncertain points are discriminated. It is made more easily understandable for people in other fields of atomic energy. This report is that of the group on the chemical interaction, and the first report of this committee. The chemical interaction as the behavior of fuel in cores is in the unseparable relation to the mechanical interaction, but this relation is not included in this report. The chemical interaction of fuel and cladding tubes under irradiation shows different phenomena in LWRs and FBRs, and is called SCC and FCC, respectively. But this point of causing the difference must be understood to grasp the behavior of fuel. The mutual comparison of oxide fuels for FBRs and LWRs, the stress corrosion cracking of zircaloy tubes, and fuel-cladding chemical interaction in FBRs are reported. (Kako, I.)

  8. Method of evaluation of stress corrosion cracking susceptibility of clad fuel tubes

    International Nuclear Information System (INIS)

    Takase, Iwao; Yoshida, Toshimi; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.

    1986-01-01

    Purpose: To determine, by an evaluation in out-pile test, the stress corrosion cracking susceptibility of clad fuel tubes in the reactor environment. Method: A plurality of electrodes are mounted in the circumferential direction on the entire surface of cladding tubes. Of the electrodes, electrodes at two adjacent places are used as measuring terminals and electrodes at another two places adjacent thereto are used as constant-current terminals. With a specific current flowing in the constant-current terminals, measurements are made of a potential difference between the terminals to be measured, and from a variation in the potential difference the depth of cracking of the cladding tube surface is presumed to determine the stress corrosion cracking susceptibility of the cladding tube. To check the entire surface of the cladding tube, the cladding tube is moved by each block in the circumferential direction by a contact changeover system, repeating the measurements of the potential difference. Contact type electrodes are secured with an insulator and held in uniform contact with the cladding tube by a spring. It is detachable by use of a locking system and movable as desired. Thus the stress corrosion cracking susceptibility can be determined without mounting the cladding tube through and also a fuel failure can be prevented. (Horiuchi, T.)

  9. Fuel cladding tube leak detection device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1992-01-01

    The device of the present invention can detect even a minute leakage or a continuous leakage during reactor operation. That is, the device of the present invention comprises a detector for analyzing nuclides of gases incorporated in a gas waste processing system, and a calculation device connected to the detector and detecting leakage from a fuel cladding tube by calculation for variation coefficient of long-life nuclides. By using theses devices, radioactivity contained in gases incorporated in the gas waste processing system is analyzed for the nuclides. Among the analized nuclides, if the amount of the long-life nuclides exceeds a predetermined value, it is judged as leakage of the fuel cladding tube. For example, the long-life nuclides include Xe-133. The device of the present invention can certainly detect occurrence of leakage even when it is minute or continues leakage. Accordingly, countermeasures can be taken in an early stage, thereby enabling to contribute improvement for the safety of a nuclear power plant. (I.S.)

  10. Investigation and recovery of unrecovered fuel pellets and cladding tube pieces

    International Nuclear Information System (INIS)

    Kobayashi, Keiji

    1980-01-01

    The total weight of the fuel pellets lost due to break was about 1206 g, and cladding tube pieces were about 217 g. Among these, the pellets of about 527 g and the cladding tube pieces of about 152 g were recovered when broken fuel rods were discovered. It is not desirable to leave these broken pieces as unrecovered in view of safety and the management of nuclear fuel materials. Kansai Electric Power Co., Inc., investigated the position and the amount of these pellets and cladding tube pieces for about a year, and recovered a part of them. The results were written in two reports. The objects of the investigation and recovery, and the method of recovery are explained. The UO 2 and zirconium recovered were 58.52 g and 369.58 g, respectively. The solid pellets were recovered from the reactor, fuel assemblies, a spent fuel pit and canals, and the content in sludge was recovered from other installations. The amounts of unrecovered pellets and cladding tube pieces in primary cooling water, coolant filters, sealing water filters, primary cooling pipes, waste resins and fuel assemblies were estimated. The problems concerning the recovery and estimation are pointed out. The results of estimating the amount of uranium in coolant filters and sealing water filters are useful to know the time of the occurrence of accident. (Kako, I.)

  11. Cladding tube of fuel rod for a BWR type reactor

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Fujie, Kunio; Kuwahara, Heikichi; Hirai, Tadamasa; Kakizaki, Kimio.

    1976-01-01

    Object: To form a cladding tube wall with tunnels in communication with the exterior through a number of small-diameter openings to rapidly disperse a large quantity of heat thereby providing high density of the fuel rod. Structure: Tunnels adjacent to each other are provided under the skin in contact with cooling liquid of a cladding tube, and a number of openings through which said tunnels and the periphery of the cladding tube are placed in communication are formed, said openings each having its section smaller than that of said tunnel. With this arrangement, the cooling water entered the tunnel through some of small diameter openings absorbs heat of the fuel rod to be vaporized, which is flown out into the cooling water through the other small diameter openings and formed into vapor bubbles which move up for release of heat. (Taniai, N.)

  12. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  13. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  14. Production and quality control of fuel cladding tubes for LWRs

    International Nuclear Information System (INIS)

    Matsuda, Katsuhiko; Hagi, Shigeki; Anada, Hiroyuki; Abe, Hideaki; Hyodo, Shigetoshi

    1994-01-01

    This paper reviews the recent fabrication technology and corrosion resistance study of fuel cladding tubes for LWRs conducted by Sumitomo Metal Industries Ltd. started the research on zircaloy in 1957. In 1980, the factory exclusively for the production of cladding tubes was founded, and the mass production system on full scale was established. Thereafter, the various improvement of the production technology, the development of new products, and the heightening of the performance mainly on the corrosion resistance have been tested and studied. Recently, the works in the production processes were almost automated, and the installation of the production lines advanced, and the stabilization of product quality and the rationalization of costs are promoted. Moreover, the development of the zircaloy cladding tubes having high corrosion resistance has been advanced to cope with the long term cycle operation of LWRs hereafter. The features of zircaloy cladding tubes, the manufacturing processes, the improvement of the manufacturing technology, the improvement of the corrosion resistance and so on are reported. (K.I.)

  15. Study on transport safety of fresh MOX fuel. Performance of the cladding tube of fresh MOX fuel against external water pressure

    International Nuclear Information System (INIS)

    Ito, Chihiro

    1999-01-01

    It is important to know the ability of the cladding tube for fresh MOX fuel against external water pressure when they were hypothetically sunk into the sea for unknown reasons. In order to evaluate the ability of cladding tubes for MOX fresh fuel against external water pressure, external water pressure tests were carried out. Resistible limit of cladding tubes against external water pressure is defined when cladding tubes are deformed largely due to buckling etc. The test results show cladding tube of BWR type can resist an external water pressure of 69 MPa (a depth of water of 7,000 m) and that of PWR type fuel can resist an external water pressure of 54 MPa (a depth of water of 5,500 m). Moreover, leak tightness is maintained at an external water pressure of 73 MPa (a depth of water of 7,400 m) for BWR type cladding tubes and at an external water pressure of 98 MPa (a depth of water of 10,000 m) for PWR type cladding tubes. (author)

  16. Method and apparatus for sizing nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Koehler, L.

    1976-01-01

    Nuclear fuel rod cladding tubes are sized internally to diameters precisely fitting nuclear fuel pellets with which the tubes are charged by externally applying hydraulic pressure to short lengths of each tube. The pressure is applied while the tube is stationary. The tube is then moved to bring a new length within the hydraulic pressure zone. The volume of the hydraulic liquid used and the pressure applied to this liquid is such that the liquid is compressed slightly so that the length being sized yields, the expansion of the liquid then completing the sizing. The lengths being sized step-by-step are internally supported by either the fuel pellets or a mandrel having the same diameter as the pellets

  17. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  18. Development and fabrication of seamless Aluminium finned clad tubes for metallic uranium fuel rods for research reactor

    International Nuclear Information System (INIS)

    Singh, A.K.; Hussain, M.M.; Jayachandran, N.K.; Abdulla, K.K.

    2012-01-01

    Natural uranium metal or its alloy is used as fuel in nuclear reactors. Usually fuel is clad with compatible material to prevent its direct contact with coolant which prevents spread of activity. One of the methods of producing fuel for nuclear reactor is by co-drawing finished uranium rods with aluminum clad tube to develop intimate contact for effective heat removal during reactor operation. Presently seam welded Aluminium tubes are used as clad for Research Reactor fuel. The paper will highlight entire fabrication process followed for the fabrication of seamless Aluminium finned tubes along with relevant characterisation results

  19. Evolution of processing of GE fuel clad tubing for corrosion resistance in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.D. [GE Nuclear Energy, Wilmington, NC (United States); Adamson, R.B. [GE Nuclear Energy, Wilmington, NC (United States); Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Plaza-Meyer, E. [GE Nuclear Energy, Wilmington, NC (United States); Proebstle, R.A. [GE Nuclear Energy, Wilmington, NC (United States); White, D.W. [GE Nuclear Energy, Wilmington, NC (United States)

    1996-05-01

    The current modification of the primary GE in-process solution-quench heat treatment, an (alpha+beta) solution-quench carried out at a tube diameter requiring only two subsequent reduction and anneal cycles, is applicable to Zr barrier fuel clad tubing, to non-barrier fuel clad tubing, and to the TRICLAD tubing product. A combination of good in-reactor corrosion performance and degradation resistance is anticipated for these products, based on knowledge of metallurgical characteristics and supported by the demonstrated performance capability of the Zircaloy-2 materials used. (orig.)

  20. Characteristics and properties of cladding tubes for VVER-1000 higher Uranium content fuel rods

    International Nuclear Information System (INIS)

    Peregud, M.; Markelov, A.; Novikov, V.; Gusev, A.; Konkov, V.; Pimenov, Y.; Agapitov, V.; Shtutsa, M.

    2009-01-01

    To improve the fuel cycle economics and to further increase the VVER fuel usability the work programme is under way to design novel improved fuel, fuel rods and fuel assemblies. Longer FA operation time that is needed to increase the fuel burnup and the related design developments of novel fuel assemblies resulted not only in changing types and sizes of Zirconium items and fuel assembly components but also altered the requirements placed on their technical characteristics. To use fuel rods having a larger charge of fuel, to improve their behaviour in LOCA, to reduce fuel rod damage ability during assembling the work was carried out to perfect the characteristics of both the cladding (reduced wall thickness and more rigid tolerances for geometry) and its material. To meet the more rigid requirements for the geometry dimensions of cladding tubes an improved process flow sheet has been designed and employed for their fabrication and also the finishing treatment of tube surfaces has been improved. The higher and stable properties of the cladding materials were managed through using the special purity in terms of Hafnium Zirconium (not higher than 100 ppm Hf) as a base of the E110 alloy and maintaining within the valid specifications for the alloy the optimized contents of Oxygen and Iron at the levels of (600 - 990) ppm and (250 - 700) ppm, respectively. The work was under way in 2004 - 2008 years; during this period the technology and materials science solutions were mastered that were phased-in introduced into the production of the cladding tubes for the fuels loaded into the of the Kalinin NPP Unit 1

  1. Development of Preliminary HT9 Cladding Tube for Sodium-cooled Fast Reactor (SFR)

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Baek, Jong Hyuk; Heo, Hyeong Min; Park, Sang Gyu; Kim, Sung Ho; Lee, Chan Bock

    2013-01-01

    To achieve manufacturing technology of the fuel cladding tube in order to keep pace with the predetermined schedule in developing SFR fuel, KAERI has launched in developing fuel cladding tube in cooperation with a domestic steelmaking company. After fabricating medium-sized 1.1 ton HT9 ingot, followed by the multiple processes of hot and cold working, preliminary samples of HT9 seamless cladding tube having 7.4mm in outer diameter, 0.56mm in thickness, and 3m in length were fabricated. The objective of this study is to summarize the brief development status of the HT9 cladding tubes. Mechanical properties like axial tension, biaxial burst, pressurized creep and sodium compatibility of the cladding tubes were carried out to set up the performance evaluation technology to test the prototype FMS cladding tube which is going to be manufactured in next stage. As a part of developing fuel cladding for the Sodium-cooled Fast Reactor (SFR), preliminary HT9 cladding tube was fabricated in cooperation with a domestic steelmaking company. Microstructure as well as mechanical tests like axial tensile test, biaxial burst test, and pressurized creep test of the fuel cladding were carried out. Performance of the domestic HT9 tube was revealed to be similar in the previously fabricated foreign HT9 tube. Further prototype FMS cladding tube is going to be manufactured in next year based on this experience. Various test items like mechanical test, sodium compatibility test, microstructural analysis, basic property, cladding performance under transient situation, and performance under ion and neutron irradiation are going be performed in the future to set up the relevant technology for the licensing of the SFR cladding tube

  2. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  3. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  4. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  5. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  6. Study on dynamic measurement of fuel pellet length during loading into cladding tube

    International Nuclear Information System (INIS)

    Zhang Kai

    1993-09-01

    Various methods are presented for measuring the pellet length in the cladding tube (zirconium tube) during the loading process of the preparation of single rod of nuclear fuel assembly. These methods are used in former Soviet Union, west European countries and China in the manufacturing of nuclear power plant element. Different methods of dynamic measurement by using mechanics, optics and electricity and their special features are analysed and discussed. The structure and measuring principle of a developed measuring device,and its measuring precision and system deviation are also introduced. Finally, the length of loaded pellets is checked with analog pellets. The results are as expected and show that the method and principle used in the measuring device are feasible. It is an ideal and advanced method for the pellet loading of single cladding tube. The principle mentioned above can also be used in other industries

  7. Effect of chemical composition on corrosion resistance of Zircaloy fuel cladding tube for BWR

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Akahori, Kimihiko; Kuniya, Jirou; Masaoka, Isao; Suwa, Masateru; Maru, Akira; Yasuda, Teturou; Maki, Hideo.

    1990-01-01

    Effects of Fe and Ni contents on nodular corrosion susceptibility and hydrogen pick-up of Zircaloy were investigated. Total number of 31 Zr alloys having different chemical compositions; five Zr-Sn-Fe-Cr alloys, eight Zr-Sn-Fe-Ni alloys and eighteen Zr-Sn-Fe-Ni-Cr alloys, were melted and processed to thin plates for the corrosion tests in the environments of a high temperature (510degC) steam and a high temperature (288degC) water. In addition, four 450 kg ingots of Zr-Sn-Fe-Ni-Cr alloys were industrially melted and BWR fuel cladding tubes were manufactured through a current material processing sequence to study their producibility, tensile properties and corrosion resistance. Nodular corrosion susceptibility decreased with increasing Fe and Ni contents of Zircaloys. It was seen that the improved Zircaloys having Fe and Ni contents in the range of 0.30 [Ni]+0.15[Fe]≥0.045 (w%) showed no susceptibility to nodular corrosion. An increase of Fe content resulted in a decrease of hydrogen pick-up fraction in both steam and water environments. An increase of Fe and Ni content of Zircaloys in the range of Fe≤0.25 w% and Ni≤0.1 w% did not cause the changes in tensile properties and fabricabilities of fuel cladding tube. The fuel cladding tube of improved Zircaloy, containing more amount of Fe and Ni than the upper limit of Zircaloy-2 specification showed no susceptibility to nodular corrosion even in the 530degC steam test. (author)

  8. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2008-01-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (∼300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F n ) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process

  9. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  10. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  11. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  12. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  13. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  14. Standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Barat, P; Raj, B; Bhattacharya, D K [Reactor Research Centre, Kalpakkam (India)

    1982-10-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed.

  15. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  16. Irradiation effects on mechanical properties of fuel element cladding from thermal reactors

    International Nuclear Information System (INIS)

    Chatterjee, S.

    2005-01-01

    During reactor operation, UO 2 expands more than the cladding tube (Zirconium alloys for thermal reactors), is hotter, cracks and swells. The fuel therefore will interact with the cladding, resulting in straining of the later. To minimize the possibility of rupture of the cladding, ideally it should have good ductility as well as high strength. However, the ductility reduces with increase in fuel element burn-up. Increased burn-up also increases swelling of the fuel, leading to increased contact pressure between the fuel and the cladding tube. This would cause strains to be concentrated over localized regions of the cladding. For fuel elements burnup exceeding 40 GWd/T, the contribution of embrittlement due to hydriding, and the increased possibility of embrittlement due to stress corrosion cracking, also need to be considered. In addition to the tensile properties, the other mechanical properties of interest to the performance of cladding tube in an operating fuel element are creep rate and fatigue endurance. Irradiation is reported to have insignificant effect on high cycle endurance limit, and fatigue from fuel element vibration is most unlikely, to be life limiting. Even though creep rates due to irradiation are reported to increase by an order of magnitude, the cladding creep ductility would be so high that creep type failures in fuel element would be most improbable. Thus, the most important limiting aspect of mechanical performance of fuel element cladding has been recognized as the tensile ductility resulting from the stress conditions experienced by the cladding. Some specific fission products of threshold amount (if) deposited on the cladding, and hydride morphology (e.g. hydride lenses). The presentation will brief about irradiation damage in cladding materials and its significance, background of search for better Zirconium alloys as cladding materials, and elaborate on the types of mechanical tests need to be conducted for the evaluation of claddings

  17. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  18. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  19. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  20. Advances in the manufacture of clad tubes and components for PHWR fuel bundle

    International Nuclear Information System (INIS)

    Saibaba, N.; Jha, S.K.; Chandrasekha, B.; Tonpe, S.; Jayaraj, R.N.

    2010-01-01

    Fuel bundles for Pressurized Heavy Water Reactors (PHWRs) consists of Uranium di-oxide pellets encapsulated into thin wall Zircaloy clad tubes. Other components such as end caps, bearing pads and spacer pads are the integral elements of the fuel bundle. As the fuel assembly is subjected to severe operating conditions of high temperature and pressure in addition to continual irradiation exposure, all the components are manufactured conforming to stringent specifications with respect to chemical composition, mechanical & metallurgical properties and dimensional tolerances. The integrity of each component is ensured by NDE at different stages of manufacture. The manufacturing route for fuel tubes and components comprise of a combination of thermomechanical processing and each process step has marked effect on the final properties. The fuel tubes are manufactured by processing the extruded blanks in four stage cold pilgering with intermediate annealing and final stress relieving operation. The bar material is produced by hot extrusion followed by multi-pass swaging and intermediate annealing. Spacer pads and bearing pads are manufactured by blanking and coining of Zircaloy sheet which is made by a combination of hot and cold rolling operations. Due to the small size and stringent dimensional requirements of these appendages, selection of production route and optimization of process parameters are important. This paper discusses about various measures taken for improving the recoveries and mechanical and corrosion properties of the tube, sheet and bar materials being manufactured at Nuclear Fuel Complex, Hyderabad For the production of clad tubes, modifications at extrusion stage to reduce the wall thickness variation, introduction of ultrasonic testing of extruded blanks, optimization of cold working and heat treatment parameters at various stages of production etc. were done. The finished bar material is subjected to 100% Ultrasonic and eddy current testing to ensure

  1. A standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    International Nuclear Information System (INIS)

    Barat, P.; Raj, B.; Bhattacharya, D.K.

    1982-01-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed. (author)

  2. Reactor fuel cladding tube with excellent corrosion resistance and method of manufacturing the same

    International Nuclear Information System (INIS)

    Okuda, Takanari; Kanehara, Mitsuo; Abe, Katsuhiro; Nishimura, Takashi.

    1995-01-01

    The present invention provides a fuel cladding tube having an excellent corrosion resistance and thus a long life, and a suitable manufacturing method therefor. Namely, in the fuel cladding tube, the outer circumference of an inner layer made of a zirconium base alloy is coated with an outer layer made of a metal more corrosion resistant than the zirconium base alloy. Ti or a titanium alloy is suitable for the corrosion resistant metal. In addition, the outer layer can be coated by a method such as vapor deposition or plating, not limited to joining of the inner layer material and the outer layer material. Specifically, a composite material having an inner layer made of a zirconium alloy coated by the outer material made of a titanium alloy is applied with hot fabrication at a temperature within a range of from 500 to 850degC and at a fabrication rate of not less than 5%. The fabrication method includes any of extrusion, rolling, drawing, and casting. As the titanium-base alloy, a Ti-Al alloy or a Ti-Nb alloy containing Al of not more than 20wt%, or Nb of not more than 20wt% is preferred. (I.S.)

  3. Characterization of Zircaloy-4 tubing procured for fuel cladding research programs

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1976-01-01

    A quantity of Zircaloy-4 tubing [10.92 mm outside diameter by 0.635 mm wall thickness] was purchased specifically for use in a number of related fuel cladding research programs sponsored by the Division of Reactor Safety Research, Nuclear Regulatory Commission (NRC/RSR). Identical tubing (produced simultaneously and from the same ingot) was purchased concurrently by the Electric Power Research Institute (EPRI) for use in similar research programs sponsored by that organization. In this way, source variability and prior fabrication history were eliminated as parameters, thus permitting direct comparison (as far as as-received material properties are concerned) of experimental results from the different programs. The tubing is representative of current reactor technology. Consecutive serial numbers assigned to each tube identify the sequence of the individual tubes through the final tube wall reduction operation. The report presented documents the procurement activities, provides a convenient reference source of manufacturer's data and tubing distribution to the various users, and presents some preliminary characterization data. The latter have been obtained routinely in various research programs and are not complete. Although the number of analyses, tests, and/or examinations performed to date are insufficient to draw statistically valid conclusions with regard to material characterization, the data are expected to be representative of the as-received tubing. It is anticipated that additional characterizations will be performed and reported routinely by the various research programs that use the tubing

  4. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  5. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  6. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. (Auth.)

  7. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  8. A state of the Art report on Manufacturing technology of high burn-up fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Ho; Nam, Cheol; Baek, Jong Hyuk; Choi, Byung Kwon; Park, Sang Yoon; Lee, Myung Ho; Jeong, Yong Hwan

    1999-09-01

    In order to manufacturing the prototype fuel cladding, overall manufacturing processes and technologies should be thoroughly understood on the manufacturing processes and technologies of foreign cladding tubes. Generally, the important technology related to fuel cladding tube manufacturing processes for PWRs/PHWRs is divided into three stages. The first stage is to produce the zirconium sponge from zirconium sand, the second stage is to produce the zircaloy shell or TREX from zirconium sponge ingot and finally, cladding is produced from TREX or zircaloy shell. Therefore, the manufacturing processes including the first and second stages are described in brief in this technology report in order to understand the whole fuel cladding manufacturing processes. (author)

  9. Creep rupture properties of solution annealed and cold worked type 316 stainless steel cladding tubes

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Mannan, S.L.; Rodriguez, P.

    1990-01-01

    Austenitic stainless steels (mainly type 316 and its modifications) are used as fuel cladding materials in all current generation fast breeder reactors. For the Fast Breeder Test Reactor (FBTR) at Kalpakkam, modified type 316 stainless steel (SS) was chosen as the material for fuel cladding tubes. In order to evaluate the influence of cold work on the performance of the fuel element, the investigation was carried out on cladding tubes in three metallurgical conditions (solution annealed, ten percent cold worked and twenty percent cold worked). The results indicate that: (i) The creep strength of type 316 SS cladding tube increases with increasing cold work. (ii) The benificial effects of cold work are retained at almost all the test conditions investigated. (iii) The Larson Miller parameter analysis shows a two slope behaviour for 20PCW material suggesting that caution should be exercised in extrapolating the creep rupture life to stresses below 125 MPa. At very low stress levels, the LMP values fall below the values of the 10 PCW material. (author). 6 refs., 19 figs. , 10 tabs

  10. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  11. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  12. Degradation resistant fuel cladding materials and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Montes, J. [ENUSA, Madrid (Spain)

    1995-12-31

    GE has been producing the degradation resistant cladding (zirconium liner and zircaloy-2 surface larger) described here with the cooperation of its primary zirconium vendors since the beginning of 1994. Approximately 24 fuel reloads, or in excess of 250,000 fuel rods, have been produced using this material by GE. GE has also produced tubing for one reload of fuel that is currently being produced by its technology affiliate ENUSA. (orig./HP)

  13. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Science.gov (United States)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  14. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  15. Experimental determination of the local temperature distribution in the cladding tubes of a sodium-cooled pin bundle caused by grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The cladding tubes of reactor core elements are highly stressed structural elements. Their careful design includes the following: (a) the mathematical determination of the maximum cladding tube temperatures; (b) the determination of the maximum permissible fatigue strengths and creep strains of the materials; and (c) the safety distance between the nominal cladding tube hot spots and the permissible extreme cladding tube temperature. The maximum cladding tube temperatures occur on the top edge of the core and, due to radial power gradients, in the wrapper-wall region of a pin bundle. If grid spacers are now used for fixing the pins as in the SNR fuel elements, a careful check must be made of whether and to what degree temperature peaks in the region of the supports have an influence on the cladding tube design. Initial experimental investigations on a sodium-cooled pin bundle model of the SNR-300 fuel element were carried out to throw light on these special problems. This is reported in the following together with the results so far obtained. (U.K.)

  16. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCI far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2

  17. Development of austenitic stainless steel tubes for nuclear reactor cladding

    International Nuclear Information System (INIS)

    Padilha, A.F.; Ferreira, P.I.; Andrade, P.I.; Andrade, A.H.P. de; Meyerhof, S.; Mauricio, J.

    1984-01-01

    In the development of thin wall tubes for nuclear reactor fuel cladding applications, a great number of activities, related to the fabrication process as the qualification are involved. A test program was envisaged to verify the quality of seam welded stainless steel tubes (AISI 304), obtained as a result of an effort by the IPEN-CNEN/SP and the brazilian industry. The relevant aspects involved in the preparation of the tubes and some preliminary test results are presented. (Author) [pt

  18. Thermal creep properties of alloy D9 stainless steel and 316 stainless steel fuel clad tubes

    International Nuclear Information System (INIS)

    Latha, S.; Mathew, M.D.; Parameswaran, P.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2008-01-01

    Uniaxial thermal creep rupture properties of 20% cold worked alloy D9 stainless steel (alloy D9 SS) fuel clad tubes for fast breeder reactors have been evaluated at 973 K in the stress range 125-250 MPa. The rupture lives were in the range 90-8100 h. The results are compared with the properties of 20% cold worked type 316 stainless steel (316 SS) clad tubes. Alloy D9 SS were found to have higher creep rupture strengths, lower creep rates and lower rupture ductility than 316 SS. The deformation and damage processes were related through Monkman Grant relationship and modified Monkman Grant relationship. The creep damage tolerance parameter indicates that creep fracture takes place by intergranular cavitation. Precipitation of titanium carbides in the matrix and chromium carbides on the grain boundaries, dislocation substructure and twins were observed in transmission electron microscopic investigations of alloy D9 SS. The improvement in strength is attributed to the precipitation of fine titanium carbides in the matrix which prevents the recovery and recrystallisation of the cold worked microstructure

  19. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  20. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  1. Inner wall attack and its inhibition method for FBR fuel pin cladding at high burnup

    International Nuclear Information System (INIS)

    Xu Yongli; Long Bin; Li Jingang; Wan Jiaying

    1998-01-01

    The inner wall attack of the modified 316-Ti S.S. cladding tubes manufactured in China used FBR at 10at.% burnup was investigated by means of the out of pile simulation tests. The inner surface morphologies of the cladding tubes attached by fission products Cs, Te, I and Se at 700 deg. C under lower and high oxygen potentials were observed respectively, and the depth of attack was also measured. The burst strength, maximum circum expansion and the appearances of fracture were measured and observed respectively for the cladding tubes attacked by fission products. Based on the mechanism of FBR fuel cladding chemical interaction (FCCI), Cr, Zr and Nb were used as the oxygen absorbers respectively, in order to inhibit the inner wall attack of the cladding tubes. The corrosion morphologies and depth, the penetration depth of the fission products in the inner surface of the cladding tubes were detected. The inhibition effectiveness of the oxygen absorbers for the inner wall attack of the cladding tubes was evaluated. (author)

  2. Influence of fuel pin bowing on the temperature distribution in fuel pin cladding tubes in case of sodium cooling; experimental results

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1978-09-01

    The influence of rod bowing on the local temperature distribution was measured with turbulent sodium flow in the cladding tubes of a 19-rod bundle mock-up of the SNR 300 Mark Ia fuel element. Such measurements have been carried out for the first time. The results presented in this report are part 1 of the experimental evaluation not yet completed. The major results are: 1. When a rod on the first ring gets deformed towards a neighbour on the second ring with a gap reduction from the nominal value of 100 % down to 20 %, the maximum azimuthal temperature difference of the outer rod increases by about 60 %. 2. The maximum azimuthal temperature difference of a rod on the first ring increases by a factor of 2, if it is approached by a neighbour on the same ring. 3. The reduction in cross section of a subchannel by rod bowing results only locally in distinct temperature rises, i.e. in the adjacent cladding tubes. Rods of the next but one row are no more subject to noticeable changes in temperature [de

  3. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  4. Nuclear fuel rod with burnable plate and pellet-clad interaction fix

    International Nuclear Information System (INIS)

    Boyle, R.F.

    1987-01-01

    This patent describes a nuclear fuel rod comprising a metallic tubular cladding containing nuclear fuel pellets, the pellets containing enriched uranium-235. The improvement described here comprises: ceramic wafers, each wafter comprising a sintered mixture of gadolinium oxide and uranium dioxide, the uranium oxide having no more uranium-235 than is present in natural uranium dioxide. Each of the wafers is axially disposed between a major portion of adjacent the nuclear fuel pellets, whereby the wafers freeze out volatile fission products produced by the nuclear fuel and prevent interaction of the fission products with the metallic tubing cladding

  5. Demonstration of fuel resistant to pellet-cladding interaction. Phase 2. First semiannual report, January-June 1979

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1979-08-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress and reactive fission products during reactor service. This is the first semiannual progress report for Phase 2 of this program (January-June 1979). Progress in the irradiation testing of barrier fuel and of unfueled barrier cladding specimens is reported

  6. Effect of cyclic loading on the viscoplastic behaviour of Zircaloy 4 cladding tubes

    International Nuclear Information System (INIS)

    Bouffioux, P.; Gabriel, B.; Soniak, A.; Mardon, J.P.

    1995-06-01

    Most of the electricity being generated by nuclear energy load follow and remote control have become normal operating modes in the French PWR. In addition, EDF is developing a strategy of fuel sub-assembly burnup extension. Those operating conditions will lead to cyclic straining of the Zircaloy cladding tube which could induce damages. Therefore, EDF, CEA, and FRAMATOME has started a joint R and D cooperative program in order to investigate the mechanical behaviour of Zircaloy cladding tubes under cyclic loading. This paper is dealing with the effect of a pre-cyclic loading on the plasticity properties of Zircaloy 4 cladding tubes. Load controlled cyclic tests were carried out at 350 deg. C and 0.5 Hz in both axial and hoop directions. The Woehler curves were determined. Sequential tests combining pre-cyclic loading to 50 and 75 % fraction life with tension were then performed. It has ben noticed that the pre-cycling loading does not change the plastic flow curve of the Zircaloy 4 cladding tubes and therefore does not induce observable macroscopic damage. It has been concluded that a linear cumulative damage rule like ΣΔN(σ)/N r(σ) is very conservative. (author)

  7. Off-gas monitor system for the detection of a failed fuel cladding tube

    International Nuclear Information System (INIS)

    Yuasa, Yoshiyuki; Oosaki, Masahiko; Naito, Makoto.

    1984-01-01

    Purpose: To rapidly and reliably detect failures in a fuel cladding tube thereby prevent accidents. Method: Off-gases discharged from an air extractor are mixed at a certain ratio with cleaning water and gamma spectra for short-life radioactive rare gases and for long-life radioactive rare gases in the off-gases are measured by gamma ray detectors. The spectra are analyzed by a Pulse-height analyzer so as to quantitatively determine the nuclides of radioactive rare gases thereby calculate the release rate on each of the nuclides. Further, a central data-processing unit calculates the composition ratio of each release models about recoil, diffusion and equilibrium in the whole radioactive rare gases based on the release rate. As the total value of the release rate is rapidly increased, recoil part will be decreased suddenly and the diffusion and equilibrium parts will be increased by so much, upon failure of a fuel can; thus the failure can rapidly be detected. (Sekiya, K.)

  8. PCI resistant light water reactor fuel cladding

    International Nuclear Information System (INIS)

    Foster, J.P.; Sabol, G.P.

    1988-01-01

    A tubular nuclear fuel element cladding tube is described, the fuel element cladding tube forming the entire fuel element cladding and consisting of: a single continuous wall, the single continuous wall consisting of a single alloy selected from the group consisting of zirconium base alloys, A, B, C, D, and E; the single continuous wall characterized by a cold worked and stress relieved microstructure throughout; wherein the zirconium base alloy A contains 0.2 - 0.6 w/o Sn, 0.03 - 0.11 w/o sum of Fe and Cr, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy B contains 0.1 - 0.6 w/oo Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy C contains 1.2 - 1.7 w/o Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities; the zirconium base alloy D contains 0.15 - 0.6 w/o Sn, 0.15 - 0.5 w/o Fe, section 600 ppm O, and section 1500 ppm total impurities; and the zirconium base alloy E contains 0.4 - 0.6 w/o Sn, 0.1 - 0.3 w/o Fe, 0.03 - 0.07 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities

  9. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  10. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  11. Control chart analysis of data regarding 0.2% yield strength (YS) and percent total circumferential elongation (%TCE) for zircaloy clad tubes for PHWR and BWR fuels

    International Nuclear Information System (INIS)

    Yadav, M.B.; Singh, Hari; Vaidyanathan, S.; Sood, D.D.; Raghavan, S.V.; Bandyopadhyay, A.K.; Kulkarni, P.G.

    1992-01-01

    Zircaloy cladding tubes for PHWR and BWR fuels are manufactured and tested at Nuclear Fuel Complex (NFC), Hyderabad. Atomic Fuels Division is carrying out the quality assurance of the fuels on behalf of Nuclear Power Corporation (NPC). In this paper an attempt has been made to assess whether the quality of the clad tubes has met the requirements specified for the two mechanical properties of the tubes namely 0.2% yield strength and percent total circumferential elongation using control chart technique. For this purpose data for about 100 lots in each case were used. Process means and process standard deviations for these properties and the control limits for the corresponding control charts were estimated. The main findings are: (i) In case of PHWR tubes the production quality level with respect to 0.2% YS is higher, while that in case of %TCE is lower causing rejection of lots. On the other hand in the case of BWR tubes the production quality levels with respect to both the properties are higher than the required one. (ii) With respect to 0.2% YS, in case of BWR tubes a change in the pattern of distribution is detected beyond the lot serial no.47. However in case of PHWR tubes, though the data falls into two groups, no such pattern is seen. A modification in the acceptance/rejection criterion of the lot has been suggested. It is also pointed out that to have a correct picture of the total variation it is necessary to study the within tube variation. (author). 4 figs, 2 tabs

  12. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  13. High performance fuel technology development : Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeongyong; Jeong, Y. H.; Park, S. Y.

    2012-04-01

    The superior in-pile performance of the HANA claddings have been verified by the successful irradiation test and in the Halden research reactor up to the high burn-up of 67GWD/MTU. The in-pile corrosion and creep resistances of HANA claddings were improved by 40% and 50%, respectively, over Zircaloy-4. HANA claddings have been also irradiated in the commercial reactor up to 2 reactor cycles, showing the corrosion resistance 40% better than that of ZIRLO in the same fuel assembly. Long-term out-of-pile performance tests for the candidates of the next generation cladding materials have produced the highly reliable test results. The final candidate alloys were selected and they showed the corrosion resistance 50% better than the foreign advanced claddings, which is beyond the original target. The LOCA-related properties were also improved by 20% over the foreign advanced claddings. In order to establish the optimal manufacturing process for the inner and outer claddings of the dual-cooled fuel, 18 different kinds of specimens were fabricated with various cold working and annealing conditions. Based on the performance tests and various out-of-pile test results obtained from the specimens, the optimal manufacturing process was established for the inner and outer cladding tubes of the dual-cooled fuel

  14. For the world's best cladding tubes, ten years of progress by Zircaloy Special Committee of JAPCO

    International Nuclear Information System (INIS)

    Mishima, Yoshitsugu

    1982-01-01

    The zircaloy special committee was organized in 1971 for the purpose of planning the trial use of two nuclear fuel assemblies for which Japan-made cladding tubes were to be used, for a BWR. Now, seven years later, these two fuel assemblies have completed their service life, and have been submitted to post-irradiation examination after cooling for a year. Zircaloy tubes have been produced by Sumitomo Metal Industries, Ltd., and Kobe Steel, Ltd., and more than ten years have elapsed since wholly Japan-made zircaloy cladding tubes were used for reloading fuel elements for the Japan Power Demonstration Reactor. In this report, the history, progress and significance of the works performed by the committee are summarized. The LWR fuel elements made in Japan have attained the highest performance in the world as the leak has been scarce, and the works of the committee is one of the pioneering activities in the development of LWR fuel technology. The situation for starting the committee, the activity of the committee during ten years, the significance and outcome of the committee activity are reported. (Kako, I.)

  15. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  16. Advances in appendage joining techniques for PHWR fuel cladding

    International Nuclear Information System (INIS)

    Desai, P.B.; Ray, T.K.; Date, V.G.; Purushotham, D.S.C.

    1995-01-01

    This paper describes work carried out at the BARC on the development of a technique to join tiny appendages (spacers and bearing pads) to thin cladding (before loading of UO 2 pellets) by resistance welding for PHWR fuel assemblies. The work includes qualifying the process for production environment, designing prototype equipment for regular production and quality monitoring. In the first phase of development, welding of appendages on UO 2 loaded elements was successfully developed, and is being used in production. Welding of appendages on to empty clad tubes is a superior technique for several reasons. Many problems associated with development of welding on empty tubes were resolved. work was initiated, in the second phase of the development task, to select a suitable technique to join appendages on empty clad tubes without any collapse of thin clad. Several alternatives were reviewed and assessed such as laser, full face welding, shim welding and shrink fitting ring spacers. Selection of a method using a mandrel and a modified electrode geometry was fully developed. Results were optimized and process development successfully completed. Appropriate weld monitoring techniques were also reviewed for their adaptation. This technique is useful for 19, 22 as well as 37 element assemblies. (author)

  17. Experimental and statistical study on fracture boundary of non-irradiated Zircaloy-4 cladding tube under LOCA conditions

    Science.gov (United States)

    Narukawa, Takafumi; Yamaguchi, Akira; Jang, Sunghyon; Amaya, Masaki

    2018-02-01

    For estimating fracture probability of fuel cladding tube under loss-of-coolant accident conditions of light-water-reactors, laboratory-scale integral thermal shock tests were conducted on non-irradiated Zircaloy-4 cladding tube specimens. Then, the obtained binary data with respect to fracture or non-fracture of the cladding tube specimen were analyzed statistically. A method to obtain the fracture probability curve as a function of equivalent cladding reacted (ECR) was proposed using Bayesian inference for generalized linear models: probit, logit, and log-probit models. Then, model selection was performed in terms of physical characteristics and information criteria, a widely applicable information criterion and a widely applicable Bayesian information criterion. As a result, it was clarified that the log-probit model was the best among the three models to estimate the fracture probability in terms of the degree of prediction accuracy for both next data to be obtained and the true model. Using the log-probit model, it was shown that 20% ECR corresponded to a 5% probability level with a 95% confidence of fracture of the cladding tube specimens.

  18. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  19. Oxide fuel fabrication technology development of the FaCT project (5). Current status on 9Cr-ODS steel cladding development for high burn-up fast reactor fuel

    International Nuclear Information System (INIS)

    Ohtsuka, Satoshi; Kaito, Takeji; Yano, Yasuhide; Yamashita, Shinichiro; Ogawa, Ryuichiro; Uwaba, Tomoyuki; Koyama, Shinichi; Tanaka, Kenya

    2011-01-01

    This paper describes evaluation results of in-reactor integrity of 9Cr and 12Cr-ODS steel cladding tubes and the plan for reliability improvement in homogeneous tube production, both of which are key points for the commercialized use of ODS steels as long-life fuel cladding tubes. A fuel assembly in the BOR-60 irradiation test including 9Cr and 12Cr-ODS fuel pins has achieved the highest burn-up, i.e. peak burn-up of 11.9at% and peak neutron dose of 51dpa, without any fuel pin rupture and microstructure instability. In another fuel assembly containing 9Cr and 12Cr-ODS steel fuel pins whose peak burn-up was 10.5at%, one 9Cr-ODS steel fuel pin failed near the upper end of the fuel column. A peculiar microstructure change occurred in the vicinity of the ruptured area. The primary cause of this fuel pin rupture and microstructure change was shown to be the presence of metallic Cr inclusions in the 9Cr-ODS steel tube, which had passed an ultrasonic inspection test for defects. In the next stage from 2011 to 2013, the fabrication technology of full pre-alloy 9Cr-ODS steel cladding tube will be developed, where the handling of elemental powder is prohibited in the process. (author)

  20. Eddy-current testing of nuclear fuel cladding tubes using tilted encircling coil system, 1

    International Nuclear Information System (INIS)

    Yin, Renzhong; Sekine, Kazuyoshi; Shimizu, Hisaji; Tsukui, Kazushige; Urata, Megumu.

    1989-01-01

    The eddy current testing method with external encircling-coils has been widely used as a standard technique for inspection of defects in irradiated zircaloy cladding tubes. In this inspection, the systematic procedure to reliably characterize defects is required. This paper describes the newly developed external tilted encircling-coil system, in which the coil axis is inclined by an angle α to the sample tube axis, for reliable determination of the sort, location and size of defects. As the results of experimental work concerning some kinds of artificial defects in zircaloy cladding tubes using newly designed tilted coil system, an adaptable general-procedure for characterization of defects has been proposed. Furthermore, it has been confirmed that in the case of smaller tilt angles of coil, the signal-to noise ratio for defect response in this coil system is approximately equal to that of ordinary encircling coil system. (author)

  1. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  2. Out-of-pile experiments of fuel-cladding chemical interaction, (2)

    International Nuclear Information System (INIS)

    Konashi, Kenji; Yato, Tadao; Kaneko, Hiromitsu; Honda, Yutaka

    1980-01-01

    Cesium seems to be one of the most important fission products in the fuel-cladding chemical interaction of fuel pins for LMFBRs. However the FCCI under irradiation cannot always be explained by considering only cesium-oxygen system as the corrosive, since attack does not occur in the cesium-oxygen system unless oxygen potential is sufficiently high. Cesium-tellurium-oxygen system has been proposed to account for heavy cladding attack which was sometimes found in hypostoichiometric mixed oxide fuel pins. In this paper, the experiment on the reaction of liquid tellurium with stainless steel is reported. The type 316 stainless steel claddings for Monju type fuel pins were used as the test specimens. Tellurium was contained into the cladding tubes with end plugs. The temperature dependence of the attack by tellurium was examined in the range from 450 to 900 deg C for 30 min, and the heating time dependence was examined from 5 min to 200 hr at 725 deg C. An infrared lamp furnace was used for the experiment within 7 hr, and a resistance furnace for longer experiment. The character of corrosion was matrix attack, and the reaction products on the stainless steel surfaces consisted of chrome rich inner phase and iron and nickel rich outer phase. The results are reported. (Kako, I.)

  3. Irradiation effect on fatigue behaviour of zircaloy-4 cladding tubes

    International Nuclear Information System (INIS)

    Soniak, A.; Lansiart, S.; Royer, J.; Waeckel, N.

    1993-01-01

    Since nuclear electricity has a predominant share in French generating capacity, PWR's are required to fit grid load following and frequency control operating conditions. Consequently cyclic stresses appear in the fuel element cladding. In order to characterize the possible resulting clad damage, fatigue tests were performed at 350 deg C on unirradiated material or irradiated stress relieved Zircaloy-4 tube portions, using a special device for tube fatigue by repeated pressurization. It appears that, for high stress levels, the material fatigue life is not affected by irradiation. But the endurance fatigue limit undergoes a decrease from the 350 MPa value for unirradiated material to the 210 MPa value for the material irradiated for four cycles in a PWR. However, this effect seems to saturate with irradiation dose: no difference could be detected between the two cycles results and the corresponding four cycles results. The corrosion effect and the load following influence were also investigated: they do not appear to modify the fatigue behaviour in our experimental conditions

  4. Demonstration of fuel resistant to pellet-cladding interaction. Second semiannual report, January--June 1978

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.

    1978-09-01

    This program has as its ultimate objective the demonstration of an advanced fuel concept that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Since currently used fuel in the nuclear power industry is subject to the PCI failure mechanism, reactor operators limit the rates of power increases and thus reduce their capacity factors in order to protect the fuel. Two concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel and (b) Zr-liner fuel. These advanced fuels (known collectively as ''barrier fuels'') have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress and reactive fission products during reactor service. The demonstration of one of these concepts in a commercial power reactor is planned for PHASE 2 of this program. The current plans for the demonstration will involve approximately 132 bundles of PCI-resistant fuel

  5. Study on the improvement of nuclear fuel cladding reliability

    International Nuclear Information System (INIS)

    Rheem, Karp Soon; Han, Jung Ho; Jeong, Yong Hwan; Lee, Deok Hyun

    1987-12-01

    In order to improve the nuclear fuel cladding reliability for high burn-up fuels, the corrosion resistance of laser beam surface treated and β-quenched zircaloys and the mechanical characteristics including fatigue, burst, and out-of-pile PCMI characteristics of heat treated zircaloys were investigated. In addition, the inadiation characteristics of Ko-Ri reactor fuel claddings was examined. It was found that the wasteside corrosion resistance of commercial zircaloys was improved remarkably by laser beam surface treatment. The out-of-pile transient cladding failures were investigated in terms of hoop stress versus time-to-failures by means of mandrel loading units at 25 deg C and 325 deg C. Fatigue characteristics of the β-quenched and as-received zircaloy cladding were investigated by using an internal oil pressurization method which can simulate the load-following operation cycle. The results were in good agreement with the existing data obtained by conventional methods for commercial zircaloys. Burst tests were performed with commercial and the β-quenched zircaloys in high pressure argon gas atmosphere as a function of burst temperature. The burst stress decreased linearly in the α phase region up to 600 deg C and hereafter the decrement of the burst stress decreased gradually with temperature in the β-phase region. For the first time, the burst characteristic of the irradiated zircaloy-4 cladding tubes released from Ko-Ri nuclear power unit 1 was investigated, and attempts were made to trace the cause of cladding failures by examining the failed structure and fret marks by debris. (Author)

  6. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    International Nuclear Information System (INIS)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T.; Rodrigues, Juliano S.

    2017-01-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  7. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T. [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rodrigues, Juliano S., E-mail: rfs@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: rtf@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  8. Corrosion of aluminium-clad spent fuel at RA research reactor

    International Nuclear Information System (INIS)

    Pesic, M.; Maksin, T.; Dobrijevic, R.; Idjakovic, Z.

    2003-01-01

    Almost 95% of all spent fuel elements of the RA research reactor in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, are stored in 30 aluminium barrels and about 300 stainless steel channel-holders in the temporary spent fuel storage water pool. The first activities of sludge and water samples, taken from the pool, were measured in 1996-1997 and were followed by analysis of chemical composition of samples. Visual inspections of fuel elements in some stainless steel tubes and of the fuel channels stored in the reactor core have shown that some deposits cover aluminium cladding. Stains and surface discoloration are noted on many of the spent fuel elements that were examined visually during the core unloading and inspections carried out in 1979 - 1984. Some of water samples, taken from pool, about a 150 stainless steel tubes and 16 barrels have shown very high 137-Cs activity compared to low activity measured in pool water. It was concluded that aluminium cladding of the fuel elements was penetrated due to corrosion process. Study on influence of water corrosion processes in the RA reactor storage pool was started within the framework of the IAEA CRP 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water' in 2002. The first test rack with various aluminium and stainless steel coupons, supplied by the IAEA, was immersed in the pool already in 1996. New racks were immersed in 2002 and 2003. The rack immersed in 1996 was taken out from the pool in 2002 and the rack immersed in 2002 was taken out in 2003. Results of the examination of these racks, carried out according to the strategy and the protocol, proposed by the IAEA, are described in this paper. (author)

  9. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  10. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  11. Thermal creep behavior of N36 zirconium alloy cladding tube

    International Nuclear Information System (INIS)

    Wang, P.; Zhao, W.; Dai, X.

    2015-01-01

    N36 is an alloy containing Zr, Sn, Nb and Fe that is developed by China as a superior cladding material to meet the performance of PWR fuel assembly at the maximum fuel rod burn-up. The creep characteristics of N36 zirconium alloy cladding tube were investigated at temperature from 593 K to 723 K with stress ranging from 20 MPa to 160 MPa. Transitions in creep mechanisms were noted, showing the distinct three rate-controlled creep mechanisms for the alloy at test conditions. In the region of low stresses with stress exponent n ∼ 1 and activation energy Q ∼ (104±4) kJ.mol -1 , Coble creep, based on diffusion of materials through grain boundaries, is the dominant rate-controlling mechanism, which contributes to the creep deformation. The formation of slip bands acts as an accommodation mechanism. In the region of middle stress with stress exponent n ∼ 3 and activation energy Q ∼ (195±7) kJ.mol -1 , micro-creep, caused by viscous gliding of dislocations due to the interaction of O atoms with dislocations, controls the deformation. In the high stress region with stress exponent n ∼ 5-6 and activation energy Q ∼ (210±10) kJ.mol -1 , two mechanisms of the climb of edge dislocations (EDC) and the motion of jogged screw dislocation (MJS) contribute to rate controlling process. In test conditions N36 alloy cladding tube behaves a type of creep similar to that noted in class-I (A) alloys

  12. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding

    International Nuclear Information System (INIS)

    Comstock, R.J.; Sabol, G.P.; Schoenberger, G.

    1996-01-01

    Variations in the thermal heat treatments used during the fabrication of ZIRLO (Zr-1Nb-1Sn-0.1Fe) fuel clad tubing and in ZIRLO alloy chemistry were explored to develop a further understanding of the relationship between processing, microstructure, and cladding corrosion performance. Heat treatment variables included intermediate tube annealing temperatures as well as a beta-phase heat treatment during the latter stages of the tube reduction schedule. Chemistry variables included deviations in niobium and tin content from the nominal composition. The effects of both heat treatment and chemistry on corrosion behavior were assessed by autoclave tests in both pure and lithiated water and high-temperature steam. Analytical electron microscopy demonstrated that the best out-reactor corrosion performance is obtained for microstructures containing a fine distribution of beta-niobium and Zr-Nb-Fe particles. Deviations from this microstructure, such as the presence of beta-zirconium phase, tend to degrade corrosion resistance. ZIRLO fuel cladding was irradiated in four commercial reactors. In all cases, the microstructure in the cladding included beta-niobium and Zr-Nb-Fe particles. ZIRLO fuel cladding processed with a late-stage beta heat treatment to further refine the second-phase particle size exhibited in-reactor corrosion behavior that was similar to reference ZIRLO cladding. Variations of the in-reactor corrosion behavior of ZIRLO were correlated to tin content, with higher oxide thickness observed in the ZIRLO cladding containing higher tin. The results of these studies indicate that optimum corrosion performance of ZIRLO is achieved by maintaining a uniform distribution of fine second-phase particles and controlled levels of tin

  13. Stress analysis and collapse time prediction of nuclear fuel cladding tube with wear scar

    International Nuclear Information System (INIS)

    Lee, J. S.; Kim, O. H.; Kim, H. K.; Hu, Y. H.; Kim, J. I.; Kim, K. T.

    2004-01-01

    In this analysis, the stress and collapse time analysis models for nuclear fuel rod with the fretting wear scar were developed in order to evaluate the effects of the wear depth on the integrity of nuclear fuel rod. The stress analysis result shows that the nuclear fuel rod with approximately 60% deep wear scar of the clad wall thickness, meets the allowable stress criteria and the collapse time analysis indicates that the fuel rod with less than roughly 56% deep wear scar of the clad wall thickness has longer collapse time than the expected fuel life-time. The both stress and collapse time results are evaluated to be very reasonable on considering the comparison with the outputs of existing design code for the simple model. However, the developed analysis models and the results will be confirmed by the tests

  14. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  15. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  16. Gamma densitometer for measuring Pu density in fuel tubes

    International Nuclear Information System (INIS)

    Winn, W.G.

    1982-01-01

    A fuel-gamma-densitometer (FGD) has been developed to examine nondestructively the uniformity of plutonium in aluminum-clad fuel tubes at the Savannah River Plant (SRP). The monitoring technique is γ-ray spectroscopy with a lead-collimated Ge(Li) detector. Plutonium density is correlated with the measured intensity of the 208 keV γ-ray from 237 U (7d) of the 241 Pu (15y) decay chain. The FGD measures the plutonium density within 0.125- or 0.25-inch-diameter areas of the 0.133- to 0.183-inch-thick tube walls. Each measurement yields a density ratio that relates the plutonium density of the measured area to the plutonium density in normal regions of the tube. The technique was used to appraise a series of fuel tubes to be irradated in an SRP reactor. High-density plutonium areas were initially identified by x-ray methods and then examined quantitatively with the FGD. The FGD reliably tested fuel tubes and yielded density ratios over a range of 0.0 to 2.5. FGD measurements examined (1) nonuniform plutonium densities or hot spots, (2) uniform high-density patches, and (3) plutonium density distribution in thin cladding regions. Measurements for tubes with known plutonium density agreed with predictions to within 2%. Attenuation measurements of the 208-keV γ-ray passage through the tube walls agreed to within 2 to 3% of calculated predictions. Collimator leakage measurements agreed with model calculations that predicted less than a 1.5% effect on plutonium density ratios. Finally, FGD measurements correlated well with x-ray transmission and fluoroscopic measurements. The data analysis for density ratios involved a small correction of about 10% for γ-shielding within the fuel tube. For hot spot examinations, limited information for this correction dictated a density ratio uncertainty of 3 to 5%

  17. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  18. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  19. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  20. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  1. Nuclear fuel element

    International Nuclear Information System (INIS)

    Iwano, Yoshihiko.

    1993-01-01

    Microfine cracks having a depth of less than 10% of a pipe thickness are disposed radially from a central axis each at an interval of less than 100 micron over the entire inner circumferential surface of a zirconium alloy fuel cladding tube. For manufacturing such a nuclear fuel element, the inside of the cladding tube is at first filled with an electrolyte solution of potassium chloride. Then, electrolysis is conducted using the cladding tube as an anode and the electrolyte solution as a cathode, and the inner surface of the cladding tube with a zirconium dioxide layer having a predetermined thickness. Subsequently, the cladding tube is laid on a smooth steel plate and lightly compressed by other smooth steel plate to form microfine cracks in the zirconium dioxide layer on the inner surface of the cladding tube. Such a compressing operation is continuously applied to the cladding tube while rotating the cladding tube. This can inhibit progress of cracks on the inner surface of the cladding tube, thereby enabling to prevent failure of the cladding tube even if a pellet/cladding tube mechanical interaction is applied. Accordingly, reliability of the nuclear fuel elements is improved. (I.N.)

  2. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    International Nuclear Information System (INIS)

    Duan, Zhengang; Yang, Huilong; Satoh, Yuhki; Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie; Abe, Hiroaki

    2017-01-01

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  3. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  4. AGR fuel pin pellet-clad interaction failure limits and activity release fractions

    International Nuclear Information System (INIS)

    Hughes, H.; Hargreaves, R.

    1985-01-01

    The limiting conditions beyond which pellet-clad interaction can flail AGR fuel are described. They have been determined by many experiments involving post-irradiation examination and testing, loop experiments and cycling and up-rating of both individual fuel stringers and the whole WAGR core. The mechanisms causing this interaction are well understood and are quantitatively expressed in computer codes. Strain concentration effects over fuel cracks determine power cycling endurance while additional strain concentrations at clad ridges and from cross pin temperature gradients contribute to up-rating failures. An equation summarising tube burst test data so as to determine the ductility available at any transient is given. The hollow fuel and more ductile clad of the Civil AGR fuel pins leads to a much improved performance over the original fuel design. The Civil AGRs operate well within these limiting conditions and substantial increases beyond the design burn-up are confidently expected. The activity release on pin failure and its development during continued operation of failed fuel have also been investigated. A retention of radioiodine and caesium of 90-99% compared to the noble gases has been demonstrated. Measured fission gas releases into the free volume of Civil AGR fuel pins have been very low (< 0.1%)

  5. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  6. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  7. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  8. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  9. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    Energy Technology Data Exchange (ETDEWEB)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  10. FeCrAl/Zr dual layer fuel cladding for improved safety margin under accident scenario

    International Nuclear Information System (INIS)

    Park, D.J.; Park, J.H.; Jung, Y.I.; Kim, H.G.; Park, J.Y.; Koo, Y.H.

    2014-01-01

    For application of advanced steel as a cladding material in light water reactor (LWR), FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. To optimize HIP condition for joining both FeCrAl and Zr alloys, HIP was carried out under various temperature conditions. Tensile test and 3-point bend test performed for measuring mechanical properties of HIPed sample. To better understand microstructural characteristics in interface region between two alloys, SEM and TEM study were conducted by using HIPed sample with different process conditions. Based on this optimization study and analyzed results, optimized HIP condition was determined and FeCrAl/Zr dual layer fuel cladding having same wall thickness with current LWR fuel cladding was manufactured. Simulated loss-of-coolant accident test was carried out using FeCrAl/Zr dual layer cladding sample and fuel integrity was measured by mechanical test. (authors)

  11. Iodine induced stress corrosion cracking of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Brunisholz, L.; Lemaignan, C.

    1984-01-01

    Iodine is considered as one of the major fission products responsible for PCI failure of Zry cladding by stress corrosion cracking (SCC). Usual analysis of SCC involves both initiation and growth as sequential processes. In order to analyse initiation and growth independently and to be able to apply the procedures of fracture mechanics to the design of cladding, with respect to SCC, stress corrosion tests of Zry cladding tubes were undertaken with a small fatigue crack (approx. 200 μm) induced in the inner wall of each tube before pressurization. Details are given on the techniques used to induce the fatigue crack, the pressurization test procedure and the results obtained on stress releaved or recrystallized Zry 4 tubings. It is shown that the Ksub(ISCC) values obtained during these experiments are in good agreement with those obtained from large DCB fracture mechanics samples. Conclusions will be drawn on the applicability of linear elastic fracture mechanics (LEFM) to cladding design and related safety analysis. The work now underway is aimed at obtaining better understanding of the initiation step. It includes the irradiation of Zry samples with heavy ions to simulate the effect of recoil fragments implanted in the inner surface of the cladding, that could create a brittle layer of about 10 μm

  12. Out-of pile mechanical test: simulating reactivity initiated accident (RIA) of zircaloy-4 cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Kim, Jun Hwan; Choi, Byoung Kwon; Jeong, Young Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The ejection or drop of a control rod in a reactivity initiated accident (RIA) causes a sudden increase in reactor power and in turn deposits a large amount of energy into the fuel. In a RIA, cladding tubes bear thermal expansion due to sudden reactivity and may fail from the resulting mechanical damage. Thus, RIA can be one of the safety margin reducers because the oxide on the tubes makes their thickness to support the load less as well as hydrides from the corrosion reduce the ductility of the tubes. In a RIA, the peak of reactor power from reactivity change is about 0.1m second and the temperature of the cladding tubes increases up to 1000 .deg. C in several seconds. Although it is hard to fully simulate the situation, several attempts to measure the change of mechanical properties under a RIA situation has done using a reduction coil, ring tension tests with high speed. This research was done to see the effect of oxide on the change of circumferential strength and ductility of Zircaloy-4 tubes in a RIA. The ring stretch tensile tests were performed with the strain rate of 1/sec and 0.01/s to simulate a transient of the cladding tube under a RIA. Since the test results of the ring tensile test are very sensitive to the lubricant, the tests were also carried out to select a suitable lubricant before the test of oxided specimens.

  13. Apparatus for assembling and welding end plugs to nuclear fuel cladding tubes and inspecting the end plug welds on an automated basis

    International Nuclear Information System (INIS)

    Schoenig, F.C. Jr.; Walker, E.S.; Cueman, M.K.; Haughton, R.A.; Zuloaga, J.A. Jr.

    1989-01-01

    This patent describes an automated apparatus for welding a separate end plug to one open end of each of a succession of nuclear fuel cladding tubes and for inspecting each end plug weld. The apparatus comprising, in combination: a welding station; a cooldown station for cooling each end plug weld in an inert gas atmosphere; a serial number reader station for reading a serial number on each end plug; a first weld inspection station; a second weld inspection station for generating second weld inspection data; a computer system linked with the serial number reader and the first and second weld inspection stations; an input queue for holding a plurality of tubes; a tube transporter for periodically picking individual tubes from the input queque and conveying the tubes in a direction transverse to their tube axis in indexing steps to index positions respectively axially aligned with the welding, serial number reader, and first and second weld inspection stations; and a sorter positioned at an output end of the tube transporter

  14. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  15. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  16. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  17. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  18. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  19. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    International Nuclear Information System (INIS)

    Roake, W.E.

    1977-01-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals

  20. Implications and control of fuel-cladding chemical interaction for LMFBR fuel pin design

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States)

    1977-04-01

    Fuel-cladding-chemical-interaction (FCCI) is typically incorporated into the design of an LMFBR fuel pin as a wastage allowance. Several interrelated factors are considered during the evolution of an LMFBR fuel pin design. Those which are indirectly affected by FCCI include: allowable pin power, fuel restructuring, fission gas migration and release from the fuel, fuel cracking, fuel swelling, in-reactor cladding creep, cladding swelling, and the cladding mechanical strain. Chemical activity of oxygen is the most readily controlled factor in FCCI. Two methods are being investigated: control of total oxygen inventory by limiting fuel O/M, and control of oxygen activity with buffer metals.

  1. Cladding tube materials for advanced nuclear facilities with closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, I. [Slovenska technicka univerzita v Bratislave, Fakulta elektrotechniky a informatiky, Ustav jadroveho a fyzikalneho inzinierstva, 81219 Bratislava (Slovakia)

    2013-04-16

    The paper is aimed on perspective materials for fuel cladding in advanced nuclear reactors. Samples of Eurofer and ODS Eurofer were studied by various techniques such as Positron Annihilation Lifetime Spectroscopy, Vickers Hardness and Coincidence Doppler Broadening. After studying the samples by these methods, we implanted them by Helium atoms to simulate irradiation damage. Samples were then remeasured by Positron Annihilation Lifetime Spectroscopy to determine the affect of implantation on its behavior. (authors)

  2. The fuel-cladding interfacial friction coefficient in water-cooled reactor fuel rods

    International Nuclear Information System (INIS)

    Smith, E.

    1979-01-01

    A central problem in the development of cladding failure criteria and of effective operational, design or material remedies is to know whether the cladding stress is enhanced significantly near cladding ridges, pellet chips or fuel pellet cracks; the latter may also be coincident with cladding ridges at pellet-pellet interfaces. As regards the fuel pellet crack source of cladding stress concentration, the magnitude of the uranium dioxide-Zircaloy interfacial friction coefficient μ governs the magnitude and distribution of the enhanced cladding stress. Considerable discussion, particularly at a Post-Conference Seminar associated with the SMIRT 4 Conference, has focussed on the value of μ, the author taking the view that it is unlikely to be large (< 0.5). The reasoning behind this view is as follows. A fuel pellet should fracture during a power ramp when the tensile hoop stress within the pellet exceeds the fuel's fracture stress. Since the preferred position for a fuel pellet crack to form is at the fuel-cladding interface midway between existing fuel cracks, where the interfacial shear stress changes sign, the pellet segment size after a power ramp provides a limit to the magnitude of the interfacial shear stresses and consequently to the value of μ. With this argument as a basis, the author's early work used the Gittus fuel rod model, in which there is a symmetric distribution of fuel pellet cracks and symmetric interfacial slippage, to show that μ < 0.5 if it is assumed that the average hoop stress within the cladding attains yield levels. It was therefore suggested that a high interfacial friction coefficient is unlikely to be operative during a power ramp; this result was used to support the view that interfacial friction effects do not play a dominant role in stress corrosion crack formation within the cladding. (orig.)

  3. Theory of the frictional interaction between nuclear fuel cladding and a cracked ceramic pellet

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1976-02-01

    A summary is presented of the outcome of theoretical work detailed in five publications, reproduced as appendices, which is concerned with the tendency for the cladding tube of nuclear fuel elements to fracture as the result of power cycling or after a sudden upward power excursion. The relationship is shown between the properties of the clad, those of UO 2 pellets, and the tendency of the clad to fail during upward power excursions. The role of interfacial friction is explored and the benefit to be obtained by reducing it is calculated for cases where a soft metal interlayer is present. It is shown that the experimentally-confirmed magnitude of the strain-concentration in the arc of cladding over a radial pellet crack could not arise if there were interfaceons present. Accordingly, these defects, although they do occur in some sliding situations, are thought to be absent from the pellet clas interface in fuel pins. (author)

  4. Studies on the use of nuclear fuel kernels in cladding tubes

    International Nuclear Information System (INIS)

    Thomas, G.

    1981-12-01

    Two approaches for using UO 2 -kernels in cladding tubes have been investigated, viz. the preparation of dense sphere-pacs and direct pelletizing (spherical). A theoretical study on the packing of spheres of different sizes showed that practical experiments were required. Model tests were, therefore, carried out, mostly with glass spheres. The most important results obtained are: A packing density of 80% can be exceeded if spheres of two sizes are used; quick and simple packing can be achieved with the mixing chute presented here; spheres pacs with a density of 90% for LWR cannot be prepared with kernels of practicable sizes; packing results can be translated to other tube diameters and to spheres and tubes made of other materials. The only suitable way to prepare dense pellets from kernels is pressing with a floating matrix at about 10 kbar, followed by removal under residual load. The kernels used should be produced without PVA and be reduced between 500 0 C and 800 0 C. Sintering is best accomplished in a limited oxidizing atmosphere at 1100 0 C with subsequent reduction. Stable pellets with up to 96% of their theoretical density could be produced this way. (orig.) [de

  5. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  6. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  7. Fuel cladding mechanical interaction during power ramps

    International Nuclear Information System (INIS)

    Guerin, Y.

    1985-01-01

    Mechanical interaction between fuel and cladding may occur as a consequence of two types of phenomenon: i) fuel swelling especially at levels of caesium accumulation, and ii) thermal differential expansion during power changes. Slow overpower ramps which may occur during incidental events are of course one of the circumstances responsible for this second type of fuel cladding mechanical interaction (FCMI). Experiments and analysis of this problem that have been done at C.E.A. allow to determine the main parameters which will fix the level of stress and the risk of damage induced by the fuel in the cladding during overpower transients

  8. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  9. Fuel assembly in a reactor

    International Nuclear Information System (INIS)

    Saito, Shozo; Kawahara, Akira.

    1975-01-01

    Object: To provide a fuel assembly in a reactor which can effectively prevent damage of the clad tube caused by mutual interference between pellets and the clad tube. Structure: A clad tube for a fuel element, which is located in the outer peripheral portion, among the fuel elements constituting fuel assemblies arranged in assembled and lattice fashion within a channel box, is increased in thickness by reducing the inside diameter thereof to be smaller than that of fuel elements internally located, thereby preventing damage of the clad tube resulting from rapid rise in output produced when control rods are removed. (Kamimura, M.)

  10. Creep-rupture, steam oxidation and recovery behaviours upon dynamic transients up to 1300 C of cold-worked 304 stainless steel tubes dedicated to nuclear core fuel cladding

    International Nuclear Information System (INIS)

    Portier, L.; Brachet, J.C.; Vandenberghe, V.; Guilbert, T.; Lezaud-Chaillioux, V.; Bernard, C.; Rabeau, V.

    2011-01-01

    An ambitious mechanical tests program was conducted on the fuel rod cladding of the CABRI facility between 2004 and 2009 to re-evaluate the cladding tubes materials behaviour. As an offspring of this major scientific investment several conclusions of interest could be drawn on the 304 stainless steel material. In particular, the specific behaviour of the materials during hypothetical and extreme 'dry-out' conditions was investigated. In such a scenario, the cladding tube materials should experience a very brief incursion at high temperatures, in a steam environment, up to 1300 C, before cladding rewetting. Some of the measurements performed in the range of interest for the safety case were on purpose developed beyond the conservatively safe domain. Some of the results obtained for these non-conventional heating rates, pressures and temperature ranges will be presented. First in order to assess the high temperature creep-rupture material behaviour under internal pressure upon dynamic transient conditions, tests have been performed on cold-worked 304 stainless cladding tubes in a steam environment, for heating rates up to 100 C*s -1 and pressure ramp rates up to 10 bar*s -1 thanks to the use of the EDGAR facility. Other tests performed at a given pressure allowed us to check the steady-state secondary creep rate of the materials in the 1100-1200 C temperature range. It was also possible to determine the rupture strength value and the failure mode as a function of the thermal and pressure loading history applied. It is worth noticing that, for very specific conditions, a surprising pure intergranular brittle failure mode of the clad has been observed. Secondly, in order to check the materials oxidation resistance of the materials, two-side steam oxidation tests have been performed at 1300 C, using the DEZIROX facility. It was shown that, thanks to the use of Ring Compression tests, the 304 cladding tube keeps significant ductility for oxidation times up to at least

  11. Fuel removing method for high burnup fuel and device therefor

    International Nuclear Information System (INIS)

    Terakado, Shogo; Owada, Isao; Kanno, Yoshio; Aizawa, Sakue; Yamahara, Takeshi.

    1993-01-01

    A through hole is perforated at the center of a fuel rod in a cladding tube by a diamond drill in a water vessel. Further, the through hole is enlarged by the diamond drill. A pellet removing tool is attached to a drill chuck instead of the diamond drill. Then, the thin cylindrical fuel pellet remaining on the inner surface of the cladding tube is removed by using a pellet removing tool while applying vibrations. Subsequently, a wire brush having a slightly larger diameter than that of the inner diameter of the cladding tube is attached to the drill chuck and rotated to finish the inner surface, so that a small amount of pellets remained on the inner surface of the cladding tube is removed. Pellet powders in the water vessel are collected and recovered to the water container. This can remove high burnup fuels which are firmly sticked to the cladding tube, without giving thermal or mechanical influences on the cladding tube. (I.N.)

  12. Experimental assessment of fuel-cladding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-29

    A range of fuel concepts designed to better tolerate accident scenarios and reactor transients are currently undergoing fundamental development at national laboratories as well as university and industrial partners. Pellet-clad mechanical and chemical interaction can be expected to affect fuel failure rates experienced during steady state operation, as well as dramatically impact the response of the fuel form under loss of coolant and other accident scenarios. The importance of this aspect of fuel design prompted research initiated by AFC in FY14 to begin exploratory efforts to characterize this phenomenon for candidate fuelcladding systems of immediate interest. Continued efforts in FY15 and FY17 aimed to better understand and simulate initial pellet-clad interaction with little-to-no pressure on the pellet-clad interface. Reported here are the results from 1000 h heat treatments at 400, 500, and 600°C of diffusion couples pairing UN with a FeCrAl alloy, SiC, and Zr-based cladding candidate sealed in evacuated quartz ampoules. No gross reactions were observed, though trace elemental contaminants were identified.

  13. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  14. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  15. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  16. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  17. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  18. The Effect of Peak Temperatures and Hoop Stresses on Hydride Reorientations of Zirconium Alloy Cladding Tubes under Interim Dry Storage Condition

    International Nuclear Information System (INIS)

    Cha, Hyun Jin; Jang, Ki Nam; Kim, Kyu Tae

    2016-01-01

    In this study, the effect of peak temperatures and hoop tensile stresses on hydride reorientation in cladding was investigated. It was shown that the 250ppm-H specimens generated larger radial hydride fractions and longer radial hydrides than the 500ppm-H ones. The precipitated hydride in radial direction severely degrades mechanical properties of spent fuel rod. Hydride reorientation is related to cladding material, cladding temperature, hydrogen contents, thermal cycling, hoop stress and cooling rate. US NRC established the regulation on cladding temperature during the dry storage, which is the maximum fuel cladding temperature should not exceed 400 .deg. C for all fuel burnups under normal conditions of storage. However, if it is proved that the best estimate cladding hoop stress is equal to or less than 90MPa for the temperature limit proposed, a higher short-term temperature limit is allowed for low burnup fuel. In this study, 250ppm and 500ppm hydrogen-charged Zr-Nb alloy cladding tubes were selected to evaluate the effect of peak temperatures and hoop tensile stresses on the hydride reorientation during the dry storage. In order to evaluate threshold stresses in relation to various peak temperatures, four peak temperatures of 250, 300, 350, and 400 .deg. C and three tensile hoop stresses of 80, 100, 120MPa were selected.

  19. Optimized manufacture of nuclear fuel cladding tubes by FEA of hot extrusion and cold pilgering processes

    Science.gov (United States)

    Gaillac, Alexis; Ly, Céline

    2018-05-01

    Within the forming route of Zirconium alloy cladding tubes, hot extrusion is used to deform the forged billets into tube hollows, which are then cold rolled to produce the final tubes with the suitable properties for in-reactor use. The hot extrusion goals are to give the appropriate geometry for cold pilgering, without creating surface defects and microstructural heterogeneities which are detrimental for subsequent rolling. In order to ensure a good quality of the tube hollows, hot extrusion parameters have to be carefully chosen. For this purpose, finite element models are used in addition to experimental tests. These models can take into account the thermo-mechanical coupling conditions obtained in the tube and the tools during extrusion, and provide a good prediction of the extrusion load and the thermo-mechanical history of the extruded product. This last result can be used to calculate the fragmentation of the microstructure in the die and the meta-dynamic recrystallization after extrusion. To further optimize the manufacturing route, a numerical model of the cold pilgering process is also applied, taking into account the complex geometry of the tools and the pseudo-steady state rolling sequence of this incremental forming process. The strain and stress history of the tube during rolling can then be used to assess the damage risk thanks to the use of ductile damage models. Once validated vs. experimental data, both numerical models were used to optimize the manufacturing route and the quality of zirconium cladding tubes. This goal was achieved by selecting hot extrusion parameters giving better recrystallized microstructure that improves the subsequent formability. Cold pilgering parameters were also optimized in order to reduce the potential ductile damage in the cold rolled tubes.

  20. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  1. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  2. State-of-the-technology review of fuel-cladding interaction

    International Nuclear Information System (INIS)

    Bailey, W.J.; Wilson, C.L.; MacGowan, L.J.; Pankaskie, P.J.

    1977-12-01

    A literature survey and a summarization of postulated fuel-cladding-interaction mechanisms and associated supportive data are reported. The results of that activity are described in the report and include comments on experience with power-ramped fuel, fuel-cladding mechanical interaction, stress-corrosion cracking and fission-product embrittlement, potential remedial actions, fuel-cladding-interaction mechanistic considerations, other ongoing programs, and related patents of interest. An assessment of the candidate fuel concepts to be evaluated as part of this program is provided

  3. Cladding creepdown under compression

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1977-01-01

    Light-water power reactors use Zircaloy tubing as cladding to contain the UO 2 fuel pellets. In-service operating conditions impose an external hydrostatic force on the cladding, causing it to creep down into eventual contact with the fuel. Knowledge of the rate of such creepdown is of great importance to modelers of fuel element performance. An experimental system was devised for studying creepdown that meets several severe requirements by providing (1) correct stress state, (2) multiple positions for measuring radial displacement of the cladding surface, (3) high-precision data, and (4) an experimental configuration compact enough to fit in-reactor. A microcomputer-controlled, eddy-current monitoring system was developed for this study and has proven highly successful in measuring cladding deformation with time at temperatures of 371 0 C (700 0 F) and higher, and at pressures as high as 21 MPa

  4. Development in the manufacture of fuel assembly components at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Saibaba, N.

    2012-01-01

    The integrity of the fuel bundle and pellet-clad mechanical and chemical interaction (PCMCI) is the major limiting factor in achieving high burn up in thermal as well as fast reactors. Zircaloy based fuel bundle used for Indian pressurized heavy water reactor consists of number of components such as fuel clad tube, end cap bearing pad and spacer pad. These tubular, bar and sheet components are manufactured at Nuclear Fuel Complex using a series of thermomechanical processes involving hot and cold working with intermediate heat treatment. This paper is aimed at bringing out recent advances in NFC in the manufacture of fuel assembly components. Zircaloy based double clad tube adopting co-extrusion route followed by cold pilgering was successfully produced for its potential usage for high burnup in advance thermal reactors such as Advanced Heavy Water Reactors, This paper also includes process modifications carried out in the manufacture of clad tube and end cap components based on in-depth metallurgical studies. A radial forging process was established for primary breakdown of arc melted ingot which allows for better soundness and homogeneous microstructure. Manufacturing route of bar components for end caps was suitably modified by adopting only barrel straightening to minimize the residual stress and thereby increasing the recovery appreciably. NFC also supplies clad tube for fast breeder reactors where limiting factor for burn up are void swelling and fuel-clad interaction. In view of this, advance claddings such as P/M based 9Cr - Oxide Dispersion strengthened (ODS) steel clad and Zirconium lined T91 (9Cr-1 Mo) steel double clad have been successfully produced. Zirconium lined T91 (9Cr-1 Mo) double clad tubes required was successfully produced by adopting the method of co-pilgering, as a candidate material for clad tubes of Fast Breeder Reactors. (author)

  5. Characterization of internal surface finishing of tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Loureiro, N.V; Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    One of the factors that ensure the good behavior of the fuel claddings of the nuclear power reactors is the internal surface quality. In the present work has been carried out a study of the internal surface of the tube after a cold rolling process developed in the Departamento de Tecnologia de Aleaciones de Circonio and applied by FAE-SA and PPFAE-CNEA in each rolling stage to obtain the fuel claddings for the reactor CAREM 25. The inner surface has been observed by scanning electron microscopy, SEM, being the objective of this study to verify not only the good internal surface but also infer about how starting from tubes of different initial diameter reduction the quality of the final product will be affected. The manufacturing process of the tubes for this new fuel went through modifications during the development, adding intermediate chemical pickling stages in order to improve the internal surface quality of the final product. From determinations made with ultrasound, the defects charts obtained made it possible to compare the observed signals more relevant and the micrographs in these areas in order to characterize possible defects (author)

  6. Method and device for taking out spent fuel

    International Nuclear Information System (INIS)

    Kono, Takayuki; Shimamoto, Takijiro; Otsuka, Shiomi.

    1994-01-01

    Both ends of a fuel assembly are cut and removed, and spacers are removed into a single body of a fuel cladding tube. A plurality of the fuel cladding tubes as single bodies are sent into a ring-like electrode. An arc forming electric power source is actuated, to form arcs between the fuel cladding tube and the ring-like electric power source. A magnetic field forming power source is actuated, to form magnetic fields around the ring-like electrode by solenoid coils. The direction of the magnetic fluxes in this magnetic fields intersect the arcs. Then, the arcs are applied with a rotational force by the magnetic fields formed by the solenoid coils and rotate on the surface of the fuel cladding tube and the inner surface of the ring-like electrode. The fuel cladding tube is exhausted circumferentially uniformly by the rotational arcs. Since spent fuels are taken out by melting and scattering the fuel cladding tube by the heat and force of the arcs, the operation is facilitated. (I.N.)

  7. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  8. Computer analysis of elongation of the WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.

    2008-01-01

    In this paper description of mechanisms influencing changes of the WWER fuel cladding length and axial forces influencing fuel and cladding are presented. It is shown that shortening of the fuel claddings in case of high burnup can be explained by the change of the fuel and cladding reference state caused by reduction of the fuel rod power level - during reactor outages. It is noted that the presented calculated data are to be reviewed and interpreted as the preliminary results; further work is needed for their confirmation. (authors)

  9. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  10. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  11. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  12. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  13. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  14. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  15. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamanaka, Tsuneyasu.

    1976-01-01

    Purpose: To provide a mechanism for the prevention of fuel pellet dislocation in fuel can throughout fuel fablication, fuel transportation and reactor operation. Constitution: A plenum spacer as a mechanism for the prevention of fuel pellet dislocation inserted into a cladding tube comprises split bodies bundled by a frame and an expansion body being capable of inserting into the central cavity of the split bodies. The expansion body is, for example, in a conical shape and the split bodies are formed so that they define in the center portion, when disposed along the inner wall of the cladding tube, a gap capable of inserting the conical body. The plenum spacer is assembled by initially inserting the split bodies in a closed state into the cladding tube after the loading of the pellets, pressing their peripheral portions and then inserting the expansion body into the space to urge the split bodies to the inner surface of the cladding tube. (Kawakami, Y.)

  17. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  18. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  19. Nondestructive characterization of hydrogen concentration in zircaloy cladding tubes with laser ultrasound technique

    International Nuclear Information System (INIS)

    Yang, Che Hua; Lai, Yu An

    2006-01-01

    This paper describes a laser ultrasound technique (LUT) for nondestructive characterization of hydrogen concentration (HC) in Zircaloy cladding tubes. With the LUT, guided ultrasonic waves are generated remotely and then propagate in the axial direction of Zircaloy tubes, and finally detected remotely by an optical probe. By measuring the dispersion spectra with the LUT, relations between the dispersion spectra and the HC of the Zircaloy tubes can be established. The LUT is non-contact, capable of remote inspection, and therefore suitable for nondestructive inspection of HC in Zircaloy cladding tubes used in nuclear power plant.

  20. Inspection of surface defects for cladding tube with laser

    International Nuclear Information System (INIS)

    Senoo, Shigeo; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    This paper presents the results of experiment on mechanizing the visual inspection of surface defects of cladding tubes and improving the reliability of surface defect inspection. Laser spot inspection method was adopted for this purpose. Since laser speckle pattern includes many informations about surface aspects, the method can be utilized as an effective means for detection or classification of the surface defects. Laser beam is focussed on cladding tube surfaces, and the reflected laser beam forms typical stellar speckle patterns on a screen. Sample cladding tubes are driven in longitudinal direction, and a photo-detector is placed at a position where secondary reflection will fall on the detector. Reflected laser beam from defect-free surfaces shows uniform distribution on the detector. When the incident focussed laser beam is directed to defects, the intensity of the reflected light is reduced. In the second method, laser beam is scanned by a rotating cube mirror. As the results of experiment, the typical patterns caused by defects were observed. It is clear that reflection patterns change with the kinds of defects. The sensitivity of defect detection decreases with the increase in laser beam diameter. Surface defect detection by intensity change was also tested. (Kato, T.)

  1. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  2. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  3. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  4. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  5. Corrosion behaviour of zircaloy 4 fuel rod cladding in EDF power plants

    Energy Technology Data Exchange (ETDEWEB)

    Romary, H; Deydier, D [EDF, Direction de l` Equipment SEPTEN, Villeurbanne (France)

    1997-02-01

    Since the beginning of the French nuclear program, a surveillance of fuel has been carried out in order to evaluate the fuel behaviour under irradiation. Until now, nuclear fuels provided by suppliers have met EDF requirements concerning fuel behaviour and reliability. But, the need to minimize the costs and to increase the flexibility of the power plants led EDF to the definition of new targets: optimization of the core management and fuel cycle economy. The fuel behaviour experience shows that some of these new requirements cannot be fully fulfilled by the present standard fuel due to some technological limits. Particularly, burnup enhancement is limited by the oxidation and the hydriding of the Zircaloy 4 fuel rod cladding. Also, fuel suppliers and EDF need to have a better knowledge of the Zy-4 cladding behaviour in order to define the existing margins and the limiting factors. For this reason, in-reactor fuel characterization programs have been set up by fuel suppliers and EDF for a few years. This paper presents the main results and conclusions of EDF experience on Zy-4 in-reactor corrosion behaviour. Data obtained from oxide layer or zirconia thickness measurements show that corrosion performance of Zy-4 fuel rod cladding, as irradiated until now in EDF reactors, is satisfactory but not sufficient to meet the future needs. The fuel suppliers propose in order to improve the corrosion resistance of fuel rod cladding, low tin Zy-4 cladding and then optimized Zy-4 cladding. Irradiation of these claddings are ongoing. The available corrosion data show the better in-reactor corrosion resistance of optimized Zy-4 fuel rod cladding compared to the standard Zy-4 cladding. The scheduled fuel surveillance program will confirm if the optimized Zy-4 fuel rod cladding will meet the requirements for the future high burnup and high flexibility fuel. (author). 10 refs, 19 figs, 4 tabs.

  6. Examination of Zircaloy-clad spent fuel after extended pool storage

    International Nuclear Information System (INIS)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed

  7. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    1985-01-01

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  8. COVE-1: a finite difference creep collapse code for oval fuel pin cladding material

    International Nuclear Information System (INIS)

    Mohr, C.L.

    1975-03-01

    COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)

  9. Fuel-clad heat transfer coefficient of a defected fuel rod

    International Nuclear Information System (INIS)

    Bruet, M.; Stora, J.P.

    1976-01-01

    A special rod has been built with a stack of UO 2 pellets inside a thick zircaloy clad. The atmosphere inside the fuel rod can be changed and particularly the introduction of water is possible. The capsule was inserted in the Siloe pool reactor in a special device equipped with a neutron flux monitor. The fuel centerline temperature and the temperature at a certain radius of the clad were recorded by two thermocouples. The temperature profiles in the fuel and in the cladding have been calculated and then the heat transfer coefficient. In order to check the proper functioning of the device, two runs were successively achieved with a helium atmosphere. Then the helium atmosphere inside the fuel rod was removed and replaced by water. The heat transfer coefficients derived from the measurements at low power level are in agreement with the values given by the model based on thermal conductivity. However, for higher power levels, the heat transfer coefficients become higher than those based on the calculated gap

  10. Delayed hydride cracking of Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Pizarro, Luis M.; Fernandez, Silvia; Lafont, Claudio; Mizrahi, Rafael; Haddad, Roberto

    2007-01-01

    Crack propagation rates, grown by the delayed hydride cracking mechanism, were measured in Zircaloy-4 fuel cladding, according to a Coordinated Research Project (CRP) sponsored by the International Atomic Energy Agency (IAEA). During the first stage of the program a Round Robin Testing was performed on fuel cladding samples provided by Studsvik (Sweden), of the type used in PWR reactors. Crack growth in the axial direction is obtained through the specially developed 'pin load testing' (PLT) device. In these tests, crack propagation rates were determined at 250 C degrees on several samples of the material described above, obtaining a mean value of about 2.5 x 10 -8 m s -1 . The results were analyzed and compared satisfactorily with those obtained by the other laboratories participating in the CRP. At the present moment, similar tests on CANDU and Atucha I type fuel cladding are being performed. It is thought that the obtained results will give valuable information concerning the analysis of possible failures affecting fuel cladding under reactor operation. (author) [es

  11. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  12. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  13. Mechanical properties of zircaloy-4 tubes for CAREM 25 fuel rods

    International Nuclear Information System (INIS)

    Juarez, G; Bianchi, D; Flores, A; Vizcaino, P

    2012-01-01

    The aim of the present work was giving support to the development of Zircaloy-4 fuel claddings for the CAREM 25 reactor through microstructural and mechanical properties studies along the manufacturing process. The manufacturing route was defined in 4 cold rolling stages and two thermal treatments, one at the middle and one after the last rolling stage. The first two rolling stages were performed in FAESA and the last two in PPFAE-CNEA using the rolling machine HPTR 8-15. The reference values for the evaluation were those indicated in the technical specification CAREM25 F ET-3-B0610. In this context, four tubes were received from FAESA. To these tubes mechanical properties determinations were performed to characterize the material in each step performed in PPFAE. The mechanical properties of the cladding tubes also achieve the standard values (σ 0.2 = 450 MPa, e = 15%), being σ 0.2 = 530 MPa and 18% the elongation (author)

  14. Semi-empirical corrosion model for Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Nadeem Elahi, Waseem; Atif Rana, Muhammad

    2015-01-01

    The Zircaloy-4 cladding tube in Pressurize Water Reactors (PWRs) bears corrosion due to fast neutron flux, coolant temperature, and water chemistry. The thickness of Zircaloy-4 cladding tube may be decreased due to the increase in corrosion penetration which may affect the integrity of the fuel rod. The tin content and inter-metallic particles sizes has been found significantly in the magnitude of oxide thickness. In present study we have developed a Semiempirical corrosion model by modifying the Arrhenius equation for corrosion as a function of acceleration factor for tin content and accumulative annealing. This developed model has been incorporated into fuel performance computer code. The cladding oxide thickness data obtained from the Semi-empirical corrosion model has been compared with the experimental results i.e., numerous cases of measured cladding oxide thickness from UO 2 fuel rods, irradiated in various PWRs. The results of the both studies lie within the error band of 20μm, which confirms the validity of the developed Semi-empirical corrosion model. Key words: Corrosion, Zircaloy-4, tin content, accumulative annealing factor, Semi-empirical, PWR. (author)

  15. The prediction problems of VVER fuel element cladding failure theory

    International Nuclear Information System (INIS)

    Pelykh, S.N.; Maksimov, M.V.; Ryabchikov, S.D.

    2016-01-01

    Highlights: • Fuel cladding failure forecasting is based on the fuel load history and the damage distribution. • The limit damage parameter is exceeded, though limit stresses are not reached. • The damage parameter plays a significant role in predicting the cladding failure. • The proposed failure probability criterion can be used to control the cladding tightness. - Abstract: A method for forecasting of VVER fuel element (FE) cladding failure due to accumulation of deformation damage parameter, taking into account the fuel assembly (FA) loading history and the damage parameter distribution among FEs included in the FA, has been developed. Using the concept of conservative FE groups, it is shown that the safety limit for damage parameter is exceeded for some FA rearrangement, though the limits for circumferential and equivalent stresses are not reached. This new result contradicts the wide-spread idea that the damage parameter value plays a minor role when estimating the limiting state of cladding. The necessary condition of rearrangement algorithm admissibility and the criterion for minimization of the probability of cladding failure due to damage parameter accumulation have been derived, for using in automated systems controlling the cladding tightness.

  16. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  17. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  18. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  19. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  20. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  1. Temperature measurements of the aluminium claddings of fuel elements in nuclear reactor

    International Nuclear Information System (INIS)

    Chen Daolong

    1986-01-01

    A method for embedding the sheathed thermocouples in the aluminium claddings of some fuel elements of experimental reactors by ultrasonic welding technique is described. The measurement results of the cladding temperature of fuel elements in reactors are given. By means of this method, the joint between the sheathed thermocouples and the cladding of fuel elements can be made very tight, there are no bulges on the cladding surfaces, and the sheathed thermocouples are embedded strongly and reliably. Therefore an essential means is provided for acquiring the stable and dynamic state data of the cladding temperature of in-core fuel elements

  2. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  3. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  4. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  5. Modelling of pellet-cladding interaction for PWRs reactors fuel rods

    International Nuclear Information System (INIS)

    Esteves, A.M.

    1991-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyzes the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. Linear and non-linear material behaviors are allowed. Elastic, plastic and creep behaviors are considered for the cladding materials. The modelling is applied to Angra-II fuel rod design. The results are analyzed and compared. (author)

  6. Prediction of failure of highly irradiated Zircaloy clad tubes under reactivity initiated accidents

    International Nuclear Information System (INIS)

    Jernkvist, L.O.

    2003-01-01

    This paper deals with failure of irradiated Zircaloy tubes under the heat-up stage of a reactivity initiated accident (RIA). More precisely, by use of a model for plastic strain localization and necking failure, we theoretically analyse the effects of local surface defects on clad ductility and survivability under RIA. The results show that even very shallow surface defects, e.g. arising from a non-uniform or partially spilled oxide layer, have a strong limiting effect on clad ductility. Moreover, in presence of surface defects, the ability of the clad tube to expand radially without necking failure is found to be extremely sensitive to the stress biaxiality ratio σ zz /σ θθ , which is here assumed to be in the range from 0 to 1. The results of our analysis are compared with clad ductility data available in literature, and their consequences for clad failure prediction under RIA are discussed. In particular, the results raise serious concerns regarding the applicability of failure criteria, which are based on clad strain energy density. These criteria do not capture the observed sensitivity to stress biaxiality on clad failure propensity. (author)

  7. Neutron imaging of Zr-1%Nb fuel cladding material containing hydrogen

    International Nuclear Information System (INIS)

    Svab, E.; Meszaros, Gy.; Somogyvari, Z.; Balasko, M.; Koeroesi, F.

    2004-01-01

    Hydrogen distribution and hydride phases were analyzed in reactor fuel cladding pressure tube Zr-1%Nb material up to 13,300 ppm. From neutron diffraction measurements, formation of cubic δ-ZrH 2 and a small amount of tetragonal γ-ZrH was established. Texture effects were analyzed by imaging plate technique. From neutron radiography images a linear model was set up that adequately described the relationship between gray levels and nominal H-concentrations. The H-distribution was unveiled by 3D intensity histograms and fractal analysis of multilevel-segmented neutron radiography images

  8. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1991-01-01

    A methodology for determining the probability spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B ampersand W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  9. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1992-01-01

    In this paper a methodology for determining the probability of spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B and W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  10. Preliminary study of mechanical behavior for Cr coated Zr-4 Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyoung; Kim, Hak-Sung [Hanyang Univ., Seoul (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To decrease the oxidation rate of Zr-based alloy components, many concepts of accident tolerant fuel (ATF) such as Mo-Zr cladding, SiC/SiCf cladding and iron-based alloy cladding are under development. One of the promised concept is the coated cladding which can remarkably increase the corrosion and wear resistance. Recently, KAERI is developing the Cr coated Zircaloy cladding as accident tolerance cladding. To coat the Cr powder on the Zircaloy, 3D laser coating technology has been employed because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. Therefore, for this work, the mechanical integrity of Cr coated Zircaloy should be evaluated to predict the safety of fuel cladding during the operating or accident of nuclear reactor. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr, which were referred from the literatures and experimental reports. In this work, the mechanical behavior of the Cr coated Zircaloy cladding has been studied by using finite element analysis (FEA). The ring compression test (RCT) of fuel cladding was simulated to evaluate the validity of mechanical properties of Zr-4 and Cr. The pellet-clad mechanical interaction (PCMI) properties of Cr coated Zr-4 cladding were investigated by thermo-mechanical finite element analysis (FEA) simulation. The mechanical properties of Zr-4 and Cr was validated by simulation of ring compression test (RCT) of fuel cladding.

  11. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  12. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  13. Fuel rod failure detection method and system

    International Nuclear Information System (INIS)

    Assmann, H.; Janson, W.; Stehle, H.; Wahode, P.

    1975-01-01

    The inventor claims a method for the detection of a defective fuel rod cladding tube or of inleaked water in the cladding tube of a fuel rod in the fuel assembly of a pressurized-water reactor. The fuel assembly is not disassembled but examined as a whole. In the examination, the cladding tube is heated near one of its two end plugs, e.g. with an attached high-frequency inductor. The water contained in the cladding tube evaporates, and steam bubbles or a condensate are detected by the ultrasonic impulse-echo method. It is also possible to measure the delay of the temperature rise at the end plug or to determine the cooling energy required to keep the end plug temperature stable and thus to detect water ingression. (DG/AK) [de

  14. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  15. Influence of the fuel operational parameters on the aluminium cladding quality of discharged fuel

    Energy Technology Data Exchange (ETDEWEB)

    Chwaszczewski, S.; Czajkowski, W.; Borek-Kruszewska, E. [Institute of Atomic Energy, Otwock Swierk (POLAND)

    2002-07-01

    In the last two years, the new MR6 type fuel containing 1550 g of U with 36% enrichment has been loaded into MARIA reactor core. Its aluminium cladding thickness is 0,6 mm and typical burnup -about 4080 MWh (as compared to 2880 MWh for the 80% enriched fuel used). However, increased fission product release from these assemblies was observed near the end of its operational time. The results presented earlier [1] show that the corrosion behaviour of aluminium cladding depends on the conditions of fuel operation in the reactor. The corrosion process in the aluminum of fuel cladding proceeds faster then in the aluminum of constructional elements. This tendency was also observed in MR-6/80% and in WWR- SM fuel assemblies. Therefore the visual tests of discharged MR-6/36% fuel elements were performed. Some change of appearance of aluminum cladding was observed, especially in the regions with large energy generation i.e. in the centre of reactor core and in the strong horizontal gradient of neutron flux. In the present paper, the results of visual investigation of discharged fuel assemblies are presented. The results of the investigation are correlated with the operational parameters. (author)

  16. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  17. Application of non-destructive liner thickness measurement technique for manufacturing and inspection process of zirconium lined cladding tube

    International Nuclear Information System (INIS)

    Nakazawa, Norio; Fukuda, Akihiro; Fujii, Noritsugu; Inoue, Koichi

    1986-01-01

    Recently, in order to meet the difference of electric power demand owing to electric power situation, large scale load following operation has become necessary. Therefore, the development of the cladding tubes which withstand power variation has been carried out, as the result, zirconium-lined zircaloy 2 cladding tubes have been developed. In order to reduce the sensitivity to stress corrosion cracking, these zirconium-lined cladding tubes require uniform liner thickness over the whole surface and whole length. Kobe Steel Ltd. developed the nondestructive liner thickness measuring technique based on ultrasonic flaw detection technique and eddy current flaw detection technique. These equipments were applied to the manufacturing and inspection processes of the zirconium-lined cladding tubes, and have demonstrated superiority in the control and assurance of the liner thickness of products. Zirconium-lined cladding tubes, the development of the measuring technique for guaranteeing the uniform liner thickness and the liner thickness control in the manufacturing and inspection processes are described. (Kako, I.)

  18. Mechanical response of FFTF reference and P1 cladding tubes under transient heating

    International Nuclear Information System (INIS)

    Youngahl, C.A.; Ariman, T.; Lepacek, B.E.

    1977-01-01

    Burst tests of Type 316 stainless steel cladding tube samples subjected to increasing temperature and relatively constant internal pressure were conducted to assist in the pretest analysis of the P1 experiment performed in the Sodium Loop Safety Facility. This paper reports and analyzes the burst test results and those of subsequent transient heating work. The use of a modified extensometer in obtaining mechanical response data for stainless steel in the high temperature range is illustrated, some of such data is provided, and the potential of further experiments and analysis is indicated. Tubing of the same design as Fast Flux Test Facility (FFTF) cladding (20% cold worked, 0.230 in. OD, 15 mil wall) was tested as-received and after annealing or electrolytic thinning. P1 tubing (38% cold worked, 0.230 in. OD, 10 mil wall) was tested before and after aging under conditions anticipated in the P1 reactor experiment. The P1 cladding was designed to simulate FFTF tubing that had experienced irradiation embrittlement and attack by cesium oxide and sodium impurities

  19. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  20. Development of metallic fuel fabrication - A study on the interdiffusion behavior between ternary metallic fuel and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Soo; Seol, Kyung Won; Shon, In Jin [Chonbuk National University, Chonju (Korea)

    1999-04-01

    To study a new ternary metallic fuel for liquid metal reactor, various U-Zr-X alloys have been made by induction melting. The specimens were prepared for thermal stability tests at 630 deg. C upto 5000 hours in order to estimate the decomposition of the lamellar structure. Interdiffusion studies were carried out at 700 deg. C for 200 hours for the diffusion couples assembled with U-Zr-X ternary fuel versus austenitic stainless steel D9 and martensitic stainless steel HT9, respectively, to investigate the fuel-cladding compatibility. The ternary alloy, especially U-Zr-Mo and U-Zr-Nb alloys showed relatively good thermal stability as long as 5000hrs at 630 deg. C. From the composition profiles of the interdiffusion study, Fe penetrated deeper to the fuel side than other cladding elements such as Ni and Cr, whereas U did to the cladding side of fuel elements in the fuel/D9 couples. On the contrary, the reaction layers of Fuel/HT9 couple were thinner than that of Fuel/D9 couples and were less affected by cladding element, which was believed to be due to Zr rich layer between the fuel-cladding interface. HT9 is considered to be superior to D9 and a favorable choice as a cladding material in terms of fuel-cladding compatibility. 21 refs., 24 figs., 7 tabs. (Author)

  1. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  2. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  3. First results on the effect of fuel-cladding eccentricity

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2009-01-01

    In the traditional fuel-behaviour or hot channel calculations it is assumed that the fuel pellet is centered within the clad. However, in the real life the pellet could be positioned asymmetrically within the clad, which leads to asymmetric gap conductance and therefore it is worthwhile to investigate the magnitude of the effect on maximal fuel temperature and surface heat flux. In this paper our first experiences are presented on this topic. (Authors)

  4. Thermochemical aspects of fuel-cladding and fuel-coolant interactions in LMFBR oxide fuel pins

    International Nuclear Information System (INIS)

    Adamson, M.G.; Aitken, E.A.; Caputi, R.W.; Potter, P.E.; Mignanelli, M.A.

    1979-01-01

    This paper examines several thermochemical aspects of the fuel-cladding, fuel-coolant and fuel-fission product interactions that occur in LMFBR austenitic stainless steel-clad mixed (U,Pu)-oxide fuel pins during irradiation under normal operating conditions. Results are reported from a variety of high temperature EMF cell experiments in which continuous oxygen activity measurements on reacting and equilibrium mixtures of metal oxides and (excess) liquid alkali metal (Na, K, Cs) were performed. Oxygen potential and 0:M thresholds for Na-fuel reactions are re-evaluated in the light of new measurements and newly-assessed thermochemical data, and the influence on oxygen potential of possible U-Pu segregation between oxide and urano-plutonate (equilibrium) phases has been analyzed. (orig./RW) [de

  5. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    Energy Technology Data Exchange (ETDEWEB)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  6. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  7. Thermomechanical behavior and modeling of zircaloy cladding tubes from an unirradiated state to high burn-up

    International Nuclear Information System (INIS)

    Schaeffler-Le Pichon, I.; Geyer, P.; Bouffioux, P.

    1997-01-01

    Creep laws are nowadays commonly used to simulate the fuel rod response to the solicitations it faces during its life. These laws are sufficient for describing the base operating conditions (where only creep appears), but they have to be improved for power ramp conditions (where hardening and relaxation appear). The modification due to a neutronic irradiation of the thermomechanical behavior of stress-relieved Zircaloy 4 fuel tubes that have been analysed for five different fluences ranging from a non-irradiated material to a material for which the combustion rate was very high is presented. In the second part, a viscoplastic model able to simulate, for different isotherms, out-of-flux anisotropic mechanical behavior of the cladding tubes irradiated until high burn-up is proposed. Finally, results of numerical simulations show the ability of the model to reproduce the totality of the thermomechanical experiments. (author)

  8. Study of pellet clad interaction defects in Dresden-3 fuel rods

    International Nuclear Information System (INIS)

    Pasupathi, V.; Perrin, J.S.

    1979-01-01

    During Cycle-3 operation of Dresden-3, fuel rod failures occurred following a transient power increase. Ten fuel rods from five of the leaking fuel assemblies were examined at Battelle's Columbus Laboratory and General Electric-Vallecitos Nuclear Center. Examinations consisted of nondestructive and destructive methods including metallography and scanning electron microscopy (SEM). Results showed the cause of fuel rod failure to be pellet clad interaction involving stress corrosion cracking. Results of SEM studies of the cladding crack surfaces and deposits on clad inner surfaces were in agreement with those reported by other investigators

  9. Simulation of the chemical state of irradiated oxide fuel; influence of the internal corrosion on the mechanical properties of Zry-4 tubing

    International Nuclear Information System (INIS)

    Hofmann, P.

    1979-03-01

    Zircaloy is not compatible with oxide fuel nor with some fission product elements. Therefore, chemical interaction between the irradiated oxide fuel and the Zry cladding material take place, especially at temperatures that can be reached during reactor incidents (ATWS, LOCA). In order to find out which influence the chemical interaction between the fission products and the Zry cladding material have on the mechanical properties of Zry-4 tubing out-of-pile burst experiments and creep rupture tests have been performed at temperatures >=600 0 C with short tube specimens containing simulated fission products. First of all, assessments of the chemical state of irradiated oxide fuel were performed and a method is described for introducing simulated fission product species into fresh oxide fuel for irradiation tests. As the test results of the out-of-pile studies show, only iodine can lead to a low ductility failure of the Zry-tubing at temperatures >=600 0 C. However, the influence of iodine on the deformation behavior of Zry-tubing can be neglected above 850 0 C. (orig.) [de

  10. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    2000-10-01

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  11. Nuclear fuel element

    International Nuclear Information System (INIS)

    Mogard, J.H.

    1977-01-01

    A nuclear fuel element is disclosed for use in power producing nuclear reactors, comprising a plurality of axially aligned ceramic cylindrical fuel bodies of the sintered type, and a cladding tube of metal or metal alloys, wherein said cladding tube on its cylindrical inner surface is provided with a plurality of slightly protruding spacing elements distributed over said inner surface

  12. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    Science.gov (United States)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  13. Effect of surface oxidation of ZIRLO fuel cladding tube on crud deposition

    International Nuclear Information System (INIS)

    Park, Moon Sic; Baek, Seung Heon; Shim, Hee-Sang; Kim, Jung Gu; Hur, Do Haeng

    2016-01-01

    Crud has often led a lot of problems in the primary coolant system such as fuel cladding corrosion, power distortion and reduction, and radio-activity build-up of out-of-core [2-3]. Although a crud-induced localized corrosion (CILC) is a severe accident, in which fuel is leaked into the coolant, it is rarely happened but a crud-induced power shift (CIPS) has frequently occurred in worldwide PWR plants. CIPS, or power axial offset anomaly (AOA) has long been realized in the nuclear industry since early 1970s. In late 1980s, severe AOA phenomena were found in Callaway plants in U. S. and later in many power plants around the world. The axial offset (AO) is defined by the power distortion between the top half of the core and the bottom half of the core. When the plant exceeds acceptable limit of 3% in AO value, it is judged as AOA occurrence and this is forced to reduce power or shutdown. AOA is caused by a hideout for large accumulation of boron into porous crud and its formation is accelerated by increased sub-cooled nucleate boiling (SNB) with sufficient corrosion product supply. Crud has often led a lot of problems in the primary coolant system such as fuel cladding corrosion, power distortion and reduction, and radio-activity build-up of out-of-core. Although a crud-induced localized corrosion (CILC) is a severe accident, in which fuel is leaked into the coolant, it is rarely happened but a crud-induced power shift (CIPS) has frequently occurred in worldwide PWR plants. CIPS, or power axial offset anomaly (AOA) has long been realized in the nuclear industry since early 1970s. In late 1980s, severe AOA phenomena were found in Callaway plants in U. S. and later in many power plants around the world. The axial offset (AO) is defined by the power distortion between the top half of the core and the bottom half of the core. When the plant exceeds acceptable limit of 3% in AO value, it is judged as AOA occurrence and this is forced to reduce power or shutdown. AOA is

  14. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  15. The quest for safe and reliable fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Abe, Alfredo Y., E-mail: eddypino132@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  16. The quest for safe and reliable fuel cladding materials

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Abe, Alfredo Y.; Giovedi, Claudia

    2015-01-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  17. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  18. Influence of pellet-clad-gap-size on LWR fuel rod performance

    International Nuclear Information System (INIS)

    Brzoska, B.; Fuchs, H.P.; Garzarolli, F.; Manzel, R.

    1979-01-01

    The as-fabricated pellet-clad-gap size varies due to fabricational tolerances of the cladding inner diameter and the pellet outer diameter. The consequences of these variations on the fuel rod behaviour are analyzed using the KWU fuel rod code CARO. The code predictions are compared with experimental results of special pathfinder test fuel rods irradiated in the OBRIGHEIM nuclear power plant. These test fuel rods include gap sizer in the range of 140 μm to 270 μm, prepressurization between 13 bar to 36 bar and Helium and Argon fill gases irradiated up to a local burnup of 35 MWd/kg(U). Post irradiation examination were performed at different burnups. CARC calculations have been performed with special emphasis in cladding creep down, fission gas release and pellet clad gap closure. (orig.)

  19. In-reactor performance of methods to control fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Weber, E.T.; Gibby, R.L.; Wilson, C.N.; Lawrence, L.A.; Adamson, M.G.

    1979-01-01

    Inner surface corrosion of austenitic stainless steel cladding by oxygen and reactive fission product elements requires a 50 μm wastage allowance in current FBR reference oxide fuel pin design. Elimination or reduction of this wastage allowance could result in better reactor efficiency and economics through improvements in fuel pin performance and reliability. Reduction in cladding thickness and replacement of equivalent volume with fuel result in improved breeding capability. Of the factors affecting fuel-cladding chemical interaction (FCCI), oxygen activity within the fuel pin can be most readily controlled and/or manipulated without degrading fuel pin performance or significantly increasing fuel fabrication costs. There are two major approaches to control oxygen activity within an oxide fuel pin: (1) control of total oxygen inventory and chemical activity (Δ anti GO 2 ) by use of low oxygen-to-metal ratio (O/M) fuel; and (2) incorporation of a material within the fuel pin to provide in-situ control of oxygen activity (Δ anti GO 2 ) and fixation of excess oxygen prior to, or in preference to reaction with the cladding. The paper describes irradiation tests which were conducted in EBR-II and GETR incorporating oxygen buffer/getter materials and very low O/M fuel to control oxygen activity in sealed fuel pins

  20. Mechanical and temperature contact in fuel rod cladding

    International Nuclear Information System (INIS)

    Fredriksson, B.E.; Rydholm, S.G.

    1977-01-01

    The paper presents results for the effect of different types of slip rules on the contact stress distribution. It is shown that the contact shear stress is smaller for the hardening model than for the ideal model. It is also shown that a crack in the fuel increases the contact stresses and that at temperature decrease high tensile stresses arise after eventual welding. It is also shown how particles between fuel and cladding influence the stresses. Also here the effect of eventual welding is studied. The present method is well suited to study cracks and crack propagation. The surfaces of the existing cracks are defined as contact surfaces and the crack extension work is calculated by releasing the nodes at the crack tip. As the crack surfaces are defined as contact surfaces eventual crack closure is automatically taken into account. Crack extension work is calculated for existing cracks in the cladding. It is shown that cracks in the fuel and particles between fuel and cladding will increase the crack extension work

  1. Fuel-cladding chemical interaction correlation for mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1986-10-01

    A revised wastage correlation was developed for FCCI with fabrication and operating parameters. The expansion of the data base to 305 data sets provided sufficient data to employ normal statistical techniques for calculation of confidence levels without unduly penalizing predictions. The correlation based on 316 SS cladding also adequately accounts for limited measured depths of interaction for fuel pins with D9 and HTq cladding

  2. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  3. In-reactor cladding breach of EBR-II driver-fuel elements

    International Nuclear Information System (INIS)

    Seidel, B.R.; Einziger, R.E.

    1977-01-01

    Knowledge of performance and minimum useful element lifetime of Mark-II driver-fuel elements is required to maintain a high plant operating capacity factor with maximum fuel utilization. To obtain such knowledge, intentional cladding breach has been obtained in four run-to-cladding-breach Mark-II experimental driver-fuel subassemblies operating under normal conditions in EBR-II. Breach and subsequent fission-product release proved benign to reactor operations. The breaches originated on the outer surface of the cladding in the root of the restrainer dimples and were intergranular. The Weibull distribution of lifetime accurately predicts the observed minimum useful element lifetime of 10 at.% burnup, with breach ensuing shortly thereafter

  4. Influence of microstructure modification on the circumferential creep of Zr–Nb–Sn–Fe cladding tubes

    International Nuclear Information System (INIS)

    Jeong, Gu Beom; Kim, In Won; Hong, Sun Ig

    2016-01-01

    Out-of-reactor, non-irradiated thermal creep performances and lives of annealed and stress-relieved Zr-1.02Nb-0.69Sn-0.12Fe cladding tubes were studied and compared. The creep rates of annealed Zr-1.02Nb-0.69Sn-0.12Fe cladding tubes were appreciably slower than those of stress-relieved annealed counterpart. The stress exponent increased slightly from 5.1 to 6.1 in the stress-relieved cladding to 5.3–6.3 in the annealed cladding. The creep activation energy of the annealed Zr-1.02Nb-0.69Sn-0.12Fe alloy (300–330 kJ/mol) was larger compared to that of the stress-relieved alloy (210–260 kJ/mol). The creep activation energy of annealed alloy is close to that of self-diffusion in α-Zr (336 kJ/mol). The smaller activation energy in the stress-relieved alloy is attributed to the increasing contribution of faster diffusion path such as grain boundaries and dislocations. The presence of dislocation arrays with higher dislocation density and smaller grain size in the stress-relived alloy was confirmed by TEM analysis. The creep rupture time increased dramatically in the annealed Zr–1Nb- 0.7Sn-0.1Fe alloy compared to that of stress-relieved alloy, supporting the decrease of creep rate by annealing. The creep life of Zr-1.02Nb-0.69Sn-0.12Fe claddings can be extended through microstructure modification by annealing at intermediate temperatures in which dislocation creep dominates. - Highlights: • Effect of microstructure modification on creep in Zr–Nb–Sn–Fe tubes was studied. • Creep activation energy in annealed tubes was larger than in stress-relieved tubes. • Lower dislocation density in lager grains was observed after creep in annealed tubes. • Larson–Miller parameter of annealed tube was larger than that of stress-relieved one. • Creep life of tubes was extended through microstructure modification by annealing.

  5. FABRICATION AND MATERIAL ISSUES FOR THE APPLICATION OF SiC COMPOSITES TO LWR FUEL CLADDING

    Directory of Open Access Journals (Sweden)

    WEON-JU KIM

    2013-08-01

    Full Text Available The fabrication methods and requirements of the fiber, interphase, and matrix of nuclear grade SiCf/SiC composites are briefly reviewed. A CVI-processed SiCf/SiC composite with a PyC or (PyC-SiCn interphase utilizing Hi-Nicalon Type S or Tyranno SA3 fiber is currently the best combination in terms of the irradiation performance. We also describe important material issues for the application of SiC composites to LWR fuel cladding. The kinetics of the SiC corrosion under LWR conditions needs to be clarified to confirm the possibility of a burn-up extension and the cost-benefit effect of the SiC composite cladding. In addition, the development of end-plug joining technology and fission products retention capability of the ceramic composite tube would be key challenges for the successful application of SiC composite cladding.

  6. Tube in zirconium base alloy for nuclear fuel assembly and manufacturing process of such a tube

    International Nuclear Information System (INIS)

    Mardon, J.P.; Senevat, J.; Charquet, D.

    1996-01-01

    This patent concerns the description and manufacturing guidelines of a zirconium alloy tube for fuel cladding or fuel assembly guiding. The alloy contains (in weight) 0.4 to 0.6% of tin, 0.5 to 0.8% of iron, 0.35 to 0.50% of vanadium and 0.1 to 0.18% of oxygen. The carbon and silicon tenors range from 100 to 180 ppm and from 80 to 120 ppm, respectively. The alloy contains only zirconium, plus inevitable impurities, and is completely recrystallized. Corrosion resistance tests were performed on tubes made of this alloy and compared to corrosion tests performed on zircaloy 4 tubes. These tests show a better corrosion resistance and a lower corrosion kinetics for the new alloy, even in presence of lithium and iodine, and a lower hydridation rate. The mechanical resistance of this alloy is slightly lower than the one of zircaloy 4 but becomes equivalent or slightly better after two irradiation cycles. The ductility remains always equal or better than for zircaloy 4. (J.S.)

  7. FRACAS: a subcode for the analysis of fuel pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Bohn, M.P.

    1977-04-01

    This report describes FRACAS (Fuel Rod and Cladding Analysis Subcode), a computer code which performs the mechanical analysis in the FRAP fuel rod codes. At each loadstep, FRACAS obtains a complete elastic-plastic-creep solution for the stresses, strains, and displacements in the fuel rod cladding. The cladding is modeled as a thin cylindrical shell with prescribed temperature, pressures, and radial displacement of the inside surface. The displacement of the fuel pellets is assumed to be due to thermal gradients only. Three different regimes of pellet-cladding mechanical interaction are considered: (a) open gap, (b) closed gap, and (c) trapped stack. Both transient and steady state creep calculations are performed. The capabilities of the code are illustrated by an example problem, and comparisons are made with data obtained from two experimental fuel rods

  8. Experimental creep behaviour determination of cladding tube materials under multi-axial loadings

    International Nuclear Information System (INIS)

    Grosjean, Catherine; Poquillon, Dominique; Salabura, Jean-Claude; Cloue, Jean-Marc

    2009-01-01

    Cladding tubes are structural parts of nuclear plants, submitted to complex thermomechanical loadings. Thus, it is necessary to know and predict their behaviour to preserve their integrity and to enhance their lifetime. Therefore, a new experimental device has been developed to control the load path under multi-axial load conditions. The apparatus is designed to determine the thermomechanical behaviour of zirconium alloys used for cladding tubes. First results are presented. Creep tests with different biaxial loadings were performed. Results are analysed in terms of thermal expansion and of creep strain. The anisotropy of the material is revealed and iso-creep strain curves are given.

  9. Irradiation experience with HT9-clad metallic fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Tsai, H.; Billone, M.C.

    1991-01-01

    The safe and reliable performance of metallic fuel is currently under study and demonstration in the Integral Fast Reactor program. In-reactor tests of HT9-clad metallic fuel have now reached maturity and have all shown good performance characteristics to burnups exceeding 17.5 at. % in the lead assembly. Because this low-swelling tempered martensitic alloy is the cladding of choice for high fluence applications, the experimental observations and performance modelling efforts reported in this paper play an important role in demonstrating reliability

  10. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-01-01

    The composite of metals and alloys used in the fabrication of 238 Pu cardiac pacemaker fuel capsules resists the effects of high temperatures, high mechanical forces, and chemical corrosives and provides more than adequate protection to the fuel pellet even from deliberate attempts to dissolve the cladding in inorganic acids. This does not imply that opening a pacemaker fuel capsule by inorganic acids is impossible but that it would not be a wise choice

  11. Facility for in-reactor creep testing of fuel cladding

    International Nuclear Information System (INIS)

    Kohn, E.; Wright, M.G.

    1976-11-01

    A biaxial stress creep test facility has been designed and developed for operation in the WR-1 reactor. This report outlines the rationale for its design and describes its construction and the operating experience with it. The equipment is optimized for the determination of creep data on CANDU fuel cladding. Typical results from Zr-2.5 wt% Nb fuel cladding are used to illustrate the accuracy and reliability obtained. (author)

  12. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    International Nuclear Information System (INIS)

    Bruhn, D.F.; Frank, S.M.; Roberto, F.F.; Pinhero, P.J.; Johnson, S.G.

    2009-01-01

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10 3 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  13. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  14. Siemens advance PWR fuel assemblies (HTP) and cladding

    International Nuclear Information System (INIS)

    Stout, R. B.; Woods, K. N.

    1997-01-01

    This paper describes the key features of the Siemens HTP (High Thermal Performance) fuel design, the current in-reactor performance of this advanced fuel assembly design, and the advanced cladding types available

  15. Heat treated tube for cladding nuclear fuel element

    International Nuclear Information System (INIS)

    Eddens, F.C.; White, D.W.; Harmon, J.L.

    1983-01-01

    The zirconium alloy tube comprises a metallurgical gradient across the width of the tube wall wherein the tube has a more corrosion-resistant metallurgical condition at the outer circumference and a less corrosion-resistant metallurgical condition at the inner circumference. The metallurgical gradient can be generated by heating an outer circumferential portion of the tube to the high alpha or mixed alpha plus beta range while maintaining the inner surface at a lower temperature, followed by cooling of the tube. Preferably the tube is made of Zircaloy. (author)

  16. Irradiation capsule design capable of continuously monitoring the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Thoms, K.R.; Dodd, C.V.; van der Kaa, T.; Hobson, D.O.

    1978-01-01

    An irradiation capsule which permits continuous monitoring of the creepdown of Zircaloy tubing has been designed and given preliminary tests. This design effort is the major element of a cooperative research program between the United States Nuclear Regulatory Commission and the Netherlands Energy Research Foundation (ECN) and is a part of the NRC-sponsored Zircaloy creepdown program. The purpose of the Zircaloy creepdown program is to provide data on the deformation characteristics of Zircaloy tubes, typical of LWR fuel element cladding, under combined axial and tangential compressive stresses. These data will be used to verify and improve the material behavior codes that are used for the description of fuel pin behavior. The first capsule of this series contains a mockup test specimen which was machined with three different diameters, nominally 10.92-mm, 10.54-mm and 11.30-mm (.430-in., .415-in., and .445-in.). This test specimen can be moved axially thereby varying the lift-off and serving as a calibration device for the eddy-current deformation monitoring probes. Fabrication of this capsule has been completed and during out-or-reactor checkout we were able to obtain a resolution of better than 0.01-mm (0.0004-in.). The capsule is scheduled for installation in the HFR on February 8, 1978, for a 26 day irradiation test. The first pressurized capsule, and therefore the first one to monitor in-reactor cladding deformation, will be installed in the HFR on May 3, 1978

  17. Temperature distribution determination of JPSR power reactor fuel element and cladding

    International Nuclear Information System (INIS)

    Sudarmono

    1996-01-01

    In order to utilize of fuel rod efficiency, a concept of JAERI passive Safety Reactor (JPSR) has been developed in Japan Atomic Energy Research Institute. In the JPSR design, UO 2 . are adopted as a fuel rod. The temperature distribution in the fuel rod and cladding in the hottest channel is a potential limiting design constraint of the JPSR. In the present determination, temperature distribution of the fuel rod and cladding for JPSR were PET:formed using COBRA-IV-I to evaluate the safety margin of the present JPSR design. In this method, the whole core was represented by the 1/4 sector and divided into 50 subchannels and 40 axial nodes. The temperature become maximum at the elevation of 1.922 and 2.196 m in the typical cell under operating condition. The maximum temperature in the center of the fuel rod surface of the fuel rod and cladding were 1620,4 o C, 722,8 o C, and 348,6 o C. The maximum results of temperature in the center of the fuel rod and cladding; were 2015,28 o C and 550 o C which were observed at 3.1 second in the typical cell

  18. Assessment of thin-walled cladding tube mechanical properties by segmented expanding Mandrel test

    International Nuclear Information System (INIS)

    Nilsson, Karl-Fredrik

    2015-01-01

    This paper presents the principles of the segmented expanding mandrel test for thin-walled cladding tubes, which can be used as a basic material characterisation test to determine stress-strain curves and ductility or as a test to simulate mechanical pellet-cladding interaction. The paper discusses the strengths and weaknesses of the test method and it illustrates how the test can be used to simulate hydride reorientations in zirconium claddings and quantify how hydride reorientation affects ductility. (authors)

  19. Technical committee meeting on fuel and cladding interaction. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases.

  20. Technical committee meeting on fuel and cladding interaction. Summary report

    International Nuclear Information System (INIS)

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases

  1. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  2. Mechanical design issues and resolutions of a dual cooled fuel for the OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu, E-mail: hkkim1@kaeri.re.kr [Innovative Nuclear Fuel Division, Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon, 305-353 (Korea, Republic of); Kim, Jae-Yong; Yoon, Kyung-Ho [Innovative Nuclear Fuel Division, Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon, 305-353 (Korea, Republic of)

    2011-06-15

    Highlights: > Thickness of outer cladding tube is determined by using the elastic buckling criterion. > Growth difference of the inner and outer claddings will not cause fuel rod bowing. > Structural components are designed without a drastic change of the conventional ones. - Abstract: A dual cooled fuel is recently brought into focus due to its potential of considerable power uprating. The purpose of present work is to realize the innovative concept of a dual cooled fuel to be a fuel assembly structure compatible with the OPR-1000 system. Under the framework, the critical issues such as the outer cladding thickness and the growth difference of the inner and outer cladding tubes are dealt with in this paper. We designed the thickness of outer cladding tube by using the elastic buckling criterion and safety factor analysis. From the concern of the inner cladding's bowing during irradiation, it was suggested that the outer cladding would grow more than the inner one by applying different microstructures to the inner and outer cladding tubes. It was noted that the gap between fuel rods would not be narrowed further during the different irradiation growth. The structural components such as fuel rod supporting structure, top and bottom end pieces and guide tubes could be designed without a drastic change of those of the conventional fuel. Candidate designs of the components are also presented.

  3. Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Ott, Larry J.; Ellis, Ronald James; McDuffee, Joel Lee; Spellman, Donald J.; Bevard, Bruce Balkcom

    2009-01-01

    The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

  4. Acceptance criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Direct repository disposal of foreign and domestic research reactor fuels owned by the United States Department of Energy is an alternative to reprocessing (together with vitrification of the high level waste and storage in an engineered barrier) for ultimate disposition. Neither the storage systems nor the requirements and specifications for acceptable forms for direct repository disposal have been developed; therefore, an interim storage strategy is needed to safely store these fuels. Dry storage (within identified limits) of the fuels received from wet-basin storage would avoid excessive degradation to assure post-storage handleability, a full range of ultimate disposal options, criticality safety, and provide for maintaining confinement by the fuel/clad system. Dry storage requirements and technologies for US commercial fuels, specifically zircaloy-clad fuels under inert cover gas, are well established. Dry storage requirements and technologies for a system with a design life of 40 years for dry storage of aluminum-clad foreign and domestic research reactor fuels are being developed by various groups within programs sponsored by the DOE

  5. Chemical dissolution of spent fuel and cladding using complexed fluoride species

    International Nuclear Information System (INIS)

    Rance, P.J.W.; Freeman, G.A.; Mishin, V.; Issoupov, V.

    2001-01-01

    The dissolution of LWR fuel cladding using two fluoride ion donors, HBF 4 and K 2 ZrF 6 , in combination with nitric acid has been investigated as a potential reprocessing head-end process suitable for chemical decladding and fuel dissolution in a single process step. Maximum zirconium concentrations in the order of 0,75 to 1 molar have been achieved and dissolution found to continue to low F:Zr ratios albeit at ever decreasing rates. Dissolution rates of un-oxidised zirconium based fuel claddings are fast, whereas oxidised materials exhibit an induction period prior to dissolution. Data is presented relating to the rates of dissolution of cladding and UO 2 fuels under various conditions. (author)

  6. The elastic properties of zirconium alloy fuel cladding and pressure tubing materials

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Northwood, D.O.

    1979-01-01

    A knowledge of the elastic properties of zirconium alloys is required in the mathematical modelling of cladding and pressure tubing performance. Until recently, little of this type of data was available, particularly at elevated temperatures. The dynamic elastic moduli of zircaloy-2, zircaloy-4, the alloys Zr-1.0 wt%Nb, Zr-2.5 wt%Nb and Marz grade zirconium have therefore been determined over the temperature range 275 to 1000 K. Young's modulus and shear modulus for all the zirconium alloys decrease with temperature and are expressed by empirical relations fitted to the data. The elastic properties are texture dependent and a detailed study has been conducted on the effect of texture on the elastic properties of Zr-1.0 wt% Nb over the temperature range 275 to 775 K. The results are compared with polycrystalline elastic constants computed from single crystal elastic constants, and the effect of texture on the dynamic elastic moduli is discussed in detail. (Auth.)

  7. The corrosion of Zircaloy-4 fuel cladding in pressurized water reactors

    International Nuclear Information System (INIS)

    Van Swam, L.F.P.; Shann, S.H.

    1991-01-01

    This paper reports on the effects of thermo-mechanical processing of cladding on the corrosion of Zircaloy-4 in commercial PWRs that have been investigated. Visual observations and nondestructive measurements at poolside, augmented by observations in the hot cell, indicate that the initial black oxide transforms into a grey or tan later white oxide layer at a thickness of 10 to 15 μm independent of the thermal processing history of the tubing. At an oxide layer thickness of 60 to 80 μm, the oxide may spall depending somewhat on the particular oxide morphology formed and possibly on the frequency of power and temperature changes of the fuel rods. Because spalling of oxide lowers the metal-to-oxide interface temperature of fuel rods, it reduces the corrosion rate and is beneficial from that point of view. To determine the effect of thermo-mechanical processing on in-reactor corrosion of Zircaloy-4, oxide thickness measurements at poolside and in the hot cell have been analyzed with the MATPRO corrosion model. A calibrated corrosion parameter in this model provides a measure of the corrosion susceptibility of the Zircaloy-4 cladding. It was found necessary to modify the MATPRO equations with a burnup dependent term to obtain a near constant value of the corrosion parameter over a burnup range of approximately 10 to 45 MWd/kgU. Different calculational tests were performed to confirm that the modified model accurately predicts the corrosion behavior of fuel rods

  8. Technology readiness level (TRL) assessment of cladding alloys for advanced nuclear fuels

    International Nuclear Information System (INIS)

    Shepherd, Daniel

    2015-01-01

    Reliable fuel claddings are essential for the safe, sustainable and economic operation of nuclear stations. This paper presents a worldwide TRL assessment of advanced claddings for Gen III and IV reactors following an extensive literature review. Claddings include austenitic, ferritic/martensitic (F/M), reduced activation (RA) and oxide dispersion strengthened (ODS) steels as well as advanced iron-based alloys (Kanthal alloys). Also assessed are alloys of zirconium, nickel (including Hastelloy R ), titanium, chromium, vanadium and refractory metals (Nb, Mo, Ta and W). Comparison is made with Cf/C and SiCf/SiC composites, MAX phase ceramics, cermets and TRISO fuel particle coatings. The results show in general that the higher the maximum operating temperature of the cladding, the lower the TRL. Advanced claddings were found to have lower TRLs than the corresponding fuel materials, and therefore may be the limiting factor in the deployment of advanced fuels and even possibly the entire reactor in the case of Gen IV. (authors)

  9. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  10. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  11. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    International Nuclear Information System (INIS)

    Roake, W.E.; Adamson, M.G.; Hilbert, R.F.; Langer, S.

    1977-01-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to ∼60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  12. Investigations of fuel cladding chemical interaction in irradiated LMFBR type oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Roake, W E [Westinghouse-Hanford Co., Richland, WA (United States); Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States); Hilbert, R F; Langer, S

    1977-04-01

    Understanding and controlling the chemical attack of fuel pin cladding by fuel and fission products are major objectives of the U.S. LMFBR Mixed Oxide Irradiation Testing Program. Fuel-cladding chemical interaction (FCCI) has been recognized as an important factor in the ability to achieve goal peak burnups of 8% (80.MWd/kg) in FFTF and in excess of 10% (100.MWd/kg) in the LMFBR demonstration reactors while maintaining coolant bulk outlet temperatures up to {approx}60 deg. C (1100 deg. F). In this paper we review pertinent parts of the irradiation program and describe recent observation of FCCI in the fuel pins of this program. One goal of the FCCI investigations is to obtain a sufficiently quantitative understanding of FCCI such that correlations can be developed relating loss of effective cladding thickness to irradiation and fuel pin fabrication parameters. Wastage correlations being developed using different approaches are discussed. Much of the early data on FCCI obtained in the U.S. Mixed Oxide Fuel Program came from capsule tests irradiated in both fast and thermal flux facilities. The fast flux irradiated encapsulated fuel pins continue to provide valuable data and insight into FCCI. Currently, however, bare pins with prototypic fuels and cladding irradiated in the fast flux Experimental Breeder Reactor-II (EBR-II) as multiple pin assemblies under prototypic powers, temperatures and thermal gradients are providing growing quantities of data on FCCI characteristics and cladding thickness losses from FCCI. A few special encapsulated fuel pin tests are being conducted in the General Electric Test Reactor (GETR) and EBR-II, but these are aimed at providing specific information under irradiation conditions not achievable in the fast flux bare pin assemblies or because EBR-II Operation or Safety requirements dictate that the pins be encapsulated. The discussion in this paper is limited to fast flux irradiation test results from encapsulated pins and multiple pin

  13. Potential for fuel melting and cladding thermal failure during a PCM event in LWRs

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Croucher, D.W.

    1979-01-01

    The primary concern in nuclear reactor safety is to ensure that no conceivable accident, whether initiated by a failure of the reactor system or by incorrect operation, will lead to a dangerous release of radiation to the environment. A number of hypothesized off-normal power or cooling conditions, generally termed as power-cooling-mismatch (PCM) accidents, are considered in the safety analysis of light water reactors (LWRs). During a PCM accident, film boiling may occur at the cladding surface and cause a rapid temperature increase in the fuel and the cladding, perhaps producing embrittlement of the zircaloy cladding by oxidation. Molten fuel may be produced at the center of the pellets, extrude radially through open cracks in the outer, unmelted portion of the pellet and relocate in the fuel-cladding gap. If the amount of extruded molten fuel is sufficient to establish contact with the cladding, which is at a high temperature during film boiling, the zircaloy cladding may melt. The present work assesses the potential for central fuel melting and thermal failure of the zircaloy cladding due to melting upon being contacted by extruded molten UO 2 -fuel during a PCM event

  14. Statistics applied to the testing of cladding tubes

    International Nuclear Information System (INIS)

    Perdijon, J.

    1987-01-01

    Cladding tubes, either steel or zircaloy, are generally given a 100 % inspection through ultrasonic non-destructive testing. This inspection may be completed beneficially with an eddy current test, as this is not sensitive to the same defects as those typically traced by ultrasonic testing. Unfortunately, the two methods (as with other non-destructive tests) exhibit poor precision; this means that a flaw, whose size is close to that denoted as rejection limit, may be accepted or rejected. Currently, rejection, i.e. the measurement above which a tube is rejected, is generally determined through measuring a calibration tube at regular time intervals, and the signal of a given tube is compared to that of the most recently completed calibration. This measurement is thus subject to variations which can be attributed to an actual shift of adjustments as well as to poor precision. For this reason, monitoring instrument adjustments using the so-called control chart method are proposed

  15. Method for repairing failed fuel

    International Nuclear Information System (INIS)

    Shakudo, Taketomi.

    1986-01-01

    Purpose: To repair fuel elements that became failed during burnup in a reactor or during handling. Method: After the surface in the vicinity of a failed part of a fuel element is cleaned, a socket made of a shape-memory alloy having a ring form or a horseshoe form made by cutting a part of the ring form is inserted into the failed position according to the position of the failed fuel element. The shape memory alloy socket remembers a slightly larger inside diameter in its original phase (high-temperature side) than the outside diameter of the cladding tube and also a slightly larger inside diameter of the socket in the martensite phase (low-temperature side) than the outside diameter of the cladding tube, such that the socket can easily be inserted into the failed position. The socket, inserted into the failed part of the cladding tube, is heated by a heating jig. The socket recovers the original phase, and the shape also tends to recover a smaller diameter than the outside diameter of the cladding tube that has been remembered, and accordingly the failed part of the cladding tube is fastened with a great force and the failed part is fully closed with the socket, thus keeping radioactive materials from going out. (Horiuchi, T.)

  16. Early implementation of SiC cladding fuel performance models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation due to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.

  17. Fuel-to-cladding heat transfer coefficient into reactor fuel element

    International Nuclear Information System (INIS)

    Lassmann, K.

    1979-01-01

    Models describing the fuel-to-cladding heat transfer coefficient in a reactor fuel element are reviewed critically. A new model is developed with contributions from solid, fluid and radiation heat transfer components. It provides a consistent description of the transition from an open gap to the contact case. Model parameters are easily available and highly independent of different combinations of material surfaces. There are no restrictions for fast transients. The model parameters are fitted to 388 data points under reactor conditions. For model verification another 274 data points of steel-steel and aluminium-aluminium interfaces, respectively, were used. The fluid component takes into account peak-to-peak surface roughnesses and, approximatively, also the wavelengths of surface roughnesses. For minor surface roughnesses normally prevailing in reactor fuel elements the model asymptotically yields Ross' and Stoute's model for the open gap, which is thus confirmed. Experimental contact data can be interpreted in very different ways. The new model differs greatly from Ross' and Stoute's contact term and results in better correlation coefficients. The numerical algorithm provides an adequate representation for calculating the fuel-to-cladding heat transfer coefficient in large fuel element structural analysis computer systems. (orig.) [de

  18. End plug for fuel rod and welding method therefor

    International Nuclear Information System (INIS)

    Yoneda, Hiroshi; Murakami, Kazuo; Oyama, Jun-ichi.

    1996-01-01

    An end plug of a fuel rod comprises a pressure-insertion portion having a diameter somewhat greater than the inner diameter of a fuel cladding tube and a welding portion having a diameter substantially the same as the outer diameter of the cladding tube. A V-shaped recess having an outer diameter smaller than the greatest outer diameter of the pressure-insertion portion is formed over the entire circumferential surface of the outer circumference of the connection portion of the pressure-insertion portion and the welding portion. The pressure-insertion portion of the end plug is inserted to the end of the cladding tube till the end of the cladding tube abuts against the inclined surface of the V-shaped recess. The abutting surfaces of the end plug and the cladding tube are subjected to resistance welding in this state. The inner portion bulged from the inclined surface of the V-shaped recess is filled in the recess in a molten state. Lowering of temperature of the cladding tube in the vicinity of the welded portion is decreased by γ heat during reactor operation. Accordingly, lowering of ductility of the cladding tube and degradation of material of the welded region due to segregation of hydrogen in the cladding tube can be suppressed. (I.N.)

  19. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  20. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  1. Measurement of the friction coefficient between UO2 and cladding tube

    International Nuclear Information System (INIS)

    Tachibana, Toshimichi; Narita, Daisuke; Kaneko, Hiromitsu; Honda, Yutaka

    1978-01-01

    Most of fuel rods used for light water reactors or fast reactors consist of the cladding tubes filled with UO 2 -PuO 2 pellets. The measurement was made on the coefficient of static friction and the coefficient of dynamic friction in helium under high contact load on UO 2 /Zry-2 and UO 2 /SUS 316 combined samples at the temperature ranging from room temperature to 400 deg. C and from room temperature to 600 deg. C, respectively. The coefficient of static friction for Zry-2 tube and UO 2 pellets was 0.32 +- 0.08 at room temperature and 0.47 +- 0.07 at 400 deg. C, and increased with temperature rise in this temperature range. The coefficient of static friction between 316 stainless steel tube and UO 2 pellets was 0.29 +- 0.04 at room temperature and 1.2 +- 0.2 at 600 deg. C, and increased with temperature rise in this temperature range. The coefficient of dynamic friction for both UO 2 /Zry-2 and UO 2 /SUS 316 combinations seems to be equal to or about 10% excess of the coefficient of static friction. The coefficient of static friction for UO 2 /SUS 316 combination decreased with the increasing number of repetition, when repeating slip several times on the same contact surfaces. (Kobatake, H.)

  2. Iodine-induced stress corrosion cracking of fixed deflection stressed slotted rings of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Sejnoha, R.; Wood, J.C.

    1978-01-01

    Stress corrosion cracking of Zircaloy fuel cladding by fission products is thought to be an important mechanism influencing power ramping defects of water-reactor fuels. We have used the fixed-deflection stressed slotted-ring technique to demonstrate cracking. The results show both the sensitivity and limitations of the stressed slotted-ring method in determining the responses of tubing to stress corrosion cracking. They are interpreted in terms of stress relaxation behavior, both on a microscopic scale for hydrogen-induced stress-relief and on a macroscopic scale for stress-time characteristics. Analysis also takes account of nonuniform plastic deformation during loading and residual stress buildup on unloading. 27 refs

  3. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  4. New method to calculate the mechanical properties of unirradiated fuel cladding from ring tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2009-06-15

    Nuclear fuel cladding is the first barrier used to confine the fuel and the fission products produced during irradiation. Zirconium alloys are used for this purpose due to their remarkable neutron transparency, together with their good mechanical properties at operational temperatures. Consequently, it is very important to be able to characterize the mechanical response of the irradiated cladding. The mechanical behaviour of the material can be modelled as elastoplastic with different stress-strain curves depending on the direction: radial, hoop or longitudinal direction. The ring tensile test has been proposed to determine the mechanical properties of the cladding along the hoop direction. The initial test consisted of applying a force inside the tube, by means of two half cylinders. Later Arsene and Bai [1,2] modified the experimental device to avoid tube bending at the beginning of the test. The same authors proposed a numerical method to obtain the stress-strain curve in the hoop direction from the experimental load versus displacement results and a given friction coefficient between the loading pieces and the sample [3]. This method has been used by different authors [4] with slight modifications. It is based on the existence of two universal curves under small strain hypothesis: the first correlating the hoop strain and the displacement of the loading piece and the second one correlating the hoop stress and the applied load. In this work, a new method to determine the mechanical properties of the cladding from the ring tensile test results is proposed. Non-linear geometry is considered and an iterative procedure is proposed so universal curves are not needed. A stress-strain curve is determined by combining numerical calculations with experimental results in a convergent loop. The two universal curves proposed by Arsene and Bai [3] are substituted by two relationships, one between the equivalent plastic strain in the centre of the specimen ligament and the

  5. Experimental Setup with Transient Behavior of Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Jun Hwan; Kim, June-Hyung; Ryu, Woo Seog; Park, Sang Gyu; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nowadays, in Korea, advanced cladding such as FC92 is developed and its transient behaviors are required for the safety analysis of SFR. Design and safety analyses of sodium-cooled fast reactor (SFR) require understanding fuel pin responses to a wide range of off-normal events. In a loss-of-flow (LOF) or transient over-power (TOP), the temperature of the cladding is rapidly increased above its steady-state service temperature. Transient tests have been performed in sections of fuel pin cladding and a large data base has been established for austenitic stainless steel such as 20% cold-worked 316 SS and ferritic/martensitic steels such as HT9. This paper summarizes the technical status of transient testing facilities and their results. Previous researches showed the transient behaviors of HT9 cladding. For the safety analyses in SFR in Korea, simulated transient tests with newly developed FC92 as well as HT9 cladding are being carried out.

  6. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    International Nuclear Information System (INIS)

    Rebak, Raul B.

    2014-01-01

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  7. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, Raul B. [General Electric Global Research, Schnectady, NY (United States)

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  8. Corrosion of research reactor aluminium clad spent fuel in water. Additional information

    International Nuclear Information System (INIS)

    2009-12-01

    A large variety of research reactor spent fuel with different fuel meats, different geometries and different enrichments in 235 U are presently stored underwater in basins located around the world. More than 90% of these fuels are clad in aluminium or aluminium based alloys that are notoriously susceptible to corrosion in water of less than optimum quality. Some fuel is stored in the reactor pools themselves, some in auxiliary pools (or basins) close to the reactor and some stored at away-from-reactor pools. Since the early 1990s, when corrosion induced degradation of the fuel cladding was observed in many of the pools, corrosion of research reactor aluminium clad spent nuclear fuel stored in light water filled basins has become a major concern, and programmes were implemented at the sites to improve fuel storage conditions. The IAEA has since then established a number of programmatic activities to address corrosion of research reactor aluminium clad spent nuclear fuel in water. Of special relevance was the Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase I) initiated in 1996, whose results were published in IAEA Technical Reports Series No. 418. At the end of this CRP it was considered necessary that a continuation of the CRP should concentrate on fuel storage basins that had demonstrated significant corrosion problems and would therefore provide additional insight into the fundamentals of localized corrosion of aluminium. As a consequence, the IAEA started a new CRP entitled Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II), to carry out more comprehensive research in some specific areas of corrosion of aluminium clad spent nuclear fuel in water. In addition to this CRP, one of the activities under IAEA's Technical Cooperation Regional Project for Latin America Management of Spent Fuel from Research Reactors (2001-2006) was corrosion monitoring and surveillance of research

  9. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in uranium-based metal alloys as a fuel for sodium-cooled fast reactors. In this paper we will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel. In the final section of this paper we extend the calculations to consider the failure of IFR ternary fuel under reactor accident conditions. (orig./GL)

  10. The fuel to clad heat transfer coefficient in advanced MX-type fuel pins

    International Nuclear Information System (INIS)

    Caligara, F.; Campana, M.; Mandler, R.; Blank, H.

    1979-01-01

    Advanced fuels (mixed carbides, nitrides and carbonitrides) are characterised by a high thermal conductivity compared to that of oxide fuels (5 times greater) and their behaviour under irradiation (amount of swelling, fracture behaviour, restructuring) is far more sensitive to the design parameters and to the operating temperature than that of oxide fuels. The use of advanced fuels is therefore conditioned by the possibility of mastering the above phenomena, and the full exploitation of their favorable neutron characteristics depends upon a good understanding of the mutual relationships of the various parameters, which eventually affect the mechanical stability of the pin. By far the most important parameter is the radial temperature profile which controls the swelling of the fuel and the build-up of stress fields within the pin. Since the rate of fission gas swelling of these fuels is relatively large, a sufficient amount of free space has to be provided within the pin. This space originally appears as fabrication porosity and as fuel-to-clad clearance. Due to the large initial gap width and to the high fuel thermal conductivity, the range of the fuel operating temperatures is mainly determined by the fuel-to-clad heat transfer coefficient h, whose correct determination becomes one of the central points in modelling. During the many years of modelling activity in the field of oxide fuels, several theoretical models have been developed to calculate h, and a large amount of experimental data has been produced for the empirical adjustment of the parameters involved, so that the situation may be regarded as rather satisfactory. The analysis lead to the following conclusions. A quantitative comparison of experimental h-values with existing models for h requires rather sophisticated instrumented irradiation capsules, which permit the measurement of mechanical data (concerning fuel and clad) together with heat rating and temperatures. More and better well

  11. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  12. Effect of reactor chemistry and operating variables on fuel cladding corrosion in PWRs

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Lee, Sang Hee

    1997-01-01

    As the nuclear industry extends the fuel cycle length, waterside corrosion of zircaloy cladding has become a limiting factor in PWR fuel design. Many plant chemistry factors such as, higher lithium/boron concentration in the primary coolant can influence the corrosion behavior of zircaloy cladding. The chemistry effect can be amplified in higher duty fuel, particularlywhen surface boiling occurs. Local boiling can result in increased crud deposition on fuel cladding which may induce axial power offset anomalies (AOA), recently reported in several PWR units. In this study, the effect of reactor chemistry and operating variables on Zircaloy cladding corrosion is investigated and simulation studies are performed to evaluate the optimal primary chemistry condition for extended cycle operation. (author). 8 refs., 3 tabs., 16 figs

  13. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  14. MARTINS: A foam/film flow model for molten material relocation in HWRs with U-Al-fueled multi-tube assemblies

    International Nuclear Information System (INIS)

    Kalimullah.

    1994-01-01

    Some special purpose heavy-water reactors (EM) are made of assemblies consisting of a number of coaxial aluminum-clad U-Al alloy fuel tubes and an outer Al sleeve surrounding the fuel tubes. The heavy water coolant flows in the annular gaps between the circular tubes. Analysis of severe accidents in such reactors requires a model for predicting the behavior of the fuel tubes as they melt and disrupt. This paper describes a detailed, mechanistic model for fuel tube heatup, melting, freezing, and molten material relocation, called MARTINS (Melting and Relocation of Tubes in Nuclear subassembly). The paper presents the modeling of the phenomena in MARTINS, and an application of the model to analysis of a reactivity insertion accident. Some models are being developed to compute gradual downward relocation of molten material at decay-heat power levels via candling along intact tubes, neglecting coolant vapor hydrodynamic forces on molten material. These models are inadequate for high power accident sequences involving significant hydrodynamic forces. These forces are included in MARTINS

  15. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  16. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail: pdj@kaeri.re.kr; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-15

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.

  17. Critical stability conditions of the fuel element cladding; Kriticni uslovi stabilnosti kosuljice G.E

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, M; Savic, D [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1968-12-15

    The role of the fuel element cladding being the first safety barrier, is to prevent contamination by the fission products. Construction of the fuel element cladding depends on the reactor type, coolant type, fuel type, technology of material fabrication, influence of the material on the neutron economy, thermal conditions, etc. That is why an optimum solution has to be found. This paper deals with mechanical properties of ceramic natural UO{sub 2} sintered fuel pellets in the zircaloy-2 cladding. This type of fuel is used in heavy water reactors.

  18. Effects of spacers on blockage of coolant channels in clad melting accidents

    Energy Technology Data Exchange (ETDEWEB)

    Eggen, D. T.; Scale, T.; Hsieh, S. [Northwestern Univ., Evanston, IL (United States). The Technological Inst.

    1977-07-01

    The elements and configuration of these assemblies are representative of the current design for a GCFR. The fuel elements are stainless-steel clad, mixed-oxide spaced by a grid structure on 250 mm centers with a pitch of 9.5 mm, diameter, 7.2 mm, and cladding thickness, 0.5 m. Three series of experiments have been conducted to study the flow and disposition of molten cladding metal into a lower powered blanket region of the reactor following a loss of flow situation. The first two series used a simulant fuel-element bundle to simplify the experimental procedure and make visual observation possible. The 'fuel' was simulated by mullite rods 6.4 mm in diameter and 610 mm long. These were clad with a 50 Pb/50 Sn alloy tubing which was drawn onto the 'fuel'. The first series used cast spacers with webs of about 0.5-0.55 mm thickness placed 175 and 425 mm from the top end of the assembly. The second series used grid spacers fabricated of 0.25 mm alloy strips. This provided a more accurate representation of the hydraulic diameter. The bundle was encased in a hexagonal glass tube. The bundle was at 22/sup 0/C and the molten alloy was poured at a temperature of 260/sup 0/C (35/sup 0/C superheat). Motion pictures recorded the experiments and the bundle was sectioned for observation. The third set of experiments was done with a stainless steel bundle of 37 elements fabricated of mullite rods, 7.14 mm diameter. The stainless steel cladding had an O.D. of 8.41 mm. The element pitch was 11.1 mm. The grid spacers were prototypic. The experiment was conducted in an inert-gas tube furnace. The 'core fuel' cladding was melted in an induction furnace and the molten liquid flowed through the center seven element channels. X-ray pictures were taken after the tests and the bundle was sectioned for further study.

  19. Transitioning aluminum clad spent fuels from wet to interim dry storage

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Iyer, N.C.; Sindelar, R.L.; Peacock, H.B. Jr.

    1994-01-01

    The United States Department of Energy (DOE) currently owns several hundred metric tons of aluminum clad, spent nuclear fuel and target assemblies. The vast majority of these irradiated assemblies are currently stored in water basins that were designed and operated for short term fuel cooling prior to fuel reprocessing. Recent DOE decisions to severely limit the reprocessing option have significantly lengthened the time of storage, thus increasing the tendency for corrosion induced degradation of the fuel cladding and the underlying core material. The portent of continued corrosion, coupled with the age of existing wet storage facilities and the cost of continuing basin operations, including necessary upgrades to meet current facility standards, may force the DOE to transition these wet stored, aluminum clad spent fuels to interim dry storage. The facilities for interim dry storage have not been developed, partially because fuel storage requirements and specifications for acceptable fuel forms are lacking. In spite of the lack of both facilities and specifications, current plans are to dry store fuels for approximately 40 to 60 years or until firm decisions are developed for final fuel disposition. The transition of the aluminum clad fuels from wet to interim dry storage will require a sequence of drying and canning operations which will include selected fuel preparations such as vacuum drying and conditioning of the storage atmosphere. Laboratory experiments and review of the available literature have demonstrated that successful interim dry storage may also require the use of fuel and canister cleaning or rinsing techniques that preclude, or at least minimize, the potential for the accumulation of chloride and other potentially deleterious ions in the dry storage environment. This paper summarizes an evaluation of the impact of fuel transitioning techniques on the potential for corrosion induced degradation of fuel forms during interim dry storage

  20. On LMFBR corrosion. Part II: Consideration of the in-reactor fuel-cladding system

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Walker, C.T.; Whitlow, W.H.

    1976-05-01

    The scientific and technological aspects of LMFBR cladding corrosion are discussed in detail. Emphasis is placed on the influence of the irradiation environment and the effect of fuel and filler-gas impurities on the corrosion process. These studies are complemented by a concise review of out-of-pile simulation experiments that endeavour to clarify the role of the aggressive fission products cesium, tellurium and iodine. The principal models for cladding corrosion are presented and critically assessed. Areas of uncertainty are exposed and some pertinent experiments are suggested. Consideration is also given to some new observations regarding the role of stress in fuel-cladding reactions and the formation of ferrite in the corrosion zone of the cladding during irradiation. Finally, two technological solutions to the problem of cladding corrosion are proposed. These are based on the use of an oxygen buffer in the fuel and the application of a protective coating to the inner surface of the cladding

  1. Fuel-pin cladding transient failure strain criterion

    International Nuclear Information System (INIS)

    Bard, F.E.; Duncan, D.R.; Hunter, C.W.

    1983-01-01

    A criterion for cladding failure based on accumulated strain was developed for mixed uranium-plutonium oxide fuel pins and used to interpret the calculated strain results from failed transient fuel pin experiments conducted in the Transient Reactor Test (TREAT) facility. The new STRAIN criterion replaced a stress-based criterion that depends on the DORN parameter and that incorrectly predicted fuel pin failure for transient tested fuel pins. This paper describes the STRAIN criterion and compares its prediction with those of the stress-based criterion

  2. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  3. Zr-rich layers electrodeposited onto stainless steel cladding during the electrorefining of EBR-II fuel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Mariani, R.D.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent nuclear fuels. The initial demonstration of this process is being conducted on U-Zr alloy fuel elements irradiated in the experimental breeder reactor II (EBR-II). We report the first metallographic characterization of cladding hull remains for the electrometallurgical treatment of spent metallic fuel. During the electrorefining process, Zr-rich layers, with some U, deposit on all exposed surfaces of irradiated cladding segments (hulls) that originally contained the fuel alloy that was being treated. In some cases, not only was residual Zr (and U) found inside the cladding hulls, but a Zr-rind was also observed near the interior cladding hull surface. The Zr-rind was originally formed during the fuel casting process on the fuel slug. The observation of Zr deposits on all exposed cladding surfaces is explained with thermodynamic principles, when two conditions are met. These conditions are partial oxidation of Zr and the presence of residual uranium in the hulls when the electrorefining experiment is terminated. Comparisons are made between the structure of the initial irradiated fuel before electrorefining and the morphology of the material remaining in the cladding hulls after electrorefining. (orig.)

  4. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  5. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  6. Influence of fuel-cladding system deviations from the model of continuous cylinders on the parameters of WWER fuel element working ability

    International Nuclear Information System (INIS)

    Scheglov, A.

    1994-01-01

    In the programs of fuel rod computation, fuel and cladding are usually presented in the form of coaxial cylinders, which can change their sizes, mechanical and thermal-physical properties. The real fuel element has some typical deviations from this continuous coaxial cylinders (CCC) model as: axial asymmetry of fuel-cladding system (due to the oval form of the cladding, cracking and other type of fuel pallet damage, axial asymmetry of the volumetric heat release), gaps between the pallets (and heat release peaking in fuel near the gap), chambers in the pallets. As a result of these deviations actual fuel rod parameters of working ability - temperature, stresses, thermal fluxes relieved from the cladding, geometry changes - in some locations can greatly vary from the ones calculated according to CCC model. The influence of these deviations is extremely important while calculating the fuel rod, because they are a part of the mechanical excess coefficient. The author reviews the influence of these factors using specific examples. He applies his own two-dimensional codes based on the Finite Elements Method for calculations of temperature fields, stresses and deformation in the fuel rod elements. It is shown that consideration of these deviations, as a rule, leads to the increase of the maximum fuel temperature in the WWER pellets (characterized by a large central hole), temperature of the cladding, thermal flux, relieved by the coolant from the cladding, and stresses in the cladding. It is necessary to consider these factors for both validation of the fuel element working ability and interpretation of the experimental results. 4 tabs., 3 figs., 5 refs

  7. Influence of fuel-cladding system deviations from the model of continuous cylinders on the parameters of WWER fuel element working ability

    Energy Technology Data Exchange (ETDEWEB)

    Scheglov, A [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1994-12-31

    In the programs of fuel rod computation, fuel and cladding are usually presented in the form of coaxial cylinders, which can change their sizes, mechanical and thermal-physical properties. The real fuel element has some typical deviations from this continuous coaxial cylinders (CCC) model as: axial asymmetry of fuel-cladding system (due to the oval form of the cladding, cracking and other type of fuel pallet damage, axial asymmetry of the volumetric heat release), gaps between the pallets (and heat release peaking in fuel near the gap), chambers in the pallets. As a result of these deviations actual fuel rod parameters of working ability - temperature, stresses, thermal fluxes relieved from the cladding, geometry changes - in some locations can greatly vary from the ones calculated according to CCC model. The influence of these deviations is extremely important while calculating the fuel rod, because they are a part of the mechanical excess coefficient. The author reviews the influence of these factors using specific examples. He applies his own two-dimensional codes based on the Finite Elements Method for calculations of temperature fields, stresses and deformation in the fuel rod elements. It is shown that consideration of these deviations, as a rule, leads to the increase of the maximum fuel temperature in the WWER pellets (characterized by a large central hole), temperature of the cladding, thermal flux, relieved by the coolant from the cladding, and stresses in the cladding. It is necessary to consider these factors for both validation of the fuel element working ability and interpretation of the experimental results. 4 tabs., 3 figs., 5 refs.

  8. Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-10-15

    Highlights: • Graceful operating conditions of SMRs markedly lower SiC cladding stress. • Steady-state fracture probabilities of SiC cladding is below 10{sup −7} in SMRs. • PASS demonstrates fuel coolability (T < 1300 °C) with sole radiation in LOCA. • SiC cladding failure probabilities of PASS are ∼10{sup −2} in LOCA. • Cold gas gap pressure controls SiC cladding tensile stress level in LOCA. - Abstract: Structural integrity of SiC clad fuels in reference Small Modular Reactors (SMRs) (NuScale, SMART, IRIS) and a commercial pressurized water reactor (PWR) are assessed with a multi-layered SiC cladding structural analysis code. Featured with low fuel pin power and temperature, SMRs demonstrate markedly reduced incore-residence fracture probabilities below ∼10{sup −7}, compared to those of commercial PWRs ∼10{sup −6}–10{sup −1}. This demonstrates that SMRs can serve as a near-term deployment fit to SiC cladding with a sound management of its statistical brittle fracture. We proposed a novel SMR named Public Acceptable Simple SMR (PASS), which is featured with 14 × 14 assemblies of SiC clad fuels arranged in a square ring layout. PASS aims to rely on radiative cooling of fuel rods during a loss of coolant accident (LOCA) by fully leveraging high temperature tolerance of SiC cladding. An overarching assessment of SiC clad fuel performance in PASS was conducted with a combined methodology—(1) FRAPCON-SiC for steady-state performance analysis of PASS fuel rods, (2) computational fluid dynamics code FLUENT for radiative cooling rate of fuel rods during a LOCA, and (3) multi-layered SiC cladding structural analysis code with previously developed SiC recession correlations under steam environments for both steady-state and LOCA. The results show that PASS simultaneously maintains desirable fuel cooling rate with the sole radiation and sound structural integrity of fuel rods for over 36 days of a LOCA without water supply. The stress level of

  9. Pellet-clad interaction observations in boiling water reactor fuel elements

    International Nuclear Information System (INIS)

    Sahoo, K.C.; Bahl, J.K.; Sivaramakrishnan, K.S.; Roy, P.R.

    1981-01-01

    Under a programme to assess the performance of fuel elements of Tarapur Atomic Power Station, post-irradiation examination has been carried out on 18 fuel elements in the first phase. Pellet-clad mechanical interaction behaviour in 14 elements with varying burnup and irradiation history has been studied using eddy current testing technique. The data has been analysed to evaluate the role of pellet-clad mechanical interaction in PCI/SCC failure in power reactor operating conditions. (author)

  10. Investigation on fuel-cladding chemical interaction in metal fuel for FBR

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Nakamura, Kinya; Ogata, Takanari; Uwaba, Tomoyuki

    2013-01-01

    During steady-state irradiation of metallic fuel in fast reactors, rare-earth fission products can react with stainless steel cladding at the fuel-cladding interface. The authors conducted isothermal annealing tests with some diffusion couples to investigate the structure of the wastage layer formed at the interface. Candidate cladding alloys, ferritic-martensitic steel (PNC-FMS) and oxide-dispersion-strengthened (ODS) steel were assembled with rare-earth alloys, RE5 : La-Ce-Pr-Nd-Sm, which simulate the fission yield of rare-earth fission products. The diffusion couples were isothermally annealed in the temperature range of 500-650°C for up to 170 h. In both RE5/ODS-steel and RE5/PNC-FMS couples, the wastage layer of the two-phase region of the (Fe, Cr) 17 RE 2 matrix phase with the precipitation of the (Fe, RE, Cr) phase was formed. The structure was similar to that formed in RE5/Fe-12Cr and RE5/HT9 couples, which implies that the reaction between REs and steel is not significantly influenced by the minor alloying elements within the candidate cladding materials. It was also clarified that the increase in the wastage layer thickness was diffusion-controlled. The temperature dependence of the reaction rate constants were formulated, which can be the basis for the quantification of the wastage layer growth. (author)

  11. Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  12. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  13. Protection of spent aluminum-clad research reactor fuels during extended wet storage

    International Nuclear Information System (INIS)

    Fernandes, Stela M.C.; Correa, Olandir V.; Souza, Jose A.; Ramanathan, Lalgudi V.; Antunes, Renato A.

    2013-01-01

    Aluminum-clad spent nuclear fuel from research reactors (RR) is stored in light water filled pools or basins worldwide. Many incidences of pitting corrosion of the fuel cladding has been reported and attributed to synergism in the effect of certain water parameters. Protection of spent Al-clad RR fuel with a conversion coating was proposed in 2008. Preliminary results revealed increased pitting corrosion resistance of cerium oxide coated aluminum alloys AA 1050 and AA 6061, used as RR fuel plate cladding. Further development of conversion coatings for Al alloys was carried out and this paper presents: (a) the preparation and characterization of hydrotalcite (HTC) coatings; (b) the results of laboratory tests in which the corrosion behavior of coated Al alloys in NaCl solutions was determined; (c) the results of field tests in which un-coated, boehmite coated, HTC coated and cerium modified boehmite / HTC coated AA 1050 and AA 6061 coupons were exposed to the IEA-R1 reactor spent fuel basin for extended periods. In these field tests the coupons coated with HTC from a high temperature (HT) bath and subsequently modified with Ce were the most resistant to pitting corrosion. In laboratory tests also, HT- hydrotalcite + Ce coated specimens were the most corrosion resistant in 0.01 M NaCl. The role of cerium in increasing the corrosion resistance imparted by the different conversion coatings of spent Al-clad RR fuel elements is presented. (author)

  14. Corrosion issues in the long term storage of aluminum-clad spent nuclear fuels

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Peacock, H.B. Jr.; Sindelar, R.L.; Iyer, N.C.

    1996-01-01

    Approximately 8% of the spent nuclear fuel owned by the US Department of Energy is clad with aluminum alloys. The spent fuel must be either reprocessed or temporarily stored in wet or dry storage systems until a decision is made on final disposition in a repository. There are corrosion issues associated with the aluminum cladding regardless of the disposition pathway selected. This paper discusses those issues and provides data and analysis to demonstrate that control of corrosion induced degradation in aluminum clad spent fuels can be achieved through relatively simple engineering practices

  15. Interdiffusion between U-Pu-Zr fuel and HT9 cladding

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Petri, M.C.

    1994-01-01

    As part of systematic interdiffusion studies of fuel-cladding compatibility in the integral Fast Reactor, a solid-solid diffusion couple was assembled with U-22Pu-23 1 Zr fuel and HT9 2 cladding and annealed at 650 degrees C for 100 hours. The couple was examined for diffusion structure development using a scanning electron microscope equipped with an energy dispersive x-ray analyzer (SEM-EDX). Point-by-point and linescan analysis was used to generate composition profiles and diffusion paths. From the composition profiles, average effective interdiffusion coefficients were calculated for individual components on both sides of the Matano plane. Results from this investigation indicate that the same types of phases as would be expected from binary U-Fe, Pu-Fe, and Zr-Fe phase diagrams develop in this couple; and U and Pu are the fastest diffusing fuel components and Fe is the fastest diffusing cladding component. Compared with diffusion couples with binary (U-Zr) fuel, the addition of Pu greatly enhanced the extent of diffusion and affected the types of phases observed

  16. Nuclear fuel element

    International Nuclear Information System (INIS)

    1974-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding, and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  17. Nuclear fuel element

    International Nuclear Information System (INIS)

    Thompson, J.R.; Rowland, T.C.

    1976-01-01

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed. A heat conducting, fission product retaining metal liner of a refractory metal is incorporated in the fuel element between the cladding and the nuclear fuel to inhibit mechanical interaction between the nuclear fuel and the cladding, to isolate fission products and nuclear fuel impurities from contacting the cladding and to improve the axial thermal peaking gradient along the length of the fuel rod. The metal liner can be in the form of a tube or hollow cylindrical column, a foil of single or multiple layers in the shape of a hollow cylindrical column, or a coating on the internal surface of the cladding. Preferred refractory metal materials are molybdenum, tungsten, rhenium, niobium and alloys of the foregoing metals

  18. FUMAC-a new model for light water reactor fuel relocation and pellet-cladding interaction

    International Nuclear Information System (INIS)

    Walton, L.A.; Matheson, J.E.

    1984-01-01

    An improved approach to the mechanical modeling of fuel rod performance is presented. Previous computer modeling has centered around a unified finite element approach with both fuel pellets and cladding being represented by ring elements. The fuel mechanical analysis code (FUMAC) departs from these approaches in two areas. The pellet model is an empirically based deterministic algorithm, while the cladding model uses both plane stress and plane strain finite elements. The work describes a semiempirical fuel cracking and fragment relocation model, which is burnup and power-level dependent. The interaction of the pellet with the cladding is treated classically. The resulting thick cylinder stresses are used in conjunction with an orthotropic creep model to predict cladding ridging. The resulting ridging compares well with experimental data for both steady-state and transient operating conditions. Future work planned includes the integration of the finite element cladding model with the pellet model and refinement of the pellet relocation and thermal models. Transient performance predictions will be emphasized

  19. Manufacturing of FeCrAl/Zr Dual Layer tube for its application to LWR Fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Lim, Do Wan; Jung, Yang Il; Kim, Hyun Gil; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Many advanced materials such as MAX phases, Mo, SiC, and Fe-based alloys are being considered a possible candidate to substitute the Zr-based alloy cladding has been used in light water reactors. Among the proposed candidate materials, Fe-based alloy is one of the most promising candidates owing to its excellent formability, very good high strength, and corrosion resistance at high temperature. However, neutron cross section of FeCrAl alloy is much higher than that of existing Zr-based alloys. In this study, FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. The thickness of outer FeCrAl layer was varied from 50 to 250 μm but all the FeCrAl/Zr dual layer tube samples maintained its total thickness of 570 μm. For a detailed microstructural characterization of FeCrAl/Zr dual layer, polarized optical microscopy and scanning electron microscopy (SEM) study carried out and its mechanical property was measured by ring compression test. FeCrAl/Zr dual layer tube sample was successfully manufactured with good adhesion between both layers. Inter layer showing gradual element variation was observed at interface. Result obtained from simulated LOCA test indicates that FeCrAl/Zr dual layer tube may maintain its integrity during LOCA and its accident tolerance had greatly improved compared to that of Zr-based alloy.

  20. Optimization of the cold processing of 15-15Ti AIM1 austenitic steel cladding tubes

    International Nuclear Information System (INIS)

    Courtin, Laurine

    2015-01-01

    In order to face the next century energy demand growth, the worldwide development of the 4. generation of nuclear reactors is considered. The construction of a sodium-cooled fast reactor prototype (ASTRID) is currently envisaged at the CEA. The reference material selected for the fuel cladding of its first core is the 15-15Ti-AIM1 austenitic steel (Austenitic Improved Material). The goal of this PhD thesis work is to investigate the different ways of optimization for the cold working steps undergone by the claddings during their manufacture in order to improve their swelling resistance. The main investigations are focused on the conditions of the cold-working steps and the thermal treatments applied throughout the shaping of the claddings, especially of the last solution annealing treatment. The effects of these parameters on the microstructure are investigated (structural refinement, precipitation and the additive elements dissolution and arrangement of the dislocations). This study is divided into three main steps: An analysis of the fabrication routes applied in the past along with the study of the 'cold-work' and the thermal treatments conditions; An assessment of new shaping processes, such as the 'cold-pilgering' and the hammering, in order to verify the conformity of the manufactured tubes with respect to the required specifications; An attempt of optimization of the cold-work routes and the microstructure of the final material. The results of microstructure characterization and the mechanical behavior allow envisaging favorably the use of an alternative process such as the cold pilgering to manufacture claddings. (author) [fr

  1. Future possibilities of SUSEN technologies for R&D of nuclear fuel cladding

    International Nuclear Information System (INIS)

    Mikloš, M.

    2015-01-01

    R&D possibilities with nuclear fuel cladding were discussed in this paper. The availability of 10 MWT reactor with BWR and PWR loops having chemistry control was described. Activity transport and fuel cladding corrosion can be investigated in this facility including PIE. The facility has hot cells and the laboratory is expected to start in 2017

  2. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1983-08-01

    Heating tests using 53 wt % U 3 O 8 -Al pellets show that an exothermic reaction occurs between 875 and 1000 0 C and takes 10 to 20 seconds to reach maximum temperature. The maximum temperature is a function of particle size of the U 3 O 8 with large particles exhibiting lower peak temperatures. The calculated energy release was 123 cal/g of U 3 O 8 -aluminum fuel. Tests using aluminum clad outer fuel tube sections gave lower peak temperatures than for pellets. No violent reactions occurred. The results are reasonably consistent with recent reported data indicating that the exothermic U 3 O 8 -Al reaction is not an important energy source. The compressive and tensile strengths of U 3 O 8 tubes above 660 0 C are low. In compression, sections with 2 psi average axial stress failed at 917 0 C, while sections with 7 psi failed at 669 0 C. Tubes with U-Al alloy cores failed at about 670 0 C with no applied load. The stresses in fuel tubes during a reactor transient may range up to several hundred psi and are less than 7 psi only in the upper part of the fuel tube

  3. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  4. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  5. Progress in Understanding of Fuel-Cladding Chemical interaction in Metal Fuel

    International Nuclear Information System (INIS)

    Inagaki, Okenta; Nakamura, Kinya; Ogata, Takanari

    2013-01-01

    Conclusion: Representative phases formed in FCCI were identified: • The reaction between lanthanide elements and cladding; • The reaction between U-PU-Zr and cladding (Fe). Characteristics of the wastage layer were clarified: • Time and temperature dependency of the growth ratio of the wastage layer formed by lanthanide elements; • Threshold temperature of the liquid phase formation in the reaction between U-Pu-Zr and Fe. These results are used: - as a basis for the FCCI modeling; - as a reference data in post-irradiation examination of irradiated metallic fuels

  6. Interim report on the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Hobson, D.O.; Dodd, C.V.

    1977-01-01

    This report describes the creepdown phenomenon in Zircaloy fuel cladding and the methods by which it will be measured and analyzed. Instrumentation for monitoring radial deformation in the cladding is described in detail--in terms of theory, design, and stability. The programs that control the microcomputer are listed, both to document the level of sophistication of the instrumentation and to indicate the flexibility of the test equipment

  7. Fuel rod with axial regions of annular and standard fuel pellets

    International Nuclear Information System (INIS)

    Freeman, T.R.

    1991-01-01

    This patent describes a fuel rod for use in a nuclear reactor fuel assembly. It comprises: an elongated hollow cladding tube; a pair of end plugs connected to and sealing the cladding tube at opposite ends of thereof; and an axial stack of fuel pellets contained in and extending between the end plugs at the opposite ends of the tube, all of the fuel pellets contained in the tube being composed of fissile material being enriched above the level of natural enrichment; the fuel pellets in the stack thereof being provided in an arrangement of axial regions. The arrangement of axial regions including a pair of first axial regions defined respectively at the opposite ends of the pellet stack adjacent to the respective end plugs. The pellets in the first axial regions being identical in number and having annular configurations with an annulus of a first void size. The arrangement of axial regions also including another axial region defined between the first axial regions, some of the pellets in the another axial region having solid configurations

  8. Fracture of Zircaloy cladding by interactions with uranium dioxide pellets in LWR fuel rods. Technical report 10

    International Nuclear Information System (INIS)

    Smith, E.; Ranjan, G.V.; Cipolla, R.C.

    1976-11-01

    Power reactor fuel rod failures can be caused by uranium dioxide fuel pellet-Zircaloy cladding interactions. The report summarizes the current position attained in a detailed theoretical study of Zircaloy cladding fracture caused by the growth of stress corrosion cracks which form near fuel pellet cracks as a consequence of a power increase after a sufficiently high burn-up. It is shown that stress corrosion crack growth in irradiated Zircaloy must be able to proceed at very low stress intensifications if uniform friction effects are operative at the fuel-cladding interface, when the interfacial friction coefficient is less than unity, when a symmetric distribution of fuel cracks exists, and when symmetric interfacial slippage occurs (i.e., ''uniform'' conditions). Otherwise, the observed fuel rod failures must be due to departures from ''uniform'' conditions, and a very high interfacial friction coefficient and particularly fuel-cladding bonding, are means of providing sufficient stess intensification at a cladding crack tip to explain the occurrence of cladding fractures. The results of the investigation focus attention on the necessity for reliable experimental data on the stress corrosion crack growth behavior of irradiated Zircaloy, and for further investigations on the correlation between local fuel-cladding bonding and stress corrosion cracking

  9. Welding of stainless steel clad fuel rods for nuclear reactors

    International Nuclear Information System (INIS)

    Neves, Mauricio David Martins das

    1986-01-01

    This work describes the obtainment of austenitic stainless steel clad fuel rods for nuclear reactors. Two aspects have been emphasized: (a) obtainment and qualification of AISI 304 and 304 L stainless steel tubes; b) the circumferential welding of pipe ends to end plugs of the same alloy followed by qualification of the welds. Tubes with special and characteristic dimensions were obtained by set mandrel drawing. Both, seamed and seamless tubes of 304 and 304 L were obtained.The dimensional accuracy, surface roughness, mechanical properties and microstructural characteristics of the tubes were found to be adequate. The differences in the properties of the tubes with and without seams were found to be insignificant. The TIG process of welding was used. The influence of various welding parameters were studied: shielding gas (argon and helium), welding current, tube rotation speed, arc length, electrode position and gas flow. An inert gas welding chamber was developed and constructed with the aim of reducing surface oxidation and the heat affected zone. The welds were evaluated with the aid of destructive tests (burst-test, microhardness profile determination and metallographic analysis) and non destructive tests (visual inspection, dimensional examination, radiography and helium leak detection). As a function of the results obtained, two different welding cycles have been suggested; one for argon and another for helium. The changes in the microstructure caused by welding have been studied in greater detail. The utilization of work hardened tubes, permitted the identification by optical microscopy and microhardness measurements, of the different zones: weld zone; heat affected zone (region of grain growth, region of total and partial recrystallization) and finally, the zone not affected by heat. Some correlations between the welding parameters and metallurgical phenomena such as: solidification, recovery, recrystallization, grain growth and precipitation that occurred

  10. About criteria of inadmissible embrittlement of zirconium fuel cladding during LOCA in the PWRs

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    1999-01-01

    According the licensing procedures the designers of the PWRs reactor have to prove the meeting of special safety requirements. One criteria on effectiveness of the Emergency Core Cooling System is not to exceeding some limited conditions of the fuel cladding during LOCA accidents (typical example T m ax o C, ECR<0,17 and oth.). The damage of fuel element in the core during LOCA is caused by the oxidation of the cladding, its embrittlement and thermal shock stresses after initiation of the heat removal by a cold water from emergency core cooling system. In the paper the conservatism in criteria to avoid brittle ruptures of the fuel elements is discussed. Taking into account the influence of fuel burnup on the property of the cladding and a potential presence of air in the steam, it is believed that criteria of survivability of the zircaloy fuel cladding during LOCA may not be enough conservative.(author)

  11. Standard recommended practice for examination of fuel element cladding including the determination of the mechanical properties

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Guidelines are provided for the post-irradiation examination of fuel cladding and to achieve better correlation and interpretation of the data in the field of radiation effects. The recommended practice is applicable to metal cladding of all types of fuel elements. The tests cited are suitable for determining mechanical properties of the fuel elements cladding. Various ASTM standards and test methods are cited

  12. Effect of burnup on the response of stainless steel-clad mixed-oxide fuels to simulated thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Badyopadhyay, G.

    1981-01-01

    Direct electrical heating experiments were performed on irradiated fuel to study the fuel and cladding response as a function of burnup during a slow thermal transient. The results indicated that the nature and extent of the fuel and cladding behavior depended on the quantity of fission gas retained in the fuel. Fission-gas-driven fuel ejection occurred as the molten cladding flowed down the stack exposing bare, radially unrestrained fuel. The fuel dispersion occurred in the absence of molten fuel and the amount of fuel ejected increased with increasing burnup. 31 refs

  13. Development of laser cladding system to repair wall thinning of 1-inch heat exchanger tube

    International Nuclear Information System (INIS)

    Terada, Takaya

    2013-01-01

    We developed a laser cladding system to repair the inner wall wastage of heat exchanger tubes. Our system, which is designed to repair thinning tube walls within 100 mm from the edge of a heat exchanger tube, consists of a fiber laser, a composite-type optical fiberscope, a coupling device, a laser processing head, and a wire-feeding device. All of these components were reconfigured from the technologies of FBR maintenance. The laser processing head, which has a 15-mm outer diameter, was designed to be inserted into a 1-inch heat exchanger tube. We mounted a heatproof broadband mirror for laser cladding and fiberscope observation with visible light inside the laser processing head. The wire-feeding device continuously supplied 0.4-mm wire to the laser irradiation spot with variable feeding speeds from 0.5 to 20 mm/s. We are planning to apply our proposed system to the maintenance of aging industrial plants. (author)

  14. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  15. Development of laser welded appendages to Zircaloy-4 fuel tubing (sheath/cladding)

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, S., E-mail: steve.livingstone@cnl.ca [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Xiao, L. [Canadian Nuclear Laboratories Limited, Chalk River, ON, Canada K0J 1J0 (Canada); Corcoran, E.C.; Ferrier, G.A.; Potter, K.N. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada K7K 7B4 (Canada)

    2015-04-01

    Highlights: • Examines feasibility of laser welding appendages to Zr-4 tubing. • Laser welding minimizes the HAZ and removes toxic Be. • Mechanical properties of laser welds appear competitive with induction brazed joints. • Work appears promising and lays the foundation for further investigations. - Abstract: Laser welding is a potential alternative to the induction brazing process commonly used for appendage attachment in CANDU{sup ®} fuel fabrication that uses toxic Be as a filler metal, and creates multiple large heat affected zones in the sheath. For this work, several appendages were laser welded to tubing using different laser heat input settings and then examined with a variety of techniques: visual examination, metallography, shear strength testing, impact testing, and fracture surface analysis. Where possible, the examination results are contrasted against production induction brazed joints. The work to date looks promising for laser welded appendages. Further work on joint optimization, corrosion testing, irradiation testing, and post-irradiation examination will be performed in the future.

  16. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  17. Peak cladding temperature in a spent fuel storage or transportation cask

    International Nuclear Information System (INIS)

    Li, J.; Murakami, H.; Liu, Y.; Gomez, P.E.A.; Gudipati, M.; Greiner, M.

    2007-01-01

    From reactor discharge to eventual disposition, spent nuclear fuel assemblies from a commercial light water reactor are typically exposed to a variety of environments under which the peak cladding temperature (PCT) is an important parameter that can affect the characteristics and behavior of the cladding and, thus, the functions of the spent fuel during storage, transportation, and disposal. Three models have been identified to calculate the peak cladding temperature of spent fuel assemblies in a storage or transportation cask: a coupled effective thermal conductivity and edge conductance model developed by Manteufel and Todreas, an effective thermal conductivity model developed by Bahney and Lotz, and a computational fluid dynamics model. These models were used to estimate the PCT for spent fuel assemblies for light water reactors under helium, nitrogen, and vacuum environments with varying decay heat loads and temperature boundary conditions. The results show that the vacuum environment is more challening than the other gas environments in that the PCT limit is exceeded at a lower boundary temperature for a given decay heat load of the spent fuel assembly. This paper will highlight the PCT calculations, including a comparison of the PCTs obtained by different models.

  18. Compatibility Behavior of the Ferritic-Martensitic Steel Cladding under the Liquid Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Baek, Jong Hyuk; Kim, Sung Ho; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Fuel cladding is a component which confines uranium fuel to transport energy into the coolant as well as protect radioactive species from releasing outside. Sodium-cooled Fast Reactor (SFR) has been considered as one of the most probable next generation reactors in Korea because it can maximize uranium resource as well as reduce the amount of PWR spent fuel in conjunction with pyroprocessing. Sodium has been selected as the coolant of the SFR because of its superior fast neutron efficiency as well as thermal conductivity, which enables high power core design. However, it is reported that the fuel cladding materials like austenitic and ferritic stainless steel react sodium coolant so that the loss of the thickness, intergranular attack, and carburization or decarburization process may happen to induce the change of the mechanical property of the cladding. This study aimed to evaluate material property of the cladding material under the liquid sodium environment. Ferritic-martensitic steel (FMS) coupon and cladding tube were exposed at the flowing sodium then the microstructural and mechanical property were evaluated. mechanical property of the cladding was evaluated using the ring tension test

  19. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  20. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  1. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  2. Performance of cladding on MOX fuel with low 240Pu/239Pu ratio

    International Nuclear Information System (INIS)

    McCoy, K.; Blanpain, P.; Morris, R.

    2015-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world's first commercial irradiation of MOX fuel with a 240 Pu/ 239 Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding. (authors)

  3. Diametral strain of fast reactor MOX fuel pins with austenitic stainless steel cladding irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Uwaba, Tomoyuki, E-mail: uwaba.tomoyuki@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan); Ito, Masahiro; Maeda, Koji [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki 311-1393 (Japan)

    2011-09-30

    Highlights: > We evaluated diametral strain of fast reactor MOX fuel pins irradiated to 130 GWd/t. > The strain was due to cladding void swelling and irradiation creep. > The irradiation creep was caused by internal gas pressure and PCMI. > The PCMI was associated with pellet swelling by rim structure or by cesium uranate. > The latter effect tended to increase the cumulative damage fraction of the cladding. - Abstract: The C3M irradiation test, which was conducted in the experimental fast reactor, 'Joyo', demonstrated that mixed oxide (MOX) fuel pins with austenitic steel cladding could attain a peak pellet burnup of about 130 GWd/t safely. The test fuel assembly consisted of 61 fuel pins, whose design specifications were similar to those of driver fuel pins of a prototype fast breeder reactor, 'Monju'. The irradiated fuel pins exhibited diametral strain due to cladding void swelling and irradiation creep. The cladding irradiation creep strain were due to the pellet-cladding mechanical interaction (PCMI) as well as the internal gas pressure. From the fuel pin ceramographs and {sup 137}Cs gamma scanning, it was found that the PCMI was associated with the pellet swelling which was enhanced by the rim structure formation or by cesium uranate formation. The PCMI due to cesium uranate, which occurred near the top of the MOX fuel column, significantly affected cladding hoop stress and thermal creep, and the latter effect tended to increase the cumulative damage fraction (CDF) of the cladding though the CDF indicated that the cladding still had some margin to failure due to the creep damage.

  4. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  5. Thermal performance of the nuclear fuel rods submitted to angular variation of the heat exchanger coefficients

    International Nuclear Information System (INIS)

    Carvalho, A.M.M. de.

    1984-01-01

    Generally, LMFBR fuel rods consist of fuel pellets encapsulated in cladding tubes. These tubes are wrapped by a helical wire, working as a spacer. Distortions in the rod temperature distribution and in the external heat flux can be generated by angular variations in the local heat transfer coefficients due to the wire, by excentricity between pellet and clad or by ovalization of the cladding tube. Also, the temperature distributions can be affected by fuel densification, reestructuring and swelling. The present work consists of the development of a computer code in order to analyse the fuel rod performance as function of geometrical and operational effects, in steady state regime. (Author) [pt

  6. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  7. Observations of in-reactor endurance and rupture life for fueled and unfueled FTR cladding

    International Nuclear Information System (INIS)

    Lovell, A.J.; Christensen, B.Y.; Chin, B.A.

    1979-01-01

    Reactor component endurance limits are important to nuclear experimenters and operators. This paper investigates endurance limits of 316 CW fuel pin cladding. The objective of this paper is to compare and analyze two different sets of FTR fuel pin cladding data. The first data set is from unfueled pressurized cladding irradiated in the Experimental Breeder Reactor No. II (EBR-II). This data set was generated in an assembly in which the temperature was monitored and controlled. The second data set contains observations of breached and unbreached EBR-II test fuel pins covering a large range of temperature, power and burnup conditions

  8. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  9. Consolidation of cladding hulls from the electrometallurgical treatment of spent fuel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.

    1998-01-01

    To consolidate metallic waste that is residual from Argonne National Laboratory's electrometallurgical treatment of spent nuclear fuel, waste ingots are currently being cast using an induction furnace located in a hot cell. These ingots, which have been developed to serve as final waste forms destined for repository disposal, are stainless steel (SS)-Zr alloys (the Zr is very near 15 wt.%). The charge for the alloys consists of stainless steel cladding hulls, Zr from the fuel being treated, noble metal fission products, and minor amounts of actinides that are present with the cladding hulls. The actual in-dated cladding hulls have been characterized before they were melted into ingots, and the final as-cast ingots have been characterized to determine the degree of consolidation of the charge material. It has been found that ingots can be effectively cast from irradiated cladding hulls residual from the electrometallurgical treatment process by employing an induction furnace located in a hot cell

  10. Experience in quality assurance of alloy D9 clad tubes for Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Kapoor, K.; Prahlad, B.

    2012-01-01

    Stainless Steel Alloy D9 is the material for cladding in various sub-assemblies of Prototype Fast Breeder Reactor (PFBR). The fabrication, inspection, testing and supply of the clad tubes for the first core of PFBR is nearly completed. The paper also compares the specification requirements and the achieved results for some of the critical aspects which is arrived after completing supply against the first core requirement

  11. Corrosion of research reactor Al-clad spent fuel in water

    International Nuclear Information System (INIS)

    Bendereskaya, O.S.; De, P.K.; Haddad, R.; Howell, J.P.; Johnson, A.B. Jr.; Laoharojanaphand, S.; Luo, S.; Ramanathan, L.V.; Ritchie, I.; Hussain, N.; Vidowsky, I.; Yakovlev, V.

    2002-01-01

    A significant amount of aluminium-clad spent nuclear fuel from research and test reactors worldwide is currently being stored in water-filled basins while awaiting final disposition. As a result of corrosion issues, which developed from the long-term wet storage of aluminium-clad fuel, the International Atomic Energy Agency (IAEA) implemented a Co-ordinated Research Project (CRP) in 1996 on the 'Corrosion of Research Reactor Aluminium-Clad Spent Fuel in Water'. The investigations undertaken during the CRP involved ten institutes in nine different countries. The IAEA furnished corrosion surveillance racks with aluminium alloys generally used in the manufacture of the nuclear fuel cladding. The individual countries supplemented these racks with additional racks and coupons specific to materials in their storage basins. The racks were immersed in late 1996 in the storage basins with a wide range of water parameters, and the corrosion was monitored at periodic intervals. Results of these early observations were reported after 18 months at the second research co-ordination meeting (RCM) in Sao Paulo, Brazil. Pitting and crevice corrosion were the main forms of corrosion observed. Corrosion caused by deposition of iron and other particles on the coupon surfaces was also observed. Galvanic corrosion of stainless steel/aluminium coupled coupons and pitting corrosion caused by particle deposition was observed. Additional corrosion racks were provided to the CRP participants at the second RCM and were immersed in the individual basins by mid-1998. As in the first set of tests, water quality proved to be the key factor in controlling corrosion. The results from the second set of tests were presented at the third and final RCM held in Bangkok, Thailand in October 2000. An IAEA document giving details about this CRP and other guidelines for spent fuel storage is in pres. This paper presents some details about the CRP and the basis for its extension. (author)

  12. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V G; Petrik, N G; Berezina, I G; Doilnitsina, V V [VNIPIET, St. Petersburg (Russian Federation)

    1997-02-01

    In-pile corrosion of Zr + 1%Nb fuel cladding has been studied. Zr-oxide and hydroxide solubilities at various temperatures and pH values have been calculated and correlations obtained between post-transition corrosion and the solubilities nodular corrosion and fuel operation parameters, as well as between the rate of fuel cladding degradation and water chemistry. Extrapolations of fuel assemblies behaviour to higher burnups have also performed. (author). 12 refs, 11 figs.

  13. Experiments on ballooning in pressurized and transiently heated Zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Markiewicz, M.E.; Erbacher, F.J.

    1988-02-01

    Single-rod burst tests were performed with Atucha I Zircaloy-4 cladding tubes in the REBEKA burst equipment of KfK. The objective was to investigate the ballooning and burst behavior of argentine cladding tubes obtained from NRG, Germany and CONVAR, Argentina. The burst data were compared with those of cladding tubes used in german PWR's. It was found that the burst data e.g. burst temperature, circumferential burst strain and its response to azimuthal temperature differences are identical for the Argentine and German tubing quality. The burst data are in good agreement with those of German PWR-Zircaloy tubes. Thus, the fuel rod behavior codes developed for German PWR's can also be used for the Argentine reactor Atucha I. (orig.) [de

  14. Method for pre-processing LWR spent fuel

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Ebihara, Hikoe.

    1986-01-01

    Purpose: To facilitate the decladding of spent fuel, cladding tube processing, and waste gas recovery, and to enable the efficient execution of main re-processing process thereafter. Constitution: Spent fuel assemblies are sent to a cutting process where they are cut into chips of easy-to-process size. The chips, in a thermal decladding process, undergo a thermal cycle processing in air with the processing temperatures increased and decreased within the range of from 700 deg C to 1200 deg C, oxidizing zircaloy comprising the cladding tubes into zirconia. The oxidized cladding tubes have a number of fine cracks and become very brittle and easy to loosen off from fuel pellets when even a slight mechanical force is applied thereto, thus changing into a form of powder. Processed products are then separated into zirconia sand and fuel pellets by a gravitational selection method or by a sifting method, the zirconia sand being sent to a waste processing process and the fuel pellets to a melting-refining process. (Yoshino, Y.)

  15. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas E., E-mail: Douglas.Burkes@pnnl.gov; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed. - Highlights: •Complementary fission gas release events are reported for U-Mo fuel with and without cladding. •Exothermic reaction between Zr diffusion layer and cladding influences fission gas release. •Mechanisms responsible for fission gas release are similar, but with varying timing and magnitude. •Behavior of samples is similar after 800 °C signaling the onset of superlattice destabilization.

  16. Experimental study and modeling of high-temperature oxidation and phase transformation of cladding-tubes made in zirconium alloy

    International Nuclear Information System (INIS)

    Mazeres, Benoit

    2013-01-01

    One of the hypothetical accident studied in the field of the safety studies of Pressurized light Water Reactor (PWR) is the Loss-Of-Coolant-Accident (LOCA). In this scenario, zirconium alloy fuel claddings could undergo an important oxidation at high temperature (T≅ 1200 C) in a steam environment. Cladding tubes constitute the first confinement barrier of radioelements and then it is essential that they keep a certain level of ductility after quenching to ensure their integrity. These properties are directly related to the growth kinetics of both the oxide and the αZr(O) phase and also to the oxygen diffusion profile in the cladding tube after the transient. In this context, this work was dedicated to the understanding and the modeling of the both oxidation phenomenon and oxygen diffusion in zirconium based alloys at high temperature. The numerical tool (EKINOX-Zr) used in this thesis is based on a numerical resolution of a diffusion/reaction problem with equilibrium-conditions on three moving boundaries: gas/oxide, oxide/αZr(O), αZr(O)/βZr. EKINOX-Zr kinetics model is coupled with ThermoCalc software and the Zircobase database to take into account the influence of the alloying elements (Sn, Fe, Cr, Nb) but also the influence of hydrogen on the solubility of oxygen. This study focused on two parts of the LOCA scenario: the influence of a pre-oxide layer (formed in-service) and the effects of hydrogen. Thanks to the link between EKINOX-Zr and the thermodynamic database Zircobase, the hydrogen effects on oxygen solubility limit could be considered in the numerical simulations. Thus, simulations could reproduce the oxygen diffusion profiles measured in pre-hydrided samples. The existence of a thick pre-oxide layer on cladding tubes can induce a reduction of this pre-oxide layer before the growth of a high-temperature one during the high temperature dwell under steam. The first simulations performed using the numerical tool EKINOX-Zr showed that this particular

  17. Development of a laser multi-layer cladding technology for damage mitigation of fuel spacers in Hanaro reactor

    International Nuclear Information System (INIS)

    Kim, J. S.; Lee, D. H.; Hwang, S. S.; Suh, J. H.

    2002-01-01

    A laser multi-layer cladding technology was developed to mitigate the fretting wear damages occurred at fuel spacers in Hanaro reactor. The detailed experimental results are as follows. 1) Analyses of fretting wear damages and fabrication process of fuel spacers 2) Development and analysis of spherical Al 6061 T-6 alloy powders for the laser cladding 3) Analysis of parameter effects on laser cladding process for clad bids, and optimization of laser cladding process 4) Analysis on the changes of cladding layers due to overlapping factor change 5) Microstructural observation and phase analysis 6) Characterization of materials properties (hardness and wear tests) 7) Manufacture of prototype fuel spacers 8) Development of a vision system and revision of its related softwares

  18. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  19. Testing Systems and Results for Advanced Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Griffith, G.W.; Garnier, J.E.

    2012-01-01

    Light Water Reactor Sustainability (LWRS) Program Advanced LWR Nuclear Fuel Development (ALFD) Pathway. Development and testing of high performance fuel cladding identified as high priority to support: enhancement of fuel performance, reliability, and reactor safety. One of the technologies being examined is an advanced fuel cladding made from ceramic matrix composites (CMC) utilizing silicon carbide (SiC) as a structural material supplementing a commercial Zircaloy-4 (Zr-4) tube. A series of out-of-pile tests to fully characterize the SiC CMC hybrid design to produce baseline data. The planned tests are intended to either produce quantitative data or to demonstrate the properties required to achieve two initial performance conditions relative to standard zircaloybased cladding: decreased hydrogen uptake (corrosion) and decreased fretting of the cladding tube under normal operating and postulated accident conditions. These two failure mechanisms account for approximately 70% of all in-pile failures of LWR commercial fuel assemblies

  20. The VULKIN code used for evaluation of the cladding tube's performance

    International Nuclear Information System (INIS)

    Marbach, G.

    1979-01-01

    Full text: 1 - Introduction. The French approach for fast subassembly project is to analyse each component part of the subassembly and each basic phenomenon to estimate the total behaviour. The VULKIN code describes the mechanical behaviour of a clad alone. A cladding damage parameter is calculated from the observed deformations. When it is greater than a fixed value we consider that the rupture probability is not negligible. But this function is not the only limit for the irradiation project. Other limits are bound to other problems: no fuel melting bundle, interaction behaviour. 2 - VULKIN code - Presentation. The VULKIN code gives the evolution of stresses and strains distribution in the thickness of the clad with the hypothesis of revolution symmetry. This program takes into account temperature dilatation and radial thermal gradient, fission gas pressure and steel swelling due to neutron flux. The fuel clad mechanical interaction is not described by this model. Experimental results show that its influence is negligible for the most unusual subassemblies but, if it is necessary, a special calculation is obtained using a specific code like TUREN, described in another paper. This model does not consider the stresses and strains resulting from interaction between bundle and wrapper. Another model describes the bundle behaviour and determines diametral deformation limit from the subassembly geometrical characteristics. The clad is considered as an elasto-plastic element. Plastic flows instantaneous, thermal creep or irradiation creep are determined at each time. The data of this code are the geometry, the irradiation parameters (temperature, dose), the fission gas pressure evolution, the swelling law and the experimental relations for thermal and irradiation creep. The mechanical resolution is classical: the clad is divided into concentric rings. At each time the equations resulting from the equilibrium of strengths and compatibility of displacements are resolved

  1. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  2. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  3. Corrosion and protection of spent Al-clad research reactor fuel during extended wet storage

    International Nuclear Information System (INIS)

    Ramanathan, Lalgudi V.

    2009-01-01

    A variety of spent research reactor fuel elements with different fuel meats, geometries and 235 U enrichments are presently stored under water in basins throughout the world. More than 90% of these fuels are clad in aluminum (Al) or its alloy and are susceptible to corrosion. This paper presents an overview of the influence of Al alloy composition, galvanic effects (Al alloy/stainless steel), crevice effects, water parameters and synergism between these parameters as well as settled solids on the corrosion of typical Al alloys used as fuel element cladding. Pitting is the main form of corrosion and is affected by water conductivity, chloride ion content, formation of galvanic couples with rack supports and settled solid particles. The extent to which these parameters influence Al corrosion varies. This paper also presents potential conversion coatings to protect the spent fuel cladding. (author)

  4. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  5. In-pile observations of fuel and clad relocation during LMFBR initiation phase accident experiments - the STAR experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Schumacher, G.; Henkel, P.R.; Royl, P.

    1987-01-01

    A series of seven in-pile experiments (the STAR experiments) were performed in which clad motion and fuel dispersal were observed in small pin bundles with high-speed cinematography. The experimental heating conditions reproduced a range of Loss of Flow (LOF) accident scenarios for the lead subassemblies in LMFBRs. The experiments show strong tendencies for limited clad motion in multiple pin bundles, early fuel disruption and dispersal (prior to fuel melting) in moderate power transients having simultaneous clad melting and fuel disruption. The more recent experiments indicate a possibility of steel vapor driven fuel dispersal after fuel breakup and intimate fuel/steel mixing. (author)

  6. Criteria for Corrosion Protection of Aluminum-Clad Spent Nuclear Fuel in Interim Wet Storage

    International Nuclear Information System (INIS)

    Howell, J.P.

    1999-01-01

    Storage of aluminum-clad spent nuclear fuel at the Savannah River Site (SRS) and other locations in the U. S. and around the world has been a concern over the past decade because of the long time interim storage requirements in water. Pitting corrosion of production aluminum-clad fuel in the early 1990''s at SRS was attributed to less than optimum quality water and corrective action taken has resulted in no new pitting since 1994. The knowledge gained from the corrosion surveillance testing and other investigations at SRS over the past 8 years has provided an insight into factors affecting the corrosion of aluminum in relatively high purity water. This paper reviews some of the early corrosion issues related to aluminum-clad spent fuel at SRS, including fundamentals for corrosion of aluminum alloys. It updates and summarizes the corrosion surveillance activities supporting the future storage of over 15,000 research reactor fuel assemblies from countries over the world during the next 15-20 years. Criteria are presented for providing corrosion protection for aluminum-clad spent fuel in interim storage during the next few decades while plans are developed for a more permanent disposition

  7. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  8. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  9. Carbon 14 distribution in irradiated BWR fuel cladding and released carbon 14 after aqueous immersion of 6.5 years

    Energy Technology Data Exchange (ETDEWEB)

    Sakuragi, T. [Radioactive Waste Management Funding and Research Center, Tsukishima 1-15-7, Chuo City, Tokyo, 104-0052 (Japan); Yamashita, Y.; Akagi, M.; Takahashi, R. [TOSHIBA Corporation, Ukishima Cho 4-1, Kawasaki Ward, Kawasaki, 210-0862 (Japan)

    2016-07-01

    Spent fuel cladding which is highly activated and strongly contaminated is expected to be disposed of in an underground repository. A typical activation product in the activated metal waste is carbon 14 ({sup 14}C), which is mainly generated by the {sup 14}N(n,p){sup 14}C reaction and produces a significant exposure dose due to the large inventory, long half-life (5730 years), rapid release rate, and the speciation and consequent migration parameters. In the preliminary Japanese safety case, the release of radionuclides from the metal matrix is regarded as the corrosion-related congruent release, and the cladding oxide layer is regarded as a source of instant release fraction (IRF). In the present work, specific activity of {sup 14}C was measured using an irradiated BWR fuel cladding (Zircaloy-2, average rod burnup of 41.6 GWd/tU) which has an external oxide film having a thickness of 25.3 μm. The {sup 14}C specific activity of the base metal was 1.49*10{sup 4} Bq/g, which in the corresponding burnup is comparable to values in the existing literature, which were obtained from various irradiated claddings. Although the specific activity in oxide was 2.8 times the base metal activity due to the additive generation by the {sup 17}O(n,α){sup 14}C reaction, the {sup 14}C abundance in oxide was less than 10% of total inventory. A static leaching test using the cladding tube was carried out in an air-tight vessel filled with a deoxygenated dilute NaOH solution (pH of 12.5) at room temperature. After 6.5 years, {sup 14}C was found in each leachate fraction of gas phase and dissolved organics and inorganics, the total of which was less than 0.01% of the {sup 14}C inventory of the immersed cladding tube. A simple calculation based on the congruent release with Zircaloy corrosion has suggested that the 96.7% of released {sup 14}C was from the external oxide layer and 3.3% was from the base Zircaloy metal. However, both the {sup 14}C abundance and the low leaching rate

  10. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  11. Modeling of the PWR fuel mechanical behaviour and particularly study of the pellet-cladding interaction in a fuel rod

    International Nuclear Information System (INIS)

    Hourdequin, N.

    1995-05-01

    In Pressurized Water Reactor (PWR) power plants, fuel cladding constitutes the first containment barrier against radioactive contamination. Computer codes, developed with the help of a large experimental knowledge, try to predict cladding failures which must be limited in order to maintain a maximal safety level. Until now, fuel rod design calculus with unidimensional codes were adequate to prevent cladding failures in standard PWR's operating conditions. But now, the need of nuclear power plant availability increases. That leads to more constraining operating condition in which cladding failures are strongly influenced by the fuel rod mechanical behaviour, mainly at high power level. Then, the pellet-cladding interaction (PCI) becomes important, and is characterized by local effects which description expects a multidimensional modelization. This is the aim of the TOUTATIS 2D-3D code, that this thesis contributes to develop. This code allows to predict non-axisymmetric behaviour too, as rod buckling which has been observed in some irradiation experiments and identified with the help of TOUTATIS. By another way, PCI is influenced by under irradiation experiments and identified with the help of TOUTATIS which includes a densification model and a swelling model. The latter can only be used in standard operating conditions. However, the processing structure of this modulus provides the possibility to include any type of model corresponding with other operating conditions. In last, we show the result of these fuel volume variations on the cladding mechanical conditions. (author). 25 refs., 89 figs., 2 tabs., 12 photos., 5 appends

  12. A study of cladding technology on tube wall surface by a hand-held laser torch

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi; Moriyama, Taku; Matsuda, Hiroyasu

    2015-01-01

    New maintenance technique was proposed using a hand-held laser torch for aging chemical plants and power plants. The hand-held laser torch was specially designed to be able to access limited tubular space in various cases. A composite-type optical fiberscope was composed of a center fiber for beam delivery and surrounded fibers for visible image delivery. Laser irradiation on a work pieces with the best accuracy of filler wire was carried out. And, we found that the optimized wire-feed speed was 2 mm/s in laser cladding. We succeeded to make a line clad on the inner wall of 23 mm tube. This technique was discussed to be applied to the maintenance for cracks or corrosions of tubes in various harsh environments. (author)

  13. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  14. Western and WWER materials investigations - past lessons, present achievements and future trends for fuel rod cladding and fuel assembly structure

    International Nuclear Information System (INIS)

    Weidinger, H.

    2001-01-01

    The paper gives a detailed overview of Western and WWER materials used in nuclear fuel manufacturing industry. The status of technical experience with regard to design, fabrication and particular in-pile behavior is described and compared for material of major importance for PWR and WWER fuel. In particular Zr-base alloys for cladding tubes, spacer grids and guide thimbles are considered. In addition spacer spring materials are also discussed. The paper shows that during the last decade a considerable diversification of different Zr materials occurred in Western PWR fuel, while for WWER fuel the focus is still on the classical Zr1%Nb material. Corrosion and hydrogen uptake as well as the dimensional behavior (creep and growth) of all presently relevant Zr-based materials is described in detail. For spacer springs Zr-based and Ni-based materials are considered. For this application spring force relaxation is the most important issue. The paper shows that the focus of consideration is typically different for PWR and WWER fuel materials. While for PWR fuel mainly corrosion and hydrogen uptake is most important and design limiting, for WWER fuel the focus of interests is with mechanical strength. The main reason for this significant difference is that the corrosive environment is typically different for PWR and WWER cores

  15. DUPIC fuel irradiation test and performance evaluation; the performance analysis of pellet-cladding contact fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K. I.; Kim, H. M.; Yang, K. B.; Choi, S. J. [Suwon University, Whasung (Korea)

    2002-04-01

    Thermal and mechanical models were reviewed, and selected for the analysis of nuclear fuel performance in reactor. 2 dimensional FEM software was developed. Thermal models-gap conductances, thermal conductivity of pellets, fission gas release, temperature distribution-were set and packaged into a software. Both thermal and mechanical models were interrelated to each other, and the final results, fuel performance during irradiation is obtained by iteration calculation. Also, the contact phenomena between pellet and cladding was analysed by mechanical computer software which was developed during this work. dimensional FEM program was developed which estimate the mechanical behavior and the thermal behaviors of nuclear fuel during irradiation. Since there is a importance during the mechanical deformation analysis in describing pellet-cladding contact phenomena, simplified 2 dimensional calculation method is used after the contact. The estimation of thermal fuel behavior during irradiation was compared with the results of other. 8 refs., 17 figs. (Author)

  16. Reuse of spent fuel cladding Zr by molten salt toward advanced recycle society

    International Nuclear Information System (INIS)

    Amano, Osamu; Kobayashi, Hiroaki; Suzuki, Kazunori; Yasuike, Y.; Sato, Nobuaki

    2003-01-01

    Cladding tubes of zircaloy 95% generated from reprocessing process for spent nuclear fuels are to be chopped in about 3 cm length, compacted and solidified with cements. This paper reports the summary of investigation of the present possible techniques for zirconium recovery: (1) electrolysis of molten salts (Zr-chlorides and/or fluorides) and (2) separation as volatile zirconium chlorides (ZrCl 4 ) (chloride volatility process) followed by reaction with metallic magnesium at 900degC to produce sponged Zr (Kroll method). The feasibility are discussed from the point of view of reduction of secondary radioactive wastes, accumulation of such nuclides as Co-60 and Ni-63 in electrolytic basin, radioactivity estimation in the products, and also problems of cleaning and reducing chemicals. (S. Ohno)

  17. SIFAIL: a subprogram to calculate cladding deformation and damage for fast reactor fuel pins

    International Nuclear Information System (INIS)

    Wilson, D.R.; Dutt, D.S.

    1979-05-01

    SIFAIL is a series of subroutines used in conjunction with the thermal performance models of SIEX to assist in the evaluation of mechanical performance of mixed uranium plutonium oxide fuel pins. Cladding deformations due to swelling and creep are calculated. These have been compared to post-irradiation data from fuel pin tests in EBR-II. Several fuel pin cladding failure criteria (cumulative damage, total strain, and thermal creep strain) are evaluated to provide the fuel pin designer with a basis to select design parameters. SIFAIL allows the user many property options for cladding material. Code input is limited to geometric and environmental parameters, with a consistent set of material properties provided by the code. The simplified, yet adequate, thin wall stress--strain calculations provide a reliable estimate of fuel pin mechanical performance, while requiring a small amount of core storage and computer running time

  18. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  19. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented

  20. Fuel behaviour in the case of severe accidents and potential ATF designs. Fuel Behavior in Severe Accidents and Potential Accident Tolerance Fuel Designs

    International Nuclear Information System (INIS)

    Cheng, Bo

    2013-01-01

    This presentation reviews the conditions of fuel rods under severe loss of coolant conditions, approaches that may increase coping time for plant operators to recover, requirements of advanced fuel cladding to increase tolerance in accident conditions, potential candidate alloys for accident-tolerant fuel cladding and a novel design of molybdenum (Mo) -based fuel cladding. The current Zr-alloy fuel cladding will lose all its mechanical strength at 750-800 deg. C, and will react rapidly with high-pressure steam, producing significant hydrogen and exothermic heat at 700-1000 deg. C. The metallurgical properties of Zr make it unlikely that modifications of the Zr-alloy will improve the behaviour of Zr-alloys at temperatures relevant to severe accidents. The Mo-based fuel cladding is designed to (1) maintain fuel rod integrity, and reduce the release rate of hydrogen and exothermic heat in accident conditions at 1200-1500 deg. C. The EPRI research has thus far completed the design concepts, demonstration of feasibility of producing very thin wall (0.2 mm) Mo tubes. The feasibility of depositing a protective coating using various techniques has also been demonstrated. Demonstration of forming composite Mo-based cladding via mechanical reduction has been planned

  1. Construction of in-situ creep strain test facility for the SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Heo, Hyeong Min; Kim, Jun Hwan; Kim, Sung Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, in-situ laser inspection creep test machine was developed for the measuring the creep strain of SFR fuel cladding materials. Ferritic-martensitic steels are being considered as an attractive candidate material for a fuel cladding of a SFR due to their low expansion coefficients, high thermal conductivities and excellent irradiation resistances to a void swelling. HT9 steel (12CrMoVW) is initially developed as a material for power plants in Europe in the 1960. This steel has experienced to expose up to 200dpa in FFTE and EBR-II. Ferritic-Martensitic steel's maximum creep strength in existence is 180Mpa for 106 hour 600 .deg., but HT9 steel is 60Mpa. Because SFR is difficult to secure in developing and applying materials, HT9 steel has accumulated validated data and is suitable for SFR component. And also, because of its superior dimensional stability against fast neutron irradiation, Ferritic-martensitic steel of 9Cr and 12Cr steels, such as HT9 and FC92(12Cr-2W) are preferable to utilize in the fuel cladding of an SFR in KAERI. The pressurized thermal creep test of HT9 and FC92 claddings are being conducted in KAERI, but the change of creep strain in cladding is not easy to measure during the creep test due to its pressurized and closed conditions. In this paper, in-situ laser inspection pressurized creep test machine developed for SFR fuel cladding specimens is described. Moreover, the creep strain rate of HT9 at 650 .deg. C was examined from the in-situ laser inspection pressurized creep test machine.

  2. Crack resistance curve determination of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Bertsch, J.; Alam, A.; Zubler, R.

    2009-03-01

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 o C and 350 o C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could be

  3. Crack resistance curve determination of zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J.; Alam, A.; Zubler, R

    2009-03-15

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 {sup o}C and 350 {sup o}C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could

  4. Deformation behavior of Zircaloy-4 cladding tubes under inert gas conditions in the temperature range from 600 to 12000C

    International Nuclear Information System (INIS)

    Hofmann, P.; Raff, S.; Gausmann, G.

    1981-07-01

    Within the temperature range from 600 0 to 1200 0 isothermal, isobaric creep rupture experiments were performed under inert gas with short Zircaloy-4 tube specimens in order to obtain experimental data supporting the development of the NORA cladding tube deformation model. The values of the tube inner pressure were so selected that the time-to-failure values varied between 2 and 2000 s. The corresponding creep rupture curves are indicated. Besides the temperature and the burst pressure the development of deformation over time of the tube specimens was measured. This allowed to draw diagrams of stress, strain rate and strain. On account of the type of specimen heating applied (radiation heating) the temperature difference at the cladding tube circumference is very small ( [de

  5. Some aspects of the utilization of zicaloy and austenitic steel as cladding material for PWR reactor fuel rods

    International Nuclear Information System (INIS)

    Teixeira e Silva, A.; Perrotta, J.A.

    1985-01-01

    The behaviour under irradiation of fuel rods for light water reactors was simulated by using fuel performance codes. Two types of cladding were analyzed: zircaloy and austenitic stainless steel. The fuel performance codes, originally made for zircaloy cladding, were adapted for austenitic stainless steel. The simulation results for the two types of cladding are presented, compared and discussed. (F.E.) [pt

  6. Duplex-cladding: Siemens answer to the requirements of extended burnup in PWRs

    International Nuclear Information System (INIS)

    Van Swam, L.F.; Sell, H.J.; Eberle, R.; Seibold, A.

    1994-01-01

    One important goal of nuclear fuel development is to increase the cost-effectiveness of the nuclear fuel cycle by burnup extension. A prerequisite for this goal is a cladding tube with high resistance to corrosion under the operating conditions of modern PWRs. Therefore, in the early eighties Siemens started to investigate the material behaviour of Zirconium based alloys also outside the composition range of Zry-4. The examination included out-of-pile corrosion testing in water and steam, with and without chemical addition, such as LiOH, in-pile testing of path finder fuel rods in a hot PWR up to 80 MWd/kgU and the investigation of mechanical behaviour, growth and creep under normal and the postulated conditions of a loss-of-coolant accident (LOCA). The evaluation of in-pile and out-of-pile experiments on alternative Zr-alloys revealed that improvements in corrosion resistance are frequently accompanied by undesirable changes in material properties which affect mechanical design and LOCA behaviour. To fulfill all requirements - the mechanical and corrosion related ones - and to retain the large experience base with Zry-4, a DUPLEX cladding was selected. The selected ELS DUPLEX cladding consists of a Zircaloy-4 tubing with a thin outer layer of an Extra Low tin (Sn) Zr-alloy. The ELS layer improves the stability against LiOH and allows operation with voided coolant. This advanced product has been engineered for use in highly enriched fuel assemblies in high efficiency plants operating with low neutron leakage core management and high coolant temperatures. It has become the accepted fuel rod cladding for many plants in Germany, Spain and Switzerland. (authors). 6 figs., 2 refs

  7. Nuclear fuel element

    International Nuclear Information System (INIS)

    Hirayama, Satoshi; Kawada, Toshiyuki; Matsuzaki, Masayoshi.

    1980-01-01

    Purpose: To provide a fuel element for reducing the mechanical interactions between a fuel-cladding tube and the fuel element and for alleviating the limits of the operating conditions of a reactor. Constitution: A fuel element having mainly uranium dioxide consists of a cylindrical outer pellet and cylindrical inner pellet inserted into the outer pellet. The outer pellet contains two or more additives selected from aluminium oxide, beryllium oxide, magnesium oxide, silicon oxide, sodium oxide, phosphorus oxide, calcium oxide and iron oxide, and the inner pellet contains nuclear fuel substance solely or one additive selected from calcium oxide, silicon oxide, aluminium oxide, magnesium oxide, zirconium oxide and iron oxide. The outer pellet of the fuel thus constituted is reduced in mechanical strength and also in the mechanical interactions with the cladding tube, and the plastic fluidity of the entire pellet is prevented by the inner pellet increased in the mechanical strength. (Kamimura, M.)

  8. Assessment of clad integrity of PHWR fuel pin following a postulated severe accident

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-01-01

    A mechanistic fuel performance analysis code FAIR has been developed. The code can analyse fuel pins with free standing as well as collapsible clad under normal, off-normal and accident conditions of reactors. The code FAIR is capable of analysing the effects of high burnup on fuel behaviour. The code incorporates finite element based thermo-mechanical module for computing transient temperature distribution and thermal-elastic-plastic stresses in the fuel pin. A number of high temperature thermo-physical and thermo-mechanical models also have been incorporated for analysing fuel pins subjected to severe accident scenario. The present paper describes salient features of code FAIR and assessment of clad integrity of PHWR fuel pins with different initial burnup subjected to severe accident scenario. (author)

  9. Investigation of likely causes of white patch formation on irradiated WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Velioukhanov, V.P.; Ioltoukhovski, A.Y.; Pogodin, V.P.

    1999-01-01

    The information concerning white patches observed on fuel cladding surfaces has been analytically treated. The analysis shows at least three kinds of the white patch appearance: bright white spots which appear to be loose corrosion product deposits disclosing corrosion pits upon spalling; indistinct streaks with separate pronounced spots 1-2 in dia. The spots seem to be thin superficial deposits; light-coloured dense uniform crud distributed over the surface of fuel claddings and fuel assembly jackets. (author)

  10. Evaluation of long-term creep behaviour on K-cladding tubes

    International Nuclear Information System (INIS)

    Bang, J. G.; Jeong, Y. H.; Jeong, Y. H.

    2003-01-01

    KAERI has developed new zirconium alloys for high burnup fuel cladding. To evaluate the performance of these alloys, various out-pile tests are conducting. At high burnup, the creep resistance as well as corrosion resistance is one of the major factors determining nuclear fuel performance. Long-term creep test was performed at 350 .deg. C and 400 .deg. C and 100, 120, 135, and 150 MPa of applied hoop stress to evaluate the creep properties. The creep resistance was strongly affected by the final heat treatment conditions, while there was no effect of intermediate heat treatment. The creep strain of the recrystallized alloys is higher than that of the stress-relieved alloys by a factor of 3. The alloying elements also influenced the creep behaviour. Increase of Sn content enhanced the creep resistance, while Nb decreased the creep resistance. As a result of texture analysis, basal pole was directed to normal direction, while prism pole was to rolling direction. The development of the deformation texture and the ammealing texture showed almost similar process to Zircaloy cladding

  11. Development and properties of aluminum-clad graphite/epoxy tubes for space structures

    Science.gov (United States)

    Johnson, R. R.; Kural, M. H.

    1988-01-01

    This paper presents the development and properties of seamless aluminum-clad P75/Epoxy tubes and the unique manufacturing method used in their production. Thermo-mechanical properties of the tubes were determined analytically and verified by tests. These properties were shown to be suitable for space structures that require high stiffness, low weight and thermal expansion, and dimensional stability during operational life. A special feature of the tubes is the ability to tune the tube for thermal expansion after fabrication by a chemical milling process. The tubes are also resistant to atomic oxygen and handling damage. The toughness of the tubes was demonstrated by impact testing. Cyclic thermal testing showed no adverse effects on the expansion and stiffness behavior of the tubes. The paper also includes a discussion of a joining method that uses aluminum end fittings and an efficient scarf joint configuration. Additional studies considered various adhesives and fitting materials. Joint allowables were higher for titanium and B4C particulate magnesium fittings. The effect of different adhesives under static loading conditions favored the high-strength adhesives.

  12. High performance fuel technology development

    Energy Technology Data Exchange (ETDEWEB)

    Koon, Yang Hyun; Kim, Keon Sik; Park, Jeong Yong; Yang, Yong Sik; In, Wang Kee; Kim, Hyung Kyu [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    {omicron} Development of High Plasticity and Annular Pellet - Development of strong candidates of ultra high burn-up fuel pellets for a PCI remedy - Development of fabrication technology of annular fuel pellet {omicron} Development of High Performance Cladding Materials - Irradiation test of HANA claddings in Halden research reactor and the evaluation of the in-pile performance - Development of the final candidates for the next generation cladding materials. - Development of the manufacturing technology for the dual-cooled fuel cladding tubes. {omicron} Irradiated Fuel Performance Evaluation Technology Development - Development of performance analysis code system for the dual-cooled fuel - Development of fuel performance-proving technology {omicron} Feasibility Studies on Dual-Cooled Annular Fuel Core - Analysis on the property of a reactor core with dual-cooled fuel - Feasibility evaluation on the dual-cooled fuel core {omicron} Development of Design Technology for Dual-Cooled Fuel Structure - Definition of technical issues and invention of concept for dual-cooled fuel structure - Basic design and development of main structure components for dual- cooled fuel - Basic design of a dual-cooled fuel rod.

  13. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    International Nuclear Information System (INIS)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures

  14. Corrosion performance of optimised and advanced fuel rod cladding in PWRs at high burnups

    International Nuclear Information System (INIS)

    Jourdain, P.; Hallstadius, L.; Pati, S.R.; Smith, G.P.; Garde, A.M.

    1997-01-01

    The corrosion behaviour both in-pile and out-of-pile for a number of cladding alloys developed by ABB to meet the current and future needs for fuel rod cladding with improved corrosion resistance is presented. The cladding materials include: 1) Zircaloy-4 (OPTIN) with optimised composition and processing and Zircaloy-2 optimised for Pressurised Water Reactors (PWR), (Zircaloy-2P), and 2) several alternative zirconium-based alloys with compositions outside the composition range for Zircaloys. The data presented originate from fuel rods irradiated in six PWRs to burnups up to about 66 MWd/kgU and from tests conducted in 360 o water autoclave. Also included are in-pile fuel rod growth measurements on some of the alloys. (UK)

  15. Compatibility studies on Mo-coating systems for nuclear fuel cladding applications

    Science.gov (United States)

    Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian

    2017-12-01

    To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.

  16. Initial report on stress-corrosion-cracking experiments using Zircaloy-4 spent fuel cladding C-rings

    International Nuclear Information System (INIS)

    Smith, H.D.

    1988-09-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is sponsoring C-ring stress corrosion cracking scoping experiments as a first step in evaluating the potential for stress corrosion cracking of spent fuel cladding in a potential tuff repository environment. The objective is to scope the approximate behavior so that more precise pressurized tube testing can be performed over an appropriate range of stress, without expanding the long-term effort needlessly. The experiment consists of stressing, by compression with a dead weight load, C-rings fabricated from spent fuel cladding exposed to an environment of Well J-13 water held at 90/degree/C. The results indicate that stress corrosion cracking occurs at the high stress levels employed in the experiments. The cladding C-rings, tested at 90% of the stress at which elastic behavior is obtained in these specimens, broke in 25 to 64 d when tested in water. This was about one third of the time required for control tests to break in air. This is apparently the first observation of stress corrosion under the test conditions of relatively low temperature, benign environment but very high stress. The 150 ksi test stress could be applied as a result of the particular specimen geometry. By comparison, the uniaxial tensile yield stress is about 100 to 120 ksi and the ultimate stress is about 150 ksi. When a general model that fits the high stress results is extrapolated to lower stress levels, it indicates that the C-rings in experiments now running at /approximately/80% of the yield strength should take 200 to 225 d to break. 21 refs., 24 figs., 5 tabs

  17. Examination of stainless steel-clad Connecticut Yankee fuel assembly S004 after storage in borated water

    International Nuclear Information System (INIS)

    Langstaff, D.C.; Bailey, W.J.; Johnson, A.B. Jr.; Landow, M.P.; Pasupathi, V.; Klingensmith, R.W.

    1982-09-01

    A Connecticut Yankee fuel assembly (S004) was tested nondestructively and destructively. It was concluded that no obvious degradation of the 304L stainless steel-clad spent fuel from assembly S004 occurred during 5 y of storage in borated water. Furthermore, no obvious degradation due to the pool environment occurred on 304 stainless steel-clad rods in assemblies H07 and G11, which were stored for shorter periods but contained operationally induced cladding defects. The seam welds in the cladding on fuel rods from assembly S004, H07, and G11 were similar in that they showed a wrought microstructure with grains noticeably smaller than those in the cladding base metal. The end cap welds showed a dendritically cored structure, typical of rapidly quenched austenitic weld metal. Some intergranular melting may have occurred in the heat-affected zone (HAZ) in the cladding adjacent to the end cap welds in rods from assemblies S004 and H07. However, the weld areas did not show evidence of corrosion-induced degradation

  18. The role of a fuel element and its cladding in water cooled reactor dynamics

    International Nuclear Information System (INIS)

    Randles, J.

    1963-10-01

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO 2 fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  19. The role of a fuel element and its cladding in water cooled reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-10-15

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO{sub 2} fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  20. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Science.gov (United States)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  1. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wei-Yang; Yang, Yong, E-mail: yongyang@ufl.edu

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V{sub 2}C. Diffusion couple tests at 660 °C for 100 h demonstrate that V{sub 2}C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  2. Effects of deposited pyrolytic carbon on some mechanical properties of zircaloy-4 tubes. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shrkawy, S W; Abdel-razek, I D; El-Sayed, H A [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Zircaloy cladding tubes are not compatible with the uranium fuel pellets as they suffer from failure due to pelletclad interaction (PCI). A carbon coating, as used in the canadian CANLUB fuel elements, is thought to improve the cladding performance with respect to the PCI problem. In this paper pyrolytic carbon coating was deposited on zircaloy-4 cladding tubes by the thermal cracking of commercial butant gas at the temperature range 250-450 degree C. In order to evaluate the effect of gaseous species on the mechanical properties of the tubes tensile and microhardness testing measurements were performed on samples prepared from the coated tubes. The fractured surface of the tensile zircaloy tubes and the deposited carbon coating, both, were examined by the SEM. The results of the tensile tests of zircaloy-4 tubes indicated that the coating process has insignificant effect on the ultimate strength of the tubes tested. The values of Vickers hardness numbers were not significantly changed across the tubes thickness. The microstructure of deposited carbon, due to the cracking process, was granular in all the temperature range (250-450 degree C) studied. 9 figs., 1 tab.

  3. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids and FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.

  4. The anisotropic creep behaviour of zircaloy-4 fuel cladding at 1073 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Bowden, J.; Shewfelt, R.S.W.

    1982-04-01

    The anisotropy coefficients (F, G and H) of Hill's equation, suitably modified for creep deformation, have been determined for Zircaloy-4 fuel cladding from steady-state creep tests at an elevated temperature. Creep specimens were subjected to both uniaxial and biaxial loads (via internal pressure) at 1073 K and the strain measured concurrently in the axial and tangential directions. It has been found that Zircaloy-4 fuel cladding is almost, but not completely, isotropic at 1073 K; the values of F, G and H are 0.57, 0.48 and 0.45 respectively

  5. The use of eddy current testing for nuclear fuel rods cladding evaluation

    International Nuclear Information System (INIS)

    Silva Junior, Silverio F. da; Alencar, Donizete A.; Brito, Mucio Jose D. de

    2007-01-01

    Nuclear fuel rods cladding must be tested after their manufacture and during their operational life. This paper describes a study about the use of eddy current test method as a nondestructive tool for nuclear fuel rods cladding evaluation. The experiments were carried out using two different probes: an external probe and an internal probe. The main goal was to verify the sensitivity of the eddy current test system, to develop calibration and reference standards and to establish the main capabilities and limitations presented by this test method for this application. (author)

  6. Trend of fuel for light water reactors and development hereafter

    International Nuclear Information System (INIS)

    Ichikawa, Michio; Maru, Akira; Shimoshige, Takanori

    1993-01-01

    Recently, the heightening of fuel burnup has been actively advanced internationally. Its degree is different according to the policy and the economical factors in respective countries. The extension of the period of operation cycle urges high burnup in view of economy. The circumstances in USA, Europe and Japan are explained. The corrosion of zircaloy cladding is the factor of limiting fuel life. The state of corrosion in reactors is different in BWRs and PWRs, and both cases are explained. The emission of FP gas from pellets to fuel rods raises the internal pressure of the fuel rods, and affects the gap conductance between pellets and cladding tubes. In the fuel for LWRs, plutonium is formed locally and burns in pellet rim part. This rim effect is discussed. The irradiation growth of fuel rods, creep down and pellet-cladding interaction are explained. The MOX fuel for LWRs and the trend of development of new type fuel are reported. The fuel for BWRs of Hitachi Ltd. and Toshiba Corp. and Nuclear Fuel Industries Ltd., the fuel for PWRs of Mitsubishi Heavy Industries Ltd. and Nuclear fuel Industries Ltd., and the recent development of the fuel cladding tubes for LWRs are described. (K.I.)

  7. 2nd Gen FeCrAl ODS Alloy Development For Accident-Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Massey, Caleb P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Edmondson, Philip D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-01

    Extensive research at ORNL aims at developing advanced low-Cr high strength FeCrAl alloys for accident tolerant fuel cladding. One task focuses on the fabrication of new low Cr oxide dispersion strengthened (ODS) FeCrAl alloys. The first Fe-12Cr-5Al+Y2O3 (+ ZrO2 or TiO2) ODS alloys exhibited excellent tensile strength up to 800 C and good oxidation resistance in steam up to 1400 C, but very limited plastic deformation at temperature ranging from room to 800 C. To improve alloy ductility, several fabrication parameters were considered. New Fe-10-12Cr-6Al gas-atomized powders containing 0.15 to 0.5wt% Zr were procured and ball milled for 10h, 20h or 40h with Y2O3. The resulting powder was then extruded at temperature ranging from 900 to 1050 C. Decreasing the ball milling time or increasing the extrusion temperature changed the alloy grain size leading to lower strength but enhanced ductility. Small variations of the Cr, Zr, O and N content did not seem to significantly impact the alloy tensile properties, and, overall, the 2nd gen ODS FeCrAl alloys showed significantly better ductility than the 1st gen alloys. Tube fabrication needed for fuel cladding will require cold or warm working associated with softening heat treatments, work was therefore initiated to assess the effect of these fabrications steps on the alloy microstructure and properties. This report has been submitted as fulfillment of milestone M3FT 16OR020202091 titled, Report on 2nd Gen FeCrAl ODS Alloy Development for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.

  8. Cladding temperature measurement by thermocouples at preirradiated LWR fuel rod samples

    International Nuclear Information System (INIS)

    Leiling, W.

    1981-12-01

    This report describes the technique to measure cladding temperatures of test fuel rod samples, applied during the in-pile tests on fuel rod failure in the steam loop of the FR2 reactor. NiCr/Ni thermocouples with stainless steel and Inconel sheaths, respectively,of 1 mm diameter were resistance spot weld to the outside of the fuel rod cladding. For the pre-irradiated test specimens, welding had to be done under hot-cell conditions, i.e. under remote handling. In order to prevent the formation of eutectics between zirconium and the chemical elements of the thermocouple sheath at elevated temperatures, the thermocouples were covered with a platinum jacket of 1.4 mm outside diameter swaged onto the sheath in the area of the measuring junction. This thermocouple design has worked satisfactorily in the in-pile experiments performed in a steam atmosphere. Even in the heatup phase, in which cladding temperatures up to 1050 0 C were reached, only very few failures occured. This good performance is to a great part due to a careful control and a thorough inspection of the thermocouples. (orig.) [de

  9. Contribution to numerical and mechanical modelling of pellet-cladding interaction in nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Retel, V.

    2002-12-01

    Pressurised water reactor fuel rods (PWR) are the place of nuclear fission, resulting in unstable and radioactive elements. Today, the mechanical loading on the cladding is harder and harder and is partly due to the fuel pellet movement. Then, the mechanical behaviour of the cladding needs to be simulated with models allowing to assess realistic stress and strain fields for all the running conditions. Besides, the mechanical treatment of the fuel pellet needs to be improved. The study is part of a global way of improving the treatment of pellet-cladding interaction (PCI) in the 1D finite elements EDF code named CYRANO3. Non-axisymmetrical multidirectional effects have to be accounted for in a context of unidirectional axisymmetrical finite elements. The aim of this work is double. Firstly a model simulating the effect of stress concentration on the cladding, due to the opening of the radial cracks of fuel, had been added in the code. Then, the fragmented state of fuel material has been taken into account in the thermomechanical calculation, through a model which led the strain and stress relaxation in the pellet due to the fragmentation, be simulated. This model has been implemented in the code for two types of fuel behaviour: elastic and viscoplastic. (author)

  10. A Study on the Structural Integrity Issues of a Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Kang-Hee; Lee, Young-Ho; Yoon, Kyung-Ho; Kim, Jae-Yong; Song, Kun-Woo [Korea Atomic Energy Research Institute, 1045 Daedeokdaero Yuseong Daejeon 305-353 (Korea, Republic of)

    2009-06-15

    A dual-cooled fuel rod has an internal coolant flow passage in addition to the external one. A remarkable power up-rate can be achieved due to the increased surface area, which may draw great interests from the fuel researchers, designers and vendors. However, it requires effective resolution to the difficult technical issues when a fuel assembly is to be realized. It becomes much more difficult if a tough boundary condition needs to be satisfied such as a compatibility with the existing reactor internal structures. This kind of challenge is tackled through a national R and D project in Korea: to develop the structural components of a dual-cooled fuel that should be compatible with the current OPR 1000 (Korea Standard Nuclear Power Plant) internal structures. Fuel rod supporting structures, top and bottom end pieces and guide tubes are the components. Besides, the fuel rod components have to be developed as well since the fuel rod's geometry becomes much different from the conventional rod's one. The dimension change may well affect the above mentioned structural components. As a part of the work, structural integrity of the components of a dual-cooled fuel rod is studied in this paper. The investigated topics are: i) the thickness determination of a cladding tube (especially outer tube of a large diameter), ii) vibration issue of an inner cladding tube, iii) design concern of plenum spring and spacer. The cladding thickness issue arises due to the increased outside diameter of a fuel rod, which is caused by an internal flow passage formation. Among the criteria for the thickness determination, an elastic buckling criteria was focused on. Theoretical background for the well-known formula (such as a stability problem) was revisited. Verification tests were carried out independently with using a cladding tube of PHWR fuel rod. Results showed that the formula was not conservative to apply for the cladding thickness determination. Minimum thickness for the

  11. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  12. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  13. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  14. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  15. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  16. Flow sheet development for the dissolution of unirradiated Mark 42 fuel tubes in F-Canyon, Part II

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    Two dissolution flow sheets were tested for the desorption of unirradiated Mark 42 fuel tubes. Both the aluminum (from the can, cladding, and fuel core) and the plutonium oxide (PuO 2 ) are dissolved simultaneously, i.e., a co-dissolution flow sheet. In the first series of tests, 0.15 and 0.20 molar (M) potassium fluoride (KF) solutions were used and the dissolution extended over several days. In the other series of tests, solutions with higher concentrations of fluoride (0.25 to 0.30 M) were used. Calcium fluoride (CaF 2 ) was used in those tests as the fluoride source

  17. CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions)

    International Nuclear Information System (INIS)

    Brachet, J.C.; Lorrette, C.; Michaux, A.; Sauder, C.; Idarraga-Trujillo, I.; Le Saux, M.; Le Flem, M.; Schuster, F.; Billard, A.; Monsifrot, E.; Torres, E.; Rebillat, F.; Bischoff, J.; Ambard, A.

    2015-01-01

    This paper gives an overview of CEA studies on advanced nuclear fuel claddings for enhanced Accident Tolerant LWR Fuel in collaboration with industrial partners AREVA and EDF. Two potential solutions were investigated: chromium coated zirconium based claddings and SiC/SiC composite claddings with a metallic liner. Concerning the first solution, the optimization of chromium coatings on Zircaloy-4 substrate has been performed. Thus, it has been demonstrated that, due in particular to their slower oxidation rate, a significant additional 'grace period( can be obtained on high temperature oxidized coated claddings in comparison to the conventional uncoated ones, regarding their residual PQ (Post-Quench) ductility and their ability to survive to the final water quenching in LOCA and, to some extent, beyond LOCA conditions. Concerning the second solution, the innovative 'sandwich' SiC/SiC cladding concept is introduced. Initially designed for the next generation of nuclear reactors, it can be adapted to obtain high safety performance for LWRs in LOCA conditions. The key findings of this work highlight the low sensitivity of SiC/SiC composites under the explored steam oxidation conditions. No signification degradation of the mechanical properties of CVI-HNI SiC/SiC specimen is particularly acknowledged for relatively long duration (beyond 100 h at 1200 Celsius degrees). Despite these very positive preliminary results, significant studies and developments are still necessary to close the technology gap. Qualification for nuclear application requires substantial irradiation testing, additional characterization and the definition of design rules applicable to such a structure. The use of a SiC-based fuel cladding shows promise for the highest temperature accident conditions but remains a long term perspective

  18. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, A.V., E-mail: avshulga@mephi.ru [Moscow Engineering Physics Institute, State University, 31 Kashirskoe Sh., Moscow 115409 (Russian Federation)

    2013-03-15

    Highlights: ► The ring tensile test method was optimized and successfully used. ► The cladding tubes fabricated by PM HIP and traditional technologies were tested. ► Improvement of the cladding tubes properties fabricated by PM HIP was found. ► Correlation of the homogeneity of carbon, boron with the properties was revealed. -- Abstract: The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic–martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic–martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.

  19. High Temperature Steam Oxidation Testing of Candidate Accident Tolerant Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nelson, Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parkison, Adam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2013-12-23

    The Fuel Cycle Research and Development (FCRD) program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels in order to overcome the inherent shortcomings of light water reactor (LWR) fuels when exposed to beyond design basis accident conditions. The campaign has invested in development of experimental infrastructure within the Department of Energy complex capable of chronicling the performance of a wide range of concepts under prototypic accident conditions. This report summarizes progress made at Oak Ridge National Laboratory (ORNL) and Los Alamos National Laboratory (LANL) in FY13 toward these goals. Alternative fuel cladding materials to Zircaloy for accident tolerance and a significantly extended safety margin requires oxidation resistance to steam or steam-H2 environments at ≥1200°C for short times. At ORNL, prior work focused attention on SiC, FeCr and FeCrAl as the most promising candidates for further development. Also, it was observed that elevated pressure and H2 additions had minor effects on alloy steam oxidation resistance, thus, 1 bar steam was adequate for screening potential candidates. Commercial Fe-20Cr-5Al alloys remain protective up to 1475°C in steam and CVD SiC up to 1700°C in steam. Alloy development has focused on Fe-Cr-Mn-Si-Y and Fe-Cr-Al-Y alloys with the aluminaforming alloys showing more promise. At 1200°C, ferritic binary Fe-Cr alloys required ≥25% Cr to be protective for this application. With minor alloy additions to Fe-Cr, more than 20%Cr was still required, which makes the alloy susceptible to α’ embrittlement. Based on current results, a Fe-15Cr-5Al-Y composition was selected for initial tube fabrication and welding for irradiation experiments in FY14. Evaluations of chemical vapor deposited (CVD) SiC were conducted up to 1700°C in steam. The reaction of H2O with the alumina reaction tube at 1700°C resulted in Al(OH)3

  20. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    International Nuclear Information System (INIS)

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  1. Fuel-cladding interaction. Framatome CEA experiment on pencils preirradiated in nuclear power plants

    International Nuclear Information System (INIS)

    Atabek, Rosemarie; Vignesoult, Nicole

    1979-01-01

    The study of the fuel-cladding interaction is the subject of an important joint research programme between Framatome and the CEA. Tests are performed either on whole fuel rods, not exceeding two metres in length, from BR3 or the CAP (PRISCA experiment) or on fuel rods refabricated in hot cells from fuel rods of power reactors (FABRICE experiment). The first results reveal the two mechanical and chemical aspects of the interaction phenomenon: the permissible power surge of the fuel elements passes through a minimum for an integrated fast dose (E>1MeV) of around 1.5x10 21 n/cm 2 ; a study made with the electronic microprobe and the scanning microscope shows that the Te, I and Cs fission products are the corrosive agents of the cladding [fr

  2. Development of Cr cold spray–coated fuel cladding with enhanced accident tolerance

    Directory of Open Access Journals (Sweden)

    Martin Ševeček

    2018-03-01

    Full Text Available Accident-tolerant fuels (ATFs are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding. This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc. serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD, laser coating, or Chemical vapor deposition techniques (CVD, the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions (500°C steam, 1200°C steam, and Pressurized water reactor (PWR pressurization test and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX, or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing. Keywords: Accident-Tolerant Fuel, Chromium, Cladding, Coating, Cold Spray, Nuclear Fuel

  3. Model for incorporating fuel swelling and clad shrinkage effects in diffusion theory calculations (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schick, W.C. Jr.; Milani, S.; Duncombe, E.

    1980-03-01

    A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model

  4. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  5. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [ORNL

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  6. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  7. The state of the art in non destructive testing of nuclear fuel cladding tubes using ultrasonic rotary systems; on line computer and statistics

    International Nuclear Information System (INIS)

    Rauscher, Rudolf

    Nondestructive evaluation of nuclear fuel cladding by ultrasonic tests is described. Ultrasonic transducers for detection of flaws and dimensions are built in a rotary system with a speed of 8000 rpm. The testing system is adapted to a configuration consisting of two microcomputers connected to each other

  8. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  9. Statistics of the acoustic emission signals parameters from Zircaloy-4 fuel cladding

    International Nuclear Information System (INIS)

    Oliveto, Maria E.; Lopez Pumarega, Maria I.; Ruzzante, Jose E.

    2000-01-01

    Statistic analysis of acoustic emission signals parameters: amplitude, duration and risetime was carried out. CANDU type Zircaloy-4 fuel claddings were pressurized up to rupture, one set of five normal pieces and six with defects included, acoustic emission was used on-line. Amplitude and duration frequency distributions were fitted with lognormal distribution functions, and risetime with an exponential one. Using analysis of variance, acoustic emission was appropriated to distinguish between defective and non-defective subsets. Clusters analysis applied on mean values of acoustic emission signal parameters were not effective to distinguish two sets of fuel claddings studied. (author)

  10. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  11. Modeling of Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1989-07-01

    Two potential degradation mechanisms, creep and stress corrosion cracking, of Zircaloy cladding during repository storage of spent nuclear fuel have been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. A stress analysis of fuel rods has been performed. Stresses in the outer zirconium oxide layer and the inner Zircaloy tube have been predicted for typical internal pressurization, oxide layer thickness, volume expansion from formation of the oxide layer and thermal expansion coefficients of the cladding and oxide. Stress relaxation occurring in-reactor has also been taken into account. The calculations indicate that for the anticipated storage conditions investigated, the outer zirconium oxide layer is in a state of compression thus making it unlikely that stress corrosion cracking of the exterior surface will occur. 20 refs., 6 figs., 9 tabs

  12. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  13. Statistical analysis of failure time in stress corrosion cracking of fuel tube in light water reactor

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi

    1991-01-01

    This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)

  14. Experimental determination of fuel-cladding thermal contact resistance

    International Nuclear Information System (INIS)

    Maglic, K.; Zivotic, Z.

    1968-01-01

    Thermal resistance of the UO 2 fuel - Zr-2 cladding was measure by the same experimental apparatus which was used for measuring the thermal conductivity of ceramic fuel. Thermal resistance was measure for a series of heat flux values and the dependence of thermal resistance on the flux is given within in the range from 0.66 W/cm 2 to 13.3 W/cm 2 . The temperature drop on the contact surface was between 39 deg C and 181.7 deg C, proportional to the increase of the heat flux [sr

  15. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2003-01-01

    This report describes research performed in ten laboratories within the framework of the IAEA Co-ordinated Research Project on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water. The project consisted of exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and the evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water. A group of experts in the field contributed a state of the art review and provided technical supervision of the project. Localized corrosion mechanisms are notoriously difficult to understand, and it was clear from the outset that obtaining consistency in the results and their interpretation from laboratory to laboratory would depend on the development of an excellent set of experimental protocols. These experimental protocols are described in the report together with guidelines for the maintenance of optimum water chemistry to minimize the corrosion of aluminium clad research reactor fuel in wet storage. A large database on corrosion of aluminium clad materials has been generated from the CRP and the SRS corrosion surveillance programme. An evaluation of these data indicates that the most important factors contributing to the corrosion of the aluminium are: (1) High water conductivity (100-200 μS/cm); (2) Aggressive impurity ion concentrations (Cl - ); (3) Deposition of cathodic particles on aluminium (Fe, etc.); (4) Sludge (containing Fe, Cl - and other ions in concentrations greater than ten times the concentrations in the water); (5) Galvanic couples between dissimilar metals (stainless steel-aluminium, aluminium-uranium, etc); (6) Scratches and imperfections (in protective oxide coating on cladding); (7) Poor water circulation. These factors operating both independently and synergistically may cause corrosion of the aluminium. The single most important key to preventing corrosion is maintaining good

  16. Experimental Setup for Reflood Quench of Accident Tolerant Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan; Lee, Kwan Geun; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The concept of accident tolerant fuel (ATF) is a solution to suppress the hydrogen generation in loss of coolant accident (LOCA) situation without safety injection, which was the critical incident in the severe accident in the Fukushima. The changes in fuel and cladding materials may cause a significant difference in reactor performance in long term operation. Properties in terms of material science and engineering have been tested and showed promising results. However, numerous tests are still required to ensure the design performance and safety. Thermal hydraulic tests including boiling and quenching are partly confirmed, but not yet complete. We have been establishing the experimental setup to confirm the properties in the terms of thermal hydraulics. Design considerations and preliminary tests are introduced in this paper. An experimental setup to test thermal hydraulic characteristics of new ATF claddings are established and tested. The W heater set inside the cladding is working properly, exceeding 690 W/m linear power with thermocouples and insulating ceramic sheaths inside. The coolant injection control was also working in good conditions. The setup is about to complete and going to simulate quenching behavior of the ATF in the LOCA situation.

  17. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  18. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    OpenAIRE

    Bo Cheng; Young-Jin Kim; Peter Chou

    2016-01-01

    In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident managem...

  19. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  20. Cladding the inside surface of a 3 1/4 in. ID Zircaloy-2 pressure tube with 1S aluminum

    International Nuclear Information System (INIS)

    Watson, R.D.

    1966-09-01

    A hot-press sizing technique has been developed for cladding the inside surface of Zircaloy-2 pressure tubes with 1S aluminum. The process is performed in air with the Zircaloy-2 and aluminum at a temperature of approximately 950 o F. A controlled atmosphere is not required, either during preheating or while the cladding is being applied. Tubes 30 inches long and 3 1/4 inches ID have been coated with 1S aluminum in thicknesses ranging from 0.005 inches to more than 0.02 inches; tubes longer than 30 inches have not been attempted. The lining of aluminum is firmly attached to the Zircaloy-2 at all points in the tube but the bond strength varies considerably - from. 6500 to 28000 lbf/in 2 . This work is the subject of Canadian Patent Application No. 955,358 filed March 21, 1966. (author)

  1. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    An integrated research project (IRP) to fabricate and evaluate modified zircaloy LWR cladding under normal BWR/PWR operation and off-normal events has been funded by the US DOE. The IRP involves three US academic institutions, a US national laboratory, an intermediate stock industrial cladding supplier, and an international academic institution. A combination of computational and experimental protocols will be employed to design and test modified zircaloy cladding with respect to corrosion and accelerated oxide growth, the former associated with normal operation, the latter associated with steam exposure during loss of coolant accidents (LOCAs) and low-pressure core re-floods. Efforts will be made to go beyond design-base accident (DBA) scenarios (cladding temperature equal to or less than 1204 deg. C) during the experimental phase of modified zircaloy performance characterisation. The project anticipates the use of the facilities at ORNL to achieve steam exposure beyond DBA scenarios. In addition, irradiation of down-selected modified cladding candidates in the ATR may be performed. Cladding performance evaluation will be incorporated into a reactor system modelling effort of fuel performance, neutronics, and thermal hydraulics, thereby providing a holistic approach to accident-tolerant nuclear fuel. The proposed IRP brings together personnel, facilities, and capabilities across a wide range of technical areas relevant to the study of modified nuclear fuel and LWR performance during normal operation and off-normal scenarios. Two pathways towards accident-tolerant LWR fuel are envisioned, both based on the modification of existing zircaloy cladding. The first is the modification of the cladding surface by the application of a coating layer designed to shift the M + O→MO reaction away from oxide growth during steam exposure at elevated temperatures. This pathway is referred to as the 'surface coating' solution. The second is the modification of the bulk

  2. Metallography of pitted aluminum-clad, depleted uranium fuel

    International Nuclear Information System (INIS)

    Nelson, D.Z.; Howell, J.P.

    1994-01-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact

  3. Test plan for spent fuel cladding containment credit tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-11-01

    Lawrence Livermore National Laboratory has chosen Westinghouse Hanford Company as a subcontractor to assist them in determining the requirements for successful disposal of spent fuel rods in the proposed Nevada Test Site repository. An initial scoping test, with the objective of determining whether or not the cladding of a breached fuel rod can be given any credit as an effective barrier to radionuclide release, is described in this test plan. 8 references, 2 figures, 4 tables

  4. Fuel pellet

    International Nuclear Information System (INIS)

    Hayashi, K.

    1980-01-01

    Fuel pellet for insertion into a cladding tube in order to form a fuel element or a fuel rod. The fuel pellet has got a belt-like projection around its essentially cylindrical lateral circumferential surface. The upper and lower edges in vertical direction of this belt-like projection are wave-shaped. The projection is made of the same material as the bulk pellet. Both are made in one piece. (orig.) [de

  5. Numerical Ballooning and Burst Prediction of Fuel Cladding During LOCA Transients in LWR

    International Nuclear Information System (INIS)

    Landau, E.; Weiss, Y.; Szanto, M.

    2014-01-01

    Modeling of nuclear fuel cladding behavior during a Loss of Coolant accident (LOCA) is a principal requirement in reactor safety analysis, most former safety criteria were obtained from experiments during the 1970's, conducted mainly with fresh fuels. Changes in modern fuel design, introduction of new cladding materials and motivation towards higher burn-ups have generated a need to re-examine safety criteria and their continued validity. This led to the growing development of both experiments and simulations meant to address this need. The Halden IFA-650 series of experiments for example, beginning in the early 2000's have clearly shown that existing criteria and experimental data are insufficient for the growing demand for higher burn-ups. Several codes for reactor core and fuel rod analysis exist nowadays, such as FRAPTRAN1.4 or RELAP5-3D . These are tailor-made codes, designed to predict general core behavior and fuel performance, and while they are also used in predicting core components behavior during accident conditions, including those of cladding ballooning and failure with good accuracy, they contain several limitations on modeling the full transient cladding thermo mechanical phenomena. Limitations such as mechanical models being one dimensional or in axisymmetric geometries only, relying mostly on analytical models therefore having further restricting assumptions in return for accuracy, etc. These limitations disable the simulation of several important aspects, such as modeling 3D azimuthal behavior for example. The objective of the current work is to develop a comprehensive numerical model for predicting zircalloy cladding thermo mechanical behavior during a LOCA. The model will eventually predicts full cladding ballooning and burst behavior followed by fuel relocation, for fuel rods that can be subjected to 3D distributed flux. The model is fully three dimensional and is created using the commercial FEM numerical simulation software ABAQUS© applying

  6. Fabrication and inspection of stainless-steel-clad tubes for fast reactors

    International Nuclear Information System (INIS)

    Spriet, M.

    1975-01-01

    The production of cladding tubes requires a selection of the raw material, particular core taken during the cold and hot processes, special surface preparations, heat treatments, and intermediate control during the principal steps of fabrication. The inspection is made in two stages: acceptance tests at Vallourec (Eddy current and ultrasonic tests, metrology of internal and external diameter and thickness, metallography, analyses, tensile tests) and ultrasonic tests, metrology of external diameter and thickness, metallography, analyses, mechanical tests at high temperature) [fr

  7. Thermoelastic analysis for the fuel claddings of the nuclear power reactor at Atucha in the skid's region

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, Gustavo; Basombrio, F.G.

    1979-01-01

    For the fuel elements of the Nuclear Power Reactor at Atucha, a two-dimensional thermoelastic analysis has been made in the region of the skids of the fuel cladding, when the gap between them and the fuel rod separator's support becomes zero. In such a case the latter forces exert on the skids an elastic reaction opposite to the cladding's expansion. The internal pressure reaching the yield stress for the cladding material has been calculated, as a function of the initial gap; for several possible fuel rod locations within the separator; for the actual dimensions and also for reduced thickness of the cladding; with a given external pressure and, with a known temperature spatial distribution. The latter has been calculated by solving the heat conduction equation along the fuel element for a certain power level in the reactor. The calculations are made with two FORTRAN IV computer codes developed at C.A.B., using the finite-element method: the NOLICUARM, to solve the nonlinear quasi-harmonic equation, and the ELASTEF 3, for the solution of thermoelastic problems with plane symmetry. (author) [es

  8. Effects of pellet-to-cladding gap design parameters on the reliability of high burnup PWR fuel rods under steady state and transient conditions

    International Nuclear Information System (INIS)

    Tas, Fatma Burcu; Ergun, Sule

    2013-01-01

    Highlights: • Fuel performance of a typical Pressurized Water Reactor rod is analyzed. • Steady state fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • Transient fuel rod behavior is examined to see the effects of pellet to cladding gap thickness and gap gas pressure. • The optimum pellet to cladding gap thickness and gap gas pressure values of the simulated fuel are determined. • The effects of pellet to cladding gap design parameters on nuclear fuel reliability are examined. - Abstract: As an important improvement in the light water nuclear reactor operations, the nuclear fuel burnup rate is increased in recent decades and this increase causes heavier duty for the nuclear fuel. Since the high burnup fuel is exposed to very high thermal and mechanical stresses and since it operates in an environment with high radiation for about 18 month cycles, it carries the risk of losing its integrity. In this study; it is aimed to determine the effects of pellet–cladding gap thickness and gap pressure on reliability of high burnup nuclear fuel in Pressurized Water Reactors (PWRs) under steady state operation conditions and suggest optimum values for the examined parameters only and validate these suggestions for a transient condition. In the presented study, fuel performance was analyzed by examining the effects of pellet–cladding gap thickness and gap pressure on the integrity of high burnup fuels. This work is carried out for a typical Westinghouse type PWR fuel. The steady state conditions were modeled and simulated with FRAPCON-3.4a steady state fuel performance code and the FRAPTRAN-1.4 fuel transient code was used to calculate transient fuel behavior. The analysis included the changes in the important nuclear fuel design limitations such as the centerline temperature, cladding stress, strain and oxidation with the change in pellet–cladding gap thickness and initial pellet–cladding gap gas

  9. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  10. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  11. Specific features of the determination of the pellet-cladding gap of the fuel rods by non-destructive method

    International Nuclear Information System (INIS)

    Amosov, S.V.; Pavlov, S.V.

    2002-01-01

    This report describes the specific features of determining the pellet-cladding gap of the irradiated WWER-1000 fuel rods by nondestructive method. The method is based on the elastic radial deformation of the cladding up to its contact with the fuel. The value of deformation of cladding till its contacting fuel when radial force changes from F max to 0 is proposed as a measuring parameter for determination of the diametrical gap. Because of the features of compression method, the obtained gap value is not analog of the gap measured on micrograph of the fuel rod cross-section. Results of metallography can provide only qualitative evaluation of its method efficiency. Comparison of the values determined by non-destructive method and metallography for WWER-1000 fuel rods with burnup from 25 to 55 MWd/kg U testified that the results of compression method can be used as a low estimate of the pellet-cladding gap value. (author)

  12. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  13. Strength analysis of fast gas cooled reactor fuel element in conditions of fuel-cladding interraction and non-uniform azimuthal heating

    International Nuclear Information System (INIS)

    Kulikov, I.S.; Tverkovkin, B.E.

    1984-01-01

    The technique and the PRORT mathematical program in FORTRAN language for determining mechanical properties of a fuel element with motionless fuel-cladding interaction taking into account circular temperature non-uniformity in gas-cooled fast reactor conditions are proposed. The calculation results of the fuel element of dissociating gas cooled fast reactor are presented for seven cross-sections over the height of the core. The obtained data testify to appreciable swelling of Cr16Ni15Mo3Nb steel fuel cladding in the conditions of dissociating gas cooled fast reactor through the allowance for the effect of stresses on this essential parameter shows, that its value is lower in comparison with swelling, wherein stresses are not taken into account

  14. Report of 5th new nuclear fuel research meeting, Yayoi Research Group. Trend of advanced basic research in nuclear fuel technical development

    International Nuclear Information System (INIS)

    1994-03-01

    Theme of this meeting is 'Trend of advanced basic research in nuclear fuel technical development', and it was attempted to balance both sides of the basic research and the development. At the meeting, lectures were given on the chemical form of FPs in oxide fuel pins, the absorption of hydrogen of fuel cladding tubes, the application of hydride fuel to thorium cycle, the thermal properties of fuel cladding tubes, the preparation of NpN and heat conductivity, the high temperature chemical reprocessing of nitride fuel, the research on the annihilation treatment of minor actinide in fast reactors, the separation of TRU by dry process and the annihilation using a metallic fuel FBR. In this report, the summaries of the lectures are collected, and also the program of the meeting and the list of attendants are shown. (K.I.)

  15. Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-03-01

    Corrosion is a principal life limiting degradation mechanism in nuclear steam supply systems, particularly taking into account the trends in increasing fuel burnup, thermal ratings and cycle length. Further, many plants have been operating with varying water chemistry regimes for many years, and issues of crud (deposition of corrosion products on other surfaces in the primary coolant circuit) are of significant concern for operators. At the meeting of the Technical Working Group on Fuel Performance and Technology (TWGFPT) in 2007, it was recommended that a technical meeting be held on the subject of water chemistry and clad corrosion and deposition, including the potential consequences for fuel failures. This proposal was supported by both the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR) and the Technical Working Group on Advanced Technologies for Heavy Water Reactors (TWG-HWR), with a recommendation to hold the meeting at the National Nuclear Energy Generating Company ENERGOATOM, Ukraine. This technical meeting was part of the IAEA activities on water chemistry, which have included a series of coordinated research projects, the most recent of which, Optimisation of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC) (IAEATECDOC-1666), concluded in 2010. Previous technical meetings were held in Cadarache, France (1985), Portland, Oregon, USA (1989), Rez, Czech Republic (1993), and Hluboka nad Vltavou, Czech Republic (1998). This meeting focused on issues associated with the corrosion of fuel cladding and the deposition of corrosion products from the primary circuit onto the fuel assembly, which can cause overheating and cladding failure or lead to unplanned power shifts due to boron deposition in the clad deposits. Crud deposition on other surfaces increases radiation fields and operator dose and the meeting considered ways to minimize the generation of crud to avoid

  16. Procedure and apparatus for measuring the radial gap between fuel and surrounding cladding in a fuel rod for a nuclear reactor

    International Nuclear Information System (INIS)

    Olshausen, K.D.

    1976-01-01

    A device is described for measuring non-destructively the annular fuel-cladding gap in an irradiated or fresh fuel rod. The principle applied is that a force is applied to an arm which presses the cladding diametrically, thus deforming it until it touches the fuel pellet. By presenting the values of the force applied and the deformation produced on an XY recorder, the width of the gap is obtained. Alternatively the gap width may be obtained digitally. Since the gap is so small that the deformation is within the elastic range, the fuel rod may be reloaded in the reactor for further irradiation. (JIW)

  17. A Multi-Layered Ceramic Composite for Impermeable Fuel Cladding for COmmercial Wate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Feinroth, Herbert

    2008-03-03

    A triplex nuclear fuel cladding is developed to further improve the passive safety of commercial nuclear plants, to increase the burnup and durablity of nuclear fuel, to improve the power density and economics of nuclear power, and to reduce the amount of spent fuel requiring disposal or recycle.

  18. Nuclear fuel element

    International Nuclear Information System (INIS)

    Yamamoto, Seigoro.

    1994-01-01

    Ultrafine particles of a thermal neutron absorber showing ultraplasticity is dispersed in oxide ceramic fuels by more than 1% to 10% or lower. The ultrafine particles of the thermal neutron absorber showing ultrafine plasticity is selected from any one of ZrGd, HfEu, HfY, HfGd, ZrEu, and ZrY. The thermal neutron absorber is converted into ultrafine particles and solid-solubilized in a nuclear fuel pellet, so that the dispersion thereof into nuclear fuels is made uniform and an absorbing performance of the thermal neutrons is also made uniform. Moreover, the characteristics thereof, for example, physical properties such as expansion coefficient and thermal conductivity of the nuclear fuels are also improved. The neutron absorber, such as ZrGd or the like, can provide plasticity of nuclear fuels, if it is mixed into the nuclear fuels for showing the plasticity. The nuclear fuel pellets are deformed like an hour glass as burning, but, since the end portion thereof is deformed plastically within a range of a repulsive force of the cladding tube, there is no worry of damaging a portion of the cladding tube. (N.H.)

  19. Technique Comparison of the Fracture Toughness Tests for Irradiated Fuel Claddings in a Hot Cell

    International Nuclear Information System (INIS)

    Ahn, Sangbok; Kim, Dosik; Jung, Yanghong; Choo, Yongsun; Ryu, Wooseog

    2007-01-01

    The degradation of a fracture toughness in a fuel cladding is a important factor to restrict the operation safety in nuclear power plants. The fracture properties of claddings were traditionally measured through a rubber bung test, a burst test, etc. Those results were the qualitative fracture characteristics, and could not be used as design or operation safety evaluation data. We need to evaluate the quantitative characteristics of claddings under normal operation and in accidents. The application of a fracture mechanics concept in testing a fuel cladding is restricted by the cladding geometry and creating the correct stress-state conditions. The geometry of claddings does not meet the requirement of the ASTM Standards for a specimen configuration and an applied load. The specimen may be produced from previously flattened claddings, but the flattening causes some uncertainties in the results due to changes in the microstructure of the material and a new distribution of the internal stresses. Therefore many efforts have been devoted to developing new test techniques, to quantify the fracture characteristics of claddings. Researchers from JAEA and NFI in Japan, Studsvik Company Ltd in Sweden, IAEA in Australia, and KAERI in Korea have independently developed fracture test techniques. This study is designed to review the independently developed techniques and to compare of their merits. Finally we shall apply the other techniques to upgrade our developing techniques

  20. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1984-01-01

    Research and test reactors are presently operated with aluminum-clad fuel elements containing highly enriched uranium-aluminum alloy cores. To lower the enrichment and still maintain reactivity, the uranium content of the fuel element will need to be higher than currently achievable with alloy fuels. This will necessitate conversion to other forms such as U 3 O 8 -aluminum cermets. Above the aluminum melting point, U 3 O 8 and aluminum undergo an exothermic thermite reaction and cermet fuel cores tend to keep their original shape. Both factors could affect the course and consequences of a reactor accident, and therefore prompted an investigation of the behavior of cermet fuels at elevated temperatures. Tests were carried out using pellets and extruded tube sections with 53 wt % U 3 O 8 in aluminum. This content corresponds to a theoretical uranium density of 1.9 g/cc. Results indicate that the thermite reaction occurs at about 900 0 C in air without a violent effect. The heat of reaction was approximately 123 cal/g of U 3 O 8 -aluminum fuel. Tensile and compressive strength of the fuel tube section is low above 660 0 C. In tension, sections failed at about the aluminum melting point. In compression with 2 psi average axial stress, failure occurred at 917 0 C, while 7 psi average axial stress produced failure at 669 0 C. (author)

  1. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1983-01-01

    Research and test reactors are presently operated with aluminum-clad fuel elements containing highly enriched uranium-aluminum alloy cores. To lower the enrichment and still maintain reactivity, the uranium content of the fuel element will need to be higher than currently achievable with alloy fuels. This will necessitate conversion to other forms such as U 3 O 8 -aluminum cermets. Above the aluminum melting point, U 3 O 8 and aluminum undergo an exothermic thermite reaction and cermet fuel cores tend to keep their original shape. Both factors could affect the course and consequences of a reactor accident, and prompted an investigation of the behavior of cermet fuels at elevated temperatures. Tests were carried out using pellets and extruded tube-sections with 53 wt % U 3 O 8 in aluminum. This content corresponds to a theoretical uranium density of 1.9 g/cc. Results indicate that the thermite reaction occurs at about 900 0 C in air without a violent effect. The heat of reaction was approximately 123 cal/g of U 3 O 8 -aluminum fuel. Tensile and compressive strength of the fuel tube section is low above 660 0 C. In tension, sections failed at about the aluminum melting point. In compression with 2-psi average axial stress, failure occurred at 917 0 C, while 7 psi average axial stress produced failure at 669 0 C

  2. Water chemistry control in thermal and nuclear power plants. 9. Nuclear fuel management

    International Nuclear Information System (INIS)

    2008-01-01

    The chemical management of fuels in nuclear power plants aims at maintenance of the soundness of nuclear fuels and at reduction of the radiation exposure of the working employees. With regard to the former, particular attention should be paid to the fabrication process of fuel assembly, mainly for chemical management for fuel cladding tubes together with fuel pellet-clad chemical interactions, and to the outer tubes in the power plants. With regard to the latter, the fabrication process should be carefully controlled to prevent radioactive impurity increase in primary cooling water systems by maintaining cleaning level and decreasing surface contamination. Reactions of zircalloy with water or hydrogen forming ZrH 2 , sintered density of UO 2 pellet controlling water content, pellet-clad interactions, stress corrosion cracking, crud induced fuel failure, behaviors of such fission products as I, Xe, Kr, and Cs in plants are also important to water and chemical management of nuclear fuels. (S. Ohno)

  3. Design criteria for confidence in the manufacture of BWR fuel rods

    International Nuclear Information System (INIS)

    Anantharaman, K.; Basu, S.; Anand, A.K.; Mehta, S.K.

    Based on the experience of fuel manufacture for BWR type reactors in India, the parameters which need stringent quality control, are discussed. The design specifications of the fuel rods as well as the cladding material and tubes are reported. The defect mechanisms to be taken into account and the fuel failure in reference to the variation of mechanical properties of the cladding are also described. (K.B.)

  4. Evaluation of the applicability of cladding deformation model in RELAP5/MOD3.2 code for VVER-1000 fuel

    International Nuclear Information System (INIS)

    Vorob'ev, Yu.; Zhabin, O.

    2015-01-01

    Applicability of cladding deformation model in RELAP5/MOD3.2 code is analyzed for VVER-1000 fuel cladding from Zr+1%Nb alloy. Experimental data and calculation model of fuel assembly channel of the core are used for this purpose. The model applicability is tested for the cladding temperature range from 600 to 1200 deg C and pressure range from 1 to 12 MPa. Evaluation results demonstrate limited applicability of built-in RELAP5/MOD3.2 cladding deformation model to the estimation of Zr+1%Nb cladding rupture conditions. The limitations found shall be considered in application of RELAP5/MOD3.2 cladding deformation model in the design-basis accident analysis of VVER reactors

  5. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  6. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  7. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  8. Chemical aspects of pellet-cladding interaction in light water reactor fuel elements

    International Nuclear Information System (INIS)

    Olander, D.R.

    1982-01-01

    In contrast to the extensive literature on the mechanical aspects of pellet-cladding interaction (PCI) in light water reactor fuel elements, the chemical features of this phenomenon are so poorly understood that there is still disagreement concerning the chemical agent responsible. Since the earliest work by Rosenbaum, Davies and Pon, laboratory and in-reactor experiments designed to elucidate the mechanism of PCI fuel rod failures have concentrated almost exclusively on iodine. The assumption that this is the reponsible chemical agent is contained in models of PCI which have been constructed for incorporation into fuel performance codes. The evidence implicating iodine is circumstantial, being based primarily upon the volatility and significant fission yield of this element and on the microstructural similarity of the failed Zircaloy specimens exposed to iodine in laboratory stress corrosion cracking (SCC) tests to cladding failures by PCI

  9. Thermal-Hydraulic Aspects of Changing the Nuclear Fuel-Cladding Materials from Zircaloy to Silicon Carbides

    International Nuclear Information System (INIS)

    Niceno, Bojan; Pouchon, Manuel

    2014-01-01

    The accident in Fukushima has drastically shown the drawbacks of Zircaloy claddings despite their beneficial properties in normal use. The effect of the lack of cooling and the production of hydrogen would not have been so strong if the fuel cladding had not consisted of a zirconium (or metal) alloy. International activities have been started to search for an alternative to Zircaloy, however, still on a limited basis. A project sponsored by Swissnuclear has been conducted at Paul Scherrer Institute (PSI) with the aim to close the gap in knowledge on application of silicon carbides (SiC) as potential replacement for Zircaloys as material for nuclear fuel cladding. The work was interdisciplinary, result of collaboration between different laboratories at PSI, and has focused on SiC cladding material properties, implication of its usage on neutronics and on thermal-hydraulics. This paper summarizes thermal-hydraulic aspects of changing Zircaloy for SiC as the cladding material. The change of cladding material inevitably changes the surface properties thus making a significant impact on boiling curve, and critical heat flux (CHF). Low chemical reactivity of SiC means fewer particles in the flow (less crud), which leads to fewer failures, but also decreases the CHF. Due to differences in physical properties between SiC and Zircaloys, higher brittleness of SiC in particular, might have impact on fuel-rod assembly design, which has direct influence on flow patterns and heat transfer in the fuel assembly. Higher melting (i.e. decomposition) point for SiC means that severe accident management guidelines (SAMG) should have to be re-assessed. Not only would the core degrade later than in the case of conventional fuels, but the production of hydrogen would be quite different as well. All these issues are explored in this work in two steps; first the SiC properties which may have influence on thermal-hydraulics are outlined, then each thermal-hydraulic issues is explained from

  10. Technique for mass-spectrometric determination of moisture content in fuel elements and fuel element claddings

    International Nuclear Information System (INIS)

    Kurillovich, A.N.; Pimonov, Yu.I.; Biryukov, A.S.

    1988-01-01

    A technique for mass-spectroimetric determination of moisture content in fuel elements and fuek claddings in the 2x10 -4 -1.5x10 -2 g range is developed. The relative standard deviation is 0.13. A character of moisture extraction from oxide uranium fuels in the 20-700 deg C temperature range is studied. Approximately 80% of moisture is extracted from the fuels at 300 deg C. The moisture content in fuel elements with granular uranium oxide fuels is measured. Dependence of fuel element moisture content on conditions of hot vacuum drying is shown. The technique permits to optimize the fuel element fabrication process to decrease the moisture content in them. 4 refs.; 3 figs.; 2 tabs

  11. Method of manufacturing nuclear fuel elements

    International Nuclear Information System (INIS)

    Ishida, Masao; Oguma, Masaomi.

    1980-01-01

    Purpose: To effectively prevent the bending of nuclear fuel elements in the reactor by grinding the end faces of pellets due to their mutual sliding. Method: In the manufacturing process of nuclear fuel elements, a plurality of pellets whose sides have been polished are fed one by one by way of a feeding mechanism through the central aperture in an electric motor into movable arms and retained horizontally with the central axis by being held on the side. Then, the pellet held by one of the arms is urged to another pellet held by the other of the arms by way of a pressing mechanism and the mating end faces of both of the pellets are polished by mutual sliding. Thereafter, the grinding dusts resulted are eliminated by drawing pressurized air and then the pellets are enforced into a cladding tube. Thus, the pellets are charged into the cladding tube with both polished end faces being contacted to each other, whereby the axial force is uniformly transmitted within the end faces to prevent the bending of the cladding tube. (Kawakami, Y.)

  12. Investigation on fuel-cladding chemical interaction in metal fuel for FBR. Reaction of rare earth elements with Fe-Cr alloy

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Ogata, Takanari

    2010-01-01

    Rare-earth fission product (FP) elements generated in the metal fuel interact with cladding alloy and result in the wastage of the cladding (Fuel-Cladding Chemical Interaction (FCCI)). To evaluate FCCI quantitatively, several influential factors must be considered. They are temperature, temperature gradient, time, composition of the cladding and the behavior of rare-earth FP. In this research, the temperature and time dependencies are investigated with tests in the simplified system. Fe-12wt%Cr was used as stimulant material of cladding and rare-earth alloy 13La -24Ce -12Pr -39Nd -12Sm (RE) as a rare-earth FP. A diffusion couple Fe-Cr/RE was made and annealed at 923K, 853K, 773K or 693K. The structures of reaction layers were analyzed with Electron Probe Micro Analyzer (EPMA) and the details of the structures were clarified. The width of the reaction layer in the Fe-Cr alloy grew in proportion to the square root of time. The reaction rate constants K=(square of the width of reaction layer / time) were evaluated. It was confirmed that the relation between K and the inverse of the temperature showed linearity above 773 K. (author)

  13. Fuel assembly guide tube

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    This invention is directed toward a nuclear fuel assembly guide tube arrangement which restrains spacer grid movement due to coolant flow and which offers secondary means for supporting a fuel assembly during handling and transfer operations

  14. CONTAINMENT ANALYSIS METHODOLOGY FOR TRANSPORT OF BREACHED CLAD ALUMINUM SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    Aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site and placed in interim storage in a water basin. To enter the United States, a cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Many Al-SNF assemblies have suffered corrosion degradation in storage in poor quality water, and many of the fuel assemblies are 'failed' or have through-clad damage. A methodology was developed to evaluate containment of Al-SNF even with severe cladding breaches for transport in standard casks. The containment analysis methodology for Al-SNF is in accordance with the methodology provided in ANSI N14.5 and adopted by the U. S. Nuclear Regulatory Commission in NUREG/CR-6487 to meet the requirements of 10CFR71. The technical bases for the inputs and assumptions are specific to the attributes and characteristics of Al-SNF received from basin and dry storage systems and its subsequent performance under normal and postulated accident shipping conditions. The results of the calculations for a specific case of a cask loaded with breached fuel show that the fuel can be transported in standard shipping casks and maintained within the allowable release rates under normal and accident conditions. A sensitivity analysis has been conducted to evaluate the effects of modifying assumptions and to assess options for fuel at conditions that are not bounded by the present analysis. These options would include one or more of the following: reduce the fuel loading; increase fuel cooling time; reduce the degree of conservatism in the bounding assumptions; or measure the actual leak rate of the cask system. That is, containment analysis for alternative inputs at fuel-specific conditions and

  15. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-01

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean

  16. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-15

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean.

  17. Delayed hydride cracking of zirconium alloy fuel cladding

    International Nuclear Information System (INIS)

    2010-10-01

    This report describes the work performed in a coordinated research project on Hydrogen and Hydride Degradation of the Mechanical and Physical Properties of Zirconium Alloys. It is the second in the series. In 2005-2009 that work was extended within a new CRP called Delayed Hydride Cracking in Zirconium Alloy Fuel Cladding. The project consisted of adding hydrogen to samples of Zircaloy-4 claddings representing light water reactors (LWRs), CANDU and Atucha, and measuring the rates of delayed hydride cracking (DHC) under specified conditions. The project was overseen by a supervisory group of experts in the field who provided advice and assistance to participants as required. All of the research work undertaken as part of the CRP is described in this report, which includes details of the experimental procedures that led to a consistent set of data for LWR cladding. The participants and many of their co-workers in the laboratories involved in the CRP contributed results and material used in this report, which compiles the results, their analysis, discussions of their interpretation and conclusions and recommendations for future work. The research was coordinated by an advisor and by representatives in three laboratories in industrialized Member States. Besides the basic goal to transfer the technology of the testing technique from an experienced laboratory to those unfamiliar with the methods, the CRP was set up to harmonize the experimental procedures to produce consistent sets of data, both within a single laboratory and between different laboratories. From the first part of this project it was demonstrated that by following a standard set of experimental protocols, consistent results could be obtained. Thus, experimental vagaries were minimized by careful attention to detail of microstructure, temperature history and stress state in the samples. The underlying idea for the test programme was set out at the end of the first part of the project on pressure tubes. The

  18. Effect of annealing temperature on the mechanical properties of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of Zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced Zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. The burst strength of the cladding at 650F decreased with the annealing temperature reaching a saturation value at approximately 1000F. The total circumferential elongation increased with the annealing temperature reaching a maximum at approximately 1000F and decreasing at higher temperatures. Hoop creep characteristics of Zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. The R-parameter was essentially independent of the annealing temperature while the P-parameter increased with annealing temperature. The mechanical anisotropy parameters were also studied as a function of the test temperature from ambient to approximately 800F using continuously monitored high precision extensometry. (Auth.)

  19. Fabrication of Multi-Layerd SiC Composite Tube for LWR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejong; Jung, Choonghwan; Kim, Weonju; Park, Jiyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Jongmin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-05-15

    In this study, the chemical vapor deposition (CVD) and chemical vapor infiltration (CVI) methods were employed for the fabrication of the composite tubes. SiC ceramics and SiC-based composites have recently been studied for LWR fuel cladding applications because of good mechanical/physical properties, neutron irradiation resistance and excellent compatibility with coolant under severe accident. A multi-layered SiC composite tube as the nuclear fuel cladding is composed of the monolith SiC inner layer, SiC/SiC composite intermediate layer, and monolith SiC outer layer. Since all constituents should be highly pure, stoichiometric to achieve the good properties, it has been considered that the chemical process is a well-suited technique for the fabrication of the SiC phases.

  20. Study on the influence of water chemistry on fuel cladding behaviour of LWR in Japan

    International Nuclear Information System (INIS)

    Mishima, Y.

    1983-01-01

    This article presents the results of the study on the influence of water chemistry on fuel cladding behaviour, which has been performed for more than ten years on BWRs and PWRs in Japan. The post irradiation examination (P.I.E.) program of commercial reactor fuel assembly which was explained at Tokyo meeting in 1981 includes an investigation of the characteristics and build-up conditions of crud deposited on mainly BWR fuel cladding. This article also provides a summary of the results of the investigation and shows how the results are utilized for establishing effective water chemistry measures

  1. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  2. Fabrication of the fuel elements cladding for utilization in the fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Schaeffer, L.; Sefidvash, F.

    1986-01-01

    A method for the fabrication of cladding of the spherical fuel elements for the utilization in the fluidized bed nuclear reactor is presented. Some prelimminary experiments were performed to adopt a method which adapt itself to mass production with the desired high quality. Still methods for cladding fabrication are under study. (Author) [pt

  3. Evaluation of corrosion on the fuel performance of stainless steel cladding

    Directory of Open Access Journals (Sweden)

    de Souza Gomes Daniel

    2016-01-01

    Full Text Available In nuclear reactors, the use of stainless steel (SS as the cladding material offers some advantages such as good mechanical and corrosion resistance. However, its main advantage is the reduction in the amount of the hydrogen released during loss-of-coolant accident, as observed in the Fukushima Daiichi accident. Hence, research aimed at developing accident tolerant fuels should consider SS as an important alternative to existing materials. However, the available computational tools used to analyze fuel rod performance under irradiation are not capable of assessing the effectiveness of SS as the cladding material. This paper addresses the SS corrosion behavior in a modified fuel performance code in order to evaluate its effect on the global fuel performance. Then, data from the literature concerning to SS corrosion are implemented in the specific code subroutines, and the results obtained are compared to those for Zircaloy-4 (Zy-4 under the same power history. The results show that the effects of corrosion on SS are considerably different from those on Zy-4. The thickness of the oxide layer formed on the SS surface is considerably lower than that formed on Zy-4. As a consequence of this, the global fuel performance of SS under irradiation should be less affected by the corrosion.

  4. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  5. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  6. Task Group E: fuel-cladding interface reactions. Second quarterly report

    International Nuclear Information System (INIS)

    Kangilaski, M.; Adamson, M.G.

    1974-01-01

    An interim assessment of possible interactions and their consequences in the various fuel systems was completed. The assessment discusses the interactions of advanced cladding alloys with: (1) helium bonded mixed oxides; (2) helium and sodium bonded mixed carbides; and (3) helium and sodium bonded mixed nitrides

  7. Manufacture of fuel and fuel channels and their performance in Indian PHWRs'

    International Nuclear Information System (INIS)

    Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) at Hyderabad is conglomeration of chemical, metallurgical and mechanical plants, processing uranium and zirconium in two separate streams and culminating in the fuel assembly plant. Apart from manufacturing fuel for Pressurised Heavy Water Reactors (PHWRs) and Boiling Water Reactors (BWRs), NFC is also engaged in the manufacture of reactor core structurals for these reactors. NFC has carried our several technological developments over the years and implemented them for the manufacture of fuel, calandria tubes and pressure tubes for PHWRs. Keeping in pace with the Nuclear Power Programme envisaged by the Department of Atomic Energy, NFC had augmented its production capacities in all these areas. The paper highlights several actions initiated in the areas of fuel design, fuel manufacturing, manufacturing of zirconium alloy core structurals, fuel clad tubes and components and their performance in Indian PHWRs. (author)

  8. Impacts of reactor. Induced cladding defects on spent fuel storage

    International Nuclear Information System (INIS)

    Johnson, A.B.

    1978-01-01

    Defects arise in the fuel cladding on a small fraction of fuel rods during irradiation in water-cooled power reactors. Defects from mechanical damage in fuel handling and shipping have been almost negligible. No commercial water reactor fuel has yet been observed to develop defects while stored in spent fuel pools. In some pools, defective fuel is placed in closed canisters as it is removed from the reactor. However, hundreds of defective fuel bundles are stored in numerous pools on the same basis as intact fuel. Radioactive species carried into the pool from the reactor coolant must be dealt with by the pool purification system. However, additional radiation releases from the defective fuel during storage appear tu be minimal, with the possible exception of fuel discharged while the reactor is operating (CANDU fuel). Over approximately two decades, defective commercial fuel has been handled, stored, shipped and reprocessed. (author)

  9. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding